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ABSTRACT (120 words) 

DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has 

recently gained considerable attention for its use as biomarker in different clinical settings, including 

disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-

wide DNA methylation profiling in primary disease tissue has provided a manifold resource for bi-

omarker development, only a tiny fraction of DNA methylation-based assays have reached clinical 

testing. Here, we provide a critical overview of different analytical methods that are suitable for bi-

omarker validation, including general study design considerations, which might help to streamline 

epigenetic marker development. Furthermore, we highlight some of the recent marker validation 

studies and established markers that are currently commercially available for assisting in clinical 

management of different cancers.  
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BODY of ARTICLE  

 

 

DNA methylation testing has become a major approach in biomarker development. Several different 

concepts of DNA methylation testing for candidate marker confirmation and validation have been 

developed over the recent years. With respect to diagnostics of human disease, most efforts focus on 

the testing of 5-methylcytosine (5mC) within CpG dinucleotides. Although non-CpG methylation has 

been confirmed in stem cells in the last 5 years [1] and elucidation of biological function of modified 

5mC as well as 5-hydroxymethylcytosine (5hmC) has started, the major work in the methylation bi-

omarker field is concentrating on 5mC in the CpG context. Today genome-wide technologies are 

mostly used for discovery of methylation biomarkers. For confirmation of findings from the initial 

screenings, as well as for validation of markers in large patient cohorts, a number of different meth-

ylation testing methods are available that rely on one of the following 3 basic principles:  (1) bisulfite 

deamination – where unmethylated cytosine is converted to uracil and methylated cytosine is re-

sistant to conversion, ( 2) methylation sensitive restriction enzymes which cut DNA depending on the 

presence or absence of 5mC  and (3) affinity based methods, using proteins for fractionation of 

methylated versus unmethylated DNA. Based on these 3 principles, we focus in this review on meth-

ods enabling  (1) quantitative analyses, which is a prerequisite for successful biomarker analyses, (2) 

parallel testing of multiple markers, as well as on (3) methods which have the capability for high 

throughput analyses. Along these lines we have compiled an overview of methods fulfilling to our 

best knowledge these prerequisites for optimal confirmation and validation of methylation marker 

panels and ideally enable the parallel testing of even hundreds of candidate markers.  
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setup- cost  (96 targets@ 
80% success rate)* incl 

design 

analyses cost / 96 
targets x 384 samples 
-  "selfmade - assay"    

Method 

Commercial assays 
(research panels) 
 available 

Bisulfite-
Treatment 

Input ng 
gDNA 
per assay 

single CpG 
resolution Multiplexing 

high 
throughput equipment 

dynamic 
range  
(orders) 

quantifi-
cation 

person 
hours 
(minimal) 

**material 
(incl Oli-
gos) 

person 
hours 
** 

material 
(excl. 
oligos - 
using a 384 
well qPCR 
machine 

internal  
standard 

Bisulfite-PCR MethyLight (Qiagen) yes 10-100ng - moderate + qPCR 3(4?) 

calibra-
tion 

curve 160 22000 272 20000 

SssI-DNA 
& UM 
DNA 

MSRE-PCR SABiosciences/Qiagen no 10-100ng - 

high* (48x 
preamplifica-
tion) +++ qPCR 3 

calibra-
tion 

curve 160 3200 40 -272 
(6000 ***)-

20000 
undigest-
ed DNA 

Pyro-
sequencing 

PyroMark CpG Assays 
(Qiagen) yes 10-100ng ++ no ++ 

Pyromark 
Q96ID/MD, 
Q24 2 direct (%) 260 5000 

384-
768 70000 

SssI-DNA 
& UM 
DNA 

Deep  
Sequencing MethylSeq (Raindance) yes   

+++ (and 
single 
amplicon) 

high** (pooled 
PCR products) + NGS 4 

direct 
(read 

numbers) 
depends on 
NGS system 

depends on 
NGS system 

 de-
pends 

on NGS 
sys-
tem  

depends 
on NGS 
system  

SssI-DNA 
& UM 
DNA 

MALDI-based 
DNA methyla-
tion detection Epityper (Sequenom) yes 10ng + no +++ MALDI-TOF 3 direct (%) 120 89150 48 21120 - 

MBD various ** no 1-100ng - moderate ++ various* 3 

Ratio 
(ME/total

) 140  4500  272  15000  

SssI-DNA 
& UM 
DNA* 

                              

  ** MethylMagnet - 
RiboMed; MethylQuest - 
Millipore; MethylCap - 
Diagenode; Methyl-
Miner - Life Technolo-
gies; MethylCollector - 
Active Motif 

      *- multiplexed 
preamplifica-
tion and single 
qPCR readout 
(not guilty for 
SABiosciences 
kit);                       
**- single PCRs - 
pooled se-
quencing upon 
barcoding 

  *-LC-MS with 
Abscription, 
qPCR 

    * according 
MIQE 

** oligos 
calc @ 
0.2€/base; 
probe calc 
@200€; 
0.5€/Rxn 

** 3x 
384-
well 
PCR/da
y 
(8.5h) 

***HTqPCR 
-Biomark 

*-parallel 
samples 

Table 1: Overview and characteristics of methods for DNA methylation biomarkers testing and validation  
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Methods and strategies for DNA methylation testing & validation. 

Bisulfite based quantitative PCR testing 

Bisulfite treatment of genomic DNA provides a suitable option to distinguish methylated from un-

methylated cytosine residues by different downstream applications [2]. Several quantitative assays 

have been developed in order to interrogate the methylation status of selected loci. Generally, two 

different assay setups can be distinguished; either PCR reactions are performed to amplify bisulfite 

converted DNA irrespective of methylation status (MIP) (no CpGs in primer sequence) or PCR reac-

tions are methylation specific (MSP) (CpGs within primer sequence).  

The first established quantitative MSP assay was MethyLight, which employs MSP combined with 

methylation-sensitive probing (TaqMan®) [3]. This highly sensitive assay is capable of detecting 

methylated DNA in a 10000-fold access of unmethylated DNA, which makes it suitable for the analy-

sis of complex heterogeneous material such as clinical samples. Several quality control reactions con-

trolling for sample integrity and quantity, sample recovery after bisulfite conversion as well as bisul-

fite conversion efficiency are advisable for assay setup [4]. In order to specifically amplify methylated 

DNA primers and probe should contain 1-5 CpGs, which can be designed using MethMarker, a plat-

form for the design and optimization of gene-specific DNA methylation assays [5]. Four PCR reactions 

using two different samples are needed to determine the methylation level of a selected region; the 

bisulfite converted DNA of the sample of interest and bisulfite converted 100% methylated DNA as a 

reference (in vitro MSssI treated) are amplified using methylation-specific primers and probe for the 

gene of interest plus a methylation independent, bisulfite conversion specific set of primers and 

probe for a reference locus such as the repetitive ALU-C4 locus to control for DNA input. The methyl-

ation level is then calculated using the PMR (percentage of methylated ratio) value, which gives a 

relative measure of DNA methylation, based on a standard curve of a dilution of MSssI treated com-

pletely methylated DNA [4]. MethyLight assays can be multiplexed using different fluorescent labeled 

probes allowing for high-throughput applications [6]. A higher grade of sensitivity and accurate quan-

titation can be obtained by employing digital MethyLight, which allows for the detection of single 

molecule DNA methylation [7]. 

