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Abstract 

The state regulation deficit model posits that individuals with attention-deficit/hyperactivity 

disorder (ADHD) have difficulty applying mental effort effectively under suboptimal 

conditions such as very fast and very slow event rates (ERs). ADHD is also associated with 

diminished suppression of default mode network (DMN) activity and related performance 

deficits on tasks requiring effortful engagement. The current study builds on these two 

literatures to test the hypothesis that failure to modulate DMN activity in ADHD might be 

especially pronounced at ER extremes. Nineteen adults with ADHD and 20 individuals without 

any neuropsychiatric condition successfully completed a simple target detection task under 

three ER conditions (2, 4 and 8 sec inter-stimulus intervals) inside the scanner. Task related 

DMN deactivations were compared between two groups. There was a differential effect of ER 

on DMN activity for individuals with ADHD compared to controls. Individuals with ADHD 

displayed excessive DMN activity at the fast and slow, but not at the moderate ER. The results 

indicate that DMN attenuation in ADHD is disrupted in suboptimal energetic states where 

additional effort is required to optimize task engagement. DMN dysregulation may be an 

important element of the neurobiological underpinnings of state regulation deficits in ADHD.  

Keywords: ADHD, state regulation deficit, event rate, fMRI, default mode network. 
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    Introduction 

Efficient performance depends on the ability to maintain an optimal energetic state 

despite changing environmental demands (Sanders, 1983). The performance of individuals with 

attention-deficit/hyperactivity disorder (ADHD) is hyper-sensitive to experimentally induced 

changes in certain aspects of the task context (see Sonuga-Barke, Wiersema, van der Meere, & 

Roeyers, 2010 for a review). For instance, task performance in ADHD is disrupted at extreme 

event rates (ERs). A meta-analysis of ER effects on Go/No-Go tasks demonstrated that 

individuals with ADHD make more impulsive errors under fast ER conditions and respond 

slower under slow ER conditions (Metin, Roeyers, Wiersema, van der Meere, & Sonuga-Barke, 

2012). The state regulation deficit (SRD) model applies the framework of Sanders (Sanders, 

1983) to explain these effects in terms of deficient management of energetic resources to 

maintain optimal task engagement under non-optimal conditions (Sergeant, 2005). It has been 

hypothesized that individuals with ADHD have a problem in applying the required effort to 

actively modulate extreme ER-related changes in activation states through top down processes 

(Sergeant, 2005; van der Meere, Börger, & Wiersema, 2010). 

Despite a considerable amount of supporting behavioral and psychophysiological 

evidence relating to the context dependent nature of ADHD deficits, little is currently known 

about the functional neuroanatomy of SRDs in ADHD. One interesting candidate brain network 

in this regard is the default mode network (DMN) - one of a number of resting state networks 

(Broyd et al., 2009; Damoiseaux et al., 2006; Raichle & Snyder, 2007). DMN is a set of brain 

regions, the activity of which varies as a function of task demands: It is active during “rest” or 

during less demanding tasks while its activity is attenuated as task-related attentional demands 

increase (Raichle & Snyder, 2007; Schulman et al., 1997). Recent studies suggest that the 

DMN in fact consists of a number of functionally distinct core components: In particular an 

anterior midline component (superior frontal gyrus and ventromedial prefrontal cortex) has 
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been segregated from posterior midline (precuneus/posterior cingulate cortex) and lateralised 

components (inferior parietal lobules) (Franco, Pritchard, Calhoun, & Mayer, 2009; Laird, 

Eickhoff , Li, Robin, Glahn, & Fox, 2009). These distinct components have been implicated in 

different ways in cognitive processes (Laird et al., 2009). The DMN represents a plausible 

neurobiological mediator of SRDs in ADHD for a number of reasons. First, it is state 

dependent - showing deactivations during effort-demanding tasks (Raichle & Snyder, 2007; 

