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MULTI-SCALE ANALYSIS OF LINEAR DATA IN A 

TWO-DIMENSIONAL SPACE 

1 INTRODUCTION 

Many disciplines are faced with the problem of handling time series data, which lead to 

considerable efforts dedicated to the research of time series 
1-3

. The temporal scale is one of 

the most important issues in time series analysis. Analogous to the well-known modifiable 

areal unit problem in spatial analysis, the way of aggregating temporal data may also 

significantly affect analysis results. Sometimes patterns or relationships detectible at a certain 

scale cannot be detected at other scales. Even at the same scale, different partitions of 

intervals may result in different patterns being revealed. On the other hand, a question can be 

answered at different scales. For example, the answers to the question when there are a lot of 

traffic jams in Belgium may include ‘between 7:00am and 9:00am’, ‘during the days it snows’ 

and ‘in the months of school semester’. All these answers make sense because they may 

guide people to take actions at corresponding scales. Therefore, an appropriate choice of the 

temporal scale should take account of the characteristics of phenomena under study, the level 

of questions being asked, and the scale of actions to be taken. This choice is not easy, 

particularly in the phase of exploratory analysis when there is not much known about the data 

and when the objective of the analysis is not accurately specified. In addition to specifying an 

appropriate scale for analysis, the hierarchy of phenomena at different scales can also be 

important in certain analytical tasks. Analysts may be interested in how long-term patterns 

are composed or influenced by short-term patterns within them. As a result, multi-scale 

analysis is of critical importance for analysing temporal data. Due to the complexity of this 

issue, the solution requires considerable human intelligence to be involved.  



 

Visualisation has been proven to be an effective analytical approach for time series data 
4, 5

. 

An explicit visualization can effectively combine the insight of humans and processing ability 

of computers 
6, 7

 to tackle analysis tasks. While a number of approaches have been developed 

to visualise time series 
8-11

, the line chart remains the most frequently used. In a line chart, the 

horizontal dimension indicates positions in the time line, and the vertical dimension indicates 

the values at the positions. The time series is represented as a curve, offering a direct view of 

the variation of time series along the linear space. Line diagrams usually only display time 

series at a certain scale. Displaying time series at different scales would require drawing more 

curves, which makes the data display matted. Manipulating a sliding bar to shift the scales to 

be displayed is an alternative approach. However, with the slider, one still cannot obtain an 

overall picture of time series at all different scales. 

The Continuous Triangular Model (CTM) provides an alternative approach to represent time 

series and overcomes the difficulty of traditional approaches in visualising time series at 

multiple scales. The CTM is based on a diagrammatic representation of time intervals 

initially proposed by Kulpa 
12, 13

. Later, Van de Weghe named it the Triangular Model (TM) 

and applied it to archaeological use cases 
14

. More recently, Qiang investigated its use in 

reasoning imperfect intervals 
15

 and visual analytics 
16, 17

. The basic idea of the TM is 

representing time intervals as points in a coordinated two-dimensional (2D) space. Evolved 

from the TM, the CTM adds the third dimension to the interval space of the TM and forms a 

continuous field, which can display time series in all different intervals. In the continuous 

field, every point represents a specific interval and is referenced to a certain value of the 

interval, such as the summation, average or standard deviation etc. On the one hand, the CTM 

can provide an overview of linear time series at all different scales. On the other hand, as the 

CTM is based on a 2D coordinate space, the glossary of spatial analysis methods in 

geographical information science (GIScience) are now open to be employed to manipulate 

and analyse the CTM data 
18, 19

. In addition to time series, the CTM can also be applied to a 

broader sense of linear data, which refers to data sequences ordered in a one-dimensional 

(1D) space. Linear data can be derived from a linear geographical space, such as traffic speed 

along a road and runoff along a river, or objects with a linear structure, such as voltage along 

power lines and DNA sequences. 

An idea similar to the CTM is the Growth Matrix introduced by Keim 
20

, which visualises 

time series of stock prices in a 2D space. In the Growth Matrix, the horizontal axis indicates 

the time when the fund is purchased, and the vertical axis indicates when the fund is sold. 



 

Every point in the matrix is referenced to the price difference between the purchasing and 

selling times. Beyond Keim’s research, this work demonstrates how other formulas (i.e., 

average and summations) can be applied to calculate the values of intervals, and how this 

representation can be useful for analysing different types of linear data (e.g., traffic data). 