This methodology is found in the literature frequently as quantitative MSP (qMSP) and seems to be a 

method of preference when testing targets in clinical specimens such as bronchial washings [8] and 

serum  [9] and biopsy material [10]. 

A more economic variation of MethyLight represents sensitive melting analysis after real time meth-

ylation specific PCR (SMART-MSP), which relies on probe-free MSP using DNA intercalating fluores-

cent dyes combined with high resolution melting (HRM) analysis, which allows for the identification 

of false positives [11]. Evaluation of melting curves subsequent to PCR amplification provides infor-

mation relating to the specificity of the reaction. Incomplete bisulfite conversion and false priming 

yields shifted melting curves compared to fully methylated samples and provides an additional quali-

ty control. Heterogeneous DNA methylation can also be detected based on altered melting curves 

providing an advantage compared to conventional MethyLight, which only detects highly methylated 

sequences. As for MethyLight, the methylation level of a gene of interest is determined based on a 

methylation-independent internal control and a calibrator sample of 100% methylated DNA. Dilution 

of the methylated standard down to 0.1% could be reproducibly detected, thus resulting in sensitivity 

comparable to MethyLight.  

Two further assays with high analytical sensitivity include HeavyMethyl and MS-HRM, which are both 

based on methylation independent priming of bisulfite converted DNA [12,13]. HeavyMethyl uses 
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blocking oligos, binding to unmethylated DNA, which overlaps with primer binding sequences, thus 

allowing for amplification of methylated sequences only. Quantification of methylated DNA is ob-

tained by fluorescent probing and by using PMR calculations analog to the MethyLight approach. 

HeavyMethyl assays were reported to reach a relative sensitivity of 1:8000, detecting a few copies of 

methylated DNA in 400ng of non-methylated background DNA [12]. The HeavyMethyl assay is used 

for the commercially available kits “Epi proColon” and “Epi proLung” by Epigenomics AG to detect 

DNA methylation in colon and lung cancer, respectively [14,15].  

Methylation specific high resolution melting (MS-HRM) analysis, which also uses MIP to amplify bisul-

fite converted DNA, quantifies methylation levels based on melting profiles of amplicons of bisulfite 

converted DNA. Highly methylated sequences contain a larger number of CpGs in their sequence and 

therefore have higher melting temperatures compared to less methylated samples, which contain 

more TpGs and thus shifted melting profiles. Methylation levels are estimated based on melting 

curves of PCR products of standards with known methylation status and methylation levels as low as 

0.1% can be detected [13]. Drawbacks of this method might be difficulties in interpreting melting 

curves of heterogeneous methylated samples.  

In sum, bisulfite-based qPCR is highly sensitive and suitable for high throughput analyses and some 

assays are already in use for clinical testing. 

 

Quantitative DNA Methylation analysis with methylation sensitive restriction enzymes 

(MSRE) 

One of the first technologies for the investigation of DNA methylation made use of restriction en-

zymes (REs) [16]. Today DNA methylation analysis typically involves the use of MSREs that cut only 

umethylated DNA but not methylated DNA (e.g. AciI, HpaII). The combination with quantitative PCR 

(qPCR) based detection enables a reliable and simple detection of DNA methylation targeting native 

DNA sequences. Consequently, only methylated DNA is specifically amplified during PCR [17]. In con-

trast to MSREs, a very limited number of REs is available that cut only methylated DNA, like GlaI, 

McrBC and SgeI [18,19].  

 

Complete digestion of the DNA is an essential step prior to amplification by PCR as even smallest 

amounts of uncleaved DNA are detectable and lead to false-positive results. For that reason an ap-

propriate assay design is mandatory. To ensure complete cleavage of the DNA, a minimal number of 

at least 2-3 cut sites is recommended within the target sequence. The combination of different 

MSREs is also recommended as it increases the number of possible restriction sites.  Such multi di-

gests further compensate for incomplete digestion, which might be caused by the use of just one 

MSRE. Additionally a combination of enrichment methods (e.g. by MBD-proteins) and MSRE based 

methylation detection may increase the sensitivity of qPCR results [20]. 

 

Many open source tools for primer design are available online (e.g. Primer3 [21]). However, the de-

sign for MSRE (q)PCR assays is more tricky, as there is no design tool available that considers the cut 

sites per se. Therefore, it is necessary to check for the number of cut sites present in a defined PCR 

amplicon, preferentially using a genome browser (e.g. UCSC genome browser [22]).  

To qualify assays and to exclude experimental bias in every analyzed data set, primers should be 

tested prior to use as suggested in MIQE guidelines by Bustin SA et al. A serial dilution covering ideal-

ly 3 log units per analyzed primer pair  is usually sufficient to create a 5 point standard curve for eve-

ry primer as suggested by the MIQE guidelines [23]. The PCR efficiency, slope, intercepting point with 
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y axis and the correlation coefficient may be given for every PCR-assay to allow an estimation of the 

influence of the assay performance on the qPCR data as already implemented into an updated delta 

Ct method by Pfaffl [24] resulting in a PCR-efficiency corrected delta Ct method. In terms of MSRE 

specific controls PCR values may be corrected for input DNA amounts by subtraction from methyla-

tion specific controls, which may be imprinted loci or even more straightforward genomic DNA frag-

ments without MSRE restriction sites [25,26]. Comparable to qMSP every sample may also be divided 

into a mock and a MSRE reaction followed by qPCR, which also allows an assessment of the portion 

of methylated DNA for a specific locus as shown by Pulverer et al. [27] 

 

Assays for methylation analysis often target sequences of high GC content, therefore optimization of 

the assay with different PCR enhancers like DMSO (reduction of secondary structure, facilitates am-

plification of GC rich templates) or TMAC (prevents unspecific priming) is often advisable to increase 

assay performance. It is also highly recommended to control the DNA for complete cleavage after the 

digestion step by assays targeting genes with known methylation status [26].  

Depending on the number of investigated targets, the digestion reaction should start with 100 ng of 

genomic DNA, an amount which can easily be upscaled. About 5-10 ng of digested DNA should be 

applied to the final qPCR reaction. It has been demonstrated that 1% of methylated DNA can be dis-

tinguished from a complete lack of methylation with a limit of detection of 19.58 pg methylated DNA 

[27]. Serial dilutions of methylated DNA in unmethylated DNA yielded recovery rates between 99%-

155%. The higher the content of methylated DNA the more precisely was the recovery rate. Thus, 

MSRE coupled qPCR assays are suitable for the determination of methylated DNA in heterogeneous 

samples containing both methylated and unmethylated fractions [25,27,28]. 

Overall MSRE qPCR assays are an alternative to the DNA degrading bisulfite based methods and allow 

accurate methylation testing.  

 

Pyrosequencing-based methylation analysis (PMA) 

Pyrosequencing is a highly versatile methodology offering significant advantages in DNA methylation 

analysis [29]. The main advantages of PMA are (a) the ability to quantitatively interrogate multiple 

CpGs, (b) include multiple bisulfite controls, (c) being a fast and medium cost method. Limitations are 

largely due to the low temperature (28 °C) of the reaction, which enables the formation of many 

secondary structures; this is why careful assay design and template optimisation are very important 

for successful assays. 