Schulman et al., 1997). Second, failure to suppress activity within this network sufficiently 

during tasks is associated with attentional lapses and performance deficits of the sort observed 

at ER extremes in ADHD (Sonuga-Barke & Castellanos, 2007; Fassbender et al., 2009). Third, 

DMN modulation is affected by motivational and energetic factors (Liddle et al., 2011), 

suggesting a role for top down effort regulation. Fourth, it is ER sensitive - with more 

attenuation during fast compared to slow ER conditions in typically developing adults 

(McKiernan, Kaufman, Kucera-Thompson, & Binder, 2003). Finally, individuals with ADHD 

have difficulty suppressing DMN activity when required to perform attention-demanding tasks 

(Fassbender et al., 2009; Liddle et al., 2011) and show aberrant connectivity between DMN and 

task-positive areas (see Posner, Park, & Wang, 2014 for a review), which has been argued to 

both reflect a failure of neuro-modulation during rest-to-task transitions and periodic attentional 

lapses (i.e., DMN interference hypothesis) (Sonuga-Barke & Castellanos, 2007). Crucially, 

these effects can be ameliorated using medication or rewards
 
(Liddle et al., 2011, Peterson et al., 

2009) – both of which improve effort engagement during task performance
 
(Volkow et al., 

2004). 

In the current paper we present the first data on ER-related modulation of the DMN 

during performance of an attention demanding task in adults with ADHD to examine the role of 

the DMN as a potential biological substrate of SRDs. We employed an oddball paradigm – a 

simple target detection paradigm in which individuals have to respond to rare targets and ignore 
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common standard stimuli - with trials presented at three different ERs to allow modeling 

quadratic trends (inter-stimulus intervals of 2 (fast), 4 (moderate) and 8 seconds (slow)). This 

task is particularly valuable as a way of isolating DMN components empirically because it 

contains both target stimuli that requires a response and standards which requires less effort.  

On the basis of prior evidence that individuals with ADHD are less able to suppress 

DMN activity when required, we predicted that they would in general exhibit reduced 

deactivation in DMN than controls when presented with attention demanding oddball targets 

compared to standards. Further, on the basis of the SRD model we predicted a failure by 

ADHD individuals to modulate DMN activity as a function of ER - with excess activity being 

seen predominantly at slow and fast ERs where more effort is needed to modulate under- and 

over-activation respectively. In statistical terms we predicted a quadratic interaction between 

ER and group.  

                                                                Method 

The study was approved by the local ethics committee. After complete description of 

the study, written informed consent was obtained from all participants. 

Participants 

Twenty adults with ADHD and 20 sex- and age-matched controls (age range 18-38 

years) without any known neuropsychiatric conditions took part in the study. One adult with 

ADHD was excluded because the responses were not recorded due to a computer error. All 

individuals were recruited from the community via advertising and word of mouth. Participants 

in the clinical group had a formal ADHD diagnosis provided by a trained physician, which was 

confirmed using a DSM-based structured interview [Diagnostic Interview for ADHD-DIVA
 

(Kooij & Francken, 2010)] administered by an experienced clinical psychologist. The Social 



Metin et al. 
   

7 
 

Responsiveness Scale was used to screen out cases with high numbers of autism spectrum 

disorders symptoms
 
(Constantino & Gruber, 2005). Controls were excluded if they met criteria 

on any of three ADHD standardized rating scales [ADHD Rating Scale (ARS; DuPaul, Power 

Anastopoulos, & Reid, 1998), Adult Self Report
 
(ASR; Achenbach & Rescorla, 2003), Wender 

Utah Rating Scale
  
(WURS; Ward, Wender, & Reimherr, 1993)]. Depression, anxiety and 

substance abuse were evaluated with the Adult Self Report Scale
 
(Achenbach & Rescorla, 

2003). The cutoff scores for these scales are as follows: ARS Adulthood: 4, ARS Childhood: 6, 

