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Abstract

Background: Research in epistasis or gene-gene interaction detection for human complex traits has grown over the
last few years. It has been marked by promising methodological developments, improved translation efforts of
statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the
epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems.
In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed
by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a
memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require
terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we
present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to
be investigated. This algorithm was implemented in C++ in our epistasis screening softwareMBMDR-3.0.3. We
evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is
illustrated on real-life data for Crohn’s disease.

Results: In the case of a binary (affected/unaffected) trait, the parallel workflow ofMBMDR-3.0.3 analyzes all
gene-gene interactions with a dataset of 100,000 SNPs typed on 1000 individuals within 4 days and 9 hours, using 999
permutations of the trait to assess statistical significance, on a cluster composed of 10 blades, containing each four
Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. In the case of a continuous trait, a similar run takes 9 days. Our
program found 14 SNP-SNP interactions with a multiple-testing corrected p-value of less than 0.05 on real-life Crohn’s
disease (CD) data.

Conclusions: Our software is the first implementation of the MB-MDR methodology able to solve large-scale
SNP-SNP interactions problems within a few days, without using much memory, while adequately controlling the
type I error rates. A new implementation to reach genome-wide epistasis screening is under construction. In the
context of Crohn’s disease,MBMDR-3.0.3 could identify epistasis involving regions that are well known in the field and
could be explained from a biological point of view. This demonstrates the power of our software to find relevant
phenotype-genotype higher-order associations.
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Background
The complete sequence of the human genome has left sci-
entists with rich and extensive information resources. The
bloom of bioinformatics, and hence the wide availability
of software, has improved the possibility to access and
process genomic data. Genome-wide association (GWA)
studies, using a dense map of SNPs, have become one
of the standard approaches for unraveling the basis of
complex genetic diseases [1]. Despite their success, only
a modest proportion of currently available heritability
estimates can be explained by GWA studies discov-
ered loci [2]. Commonly performed GWA studies usually
oversimplify the underlying complex problem, in that
usually no account is made for the existence of multi-
ple “small”associations and non-SNP polymorphisms, nor
epigenetic effects, genetic pathways, gene-environment
and gene-gene interactions [3,4].
A lot of methods and software tools exist to per-

form large-scale epistasis studies [5]. These Genome-wide
Association Interaction (GWAI) studies typically involve
balancing between achieving sufficient power, reducing
the computational burden and controlling type I error
rates. Here, we present a new software tool to perform
large-scale epistasis studies, using the MB-MDR method-
ology [6-9]. MB-MDR is a non-parametric data mining
method (no assumptions aremade about genetic modes of
inheritance) that is able to identify interaction effects for
a variety of epistasis models in a powerful way. It is able
to distinguish between multiple pure interaction effects
and interaction effects induced by important main effects
through efficient main effects correction strategies. Apart
from identifying multiple sets of significant gene-gene
interactions, MB-MDR can also be used to highlight gene-
environment interactions in relation to a trait of interest,
while efficiently controlling type I error rates. For now, the
trait can either be expressed on a binary or continuous
scale, or as a censored trait. Extensions to accommodate
multivariate outcomes are underway. Here, we mainly
focus on second-order gene-gene interactions using bi-
allelic genetic markers. However, our software can also
handle multi-allelic data and categorical environmental
exposure variables, as will be shown in the implemen-
tation section. Our C++ software greatly enhances MB-
MDR’s first implementation as an R-package [10], both in
terms of flexibility and efficiency.

Implementation
Input/Output
The essence of the MB-MDR methodology is to
identify sets of gene-gene interactions via a series of
association tests, which may or may not be fully non-
parametric, while reducing dimensionality. Significance
of the explored interactions is assessed using the maxT
method [11,12] which provides adjusted p-values by

