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The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-
MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values
thus obtained provide information on the natron flux used during the glass-making process. The glass samples
used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortu-
nately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a
rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS
approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained
using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are
in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was ob-
served between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty
of the LA-MC-ICP-MS approach was estimated to be b2‰, which is similar to that obtained upon sample
digestion and PN-MC-ICP-MS measurement.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Isotopic analysis of B is traditionally carried out using thermal
ionization mass spectrometry (TIMS) [1–3], or more recently, multi-
collector ICP-mass spectrometry (MC-ICP-MS) [4–7]. Prior to such
analysis, the sample needs to be digested and B separated from the con-
comitant matrix elements. This wet chemistry procedure, however, is
very laborious and time-consuming; the whole procedure takes
2 weeks on average. Moreover, no spatially resolved information is
obtained, which could be of interest, e.g., in the context of analysis of
foraminifera or corals for paleo-pH reconstruction [8,9]. These disad-
vantages can be circumvented by in situ measurements. Direct analysis
of solid samples has the advantage of reducing thework load in terms of
sample preparation and thus, offers an enhanced sample throughput.
Also spatially resolved analysis is enabled in this way. The two tech-
niques currently used for in situ measurement of the B isotope ratio
are secondary ion mass spectrometry (SIMS) and laser ablation (LA)
MC-ICP-MS. For SIMS, closematrix-matching is an absolute prerequisite
ion of his academic, mentoring
scopic community.

ecke).

. This is an open access article under
for obtaining accurate results [10]. In the case of themore recently intro-
duced LA-MC-ICP-MS approach for B isotopic analysis, matrix matching
seems to be less demanding [8,11,12], although recently a close matrix
matching was reported to be necessary for B isotope ratio determina-
tion in tourmalines using a 213nmNd:YAG laser [13]. Also the precision
obtained using LA-MC-ICP-MS (b1‰ 2SD) is better than that obtained
with SIMS (3‰ 2SD) [8,14]. Of course, the precision depends on the
heterogeneity of the matrix. To the best of the authors' knowledge,
only 5 papers have reported on LA-MC-ICP-MS isotopic analysis of B in
geological materials thus far [8,11,13,15,16]. Additionally, Kurta et al.
[12] have reported the use of femtosecond-LA-MC-ICP-MS for the
screening of B isotope ratios in steel.

Also in archeometry, especially for ancient glass, B isotopic analysis
using LA-MC-ICP-MS would be of great interest. Recently, it has been
demonstrated that the B isotope ratio can provide information on the
source of flux raw material used in the production of Roman natron
glass [17]. Differentfluxmaterialswere used in glass production: natron
or plant ash. Natron glasses were widespread in theMediterranean and
the Levant between the first millennium BC and the ninth century AD,
while plant ash glasses were produced before the first millennium BC
and after the ninth century AD [18,19]. These different fluxes are ex-
pected to give different B isotope ratios, while at least for natron, the B
isotopic composition also provides information on the geographical
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Table 2
Cup configuration used for B isotope ratio measurements using LA-MC-ICP-MS.

L4 L3 L2 L1 C H1 H2 H3 H4

10B 10.537 11B
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provenance [20]. However, the wet chemistry procedure preceding B
isotopic analysis via MC-ICP-MS includes target element isolation via
microsublimation [21] or chromatographic isolation and is therefore
very tedious and time-consuming and requires a relatively large
amount of precious sample (ca. 100 mg). As the use of LA-MC-ICP-MS
would reduce thework load and reduce the amount of sample required,
it is very attractive. In this paper, the use of LA-MC-ICP-MS for the anal-
ysis of 29 Roman (both natron and plant ash) glasses and 4 home-made
glasses [22] is described and the results thus obtained compared to
those obtained using PN-MC-ICP-MS. The influence of the matrix is
addressed and the expanded uncertainty estimated.
2. Experimental