ASR: 70, WURS: 46. Individuals were excluded if they had an IQ below 85 based on the seven 

subtest short version of the Wechsler Adult Intelligence Scale-third edition
 
(Ryan & Ward, 

1999). There were no significant differences between groups in terms of age, gender 

composition or IQ (Table 1). Ten participants were using stimulants (nine participants were 

using methylphenidate and one was using dextroamphetamine sulfate) and three of the rest had 

a history of stimulant use.  The participants using stimulants were instructed to stop the intake 

at least 48 hours before scanning. In addition two participants were using antidepressants 

(selective serotonin reuptake inhibitors) and one of these participants was taking 

carbamazepine as a mood stabilizer. These medications were allowed to be continued. None of 

the controls were using any neuropsychiatric medication or had a neuropsychiatric medication 

history. 

Procedures and Task Design 

We employed a simple target detection task likely to produce a high degree of accuracy 

in both groups in order to optimize the number of trials that could be used for the 

characterization of DMN and analysis. The task consisted of a series of targets (i.e., Q) and 

standards (i.e., O) presented for 100 msec in the middle of a blank computer screen. 

Participants were instructed to press a response pad button using the index finger of the right 

hand following each target as quickly and accurately as possible. The proportion of targets was 
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30%. The inter-stimulus interval (during which time a fixation cross was presented) was varied 

across three randomized blocks (mean inter-stimulus intervals: 2 (fast), 4 (medium) and 8 sec 

(slow); see Figure 1 for task design).  The inter-stimulus interval values were selected based on 

data from a previous meta-analysis (Metin et al., 2012) that explored the event rate effects on 

performance of individuals with ADHD. 

The inter-stimulus interval was jittered and the intervals were sampled from a pseudo-

exponential distribution for efficient analysis of BOLD response. In the fast ER condition the 

inter-stimulus interval was jittered between 1 and 4 sec; in the medium ER condition, between 

3 and 6 sec; and in the slow ER condition, between 7 and 10 sec. The efficiency of accurately 

estimating the hemodynamic response for stimuli in rapid tasks (i.e., the fast condition) with a 

variable inter-stimulus interval has been confirmed previously
 
(Dale, 1999). The fast, moderate 

and slow ER conditions consisted of 300, 150 and 76 trials respectively. In addition we 

included a 15 sec rest period in the middle of each condition to sample the baseline activity 

adequately. Each block took approximately 11 minutes and block order was randomized for 

each participant individually. Each participant received 35 euro compensation for their 

participation.  

fMRI data acquisition and analysis 

Data were acquired using a 3T Siemens Magnetom Trio MRI system (Siemens Medical 

Systems, Erlangen, Germany) with a standard 32-channel head coil. First, anatomical T1-

weighted 3D MPRAGE images (TR = 2250 ms, TE = 4.18 ms, TI = 900 ms, acquisition 

matrix = 256 × 256, field of view = 256 mm, flip angle = 9°, voxel size = 1 × 1 × 1 mm) were 

acquired for co-registration and normalization. During the experimental task, T2-weighted echo 

planar images (EPIs) were acquired in 33 slices, in an interleaved scanning order (TR = 2000 

ms, TE = 30 ms, acquisition matrix = 64 × 64, field of view = 192 mm, flip angle = 80°, voxel 
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size = 3 × 3 × 3 mm, distance factor = 0 %). The first four EPI volumes were discarded to 

restrict the analysis to data acquired during steady magnetization. Images were pre-processed 

and further analyzed using the Statistical Parametric Mapping software (SPM8; University 

College, London). Anatomical images were spatially normalized using the SPM segmentation 

procedure for parameter estimation and re-sliced to a voxel size of 1 × 1 × 1 mm. All functional 

EPIs were slice-time corrected, and realigned to the first acquired EPI and normalized based on 

the T1 segmentation parameters, re-sliced to a final voxel size of 3 × 3 × 3 mm, and smoothed 

with an isotropic full-width half-maximum Gaussian kernel of 8 mm. EPIs were also submitted 

to the ART toolbox for detection of movement related outliers in BOLD signal 

(http://www.nitrc.org/projects/artifact_detect/). Outliers were defined as 1mm movement 

between two volumes or BOLD signal intensity change between two volumes exceeding three 

standard deviations of the global mean difference. No subject had more than 10% outliers and 

the ADHD and control groups did not differ in terms of number of outliers (p>0.1).  

