Service Provider DevOps for Large Scale
Modern Network Services

Juhoon Kim!, Catalin Meirosu?, Ioanna Papafili3, Rebecca Steinert*, Sachin Sharma?®,
Fritz-Joachim Westphall, Mario Kind?!, Apoorv Shukla®, Felician Németh?, Antonio Manzalini®

IDeutsche Telekom AG, Germany; 2Ericsson AB, Sweden; 2OTE, Greece; *SICS, Sweden;
5iMinds, Belgium; STU-Berlin, Germany, "BME, Hungary;, 8T, Italy

Abstract—Network service providers are facing challenges for
deploying new services mainly due to the growing complexity
of software architecture and development process. Moreover,
the recent architectural innovation of network systems such as
Network Function Virtualization (NFV), Software-defined Net-
working (SDN), and Cloud computing increases the development
and operation complexity yet again. One of the emerging solutions
to this problem is a novel software development concept, namely
DevOps, that is widely employed by major Internet software
companies. Although the goals of DevOps in data centers are
well-suited for the demands of agile service creation, additional
requirements specific to the virtualized and software-defined
network environment are important to be addressed from the
perspective of modern network carriers.

In this paper, we thoroughly debate DevOps requirements
for developing a modern service creation platform by taking
EU FP7 project UNIFY as a reference architecture and suggest
the corresponding extensions of UNIFY interfaces that meet the
discovered requirements.

I. INTRODUCTION

Network service providers are victims of their own success
in the telecommunication business. System architectures and
development processes become more and more complex due
to the evolution of network technologies and innovation based
on the rich Internet infrastructure. Moreover, recent research
efforts made in academia and industry show a strong trend
towards utilizing virtualized and software-defined network
environments that adds complexity to the development and op-
eration of large scale network services. This complexity keeps
network service providers tardy in creation and deployment of
new services and eventually hinders the further evolution of
network technologies.

Major Internet software companies have been experiencing
similar issues and designed tools and methods that aim at
improving the efficiency of the software development and at
narrowing the distance between the development and oper-
ations. The concept of unifying such modern development
methods and tools is commonly referred to as DevOps. The
communication and collaboration between developers as well
as the integration of an individual piece of work are especially
emphasized tasks of DevOps in the software development.

Several projects in data centers put this novel development
concept into practice by tackling multiple challenges mainly
brought up by the geographical distribution of network nodes.
Examples of such challenges are:

e A high cost of operation in terms of time and hu-
man/financial resources due to the physical manage-
ment of distributed nodes

e Limited visibility of network and service states that
makes it difficult to assure the Quality of Experience

(QoE)

e Difficulties in pinpointing the cause and location of
problems (troubleshooting) and debugging

e Difficulties in deploying services quickly and fre-
quently, e.g., due to the validation of service integ-
ration or regression test

This movement in data centers inspires service providers to
adopt automated development and operation processes within
the scope of virtualized and software-defined network infra-
structure. The virtualized network infrastructure differs from
the traditional definition of network resources in the data center
in the perspective of its independence from the fixed location
and/or hardware; hence provides great opportunities to network
carriers to lower operation costs. However, existing manage-
ment techniques and tools are developed to solve particular
and well-defined problems of static network environments and
therefore would need to be adapted to the requirements of
virtualized network environments.

In this paper, we discuss DevOps requirements within
dynamic network environments by taking EU FP7 project
UNIFY [1] as a reference architecture built on the highly
virtualized network infrastructure. Based on this discussion,
we extend the UNIFY APIs in order to support developers in
creating DevOps tools that fulfil the requirements of modern
network service providers. We call this extended DevOps
concept Service-provider DevOps or SP-DevOps in this paper.
Further, we show how SP-DevOps can be used for the actual
service creation in the UNIFY framework by applying this
concept to one of use cases developed in [2].

The rest of this paper is structured as follows. In Section II,
we discuss DevOps requirements in dynamic network envir-
onments such as virtualized and software-defined networks.
Section III gives an overview of UNIFY architecture that is
used as a reference architecture throughout this paper. In Sec-
tion IV, four main processes of SP-DevOps are described.
After that, the extension of UNIFY APIs and the use case
of SP-DevOps are illustrated in Section V and Section VI,
respectively. Finally, Section VII presents the related studies
and Section VIII summarizes this paper.



