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Abstract—Geometric routing has been proposed in literature
as a memory-efficient alternative to traditional lookup-based
routing and forwarding algorithms. However, existing geometric
routing schemes lack the ability to address network link and node
failures in a natural way, while maintaining a low path stretch.
The main contribution of this paper is a novel routing scheme
called Greedy Forest Routing (GFR) based on the principles of
geometric routing. By employing a graph embedding based on
low-redundancy spanning trees, its fault-tolerant characteristics
are enhanced. Using a multi-dimensional tree embedding enables
natural traffic redirection while still attaining a low average hop
count.

Index Terms—geometric routing; fault-tolerance; forest rout-
ing

I. INTRODUCTION

For over a decade, geometric routing algorithms are emerging
as an alternative to lookup-based routing schemes. Though
they were originally designed for ad-hoc wireless networks
and wireless sensor networks (WSNs) [1], researchers have
demonstrated their applicability to wired networks as well [2].
This entails a different design approach because wired networks
are generally modelled as scale-free graphs' rather than unit-
disk graphs (UDGs)?. Geometric routing makes use of a graph
embedding in which every network node is assigned coordinates
corresponding to a point in a mathematical space. Using these
coordinates, and a distance function, packets are routed towards
the destination by following a distance-decreasing path.

In geometric routing a node only requires information
about its local neighbourhood rather than the whole network.
Therefore an advantage over a lookup-based approach is their
capability of generating routing paths with limited router
memory overhead. On the other hand, a clear disadvantage
is the lack of routing fault-tolerance because the underlying
embedding may lose its greedy characteristics upon the
occurrence of network failures. This means that there no longer
exists a distance-decreasing path towards the destination (also
see Definition 1). Traffic redirection in case of failures is
deemed essential in many large-scale communication networks.

UIn scale-free networks the degree distribution follows a power-law P(k) ~
k=7 with a parameter v € RT and k the vertex degree.

2A graph G = (V,E) is a unit-disk graph when Vu,v € V : v €
N(u) < é(u,v) <1 in case G is embedded into a Euclidean space, with §
the Euclidean distance.

However, how low path stretch® and fault-tolerance can be
effectively combined in geometric routing remains largely
unsolved.

This paper investigates how geometric routing can combine
low path stretch with reliable routing behavior. The main
contribution is a geometric routing scheme called Greedy Forest
Routing (GFR) which ensures a 100% packet delivery success
rate. Furthermore it is highly resilient towards node and link
failures by utilizing a multi-dimensional embedding based on
low-redundancy* spanning trees. GFR is applicable to a wide
range of network types, but is designed with scale-free complex
networks in mind.

II. RELATED WORK

Many geometric routing algorithms target UDGs, rather than
scale-free networks. It is however still useful to investigate
what techniques these algorithms use to achieve fault-tolerance.
In general, geometric routing suffers from so-called voids.
These are nodes reached by a forwarded packet for which no
distance-decreasing (to the destination) neighbour exists, which
likely causes the packet to be dropped.

Several techniques exist for coping with failures or packet
voids using a face routing-like construct [3]. But, these
techniques are tied to UDGs and are hence not applicable to
scale-free networks because these do not possess the required
graph properties. Sahhaf et al. focus on finding alternate
pathways in greedy hyperbolic embeddings for fast traffic
re-routing, applicable to a wide variety of networks [4]. They
also proposed the use of a backup tree to cope with single link
failures [5]. The work in this paper differs from the former in
the sense that it improves routing fault-tolerance by (i) using
a multi-dimensional embedding, allowing for natural traffic
re-routing, and (ii) generating spanning trees by minimizing
tree redundancy in a heuristic manner.

A technique not relying on pre-determined alternate pathways
is Gravity-Pressure routing [6]. When routing voids are
encountered, a potential function is applied to the routed packet
at every network node. This causes the packet to be steered
away from the network failure. An advantage of this technique

3The stretch of a path is its length, as a number of hops, divided by the
shortest path length between its source and destination nodes.