For each trial, BOLD responses were modeled using delta functions at stimulus onset, 

which were then convolved with a standard hemodynamic response function. The resulting 

general linear model
 
(Friston et al., 1995) consisted of six task regressors (target/standard 

crossed with three ER conditions). In addition, each condition included one regressor for rest 

block, one for error trials (omission and commission) and six realignment-derived movement 

parameters. Finally, a constant was added for each condition. Time series were corrected for 

slow drifts by applying a high-pass filter with a 128 second threshold.  

Given the hypothesis-driven nature of the current study we adopted a region of interest 

(ROI) strategy to test our predictions. As the definition of DMN suggests that its activity should 

decrease as a function of cognitive demands (Raichle & Snyder, 2007), we defined DMN ROIs 

empirically by identifying regions where activity was significantly attenuated on oddball 

targets relative to standards using all trials and all participants. To establish this we employed a 

http://www.nitrc.org/projects/artifact_detect/
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repeated measures ANOVA as implemented in SPM with group as a between subject factor, 

ER and stimulus type (target and standard) as within subject factors. Clusters were retained in 

the mask if they were also consistent with DMN areas reported in previous studies (Franco et 

al., 2009, Laird et al., 2009). Three such clusters were identified at a false discovery rate-

corrected p level of 0.05 (cluster forming threshold p<0.001) and included in the mask (see 

Figure 2 and Table 2): Two in the anterior component consisting of ventromedial prefrontal 

cortex (VMPFC) and a region in left superior frontal gyrus (LSFG) extending into middle 

frontal gyrus and one posterior component (left inferior parietal lobule (LIPL)). Left Inferior 

frontal gyrus (LIFG) was also significantly attenuated on target trials. This region was not 

included in the DMN mask in the current study because it is not typically associated with DMN 

(see Laird et al., 2009 for a review). 

The beta values from the DMN mask for all regressors in the first level model were 

extracted using MARSBAR software
 
(Brett, Anton, Valabregue, & Poline, 2002). These are the 

regression coefficients from the multiple regression model and represent the BOLD activity 

over and above the aggregated baseline associated with a specific experimental condition. As 

our primary hypothesis concerned task-related deactivations in DMN, we used beta values for 

target stimuli as the dependent variable. In order to test our predictions a two-way ANOVA 

was run with group (ADHD, controls) as the between-subject variable and ER (slow, moderate, 

fast) as within-subject variables.  

 

Results 

 

Reaction times longer than 2000 msec and those within the first 100msec of the trial 

onset were removed from the analysis. As expected given the choice of task, omission and 

commission errors were already very low for both groups with near 100% accuracy for all 

conditions and therefore they were not further analyzed. Reaction times and reaction time 
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variability increased linearly as ER slowed. Individuals with ADHD responded slower in 

general and had greater variability than controls. There was no significant interaction between 

group and ER for reaction time or variability (see Table 3 for descriptive statistics and ANOVA 

results). 

fMRI results 

Activity during target trials was greater overall for ADHD than control participants in 

the selected ROIs within the DMN (F(1,37)=4.49, p=0.04). The main effect of ER was not 

significant (F(1.85,68.58)=0.6, p=0.54). The two-way interaction of group by ER 

(F(1.85,68.58)=7.38, p=0.002) was significant, showing that groups were affected by ER 

manipulation differently (see Figure 3). This interaction followed a quadratic function 

(F(1,37)=12.94, p=0.001). Post-hoc analyses showed that participants with ADHD, compared 

to controls had greater activity within DMN regions on fast and slow ER trials (t(37)=2.25 and 

2.99, p=0.03 and 0.005 respectively) but not on moderate ER trials (p=0.98). Moreover, while 

for controls DMN activity levels under these ER conditions were significantly below zero 

(t=4.03 and 3.36 and p= 0.001 and 0.003 respectively (indicating significant deactivation), for 

the ADHD group that was not the case. Inclusion of comorbidity (depression and anxiety) 

scores as covariates did not change the significance of interaction between group and ER.  