II. DEVOPS REQUIREMENTS FOR SERVICE PROVIDERS

The UNIFY project [3], as well as the IETF [4] and the
TMForum [5] have recently initiated activities that investigate
the challenges related to adopting DevOps practices in carrier
networks. In this section, we summarize the current status of
the discussion that we are driving in IETF on this topic, and
make some additional considerations.

A. Observability

Telecom operator infrastructure is characterized by a wide
distribution over geographical areas, large numbers of nodes
and functions involved in providing services and stringent
contractual demands on high availability.

In software-defined infrastructures, we define observability
as the property that provides visibility on the status of both
physical and virtual components of the infrastructure at the
time scale relevant for a particular task. One important re-
quirement for observability is scalability of the components
involved in the various processes, including message busses
and databases. The scalability is also affected by trade-offs
between the communication overhead and the reliability of a
particular estimate and the strategic placement of the monitor-
ing functions.

The SNMP agent paradigm commonly employed in man-
agement is clearly limiting the capability to provide scalable
observability, and the OpenFlow extensions for monitoring
unfortunately follow the same unscalable communication pat-
tern. We believe that distributed information exchange between
all types of virtual functions (with monitoring functions as
a major use case) is key to providing scalable observability
in a carrier environment. From a DevOps perspective, such
distributed information exchange is an important enabler for
pushing automation beyond simple sets of scripts that replicate
tested and trialed situations.

Programmability is another key requirement for monitoring
functions. It is clear that given the amount of information that
can be collected from high-speed communication links, it is not
feasible for a for-profit enterprise to monitor everything all the
time. Exposing monitoring functions through programmability
interfaces that enable to select what and how to monitor
through expressive, declarative languages is important for
applying DevOps principles from the data center to carrier-
grade software-defined infrastructures.

B. Stability

We define stability as a property of software-defined infra-
structures that deliver highly-available telecommunication ser-
vices. For developers following that agile paradigm, constant
changes are a way of life, while for the operators instability is
the result of external, usually unforeseen, events that need to
be handled. The difference in mentalities between these two
traditionally separate organizations is thus significant.

The infrastructure itself may be in a state of continuous
changes and thus inherently unstable, but the services that
execute on top of the infrastructure are expected to be always
available. The instability in the infrastructure may be due to
manual processes (such as routine management and mainten-
ance tasks) or, in particular in software-defined infrastructure,

to the actions of a myriad of controllers and orchestrators that
optimize resource usage and functional configurations. How-
ever, in order to maximize the stability at the service level, any
instability (whether observed, predicted or scheduled) in the
infrastructure needs to be communicated to all the interested
parties and programmable interfaces that allow actuation have
to be made available.

However, cascading actions originated by different pro-
cesses that have different objectives and views of the overall
operational situation need to be mitigated. Failing that, they
may lead to the emergence of non-linear behaviors where local
dynamics may lead to radically different global effects when
combined.

C. Troubleshooting

Identifying the cause of a failure in an infrastructure that
is continuously undergoing changes is a major issue that
needs to be addressed for achieving reliable operations in
software-defined infrastructures. From a DevOps perspective,
troubleshooting usually involves a series of tasks that need to
be performed by either a developer or an operator according
to a pre-defined incident handling description. However, such
descriptions are usually built for physical infrastructure and
network functions that are implemented in boxes that have
fixed locations. Everything changes in a software-defined in-
frastructure, where a multitude of actors may trigger changes at
any time and not all changes might be available to be logged in
a central point for investigation. Methods that allow automatic
definitions of such workflows and allow automatically adapting
the workflows to the changes in the infrastructure and virtual
network functions are a significant requirement for next-
generation infrastructure management. An increased degree of
automation is in line with DevOps principles and enables more
efficient use of resources.

In particular in SDN, a large amount of information regard-
ing the actual state of the infrastructure is stored by controllers
and orchestrators, while virtual function managers and orches-
trators hold that state information at the functional levels.
Exposing information that helps building automated workflows
becomes key to addressing this requirement. Based on this
information, tools could be built that assist both developers and
operators by generating tailor-made troubleshooting workflows
for particular services composed of virtual network functions.