controlling for the multiple correlated tests. Then, MB-
MDR prioritizes (ranks) the explored interactions via the
adjusted p-values. In practical applications, there is an
abundance of p-values close or equal to 1 and only a
few p-values will point towards interesting multi-locus
genotype combination to pursue. With this in mind, we
adapt the maxT method so that it still calculates the
test-statistics for all SNP pairs, but only calculates the
p-values of the n best pairs, i.e. the ones with the n low-
est p-values. We show that our method produces the
exact same p-values as with the original maxT imple-
mentation, however using many fewer resources. When
interaction signals are expected to be strong in the light
of an improved study design (for instance, an increased
sample size, a pathway-driven study design, the use of
expression traits derived from co-expression networks) or
in the context of replicating earlier epistasis findings, the
value of n should be set sufficiently large by the user, in
order not to lose signals in the final output. However,
when epistasis is tested for in a hypotheses-free way, it is
highly unlikely that more than 1000 significant epistatic
pairs will be identified (n = 1000, default value). Figure 1
gives a description of the input and output formats of the
program.

New implementation of maxT
In this section, we present Van Lishout’s implementa-
tion of maxT and prove that it requires a memory
proportional to n (this is: O(n) memory), whereas the
classical implementation of maxT requires O(m) mem-
ory. Here, m and n refer to the number of SNP pairs
and the number of top pairs to retain in the output,
respectively.
The different steps of the original maxT algorithm can

be decomposed as follows (see [11] for a detailed explana-
tion of the logic behind these steps):

1. Compute the test-statistics for all pairs of SNPs
(j = 1, . . . ,m) and sort them. The result is the Real
Data vector of Figure 2 where
T0,1 ≥ T0,2 ≥ . . . ≥ T0,m.

2. Generate B random permutations of the trait
column. For each permutation i = 1, . . . ,B, compute
the test-statistics Ti,j for all pairs of SNPs
(j = 1, . . . ,m) in the order defined by the Real Data
vector. Force the monotonicity of the rows: for
j = m − 1, . . . , 1 replace Ti,j by Ti,j+1 if Ti,j < Ti,j+1.

3. For each pair of SNPs j = 1, . . . ,m compute the
number aj of Ti,j values such that Ti,j ≥ T0,j, for
i = 0, . . . ,B.

4. Compute the p-values using the equation pj = aj
B+1

for each pair of SNPs. Force the monotonicity of the
p-values: for j = 1, . . . ,m − 1 replace pj+1 by pj if
pj+1 < pj.
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Trait SNP1 SNP2 … SNPM p-value

c1 g11 g12 … g1M (SNPl1, SNPr1) p1

c2 g21 g22 … g2M (SNPl2, SNPr2) p2

…………………

cs gs1 gs2 … gsM (SNPln, SNPrn) pn

Pair

tuptuOtupnI

--binary 
[-n] 
[-p] 
... 

Figure 1 Input/output formats ofMBMDR-3.0.3.MBMDR-3.0.3 takes as argument a text file (possibly converted by our software from PLINK
format) containing the trait and SNP values of the subjects under study and a set of command line parameters. If the ath subject is a case (control),
ca = 1(0) (a = 1 . . . s). SNPb is a label referring to the bth SNP (b = 1, . . .M). The genotype of an individual a at locus b is denoted as gab (0 if
homozygous for the first allele, 1 if heterozygous and 2 if homozygous for the second allele). The produced output is a text file containing the most
significant SNP pairs in relation with the trait. (SNPlj , SNPrj) refers to the jth best SNP pair, i.e. the pair with the jth lowest p-value pj . Our software has
only one mandatory argument: the scale of the trait. Use either −−binary for a binary trait, or −−continuous for a continuous scale, or −−survival
for a censored trait (in this case the trait column is replaced by two columns, one for the time variable and one for the censoring variable). We have
developed an interactive help, accessible through −−help, describing all other options. For instance, -n sets the amount of p-values to compute
(default: 1000), -p sets the amount of permutations to asses statistical significance (default: 999).