Moreover, we show how the methods of map algebra and cartographic modelling 
21

 can be 

applied to the CTM to solve multi-criteria decision-making problems based on time series. 

In the remainder of this paper, we first review the basic concept of the TM. Next, the concept 

of the CTM is introduced. We then demonstrate how the CTM can be applied to visualise 

time series of soccer players and traffic speed along a motorway. Afterwards, we show how 

map algebra and cartographic modelling can be applied to analyse time series represented in 

the CTM. Finally, conclusions are drawn and directions of future work are proposed. 

2 BASIC CONCEPTS 

2.1 Triangular Model 

In the classical linear representation, a time interval   is represented as a linear segment 

bounded by a start point    and end point   . The properties of an interval are expressed by 

the location and extent of the linear segment in a 1D space. The basic idea of the TM is 

mapping the linear segment in the 1D space into points in a 2D space. Given an arbitrary time 

interval  , two straight lines (   and   ) are projected from the two extremes (   and   ), 

with    passing through   ;    through    (Figure 1).    is the angle between    and the 

horizontal axis, while    is the angle between    and the horizontal axis, where        

 . The intersection point of    and    is called the interval point, which expresses the 

properties of the time interval  . The horizontal position indicates the midpoint of  , i.e., 

                , while the vertical position indicates the duration of  , i.e.,        

              . The start of the interval   , the end of the interval    and interval point   

form an isosceles triangle. Therefore, this representation of time intervals is called the 

Triangular Model (TM). The angle  is a pre-defined constant that is identical to the 

construction of all interval points. Here, we set       to be consistent with previous work 

12, 13, 15
, though   can be set to any value between    and     for specific purposes. In the 

TM, every time interval can be represented as a unique point in the 2D space. The 2D space 

where interval points are located in is called the Interval Space (   .  
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Figure 1. The configuration of the Triangular Model (TM). 

According to the interval algebra introduced by Allen 
22

, there exist thirteen atomic relations 

between two time intervals. In the TM, the intervals in a certain temporal relation to a 

reference interval   are located in a specific zone in   12, 13
. Figure 2 illustrates the zones of 

the thirteen Allen relations. In Figure 2, it is assumed that there exists a triangular study area 

that contains all intervals, and the referenced interval   is in the centre of the study area. The 

black zones contain the sets of intervals in certain temporal relations to the referenced 

interval. For instance, the black zone in the left corner of the study area represents the set of 

intervals that are before  , which is denoted as          . Temporal constraints based on 

Allen relations can thus be modelled as such zones. The composition of temporal constraints 

is based on the same principle as that of the Venn Diagram. For instance, the set of intervals 

that satisfy several constraints are located in the intersection of the corresponding zones. The 

set of intervals that satisfy one of the several constraints is located in the union of the zones. 

For a more detailed description of the relational zones and their compositions please refer to 

15
. 

equal(I) starts(I) started-by(I) finishes(I) finished-by(I)

meets(I) met-by(I) overlaps(I) overlapped-by(I) during(I)

contains(I) before(I) after(I)  

Figure 2: The representation of the thirteen Allen relations in the TM. 



 

2.2 Continuous Triangular Model 

In addition to discrete time intervals, the TM can be extended to represent continuous 

temporal data. Given a time interval  , all intervals during   are enclosed in a triangular zone 

below it (see Figure 2). In other words, every interval    during   corresponds to a specific 

point in this triangular zone. Let us consider a linear dataset arranged within  . Every point in 

the triangular zone represents a sub-interval    of the linear data. If every point is assigned a 

certain value, i.e.      , of the interval it represents, then the triangular area can be filled and 

becomes a continuous field.       is a certain formula dependent on   , such as the average, 

summation or standard deviation of the linear data in   . Figure 3 illustrates how the CTM is 

built from a linear data sequence consisting of seven numbers. It shows that every point in the 

triangular area represents a certain subinterval of the sequence, and assigned a number that is 

calculated from the numbers within the subinterval. Here the granularity of the CTM is 

consistent to that of the linear data sequence. Finer granularity can be obtained through 

interpolation. Figure 4 gives an example of the implementation of the CTM in a raster space. 

Through colour-coding, the CTM can be displayed as an image. 

