
COMBINING INFORMATION SOURCES
FOR MEMORY-BASED PITCH ACCENT PLACEMENT

Erwin Marsi
�
, Bertjan Busser

�
, Walter Daelemans

��� �
,

Veronique Hoste
�
, Martin Reynaert

�
, Antal van den Bosch

�

�
Tilburg University

ILK / Computational Linguistics and AI
Tilburg, The Netherlands

�
University of Antwerp,

CNTS
Antwerp, Belgium

ABSTRACT

We describe results on pitch accent placement in Dutch text ob-
tained with a memory-based learning approach. The training ma-
terial consists of newspaper texts that have been prosodically an-
notated by humans, and subsequently enriched with linguistic fea-
tures and informational metrics using generally available, low-
cost, shallow, knowledge-poor tools. We report on the effects of
context-modelling and the nearest neighbours parameter (k), and
show the advantage of combining features of a different nature,
where the best performance yields a cross-validated F-score of 82.
Evaluation on an independent test corpus shows that our approach
outperforms existing TTS systems for Dutch.

1. INTRODUCTION

Better prosody, both at the symbolic and the phonetic level, is
generally thought to have a significant impact on the quality of
synthetic speech. In this paper we focus on one crucial aspect
of prosody: pitch accent placement. The placement of pitch ac-
cent on certain stressable words in a sentence has been shown to
be related to various types of information, including phonologi-
cal well-formedness constraints, lexical properties, syntactic con-
stituent boundaries, syntactic and semantic relations, and discourse-
level knowledge [1]. Some of these are hard, if not impossible, to
obtain automatically from unrestricted text by current NLP stan-
dards. In the research described here, we investigate whether lin-
guistic features and informational metrics which can be computed
using generally available, low-cost, shallow, knowledge-poor tools
are suitable predictive features for pitch accent prediction when
used with machine learning techniques. More specifically, a memory-
based learner is trained to predict whether words should be ac-
cented or not. Input consists of the current word, some of the
preceding and following words, as well as lexical, syntactic, and
information-theoretic features associated with these words. We in-
tend to show that this approach goes a long way towards generating
naturally-sounding pitch accent patterns, casting doubt on the need
for more expensive sentence and discourse analysis.

In Section 2 we define the task, describe the data we used,
and the annotation process which involves lemmatising, tagging,
chunking, and computing informational metrics. Furthermore, a
brief overview is given of the memory-based language process-
ing algorithms we used in all experiments. Section 3 reports on
systematic experiments with single features and combinations of
features as input, for various settings of window size and � , an

important parameter of the learning algorithm. Section 4 then re-
ports on the performance of our approach on an independent test
corpus which was designed to evaluate the pitch accent compo-
nent of Dutch TTS systems, showing that our approach compares
favourably to state-of-the-art systems. The final section offers con-
cluding remarks.

2. TASK DEFINITION, DATA, AND MACHINE
LEARNING METHOD

We define pitch accent placement as a binary task: given a word
form in its sentential context, decide whether it should receive a
pitch accent or not. This implies three types of abstractions. First,
our scope is limited to predicting pitch accents at the symbolic
level. This is in agreement with the division of labour between lin-
guistic processing and phonetic implementation found in virtually
all speech synthesis systems. That is, generating actual ��� values
presupposes symbolic input, but is a problem of a different nature
that should be solved with other methods.

Second, the task is defined at its most coarse-grained level.
Finer-grained classifications, such as predicting the type of pitch
accent (e.g. H*L or L*H), could be envisioned. However, we as-
sert that the latter classification, apart from being arguably harder
to annotate, could be deferred to later processing given an adequate
level of performance on the binary task.

Third, it is well known that accent placement allows for a con-
siderable amount of variation, reflecting personal style and taste.
Nevertheless, on many occasions presence or lack of an accent
turns out to be crucial for the interpretation and naturalness of the
speech. Until evaluation metrics have been developed that take
the difference between essential and merely optional accents into
account, we measure performance by matching predicted accents
with those specified by a human annotator in a straightforward
way.