A brief description of the method is given in Figure 1. Every CpG position is interrogated by a sequen-

tial injection of C and T (or G and A if reverse sequencing primer is used). The methylation percent-

age is determined by the relative incorporation of the two nucleotides at the site. A representative 

pyrogram is shown in Figure 2. 
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Figure 1: Schematic description of PMA work flow. The CpG bearing sequences of interest are ampli-

fied by PCR, after bisulfite conversion, utilising flanking CpG-free regions. One of the PCR primers is 

biotinylated at its 5’ end allowing for a fast (~10 min) post-PCR clean-up involving streptavidin se-

pharose beads. Following clean up, the single (biotinylated) strand immobilised on the beads is add-

ed in the reaction plate containing the annealing buffer and sequencing primer and the plate insert-

ed in the equipment for the reaction to commence. The remaining reagents are dispensed in a pre-

determined manner by the equipment through a cartridge. 

 

Assay design demands unique software (Pyromark Assay Design 2.0, Qiagen). It generally requires 

some experience to achieve optimal designs, as the automated primer selection function rarely re-

sults in good designs for DNA methylation, while it works well for the SNP assays, for which it was 

originally designed. In addition, the Tm calculation in this software is not optimal (to the author’s 

experience) thus additional software (e.g. Primer Express) should be used for this purpose. Here are 

some brief guidelines for the design: 

1. The read length is normally 60-70 nt, although >100 nt is achievable in optimal designs. Thus the 

amplicon length should be kept fairly short; definitely below 300 bp and optimally up to 150 bp. 

2. The primers normally cannot include CpGs and should be avoided if possible. Successful designs 

may utilise primers with a mismatched nucleotide (G/A) or a mixed nucleotide (C/T, also known 

as “wobble”) at such a C position within the three to four 5’ positions of a 22mer for example. 

However, appropriate optimisation and validation have to be undertaken to eliminate or mini-

mise the potential bias for methylated or unmethylated target copies. 

3. Optimally, PCR primer length should be between 18 and 24, with Tm of no less than 48°C (calcu-

lation for 200 nM oligo, 50 mM K+). Tm should also not exceed 65°C, but this is extremely un-



8 
 

likely to be met when targeting bisulfite converted DNA. Typically for PCR, primers should not 

differ more than 2°C in Tm.  

4. Although homopolymers should be generally avoided within PCR primers, this rule will be fre-

quently compromised in bisulfite DNA related designs. Still, if it cannot be avoided, homopoly-

mers should be limited at the 5’ of the primer. 

Once somebody gets experience, the success rate of designed assays can be over 95%. 

Figure 2: Example of pyrogram from PMA run. Interrogated CpGs are indicated by the grey lanes. 

The percentages in the boxes above demonstrate the degree of methylation detected. The color of 

the box reflects the quality control result (blue= pass, yellow=check, red=fail). Percent methylation 

(%) is calculated by the software as [C/(C+T)] for each CpG dinucleotide. The C dispensations at posi-

tions 33 and 47 (yellow lanes, corresponding to C not within a CpG dinucleotide) are for bisulfite con-

version quality control purposes. 

 

Successful pyrosequencing is heavily dependent on the quality and quantity of the PCR product. Too 

little product will result in high noise-to-signal ratio, while too much will end up in peak tailing and 

possible loss of its quantitative efficiency. Typically, PCR optimisation for pyrosequencing involves 

testing dilutions of the biotinylated primer into non-biotinylated, ranging from 1:1 to 1:2. The use of 

lower amounts of biotinylated primer reduces the competition of the unused excess primer to the 

PCR product and therefore enhances the signal. The thermal profile has of course to be optimized, 

using the highest possible temperature that does not compromise yield. The PCR product has to be 

checked by agarose electrophoresis and should be free of artifacts, primer dimers etc. No other op-

timisation, beyond PCR amplicon quality/quantity, is required for the pyrosequencing reaction itself. 

The performance and linearity of the assay has to be shown ahead of screening by the inclusion of a 

standard curve of artificially methylated (normally by SssI methyltransferase) into unmethylated 

DNA. It has to be noted that DNA methylation is tissue specific and therefore normal tissue DNA can-

not de facto be assumed to be unmethylated for every gene/sequence. Synthetic (whole genome 

amplified) DNA is preferable for this negative control (unmethylated) purpose.  
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Data analysis is one of the major advantages of pyrosequencing: it is automated, taking no more than 

1 minute. No data pre-processing is required. 

As mentioned above, assuming assay design is sound, pyrosequencing performance depends solely 

on the quality and quantity of the PCR product. DNA inputs between 10 ng and 100 ng in the PCR 

reaction are expected to provide similar results in the pyrosequencing reaction. The nature of the 

method does not allow for multiplexing, however one can potentially run 96 different assays per 

plate; of course this requires 96 different PCR products. As a typical post PCR method utilizing non-

allele-specific primers, pyrosequencing can detect reliably DNA methylation down to 5%. Lower lev-

els will be associated with very high variability. 

The above mentioned characteristics make PMA ideal for screening sequences in primary disease 

tissue, either in single target approaches or, frequently, in technical and biological validation of DNA 

methylation microarray results. To date, it is considered as the gold standard technique for this pur-

pose and has contributed to a very large number of studies [8,30-32]. 

 

Targeted deep-amplicon bisulfite sequencing (TDBS) 

Bisulfite sequencing applies different sequencing methods on bisulfite-treated genomic DNA in order 

to determine the methylation status of CpG dinucleotides. Initial sequencing methods used sub-

cloning to combine positional information with allelic information. Hereby typically 10-100 clones or 

alleles were sequenced. With the availability of Next Generation Sequencing technology, which pro-

vides a clonal read out, deep sequencing upon bisulfite conversion has become a very effective ap-

proach for analyzing methylation patterns. For analyses of clinical samples heterogeneity of sample 

due to biology as well as due to preprocessing (e.g. formalin fixation) has forced investigators to in-

crease the sequencing depth which would have been almost impossible using the classical cloning 

approach but is easily achieved using today’s massive parallel sequencing options [33]. The massively 

parallel sequencing can easily and directly sequence >100 bisulfite PCR products in a single sequenc-

ing-run without sub-cloning. This technology shows also high robustness, and superiority with re-

spect to multiplexing of e.g. 25 gene-related CpG rich regions from more than 40 individual samples 

in a single sequencing run [34]. Today’s limitation of TDBS is rather the capacity for setting up of PCR 

assays for multiple candidate loci, whereas analyzing different patient samples is easily achieved 

when a pool of amplicons from different individuals is ligated with barcoded sequencing adapters 

during TDBS sample preparation.  