“In this work, minimizing redundancy means minimizing the overlap of the
edges of different trees. Trees whose edges completely overlap are maximally
redundant, i.e., the removal of a tree does not affect the routing system.



is that it is proven to be 100% reliable. A severe disadvantage is
that the stretch may increase arbitrarily. Some techniques focus
on creating minimally-overlapping trees, however most remain
hard to implement practically in a distributed fashion, or are
restricted by a fixed number of trees [7], [8], [9]. Furthermore
these algorithms do not attempt to construct embeddings with
the geometric routing paradigm in mind. Our approach uses
a tree construction mechanism that reduces redundancy in
a heuristic manner. Herein parallel coordinates are assigned
to allow for geometric routing. Tang et al. also use multiple
trees for geometric routing [10], however they do not focus
on — or test for — reliability. Furthermore, multiple trees are
constructed in a breadth-first manner rather than aiming for
low tree redundancy. Contrary to their approach, our method
is capable of combining high fault-tolerance with low path
stretch.

III. THEORETICAL FOUNDATION

In this section a theoretical foundation for the Greedy Forest
Routing (GFR) algorithm is built based on the work of Chdvez
et al. [11] and Korman et al. [12]. Geometric routing systems
make use of a graph embedding. Such an embedding is a
mapping between vertices of a graph and a certain mathematical
space, formally defined by the following definition.

Definition 1: Let S be a set and ¢ a metric function over S.

Let G = (V, E) be a graph, then an embedding of G into S is
a mapping f : V — S such that Vu,v € V:u £ v & f(u) #
f(w).

To guarantee a 100% routing delivery success rate a greedy
graph embedding is mostly required, defined by the following
definition.

Definition 2: A greedy embedding of a graph G = (V, E)

into a metric space (5,0) is a mapping f : V — S with
the following property: for every pair of distinct vertices
u,w € V there exists a vertex v € V adjacent to u such
that 6(f(v), f(w)) < 3(f(u), f(w)).
Herein a metric space is the double formed by a space and
its complementary distance function, more formally defined
by Definition 3. This metric space is used to steer packets
towards their target by following a distance-decreasing path,
as mentioned in the introduction.

Definition 3: For a set S and a function § : S xS — R
such that the following conditions hold Yu, v, w € S

) 6(u,v) >0A(u,v) =0 u=v

2) 6(u,v) = 6(v,u)

3) d(u,w) < §(u,v) + §(v,w)

Then ¢ is called a metric and the double (S, ) is called a
metric space.

In this work a spanning tree T = (V, E’) of the underlying
network G = (V, E) is used to generate an embedding. This
embedding makes use of a vertex labelling procedure [12] and
a distance function representing the shortest path length in 7’
[11]. Here the embedding target space S is denoted as the tree
space T. This tree space is defined as

T=|J ((0)“Nn) (1)

neN

in which the function (7) : N™ x N — N™*" represents the
concatenation of two tuples. The labels assigned by the labelling
procedure (see Section VI) are now interpreted as coordinates
in T. These coordinates form a greedy embedding [11] which
is denoted as 7. Therefore each vertex v € V' corresponds to
a point in T identified by the coordinates 7 (v).> An example
of this embedding can be found in Figure 1(a). The distance
function ¢ is defined as

0(u,v) = |ul + [v| = 2[d(u, v)| 2)

with ¢ : N® x N™ — N* the function which generates the
largest common prefix of two tuples; |u| represents the length
of the coordinate tuple of vertex w. This results in a distance
function 6 : T x T — RT that, together with the space T,
forms the metric space (T, d) (the properties of a metric space
can easily be proven). Now this metric space can be used
according to the principles of geometric routing. This means
every vertex is aware of the coordinates of its neighbourhood
and the destination coordinates are encoded in the packet
header. As such, each node tries to forward a packet along
a distance-decreasing path to the destination based on this
header.