2.1. Prosodic annotation of the data

The data used in our experiments contains 128 Dutch newspaper
articles, totalling 2,896 sentences and 42,912 tokens (including
punctuation). As a preprocessing step, the data was tokenised by a
rule-based Dutch tokeniser, splitting punctuation from words, and
marking sentence endings. Tokenisation errors were manually cor-
rected.

The articles were then prosodically annotated, without over-
lap, by four different annotators, and were corrected in a second

stage, again without overlap, by two corrector-annotators. The an-
notators’ task was to mark individual tokens as bearing accent.
They used a custom annotation tool which provided feedback in
the form of synthesized speech. In total, 14,457 accents were
placed (approximately one in three words).

2.2. Adding shallow information sources

The 128 prosodically-annotated articles were subsequently pro-
cessed through the following seven shallow analysis steps, each
contributing one annotation symbol per token:

POS tagging – We used a fast, accurate multi-tagger ensem-
ble [2], which reached an accuracy of 93.4% (using manually cor-
rected tags on our data as the reference). Its learning material did
not overlap with our base data.

Lemmatising – An automatic, memory-based lemmatiser was
used to lemmatise all non-punctuation tokens (based on [3]). It was
trained on a large Dutch morpho-lexical database. In ambiguous
situations (e.g. in cases where a word form can be a noun or a
verb), POS tags are used for disambiguation.

NP and VP chunking – Syntactic structure is provided by
simple noun phrase and verb phrase chunkers which take word and
POS information as input. They are implemented as finite-state
machines compiled from a small number of regular expressions.
Boundaries of the phrases are encoded per word using three tags:
‘B’ for chunk-initial words, ‘I’ for chunk-internal words, and ‘O’
for words outside chunks. The NPs are identified according to
the principle of one semantic head per chunk (non-recursive, base
NPs). The VPs include only the words that are verbs, not the verbal
complements.

IC – Information Content of a word � is given by
����� ���	�
	���� ����� ����� , where P(w) is estimated by the observed frequency

of � . Using log base 10, we calculated IC on the basis of a large
and disjoint corpus of about 620 Mb of newspaper text. Hence, no
IC value is available for words that have not yet been not encoun-
tered. These were given the highest IC score observed, i.e. the
value for hapaxes in the larger corpus.

TF*IDF – The TF*IDF metric [4] estimates the relevance of
a word in a document. Document frequency counts for all token
types were obtained from the same corpus as used for IC calcula-
tions.

Distance – For each token, the distance, in number of tokens,
to its most recent occurrence within the same article was counted.
Words occurring for the first time in an article were assigned the
arbitrary high default distance of 9999.

Together with the original tokens, this shallow processing yields
eight sources of information to be used as predictive features in the
learning task. An excerpt of the annotated data is presented in Ta-
ble 1.

2.3. Memory-based learning

Memory-based learning, also known as instance-based, example-
based, or lazy learning [5, 6], is a supervised inductive learning
algorithm for learning classification tasks. Memory-based learning
treats a set of labeled (pre-classified) training instances as points
in a multi-dimensional feature space, and stores them as such in an
instance base in memory (rather than performing some abstraction
over them).

An instance consists of a fixed-length vector of � feature-value
pairs, and an information field containing the classification of that

particular feature-value vector. After the instance base is stored,
new (test) instances are classified by matching them to all instances
in the instance base, and by calculating with each match the dis-
tance, given by a distance function � ������� � between the new in-
stance

�
and the memory instance

�
. In our experiments we used

the “overlap” distance function � ������� �������� "!#� �%$ ��& � ��' � � ,
where � is the number of features, � � is a weight for feature (, and$ �*)	(,+ & � � ' � �.- ��/ -10 is the distance per feature. For numeric
features, the distance equals their absolute difference normalised
to 1. Classification in memory-based learning is performed by the
� -NN algorithm that searches for the � ‘nearest neighbours’ ac-
cording to the � ������� � function. The majority class of the �
nearest neighbours then determines the class of the new case. With
symbolic feature values, distance ties can occur when two nearest
neighbours mismatch with the test instance on the same feature
value, while all three instances have different values. In the � -
NN implementation1 we used, equidistant neighbours are taken as
belonging to the same � , so this implementation is effectively a
� -nearest distance classifier.