 

Figure 3: Representing a linear data sequence with seven numbers in the CTM. (a): A point is 

assigned a number calculated from the numbers within a subinterval. (b): Every point in the 

triangular space is assigned a number of a specific subinterval. 

x1 x2 x3 x4 x5 x6 x7
0 1 2 3 4 5 6 7

f [2,5] = f (x3, x4, x5)

x1 x2 x3 x4 x5 x6 x7
0 1 2 3 4 5 6 7

f [0,1] f [1,2] f [2,3] f [3,4] f [4,5] f [5,6] f [6,7] 

f [0,2] f [1,3] f [2,4] f [3,5] f [4,6] f [5,7] 

f [0,3] f [1,4] f [2,5] f [3,6] f [4,7] 

f [0,4] f [1,5] f [2,6] f [3,7] 

f [0,5] f [1,6] f [2,7] 

f [0,6] f [1,7] 
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Figure 4: The implementation of the CTM in a raster space. (a): A linear data sequence and 

its representation in a line chart. (b): The CTM representation of the linear data sequence in 

(a), with the average formula applied. 

3 VISUALIZATION OF LINEAR DATA 

3.1 Visualizing Time Series 

This sub-section demonstrates how the time series of the moving speed of a soccer player can 

be represented in the CTM. The movement of the soccer players is obtained through 

digitalization of the game video. Here we study an indoor soccer game, in which each team 

has 5 players. The time series is a player’s speed in every second (i.e. meter/second or m/s) 

during a study interval of 800 seconds. As indoor soccer is rather intensive and fast-paced, 

the line chart (i.e. Figure 5 (a)) exhibits dramatic changes of speed from second to second. 

However, variations in longer intervals (e.g. one minute or two minutes) are hard to observe. 

In Figure 5 (b), the time series of the player’s speed is represented by the CTM, in which 

      is the average of the player’s speed during   . In the CTM, short-term fluctuations can 

be observed in lower levels, while the long-term patterns can be observed in higher levels. 

Moreover, it explicitly displays a hierarchy of the time series at all different scales, in which 

one can observe the relationship between the short-term variations and long-term variations. 

From this diagram, one can identify intervals of sprint from the red areas on the bottom of the 

CTM, e.g.   ,   , and   . At a larger scale, it is clear that the player had a high average speed 

from 1:00 to 6:15 (i.e.   ). However, during the next 3.5 minutes (i.e.   ), he experienced a 

less active period, although there are still several sprints during it. Compared to the Growth 

Matrix of Keim 
20

, in which    and    are respectively coordinated along the vertical and 

horizontal axes, the coordinate space of the CTM preserves the linear nature of time that 



 

flows from left to right. Mapping longer intervals in higher positions is also somehow more 

intuitive than the Growth Matrix.  

 

Figure 5: The time series of a soccer player’s speed in a line diagram (a) and the CTM (b). 

3.2 Visualizing Traffic Speed 
The CTM can also be applied to other types of linear data, such as traffic speed along a road, 

which is detected at a sequence of minimum road segments. In this case, every point in the 

CTM represents a specific road segment, and the colour at the point indicates the average 

speed of traffic in this segment. One CTM diagram can only represent the traffic in one 

direction, which is from left to right. In Figure 6, the four diagrams represent the traffic 

speeds along the E40 motorway in Belgium from Merelbeke (near Ghent) to Boerderijstraat 

(in Brussels) at four different timestamps. The ticks on the horizontal axis indicate the exits 

and entrances along the road. As the exit and entrance for one place is always less than 1 

kilometre, a single tick is used to mark both the exit to and entrance from the same place. 

Lines that are in   and    to the horizontal axis are drawn from these ticks. The average 



 

speed from one place to the other can be read from the colour at the intersection point of two 

lines projected from the two places. In traditional representations, such as line charts and 

colour-coded polylines on maps, one can only read the traffic speed in road segments that are 

partitioned at a certain scale. The average speed across several partitions is obtained through 

mental estimation, which is not precise. In contrast, the CTM diagram provides an explicit 

overview of the average speed in all different segments of the road. One can observe the 

location of traffic jams along the road (i.e. low speed road segments) in the bottom of the 

triangular field, and also how much the traffic jams influence the average speed of longer 

distance from the higher levels. In Figure 6, one can observe that the average speed from 

Erpe-Mere to Ternat at 7:20 has fallen below 20 km/hour (the 24 hour clock is applied in this 

paper), as the intersection point of the lines from these two places is in a very dark area. 