D. Machine-to-Machine Interaction

The creation of new services is expected to be more
strategic in the future as communication services become
primary commodity in daily life. One of the scenarios being
investigated in the telecom business is based on the assumption
that, in the future, telecom infrastructure provides new types of
services (e.g., Cognition-as-a-Services) to a growing number
of non-human users such as smart devices loaded with the
sophisticated cognitive software. This assumption is relevant
to the subject of Softwarization or Network Function Virtual-
ization (NFV). In this perspective, one important requirement
for DevOps is to enable both human users and autonomous
machine to verify/validate the integration of the service and
to troubleshoot/debug causes of a failure via common APIs.
When the autonomous machine accesses DevOps APIs, all



Application
Layer

Service
Layer

,ommmmmmmm e ~, gommmm===-- -
+ Service Provider v [ User
: Management
function related to
I deployed service

Adaptation Functions

Resource Control
ReSDL_ere Function within
Orchestration (RO) deployed service

Controller Adapter

Orchestration
Layer

Infrastructure

Layer
Local Resource Manager
(Compute, Storage, Network)

Figure 1: Three-layered UNIFY architecture

the necessary steps need to be triggered without a human
intermediation. This eventually leads telecom providers to the
reduction of Opex caused by human operations.

ITII. UNIFY

Although the afore-discussed properties are common De-
vOps requirements underlying the most of modern telecom
service creations, viable action towards fulfilling them differs
from one architecture to another. Therefore, we take EU FP7
project UNIFY as a reference architecture to show how such
requirements can be effectively dealt in a large scale service
creation.

A. Architecture Overview

To remedy today’s limits in deploying and managing
telecommunication services, the UNIFY project exploits the
benefit of SDN-enabled infrastructure that pursues full network
and service virtualization so as to enable rich and flexible
services and operational efficiency.

UNIFY introduces a three-layer architecture (as shown in
Figure 1) which comprises the service layer, orchestration
layer, and infrastructure layer. Practically, each layer is em-
ployed to group functional components with similar abstrac-
tions. First, the service layer comprises traditional and modern
(e.g., virtualization, SDN, and/or cloud) management/business
functions and is responsible for translating user’s abstract
service request (Service Graph) into the detailed service de-
scription (Network Function Forwarding Graph). Second, the
orchestration layer maintains the global view of resources and
capabilities, what is more, it performs policy enforcement
and resources orchestration between the upper layer functions
and the underlying resources. Finally, the infrastructure layer
includes resources and local resource agents (i.e., compute,
storage and network) and their corresponding local agents (e.g.,
OpenFlow switch agent).

The UNIFY architecture exhibits specific characteristics
which are important to SP-DevOps such as Vinteralia model-
based decomposition so as to build services out of ele-
mentary blocks, recursive orchestration due to multi-level

Troubleshooting

VNF Developer

/Support

(==

VNF Developer
Service Developer

Verification

Figure 2: SP-DevOps cycle in UNIFY service creation frame-
work

virtualization of storage, compute and network resources,
and Wcapability for multiple administrative domains allowing
the possibility to separate roles and responsibilities among
multiple business actors, e.g., network service providers, OTT
providers, or end-users.

B. Dev & Ops in UNIFY

In UNIFY, two groups of developers are defined depending
on their roles. The first group is service developers that design
and create a service by determining its resource requirements
and interconnecting desired network functions. This type of de-
velopment is carried out based on a simple service description
language. The second group is actual software developers that
implement Virtualized Network Functions (VNFs). A VNF is
a logical network component that runs within an independent
container (e.g., virtual machine) and that is responsible for
specific network tasks (e.g., firewall, NAT, or payload inspec-
tion). In a NFV architecture, a service is created by combining
(or chaining) multiple VNFs. In UNIFY, those who design
and implement VNFs are referred to as VNF developers and
they correspond with developers in the software development
domain. Since the architecture restricts the service devel-
opment to pre-verified sets of physical/virtual infrastructure
resources, the greater part of the development complexity lies
in implementing VNFs. Thus, unless differently stated, the
term developers addresses VNF developers in the remaining
of this paper.

