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Abstract

Introduction: The length of stay of critically ill patients in the intensive care unit (ICU) is an indication of patient ICU resource
usage and varies considerably. Planning of postoperative ICU admissions is important as ICUs often have no nonoccupied beds
available.
Problem statement: Estimation of the ICU bed availability for the next coming days is entirely based on clinical judgement by
intensivists and therefore too inaccurate. For this reason, predictive models have much potential for improving planning for ICU
patient admission.
Objective: Our goal is to develop and optimize models for patient survival and ICU length of stay (LOS) based on monitored ICU
patient data. Furthermore, these models are compared on their use of sequential organ failure (SOFA) scores as well as underlying
raw data as input features.
Methodology: Different machine learning techniques are trained, using a 14,480 patient dataset, both on SOFA scores as well as
their underlying raw data values from the first five days after admission, in order to predict i) the patient LOS, and ii) the patient
mortality. Furthermore, to help physicians in assessing the prediction credibility, a probabilistic model is tailored to the output of
our best-performing model, assigning a belief to each patient status prediction. A two-by-two grid is built, using the classification
outputs of the mortality and prolonged stay predictors to improve the patient LOS regression models.
Results: For predicting patient mortality and a prolonged stay, the best performing model is a support vector machine (SVM) with
GA,D = 65.9% (area under the curve (AUC) of 0.77) and GS ,L = 73.2% (AUC of 0.82). In terms of LOS regression, the best
performing model is support vector regression, achieving a mean absolute error of 1.79 days and a median absolute error of 1.22
days for those patients surviving a nonprolonged stay.
Conclusion: Using a classification grid based on the predicted patient mortality and prolonged stay, allows more accurate modeling
of the patient LOS. The detailed models allow to support the decisions made by physicians in an ICU setting.
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1. Introduction

1.1. Problem statement
The patient length of stay (LOS) is often seen as an indication

of the patient resource usage in the intensive care unit (ICU)
[1]. Currently ICU physicians generally plan only a single day
ahead based on clinical judgement. Automated scheduling as-
sistance based on patient survival and LOS predictions would
be beneficial in optimizing ICU resource usage, e.g., estimating
the number of occupied beds, as well as individualized patient
care. Moreover, this enables the adaptation of surgery schedul-
ing to the predicted ICU load. In addition, predictive ICU mod-
els could be a building block in the larger process of making do
not resuscitate (DNR) decisions to determine whether to stop
patient therapy to avoid unnecessary suffering and treatment
costs.
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In this work, machine learning techniques are trained based
on the sequential organ failure (SOFA) score [2–5], a score as-
sessing the daily individual degree of organ failure. The SOFA
score is an objective score that allows for calculation of both the
number and the severity of organ dysfunction in six organ sys-
tems (respiratory, coagulation, liver, cardiovascular, renal, and
neurological). The score can measure individual or aggregate
organ dysfunction over time and is useful to evaluate morbid-
ity. Although the SOFA scoring was not developed to predict
outcome, the obvious relationship between organ dysfunction
and mortality has been demonstrated in several studies [3, 6, 7].

Moreover, patient mortality and LOS estimation is studied in
a live monitoring setting by taking into account not only data
from the first few days after admission, but also from a moving
data window. This allows us to predict the status for a patient
with an arbitrary current LOS. Additionally, our models assign
a degree of certainty to their classification outputs, allowing
ICU physicians to adapt their interpretation of the model to its
credibility.
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1.2. Related work

In previous studies, ICU patient mortality and LOS mod-
elling has been conducted by taking into account patient data
only from day one [8, 9]. These studies generally focus on
determining whether a patient will have a prolonged stay, i.e.,
a LOS crossing some predefined threshold. Kramer and Zim-
merman [10] apply machine learning models trained on moni-
tored data from the first five days after patient admission, to pre-
dict the patient prolonged LOS, using a 350,000 patient dataset.
Contrary to their approach we examine the use of SOFA scores
as well as raw data for ICU modelling purposes. SOFA scores
are used in a dynamic Bayesian network setting by Sandri
et al. [11] to predict sequences of organ failures in a dataset
of 79 critically ill patients, however they focus on predicting
sequences of organ failures rather than the patient LOS or mor-
tality. Meyfroidt et al. [12] have applied Gaussian processes in
ICU patient LOS modelling. They focus on information mon-
itored in the first four hours after admission and focus on LOS
prediction of 960 patients undergoing cardiac surgery. Silva et
al. [13] also make use of SOFA scores to build predictive ICU
models using a 4,425 patient dataset, however their goal is to
predict individual organ failures rather than patient mortality,
prolonged stay and LOS. Furthermore, Cell et al. [14] have ap-
plied a variety of machine learning techniques to model ICU
patient survival for a dataset of approximately 1,623 patients.
However, they focus on a specific patient subset which prevents
straightforward generalization of their results.

1.3. Paper organization

The remainder of this paper is structured as follows. In Sec-
tion 2, we elaborate on the applied predictive models and fea-
ture selection methods. Section 3 describes the data used for the
applied modelling techniques and sets forth the SOFA score.
Hereafter, Section 4 outlines the conducted experiments as well
as their results, after which these are discussed in Section 5.
Finally, in Section 6 general conclusions are highlighted.

2. Predictive modelling

The survival as well as the prolonged stay prediction are
modelled by classification techniques, while the numeric pa-
tient LOS is modelled via regression. In this work the following
methods are used for classification: artificial neural networks
(ANNs) [15], k-nearest neighbors (k-NN) [16], support vector
machines (SVMs) [17], classification trees (CART) [18], ran-
dom forests (RF) [19] and adaptive boosting (AdaBoost) [20].
For regression we use: ANNs, k-NN, RF, support vector re-
gression (SVR) [17], relevance vector regression (RVR) [21]
and regression trees (CART) [18]. Some of the experiments are
executed using models implemented by SUMO Toolbox [22].
To select the most relevant features both backward elimination
and RF, as an importance ranker, are used. In the following
paragraphs these applied modelling techniques are described
briefly.

2.1. Support vector machines

Support vector machines (SVMs) [17] are sparse kernel ma-
chines, a type of models that rely only on a subset of data, the
support vectors, to predict unknown values. Additionally, they
allow the use of kernels which allow the projection of input data
to a different, possibly higher-dimensional space. The model
separates the input data by means of a good-fitting hyperplane
into two classes. Kernels can be used to transform this hyper-
plane into a nonlinear input separator, making it a very effec-
tive classifier. The SVMs used in this work have the following
tunable parameters: a cost term C that controls the misclassifi-
cation tolerance and acts as a regularization parameter, and one
or more kernel parameters.

2.1.1. Probabilistic SVMs
On top of predicting a class, we would like our models to as-

sign a probability, a belief, that a sample is classified correctly.
This is done by means of a probabilistic extension of the SVM
[23]. As such, a probability

P(y = 1|x) (1)

is given for each prediction. This is achieved by – next to op-
timizing the hyperplane decision boundary – fitting a sigmoid
function

P(y = 1|x; A, B) =
1

1 + exp (Ay(x) + B)
(2)

on the decision values y of the SVM classifier. Herein the pa-
rameters A and B are estimated by running a maximum likeli-
hood algorithm for Eq. (2) over the original training set.

2.2. Support vector regression

Support vector regression (SVR) [17] is the application of
SVMs to regression tasks, in which a linear function is fit
through the training set. In this work ε-SVR is used, which
builds a tube around the fitted curve in which the data points
have a zero cost value. Doing so allows us to fit a curve in such
a way that many points reside inside this tube. Again, the pre-
dictions only depend on a subset of data, the support vectors,
which lie on the tube boundaries. Also, kernels can be used to
transform the linear fit to a nonlinear curve. The parameters
used are the radius ε of the tube, which controls the tolerance
towards deviation from the fitted curve and acts as a regulariza-
tion parameter, and one or more kernel parameters.

2.3. Relevance vector machines

SVMs require cross-validation in order to optimally tune
their parameters. Furthermore, they cannot capture output un-
certainty naturally. Relevance vector machines (RVMs) [21]
resemble SVMs, but apply a Bayesian approach to learning by
introducing a prior distribution of the SVM weights. They are
also sparse as most of the posterior weight distributions con-
centrate around zero and are hence negligible. The nonzero
weights, called relevance vectors, are, unlike SVMs, not based
on their distance to a hyperplane or tube. Furthermore, they
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require less parameter tuning than SVMs, but it can be compu-
tationally expensive to train them on large datasets. The regres-
sion version of the RVM is called Relevance Vector Regression
(RVR).

2.4. Artificial neural networks

Artificial neural networks (ANNs) [15] are machine learn-
ing models representable by a graph structure. In this graph
the edges represent weights and the vertices neurons. An ANN
consists of multiple layers, next to the input and output layer,
called hidden layers which transform data, that is sent through
the network from the input features to the output neurons, non-
linearly. In this work, the network is trained by means of back-
propagation in which the output is monitored and compared to
its correct training value. Hereafter, the error is fed back into
the network in order to adjust the weights to obtain a more ac-
curate prediction. The different parameters are the number of
layers and the number of neurons in these layers. Furthermore,
a weight decay parameter λ is added to restrict the model com-
plexity. This parameter makes sure that weights having have no
substantial effect on the predictive power converge to zero to
avoid overfitting.