The weight (importance) of a feature (, � � , is estimated by
computing its gain ratio 243 � . To compute a feature’s GR, we
first compute its information gain

� 2 � , which is the difference
in uncertainty (entropy) within the set of cases between the sit-
uations without and with knowledge of the value of that feature:� 2 � ��5 �6� �
 �87�9;:=< ����> �1?@5 �6��A > � , where

�
is the set of

class labels, B � is the set of values for feature (, and 5 �6� �C�
 �EDF9;G ����H �JILKNM�O ����H � is the entropy of the class labels. The
probabilities are estimated from frequency counts in the training
set. To derive the GR, the feature’s IG is divided by the entropy of
the feature values, the split info / (� �
 ��7P9Q:=< ����> �;ILKRM O ����> � :
243 � �TSVU <W �X< .

The strength of memory-based language processing in the task
at hand is that it provides, through its feature weighting method,
a natural way of combining the shallow information sources in an
optimal way. In addition, it performs no abstraction (in contrast to
most other machine learning algorithms), which allows it to deal
with productive but low-frequency exceptions [6].

3. EXPERIMENTS

3.1. Baselines

In order to evaluate the performance of our approach, we deter-
mined two baselines for accent placement:

1. RND: a chance-level baseline formed by randomly assign-
ing � accents, where � equals the number of accents as-
signed in our corpus.

2. C/F: a content vs. function word baseline formed by ac-
centing all content words, while leaving all function words
(determiners, prepositions, conjunctions, complementisers
and auxiliaries) unaccented.

Table 2 shows the performance of both baselines in terms of
accuracy, precision, recall, and �%Y "! with respect to the class ‘ac-
cent’. � Y "! represents a harmonic average between precision and
recall. Since these are considered to be of equal importance to the
present task, we assume that Z[� 0

, and henceforth refer to �"Y \!
as � .

1All experiments with memory-based learning were performed with
TiMBL, version 4 [7].

Table 1. Annotation for the sentence Zo ontstond deze bijlage. (‘That gave rise to this supplement.’), where the first eight columns show
the different information sources which are used for accent placement (last column)

WORD POS LEMMA NP VP IC TF*IDF DIST ACCENT

Zo BW() zo O-NP O-VP 3.47 0.002967 9999 –
ontstond WW(pv,verl,ev) ontstaan O-NP B-VP 4.44 0.006178 9999 –
deze VNW(aanw,det,stan, prenom,met-e,rest) deze B-NP O-VP 2.86 0.001357 9999 A
bijlage N(soort,ev,basis,zijd, stan) bijlage I-NP O-VP 5.78 0.011120 9999 A
. LET(.) . O-NP O-VP 1.29 0.000090 10 –

Table 2. Performance of the baselines RND (randomly) and C/F
(content vs. function word based) as a percentage of accuracy, pre-
cision, recall, and �

� H H�������HV' ���R-=H (/ (� � 3 -�H�� � � �
RND 58.6 38.6 38.6 38.6

C/F 79.7 63.4 94.1 75.8

74

75

76

77

78

79

80

81

82

0 5 10 15 20 25 30

F
 (

%
)

k

window=1
window=3
window=5
window=7

Fig. 1. Average � as a function of � for 4 different window sizes
in CV experiments with both POS and IC.

3.2. Relevance of context and k

In a first set of experiments, we investigated the effect of context
size and � . These and all other reported experiments were carried
out using 10-fold cross-validation. Folds were created containing
an approximately equal number of instances, but without splitting
any of the newspaper articles. For the memory-based learner, we
used its default setting and numeric distance calculations for the
numeric features IC, TF*IDF and DISTANCE. Here, we took the
features POS and IC, as these received the highest Gain Ratio val-
ues (cf. Section 2.3). Context was modelled by applying a window
to these features, that is, by adding features of the preceding and
following tokens to the set of input features for the current token.
We tried window sizes of 7 (3 left, 3 right), 5, 3, and 1 (no context).
In addition, the parameter � , which stands for the number of near-
est neighbours that the memory-based learner takes into account
during classification, was varied in the range of uneven numbers
from 1 to 31. Figure 1 shows the performance as a function of
� for different window sizes. The maximal accuracy attained is�
	�� ��) � � (

� 0 � ��� 0 � � �), which is significantly higher than both
baselines.