 

For design of assays recommendations already given for bisulfite specific PCR amplification in previ-

ous sections should be considered. As for pyrosequencing the primer-sequences have to be designed 

spanning the region of interest and avoid CpGs within the primers. Due to lower complexity of bisul-

fite treated DNA, it is more difficult to find suitable primers. However for specific target amplification 

software like MethPrimer [35] design program, which is based on the popular Primer3 [21] program, 

supports both MSP and bisulfite sequencing primer (BSP) design. Another example of primer design 

software for bisulfite converted DNA is BiSearch [36]. The algorithm is not based on other primer 

design software but starts from an own implementation of the nearest-neighbor method to calculate 

the melting temperature of the DNA strands. An important feature of BiSearch is the ‘specificity 

check’ i.e., the algorithm uses a simple search method to find other targets of the primers in the bi-
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sulfite treated reference genome. MSPprimer [37] generates possible primers based on a sliding win-

dow. The specificity check of the primers is based on the specificity-determining subsequence (SDSS) 

theory [38]. The SDSS is the smallest 3’ sub- sequence of a primer for which the fraction of the tem-

plate associated with that subsequence exceeds a given threshold 

[39]. For precise quantification of methylation ratios, deep amplicon sequencing requires a methyla-

tion independent amplification of the targeted regions. In practice, methylation independent assays 

are often hard to achieve due to PCR bias, which favors the amplification of unmethylated sequenc-

es. Optimization with positive (methylated DNA) and negative (unmethylated DNA) control samples 

is therefore highly recommended. These controls are available as commercial kits or can be generat-

ed from a DNA source [40].  

Sequenced bisulfite-treated DNA is mostly devoid of cytosines, which means they will not map with-

out mis-matches to a standard reference genome. Most algorithms [41] unmethylate in silico the 

remaining cytosines before mapping to the unmethylated reference amplicon, and reconvert the 

methylated sites to cytosines after mapping. 

Comparable to a normal MSP, a limited amount of input bisulfite DNA (10-100ng) is required for 

deep amplicon sequencing. Multiple assays per sample can be done in multiplex, allowing for testing 

of multiple markers in multiple samples. 

 

Quantitative DNA methylation analysis with MALDI-TOF mass spectrometry 

Region-specific quantitative DNA methylation analysis can be performed using base-specific cleavage 

coupled to Matrix Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) mass spectrome-

try [42-44]. This methodology (EpiTYPER analysis) enables high-throughput assessment of DNA 

methylation within target regions, enabling the quantitative assessment of methylation levels for the 

majority of CpG dinucleotides across a region of interest [45-47]. 

Proper assay design is a prerequisite for robust performance and consistent interpretation of DNA 

methylation levels. Two distinct parameters govern assay design: the source, quality, and quantity of 

the DNA and factors linked to the assay itself. The quantity of amplifiable DNA present during the 

PCR reaction directly contributes to the quantitative accuracy of an assay [48]. The process of treat-

ing DNA with sodium bisulfite results in the degradation of DNA, reducing the amount of effective 

starting material proportional to the length of the downstream amplicon/assay [49]. When combined 

with long amplicons or coupled to chemically, biologically, or otherwise fragmented input material, 

the impact of this treatment can ultimately result in the dramatic reduction of the number of ampli-

fiable DNA molecules. For full length genomic DNA, current bisulfite treatment methods should re-

sult in a sufficient number of amplifiable copies even at amplicon lengths reaching 500-600 bp; how-

ever, for fragmented DNA including circulating cf (cell free) DNA or FFPE (formalin fixed paraffin em-

bedded) material, unpublished data suggest that amplicon sizes should be reduced to 100-200bp. 

EpiTYPER assay design is augmented by the use of the EpiDesigner assay design tool 

(http://epidesigner.com). This tool facilitates the process including assay selection, oligonucleotide 

ordering and downstream assay processing. Primers are designed to hybridize to regions devoid of 

CpG dinucleotides but containing cytosine residues. These parameters enhance amplification of bi-

sulfite converted DNA strands while mitigating methylation-dependent amplification, allowing quan-

tification of approximately 82% of CpG dinucleotides located in CpG islands using a single cleavage 
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reaction and yielding assay success rates of >90% [42].

 

Figure 3: Schematic describing DNA methylation analysis using MassARRAY (EpiTYPER analysis). 
DNA is first treated with sodium bisulfite, resulting in a methylation-dependent sequence change. 
Target regions are subsequently amplified, products subjected to in vitro transcription and base-
specific cleavage, using RNase A and data acquired on the MassARRAY MALDI-TOF mass spectrome-
ter. Data are then processed and interpreted using EpiTYPER software. Colors represent DNA meth-
ylation levels (blue=unmethylated, red=methylated). Intermediate colors highlight that the DNA 
methylation measurement is quantitative, resulting in the ability to discern intermediate DNA meth-
ylation levels. 

 

Subsequent to bisulfite conversion, a region-specific PCR reaction is performed to enrich for the re-

gion of interest and incorporate a polymerase recognition sequence. Due to differences in assay spe-

cific parameters, optimization of PCR conditions should be performed to ensure robust yield. The 

amplified product is then subjected to a simultaneous in vitro transcription reaction and base specific 

cleavage using RNase A with the products measured using MALDI-TOF mass spectrometry (Figure 3). 

This downstream process contributes a minority of the assay variance [48], enabling consistent 

downstream reaction conditions amenable to automation. 

 

As previously described, the quality of the methylation assay is dependent upon both the assay and 

the input material. For assay specific controls, template consisting of in vitro unmethylated, methyl-

ated, and a mixture of the aforementioned sample types can be used to quantitatively assess the 

methylation values for the assay [42]. For sample qualification, EpiTYPER also provides a method 

enabling the rapid assessment of the quality of the input material [48]. Ensuring the quality of both 

the assay and input material enhances the likelihood of robust, reproducible assay performance. 
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The interpretation of the data from the MALDI-TOF mass spectrometer is enriched through the use 

of the EpiTYPER software. This software computes the methylation ratio for each interrogated CpG 

unit and allows for data export. Finally, an additional layer of data processing can be performed 

through the use of the MassArray bioconductor package  [50] or other analytical tools where needed. 

Each reaction should start with 10ng or more of bisulfite converted DNA. Using this amount, it has 

been demonstrated that a methylation level of 5% can be distinguished from a complete lack of 

methylation. The standard deviation of relative DNA methylation levels between 10-90% is approxi-

mately 5%; the measurement variance increases outside of this analytical range [42]. The ability to 

multiplex assays within a single well is sacrificed for the quantitative determination of multiple CpG 

dinucleotides, a property shared by most direct quantitative methods. While direct multiplexing is 

limited, the parallel assessment of multiple markers from multiple samples can be rapidly assayed. 

Indeed, a high-throughput MALDI-TOF is capable of processing 6000 reactions per day [42]. For ex-

ample, the previously described assessment of 47 targeted regions across 96 individual samples 

could be performed in a single day [42]. Overall, EpiTYPER analysis provides a high throughput meth-

od for quantitative DNA methylation analysis, lending itself to biomarker validation and develop-

ment.  

 

MBD-affinity capture based quantification 

MBD (Methyl Binding Domain) fusion proteins bind specifically to double stranded DNA that is meth-

ylated at CpG sites on both strands. They demonstrate a bias for high CpG densities and preferential-

ly extract methylated CpG islands, which are of particular interest for clinical assays (Figure 4) [51-

54]. As DNA methylation is likely to be heterogeneous within an affected CpG island,   validation of 

an affinity-based assay should target the CpG island region that originally was identified in biomarker 

discovery [55]. The specificity of an affinity assay is affected by fragmentation of the DNA prior to 

fractionation, which unlinks the region of interest from neighboring CpG sites whose methylation 

status could bias the fractionation. Isolation of intact islands can usually be achieved with restriction 

endonucleases that recognize sites that contain only A and T. 
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Figure 4: Methylated DNA fractionation with immobilized MBD domain proteins. A sample contain-

ing a mixture of methylated and unmethylated fragments is incubated with an MBD-domain protein 

that is immobilized to magnetic beads. Methylated fragments bind to the bead via the MBD protein 

(step 1) and are released in an eluted fraction by denaturing the protein or by increasing the NaCl 

concentration (step 2). The supernatant of the binding reaction contains the unmethylated frag-

ments. 