2.1. Reagents and instrumentation

All reagents and instrumentation used for PN-MC-ICP-MS analysis
are described in Devulder et al. [17]. For LA-MC-ICP-MS analysis, NIST
SRM 610 glass (National Institute for Standards and Technology, MD,
USA) was used as standard and B6 obsidian as a quality control sample.
For practical purposes, all glass samples (micrometer size) were
mounted in epoxy resin (b0.1 ppm B) and polished. The RESOlution
M-50-LR (Resonetics) LA-unit used is based on an ArF* excimer laser
(CompexPro 102, Coherent), providing a high-energy 193 nm laser
beam, and is equipped with a dual volumeM50 LA cell (Laurin Technic,
Australia), as described in Mueller et al. [23]. The sample was ablated
under He atmosphere and the sample stream coming from the ablation
cell was admixedwith Ar and N2 prior to its introduction into the ICP to
stabilize the signal [24]., prior to its introduction into the ICP. A squid de-
vice [23] (Laurin Technic, Australia) was placed between the ablation
cell and the ICP to smooth the signals. The MC-ICP-mass spectrometer
used is a Neptune (Thermo Scientific, Germany), equipped with 9 Fara-
day cups connected to 1011Ω amplifiers. Table 1 summarizes the instru-
ment settings of both the laser ablation unit and theMC-ICP-MS unit, as
well as the data acquisition parameters used. Table 2 describes the cup
configuration used.
Table 1
Instrument settings and data acquisition parameters for B isotope ratio measurement via
LA-MC-ICP-MS (RESOlution M-50 and Thermo Scientific Neptune), optimized daily for
highest stability and signal intensity.

Instrument settings: Laser

Wavelength (nm) 193
Cell volume (cm3) Box volume: 380

Effective volume: 1–2
Spot size (μm) Depending on concentration of the

sample (ranging between 40 and 240)
Frequency (Hz) 8
Energy density (J cm−2) 2.5
Carrier (He) gas flow rate through cell
(L.min−1)

0.6

N2 gas flow rate (mL.min−1) 3.5

Instrument settings: Neptune

RF power (W) 1320
Cool gas flow rate (L·min−1) 15.5
Auxiliary gas flow rate (L·min−1) 0.85
Sampler cone Ni
Skimmer Ni, X-type
X-position (mm) −2.21
Y-position (mm) −1.12
Z-position (mm) −4.79
Resolution Low

Data acquisition parameters: Neptune

Integration time (s) 0.524
Blocks 6–12
Cycles/block 3800
The measurement sequence consisted of a series of measurements of
the standard and quality control sample (NIST SRM 610, B6), followed by
a block of samples. At the beginning of the sequence, NIST SRM 610 glass
was measured using different spot sizes. This was required to cope with
the large B concentration range within the sample collection. For each
sample, a proper spot size was selected taking into account its B concen-
tration. Spot sizes were chosen such that the intensity of the 11B signals
was around 0.3 V. 3 to 5 samples were measured in-between successive
measurements of NIST SRM 610 glass. Per sample, 6 to 12 spots were an-
alyzed. The laser repetition frequency was set to 8 Hz. At each location,
first, a gas blankwasmeasured for 12 s. Subsequently, the sample surface
was pre-ablated (4 shots) and the gas blankwasmeasured during anoth-
er 30 s. Finally, the sample was measured for 27 s. The data acquisition
was continuous (i.e. even during the measurement of the gas blanks
and pre-ablation) and all data treatments were done offline.

2.2. Samples

33 glass samples were measured via LA-MC-ICP-MS. These samples
are Greco–Roman natron glasses, plant ash glasses and home-made
glasses [22]. From PN-MC-ICP-MS measurements, it was known that the
δ11B values ranged from−10 to+40‰ and the B concentrations ranged
from 10 to 1000 μg·g−1. The sample descriptions and their B isotopic
composition as obtained via PN-MC-ICP-MS are provided in Table 3.

2.3. Data treatment and corrections

All data treatmentswere done offline. The average gas blank levelwas
subtracted from the 11B and 10B intensities for the sample. Then, the 11B/
10B ratios were calculated and outliers were removed based on a 2 s-test.
Correction for mass discrimination was accomplished via
external calibration using a sample-standard (NIST SRM 610) bracketing
approach. A linear variation of the extent of mass discrimination was as-
sumed in-between successive measurements of the NIST SRM 610 stan-
dard. The 11B/10B value used for NIST SRM 610 is 4.052 ± 0.0008 (2SD)
and is based on 11 measurements of NIST SRM 610 relative to NIST
SRM 612 on the day of analysis. The δ11B value used for NIST SRM 612
is −1.07 ± 1.7‰ (2SD) (N = 7), as in Kasemann et al. [25]. It was also
necessary to correct for the different spot sizes used during ablation.
This correction was based on the linear relation observed between the
mass discrimination-corrected 11B/10B isotope ratio and spot size for
NIST SRM 610 glass (Fig. 1). The ratio thus obtained is then expressed as
a δ11B value vs. NIST SRM 951, using 4.0545 as the 11B/10B ratio for this
isotopic reference material, according to Kasemann et al. [25]. The result
of the sample is then the average of the ratios of all spots analyzed. It
should be noted that the variation between the δ11B results for spots of
1 sample is relatively small (0.5‰, 2SD) (Table 3).