From these results we conclude that taking context into ac-

0

20

40

60

80

100

0 5 10 15 20 25 30 35
F

 (
%

)

k

word
word lemma

word pos np vp
word ic tf*idf dist

all features

Fig. 2. Average � in 10-fold CV experiments with �	(���� � � � �
on all features, as a function of k, for 5 different feature combina-
tions

count improves performance, although window sizes larger than
three appear to have no extra effect. This indicates that more con-
text than only very local (one word to the left, one to the right
of the focus word) does not provide more disambiguating infor-
mation. Moreover, context modelling appears to become effective
only when at least five nearest neighbours are taken into account.
Apparently, the majority class among small numbers of nearest
neighbours is unreliable, suggesting that many nearest neighbour
pairs have different classifications. The reliability of the majority
class stabilises only after about eleven or more neighbours.

3.3. Feature combinations

In a subsequent set of experiments, we explored additional combi-
nations of features. The WORD feature, which is the most basic
feature freely available to any accent placement algorithm, was
combined with a lexical feature (LEMMA), with syntactic fea-
tures (POS, NP, VP), with informational features (IC, TF*IDF,
DISTANCE), and finally with all features available. On the ba-
sis of the results in the previous section, we chose a window size
of three, but varied settings of parameter � .

Figure 2 plots the performance in � as a function of � for each
of the feature combinations. WORD with or without LEMMA
drops to an � of 0.0 at higher � values. This is because nearest
neighbour sets at these levels of � (yielding � nearest distances of
many more than � instances) always contain a majority of unac-
cented instances, which means that no accents at all are assigned.
This effect is slightly counteracted when WORD is coupled with
the syntactic features POS, NP, and VP, but after a peak at � ��� ,
the same majority effect decreases performance. In contrast, when

Table 3. Comparison of three TTS systems for Dutch (FD, KIK,
and RS) with our approach (MBL) w.r.t. accent placement in news
text and email as a percentage of accuracy, recall, precision, and �

� - � / ��� � (�
� ' /�� - � � H H ���R-=H 3 -=H � � H H ���N-=H 3 -=H �

FD 76 58 84 68 81 66 80 72
KIK 75 57 80 67 77 62 73 67

RS 74 55 84 66 75 57 88 69
MBL 86 69 88 77 86 72 82 77

WORD is coupled with the numeric informational features IC,
TF*IDF, and DISTANCE, results stabilise at high levels for ��� � .
Best performance is obtained by combining all features. The best
result (using all features, a window size of three, and �#� 0 �) is an
� of

� 0 � � 0 � 	
(
� � ��� 0 �) accuracy) with a precision of

� �
�� 0 �

and a recall of

��	 � �� 0 � 	
. Although the differences between the

experiment that combines all features versus the experiment with
WORD plus the numeric informational features seem small, they
are significant at all values of � with at least ��) �) 0 according
to one-tailed � tests.

Interestingly, the precision of the experiment using all fea-
tures,

� �

, is higher than the best precision obtained in the three

other experiments,

 � 	

, with WORD and the numeric informa-
tional features; moreover, its recall of

��	��
is higher than the best

recall of the other experiments,
��	 � �

, with WORD and the syntac-
tic features. Thus, integrating all features not only combines the
best of both the syntactic and informational features, but improves
on them.

4. COMPARISON WITH OTHER SYSTEMS

Although the integration of these particular information sources
has not been tested before, there have been other reports of success
in accent placement using shallow information sources or simple
heuristics, e.g. [1, 8]. A direct quantitative comparison with these
other accent placement systems and approaches is not allowed be-
cause of differences in language, text genre, annotation or tran-
scription conventions, speaking style, and evaluation method. The
only way to have a sound comparison is by testing different ap-
proaches on the same test corpus (see also Black [9]).