Thus, it is strongly not recommended that drivers take the motorway during this segment. In 

the higher level, one can identify that the average speed from Ghent to Brussels is 

approximately 60 km/hour. Thus, taking this motorway to travel from Ghent to Brussels is 

still feasible at this moment, as the secondary road nearby is limited to 50 km/hour. At 7:40 

and 8:00, although some short segments with low traffic speed can be observed (e.g., at 8:00 

from Erpe-Mere to Aalst and from Affligem to Groot-Bijgaarden), the average speed of most 

medium-distance and long-distance segments can reach 50 km/hour. At 8:20, the traffic speed 

from Aalst to Ternat is below 30 km. 

In addition, the time that drivers need to spend on the road can also be represented in the 

CTM. The linear data of travel time on the road can be calculated by dividing the length of 

the minimum road segments by the speed detected in these segments. In this case, summation 

is applied to      , as the travel time of any road segment is the summation of the travel time 

of all road segments within it. The CTM diagrams in Figure 7 display the travel time of the 

same motorway at the same time stamps as that in Figure 6. The colour at every point 

indicates the time that travellers need to spend to travel from one place to another, according 

to the speed along the road detected at the time stamp. A discrete colour scale with 5-minute 

increments is applied for the ease of visual identification. From these diagrams, one can 

observe the time that one needs to travel between any two places. At 7:20, it takes 10 minutes 

to travel from Merelbeke (Ghent) to Erpe-Mere. However, for a similar distance, it takes 30 

minutes to travel from Erpe-Mere to Affligem. Such a difference is less obvious at 7:40, 

which implies that the traffic jam reduced to some degree and is distributed more evenly. At 



 

8:00 and 8:20, it takes more time to travel through the second half than the first half of the 

motorway, as the red area sinks in the right part of the triangle. 

 

Figure 6: CTM diagrams of the average speed on the E40 motorway from Ghent to Brussels. 

 

Figure 7: CTM diagrams of travel time on the E40 motorway from Ghent to Brussels.  

 



 

4 ANALYSING MULTIPLE TIME SERIES 

As the CTM is based on a 2D coordinate interval spaces, many spatial analysis techniques in 

GIScience can be employed to analyse CTM diagrams. This section demonstrates how the 

methods of map algebra and cartographic modelling are used to analyse multiple time series 

modelled by the CTM. 

4.1 Map Algebra 

With the traditional line chart, the comparison of multiple time series can only be made in a 

fixed temporal scale and partition. For example, in Figure 8, one can only compare the speed 

between the indoor soccer teams or players at granularity of second. The speed at other scales 

is hard to compare. Alternatively, using map algebra in the CTM, these time series can be 

compared over all different time intervals. The time series of average running speed of the 

two competing teams can be compared by applying the ‘subtract’ algebra to their CTM 

diagrams. In the result CTM diagram, every point corresponds to a specific time interval, and 

the value at that point is the difference of the running speed between the two teams. Figure 9 

illustrates the result of subtracting the CTM of the blue team from that of the red team. Blue 

represents the positive value, meaning that the average speed of the blue team is greater than 

that of the red team. Red represents negative value, meaning that the average speed of the red 

team is greater. The result diagram can be interpreted as: in general, the blue team is more 

active (i.e. has greater running speed during long intervals), however, during some short time 

intervals, the red team has greater running speed, for instance, from the beginning to the 4
th

 

minute and from the 9
th

 to the 13
th

 minute. In Figure 9(b), the darkness of the colours 

indicates the degree of difference, which gives a better sense of the actual difference. From 

Figure 9(b), one can see that only during some very short intervals (less than 2 minutes), the 

red team is apparently more active than the blue team. 



 

 

Figure 8: Line charts of multiple time series. (a): the average running speed of two 

competing soccer teams. (b): the running speed of individual players of the red team. 

 

Figure 9: The output of subtracting the CTM of the blue team from that of the red team. (a): 

Only colour hues are used to indicate the team with higher speed. (b): Colour darkness is 

applied to indicate the speed difference. 