The major role of operators in UNIFY is the performance
management of a service. More specifically, operators ensure
that performance indicators of the service meet the require-
ments specified in the service graph. For this, operators need
a fair degree of monitoring capabilities on virtual/physical
elements of the infrastructure.

IV. SP-DEVOPS PROCESSES OF UNIFY

In this section, we show how the DevOps requirements
for service providers discovered in Section II can be ad-
dressed within the scope of the service creation in the UNIFY
framework. Figure 2 briefly illustrates mapping between the
four large processes (VNF developer support, verification, ob-
servability, troubleshooting) of Service Provider DevOps (SP-
DevOps) and the lifecycle of the service creation in UNIFY
with regard to roles of operators and developers.



A. VNF development support

A Virtualized Network Function (VNF) is a basic func-
tional unit in a Network Function Virtualization (NFV) archi-
tecture. In order to facilitate VNF development to be performed
directly in the production system, there is need for a set of
supporting functions provided by the architecture towards the
VNF developer on top of the service layer. Once a VNF
under development is deployed within the production system,
VNF developers are supported with the observability, verifica-
tion and troubleshooting capabilities described afterwards. For
VNF development support functionality, three sub-processes
are considered:

e Adding a new VNF to the production environment:
This sub-process allows developers to add a new or
updated VNF in the production environment for test-
ing and debugging purposes. The service layer stores
a description of the VNF capabilities and resource
requirements given by the developer, and informs the
orchestration layer about the existence of the VNF.

e  Modifying an already deployed service graph with
a new or updated VNF: A developer-request to
deploy a VNF is received at the service layer and
forwarded to the orchestration layer, which assesses
the resource allocation for current and new VNFs by
querying the service catalogue. The controller layer
allocates the resources needed for the new instance
and configures the policies associated with it.

e Attach VNF to software development tools: The
developer queries the service layer by providing a
service graph identifier and the type of VNF for the
purpose of debugging. The request is forwarded to
the orchestration layer, which provides an identifier
for the VNF instance and associated resources. Given
the identifier, the developer can connect to the VNF
instance and run tools for distributed software debug-

ging.

B. Verification process

In a large scale service architecture such as UNIFY, the
verification process is not limited to the code validation. The
emphasized goal of the verification in UNIFY is rather the
assurance that the service configuration is in concord with
the service definition, e.g., quality indicators and performance
indicators.

Verification is considered as a set of features providing
gatekeeper functions to validate both the abstract service
models and the proposed resource configuration before actual
instantiation on the infrastructure layer takes place.

In UNIFY, the verification process is performed across
multiple layers in the architecture:

e The service layer verifies topological inconsistencies
and loops of the service graph (SG) and network
function forwarding graph (NF-FG).

o The orchestration layer validates mapping between
the requirement of NFs and the allocation of the re-
source and capability. This layer also verifies whether

or not the placement of a new NF violates the policy
(and the performance) of the already deployed NF-FG.

e The infrastructure layer (controllers) checks con-
sistency of specific configuration instances such as
inconsistent network configuration in the form of
OpenFlow rules.

C. Observability process

The observability process provides visibility onto the op-
erational performance of service graphs deployed in the uni-
fied production environment. This process is carried out by
selecting points and targets of measurements and choosing
corresponding tools based on the key performance indicators
(KPIs) and key quality indicators (KQIs) specified in the
service graph. As a result of such measurements, the observab-
ility process generates and notifies diverse statistics of traffic,
e.g., latency, throughput, and packet/byte counts, and status
reports of infrastructure components, e.g., resource usage and
availability. The definition of the measurement is delivered
from developers down to the infrastructure layer in a chain
and the notification traverses in reverse order.

D. Troubleshooting process

A troubleshooting process is requested either by
a developer manually or by some components on
service/orchestration layers automatically. The requested
troubleshooting process aims to follow up on reported
bugs, faults, and anomalous states. Such a process may
include automated deployment of relevant verification and
observability tools when the faulty or anomalous condition
cannot be immediately localized from existing observations
and reports. Detected and localized faults and performance
degradations in the infrastructure layer are asynchronously
reported to the virtualized infrastructure management layer
(and forwarded if necessary to higher layers) where further
investigation may take place.