Note that the intuition behind the monotonicity enforc-
ing procedure at step 2 is to correct the test-statistics that
are obviously too pessimistic: the test-statistic of a pair P1
should not be lower than the test-statistic of a less signif-
icant pair P2. Replacing the test-statistic computed for P1
by the one computed for P2 is therefore a better estima-
tion of the significance of P1. The amount of false-negative
results would be higher without this procedure. Similar-
ily, the purpose of the monotonicity enforcing procedure
at step 4 is to correct p-values that are obviously too opti-
mistic: the p-value of P2 should not be lower than the
p-value of P1. Replacing the p-value computed for P2 by
the one computed for P1 is therefore a better estimation of
the significance of P2. The amount of false-positive results
would be higher without this final step.
From a memory point of view, it is best to implement

the aforementioned algorithm in a slightly different way.
Indeed, the current description implies all Permutation
vectors of Figure 2 to be in memory at the same time.
This requires O(Bm) memory. In fact, a memory of O(m)

can be achieved by adopting a different approach. The
idea is that the aj values calculated at step 3, can already
be calculated on-the-fly. A vector a-values of all aj values
can be created from scratch and initialized with 1’s val-
ues. Indeed, note that at step 3 the original sample series
counts as 1 of B+1 available samples to assess significance.
For i = 0,T0,j ≥ T0,j and hence aj = 1,∀j = 1, . . . ,m. The
elements of the a-values vector can then be updated at the
end of each iteration i = 1, . . . ,B of step 2 by increment-
ing the aj values corresponding to the Ti,j ≥ T0,j by one. In
this way, all ith Ti,j values can be removed from memory
at the end of the ith iteration since they are no longer of
any use. Hence, only a single Permutation vector is stored
instead of B vectors. In fact, applying step 4 to the a-values

vector obtained at the end of this procedure readily leads
to the final p-values vector.
This proves that this algorithm requires O(m) memory.

Obviously, if M denotes the number of SNPs, m is given
by the formula m = M(M − 1)/2. The memory usage of
the classical implementation thus rises quadratically with
the number of SNPs, whereas we will now see that our
method is independent of it.
Themonotonicity enforcing process executed at the end

of step 2, implies that we need to calculate all Ti,j val-
ues, even if we are only interested in the first n p-values.
However, not all of these Ti,j values have to be stored in
memory. For our purpose, only Ti,j(1 ≤ j ≤ n) andMi, the
maximum of the [Ti,n+1, . . . ,Ti,m] elements, are required.
In other words, there is no need to explicitly propagateMi
to position n + 1. It suffices to computeMi and to replace
Ti,n by Mi if and only if Mi > Ti,n. The monotonicity
enforcement continues from positions n − 1 through 1.
The different steps of our algorithm, exploiting all ideas

presented so far, are given below:

1. Compute the test-statistics for all pairs but store only
the n highest ones. The result is a Real data vector
where T0,1 ≥ T0,2 ≥ . . . ≥ T0,n.

2. Initialize a vector a of size n with 1’s.
3. Perform the following operations for i = 1, . . . ,B:

(a) Generate a random permutation of the trait
column.

(b) Compute the test-statistics Ti,1, . . . ,Ti,n and
store them in a Permutationi vector.

(c) Compute the maximumMi of the
test-statistics values Ti,n+1, . . . ,Ti,m.

(d) Replace Ti,n byMi if Ti,n < Mi.
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……ataD laeR

… …

Permut. 1 T1,1 … T1,n T1,n+1 … T1,m

… … … … … … …

Permut. B TB,1 … TB,n TB,n+1 … TB,m

… …

p-values p1 … pn pn+1 … pm

Real Data …

…

Permut. 1 T1,1 … T1,n M1

… … … … …

Permut. B TB,1 … TB,n MB

…

p-values p1 … pn

classical maxT implementation

Van Lishout's maxT implementation

SNPi1 

SNPj1 

T0,1 

SNPin+1 

SNPjn+1 

T0,n+1 

SNPim 

SNPjm 

T0,m 

SNPin 

SNPjn 

T0,n 

SNPi1 

SNPj1 

T0,1 

SNPin 

SNPjn 

T0,n 

Figure 2 Classical versus Van Lishout’s implementation of maxT.
In the classicalmaxT implementation, all Ti,j values are in memory. If
only the x best p-values are envisaged then only the maximum
M1, . . . ,MB of the [ T1,n+1, . . . , T1,m] , . . . , [ TB,n+1, . . . , TB,m] are needed,
implying only temporary storage of the corresponding values.

(e) Force the monotonicity of the Permutationi
vector: for j = n − 1, . . . , 1 replace Ti,j by
Ti,j+1 if Ti,j < Ti,j+1.

(f) For each j = 1, . . . , n, if Ti,j ≥ T0,j increment
aj by one.