The CTM can also be used to compare more time series, for instance, the running speed of 

several soccer players. Here we compare the running speed of four players in the red team, 

who have played through the entire study period. This can be done by combining the CTM 

diagrams of these four players into one CTM using the following map algebra: at every point 

(i.e. during every interval), the player having the greatest running speed is selected. We 

define this player the dominant player of the interval. If the dominant players of every 

interval is displayed in a specific colour hue, the output becomes a nominal diagram with four 
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zones (i.e. Figure 10 (a)), each of which represents a set of intervals during which a certain 

player is dominant. In Figure 10 (b), darkness of colours is used to indicate the degree of 

dominance. There are many ways to calculate the degree of dominance. In this case, we 

define the degree of dominance as the percentage that the dominant player’s speed is greater 

than the average of the others. For example, if the speed of Player 1 is 5 and the speed of 

Players 2-4 is 4, Player 1 is dominant over the others by 25%. Due to the many colour hues 

applied, it is a little hard to observe both the dominant players (represented by colour hues) 

and the degree of dominance (represented by darkness) in Figure 10 (b).  

This problem can be overcome by representing players dominant at certain levels in multiple 

CTM diagrams. In these diagrams, each colour hue represents the player dominant by a 

certain percentage. For example, in the first diagram of Figure 11, every colour indicates a 

player that is dominant over the others by at least 10%, which means the speed of this player 

is more than the average speed of the others by at least 10%. Figure 12 uses two examples to 

illustrate this algebra. From these diagrams, one can see that, with the increase of dominance 

threshold, the colour zones with low dominance gradually disappear, while the remaining 

zones represent the intervals during which a player is dominant above a certain level. With 

the dominance threshold of 30%, it becomes clear that Player 2 and Player 3 are much more 

active than the others during two successive 5-minute intervals, which possibly reveals a 

strategy change or position shift during the game. The variation of these CTM diagrams can 

be better observed through a controlled animation, where the CTM diagram dynamically 

responses to a slider setting the dominance level. 

 

Figure 10: Comparison of multiple players. (a): Dominant players is represented by discrete 

colour hues. (b): Dominance degree is represented by darkness of colours. 

 



 

 

Figure 11: Players dominant at different degrees are represented in multiple diagrams. The 

meaning of colour hues is same as that in Figure 10. 
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Figure 12: Select the dominant player at every point in a CTM diagram. P means player. 

4.2 Cartographic Modelling 

Cartographic modelling addresses complex geographical problems by decomposing the 

problem into component criteria or constraints, which are usually modelled in different forms 

of geospatial datasets (e.g., raster, vector or TIN). Through a logical sequence of operations 

on these geospatial datasets, the final result (normally a map) is generated, indicating the 

solution to the problem. One typical application of cartographic modelling is site selection 

(e.g., selecting the site for a vineyard or windfarm), which takes account of many 

geographical criteria and constraints (e.g., climate, soil, topography and demography) 
23-25

. 

Through a series of operations, a suitability map is produced that indicates the suitable areas. 

This approach can also be referred to as multi-criteria decision-making analysis 
26, 27

. Using 

the same methods, cartographic modelling can also apply to CTM diagrams to solve multi-



 

criteria decision-making problems based on time series. Analogous to geographical site 

selection, cartographic modelling on the CTM can help one to select time intervals that 

satisfy different criteria and constraints. In the CTM, these suitable intervals are represented 

as areas in the interval space. Next, we use a concrete scenario to explain how cartographic 

modelling can be applied to CTM diagrams.  

Suppose several professional surfers want to select a training site for the next year. There are 

four candidate surfing sites, including South Africa, Hawaii, Fiji and Australia. These four 

sites have different weather conditions throughout the year. Every site may be the best option 

during some specific periods of the year. Considering the surfers’ requirements and 

preferences in Table 1, they need to select one of these four sites and also decide when and 

for how long they will arrange their training there. This question involves two sub-questions: 

which site and during which period? Given the annual weather statistics of these sites, 

including seasonal wave situations and sea temperature, this question is not easy to answer 

with traditional representations. However, by means of cartographic modelling, the CTM can 

give an explicit answer.  

Table 1: Preferences and constraints of surfers and available statistics of the surfing sites. 

 Statistics of the site Constraints of surfers Preference of surfers 

Ridable 

wave 

Percentage of days that have 

ridable waves in every 

month. 

At least 60 days having 

ridable wave.  

The more, the better. 

Ground 

wave 

Percentage of days that have 

ground waves in every 

month. 

 The more, the better. 

Sea 

temperature 

Average sea temperature in 

every month. 

 The higher, the better. 

Avoidance  Avoiding the international 

tournament in August. 

 

 

In general, there are two steps in the problem-solving procedure. First, the suitability diagram 

of each surfing site is created, taking account of constraints and criteria, in this case, surfers’ 

requirements and preferences (Table 1). Second, suitability diagrams of the four sites are 

combined into one summary diagram to answer which site is the best during which period. 