2.5. k-nearest neighbours

k-Nearest Neighbors (k-NN) is a learning algorithm capable
of classification as well as regression. In k-NN the output is
determined by the label of the k closest data points in the fea-
ture space. It can be seen as a lazy learning algorithm as the k
closest points (in our case based on the Euclidean distance) are
calculated at query time. Hence the model can easily be used
in an online learning setting. In k-NN classification the mode
of the class of the k nearest neighbours is used, while in the
regression case the model uses the average neighbour value.

2.6. Classification and regression trees

Decision trees are eager learning algorithms that generalize
training data by building a tree structure. In this tree every node
represents a split on a certain property of a data sample. By fol-
lowing a path corresponding to the to-be classified sample from
the root to a leaf node along the edges corresponding to the
properties of this sample, it is possible to predict property val-
ues. Classification And Regression Trees (CART) [18] is such
a decision tree algorithm capable of classification as well as re-
gression. It is binary in the sense that every node has exactly
two child nodes. Furthermore, multiple nodes along a root-leaf
path may split on the same property. At each node of the tree,
the node split property is chosen based on the maximal decrease
in impurity, an information entropy measurement.

2.7. Random forests

Random forests [19] is an ensemble machine learning
method based on the construction of multiple CART decision
trees for either regression or classification. The main underly-
ing technique used in random forests is bootstap aggregating
(bagging). In bagging the training data set is sampled K times
and each time S samples are taken with replacement. These K

different subsets are then used to train K different CART de-
cision trees. Furthermore, each of the K CART learners only
use |x|1/2 features for a dataset of |x| features in order to reduce
the correlation of strong predictors. The predicted value of the
random forests algorithm is the mode in case of classification
or the average value of the K different decision trees in case of
regression.

2.8. Discrete adaptive boosting

Discrete adaptive boosting (Discrete AdaBoost) [20] is a
boosting algorithm that linearly combines multiple weak learn-
ers to form a single strong one applicable to binary classifi-
cation problems. The weak learners may be chosen arbitrarily,
but the ability to train them in a weighted manner (e.g., an SVM
with class weights) is required. The different weak learners are
trained sequentially in such a way that each subsequent weak
learner tries to correctly classify the samples wrongly predicted
by the preceding weak learners by increasing their weights. In
this work we use CART as a weak classification algorithm.

2.9. Feature selection

The feature importance ranking is obtained by running a vari-
ant of the RF [19] algorithm, tailored to obtaining feature im-
portance. For each tree lk generated by the RF algorithm, about
1/3th of the data is left out (see Section 2.7), which is called
the out-of-bag (OOB) data. After building lk based on the non-
OOB data, the OOB data is used as a test set. As such, each
data sample is used as a test sample in ±1/3th of the total num-
ber of trees K. Hereafter, the number of times a tree lk makes
incorrect predictions is divided by K. This number is then av-
eraged over all data samples and is called the OOB error. Next,
for each tree lk as well as for each feature, the feature values in
the OOB data are randomly permuted after which the previous
error estimating algorithm is run again. The difference between
the two OOB error rates is scaled by the standard deviation of
the differences, and is called the importance of a feature.

An advantage of this algorithm is its ability to visualize the
importance of each distinct features, a downside, however, is its
inability to detect correlations between features. To overcome
this, features can be removed by means of backward elimina-
tion. In backward elimination the least informative features are
sequentially removed. As such, it is possible to obtain a mini-
mal set of features that is still able to get maximal classification
or regression performance.

Furthermore, we use Sobol indices [24] to perform a sensi-
tivity analysis on our models. These indices are a Monte Carlo
sensitivity analysis [25] which explain the importance of an in-
put feature based on the variance of the output. In particular,
it shows the the variance of the conditional expectation of the
output, given a particular input feature value, normalized by the
total variance of the output. As such, the result is a percent-
age, indicating how much of the model variance is explained
by a particular feature. Higher values correspond to features of
higher importance.
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3. Collected dataset

First, we describe the data used for training the machine
learning models. Next, we explore the details of the SOFA
score calculations, the use of raw data values as training fea-
tures, as well as the use of a moving data window.

3.1. Data collection

Our dataset consists of all patient admitted between January
1, 2009 and September 17, 2013 to the 22 bed surgical ICU
and 14 bed medical ICU of the Ghent University Hospital. This
data contains personal patient information, ICU stay informa-
tion and ICU monitored values, as well as lab test results. In
total 18,921 patients were recorded in the dataset. The patient
information consists of five attributes: the ICU admission time,
ICU discharge time, weight, age and sex. Furthermore, all pa-
rameters required to calculate the SOFA scores are measured.
These consist of 13 status parameters and 6 parameters describ-
ing the administered drugs, all accompanied by a timestamp.

The data is pre-processed by removing all underage (< 18
years) patients, retaining 14,480 patients of which 38.1% is fe-
male and 61.9% is male. From this total set of patients, 91.8%
survive their ICU stay. Parameters are not monitored when ICU
physicians determine that a particular patient organ status is not
affected at all. However, the SOFA computation methods make
up for this lack of data.

3.2. SOFA score calculation

The data parameters, for which the sampling frequency is
variable as the number of measurements per day for a par-
ticular parameter is not fixed, are aggregated into a single
daily representative score, called the sequential organ failure
(SOFA) score [2–5]. This score quantifies the patient’s or-
gan performance and is generally used to assess the patient’s
status during his ICU stay. This SOFA score is based on six
SOFA sub-scores calculated for: the coagulation function, re-
nal function, cardiovascular system function, central nervous
system function, hepatic system function and respiratory func-
tion. These sub-scores are integers within the range [0, 4]. A
low SOFA score indicates a healthy patient status, while a high
score may indicate organ failure. For each patient a SOFA
score is calculated for each organ system function, every day
after admission, at 5:00 AM. This score aggregates different
data values measured within the 24 hour window, denoted as
W, preceding each daily SOFA score calculation. As such,
W =](5:00 AM day i− 1), . . . , (5:00 AM day i)]. When doctors
do not suspect a patient having a certain critical organ status,
no values are measured for that particular organ system (e.g.,
no liver test is conducted). To deal with these missing data, the
corresponding SOFA sub-score is set to zero, which denotes a
healthy status. The calculation method of the different SOFA
sub-scores is explained in the following sections. A graphical
summary of the SOFA score calculation is given in Figure 1.
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Figure 1: Graphical summary SOFA score calculation: each node denotes a
specific calculation, the number inside each node corresponds to the equation
number which explains how the computation is done; the arrow heads represent
calculation inputs for each node, while the opposite ends represent the calcula-
tion output for each node.

3.2.1. SOFA score
The total SOFA score is be calculated by adding six SOFA

sub-scores of each different organ system, which will be ex-
plained in the next sections:

SOFAtotal = SOFAcoag + SOFArenal + SOFAresp

+ SOFAcardio + SOFAcns + SOFAliver. (3)

This total SOFA score is generally used by physicians to assess
the patient status. Its range is 0 ≤ SOFAtotal ≤ 24 as every sub-
score has a range of [0, 4]. Later in this text, a SOFA score
accompanied by a number in subscript denotes the day after
admission it corresponds to. For example SOFArenal(3) represents
the renal system function SOFA score on day 3 after admission.

3.2.2. SOFA subscore 1: coagulation function
The coagulation function SOFA score is calculated by mea-

suring the trombocytes [number of platelets ×103/µl] value in
the blood,

αcoag = min
t∈W
{trombocytes(t)}. (4)
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This minimum trombocytes value αcoag of all measurements at
a time t ∈ W is used in

SOFAcoag =


4 : αcoag ≤ 20
3 : αcoag ≤ 50
2 : αcoag ≤ 100
1 : αcoag ≤ 150
0 : otherwise

, (5)

which defines the coagulation function SOFA score.