4. Divide all values of vector a by B + 1 to obtain the
p-values vector p. Force monotonicity as follows: for
j = 1, . . . , n − 1, replace pj+1 by pj if pj+1 < pj.

Two remarks are in place:
First, the main idea of the Sorting by insertion algo-

rithm [13] can be recycled to perform step 1 using O(n)

memory. The Real Data vector is first initialized with
the first n computed test-statistics and sorted using the
quick sort algorithm [13]. Then, at each iteration, the next
test-statistic is calculated and compared with the smallest
value of the vector. If it is smaller or equal nothing has to
be done. Otherwise, the smallest value is removed and the
new one is inserted in order to preserve the sorting. This
insertion requires n

2 operations on average. This method
works particularly well on large-scale problems, where

m >> n. Intuitively, the probability of having to insert
will decrease at each iteration and tend to zero because
the Real Data vector will contain higher and higher val-
ues. This algorithm will take O(m) time on average, but
could degenerate in O(nm), which is still linear.
Second, it should be noted that step 3(b) and 3(c) can be

merged into a single step. The idea is to create first a hash
table containing the indexes of the n best pairs, resolving
collision by separate chaining [13]. The test-statistics Ti,j
can then be computed in any convenient order. At each
iteration, the hash table is used to decide (almost instan-
taneously) if the current value corresponds to one of the n
best pairs or not, and perform either step 3(b) or step 3(c)
accordingly.

Parallel workflow
Since the memory used by Van Lishout’s implementa-
tion of maxT is independent from the number of SNPs,
memory is no longer a problem. However, the remaining
concern is time. Since all iterations of the 3rd step in the
new maxT implementation are independent from each
other, it is possible to simultaneously run the computa-
tions of the permutations on different machines. Figure 3
describes the three steps of the parallel workflow that we
use to solve large-scale problems:

1. Compute the test-statistics for all pairs on one
machine and save the n highest ones into a file
topfile.txt. This file should be saved at a location on
which each machine has read access. It will contain
the information of the Real Data vector of Figure 2
and have thus a size of only O(n).

2. Split the computation of the permutations
homogeneously between the Z machines. On each
machine z = 1 . . .Z, perform the following
operations:

(a) Read the file topfile.txt
(b) Initialize a vector p of size n with 0’s.
(c) Execute step 3 of Van Lishout’s maxT

algorithm for each permutation assigned to z
(using vector p instead of a).

(d) Save the p vector into a file permutationz.txt.

3. When all machines have terminated their work, sum
all vectors of the files
permutation1.txt . . . permutationZ .txt to obtain a
vector p. Perform step 4 of Van Lishout’s maxT
algorithm on this vector.

However, the main feature that makes our software fast
is not parallelization, but speed of the test-statistic com-
putations. Indeed, we have seen that the maxT algorithm
computes B × m Ti,j values. Solving B = 999 permu-
tations with a dataset of M = 100, 000 SNPs, i.e. m =
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Figure 3MBMDR-3.0.3 parallel workflow. Step 1 of themaxT
algorithm is first performed on the input file. This produce the file
topfile.txt, containing the top pairs of SNPs and their corresponding
test-statistics. Then, the computation of the permutations is split
between the available machines. Finally,MBMDR-3.0.3 reads the
produced permutationx .txt files to create the final output file.

O(1010) pairs of SNPs, means thus O(1013) computations
to perform. It is obvious that the computation of the test-
statistic Ti,j has to be very fast and that each improvement
can have a dramatic influence on the final computing time.
We show in the next section how we achieve this goal.