 

Figure 13 illustrates the specific procedure of the first step. The monthly weather conditions 

are rated according to the three criteria, i.e., percentage of days with ridable waves
1
, 

percentage of days with ground waves
2
 and sea temperature. The ridable wave is the 

minimum condition on which the surfing training can be performed. The ground wave is 

more attractive for surfers because high-level skills can be practiced. Furthermore, warmer 

sea temperature increases surfing comfort. Different weights are given to these criteria of 

their importance (i.e., ridable wave: 2, ground wave: 5, sea temperature: 2). Combining these 

weighted criteria produces a time series of suitability rates according to the general weather 

condition. The time series of suitability rates is represented by a CTM diagram (i.e. CTM1) 

with the average formula applied to      . The number of days with ridable waves is 

represented by a CTM diagram (i.e. CTM2) with the summation formula applied to      . In 

this case, all statistic data are recorded at a monthly scale. Therefore, the values of intervals 

across monthly partitions are obtained by interpolation. Considering the requirement of at 

least 60 days of ridable waves (Table 1), CTM2 is reclassified into a binary diagram CTM3, 

where values above 60 are set to one and the remaining are set to zero. Multiplying CTM1 by 

CTM3, we obtain the suitability diagram CTM4 of a surfing site, excluding intervals that do 

not have 60 days with ridable waves. Following the same procedure, the suitability diagrams 

of the other sites can be generated. 

 

Figure 13: The procedure of generating the suitability CTM diagram for a site. 

Figure 14 illustrates the specific procedure of the second step. The suitability diagrams 

(CTM4s) of all sites are combined together using the dominance algebra. At every position, 

                                                 
1
 Ridable wave: waves last for 7 seconds period or more. (http://magicseaweed.com/) 

2
 Ground wave: waves last for 10 seconds period or more and over 3ft. (http://magicseaweed.

com/) 



 

the site with the highest score is selected, resulting in a nominal diagram with four zones. 

Each zone contains the intervals during which a certain site is the best in the four candidate 

sites. In other words, each candidate site has a set of intervals during which it is the best, 

which are in the corresponding zone in the CTM diagram. To avoid the international 

tournament in August, only intervals before and after August can be used for training, and 

thus all other intervals have to be excluded. Referring to the relational zones of the TM in 

Section 2.1, relational zones that ‘touch’ August have been erased. Only intervals in the 

before and after zones are suitable. After all operations, the final output is produced, i.e., the 

rightmost CTM diagram in Figure 14.  

 

Figure 14: The composition of the suitability CTM diagrams of all sites. 

The final output is enlarged in Figure 15. From this diagram, one may have an idea which site 

is the best candidate during which intervals. Instead of providing a fixed choice, this diagram 

presents all possible intervals through the entire year. This diagram is flexible enough for 

surfers to make rough plans and remains open for modifications caused by other constraints. 

The output CTM is a nominal diagram with four distinctive zones, which can visually answer 

the surfer’s question.  

According to the coordinate system of the CTM (described in Section 2.2), the result in 

Figure 15 can be interpreted. At the beginning of the year, Hawaii is the best site for surfing, 

while Fiji and South Africa are the best in the spring and summer, respectively, before the 

tournament in August. In autumn and early winter (the right part of Figure 15), the situation 

is more complex. There is a thin blue slice extending from September to November, which 

means that between September and November, Fiji is the best surfing site for approximately 



 

2.5 months. If the period is longer or shorter than 2.5 months, either Australia (red) or Hawaii 

(green) is the best choice. Furthermore, if surfers would like to stay for the shortest period 

that guarantees 60 days with ridable waves, Hawaii is the very place, because the lowest 

position is in the green zone, at the right corner of the suitable area. In November and 

December, surfers only need to stay in Hawaii for just over 2 months to get 60 days with 

ridable waves. Moreover, if surfers would like to stay at one site as long as possible, Fiji is 

the best choice, because the highest point is in blue. This means that Fiji has the best average 

weather condition during the period from the beginning of the year to the tournament start. 

After August, Australia is the best site for a long stay, because it has the highest rate during 

the period between August and the end of the year.  