3.2.3. SOFA subscore 2: renal function
The renal function SOFA score is based on two input values:

the plasma creatine [mg/dl] value and the urine volume [ml]. To
make sure the urine volume value is a correct reflection of the
24 hours urinary output, it has to be guaranteed that the patient
was not admitted within W. First, αrenal is calculated as

αrenal = max
t∈W
{plasma creatine(t)}, (6)

which is used in

SOFAA =


0 : αrenal < 1.2
1 : αrenal < 1.9
2 : αrenal < 3.4
3 : αrenal < 4.9
4 : otherwise

(7)

to calculate a first partial SOFA score. Next, the total urine
volume βrenal is calculated as

βrenal =
∑
t∈W

urine(t), (8)

which is used in

SOFAB =


3 : βrenal < 500 ∧ Tadmission < W
4 : βrenal < 200 ∧ Tadmission < W
0 : otherwise

(9)

to calculate a second partial SOFA score. The renal SOFA score
is then defined as the maximum of these two partial scores,

SOFArenal = max{SOFAA, SOFAB}. (10)

3.2.4. SOFA subscore 3: cardiovascular system function
To calculate the cardiovascular system function SOFA score,

first the mean arterial pressure (MAP) is calculated by the inva-
sive mean arterial blood pressure (IBP) [mm Hg]:

MAP = min
t∈W
{IBP(t)}. (11)

If no IBP value exists within the window W, the noninvasive
mean arterial blood pressure (NIBP) value [mm Hg] is used:

MAP = min
t∈W
{NIBP(t)}. (12)

This MAP value is used in a first partial SOFA score:

SOFA0 =

{
0 : MAP > 70
1 : otherwise . (13)

The maximum administered dopamine (DOP) value
[µg/kg/min] is used in a second partial SOFA score:

SOFA1 =


2 : 0 < maxt∈W {DOP(t)} ≤ 5
3 : 5 < maxt∈W {DOP(t)} ≤ 15
4 : otherwise

, (14)

and the administered dobutamine (DOBU) value [µg/kg/min] is
used in a third one:

SOFA2 =

{
2 : maxt∈W {DOBU(t)} > 0
0 : otherwise . (15)

Both the maximum administered epinephrine (EPI)
[µg/kg/min] and the maximum administered norepinephrine
(NOREPI) [µg/kg/min] are used in a fourth partial SOFA score:

SOFA3 =


3 : (maxt∈W {EPI(t)} ≤ 0.1)

∨(maxt∈W {NOREPI(t)} ≤ 0.1)
4 : (maxt∈W {EPI(t)} > 0.1)

∨(maxt∈W {NOREPI(t)} > 0.1)

. (16)

The total cardio SOFA score is then computed as the maximum
of the four partial SOFA scores:

SOFAcardio = max
i∈{0,1,2,3}

{SOFAi}. (17)

Note that the cardio SOFA score calculation is more complex
than the others. The blood pressure is used to give a first indica-
tion in case no drugs are administered. When drugs are admin-
istered, they override the blood pressure-based partial SOFA
score, causing the SOFA score to be adjusted based on the
amount of drugs administered.

3.2.5. SOFA subscore 4: central nervous system function SOFA
score

For calculating the SOFA score of the nervous system func-
tion, two coma Glasgow score (CGS) values are used, namely a
derived and a monitored value. When the patient is not sedated,
the derived value is used, defined as

αcns = min
t∈W
{CGS(t)}. (18)

In the other case, the monitored value is used, regardless of the
time window W. This monitored value is the last known derived
CGS value before sedation:

βcns = CGSmonitored (tlast) . (19)

A partial SOFA score is defined as

SOFApart(x) =


4 : x ≤ 6
3 : x ≤ 9
2 : x ≤ 12
1 : x ≤ 14
0 : otherwise

. (20)

Furthermore, we check whether the patient was sedated (S )
within the time period W. This is done by examining whether
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any sedatives were administered:

S = ∃t ∈ W : (Diprivan 1%(t) > 0)
∨ (Diprivan 2%(t) > 0)
∨ (Dormicum 15mg(t) > 0)
∨ (Dormicum 50mg(t) > 0)

. (21)

The central nervous system SOFA score can then be calculated
as

SOFAcns =

{
SOFApart(αcns) : αcns ≤ 12 ∧ S
SOFApart(βcns) : otherwise . (22)

3.2.6. SOFA subscore 5: hepatic system function
The hepatic system function SOFA score is calculated by

measuring the maximum bilirubine serum value [mg/dl] within
the 24 h window W:

αliver = max
t∈W
{bilirubine(t)}. (23)

This maximum value is then used to calculate the hepatic sys-
tem function SOFA score,

SOFAliver =


4 : αliver ≥ 12
3 : αliver ≥ 6
2 : αliver ≥ 2
1 : αliver ≥ 1.2
0 : otherwise

. (24)

3.2.7. SOFA subscore 6: respiratory function SOFA score
The respiratory function SOFA score is calculated by mea-

suring the minimum PaO2/FiO2-ratio (PF) [mm Hg] within the
24 h window W:

αresp = min
t∈W
{PF(t)}. (25)

Furthermore, a parameter V , describing whether the patient was
ventilated or not, is calculated as

V = ∃t ∈ W : (RRvs(t) > 0) ∨ (RRvm(t) > 0)
∨ (VEs(t) > 0) ∨ (VEm(t) > 0)
∨ (PEEPs(t) > 0) ∨ (PEEPm(t) > 0)

. (26)

Herein is RRv the respiratory rate ventilator frequency, PEEP the
positive end expiratory pressure, the pressure added during ex-
halation, and VE the expiratory volume. The subscript s denotes
the input settings on the ventilation device while the subscript
m denotes the measured values. These two values are then con-
solidated into the respiratory function SOFA score,

SOFAresp =


4 : αresp ≤ 100 ∧ V
3 : αresp ≤ 200 ∧ V
2 : αresp ≤ 300
1 : αresp ≤ 400
0 : otherwise

. (27)

3.3. Raw data values

To evaluate the added value of model training via SOFA
scores, models are also trained on the underlying raw data.
These raw data values are: αcoag for the coagulation system,
αrenal and βrenal for the renal system, αcns and S for the central
nervous system, αliver for the hepatic system, and αresp and V
for the respiratory system. Only the cardiovascular SOFA score
was not split into underlying values due to its complex aggre-
gating function. Additionally, the daily fluid balance (fluid)
[ml] was as a raw data value, which is not present in any of
the SOFA sub-scores. In case of missing parameters, these raw
values were set to values corresponding to a healthy patient sta-
tus. This can be motivated by the fact that physicians do not
measure a specific organ value if they do not suspect a critical
status for that particular organ. As with the SOFA score repre-
sentation, a raw value accompanied with a subscript represent
the day after admission it belongs to.

3.4. Moving window

A secondary dataset was created by artificially extending the
first one via a moving window. This dataset consists of data
from the days {(1 + i), . . . , (5 + i)} with i ∈ {0, . . . , (LOS − 5)}.
Doing so increases the number of data samples from 3,288 to
33,630, allowing the simulation of live predictions with respect
to the patient mortality, prolonged stay and numerical LOS. As
such, we can model a patient with an arbitrary current LOS, en-
abling daily predictions by observing a patient during his stay.
Moreover, this allows the models to be trained on this enriched
data in order to predict a patient’s future status, 5 days after
admission, more accurately.

4. Methodology and results

In this section, the different models are evaluated according
to their predictive power regarding patient survival, prolonged
stay, and remaining LOS, denoted as Φ. We also check whether
using the underlying raw values rather than using SOFA scores
improves the prediction accuracy. Additionally, the models are
tested on retrospective data as if it were live patient data, taking
into account patient data not only from the first five days, but
from the previous five to make moving window predictions.

4.1. Methodology

To measure the performance of the different classification
models, the recall and precision of both classes (in our case
classification is always binary), C1 and C2, are measured. The
recall rCk is the ratio of samples in the validation set having a
class Ck that are also identified by the classifier, for each distinct
class. The precision pCk is measured as the the ratio of correctly
predicted classes, for each distinct class. Note that the defini-
tion of the pC1 is equivalent to the definition of the specificity
of class C2, while rC1 is equivalent to the sensitivity of class
C1. In order to measure the effectiveness of the regression tech-
niques modelling Φ, the average offset between the predicted
number of days and the correct number of days, denoted as ∆̄Φ,
and the median, denoted as ∆̂Φ, are evaluated. However, due
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their nature, simply averaging all recall and precision measure-
ments is not an option (e.g., obtaining a 100% value for recall
(or precision) and a 0% value for precision (or recall), leading
to an average of 50%, should be avoided). To strike a balance
between the different measurements, the models are optimized
for the geometric mean of all quantities, defined as

GC1,C2 =
(
rC1 rC2 pC1 pC2

)1/4 . (28)

For training the different machine learning models, repeated
random sub-sampling validation (RRSSV) [26], in which the
dataset is split n times in a training set (60%) and a valida-
tion set (40%), is used. Over these n splits, the average or
median of the measured values (e.g., median offset or average
recall) is computed. Model parameters are sought by a grid
search, defined by a lower bound L, an upper bound U and
a step size s. Each parameter to be tested is drawn from the
set {L, L + s, L + 2s, . . . ,U}. In case of multiple parameters,
all their combinations are explored. The following parameter
spaces were searched:

• RF: For the number of CART trees: L = 10, U = 1000
and s = 10.

• SVM: With C as a function of 10n, for n: L = −4, U = 4
and s = 1; with γ as a function of 10n, for n: L = −4,
U = 4 and s = 1.

• ANN: 3-layer network (number of layers remained fixed),
for the number of hidden neurons: L = 1, U = 50 and
s = 1; for the decay rate λ: L = 0.1, U = 0.9 and s = 0.2.

• k-NN: For the number of neighbors k: L = 10, U = 500
and s = 10.

• ADA: For number of modified CART trees: L = 10, U =

200 and s = 10.