Test-statistic computation
This section presents the implementation of the computa-
tion of the Ti,j values, capturing the degree of association
between the jth pair of SNPs [ SNPlj, SNPrj] and the ith per-
mutation of the trait Traiti. Let M + 1 (N + 1) be the
number of possible values for SNPlj (SNPrj). In practice,
most of the studies concern bi-allelic genetic markers and
M = N = 2. However, our program automatically detects
the exact values ofM and N, so that multi-allelic variables
are also covered. Furthermore, categorical environment
variables can also be handled, as long as they are coded 0,
1, ... M (N).
Since we are interested in solving large-scale problems,

we must realize that the part of the code that reads the
dataset at the start of the program cannot store it in cache
because of its size. Accessing to the trait and SNP values
is thus slow and must be avoided as much as possible. For

this reason, the three columns of interest (Traiti, SNPlj and
SNPrj) will be passed by value and not by reference to the
function. In this way, an explicit local copy of them will
be performed, on which the function will be able to work
faster.
Different options are implemented at the different steps

of the computation of Ti,j, depending on the nature of
the trait (e.g. [8,14,15]). Figure 4 illustrates the three
main steps involved in the statistics computations, in
the case of a case-control or cohort design and a binary
(affected/unaffected) trait, without adjusting for main
effect, speeding up the computation time. Similar mecha-
nisms hold for other MB-MDR eligible scenario’s.

1. Generation of the affected-subjects and unaffected-
subjects matrices. These matrices are easily obtained
by performing a loop over the subjects of the dataset:
for a = 1, . . . n, if ca = 1 increment a cell of the
affected-subjects matrix, else a cell of the unaffected-
subjects matrix. The cell to be incremented depends
on the genotype: galj indicates which row of the
matrix has to be incremented and garj which column.

2. Generation of the HLO-matrix from the two
matrices generated at step 1. The value of each Rmn
elements depends on a test for association between
the trait and the genotype (SNPlj = m, SNPrj = n).
This can be a χ2 test with one degree of freedom in
the case of a binary trait, an F-test in the case of a
continuous trait, a log-rank test in the case of survival
data. However, the architecture of the software
makes it easy to implement other test statistics that
are appropriate for the data at hand. For binary traits,
the implemented test statistic is defined by

(ad−bc)2(a+b+c+d)
(a+b)(c+d)(b+d)(a+c) , where a and b refer to the
number of affected and unaffected subjects having
the genotype (SNPlj = m, SNPrj = n) and c and d
refer to the number of affected and unaffected
subjects having a different genotype. This statistic
follows a χ2 distribution. If we define NA and NU to
be the total number of affected and unaffected
subjects, those values are easy to compute:
a = Amn, b = Umn, c = NA − Amn and
d = NU − Umn. At this point, if either a + b or c + d
is below a threshold that is a parameter of the
program (default value 10) then the test is not
performed at all, since it would not be statistically
significant. In this case the value of Rmn will be set to
“O”, to indicate the absence of evidence that the
subset of individuals with multilocus genotype
(SNPlj = m, SNPrj = n) has neither a high nor a low
risk for disease. Otherwise, the test is performed.
When the computed χ2 value is not significant based
on a liberal significance threshold of 0.1 (default value
in the software), the value of Rmn will be set to “O”, to
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Traiti SNPlj SNPrj

c1 g1lj g1rj

c2 g2lj g2rj

… … …

cn gnlj gnrj

A00 A01 … A0N U00 U01 … U0N

A10 A11 … A1N U10 U11 … U1N

… … … … … … … …

AM0 AM1 … AMN UM0 UM1 … UMN

R00 … R0N

… … …

RM0 … RMN

HLO matrix

Ti,j

affected-subjects matrix unaffected-subjects matrix

Figure 4 Decomposition of the different steps of the computation of Ti,j. ca is 1 (0) if the ath subject is a case (control) for the ith permutation
of the trait. galj and garj are 0, 1 or 2 depending on the genotype of the ath subject for the jth pair. Amn and Umn are respectively the number of
affected/unaffected subjects, whose genotype gkl = m and gkr = n. Rmn is either “H” if the subjects whose genotype ism for SNPlj and n for SNPrj
have a high statistical risk of disease, “L” if they have a low statistical risk and “O” if there is no statistical evidence.

indicate that we cannot reject the independence
hypothesis. Otherwise, Rmn will be set to either “H” if
(ad − bc) > 0, to indicate that the population whose
genotype is (SNPlj = m, SNPrj = n) has a high risk of
having the trait, or to “L” if (ad − bc) < 0, to indicate
a low risk for this event.