3. Results and discussion

The δ11B results obtained via PN-MC-ICP-MS and LA-MC-ICP-MS are
presented in Fig. 2. It can be seen that the results are in very good agree-
ment with each other. However, depending on the reference values
used for NIST SRM610 andNIST SRM951, different results are obtained,
as can be seen in Fig. 3. In this figure, “LA” refers to the results obtained
using the calculation described above (these results are included in
Fig. 2), “Le Roux” and “Kasemann” refer to the LA-MC-ICP-MS results
obtained using the values for NIST SRM 610 and NIST SRM 951 as re-
ported in le Roux et al. (4.049 and 4.05003) [16] and Kasemann et al.



Table 3
Information on the samples analyzed, their origin, color, B concentration and δ11B (‰) as determined using PN-MC-ICP-MS [20] as well as the number of spotsmeasured for laser ablation
(LA) and the obtained average values with their corresponding 2SD.

Sample Color Datea Sample
location

[B]
(μg·g−1)

δ11B
(‰)

Number of
spots for LA

δ11B (‰) ± 2SD
LA

SA-2007-VL-358 Colorless Second half 2nd century Sagalassos 195 30.1 9 29.9 ± 0.4
SA-2007-VL-1161 Yellow 1st–7th centuries AD Sagalassos 253 32.6 9 33.8 ± 0.2
SA-2007-VL-744 Colorless 1st–7th centuries AD Sagalassos 139 29.7 6 30.1 ± 0.2
SA-2007-VL-678 Colorless 1st–7th centuries AD Sagalassos 161 30.2 9 29.7 ± 0.4
SA-2007-VL-219 Colorless 1st half 4th century AD Sagalassos 162 28.7 6 28.7 ± 0.5
SA-2007-VL-135 Colorless 2nd half 4th century, 1st half 5th century AD Sagalassos 150 28.7 7 28.4 ± 1.4
SA-2007-VL-539 Yellow/green 1st–7th centuries AD Sagalassos 238 29.4 7 28.3 ± 0.5
SA-2007-VL-115 Colorless 1st–7th centuries AD Sagalassos 148 29.7 5 29.6 ± 0.4
SA-2007-VL-211 Colorless 1st–7th centuries AD Sagalassos 151 27.3 8 26.8 ± 0.6
SA-2007-VL-304 Pale yellow 1st–7th centuries AD Sagalassos 158 27.1 8 27.0 ± 0.3
SA-2006-VL-7 Colorless End 5th century AD/6th century AD Sagalassos 210 28.8 7 29.0 ± 0.4
SA-2007-VL-26 Dark blue 1st–7th centuries AD Sagalassos 163 30.1 7 30.2 ± 1.3
SA-2005-VL-31 Brown 1st–7th centuries AD Sagalassos 171 31.0 7 31.1 ± 1.2
SA-2007-VL-1167 Pale green 1st–7th centuries AD Sagalassos 177 27.1 7 27.8 ± 0.5
SA-2007-VL-1085 Colorless 1st–7th centuries AD Sagalassos 167 27.7 7 28.5 ± 0.8
SA-2007-VL-1095 Yellow 1st–7th centuries AD Sagalassos 291 32.2 7 32.6 ± 0.4
8933 Pale blue/green 4th–5th centuries AD Oudenburg 160 28.7 12 29.7 ± 0.3
8926 C Pale blue/green 3rd century AD Oudenburg 136 29.7 10 30.0 ± 0.5
71310 Pale blue 3rd century AD Oudenburg 154 28.2 9 28.6 ± 0.4
23993 Pale blue/green 4th–5th centuries AD Oudenburg 160 28.7 9 28.7 ± 0.6
2960 Pale blue 4th–5th centuries AD Oudenburg 194 27.4 11 27.8 ± 0.6
SA-2006-VL-05 Yellow/green 1st–7th centuries AD Sagalassos 265 27.4 9 26.8 ± 0.2
SA-2007-VL-137 HIMT 1st–7th centuries AD Sagalassos 199 27.7 8 28.0 ± 0.4
SA-2007-VL-138 HIMT 1st–7th centuries AD Sagalassos 188 26.9 8 27.8 ± 0.3
RBS 067 Opaque red/brown 11th–12th centuries Sagalassos 2658 −6.5 7 −7.5 ± 0.3
RBS 070 Pale purple/pink 12th–13th centuries Sagalassos 84 35.6 6 36.9 ± 0.2
RBS 072 Dark blue 1st–6th and 12th–13th centuries Sagalassos 2868 −7.1 9 −8.0 ± 0.4
RBS 073 Blue 5th century/middle Byzantine Sagalassos 2771 −7.7 8 −8.7 ± 0.3
RBS 075 Green Middle Byzantine and 1st–5th century material Sagalassos 3040 −6.4 8 −6.9 ± 0.6
FR16 Blue Manufactured by Brems et al. [22] 14 −7.8 8 −7.1 ± 1.2
IT85 Green 15 −8.0 9 −8.0 ± 0.4
IT34 Pale green 13 −5.6 9 −3.8 ± 0.6
IT87 Pale green 5 +0.4 6 2.4 ± 0.3