IV. MULTI-EMBEDDING

A first step towards fault-tolerance is the use of k spanning
trees T; = (V, E}) with forany i € {0,1,...,k—1} : E; C E,
to form k greedy embeddings of G into T, instead of only
one [10]. These different greedy embeddings are denoted as 7;.
The notation ¢ is now used to denote the k-tuple of distances
in each of the k& embeddings. Therefore §; represents the tree
space distance for the i-th embedding 7;. Furthermore, assume
a graph G = (V, E) in which a spanning tree T = (V, E’)
has been constructed. For a link e € E either e € E’, which
means that e is a critical link (solid lines in Figure 1(a)), or
e ¢ E’, which means that e is called a shortcut link (dashed

SInstead of writing 7 (u) we will make no distinction between the point
a vertex represents in its embedding space and the node itself. The exact
meaning should be clear from the context.

(b) Tree T (root a, dashed edges)
and T3 (root y, gray edges) min-
imizing redundancy. Notice the
avoidance of overlapping edges.

(a) Tree T' (solid edges, root a) form-
ing embedding 7 into T by labelling
each node. Failure of dashed edges
or nodes x or h does not result in
failures.

Figure 1. Graph embeddings illustrated: shortcuts, labelling, redundancy.



lines in Figure 1(a)). When a shortcut link or a leaf node
(nodes x and h in Figure 1(a)) fails, routing is still possible
for all source-destination pairs since the underlying spanning
tree T is still intact. On the other hand, when a critical link or
non-leaf node fails, voids may occur for certain node pairs.

A benefit of using multiple embeddings is the increased
fault-tolerance of the routing scheme towards node and link
failures. As more embeddings are available, the chances of a
link failure disrupting each of the embeddings becomes lower.
To illustrate with an example (see Figure 1(b)): link (h,y) is a
critical parent-child link in embedding 75 but is a non-essential
shortcut link in 7;. The same holds for the network nodes:
non-leaf node y in 7 is a leaf node in 77. If (h,y) or y fails,
routing in 75 may fail because 75 loses its greedy property,
but it is still guaranteed in 7.

To have access to a maximum number of shortcuts, the
spanning tree creation mechanism should minimize the tree
redundancy. With tree redundancy the overlap of different
spanning trees in the same network is meant. For example when
two trees T; = (V, E’) and T; = (V, E") have a maximum
redundancy, they completely overlap, meaning that £’ = E”.
Because of this there is no advantage in using them both for
routing purposes as they will lead to the same set of coordinates,
as well as the same set of shortcut links. When these two trees
are said to have low redundancy, the set £’ N E” is small. This
principle is illustrated in Figure 1(b) in which two trees try to
use different edges of the graph to avoid overlap. High tree
redundancy should be avoided because it leads to low fault-
tolerance: a failing link which happens to be a parent-child
link in many of the trees is likely to cause routing voids®. How
to achieve low tree redundancy is explained in Section VI.

V. GREEDY FOREST ROUTING (GFR)

In this section we will see how multiple embeddings can
be combined with the theoretical foundation presented in the
Section III. A straightforward way of routing using multiple
embeddings would be to allow a vertex to freely alternate
between the different embeddings, due to their individual
greediness. However, this naive forwarding mechanism is not
reliable because routing cycles may be introduced: routing
along a distance-decreasing path in 7; may increase the distance
in 7;. At a certain vertex along the routing path the packet
may be sent back to its origin, routing the packet along a cycle,
as illustrated by the following example.

Example: To illustrate what happens when routing naively
with multiple embeddings, an example is given for a multi-
embedding consisting of three embeddings, thus £ = 3, which
is depicted in Figure 2. Assume a source node s and a
destination node d for which §(s,d) = (3,5, 7). This means
that the d-distance is 3 in embedding 7g, 5 in 77, and 7 in 7.
When routing naively the following scenario can occur:

e d(n1,d) = (3,4,7), s decides to route to ny in T;

e d(ne,d) = (3,6,6), ny decides to route to ny in 7.

However, the distance in 77 increases from 4 to 6.