MBD beads are expected to have different binding capacities for different fragments in a genomic 

DNA preparation because fragments with different CpG content will compete for binding with differ-

ent efficiencies, which becomes important at very high DNA inputs. A standard MBD-bead volume 

should be defined by titrating MBD-beads at the maximum DNA input using a sample that is methyl-

ated in the target region. The stringency of the binding reaction is an important variable, particularly 

if the target has few CpGs. Stringency is controlled by NaCl concentration in the binding and wash 

buffers.  

After MBD separation of the methylated and unmethylated target fragments, the extent of methyla-

tion of that target is determined by quantifying how much target is present in the eluted vs. bound 

fractions. PCR bias against methylated DNA can affect PCR efficiency, especially in the early cycles of 

amplification [56], so Tm-lowering additives should be included at concentrations that minimize the 

difference in PCR efficiency between unmethylated and artificially methylated samples [6]. Optimiza-

tions of denaturation conditions (temperature and duration) can be applied to first 3 cycles, when 

methylated strands comprise a significant fraction of the template pool, after which cycles can be 

performed under conditions that have been recommended for the amplification of unmethylated 

G+C rich DNA [57]. 

Recommendations on targeting and PCR optimization apply equally to all commercially available 

MBD-affinity kits. Kits differ in other ways based on the design of the fusion proteins. Those based on 

glutathione-S-transferase (GST) are dimeric (MethylMagnet, RiboMed; MethylQuest, Millipore; 

MethylCap, Diagenode), while those with hexa-his affinity tags are monomeric (e.g. MethylMiner, 

Life Technologies; MethylCollector, Active Motif). Stringency and binding capacity optimizations for 

one commercial kit are not necessarily transferable to another. 
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Assay controls confirm the effectiveness of the binding and elution steps. A genomic DNA that is un-

methylated for the target and an artificially methylated positive control can be processed in parallel 

with the test samples. An alternative control for the fractionation step is to assay for an imprinted 

gene in a normal sample, which should be 50% methylated. 

MBD affinity assays have a large dynamic range. Successful fractionation is possible with less than 0.1 

ng of genomic DNA, after eliminating nonspecific binding to the bead matrix [54]. Heavily damaged 

FFPE DNA samples with little amplifiable DNA can be successfully fractionated [58]. The upper limit is 

controlled by the bead input volume. The sensitivity of the assay is influenced by the downstream 

detection method. Quantitative PCR is satisfactory for undamaged DNAs but might require excessive 

numbers of cycles to analyze damaged DNAs. Amplification via CAP (Coupled Abscription-PCR) uses 

promoter-linked PCR primers followed by Abscription (Abortive Transcription) and is up to 1000 fold 

more sensitive than qPCR [58]. Adding signal amplification to target amplification makes clinically 

important FFPE samples more accessible. 

 

General sample considerations 

Tissue: native fresh frozen, FFPE, alternative fixatives 

Proper preservation of resected tissue is crucial for a broad range of biological studies. The tissue 

preservation method of choice for DNA methylation analysis is to deep-freeze the tissue. However, 

deep-freezing requires a lot of laborious equipment, particularly –80°C refrigerators with secured 

electrical power supply or liquid nitrogen storage. Consequently, the procedure of formalin fixation 

and paraffin embedding (FFPE), first described in 1893, evolved into the standard method for tissue 

fixation [59]. Formalin allows morphological preservation of tissue. However, formalin degrades DNA 

by fragmentation and causes DNA-protein cross links at the expense of molecule integrity [60]. Opti-

mized fixation protocols can help to overcome these problems, e.g. cold fixation at 4°C reduces 

fragmentation of the DNA [59,61], revealing the need for standardized protocols to diminish mole-

cule degradation.  

Many methods have been developed to analyze DNA methylation applicable to FFPE samples, includ-

ing protocols for pyrosequencing [62], microarray based genomewide methylation studies 

(http://www.illumina.com/products/infinium_ffpe_dna_restoration_solution.ilmn) and qPCR based 

methods [3]. Nevertheless, FFPE tissue remains a tricky source for isolation of nucleic acids for prop-

er quantitative methylation analysis.  

Another negative aspect has been addressed by Hamilton et al., who found altered methylation pat-

terns within the MGMT gene caused by the formalin fixation compared to fresh frozen tissue [63]. 

Therefore, there is an increasing demand for alternative fixation approaches. RCL2, an alcohol based 

fixation reagent, for example does not degrade the DNA and widely preserves tissue morphology 

[27,64]. Other commercial available fixatives are PAXgene, Allprotect (both from Qiagen, Germany) 

and RNAlater (Invitrogen, UK). All of those fixatives allow the isolation of high quality DNA compara-

ble to DNA derived from fresh frozen samples. However there is evidence that Allprotect and 

RNAlater impairs immunohistochemical analyses [65].  

http://www.illumina.com/products/infinium_ffpe_dna_restoration_solution.ilmn
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Bodyfluids  

The potential of DNA methylation markers for clinical diagnostics in body fluids has been shown al-

ready in many studies associated with various neoplastic diseases [66,67]. Body fluids can usually be 

obtained using non-invasive (e.g. saliva, sputum, urine) or minimal invasive (e.g. serum, plasma) 

methods and their extraction can also be implemented in routine diagnostic tests, representing sig-

nificant benefits for patients as well as clinicians. On the other hand analyzing DNA methylation 

markers in body fluids is technically challenging due to several factors. In many body fluids like plas-

ma, serum, cell-free saliva or urine (i) the total amount of DNA is relatively low, (ii) the amount of 

cell-free DNA (cf DNA) derived from affected cells is minimal in comparison to “normal” DNA present 

in the fluid and (iii) cf DNA is usually highly fragmented [68-72]. 

DNA isolation protocols for body fluids must therefore combine processing of high sample volumes 

and/or highly sufficient extraction of small-scaled and short-sized DNA fragments, making the choice 

of the right isolation method a crucial step for successful biomarker detection. A broad range of dif-

ferent kits for nucleic acid isolation from various body fluids is commercially available as well as many 

different published methods trying to fulfill these demands. Table 2 summarizes exemplarily DNA 

isolation results from serum and/or plasma of healthy individuals in several independent studies, 

revealing large variations in DNA output, based not only on usage of different isolation approaches 

but also distinct DNA quantification methods, which makes it difficult to define a “gold standard 

method” for DNA isolation of cf DNA out of body fluids. Furthermore also variables like sampling 

procedures and sample storage conditions can strongly affect amounts of cf DNA and DNA fragmen-

tation levels, underlining again the high demand of standard operating procedures especially for cf 

DNA analysis in clinical applications. Messaoudi et al. recently defined various parameters for optimal 

pre-analytical blood sample handling before cf DNA isolation which could be used as a first step in 

this direction (Table 4) [73]. 
Nevertheless highly sensitive DNA methylation detection methods able to identify low copy numbers 

of methylated DNA and working with limited amounts of available total DNA are essential to enable 

reliable detection of aberrantly methylated markers [74]. 