V. EXTENSION OF UNIFY APIs

In order to provide SP-DevOps capabilities to the creation
of services, it is crucial to ensure an appropriate level of pro-
grammability in the monitoring infrastructure. Taking UNIFY
as an example, a set of APIs specific to DevOps are required to
be implemented in order to support developers in implementing
SP-DevOps applications (see Section VI) that are an essential
part of the service creation and maintenance. Due to the
abstracted and layered nature of the UNIFY architecture and
to the wide scope of the DevOps operation in the architecture,
the APIs need to be employed between almost all the layers in
the architecture and are sequentially invoked across the layers.

First, APIs that create and remove a monitoring endpoint
(RegisterListener and UnregisterListener) within the virtual
infrastructure are necessary. The established monitoring end-
point observes the performance of service entities and validates
their integrity. Second, it is important to provide developers
with the capability to isolate the debugging environment from
the production environment (i.e., debugging mode and release
mode), thus APIs that change the execution status (SetExecu-
tionState and GetExecutionState) of the service are required
to be implemented. Third, multiple APIs are needed to query



and obtain the performance value in various metrics (e.g.,
GetPerformanceValue).

Furthermore, there are several capabilities that are crucial
to enable automated troubleshooting and debugging features
in DevOps applications. The inter-layer communication cap-
ability for notifying (SetupNotification and Notify) problems,
e.g., detected and predicted failure, resource shortage, and/or
malicious activities, is one of them and the verification capab-
ility (Verify) is another. These capabilities are required to be
configurable via dedicated APIs.

VI. USE CASE: SSL VPN NETWORK SERVICE

In this section, we consider the application of SP-DevOps
by exploring the SSL VPN network service, i.e., one of the
use cases developed in UNIFY project [2]. SSL VPN network
service is an example of a value-added service that a service
provider might offer on the virtualized network infrastructure.

A. Initiation of observability and troubleshooting

The configuration of a VPN service comprises several steps
such as the configuration of the core network, the definition
of a virtual template interface which enables the dynamic
configuration of virtual access interface per user upon request,
the formation and association of each VPN to a Virtual Routing
and Forwarding (VRF) configuration, and the configuration of
user profiles and Authentication, Authorization and Account-
ing (AAA) services at the customer premises.

Regarding maintenance of a VPN service, the service pro-
vider is obliged to frequently monitor a multitude of interfaces
and protocols such as: i) concerning the core: validation of
successful running of the routing protocol, and ii) concerning
the VPN itself: validation of VRF configurations and routing
tables, verification of associations of provider/customer edge
(PE/CE) routers. The procedures for provisioning and main-
tenance of VPN include the participation of multiple dedicated
appliances, e.g., AAA server, customer premises equipments
(CPEs), DHCP server, edge and core routers. Operational
procedures related to VPN are inefficient due to the complex
manual configuration and monitoring of the different nodes
associated with it. Adding another service on top of VPN,
e.g., firewall, considerably increases further this complexity.
Such manual activities are highly time-consuming and prone
to errors, which in turn imply significant operating costs for
the service provider. Such costs can be further increased by
penalties due to SLA violations with regard to delivery or
troubleshooting times.

Employing the UNIFY architecture, an SSL VPN service
can be offered over software-defined virtual infrastructure.
The devices deployed at customer premises are extremely
simple and limited to packet forwarding, whereas all other
relevant CPE functionality would be included in the vCPE!
VNF deployed on a PoP at the edge of the IP network in co-
location with a vPE! VNF that takes over the physical PE. A
vSSL! VNF would implement acceleration of SSL encryption
and decryption that are too intensive to be performed at high
speed on the computational resources deployed in the PoPs.

Iy* is the abbreviation for ‘virtualized’

SSL VPN Service EP: Endpaint \

P: Observability Point
vMan: Virtualzed Manitar

T rb: Vinualzad Traubleshooting VNF
vPE:Vinualzed Provider Equipment
S5L:Virtualized Secure Socket Layer

VCPE: Virtualzed Customer Premises Equipment

OF op i op (or
VCPE1 VvS5L1 vPE1 — VvPE1 vSSL1 vCPE1
\ Agent Agent /

Figure 3: Simplified graphical representation of SSL VPN.