SRouting voids are nodes which are unable to forward a packet because
there exists no distance-decreasing neighbour.

e d(ng,d) = (3,5,7), ny decides to route to nz in 7.
Notice that the distance in 73 increases from 6 to 7.
e d(n1,d) = (3,4,7), ng decides to route to ny in Ty

ni T2

ns

Figure 2. Naive routing with multiple embeddings

In this scenario a cycle has been introduced because although
the packet is routed greedily in each embedding individually,
this does not hold for their aggregation.

Cycles can be avoided by requiring that each vertex along
the routing path decreases its minimum distance (over the &
embeddings) to the destination. This way of working is similar
to the tree cover based geographic routing (TCGR) mechanism
[10]. In our work a new distance function € : TF x TF — Rt
is defined as

e(u,v) = Join, {6i(u,v)} Yu,v eV 3)
The k embeddings into T can now be treated as a single
k-dimensional greedy’ embedding into T*. As such the
principles of geometric routing can be followed by using the
relaxed metric space (T*,¢). This double cannot be regarded
as a true metric space as the triangle-inequality no longer
holds (Definition 3, property 3). When forwarding, multiple
neighbours may have an equal e-distance. In this case a random
choice will be made among them. This e-based routing scheme,
in combination with the embedding procedure presented in the
next section, is called Greedy Forest Routing (GFR).

VI. EMBEDDING CONSTRUCTION

In this section the details of the GFR tree construction
mechanism for generating graph embeddings are explained. By
constructing the different trees underlying the embedding in an
intelligent manner, GFR 1is inherently robust towards network
failures. A prerequisite for the embedding construction phase is
the assignment of an identification number to each node. This
is required for having a deterministic solution to the election
procedure presented next. This identification number may be
chosen freely, e.g., the unique MAC-address of a node. In what
follows, the identification number of a vertex v is called its key
and is denoted as C(v). The GFR tree construction procedure
consists of two phases. First a set of & root nodes {r(9}
are elected. Secondly, the spanning trees T; are constructed
along with the corresponding greedy graph embeddings 7;. In
what follows the construction of a single embedding 7 will

7lts greedy characteristics can easily be proven: when the minimum distance
of all the embeddings decreases, at least one embedding will reach a new
minimal distance é(u, d) in the current node w for a destination d. Assume
this embedding is 7;, then there will exist a node v € N(u) for which
6i(v,d) < d;(u,d) because 7; is a greedy embedding (see Definition 1).



be explained, multiple embeddings can be seen as a parallel
extension. The embedding procedure itself is exactly the same
as explained by Chavez et al. [11] and Korman et al. [12]. The
difference lies within the way the trees are formed.

First, the root node r is assigned the coordinate (0). Next it
will send its coordinates to its neighbours Ny (r).% Furthermore,
each recipient is assigned a unique child number by the sender
(the parent). Upon receiving this message, nodes compute their
own coordinates and inform their neighbours Ny(r) with a
similar message. In turn these will recursively inform the nodes
N;(r). The final result can be seen in Figure 1(a). When a
node that already has coordinates assigned to it, receives a
new coordinate assignment message, it may react in different
fashions, which are called different tree growing modes:

e breadth-first mode (BFM): override the previous coordi-
nate tuple only this leads to a tuple of lower length. This
results in a tree of minimal depth.

o redundant mode (RM): only override previous coordinates
when their cost function value is lower. This cost function
is based on the coordinate tuple lengths and the overlap
of the spanning trees (tree redundancy).

o breadth-first redundant mode (BFRM): a hybrid mode
combining BFM with RM.