As a supplementary analysis, we explored the effect of different ROIs on group by ER 

interaction by extracting the beta values separately for the three ROIs included in the DMN 

mask and LIFG. We then analyzed the results with a three way ANOVA with group as a 

between subject, ER and region (VMPFC, LIPL, LSFG, LIFG) as within subject variables. This 

analysis again showed a quadratic interaction between ER and group (F(1,37)=10.67, p=0.002). 

The three-way group by region by ER interaction was almost significant (F(5.62,207.9) =2.16, 
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p=0.052). Examining the ER x group plots for individual ROIs (see supplement) revealed that 

there was a quadratic interaction for the three regions included in the task but not for LIFG.  

Discussion 

We present the first evidence for a differential modulation of activity in specific DMN 

regions by ER in ADHD. Our predictions were based on the combined insights derived from the 

evidence of prior studies showing that individuals with ADHD have difficulty suppressing 

default mode activity on attention demanding tasks and the theoretical insights of the SRD model
 

(Sergeant, 2005, van der Meere et al., 2010). According to the SRD model, DMN over-activity is 

predicted to occur primarily in conditions that require additional effort for regulating the 

behavioral state. Our findings showed that DMN over-activity in ADHD was observed only at 

ER extremes, while there were no group differences at moderate ER. Therefore, they confirm the 

predictions derived from the SRD model. This is not the first time that activation within the 

DMN of individuals with ADHD has been shown to be modulated by contextual or more 

specifically energetic factors. Using an inhibitory control task Liddle et al.
 
(2011) have 

previously shown that DMN attenuation is normalized by the addition of performance-contingent 

reinforcement.  

An alternative model, the default mode interference hypothesis, posits that default mode 

network activity characteristic of the resting brain gradually reemerges during performance on 

long and boring tasks in individuals with ADHD. In the current study this model would predict 

excess default mode network activity on slow trials but not on fast trials. Our finding of 

individuals with ADHD showing difficulties on both slow and fast trials encourages a 

reconciliation of the DMN interference and the SRD models, which can be formulated as follows. 

Individuals with ADHD are either unable or unwilling to expand the effort required under sub-

optimal, energetically challenging task conditions (extreme ERs associated with under/over 
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activation or lack of motivation), to suppress DMN interference during response preparation to 

optimize performance. This refines the concept of DMN interference to highlight its context-

dependent nature – only under non-optimal energetic conditions will the DMN attenuation fail in 

ADHD and lead to disruptions in information processing. At the same time, it provides a putative 

element relating to the historically underspecified neurobiological substrate of state-regulation 

mechanisms. This suggests that failure to regulate arousal/activation through effort allocation 

may be mediated by unattenuated activity within DMN regions. Previous neurobiological 

accounts of state regulation processes have focused on noradrenergic neurons whose activity is 

correlated with the changes in arousal level. Noradrenergic neurons originating in the locus 

coeruleus project widely throughout the entire cortex
 
(Berridge &Waterhouse, 2003). These 

noradrenergic projections might be important in fine tuning of the balance between task-positive 

and task-negative networks.  

Previously, Kooistra et al.
 
(2010) conducted an fMRI study exploring the effects of ER 

in adults with and without ADHD. Using whole-brain analysis, this study mainly reported 

frontostriatal abnormalities in ADHD. However an interaction between group and ER for DMN 

similar to that in the current study was not found. This difference can be explained by two 

factors. First, the sample size was small in the previous study and employing a whole brain 

analysis method rather than a ROI analysis might have reduced the power to detect DMN 

changes. Second, only two ERs were used in that study which did not allow quadratic 

interactions to be tested.  