 

Apart from technical challenges another important factor has to be considered: While aberrant DNA 

methylation markers detected in urine or sputum are site directed, markers in serum, plasma or  

saliva can originate from anywhere in the body. Therefore methylation markers identified in these 

substrates must be specific for a single or only a small group of diseases to enable the clinician to 

identify the site of malignancy, especially regarding diagnostic approaches. 
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Table 2: Comparison of DNA isolation results in various studies out of serum and/or plasma derived from healthy individuals    

Reference Serum cfDNA con-
centration (ng/ml 

Serum) 

Plasma cfDNA con-
centration (ng/ml 

Serum) 

Isolation method  Quantification method 

Xue et al. 2009 [75] 1.67  - QIAamp DNA Blood Midi Kit (Qiagen) Real-time PCR (GAPDH gene) 

 4.37 (1.49-10.25)  - THP (Triton/Heat/Phenol protocol) Real-time PCR (GAPDH gene) 

Mori et al. 2005 [76] 263 (+/-51)  - QIAamp DNA Blood Mini Kit (Qiagen) PicoGreen quantification assay 

Gal et al. 2004 [77] 63 (5-456)  - QIAamp DNA Blood Mini Kit (Qiagen) Real-time PCR (ß-globin gene) 

Wu et al. 2002 [78] 57.1 (+/-30.6)   - QIAamp 96 DNA Blood Kit (Qiagen) PicoGreen DNA detection kit 

Wielscher et al. 2011 (se-
rum DNA yield varied with 
sample cohort) [20] 

(1)  11.9  (+/-10.9)*  
(2)  39.7 (+/-32.8)* 
(3)  12.2  (+/-9.7)* 

* DNA yields varied 
depending on at which 

institution samples were 
taken  

5.8 (+/-5.1 ) High pure template preparation kit (Roche) PicoGreen quantification assay 

Board et al. 2008 [79] 24.65 (5-64) 5.07 (2.5-7.5) QIAamp Viral Spin Kit (Qiagen) Real-time PCR (AAT gene) 

Gautschi et al. 2004 [80] 12.6 1.8 QIAamp DNA Blood Mini Kit (Qiagen) Real-time PCR (GAPDH gene) 

Herrera et al. 2005 [81]  - 10.6 (7.0-14.0) QIAamp DNA Blood Mini Kit (Qiagen) Real-time PCR, (ß-actin gene) 

Jung et al 2004 [82]  - 20 NucleoSpin Blood DNA Purification Kit (MN) PicoGreen quantification assay 

Deligezer al. 2003 [83]  - 44 NucleoSpin Blood DNA Purification Kit (MN) Spectrophotometry 

Stemmer et al 2003 [84]  -   3-22 KingFisher silicate magnetic beads Picogreen reagent 

Chang et al. 2002 [85]  - 7 QIAamp DNA Blood Mini Kit (Qiagen) PicoGreen™ DNA quantitation kit 
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Table 3: Guidelines for optimal pre-analytical blood sample handling before cf-DNA isolation 

 +   Use Plasma samples instead of serum to avoid contamination of blood-cell genomic DNA  

 +   Use EDTA or cell-free DNA collection tubes for blood sampling to prevent blood-cell lysis 

 +   Process blood samples within 4 hours after blood drawing  to retain initial DNA concentration 

       and integrity 

 +   Include a second high speed centrifugation step after first blood sample centrifugation to  

      remove any remaining cells 

 +   Aliquote plasma/serum samples to avoid freeze-thaw cycles, do not freeze/thaw samples  

      more than  2 times to preserve initial DNA integrity 

 +   Store plasma/serum samples at -80°C and perform DNA isolation within 9 months after  

      sampling to preserve initial DNA integrity 

 

Selecting features for validation studies 

For validation studies, it is of paramount importance to choose the markers wisely. This is particularly 

true, if they are selected from highly multivariate analysis techniques usually employed in DNA 

methylation screening experiments. Popular choices for genome-wide discovery are WGBS (whole 

genome bisulfite sequencing) [86] RRBS (reduced representation bisulfite sequencing) [87] and the 

Infinium BeadChip methylation platform marketed by Illumina (either 27k or 450k). These techniques 

allow simultaneous measurement of tens of thousands to a few million parameters. A typical screen-

ing experiment measures those parameters on 10-50 samples per group. Therefore, a proportion of 

features will appear differentially methylated purely by chance, leading to a large number of false 

positive discoveries. For demonstration purposes, we used the method by Pawitan et.al. [88] to es-

timate the false discovery rate (FDR) and the number of true positives expected to be put forward 

into validation depending on the size of the discovery set (Assumptions: 10.000 of the 30Mio CpG 

sites are differentially methylated, the techniques mentioned above measure 30Mio (WGBS), 10Mio 

(RRBS), 450.000 (450k) and 27.000 (27k) CpG sites). In this setting, if the discovery set consists of only 

10 samples per group, more than 80% of the selected features will be false positives (Figure 5). De-

pending on the discovery technology and the feature numbers it measures, this rate drops rapidly, as 

the sample size increases, but remains as high as 20% for 30 samples per group in WGBS analysis. 

There are several strategies to overcome this issue. The obvious one is to use an appropriately sized 

sample set for discovery. However, there are cases where this is not possible, either due to limited 

availability of samples or funding to perform these extremely costly experiments. Another strategy 

would be to reduce the number of analysed features, for example by focusing on genomic regions 

which are known to play a particularly strong role for the genotype of interest (e.g. CpG island meth-

ylation in cancer). The downside of this approach is that it limits the possibility for new discoveries. 

Alternatively, one could include the genomic location into feature selection: As the influence of DNA 

methylation is mediated through chromatin structure, it is more likely, that stretches of adjacent 

differential methylation have a higher influence on gene expression and phenotype than single CpG 

methylation events. While all of these considerations seem valid, a more simple approach may be 

employed: modern qPCR technologies also allow to increase the number of features to be selected 

for validation. Using microfluidic qPCR systems (Fluidigm Biomark, ABI OpenArray, Wafergen) one 

can validate several hundreds of target features instead of tens. The chance of picking the true posi-

tive features, which allow discrimination between clinical entities (healthy versus diseased), increas-

es accordingly. Minimal amounts of DNA are sufficient to validate those hundreds of candidate 
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markers on hundreds of samples. This is an essential strategy to use limited resources (usually sam-

ple numbers and amounts as well as funds) in a very effective and efficient way. 

 

Figure 5: Expected false discovery rates (FDR) of popular genome-wide DNA methylation screening 
technologies depending on sample sizes. 

 

The first step in designing a (validation) study of association between a biomarker and patient’s out-

come is to conduct a pilot study in which several measurements per patient are taken. Based on the-

se data, the heterogeneity of the marker within and between individuals can be estimated and used 

in the process of designing an appropriate study. 