In BFM coordinates are only overridden when the coordinate
tuple resulting from the received message has a lower length
than the current tuple, or its parent node has acquired a new
set of coordinates. In the latter case, the child node should
be updated accordingly. By doing so, a tree of minimal depth
is built rooted at . An advantage of using BFM is that the
introduction of cycles is impossible. Its high tree redundancy
is a clear downside, as this leads to low fault-tolerance: if a
link fails which happens to be the link between parent and
child for a large fraction of the trees, this will likely cause
routing voids. To enhance reliability, a second mode has been
developed called redundant mode (RM). In RM the emphasis
lies on minimal tree redundancy, attaining maximal tree spread.
This is done by making sure that every link is an edge in
approximately the same number of trees. For this, a metric is
introduced to measure the amount of tree redundancy of the
spanning trees inducing the different embeddings. Every edge
e € E is part of a number of sets E! for a number of different
trees T; = (V, Ef). If minimal redundancy is desired, the goal
is to make this number more or less equal for every edge in
E of G = (V,E). Based on this description of redundancy, a
metric 7 is defined by the following definition.

Definition 4: Assume k spanning trees. Denote the number
of different sets E!, corresponding to T; = (V, E!) with 0 <
1 < k, that an edge e € F in a graph G = (V, E), belongs to
as n. The amount of tree redundancy, termed the 7-ratio, is

defined as the standard deviation o(n) divided by the average
7 over all e € E. This can be formulated as 7 = @.

A low 7-ratio indicates that the trees are spread evenly
over the network while a high 7-ratio indicates that there is a

8 N; (u) represents the i-th hop neighbours of w.

(k¢ 9,)

(a) The tree (a,c,g,h,z) exists
after a has assigned coordinates
to c. This leads to updating g, h
and z. Hereafter, the parent a of
c is replaced by y because of a
decreasing cost.

(a,c,g,)

(c) Node x sends the updates to all
of its neighbours, which includes c.
It does not notice that ¢ is an ances-
tor because the coordinates of ¢ have
already been updated according to

(a,¢,9,7)

(b) Node c updates its coordinates
according to its new parent y. The
tree becomes (y, ¢, g, h, x). At the
same time the update message of the
old coordinates of ¢ reaches x.

(a, <9, T)

(d) Node c accepts the new coordi-
nates of x because of a decreasing
cost function. However, this was still
based on the non-updated coordi-
nates and thus a cycle is formed,

its new parent y. corrupting the tree.

Figure 3. Cycle introduction by faulty coordinate updates which results in
an endless loop of updates. The characters in the coordinate tuples represent
integers similar to Figure 1(a).

huge difference in the number of spanning trees a link of the
network is part of. Also note that 7 > 0. To decrease the tree
redundancy while constructing the embedding, a cost function
fi : V3 — R was defined for each embedding 7; in the system:

fi(w, p,p") = nai(u) + Bbs(uw) + ¢;(u, p,p’) 4)

with 7, 8 € R adjustable parameters; a;, b; and ¢; are cost
terms defined as

ai(u) = [u'| — |u] (5)
)0 if a;(u) <0
bilu) = /| — [u*| if ai(u) > 0 ©
Ci(u7p7p/) = B ~
[ (u,p') — W(u) + 1] + [¥(u,p) — ¥(u) — 1] (7)

= (12 (u,p') = U(w)| + [¥(u, p) — U (u)])
with © € V also representing the current coordinates for

embedding 7;; u’ are the new coordinates for embedding 7;;
u* are the coordinates with the lowest length encountered so



far for embedding 7;; ¥(x,y) represents the number of trees
T; that are making use of the edge (z,y) € E; ¥(z) is the
average of ¥(z,y) Vy € N(x); p is the current parent of u
and p’ is the potential new parent.

Thus a;(u) indicates the decrease in length of the new coordi-
nates compared to the current coordinates of w. b;(u) represents
the decrease in length of the coordinates under consideration
for node u when comparing them to the coordinates with the
lowest length ever assigned (and possible overridden) to u. The
cost term ¢;(u, p,p’) describes whether the number of trees that
each link e € I(u)® equalizes or not (this is our goal, making
sure that every link is part of an equal number of trees, to
minimize 7). In this cost term, |¥(u, p’) — ¥ (u) -+ 1| describes
the offset of the number of trees link (u, p’) is part of versus the
average of this value. This average is denoted as W(u), and is
calculated over all links in I(u), when p’ is chosen as the new
parent of u. Furthermore the term | ¥ (u, p) — W (u)— 1] is added.
It describes the offset of the number of trees link (u,p) is part
of when p is no longer a parent of u, versus the average over
the links 7(u), denoted as W (u). The sum of these two offsets is
compared to the sum of the offsets without parent replacement,
which is (|¥(u,p’) — U(u)| + [¥(u, p) — ¥(u)|). Therefore
c¢; describes whether overriding the coordinates (accepting the
new parent) will reduce the variance in the total number of
trees each link in I(u) is part of. Also note that ¢;(u, p,p’) is
bounded by —2 < ¢;(u, p,p’) < 2.