While providing the first evidence for differential patterns of DMN modulation by ER 

in ADHD, the current study has a number of limitations that need to be mentioned. First, 

although the inclusion of three levels of ER allowed the modeling of the predicted quadratic 

effect, additional inter-stimulus interval conditions would have provided more information about 

ER effects on brain activity. Second, many of the adults with ADHD that participated in this 
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study probably had a long history of stimulant medication. Although the participants stopped 

their medication at least 48 hours prior to testing, the stimulants may have a long-term effect on 

brain activation patterns (see Schweren, de Zeeuw, & Durston, 2013 for a review). Third, the 

fMRI task designed for the current experiment was not optimized to confirm ADHD-related 

behavioral effects seen in some previous ER studies. This is because we purposefully chose an 

easy to perform attentional oddball task with a large proportion of standard compared to target 

stimuli. This allowed us to (i) explore the impact of ER (i.e., state regulation load) rather than the 

effects due to computational load and (ii) to increase number of analyzable correct trials and so 

avoid error related BOLD signal differences between groups. This inevitably led to ceiling 

effects, especially for errors, and probably reduced the behavioral sensitivity of the task across 

all parameters. Fourth, in order to keep the block durations equivalent across ER conditions it 

was inevitable that each ER condition contained a different number of stimuli. This could reduce 

the power to detect significant effects on brain function in the 8 sec condition which had the 

fewest trials. However using equal number of stimuli would make slower conditions longer, 

which could create greater time-on-task effects for these conditions. As we aimed to measure 

state regulation deficits rather than time-on-task differences in ADHD, we chose to equalize the 

durations of the conditions. 

Finally our approach to defining the DMN ROIs is worthy of discussion. We based 

these on an analysis of areas that are more active during standard baseline stimuli (where little 

attention is required) and that show deactivations during attention-demanding targets. While the 

resulting regions were consistent with previous DMN studies, they did not include all areas that 

have been previously associated with DMN (Laird et al., 2009). For instance, precuneus and 

posterior cingulate cortex (PCC), which are typically included in the DMN, were not identified 

by this method. Consistent with this, a large-scale study reported greater activation in 

precuneus and PCC during an oddball task for targets compared to standards (Kiehl et al., 2005) 
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– supporting the view that the DMN is not a uniform network and that it harbors marked 

functional heterogeneity (see Laird et al., 2009 for a review). Therefore we conclude that task-

related functional differences within DMN should be taken into account in future studies. 

In summary, this study provides the first evidence for differential patterns of DMN 

modulation by ER as a function of ADHD. As predicted by the SRD model individuals with 

ADHD failed to effectively suppress activity within DMN regions on fast and slow but not 

moderate ER trials. Future studies should combine fMRI with psychophysiological measures of 

effort regulation such as event-related potentials (Wiersema, van der Meere, Roeyers, Van 

Coster, & Baeyens, 2006) or pupil dilation (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010) to 

directly test the hypothesis that individuals with ADHD have difficulty allocating effort to 

suppress DMN interference under sub-optimal and energetically challenging conditions and to 

explore the impact of effort allocation deficits on attentional lapses and mind wandering. 

Neurobiological interactions between DMN and the locus coeruleus and other brain regions 

previously postulated to be involved in state regulation are also ripe for future study.    
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Figure 1. Task blocks with mean inter-stimulus intervals (ISIs) and trial numbers. Trial types 

and ISI ranges are given under each block. Block order was randomized for each participant. 
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Figure 2. Regions of interest (ROIs) included in the default mode network (DMN) mask: a: 

ventromedial prefrontal cortex (VMPFC), b: left inferior parietal lobule (LIPL), c: left superior 

frontal gyrus (LSFG). ROIs are overlaid on the T1 template provided by the MRIcron (Rorden, 

C., Karnath, H.-O., & Bonilha, L., 2007) software. 
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Figure 3. Beta values extracted from the DMN ROIs are plotted for each event rate separately 

for ADHD (N=19) and Control (N=20) groups.  