• SVR: With C as a function of 10n, for n; L = −4, U = 4
and s = 1; with γ as a function of 10n, for n: L = −4,
U = 4 and s = 1; with ε as a function of 10n, for n:
L = −10, U = −4 and s = 1

• RVR: With γ as a function of 10n, for n: L = −4, U = 4
and s = 1.

After the model is tuned using this approach, the final results
are obtained in an RRSSV setting as averages over all valida-
tion iterations. These results are also compared to a baseline
approach (denoted as base in the result tables). This baseline
predicts outputs by randomly sampling the validation or test
set.

The data used for the modelling experiments are based on
the fraction of patients that were still present in the ICU after
the calculation of the SOFA score on day 5 after admission. As
such, 3,287 patient observations remain, which comprise the
full dataset for training and validation purposes. Furthermore,
all raw feature data are normalized to the interval [0, 1], while
SOFA score features keep their [0, 4] range.

A paired Wilcoxon signed-rank test is performed on the re-
sults, comparing their statistical difference in a pairwise man-
ner. The significance level was set to p = 0.05. In case two
results are not statistically significant, this is mentioned with a
superscript symbol in the corresponding result table.

4.2. Patient mortality prediction
Figure 2 depicts the relation between the (total) SOFA score

on day 5 and the survival rate of a patient. The figure shows that
an increasing total SOFA score corresponds to decreasing pa-
tient survival chances. This might indicate the predictive power
of SOFA scores regarding patient mortality. Moreover, this fig-
ure shows the empirical cumulative density function (ECDF)
of this score. The SOFA scores between 0 (the minimum) and
12 are approximately uniformly distributed, pointed out by the
constant curve slope, while only a minority of the total patient
set has a SOFA score between 12 and 24 (the maximum).

Because the data is distributed unevenly in terms of patient
mortality, e.g., only a small fraction of the patients do not sur-
vive their ICU stay (8.2%), re-sampling with replacement is
used to redistribute the training samples of the different classes.
This eliminates the bias towards predicting the most repre-
sented class correctly. The validation set on the other hand re-
mains unaltered.

Before evaluating the models (SVM, ANN, RF, k-NN and
AdaBoost), their parameters are optimized regarding GA,D (see
Eq. (28)), while restricting the model complexity, by running
a coarse-grained grid-search with RRSSV (n = 50) over the
parameter space, as explained in Section 4.1. This leads to the
following parameter values for each model:

• RF: 150 CART classification trees (GA,D converges above
150 trees).

• SVM: C = 10, Gaussian radial kernel with γ = 0.001;
probabilistic outputs generated by a fitted sigmoid func-
tion.

• ANN: 3-layer (number of layers was fixed) network with
20 hidden neurons and 1 output neuron; weight decay set
to λ = 0.5.

• k-NN: regression via the average of the k = 150 nearest
neighbours, based on the Euclidean distance.

• ADA: 50 modified CART trees are used as weak classi-
fiers.

Before gathering results, a pre-run searching for the best
performing model is executed on all patient data (both SOFA
scores and raw values). Next, the most important/predictive
features are sought by running an RF importance ranking al-
gorithm (see Section 2.9). Hereafter, the added value of the
most important features is investigated by sequentially remov-
ing them via backward elimination (see Section 2.9). This latter
feature selection stage is conducted using the best-performing
classifier selected in the pre-run, namely the SVM.

The results of the RF feature importance ranking algorithm
are shown in Figure 3 for the different SOFA scores as well
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patients for each SOFAtotal(5) value.
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(b) Importance plot of raw values

Figure 3: Feature importance for patient mortality classification: RF was used as a feature importance ranker (OOB error, see Section 2.9). The features are grouped
per type, within each type from left to right the bars represent the feature values on day 1 to 5 after admission.

as the raw data values. In this plot the values are grouped in
groups of 5 days (left to right: day 1 to 5). Higher scores indi-
cate more important features as randomly permuting their val-
ues has a larger influence on the classification accuracy. How-
ever this importance estimate is naive as it does not take into
account correlations between features, it only shows how much
adding irrelevant data deteriorates the classifier. Nonetheless, a
general trend can be witnessed in which features of days which
are closer to the current day are of greater importance.

To overcome this downside of feature correlation, each fea-
ture is sequentially removed from the classifier via backward
elimination. The most important features are removed first
while monitoring the change in GA,D. Doing so allows us to

identify a minimum set of features capable of predicting the pa-
tient survival rate with maximum accuracy. The results from
this experiment are shown in Figure 4. In terms of SOFA score
features, SOFAresp(4), SOFAcardio(5), SOFArenal(5), SOFAcoag(2), age
and SOFAcns(5) are sufficient to grant the model its maximum
accuracy. In terms of raw data, a larger set of different features
contributes to the model’s predictive power. Herein, cns2,4,5,
PF5, SOFAcardio(1), bilirubine5, ventilated2, urine4,5, age
and fluid5 form a minimal feature subset.

Applying a sensitivity analysis based on Sobol indices (see
Section 2.9) leads to the following five most important features
(the value between brackets is a percentage explaining which
variable is responsible for which fraction of the total variance
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Figure 4: Backward elimination of the least informative (least decrease in GA,D) SOFA score and raw value features. The outer-left two bars (solid and dashed,
without name) always indicate the maximum GA,D and GD scores obtained for the SVM model used in this test, while each subsequent bar represents the new
GA,D and GD scores resulting from the removal of the corresponding feature on the horizontal axis. Features are removed until only one feature remains, namely
SOFAcns(5) in Figure 4(a) and fluid5 in Figure 4(b).

Table 1: Results of mortality prediction based on the raw value dataset (above
the first double line) and SOFA score dataset (below the first double line). All
values represent percentages of recall r, precision p and geometric mean G,
averaged over all RRSSV (n = 100) runs. The the improvement ∆G of using
underlying raw data over using SOFA scores is shown as well. The results
(GA,D) with the same superscript symbol are not statistically different (p ≥ 0.05,
95% confidence interval) from each other.

SVM ANN RF k-NN ADA base

rA 83.8 82.6 94.8 84.8 88.4 82.7
pA 90.4 90.3 86.4 89.8 88.6 82.7
rD 57.7 58.0 29.6 54.1 46.2 17.3
pD 43.0 41.3 54.6 42.9 45.7 17.3
GA,D 65.9 ∗65.0 60.3 ∗64.8 63.8 37.8

rA 82.3 82.6 91.6 82.4 84.8 82.7
pA 89.9 89.2 86.9 89.7 89.2 82.7
rD 55.7 52.1 33.8 54.7 50.6 17.3
pD 39.7 38.5 45.8 39.4 41.1 17.3
GA,D 63.6 62.0 59.2 ∗63.1 ∗63.0 37.8

∆G +2.3 +3.0 +1.1 +1.7 +0.8 -

of the output) for mortality prediction (SOFA): age (33.0%),
SOFAcardio(5) (11.3%), SOFAresp(5) (10.0%), SOFAcoag(5) (7.0%),

SOFAcardio(3) (6.6%). This ranking corresponds approximately
with the features extracted by running the backward elimina-
tion procedure. The variance of the results of the sensitivity
analysis based on raw input values was too large for a correct
interpretation.

Next, for each model, using only the most important features
in combination with well-fitting parameters, the average recall
r, precision p, and G value are measured, as shown in Table 1.
The difference between using SOFA scores and using their un-
derlying raw values is shown in the last row, denoted as ∆G.

Furthermore, we apply receiver-operator curve (ROC) mea-
surements to the different models. This can be seen in Fig-
ure 5: Figure 5(a) depicts the ROC measurements for the mod-
els trained on SOFA data while Figure 5(b) shows the same
measurements for models trained on raw values. The models
for which no probabilistic output exists, are shown as points in
the plots. For mortality prediction based on SOFA scores, the
AUC for SVM is 0.769 while the AUC for ANN is 0.689. For
the same prediction based on raw values, the AUC for SVM is
0.770 and the AUC for ANN is 0.689. In literature, classifiers
with an AUC over 0.7 are considered acceptable [27, 28].

4.3. Prolonged stay prediction
Next to modelling the patient survival, we want to make es-

timates regarding each individual patient LOS. First of all, a

9



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

s
e
n
s
it
iv

it
y
 [
-]

1 - specifity [-]

SVM
ANN
KNN
RF
ADA

(a) ROC for mortality prediction (dead) using SOFA scores. The
AUC for SVM is 0.769 while the AUC for ANN is 0.689.
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Figure 5: ROC measurements for mortality classification models.

classification is made based on whether a patient will have a
prolonged stay or not. To recapitulate, a prolonged stay is de-
fined, following Laupland et al. [29], as Φ > 10. A Φ histogram
can be seen in Figure 6. The probability density function (PDF)
of Φ can be fitted by a weibull distribution
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Figure 6: Density histogram (25 bins) of Φ 5 days after admission. Further-
more, an exponential and a weibul distribution are fit on the data.

fΦ(φ; k, λ) =


k
λ

(
φ

λ

)k−1
exp−

(
φ

λ

)k
: φ ≥ 0

0 : φ < 0
, (29)

with λ = 6.06 (scale) and k = 0.92 (shape). In literature this
has been shown to be a good fit for modelling LOS distributions
[30], which also holds in this work.