Concerning the statistical approach for sample size and power calculations we refer to the specific 

literature (e.g. [89]). Although no general numbers on sample size can be given due to heterogeneity 

of markers and samples we however want to give some examples from our own studies such as e.g. 

lung cancer biomarkers deduced from native tissue (patent number: WO2010086388) obtaining al-

most perfect classification using 8 markers and a MSREqPCR analysis ( studying n=96 samples; bal-

anced case-control design). Candidate markers were then reconfirmed using pyrosequencing (n=174, 

8 markers). To obtain a power of 0.9, sample size calculations using the methylation percentage-

values from the markers and 174 samples (comprising DNA samples from tissue of 3 groups of 24 

normal lung, 60 adenocarcinomas, and 90 squamous-cell carcinomas) revealed a sample size of 18 

biologically distinct samples per group (assuming a Type 1 error of 0.05 and a hypothesized mean 2-

fold difference between classes).  
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We then setup a 37-plex MSREqPCR candidate assay and analysed cfDNA from 194 plasma samples 

(unpublished data, not shown). These data were also used for sample size calculations and a sample 

size of 41 biological samples per group was estimated to obtain a power of 0.9 (when a Type 1 error 

of 0.05 and a hypothesized mean 4 fold difference between classes was assumed; sample size dou-

bled to 82 different biological samples per group if a type 1 error of 0,001 was assumed). We con-

ducted test-wise the same 37-plex MSREqPCR assay on a different sample-set of 48 serum samples 

and calculated a sample size of 64 different biological samples per group from that data for obtaining 

a power of 0.9 if a type 1 error of 0,05 (0,001) and a 4 fold difference was assumed. Though we used 

the same methods and protocols for cfDNA isolation and methylation analyses, the sample source 

effected assay performance and calculated sample size (more than 50% increase in numbers when 

comparing the samples per group for the “plasma-cohort” (n=41) and “serum-cohort” (n=64) from 

our example).  

Using another data set to confirm methylation markers on DNA from native glioblastoma- and nor-

mal brain- tissue derived DNA [27], testing of 8 candidate gene regions by Sequenom’s Epityper as-

says made a sample size of 18 biologically distinct samples per group necessary to obtain a power of 

0.9 (assuming a Type 1 error of 0.05 and a hypothesized mean 2-fold difference between classes). 

This is very similar to the number found in comparison to the pyrosequencing based lung cancer 

study described above. Although sample-size is very dependent on assay’s performance and stand-

ardization, we still believe that the numbers from our examples should be useful for conception of 

pilot experiments. As can be assumed from comparing numbers from the examples of cfDNA methyl-

ation analyses from plasma and serum from different retrospective cohorts and study sites, pilot 

studies should be performed for distinct sample sources. Especially for cfDNA testing samples from 

different sources might not be useful for direct comparisons.  

 

Overview of current methylation marker validation studies and established markers 

Regarding the clinical implementation of DNA methylation biomarkers, several studies are currently 

testing the use of early detection biomarkers as well as of prognostic and predictive biomarkers in 

malignant diseases (for a more comprehensive review on DNA methylation based biomarkers and 

clinical implementation, see [55,90]. Noteworthy, kits using established markers for early detection 

of colon, lung and prostate cancer or kits containing DNA methylation markers to predict the recur-

rence of bladder cancer already exist on the market (Table 4). In colon cancer, promoter methylation 

of septin 9 (SEPT9) and vimentin (VIM) can be used for early detection of malignant tissue by analys-

ing blood (SEPT9) or stool (VIM) samples of patients [91-94]. Both markers show improved sensitivity 

and specificity when compared to the fecal occult blood test, which is normally used as a standard 

non-invasive screening test for colorectal cancer. In lung cancer, it has been shown that promoter 

methylation of CDKN2A is an early event in the progression of all histological subtypes and can be 

detected in body fluids from smoking as well as non-smoking lung cancer patients, but no diagnostic 

kit testing CDKN2A exists up to date [95,96]. Another biomarker already used in clinical settings for 

distinguishing malignant and benign lung diseases is methylation of SHOX2 [15,97]. SHOX2 methyla-

tion is measured in bronchial aspirates, and a sensitivity of 78% and a specificity of 96% have been 

reported [97]. In prostate cancer research, the latest and probably best-studied methylation marker 

recently implemented in the clinics is methylation of GSTP1, as it is seen in over 90% of prostate can-

cer patients, but not in normal prostate or benign prostatic hyperplasia [98]. The promoter methyla-

tion status of GSTP1 in urine or plasma can be evaluated as a follow-up in individuals at risk, for ex-
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ample after a positive PSA (prostate-specific antigen) test, which would significantly improve specific-

ity and reduce false positive results after PSA screening. In people with hematuria, the DNA methyla-

tion status of TWIST-1 and NID-2 is used together with other biomarkers to rule out bladder cancer, 

and Vimentin and NID-2 methylation form part of a panel of markers assessing the recurrence of 

bladder cancer [99-101]. DNA methylation markers have also been described as alternative or addi-

tional diagnostic tools in the analysis of Papanicolaou (PAP) smears for early cervical cancer detec-

tion. Here, the DNA methylation status of four genes (JAM3, EPB41L3, TERT and C13ORF18) has been 

associated with cervical cancer in high-risk human papillomavirus patients [102].  

Regarding prognostic biomarkers, PITX2 methylation in breast and prostate cancer has so far shown 

promising results as an independent biomarker for evaluating the therapy efficacy or the risk of re-

lapse of affected patients. For example, PITX2 methylation was associated with a poorer outcome of 

node-negative, estrogen-receptor positive breast cancer patients who did not receive adjuvant ther-

apy, and also with a higher risk of relapse of prostate cancer patients after prostatectomy [103-105]. 

Other potential prognostic DNA methylation markers such as CDKN2A, CDH13, RASSF1A and APC 

have been tested in non-small-cell lung carcinoma (NSCLC) and showed association with early recur-

rence in stage I NSCLC [106]. Additionally, the methylation signature of these genes was predictive 

for responses to epigenetic therapy, as patients with two or more methylated markers presented 

with stable disease or objective responses to a demethylating agent and a histone deacetylase inhibi-

tor, whereas patients without methylation in these genes showed no objective responses [107].  

Among the group of predictive DNA methylation biomarkers used to predict the response to chemo-

therapeutic drugs, many belong to the group of DNA repair genes. In line with the finding that ab-

sence of repair genes renders tumours more susceptible to alkylating agents, methylation of the 

MGMT gene, which encodes the DNA repair protein O6-methylguanine DNA methyltransferase, has 

been shown to be associated with a survival benefit of glioblastoma patients after treatment with 

the alkylating drug temozolomide [108,109]. Other potential predictive biomarkers are methylation 

of ESR1 and ARH1 in breast cancer patients, which can predict survival in tamoxifen-treated and non-

tamoxifen treated patients, the WRN and UGT1A1 genes in colorectal tumors, which were linked to 

increased sensitivity to the topoisomerase-1 inhibitor irinotecan, methylation of BRCA1, which can 

sensitise breast cancer cell lines to treatment with PARP inhibitors, and methylation of the mismatch 

repair gene MLH1, which has been reported to be associated with cisplatin resistance in ovarian can-

cer and 5-fluorouracil resistance in colorectal cancer cell lines [110-115]. 
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Biomarker Applica-
tion 