The graph embedding procedure in RM is described in
Algorithm 1. When growing a tree in RM, precautions have to
be taken in order to avoid the introduction of cycles, especially
when using low n-values in Eq. (4) as nodes will then frequently
switch parents. The fact that now longer coordinates may
override shorter ones is the main reason for the potential
introduction of cycles. This happens when an ancestor node
accepts new coordinates from one of its descendants. As a
result the embedding 7; may no longer be greedy. A solution at
first glance is to check whether a receiving node is an ancestor
of the sending node by checking if |¢(u’, u)| # |u| holds (see
Eq. (2)). But even then it is still possible to generate cycles
as explained in Figure 3. To counter this, every coordinate
assignment packet also holds information about the current path
P up to the root in the tree (e.g., (z, g, ¢, a) in Figure 3(a)).
The key KC(v) of every vertex v € P is recorded. If a node u
receives a coordinate assignment message, it will first check
whether it is part of P by examining if its own key is present
in this set of recorded keys. Only when u ¢ P it will consider
accepting the new coordinates. This mechanism is called cycle
avoidance.

Nonetheless, even with the cycle avoidance active, cycles
may still be introduced due to the system’s distributed nature.
Therefore, a cycle resolution procedure was implemented,
shown in Algorithm 1 at line 8. When a node receives a
coordinate message from its parent, it normally accepts these
new coordinates. However, when this packet already has its
own key in the P field, a cycle was introduced. For example,

T (u) represents the incidents links of node w.

Algorithm 1: Tree growing: redundant mode (RM)

input :vertex u has sent its coordinates to its
neighbours; current vertex v € N(u) is
listening for packet receipt

output :vertex v has coordinates assigned according

to embedding 7 in T

1 receive incoming packet packet of node w along with
its coordinates u, a child number ¢,, and key K(u)

2 look up own coordinates v and parent key K(p)
corresponding to embedding T

3 if v = () then

4 | gotoline n

5 else if K(u) =K(p) V (f/(v,p,u) <0) then

6 if IC(v) € PAK(u) # K(p) then

7 | cycle avoided, drop packet

8 else if £(v) € P AK(u) = K(p) then

9 cycle detected because parent update message
received, resolve cycle

10 else

11 €y, 4 child number extracted from packet

12 calculate own coordinates v < u™{¢, }

13 update own parent p < u

14 record own key in packet in sequence of
traversed nodes: P < P~ /C(v)

15 foreach n € N(v) do

16 send packet containing v and neighbour

number ¢, to n
17 else

18 L drop packet

in node c the P field will look like (a, ¢, g, z, ¢) in Figure 3(d).
Hence it is informed of the cycle {c, g, z, ¢). Next, ¢ will send
on the coordinate message to its children in order to notify
them. Whenever a node detects a cycle, it searches for a new
parent among its neighbours that are not part of the current
cycle. This is done by querying a new parent p and asking for
its coordinates along with a new child number c,. After the
packet has traversed all nodes of the cycle, these will all have
had the opportunity to switch parent, resolving the cycle.