Similar to the patient mortality modelling case, the data is
distributed unevenly in terms of its classification labels. Hence
re-sampling with replacement is used to redistribute the training
samples of the different classes. Once again, the validation set
is not re-sampled.

The correlation between SOFAtotal and Φ is shown in Figure 7
by means of a boxplot for every SOFAtotal value. The middle box
line represents the median (Q2), the lower box boundary the
first quantile (Q1), the higher box boundary the third quantile
(Q3), while the whiskers represent the range containing 95% of

the data. This figure shows that a low SOFAtotal score indicates a
high probability of having a short LOS. A higher SOFAtotal score
on the other hand allows for a wider LOS range.

Each sample in the total patient dataset is labelled as short
(S) (Φ < 10 days) or long (L) (Φ ≥ 10 days), indicating a
prolonged stay. To obtain representative results, well-fitting pa-
rameters are sought by conducting a coarse-grained grid-search,
using RRSSV (n = 50), in which the GS ,L score was optimized,
while restricting the model complexity, as explained in Sec-
tion 4.1. Doing this resulted in the following model parameters:

• RF: 150 CART classification trees (GS ,L converges above
150 trees).

• SVM: C = 10, Gaussian radial kernel with γ = 0.001;
probabilistic outputs generated by fitted sigmoid function.

• ANN: 3-layer (number of layers was fixed) network with
25 hidden neurons and 1 output neuron; weight decay set
to λ = 0.9.

• k-NN: classification via the mode of the k = 150 nearest
neighbours, based on the Euclidean distance.

• ADA: 50 modified CART trees are used as weak classi-
fiers.

Similar to the patient survival prediction experiment, the
most important features are extracted by means of feature se-
lection. The OOB importance measure based on RF is shown in
Figure 8. Here, it can once again be noticed that features based
on more recent values are more important. Moreover, a large
importance score for SOFAcns(5) and SOFAresp(5) are clearly no-
ticeable. When removing raw value features sequentially by
means of backward elimination, contrary to patient survival
prediction, only PF5 is deemed essential in predicting a pro-
longed stay. On the other hand however, using models trained
only on SOFA scores, backward elimination has a slight effect
on the GS ,L value, as shown in Figure 9. It can be noticed
that SOFAcardio(4,5), sex, SOFAcns(3), SOFArenal(4), SOFAcns(5) and
SOFAresp(5) form a minimal feature set for our models.
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(b) Importance ranking of raw values

Figure 8: Feature importance for prolonged stay classification: RF is used as a feature importance ranker (OOB error, see Section 2.9). The features are grouped
per type, within each type from left to right the bars represent the value on day 1 to 5 after admission.

Applying a sensitivity analysis based on Sobol indices (see
Section 2.9) leads to the following five most important features
(the value between brackets is a percentage explaining which
variable is responsible for which fraction of the total variance
of the output) for prolonged stay prediction (SOFA): SOFAresp(5)
(35.8%), SOFAcns(5) (27.5%), SOFArenal(4) (7.7%), SOFAcardio(5)
(6.6%), SOFAcardio(4) (4.7%). This ranking corresponds approx-
imately with the features extracted by running the backward
elimination procedure. The variance of the results of the sen-
sitivity analysis based on raw input values was too large for a
correct interpretation.

The different models, trained only on the most relevant fea-
tures, using well-fitting parameters, are evaluated by measuring

their recall r, precision p, and the GS ,L measure, shown in Ta-
ble 2. Contrary to the survival prediction case, in predicting a
prolonged stay, the SOFA scores appear to be more predictive
than the raw values.

Furthermore, we apply ROC measurements to the different
models. This can be seen in Figure 10: Figure 10(a) depicts
the ROC measurements for the models trained on SOFA scores
while Figure 10(b) shows the same measurements for models
trained on raw data. The models for which no probabilistic out-
put exists, are shown as points in the plots. For prolonged stay
prediction based on SOFA scores, the AUC for SVM is 0.816
while the AUC for ANN is 0.784. For the same prediction based
on raw values, the AUC for SVM is 0.764 and the AUC for
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scores. The AUC for SVM is 0.816 while the AUC for ANN is 0.784.
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(b) ROC for prolonged stay prediction (prolonged stay) using raw
data. The AUC for SVM is 0.764 while the AUC for ANN is 0.763.

Figure 10: ROC measurements for prolonged stay classification models.

Table 2: Results of prolonged stay prediction using the raw data (above the first
double line) and SOFA scores (below the first double line). All values represent
percentages of recall r, precision p and geometric mean G, averaged over all
RRSSV (n = 100) runs. The the improvement ∆G of using underlying raw data
over using SOFA scores is shown as well. The results (GS ,L) with the same
superscript symbol are not statistically different (p ≥ 0.05, 95% confidence
interval) from each other.

SVM ANN RF k-NN ADA base

rS 58.7 66.8 77.5 70.0 70.9 71.1
pS 92.0 87.3 79.7 82.9 83.8 71.1
rL 88.3 77.5 54.5 66.2 68.4 28.8
pL 48.2 50.4 51.4 59.8 50.5 28.8
GS ,L

∗69.2 ∗69.1 64.8 66.4 67.3 45.2

rS 73.0 78.7 81.6 73.4 77.7 71.1
pS 90.1 84.4 84.0 89.0 87.2 71.1
rL 80.2 63.8 61.6 77.6 71.8 28.8
pL 54.5 54.7 57.5 54.1 56.5 28.8
GS ,L 73.2 69.4 70.2 ∗72.4 ∗72.4 45.2

∆G −4.0 −0.3 −5.4 −6.0 −5.1 -

ANN is 0.763. In literature, classifiers with an AUC over 0.7
are considered acceptable [27, 28].

4.4. Prediction belief

In order to assign a degree of belief to each classified sample,
a sigmoid function is fit on the output labels of a parameter-
tuned SVM. This is done both for the modelling of the patient
mortality as well as prolonged stay. The sigmoid function was
fit by means of a maximum likelihood (ML) algorithm, as ex-
plained in Section 2.1.1. Figure 11 shows the probabilistic out-
put of one validation run for both classification use cases. The
classification outputs are binned per 10% belief. In this plot,
the horizontal axis represents the average degree of belief the
model assigns to its classification for each bin. The solid bars
represent the precision obtained per belief bin, which corre-
sponds to the true positive rate. The dashed lines represent the
fraction of data that is present in each of the bins. The differ-
ent sub-figures show these outputs for each possible classifica-
tion label. Figures 11(a) and 11(b) depict the binned precision
and data fraction for the alive (A, pA) (Figure 11(a)) and de-
ceased (D, pD) (Figure 11(b)) classification. On the other hand,
Figures 11(c) and 11(d) depict the precision per bin and data
fraction for the nonprolonged stay (S, pS ) (Figure 11(c)) and
prolonged stay (L, pL) (Figure 11(d)) classification.
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(c) Belief prolonged stay prediction (S)
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Figure 11: Illustration of prolonged stay prediction and mortality prediction accuracy versus prediction belief (solid) using a probabilistic SVM. Furthermore, the
fraction of data lying in each bin is depicted (dashed). The belief values are divided into five bins of 10% of which the middle value is shown on the horizontal axis.

4.5. LOS regression

The distribution shown in Figure 6 leads to difficulties in ap-
plying machine learning techniques due to its elongated tail.
Therefore, in order to predict the numerical LOS by means of
regression, it is transformed by taking its natural logarithm.
This leads to a more centered distribution, as shown in Fig-
ure 12 which depicts a density histogram (12 bins) of ln(Φ) on
the horizontal axis and the density in percentages on the vertical
axis.
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Figure 12: Density histogram (12 bins) of logarithm of Φ.

Outliers are recognized as patients for which LOS > 40, cor-

responding to the 99th percentile. These are removed from the
dataset upon predicting Φ via regression analysis. Note that
in the previous case of modelling patient mortality, as well as
predicting whether a patient will have a prolonged stay or not,
outliers were not removed.

Figure 7 presented earlier shows the high LOS variance in pa-
tients with higher SOFA scores. Furthermore, due to the tailed
distribution of the patient LOS, it is hard to accurately predict
Φ for prolonged stays. Moreover, patients that do not survive
their stay have a higher LOS standard deviation than patients
who do survive their stay. Namely, in our patient dataset of
patients with LOS ≥ 5, surviving patients have a standard devi-
ation σ = 13.4 days while patients not surviving have σ = 17.9
days. This higher σ results from the criticality of the patient
illness. To cope with this, the data has been divided into a two-
by-two grid as shown in Table 3. Each cell defines a unique
combination of patient mortality and prolonged stay. Besides
this, this table shows the fraction of data samples belonging to
each cell.