 

 
a
 Significant between group difference (p<0.05). Error bars indicate standard errors. 
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Table 1. Demographic data of the participants, scores on screening questionnaires and between 

group differences. 

Variable           ADHD (n=19)           Control (n=20)          Statistics 

Sex (M:F) 11:8 11:9           χ2=0.03 

 Mean (SD)             Mean (SD)           t-value 

Age 23.88 (4.63) 25.04 (4.82) 0.77 

IQ 110.74 (14.45) 110.50 (7.41) 0.06 

WURS 55.32 (14.43) 19.40 (10.06) 9.06
a
 

    Median (Min-Max)    Median (Min-Max)   Mann-Whitney U  

   test, z value 

ASR-ADHD 73 (57-95) 53 (50-61) 5.09
a
 

ASR-Subs 52 (50-71) 52.5 (50-65) 0.06 

ASR-Depression 58 (50-92) 51 (50-59) 2.90
b
 

ASR-Anxiety 52 (50-70) 51 (50-58) 1.76 

ARS IA-Adulthood 7 (4-9) 0 (0-3) 5.46
a
 

ARS HI-Adulthood 5 (2-9) 1 (0-3) 5.0
a
 

ARS IA-Childhood 9 (4-9) 0 (0-4) 5.48
a
 

ARS HI-Childhood 8 (2-9) 1 (0-4) 5.14
a
 

 

WURS: Wender-Utah Rating Scale, ASR: Adult Self Report, Subs: Substance abuse,  ARS: 

ADHD Rating Scale, IA: Inattention. HI: Hyperactivity-Impulsivity. The cutoff scores are as 

follows: WURS: 46, ASR: 70, ARS Adulthood: 4, ARS Childhood: 6.  

a
 p<0.0001 

b
 p<0.05 
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Table 2. Clusters showing significant attenuation in targets compared to standards.  

Region MNI coordinates for peak 

activations 

 x y z 

Left inferior parietal lobule -42  

-48  

-76 

-73 

40 

34 

Left superior/middle frontal gyrus -12  

-15  

-21  

59 

44 

29 

37 

46 

49 

Ventromedial prefrontal cortex   0  

 -3  

32 

53 

-17 

-8 

Left inferior frontal gyrus -54  29 10 

 

MNI: Montreal Neurological Institute 
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Table 3. Summary statistics and  ANOVA results for the behavioral data. 

 

Variable                    Inter-stimulus interval         ANOVA results (F(1,37)) 

    2 sec 

Mean (SD) 

   4 sec 

Mean (SD) 

   8 sec 

Mean (SD) 

Group ER
a
 Group x ER

a
 

MRT (msec) 

  ADHD 

  Control 

 

482.26 (45.38) 

458.41 (52.91) 

 

508.53 (55.90) 

467.57 (48.08) 

 

540.52 (50.16) 

496.59 (75.99) 

 

4.98
b
 

 

 

49.91
c
 

 

 2.17 

 

SDRT 

  ADHD        

  Control 

 

 

77.33 (18.46) 

56.58 (13.52) 

    

  

84.88 (36.43) 

62.60 (22.46) 

 

 

99.06 (46.63) 

72.73 (21.13)  

 

 

12.58
b
 

 

 

11.25
b
 

 

 

0.24 

  

Median  

(Min-Max) 

 

Median  

(Min-Max) 

 

Median  

(Min-Max) 

   

Percentage  

of omission 

errors         

  ADHD     

  Control 

 

 

 

2 (0-23) 

1 (0-2) 

 

 

  

0 (0-27) 

0 (0-11) 

 

 

 

0 (0-10) 

0 (0-14) 

 

 

 

 

     - 

 

 

 

 

    -  

 

 

 

 

  - 

 

MRT: Mean reaction time, SDRT: Standard deviation of reaction time 

a
 ER and interaction effects were analyzed with linear contrasts 

b
 p<0.05 

c
 p<0.001 

 

 