<---> Control Flow (f

<—> Data Flow

Original NF-FG / Service Graph "\

Ctrl VNF

Manitaring

system
BSS /0SS
Debugging IDE |

Figure 4: Use case over a watch-point inserted for observing
data plane and control messages.

In the aforementioned setup, an observability VNF could
be instantiated in co-location with vCPE and vPE, so as to
monitor various KPIs related to the physical node (i.e., PE)
as well as other VNFs associated to it. The infrastructure
management enables an operator to introduce vMon', i.e.,
a virtualized monitoring VNF, that provides an enhanced
granularity view for users. A customer representative trying
to pro-actively troubleshoot connectivity problems employs
vTrb', i.e., a virtualized troubleshooting VNF, that relies on
trusted agents deployed in the virtual infrastructure to generate
packets that test connectivity conditions at different layers on
the path between the two vPE VNF instances. Finally, the vTrb
VNF is integrated with the monitored infrastructure, such that
in case one of the vPE VNF instances is moved automatically
as a result of a scale-out operation ordered by the infrastructure
management, the vTrb instance will follow the associated vPE
instance and inform the customer representative of the event.
Figure 3 illustrates how an SSL VPN service is extended with
observability and troubleshooting capabilities.

B. An example of VNF developer support

An example of VNF development support is a stand-
alone debugging tool providing network watch-points [3]
that give visibility onto the OpenFlow control channel as
well as actions that facilitate troubleshooting and debugging
activities. The tool helps to define network watch-points for
certain data path or control traffic events (policy violation, or



any OpenFlow matching rule), and is capable of triggering
different troubleshooting actions. The network watch-points
provide an opportunity for service developers or operators to
define OpenFlow-like filters for selecting relevant packets and
automatically perform pre-defined actions collectively or on a
per packet basis. Due to its monitoring functionality, matching
packets could be filtered out and suspicious traffic could be
detected in an operational network.

For these purposes, network watch-points consist of three
different parts: standard OpenFlow match fields; the switch
defined by a unique data path ID (DPDI); and, troubleshooting
actions (such as no action, drop, log, notify, etc). According
to the OpenFlow matching fields, the DPID may contain a
wildcarded value allowing a single entry to match multiple
DPIDs. Moreover, since the match fields are standardized,
the data plane operation mode can delegate the execution of
the matching algorithm to switching hardware supporting the
OpenFlow protocol.

Figure 4 illustrates an example where the network watching
tool passively observes the control traffic for a service graph,
for the purposes of observing and debugging the Control App.
The tool performs a matching process on every OpenFlow
message in order to find the longest matching watch-point
entry in the watch-point repository (similar to a firewall),
executing specified actions upon match. If there is no matching
entry, then the tool forwards the captured OpenFlow message
automatically to the controller. Additionally, watch-points can
here be installed in relevant switches as flow rules with the
highest priority to capture traffic that normally would not trig-
ger a control message (such as PACKET_IN), for the purpose
of troubleshooting. The tool operates transparently to flow
table changes, by recording and analyzing flow modification
messages between the data plane component and the controller,
such that the mapping to the correct set of actions to be
executed is maintained.

VII. RELATED WORK

In current telecom industries, the TMForum enhanced
Telecom Operations Map (eTOM) and the IT Information
Library (ITIL) [6] are proposed to increase the ties between
Dev and Ops. eTOM defines a set of business process models
for the Ops part of DevOps. ITIL provides a collection of best
practices and guidelines for companies and practitioners on
the subject of managing IT services throughout their lifecycle.
In the DevOps point of view, both the approaches (eTOM
and ITIL) do not really increase the ties between Dev and
Ops. Because eTOM provides a set of guidelines for only
Ops part of DevOps and ITIL is difficult to implement in
the telecom industries, as this involves a large number of
actors and players. On the other hand, DevOps guidelines are
expected to be for both activities (Dev & Ops) of telecom
infrastructure and are expected to decrease the number of
actors and roles, and to provide the exact procedures that are
necessary to implement ITIL in a practical and realistic way.