To train the different machine learning models, the training
and validation datasets are also split up according to this grid.
The goal is now to assess the probability of a patient belong-
ing to the (A,D) cell. Only for this cell Φ has to be predicted
accurately. This is reasonable as an accurate LOS estimate is
most important for surviving patients with a nonprolonged stay.
Moreover, the largest fraction of data resides in this (A,D) cell
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Table 3: Two-by-two grid: data sample fraction in each cell

alive (A) deceased (D)
short LOS (S) 61.5% (1,934) 11.3% (355)
long LOS (L) 22.0% (693) 5.8% (181)

(see Table 3). Due to the data scarcity of the other cells, numer-
ical LOS prediction might be infeasible.

The feature importance ranking of the LOS regression anal-
ysis is very similar to that of the prolonged stay prediction.
Hence feature selection for LOS regression will be based on
these results. The parameters of the different models (SVR,
ANN, RF, RVR and k-NN) are optimized for the average and
median error, ∆̄Φ and ∆̂Φ, while restricting the model complex-
ity, using a coarse-grained grid-search with RRSSV (n = 50),
as explained in Section 4.1. This leads to the following param-
eter values:

• RF: 150 CART regression trees (∆̄Φ and ∆̂Φ converge
above 150 trees).

• SVR: ε-SVR with C = 10, ε = 10−8 and a Gaussian radial
kernel with γ = 0.001.

• ANN: 3-layer (number of layers was fixed) network with
10 hidden neurons and 1 output neuron; weight decay set
to λ = 0.9.

• RVR: Gaussian radial kernel with γ = 0.001.

• k-NN: the average of the k = 40 nearest neighbours is
used, based on the Euclidean distance.

Table 4: Results of all regression methods applied to first 5 days’ raw data
values. The values indicate the mean absolute error ∆̄Φ and the median absolute
error ∆̂Φ, measured in days. The model is tested for (S,A), only to compare
with models trained exclusively on SOFA scores. All results represent averages
over RRSSV (n = 100) runs. The results with the same superscript symbol are
not statistically different (p ≥ 0.05, 95% confidence interval) from each other.

SVR ANN RF RVR k-NN

∆̄Φ 1.77 2.12 ∗1.85 ∗1.85 ∗1.85
∆̂Φ 1.30 1.70 1.58 1.56 1.52

In Table 5, ∆̄Φ and ∆̂Φ are shown for the different models
trained on SOFA score features. The experiments are run based
on RRSSV (n = 100) and are trained according to the grid struc-
ture defined in Table 3. The table is structured according to this
previously-mentioned grid: (S,A), (S,D), (L,A), and (L,D).
Note that the goal is predict Φ accurately only for the two upper
rows (S,A). The results for the other grid cells, (S,D), (L,A)
and (L,D), are given only for comparison. Next to training our
models on this grid, they are also trained solely on surviving pa-
tients (S,L,A) and on the whole dataset (S,L,A,D). For com-
parison, Table 4 shows ∆̄Φ and ∆̂Φ for model training on SOFA
scores for the (S,A) cell.
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Figure 13: ECDF plot of ΦA,S for ε-SVR.
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Figure 14: Boxplot of ΦA,S versus the corresponding prediction error ∆ΦA,S
using an SVM. The data was grouped by rounding ΦA,S to the nearest integer.

Figure 13 shows an ECDF plot for the error ∆Φ. The hori-
zontal axis shows the offset ∆Φ in days while the vertical axis
shows the ECDF value, in percentages. Figure 14 shows a box-
plot depicting the error ∆Φ for each correct Φ-value, for the
(S,A) cell. The middle line represents the median (Q2), the
lower box line the first quantile (Q1), the upper box line the
third quantile (Q3) and the whiskers represent the range con-
taining 95% of the data. The data has been grouped together by
rounding the exact Φ-value to the nearest integer.

4.6. Moving window patient data predictions

In the previous sections all machine learning models were
trained on data values of the first 5 days after patient admission.
This, however, restricts our model, preventing live predictions
for each individual patient at an arbitrary point in time. As such,
these models are not designed to give, for example, an accurate
Φ prediction for a patient with a current LOS of 17 days. There-
fore, our dataset is artificially extended via a moving window
as explained in Section 3.4. To train our models, an additional
feature is added, namely the current patient LOS, defined as
(LOS − Φ). To train our models we have to make sure that no
data from the training set spills into the validation set. Because
the same patient may now be represented in two distinct sam-
ples, e.g., one sample may include patient data from day 1 to
5 and another sample may include data from day 13 to 17 al-
though they are derived from the same patient. Though these
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Table 5: Results of all regression methods applied to the SOFA scores of the first 5 days after admission. The values indicate the mean absolute error ∆̄Φ and the
median absolute error ∆̂Φ, measured in days. The data values are averages over all RRSSV (n = 100) runs. Additionally, the results of predicting Φ for alive patients
(S, L, A) in general, and for the total data set (S, L, A, D) are shown. The results with the same superscript symbol are not statistically different (p ≥ 0.05, 95%
confidence interval) from each other.

SVR ANN RF RVR k-NN base

S

A
∆̄Φ 1.79 2.03 1.84 ∗1.86 ∗1.86 2.98

∆̂Φ ∗1.22 1.36 1.23 1.19 ∗1.21 2.28

D
∆̄Φ 2.47 3.26 2.61 2.57 2.53 3.16

∆̂Φ 2.38 2.65 ∗2.26 ∗2.25 2.20 2.77

L

A
∆̄Φ ∗5.51 5.77 5.62 ∗5.51 5.55 7.73

∆̂Φ 4.39 ∗4.70 ∗4.69 †4.59 †4.58 6.15

D
∆̄Φ 6.01 6.25 6.08 5.77 5.90 7.99

∆̂Φ ∗4.89 †5.17 †5.10 4.65 ∗4.88 6.48

(S,L) A
∆̄Φ ∗4.41 4.78 ∗4.42 4.53 4.49 8.09

∆̂Φ 2.13 2.48 2.23 ∗2.18 ∗2.19 5.44

(S,L) (A,D)
∆̄Φ 4.91 5.21 4.92 4.97 4.94 8.28

∆̂Φ 2.64 2.87 2.60 ∗2.56 ∗2.57 6.32

samples have entirely different SOFA features, basic patient in-
formation, such as age, persists. Hence the training and valida-
tion set require disjoint patient ID sets. The models are trained
with the same parameters, as well as the same minimal fea-
ture set, as obtained in the previous experiments in an RRSSV
(n = 50) setting.

Table 6: Results of moving window mortality prediction using the raw data of
the previous 5 days. All values represent percentages and represent the aver-
age of recall r, precision p and geometric mean G, over all RRSSV (n = 50)
runs. The results (GA,D) with the same superscript symbol are not statistically
different (p ≥ 0.05, 95% confidence interval) from each other.

SVM ANN RF k-NN ADA

rA 82.2 80.7 92.5 81.9 81.9
pA 87.2 86.7 82.7 86.0 87.0
rD 59.1 57.7 34.4 54.5 58.4
pD 49.4 46.7 57.5 46.9 48.7
GA,D 67.7 65.9 62.4 65.1 67.1

Table 6 shows the mortality prediction results of the differ-
ent models by means of their precision p, recall r and GA,D,
based on moving window data. This means that for each pa-
tient an estimated outcome is given for each day he resides
in the ICU. The models are trained with raw data rather than
SOFA scores as this leads to better performance, which will be
discussed in Section 5. Table 7 shows the results of predicting
a prolonged stay. Contrary to the survival prediction models,
these models are trained on SOFA scores, for similar reasons.
The results of training modelling techniques on SOFA scores in
combination with the previously mentioned grid (see Table 3)
are shown in Table 8. The models are trained for each cell inde-

Table 7: Results of moving window prolonged stay prediction using the SOFA
scores of the previous 5 days. All values represent percentages and represent
the average of recall r, precision p and geometric mean G, over all RRSSV
(n = 50) runs. The results (GS ,L) with the same superscript symbol are not
statistically different (p ≥ 0.05, 95% confidence interval) from each other.

SVM ANN RF k-NN ADA

rS 69.1 75.0 78.5 72.5 73.4
pS 82.8 77.7 75.9 79.3 81.5
rL 80.3 70.7 66.0 74.2 77.2
pL 65.6 67.5 69.3 69.4 68.0
GS ,L 74.1 72.6 72.3 73.0 74.8

pendently, based on training data that was also compartmental-
ized according to this grid. The results for the other grid cells,
(S,D), (L,A), and (L,D), are given for comparison. Next to
training our models on this grid, they are trained solely on alive
patient data (S,L,A) and on the whole moving window dataset
(S,L,A,D).

5. Discussion

In the previous section the conducted experiments and their
corresponding results were set forth. Now we will discuss—
following the same outline as the results section—the different
interpretations of these results.