The advantage of generating an embedding in RM is the low
resulting tree redundancy 7. However it is very hard to give an
estimated upper bound on the embedding procedure time due to
the complex interactions of the cycle resolution and avoidance
mechanisms. Moreover, the coordinates will be larger than
when building a tree of minimal depth. Therefore a hybrid
mechanism was established by combining BFM with RM,
called breadth-first redundant mode (BFRM). Now a tree of
minimal depth is combined with a cost function to minimize .
This basically comes down to assigning parameter values 1 > 2
and 8 = 0 in Eq. (4). BFM can easily be altered to BFRM
by allowing a coordinate assignment message to override the
current coordinates when the check (f/(v,p,u) < 0) is true.
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Figure 4. Tree redundancy 7 in function of the dimension k (the number
of embeddings) for different tree generation modes on a scale-free (see
Section VII) graph with 500 nodes.

Because of its breadth-first behaviour, no cycle avoidance or
resolution is required, which greatly diminishes the complexity
of the embedding procedure. This results from the fact that a
node can never increase its coordinate tuple length. The tree
redundancy of the different generation modes in function of
the number of trees generated k can be seen in Figure 4. For
RM, the values in Eq. (4) were set to 7 = 2 and 8 = %, which
led to good behavior (no excessively deep trees in which lots
of cycles had to be resolved). From this it is clear that RM
results in the lowest redundancy 7, BFM has the highest 7 and
BFRM lies somewhere in between. In the next section we will

show that a lower 7-ratio increases the fault-tolerance of GFR.

VII. RESULTS AND DISCUSSION

The routing behavior was simulated by a programmatic
routing framework in which random source-destination host
pairs were generated continuously, corresponding to a uniform
traffic matrix. Between these pairs traffic was simulated by
generating routing paths in a multi-threaded environment. All
experiments were executed on a High Performance Computer.
The algorithms were tested on differently sized scale-free
networks generated according to the Barabasi-Albert model
[13] with a degree distribution of P(d) o d~7 with v = 2.2.

A. Fault-tolerance

In this section the fault-tolerance of GFR will be evaluated.

When using multiple embeddings, the chance of a network
failure disrupting each of them becomes lower. Hence, the
routing system is more likely to find a distance-decreasing
neighbour send on the packet. Therefore GFR should be more
resilient to failures than geometric tree-based routing using a
single embedding.

We only describe the effects of link failures in this section
due to space constraints, however the node failure results are
very similar. In the following experiment, the number of links
removed starts at 0 and goes up by 20 at each step. When
representing the network by a graph G = (V| E), the highest
number of links that can be removed without disconnecting G
is (|E|—|V'|+1). For every step in the number of links or nodes

100%
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Figure 5. Fault-tolerance: the success ratio of GFR (k = 15, BRFM

embedding generation) was tested for a varying failure rate. Also GFR with
only a single embedding was evaluated. The shaded background represents
the average success ratio, plus and minus the standard deviation o.

failed, the experiment is run 100 times and every time 1000
random source-destination pairs are generated between which
uniform traffic is simulated (as such 10° paths are simulated
for each step). For each of these 1000 pairs the average success
ratio is examined. To test link fault-tolerance, links are removed
with a probability p(l) = exp (3 (1 - %)) with v €
V the vertex that has the lowest p(I) probability of both vertices
incident to [ € E; dg(v), the degree of vertex v before removal
of any links. This probability makes sure that the link failures
are evenly spread across the network. When dg(v) = dg(v),
(no incident links failed), the failure probability p(l) goes to
one, while it goes to zero for dg(v) = 0 (nearly all incident
links failed). Links are removed according to the description
above randomly for each run of the experiment.

Figure 5 depicts the routing success rate of GFR with £ = 15
and routing with a single embedding, exercised on a scale-
free graph with 500 nodes. GFR is able to attain a success
rate over 97% when 30% of the removable links are removed,
given a connected network. This is a huge improvement over
routing with a single embedding where the success ratio quickly
declines as the number of failures increases (success ratio less
than 50% at a 30% failure rate). This shows that GFR is
able to achieve high fault-tolerance without using any form of
protection or restoration procedure, which is frequently used
(4], [5], [6].