The SDN solutions to support the DevOps concept are for
the tools: (1) FlowSense [7] and OpenSketch [8], which estim-
ate performance metrics, (2) OF-Rewind [9] and automatic test
packet generation tool [10] which localize and find root-cause
analysis of detected faults, and performance degradations and

(3) NICE [11], VeriFlow [12], and NetPlumber [13], which
compare expected and detected system states. The advantage
of FlowSense is that it follows a passive monitoring approach,
which is a scalable way of estimating the behavior in the
network, but the limitations are related to timing - all estimates
of the link utilization requires data based on completed flow
sessions, which may not be suitable in an environment where
timing is essential for dynamic service-chains. OpenSketch,
however, offers a high degree of automation, but the mainten-
ance of ‘sketches’, i.e., data structures for storing information
about packet states, takes resources.

The advantages of OFRewind is that it is capable of
recording both control and data traffic traces of an OpenFlow
network, and is capable of replaying it in a custom OpenFlow
network to reproduce the bugs. The challenges in replaying
include timing accuracy, multi-instance synchronization, and
online replay of multiple network elements. The automatic test
packet generation tool, however, finds issues in both Dev and
Ops by sending real test packets in a network. However, the
problem is that it requires gathering all data at a centralized
location or massive generation of test traffic, which puts
a high load on the infrastructure. The other tools such as
NICE, VeriFlow, NetPlumber, enable a (formal) verification
of specific SDN configurations (e.g., availability of a path
to the destination, absence of routing loops, access control
policies, or isolation between virtual networks). However,
these tools operate on the (centralized) programmability of the
control plane only. This might be a limitation if we consider
a possible network deploying active network functions, i.e.,
an environment that also enables programmability of the data
plane in a distributed fashion.

VIII. SUMMARY

In this paper, we discussed the DevOps requirements
specific to the modern network service creations that follow
a trend towards employing virtualization and software-defined
network technologies. Furthermore, we proposed an extended
DevOps concept (SP-DevOps) that addresses the discovered
requirements and demonstrated how it can be used in a large
scale service creation by taking EU FP7 project UNIFY as a
reference architecture.

In order to further explore the concept of SP-DevOps, we
described the four main processes, i.e., VNF developer support,
verification process, observability process, and troubleshooting
process, that together form the SP-DevOps lifecycle in a
UNIFY service creation. In this paper, it is explained how
each of these processes effectively tackles the corresponding
DevOps requirement for a large scale service creation on
virtualized and software-defined network environments.

ACKNOWLEDGEMENT

This work is supported by FP7 UNIFY, a research pro-
ject partially funded by the European Community under the
Seventh Framework Program (grant agreement no. 619609).
The views expressed here are those of the authors only. The
European Commission is not liable for any use that may be
made of the information in this document.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

REFERENCES

“Unify: Unifying cloud and carrier networks,” 2014. [Online].
Available: https://www.fp7-unify.eu/

“Use cases and initial architecture,” 2014. [Online]. Available:
https://www.fp7-unify.eu/

“Initial requirements for the sp-devops concept, universal node
capabilities and proposed tools,” 2014. [Online]. Available: https:
/Iwww.fp7-unify.eu/

C. Meirosu, A. Manzalini, J. Kim, R. Steinert, S. Sharma, and G. Mar-
chetto, “Devops for software-defined telecom infrastructures,” 2014.
“Zero-touch orchestration, operations and management project,” 2014.
[Online]. Available: http://www.tmforum.org/zoom/16335/home.html
“Gb921-w working together - itil and etom, v 11.3,” 2011. [Online].
Available: http://www.tmforum.org/DownloadRelease135/15584/home.
html

C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “Flowsense: Monitoring Network Utilization with Zero
Measurement Cost,” in ACM PAM, 2013.

M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” in USENIX NSDI, 2013.

A. Wundsam, D. Levin, S. Seetharaman, A. Feldmann et al.,
“OFRewind: Enabling Record and Replay Troubleshooting for Net-
works.” in USENIX ATC, 2011.

H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic Test
Packet Generation,” in ACM CoNEXT, 2012.

M. Canini, D. Venzano, P. Peresini, D. Kostic, J. Rexford et al., “A
NICE Way to Test OpenFlow Applications,” in USENIX NSDI, 2012.
A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” ACM SIGCOMM CCR, 2012.
P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis.” in USENIX NSDI, 2013.