Moreover, one can increase the dominance threshold to screen out the periods during which a 

surfing site is more suitable than the others to a certain degree. Different from the analysis of 

soccer players in Section 4.1, in this case, the dominance is the percentage that the highest 

score is over the second highest score. From Figure 16 one can see that, with the increase of 

dominance threshold, long intervals gradually disappear. When the threshold has increased to 

16%, the remaining intervals have a duration between 2 and 3 months. This means that if the 

surfer wants to select a surfing site that is more suitable than the others by at least 16%, his 

staying period should be 2 to 3 months. 

Compared with the traditional approaches, the CTM-based cartographical modelling has two 

merits. First, the CTM is not limited to a certain time scale or partition. It offers multi-scale 

suggestions for choosing suitable sites and periods. Second, the answer is presented in a 

structured diagram, which is more informative and perceivable than text, table and other 

types of visual representations. One can visually identify the suitable intervals and observe 

how they distribute in a 2D space. In this surfing site selection case, a simple set of criteria 

and constraints are modelled by the CTM. When it is applied to more complex cases, other 

time-related criteria can be added. Also, the weights of criteria can be adjusted according to 

specific requirements.  



 

 

Figure 15: The enlarged result CTM diagram. (Left: the overall diagram. Right: zoom into the 

right part of the overall diagram). 

 

Figure 16:  The result CTM based on different dominance threshold. The meaning of colours 

is identical to that of Figure 15. 

5 CONCLUSION AND FUTURE WORK 

This paper introduced an innovative representation of linear data, namely the CTM. In the 

CTM, the linear data in different intervals are displayed in a two-dimensional space, 

constituting a basis for a multi-scale analysis of linear data. In general, the CTM has two 

major advantages. First, it provides an explicit and compact visualisation of linear data at 

different scales. In the CTM, moving statistics (e.g., the average and summation) during 



 

intervals of different lengths can be displayed in one diagram, which offers an explicit 

overview of patterns at different scales. The hierarchy and relationships between short-

interval and long-interval variations can be directly observed. Second, the CTM is based on a 

2D coordinate space, which is very similar to prevalent geospatial datasets. Thus, a vast set of 

existing, high-level techniques in GIScience can be used to manipulate and analyse CTM 

diagrams. For instance, by applying map algebra to the CTM, multiple time series can be 

compared at different scales. Using special visualization techniques, one can identify time 

series dominant during different time intervals. Based on map algebra, a similar idea of 

cartographical modelling can be applied to the CTM for multi-criteria decision-making 

analysis. Temporal criteria and constraints can be modelled as areas in CTM diagrams, which 

can be interpreted as sets of intervals that are in a certain temporal relation or attribute range. 

These areas can be used as masks to screen the intervals that satisfy the constraints. Through 

a sequence of map algebra on CTM diagrams, one can obtain all intervals of different length 

that meet their criteria and constraints. This analysis is difficult with the traditional 

representations where analysis is performed on intervals of the same length. Another 

interesting feature is that the whole procedure is based on operations of diagrams, which 

offers a visual impression of every step of the analysis process and intermediate outputs. 

This paper gave several examples to show possible applications of the CTM. In future work, 

there are a lot of possible scenarios in which the CTM can be applied. For instance, we plan 

to extend the use of the CTM to standard soccer games to analyse the time series of the 

performance and physical conditions of soccer players in a 90 minute time frame. The 

visualization in the CTM may support the coach to make strategies or adjustments 

accordingly in all different time intervals. The idea of cartographic modelling in the CTM can 

be also applied to agriculture and farming, which heavily rely on the analysis of time series of 

weather statistics. The analysis based on the CTM can potentially provide advice for the 

irrigation strategies or fish egg incubation control. Moreover, implementing the CTM into an 

interactive system can improve the analytical usability of the CTM. In such a system, the 

operation and manipulation of the CTM diagrams can be performed more conveniently and 

automatically. Dynamic controls for colour ramps, the formulas in the CTM and area 

selection by attribute can facilitate visual exploration and analysis in the CTM. The 

sensitivity of the cartographic modelling approach to different parameters and utility 

functions can be better analysed within this system. Integrating the CTM to other information 

systems can also be interesting. For example, linking the CTM with a GIS can enhance the 



 

analysis of time series with geographical reference. From a general perspective, the CTM can 

be considered as a conceptual model of generalisation. Many types of data can be described 

at different granularities, for instance, the border of a country can be displayed at different 

granularities, and a system can be decomposed into different levels. These types of data can 

also be plotted into a CTM diagram, which could potentially benefit the analysis. These ideas 

will be further investigated in future work. 
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