a References for these dates can be found in Devulder et al. [20].
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(4.051 and 4.0545) [25], respectively. Whatever reference values are
used, the LA-MC-ICP-MS results are not significantly different from the
corresponding PN-MC-ICP-MS data. It has to be noted that two of the
previously published papers [11,15] use 4.049 as the reference value
for NIST SRM 610, as determined by le Roux et al. [16]. However, the
value for NIST SRM 951 used in all three papers is 4.05003, which is
not determined by le Roux et al., but by Ishikawa and Tera [26]. The
value of Kasemann et al. [25] for NIST SRM 610 is −0.78‰ (P-TIMS)
and that for NIST SRM 612 −1.07‰. In contrast to le Roux et al.,
Kasemann et al. also measured the value for NIST SRM 951, reported
as 4.0545. Therefore, the value reported by Kasemann et al. was used
Fig. 1. Dependence of 11B/10B ratio on spot size (μm) for NIST SRM 610 glass.
for both NIST SRM612 andNIST SRM951 in this work, as in the authors'
opinion, these values aremore reliable. NIST SRM610wasmeasured re-
peatedly relative to NIST SRM 612 and the measured value was then
used for calculating the δ11B values of the samples using 4.0545 as a ref-
erence 11B/10B value for NIST SRM 951. The averagemeasured value for
NIST SRM 610 is −0.56 ± 0.32‰, which is very close to the average
(−0.52‰) of the values determined by le Roux et al. (−0.25 ±
0.28‰, 2SD, N = 2), by Kasemann et al. (−0.78 ± 1.4‰, 2SD, N = 8,
P-TIMS) and by Fietzke et al. [8] (−0.55 ± 1‰, 2SD, N = 16). Overall,
the relative difference between the results obtained using the lowest
Fig. 2. Comparison of the δ11B (‰) results obtained using PN-MC-ICP-MS and LA-MC-ICP-
MS. The uncertainty on the PN-MC-ICP-MS results is 1.6‰ (k = 2), as determined in
Devulder et al. [17].



Fig. 3. Influence of the use of different reference values for NIST SRM 610 to calculate the
results obtained by LA-MC-ICP-MS. “U PN” is the expanded uncertainty accompanying the
PN-MC-ICP-MS results, “LA” refers to the LA-MC-ICP-MS results obtained relying on the
experimentally determined value of 4.052 for NIST SRM 610. “Le Roux” and “Kasemann”
refer to the LA-MC-ICP-MS results obtained using the average values of 4.049 and 4.051
for NIST SRM 610, as reported by le Roux et al. [16] and Kasemann et al. (P-TIMS) [25],
respectively.