For an objective comparison with other systems, therefore, we
tested on an independent test corpus [10] containing two types of
text: 2 newspaper texts (55 sentences, 786 words excluding punc-
tuation), and 17 email messages (70 sentences, 1133 words exclud-
ing punctuation). This material was annotated by 10 experts, in-
dicating the accents they preferred. For the purpose of evaluation,
words were assumed to be accented if they received an accent by
at least 7 of the annotators. This corpus was originally designed to
evaluate three competitive TTS systems for Dutch.2 Table 3 shows
a comparison of these systems to our approach (MBL), which is
the classifier that performed best in the previous section. The �
scores show that our system outperforms the others by at least 9-
11% for news text and 5-10% for email, which is mainly due to a
substantially improved precision.

2FD (Fluent Dutch) is a commercial product of Fluent Speech; KIK
is a former joint research system by Nijmegen University, KPN (a Dutch
telephone company) and Eindhoven University of Technology; RS (Real-
Speak) is a commercial product by L&H.

5. CONCLUSION

Starting from a text corpus with human-annotated accents, we have
developed a system for accent placement that first enriches the
input words with lexical, syntactic and informational features by
means of generally available, low-cost, knowledge-poor tools, and
subsequently employs a memory-based learner to predict accents.
We have shown that a limited amount of context-modelling is ef-
fective when combined with high values of � , and that the memory-
based learner can successfully combine features of a different na-
ture. In independent evaluation showed that our approach outper-
forms existing TTS systems. Future research will involve includ-
ing word collocation and prosodic boundary information.

6. ACKNOWLEDGEMENT

Our thanks go out to Olga van Herwijnen and Jacques Terken for
permitting the use of their TTS evaluation corpus and to Marc
Swerts, Hans Paijmans, and Steven Gillis for discussions and sup-
port. All research in this paper was funded by the Flemish-Dutch
Committee (VNC) of the National Foundations for Research in the
Netherlands (NWO) and Belgium (FWO).

7. REFERENCES

[1] J. Hirschberg, “Pitch accent in context: Predicting intona-
tional prominence from text,” Artificial Intelligence, vol. 63,
pp. 305–340, 1993.

[2] W. Daelemans, J. Zavrel, P. Berck, and S. Gillis, “MBT: A
memory-based part of speech tagger-generator,” in Proceed-
ings of the 4th Workshop on Very Large Corpora, E. Ejerhed
and I. Dagan, Eds., Copenhagen, Denmark, 1996, pp. 14–27.

[3] A. Van den Bosch and W. Daelemans, “Memory-based mor-
phological analysis,” in Proceedings of the 37th Annual
Meeting of the ACL, New Brunswick, NJ, 1999, pp. 285–
292, ACL.

[4] G. Salton, Automatic text processing: The transformation,
analysis, and retrieval of information by computer, Addison–
Wesley, Reading, MA, USA, 1989.

[5] D. W. Aha, D. Kibler, and M. Albert, “Instance-based learn-
ing algorithms,” Machine Learning, vol. 6, pp. 37–66, 1991.

[6] W. Daelemans, A. Van den Bosch, and J. Zavrel, “Forget-
ting exceptions is harmful in language learning,” Machine
Learning, Special issue on Natural Language Learning, vol.
34, pp. 11–41, 1999.

[7] W. Daelemans, J. Zavrel, K. Van der Sloot, and
A. Van den Bosch, “TiMBL: Tilburg Memory Based
Learner, version 4.0, reference manual,” Tech. Rep. ILK-
0104, ILK, Tilburg University, 2001.

[8] S. Pan and K. McKeown, “Word informativeness and
automatic pitch accent modeling,” in Proceedings of
EMNLP/VLC’99, New Brunswick, NJ, USA, 1999, ACL.

[9] A. W. Black, “Comparison of algorithms for predicting pitch
accent placement in English speech synthesis,” in Proceed-
ings of the Spring Meeting of the Acoustical Society of Japan,
1995.

[10] O.M. van Herwijnen and J.M.B. Terken, “Evaluation of
automatic assignment of prosodic structure by Dutch TTS-
systems,” Unpublished report, 2000.