5.1. Patient mortality prediction
Regarding feature importance for our models, a general trend

to be observed in Figure 3(a) is that more recent SOFA sub-
scores are more informative. This is a logical result as more

15



Table 8: Results of all regression methods with resampling applied to moving window patient data using SOFA scores. The values indicate the mean absolute error
∆̄Φ and the median absolute error ∆̂Φ, measured in days. The data values are averages over all RRSSV (n = 50) runs. Dashes indicate computational intractability.
Additionally the results of predicting Φ for alive patients (S, L, A) in general and for the total data set (S, L, A, D) are shown. The results with the same superscript
symbol are not statistically different (p ≥ 0.05, 95% confidence interval) from each other.

SVR ANN RF RVR k-NN

S

A
∆̄Φ 2.01 2.07 2.12 - 2.11

∆̂Φ ∗1.57 1.54 1.56 - ∗1.58

D
∆̄Φ 2.35 2.89 2.52 2.51 2.49

∆̂Φ 2.15 2.28 1.98 ∗2.04 ∗2.05

L

A
∆̄Φ 6.07 6.54 6.19 - 6.32

∆̂Φ ∗4.76 5.16 ∗4.78 - 5.05

D
∆̄Φ 6.61 8.12 6.67 9.10 6.93

∆̂Φ 4.49 6.36 5.37 7.12 5.86

(S,L) A
∆̄Φ 5.44 5.56 5.61 - 5.78

∆̂Φ ∗3.36 ∗3.37 3.31 - 3.52

(S,L) (A,D)
∆̄Φ 5.99 6.14 6.29 - 6.35

∆̂Φ 3.91 3.84 3.76 - 4.00

recent patient information better reflects the current patient sta-
tus. The same observation is made based on the raw feature
importance plot in Figure 3(b).

As explained in Section 2.9, the importance score does not
take into account correlations between input features. We use
backward elimination to obtain a minimal subset of features ca-
pable of attaining maximum performance. The result of the
backward elimination process can be viewed in Figure 4. In
terms of SOFA score features, Figure 4(a) shows that a small
set already achieves maximum performance. In terms of raw
input features this subset is slightly larger, as shown in Fig-
ure 4(b). This relates to the SOFA score functions being an
aggregation of multiple raw features. Furthermore, we see that
in both sub-figures the same types of features are selected. Both
select: age, central nervous system values (SOFAcns and cns),
respiratory system values (SOFAresp, PF and ventilated) and
renal system values (SOFArenal and urine). The only differ-
ence is the selection of coagulation system values (SOFAcoag)
and hepatic system values (bilirubine). This might be a re-
sult of different types of features holding the same information
towards predicting patient mortality, which makes them inter-
changeable. Additionally, fluid balance scores (fluid) seem
to be of importance in predicting via raw values, which is not
available in the SOFA-based training set. The fluid balance
value was not selected to be part of the SOFA score as it is
not a consistent reflection of patient illness severity. Adding
the fluid balance score to the SOFA dataset as an extra feature
only marginally affected the results, which indicates that a lot
of information represented in the fluid score is also present in
the other features. Overall, these results indicate that patient
mortality prediction is dependent on a plethora of organ system
values. However, many features seem to be highly redundant

towards the model’s predictive power, which is consistent with
the correlation of organ failures due to the patient illness. A
general trend to be witnessed is that more recent values are bet-
ter represented in the minimal feature set, which is consistent
with the importance plot in Figure 3, although less recent val-
ues are included as well. This can be explained by the fact that
the model might try to find a trend in the data, which requires
scores of different days.

The results of the different models are presented in Table 1.
It can be immediately noticed that the pA and rA values (the
precision and recall of predicting a patient survival) are much
higher than their pD and rD (the precision and recall of predict-
ing a patient death) counterparts. This likely results from, on
the one hand, the data skewness towards surviving patients as
the dataset only contains 8.2% deceased patients, and on the
other hand, the fact that patients may be discharged from the
ICU, but die afterwards in another ward. When comparing the
training of models based on SOFA scores to the training based
on raw values, it is noticeable that in all cases training on raw
values increases the model’s performance. When comparing
the different models, SVMs score slightly better than the other
models. They are capable of attaining GA,D = 65.9%. However,
they are followed closely by ANN (65.0%) and k-NN (64.8%).
When looking at the actual predictiveness of the SVM, we see
that it is capable of getting good results for predicting surviving
patients: pA = 90.4% and rA = 83.8%. However, as explained
in the previous paragraph, the results of predicting the death of
a patient are worse, pD = 43.0% and rD = 57.7%, due to the
data scarcity regarding nonsurviving patients.

In summary, in case of patient mortality prediction, the SVM
attains the best results. Furthermore, it could be noticed that
predicting a patient survival is easier, indicated by the higher
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recall and precision values. In Section 5.3 it is shown how the
interpretation of the SVM outputs can be enhanced by means
of probabilistic outputs.

5.2. Prolonged stay prediction

Upon examining Figure 2, we see that while having a large
SOFAtotal value increases the chances of a prolonged stay, it does
not rule out short stays. Hence more difficulties in predicting a
prolonged stay are expected in comparison to survival predic-
tion.

Once again, a general trend to be witnessed in the feature
importance score is that more recent features hold more infor-
mation regarding a prolonged stay, as shown in Figure 8. Fur-
thermore, there is a clear dominance of the features SOFAresp(5)
and SOFAcns(5) in Figure 8(a) and of PF5, ventilated5, and
cns5 in Figure 8(b).

As explained in the previous section, this importance score
does not take into account correlations between features, hence
we also use backward elimination. Figure 9 shows that, in terms
of SOFA score features, SOFAcardio(4, 5), SOFAcns(3, 5), SOFArenal(4),
SOFAresp(5), and sex form a minimal feature subset for our mod-
els. Noticeable is the dominant presence of more recent feature
values. Running backward elimination on the raw feature val-
ues, PF5 (which is present in SOFAresp) forms a minimal subset
singleton. This could be explained by the fact that SOFA scores
form a solid aggregation of multiple raw features and actually
help the model making the right decisions by its discrete if-else
structure.

Inspecting the results of the different models in Table 2, gen-
erally using raw feature values decreases the model’s perfor-
mance. Although we would expect information loss by the
SOFA score aggregation function, this could be related to in-
creased feature expressiveness by aggregating them into SOFA
scores, which is consistent with the explanation in the previ-
ous paragraph showing that PF5 forms a minimal subset sin-
gleton. The best performing model appears to be once again
an SVM, with GS ,L = 73.2%, followed by k-NN (72.4%) and
ADA (72.4%). The difference in recall between prolonged stays
(rL = 80.2%) and nonprolonged stays (rS = 73.0%) appears to
be much smaller than the difference in precision (pS = 90.1%
and pL = 54.5%). Thus, the precision of predicting non-
prolonged stays seems to be higher than predicting prolonged
stays. This is consistent with Figure 7 in which a low SOFA
score indicates a short stay with low variance. When looking
at high SOFA scores, we see that the LOS variance is much
higher, resulting in a lower prediction precision.

In summary, similar to patient mortality prediction the SVM
outputs the best results. Furthermore, the prediction precision
of nonprolonged stays is higher than the precision of prolonged
stays. Similar to survival modelling, the interpretation of the
SVM outputs can be enhanced by assigning probabilities to the
outputs, as will be shown in the following subsection.

5.3. Prediction belief

It is favorable that the models used for classification assign
a degree of belief to their output. For this reason, the best per-

forming model, namely the SVM, has been extended by fitting
a sigmoid function via maximum likelihood to its binary output.

In Figure 11 an illustration of this belief assignment is shown
together with the classification precision, as well as the data
fraction belonging to each belief bin. This figure indicates that
the belief assigned by the model positively correlates with the
model precision. A higher belief accords to a higher precision.
In Figure 11(a) it can be noticed that, even at low belief values,
the model precision regarding the prediction of patient survival
(A) is high. Moreover, the data appears to be centered around
higher belief values indicating that the model is very certain
in predicting patient survivals (largest fraction of data is in the
95% belief bin). Figure 11(b) shows the precision of the pre-
diction of a patient death (D). Low belief values have a minimal
precision, making their predictions highly uncertain. The data
distribution is also left-centered, indicating the model’s inabil-
ity to accurately predict patient deaths. Similar to Section 5.1,
where the prediction performance of predicting a patient’s death
is much lower than predicting a patient’s survival, the overall
certainty in death predictions is much lower. Only for a mi-
nority of patients the model is very certain about their death,
whereas in terms of patient survival prediction the model is cer-
tain for the majority of patients.

Figure 11(c) shows the prediction belief of a nonprolonged
patient stay (S). The main data fraction seems to be located
around a belief of 75%, while none of the data belongs to the
95% belief bin. However, it should be noted that the precision
of the output samples belonging to the 85% belief bin is approx-
imately the same as the 95% belief bin in Figure 11(a). Looking
at the prediction of prolonged stays (L) in Figure 11(d), no out-
puts are assigned a 85% or 95% belief. Moreover, the overall
precision appears to be quite low. This is, similar to the ex-
planation of the previous paragraph, consistent with the results
of Section 5.2 in which the precision of predicting a prolonged
stay is much lower than the precision of predicting a nonpro-
longed stay.