This inherent fault-tolerance can be explained by the avail-
ability of more embeddings. Because of this, more alternate
pathways between source and destination exist. Therefore it is
less likely that a routing void will occur, a situation in which
no new e-decreasing neighbour can be found. From this can be
concluded that GFR is fault-tolerant by its very nature (without
needing path restoration/protection), which is essential in a
large-scale network where link or node failures are common.

Figure 6 shows how increasing the dimension k affects
GFR’s fault-tolerance at a link failure rate of 30%. In this
experiment, for each k value, 15 different runs were executed
in which 10° random source-destination pairs were generated
between which traffic was simulated. At low k-values, the
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Figure 6. Success rate at a link failure rate of 30% for a varying dimension k
on a scale-free graph with 500 nodes. The embedding was generated according
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and minus the standard deviation o.

100%

99% NS
el ™
© 98% N
) - N
1) ~.
8 ™ \'\
S 97% S
2 N
96% RM
——————— BFRM
------- BFM
95% !

5% 10% 15%

link failure rate

20% 25% 30%

Figure 7. Effect of the different graph embedding procedures on the fault-
tolerance of GFR (k = 15) on a scale-free graph with 500 nodes.

success ratio of GFR is low, which is consistent with Figure 5.
As k increases, so does the success ratio, until it converges
towards 100% as k — +oo. This is consistent with more
embeddings allowing for more alternative paths by which
packets are naturally re-routed to their destination.

The effect of the different graph embedding procedures on
the success ratio is shown in Figure 7. It can be noticed that
redundant mode (RM) is more robust to failures than breadth-
first mode (BFM) while breadth-first redundant mode (BFRM)
lies somewhere in between. This indicates the correlation of
tree redundancy (see Definition 4) with fault-tolerance. The 7-
ratios of the different embedding modes can be seen in Figure 4
for varying values of k. This result is important as the gain in
fault-tolerance does not require any alteration of the routing
procedure, it is entirely dependant on the initial embedding
procedure.

B. Stretch

The fault-tolerant behavior of GFR should not lead to
excessively long routing paths. Therefore, in this section GFR
is analyzed regarding its average stretch p. We define the stretch
of a generated path between a source node s and a destination
node d as the path length, in number of hops, divided by the

length of the shortest path between s and d.
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Figure 8. GFR with BFRM embedding generation: average stretch p in
function of the dimension k of the embedding space T* for differently sized
scale-free graphs.

In Figure 8 the effect of changing the number of embeddings
k (or the dimension of the space T*) on the average stretch p
is depicted. For each k value, 15 different runs were executed
in which 105 random source-destination pairs were generated
between which traffic was simulated. The experiment shows
asymptotic behaviour p — 1 as k — -+oo. This means that as
k increases, GFR starts to approximate shortest path routing. A
logical explanation is that the availability of more embeddings
allows for more routing freedom. As a result, there is an
increased chance that a combination of embeddings will lead
to a short path between two nodes. Therefore attaining a lower
stretch by increasing k goes hand in hand with higher fault-
tolerance.

Based on these experiments we recommend using GFR
with BFRM embedding generation due to its simplicity and its
relatively low tree redundancy. The dimension of the embedding
k should be chosen high enough to achieve a low stretch and
high fault-tolerance. However, how this parameter & can be
estimated for unknown graphs remains future work.

VIII. CONCLUSION

In this paper a theoretical framework was built which serves
as the foundation of a geometric routing scheme called Greedy
Forest Routing (GFR). GFR performs greedy routing based on
a multi-dimensional embedding that has been constructed with
minimal tree redundancy. It has been empirically shown to
combine a low path stretch with robust fault-tolerance behavior,
especially when compared to a single-dimensional embedding.
GFR enables natural traffic redirection without using any form
of path protection or restoration mechanism. It is capable of
guaranteeing success ratios as high as 97% at link failure rates
of 30% in scale-free networks.

Furthermore, due to the algorithm’s local routing decision
making procedure no routing tables are needed, making it highly
scalable regarding memory requirements and robust towards
network growth. Future work will encompass the addition of
load balancing characteristics to the routing decision engine and



estimating an appropriate embedding dimension for unknown
networks.
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