Disease Mate-
rial 

Sensitivi-
ty/Specificity* 

Commercial test 

SEPT9 [91] Early de-
tection 

Colorectal 
cancer 

Blood 70-80%/89-99% Epi proColonR 2.0 (Epigenomics), ColoVantageTM (Quest Diagnostics), 
Real Time mS9 (Abbott) 

VIM [93] Early de-
tection 

Colorectal 
cancer 

Stool 92%/87% Cologuard TM (Exact Sciences) 

SHOX2 [97] Early de-
tection 

Lung cancer Spu-
tum 

81%/95%  Epi proLungR BL 1.0 (Epigenomics) 

GSTP1 [98] Early de-
tection 

Prostate 
cancer 

Urine - Predictive Biosciences 

MGMT [109] Predictive Brain cancer Tumor - PredictMDxTM Brain Cancer (MDxHealth) 

TWIST2 + 
NID2 [99] 

Predictive Bladder can-
cer 

Urine 87.9%/99.9%  CertNDx™ Bladder Cancer Assay Hematuria Assessment (Predictive 
Biosciences) 

VIM + NID2 
[101] 

Recurrence Bladder can-
cer 

Urine 90.5%/95.5%  CertNDx™ Bladder Cancer Assay Recurrence Monitoring (Predictive 
Biosciences) 

Table 4: Commercially available tests based on DNA methylation biomarkers.
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CONCLUSION 

A variety of methods are nowadays available for efficient analyses of DNA sequences with changed 

methylation patterns. Usually (human/vertebrate diagnostic) methods focus on the detection of a 

gain in 5mC methylation, found in the CpG dinucleotide context. This makes it relatively simple to 

design primers and assays for bisulfite deamination based PCR amplification and DNA methylation 

testing. Alternatively MSRE and MBD-affinity capture based methods for selective fractionation, am-

plification and quantification of methylated sequence regions are in use. However, these sequences 

have a high GC content and thus a high melting temperature, which can cause some difficulties in 

assay set-up. Methods reviewed here, are all well suited for 1) either parallel analyses of multiples 

regions of interest, which might be of interest, when e.g. hundred or more methylation sites have to 

be confirmed upon genome-wide screening, and 2) for efficient high throughput analyses of many 

clinical samples, which is most often required for biomarker validation. Common to all methods is 

that they provide a quantitative readout of the methylation-value. qPCR based methods usually pro-

vide an overall methylation-measure of the amplified sequence, relative to a calibration curve. Py-

rosequencing, deep sequencing and MALDI based testing provide a quantitative single 5mC-site spe-

cific readout. Depending on the methylated sequence and sample-type of interest for validation, 

methods have to be carefully qualified usually with in vitro methylated and unmethylated DNA.  

An extremely critical issue in DNA methylation testing is the preprocessing of the analysed samples. 

Along these lines we underline in this article that freshly deep-frozen specimens, which have not 

undergone any fixation procedure, represent the best starting material for DNA methylation analysis. 

We further conclude that methylation testing of cell-free DNA in body fluids is quite challenging be-

cause of the limited amounts of cf DNA compared to cell-derived DNA and underline to preferentially 

use deep-frozen plasma instead of serum for methylation testing in blood samples. 

We further show in the present review sample size calculations for genome-wide methylation 

screening studies which, independent from which platform technology is used, reveal that sample 

numbers of approximately 30 per group still lead to false discovery rates of 20%. Concerning  sample-

sizes in validation studies we state from own experiences that they are highly dependent on assay’s 

performance and standardization and that especially for cf DNA testing different sources of samples 

should be avoided since they appear not to be useful for direct comparison.  

Last but not least methylation marker validation studies and established diagnostic DNA methylation 

markers for cancer have been summarized in this review. These might be the forefront of future vali-

dation studies for various diseases based on recent methylation screening initiatives.  

FUTURE PERSPECTIVE 

DNA methylation based biomarker development has increased exponentially over the last decade. 

Especially in but not solely limited to oncology, DNA methylation based biomarker discovery-studies 

have been very successful and will be best suited for diagnostic, predictive and prognostic testing. 

Due to the stability of the DNA as well as the methylation pattern, cfDNA methylation testing as well 

as a couple of tissue based assays have found their way into the clinics. Although validation of bi-

omarkers is challenging, an appropriate variety of different methods are available, which enable effi-

cient design and qualification of methylation assays for validation studies. We estimate that qPCR 

based assays will remain the working horse for these studies, for the upcoming few years. Although 

deep amplicon bisulfite sequencing provides quantitative methylation values and a single C resolu-

tion of methylation patterns, PCR amplification is a prerequisite for deep sequencing. For most ap-
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proaches methylation quantification using PCR is sufficient and more cost effective. We expect  that 

introduction of third-generation sequencing omitting PCR amplification, and enabling a direct – bisul-

fite-free read out of DNA methylation (and other types of modification), will unquestionably improve 

the field of DNA methylation analyses. It is also evident that within the next few years digital PCR 

testing of methylation analyses will make its way into clinical research and diagnostics. For confirma-

tion of multiple candidate markers using many samples, the high throughput assays will be of certain 

use.  

Within the next 10 years, we expect that DNA methylation-based markers will be validated in suita-

ble cohorts and make their way into clinical routine to facilitate patient screening, monitoring and 

stratification for therapy decision making. 

EXECUTIVE SUMMARY  

 

Methods and strategies for DNA methylation testing & validation 

 There are several platforms available and in use including qPCR-, sequencing -and 
MALDI-TOF based methods  

 All DNA methylation testing strategies include PCR amplification, the majority of 
methods rely on bisulfite converted DNA 

 Primer design, quality/integrity and amount of input DNA as well as optimization of 
PCR conditions are critical and important issues in DNA methylation testing & valida-
tion 

General sample considerations 

 Freshly and deeply frozen tissue - and body fluid samples are best to use for DNA 
methylation analysis  

 Cell-free DNA methylation analysis in body fluids is challenging due to the minimal 
amount of cf DNA compared to cell-derived DNA and the fact that cfDNA is usually 
highly fragmented 

 General recommendations for optimal serum/plasma preprocessing: use plasma in-
stead of serum when possible, use EDTA or cell-free collection tubes, store plas-
ma/serum at -80°C, avoid freeze-thaw cycles 

Selecting features for validation studies 

 Genome-wide DNA methylation screening typically requires sample sizes of 30 sam-
ples per group to still remain with 20% false discovery rates (FDR) 

 Sample size calculations for validation studies depend not only on assay performance 
- and standardization but are also on the source of samples indicating that different 
sources of sample material should be avoided for direct comparisons 
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Overview of current methylation marker validation studies and established markers 

 Several studies are currently testing the use and clinical implementation of DNA 
methylation biomarkers including early diagnosis as well as disease prognosis and 
prediction 

 DNA methylation marker kits for early detection of lung-, colon - and prostate cancer 
are already on the market 

 

Future perspective 

 DNA methylation biomarker discovery -and validation studies will further increase 
and expand to  diseases other than cancer  

 qPCR based assays will remain investigators’ first choice for validation studies 

 Third generation sequencing methods, enabling PCR- and bisulfite-free DNA methyla-
tion analysis, should revolutionize and improve the field 
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