In summary, the model’s belief does not have a one-to-one
mapping with its precision, however, higher beliefs corresponds
to a higher precisions. Physicians can thus use this belief to al-
ter their interpretation of the SVM outputs. As such, it is pos-
sible to only take into account outputs surpassing a pre-defined
belief threshold, which could be defined via cross-validation.
Using the illustration in Figure 11(b), we could for example
assign a threshold of 80% belief. As such, physicians would
discard any results lower than this threshold as these are inher-
ently uncertain. However, in case of a prediction belief of over
80% (corresponding to an accuracy of over 70%), more faith
could be put in the classification output.

5.4. LOS regression
Table 3 already showed that the patient data is highly skewed

towards short stays and patients who survive, indicated by the
high fraction of data (61.5%) belonging to the (S,A) cell. Our
goal is to predict the remaining LOS Φ exactly only for those
patients belonging to this particular cell. This is done for two
reasons, i) modelling the LOS for the other cells is difficult due
to their large LOS variance, and ii) predicting the mortality and
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LOS for this group of patients is of most importance to ICU
resource planning, which is generally done only a few days in
advance.

The results of the different regression models are shown in
Table 5. As explained in the previous paragraph, the first two
rows, corresponding to the (S,A) cell, are of the most interest.
All models seem to be equally predictive, except for ANNs,
with approximately ∆̄Φ = 1.79 days and ∆̂Φ = 1.22 days. Fig-
ure 13 shows an ECDF plot for this cell. This plot highlights
the low error rate for a large fraction of the total patient dataset,
indicated by the steep slope at the beginning of the curve. This
is related to the low ∆̂Φ value in Table 5. As such, about 70% of
the total patient dataset that remained longer than 5 days in the
ICU have an error rate of less than two days. Figure 14 shows
these results from a different angle. Here the correct LOS val-
ues are rounded to the nearest integer and boxplots are drawn
according to the corresponding error rates. This clearly shows
that the error rate scales with the correct LOS, leading to low
median errors for predictions of short stays. This is good news
as we are able to predict short stays very accurately, while most
of the error concentrates around longer stays. These results
are entirely based on models trained on SOFA score features,
which are selected according to the backward eliminiation min-
imal subset presented in Section 5.2. For comparison’s sake, we
also trained the models on raw feature values for the (S,A) cell,
for which the results are shown in Table 4. The average ∆̄Φ

is approximately the same for training based on SOFA score
features as for training based on raw data features, however, in
general the median ∆̂Φ increases. This reinforces our belief that
using SOFA score features is indeed an improvement over us-
ing their raw underlying values regarding the LOS predictions
of our models.

Additionally, rows 2 and 3 in Table 5 show the results when
training the model on data corresponding to the (S,D) cell. The
higher average and median values (for SVR, ∆̄Φ = 2.47 days
versus ∆̄Φ = 1.79 days and ∆̂Φ = 2.38 days versus ∆̂Φ = 1.22
days) indicate the increased variance of the LOS of patients that
do not survive their ICU stay. Looking at the results in case the
models are trained on prolonged LOS data, we see that the ∆̄Φ

and ∆̂Φ values become very large (for SVR, ∆̄Φ = 5.51 days
and ∆̂Φ = 4.39 for patients who survive and ∆̄Φ = 6.01 days
and ∆̂Φ = 4.89 for patients who die). An explanation is that on
the one hand it is hard to predict a long LOS in advance, due
to the larger LOS variance for higher SOFA scores as explained
in Section 5.2, and on the other hand that data is very scarce
for prolonged stays. Furthermore, the models are trained ex-
clusively on data of patients surviving their stay, corresponding
to the (S,L,A) row. Here ∆̄Φ and ∆̂Φ are both very high (for
SVR, ∆̄Φ = 4.41 days and ∆̂Φ = 2.13 days) compared to the
(S,A) case, indicating that the prolonged stays severely deteri-
orate the model’s performance. Even worse results are obtained
when training on the whole dataset, as shown in the bottom two
rows (for SVR, ∆̄Φ = 4.91 days and ∆̂Φ = 2.64 days). These
results indicate that splitting the data in a two-by-two grid im-
proves the model’s accuracy where it is most relevant.

Furthermore, we compare our results with those of Kramer
and Zimmerman [10], who also predicted Φ based on measured

patient values of the first 5 days. Because they removed patients
with LOS > 30 from the dataset, we do the same to obtain
a good comparison. Their models are evaluated by measuring
the r2 value of the regression function. While they report an r2

value of 18.2% over all individual patients, our best-performing
method, SVR, attains an r2 value of 21.9% in an RRSSV (n =

100) setting. This indicates that our technique outperforms their
model regarding predicting individual patient LOS.

In summary, a two-by-two grid was developed which acts
as a classification pre-processor. This grid classifies patients
into a cell according to their mortality and prolonged LOS pre-
dictions. Only for the cell in which patients survive their stay
and have a nonprolonged stay, LOS regression is accurate. This
also coincides with the most important patient group in terms of
ICU resource planning. SVR trained on SOFA scores delivered
the best results, in which patients of this previously mentioned
group can be predicted with an average error of 1.79 days and
a median error of 1.22 days. When looking at the error-vs-LOS
plot, we see that the error scales with the LOS, indicating a
highly accurate LOS prediction for patients with short stays.

5.5. Moving window patient data prediction
Our models are also evaluated by training them on a moving

data window of 5 days, as illustrated in Figure 15. This al-
lows us to predict the mortality, prolonged LOS and remaining
LOS for patients with an arbitrary current LOS, instead of only
patients with a LOS = 5. Based on Table 6 and 7, we see ap-
proximately the same results when using moving window data
as when using nonmoving window data (thus only for patients
having a current LOS of 5 days; predictions based on the first
5 days). These results are obtained by using the same set of
features as used for training the models based on nonmoving
window data.

SOFAi−4 SOFAi−3 SOFAi−2 SOFAi−1 SOFAi SOFAi+1

predict Φ, current LOS = i

SOFAi−5 SOFAi−4 SOFAi−3 SOFAi−2 SOFAi−1 SOFAi

predict Φ, current LOS = i

Figure 15: Illustration: moving data window for SOFA scores. SOFA score
feature values from the previous 5 days are used to predict Φ; for the moving
window i ∈ {5, . . . ,LOS}, while in the original nonmoving case i = 5.

However, looking at the LOS regression results for mov-
ing window data in Table 8, we see that the results are over-
all slightly worse than predicting based on nonmoving window
data with approximately ∆̄Φ = 2.01 days and ∆̂Φ = 1.57 days,
for the (S,A) cell. Therefore, it is slightly harder to predict
Φ for a patient on an arbitrary point (later than 5 days after
admission) in time. This could be due to the model’s confu-
sion as it now receives data inputs of different timestamps. For
example, following the illustration in Figure 15, when i = 7,
SOFAi−4 = SOFA3 acts as the same input feature as SOFA1,
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when predicting a patient with a current LOS of 7 days instead
of a current LOS of 5 days.

In summary, the predictions of a prolonged stay and mor-
tality are approximately the same for moving and nonmoving
data. However, the LOS regression results are slightly worse
for moving data, making it slightly harder to predict Φ for pa-
tients at an arbitrary point in time. Nonetheless, the results are
sufficiently good (∆̄Φ = 2.01 days and ∆̂Φ = 1.57 days) for
applying our models in a moving data setting, which allows for
live patient predictions.

6. Conclusion

In this work, different machine learning models were applied,
tuned and evaluated to predict the individual patient mortality,
length of stay (LOS) and prolonged stay in the intensive care
unit (ICU), using a 14,480 patient dataset. Each model was
trained both on raw data values as well as sequential organ fail-
ure (SOFA) scores of the first five days after admission. Our
models are capable of attaining geometric mean accuracy val-
ues of GA,D = 65.9% (AUC of 0.77) and GS ,L = 73.2% (AUC
of 0.82) for predicting patient mortality and predicting a pro-
longed stay. Interpretation of the model outputs was enhanced
by fitting a probabilistic model. As such, the prediction accu-
racy has been characterized as a function of a belief percentage.
This allows ICU intensivists to assess the credibility of the pre-
dictions, and act accordingly. Training models on the whole
dataset for LOS regression appeared to be infeasible, due to
the high LOS variance of deceased patients and patients with a
prolonged stay. Therefore, a two-by-two grid was constructed
based on the output of the prolonged stay and mortality classi-
fiers. By training models on only a subset of the total dataset,
we are able to attain average and median error rates of 1.79 and
1.22 days, in predicting the remaining LOS for surviving pa-
tients with a nonprolonged stay. We have shown that our mod-
els are able to perform approximately equally well when using
a moving data window. This indicates their applicability in a
real-time ICU monitoring environment.

Future work will encompass the comparison of our model
predictions with predictions made by ICU physicians. Further-
more, we will model the ICU load by means of survival analy-
sis. In a later stadium we would like to implement our models
in a real ICU environment, generating live patient analyses in
order to assist physicians in assessing the current and future pa-
tient status.
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