119V. Devulder et al. / Spectrochimica Acta Part B 105 (2015) 116–120
(−0.78‰) [25] and the highest δ-value (−0.25‰) [16] for NIST SRM
610 is only 0.53‰. When comparing this value to the expanded uncer-
tainty obtained for PN-MC-ICP-MS (1.6‰, k=2), it can be seen that this
difference is negligible.

No matrix effect – defined as a difference in the overall extent of
mass discrimination – is observed for archeological glasses or B6 obsid-
ian when compared to NIST SRM 610 glass. The δ11B value obtained for
B6 obsidian is−2.59± 0.50‰ (N= 18), which is within experimental
uncertainty equal to our PN-MC-ICP-MS value [17] (−2.89 ± 1.6‰,
N = 8), the result obtained by Hou et al. [11] (−3.29 ± 1.12‰) and
the average of the results from an intercomparison exercise in 2003
[27] (−3.3 ± 1.8‰). Moreover, all of the δ11B results for the
archeological glasses are in excellent agreementwith the corresponding
PN-MC-ICP-MS δ11B values.

The comparison of the expanded uncertainty of both methods is
challenging, especially since assessing the accuracy of the LA-MC-ICP-
MS results is difficult. This is due to the lack of a certified reference ma-
terial. NIST SRM 610 glass resembles the matrix of the archeological
glasses, but there are only indicative δ11B values available. These values
differ from one lab to another and also depend on the δ11B value used
for NIST SRM 951. le Roux et al. [16] mention an average δ11B value of
−0.25‰ for NIST SRM 610, based on a 11B/10B ratio for NIST SRM 951
of 4.05003. Kasemann et al. [25], on the other hand, reported a δ11B
value for NIST SRM 610 of −0.78‰ based on a 11B/10B ratio of 4.0545
for NIST SRM 951. Fortunately, all results are identical within analytical
uncertainty, thus enabling the uncertainty on the bias of our LA-MC-
ICP-MS to be calculated. The bias on the true value is assumed to be at
least 0.53‰ as this is the difference between the results of different
labs. Next to the bias, the top down approach for determining the ex-
panded uncertainty also uses the intermediate precision. According to
the VIM [28], the intermediate precision is the measurement precision
under a set of conditions that includes the same measurement procedure,
same location and replicate measurement on the same or similar objects
over an extended period of time, butmay include other conditions involving
changes. 3 samples, each measured on at least 4 spots, were measured
on 2 separate days with one month in-between. It has to be noted
that the results of the 3 samples measured on both days result in an
excellent intermediate precision (0.3‰). Moreover, the standard devia-
tion on all NIST SRM 610 glass measurement results of one day (NIST
SRM 610 was measured 38 times during a time span of 11 h) was only
0.23‰. It should be noted that the intermediate precision using LA-
MC-ICP-MS (0.3‰) is better than the precision of the PN-MC-ICP-MS
procedure (0.6‰). Due to the lack of a certified value for determining
the bias, deploying a similar or slightly lower expanded uncertainty
for LA-MC-ICP-MS as for pneumatic nebulizationMC-ICP-MS seems jus-
tified. Overall, it can be concluded that the LA-MC-ICP-MS results are the
same as the pneumatic nebulization results within analytical uncertain-
ty and no systematic matrix-induced offset is observed.

4. Conclusion

Reliable B isotopic analysis of ancient glass samples, showing a broad
B concentration range and a broad δ11B range, was accomplished using
LA-MC-ICP-MS. The LA-MC-ICP-MS results were in excellent agreement
with those obtained via PN-MC-ICP-MS after labor-intensive and time-
consuming sample pretreatment (digestion and chromatographic B iso-
lation). Nomatrix-induced changes in the extent ofmass discrimination
have been observed between NIST SRM 610 glass, B6 obsidian and
archeological glasses. The 11B/10B result depends on the spot size and
thus, normalization should form an integral part of the data processing.
Due to the lack of certified reference materials for δ11B, the expanded
uncertainty of the LA-MC-ICP-MS approach could not be calculated ex-
actly, however, it is estimated to be similar to that typical for PN-MC-
ICP-MS and amounts to 1.6‰with a coverage factor k of 2. Themethod
is ready to be used for analyzing larger collections of natron glass. The
success of provenancing depends on the availability and spread of the
reference values for possible natron sources.
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