3. Computation of Ti,j from the three matrices
generated at step 1 and 2. It consists in performing
two χ2 tests with one degree of freedom and
returning the maximum of both. The first one tests
association between the trait and the belonging to
the “H” category versus the “L” or “O” category. The
second one tests association between the trait and
the belonging to the “L” category versus the “H” or
“O” category. In the first (second) case, a and b are
respectively the number of affected and unaffected
subjects belonging to the “H” (“L”) category and c
and d to the “L” (“H”) or “O” category. Computing
this can be easily achieved by initializing a, b, c and d
to zero, and for each Rmn adding Amn to a and Umn
to b if Rmn = “H” (“L”) and Amn to c and Umn to d
otherwise.

In summary, this paragraph shows that to make this
methodology fast, reading the data of the subjects only
once during step 1 to create the affected-subjects and
unaffected-subjects matrices is a key. In this way, the test
statistic computation function can quickly start to work
on a very small part of memory that is in cache. The keys
that make step 2 and 3 fast are respectively the fact that
computing an Rmn value does not require any loop and the
fact that a single loop of nine iterations (in the bi-allelic
case) allows to calculate all the numbers needed in the χ2

formula.

Results and discussion
Here we present results for both simulated data and real-
life data.

Simulated data
In order to assess the speed performances of our
C++ software MBMDR-3.0.3, we created 4 different
datasets with 1,000 individuals each, of respectively 100
SNPs, 1,000 SNPS, 10,000 SNPs and 100,000 SNPs. To
assess significance of MB-MDR results, the number of
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Table 1 Two-locus penetrance table used to create the
strong signal

b/b b/B B/B

a/a 0 0.1 0

a/A 0.1 0 0.1

A/A 0 0.1 0

permutations was set to B = 999. Each dataset was con-
structed to contain a strong signal for the functional pair
[ SNP5, SNP10]. Table 1 states the two-locus penetrance
table used to generate the data. A balanced number of
cases and controls is sampled. The minor allele frequen-
cies of the functional SNPs were fixed at 0.5 and those of
the non-functional SNPs were generated randomly from
a uniform distribution on [0.05, 0.5]. This corresponds to
the first of six purely epistatic models discussed in [16].
A similar strategy was used to construct another set of
4 datasets, containing the same number of individuals
and SNPs as before, but expressing the trait on a contin-
uous scale instead of a binary one. MBMDR-3.0.3 finds
the strong signal in all datasets. Table 2 gives the execu-
tion times. Since the parallel workflow of MBMDR-3.0.3
was tested on a cluster composed of 10 blades, containing
each four Quad-Core AMD Opteron(tm) Processor 2352
2.1 GHz, the computation of the permutations was split
between 10×4×4 = 160 cores for this experiment. Table 2
shows that our software is about two times faster for solv-
ing datasets for which the trait is expressed on a binary
scale, compared to datasets where the trait is expressed on
a continuous one. Finally, the results in Table 2 also show
that the execution time is approximately multiplied by 100
when the number of SNPs is multiplied by 10. This is log-
ical, since the computation time mainly depends on how
many test-statistics are computed, which in turn depends
on the quantity of pairs of SNPs, which is proportional to
the squared number of SNPs.

Crohn’s disease data
We apply our software to real-life data on Crohn’s dis-
ease [17,18]. Here, Caucasian Crohn’s disease patients

and healthy controls are genotyped using Illumina
HumanHap. Quality control tests are performed on these
data excluding SNPs and individuals with more than 5%
missing genotypes. Individuals with mean heterozygosity
outside the range of 31% to 38% are discarded. The gender
of the individuals is predicted from the mean homozygos-
ity on X markers and samples with contradiction between
the estimated and the recorded gender are excluded. SNPs
violating Hardy-Weinberg principle are discarded using a
χ p-value threshold of 10−4. Related individuals are iden-
tified using pairwise IBS tests and discarded as well. The
cleansing process give rise to a set of 1687 unrelated Cau-
casians (676 CD patients and 1011 healthy controls) and
311,192 SNPs.
For the purpose of this study, we use Biofilter.0.5.1

[19] as an additional data preparation step. It uses a
knowledge-driven approach to prioritize genetic mark-
ers in gene-gene interaction screening while reducing the
search space. In particular, Biofilter allows the explicit
detection and modeling of interactions between a large
set of SNPs based on biological information about gene-
gene relationships and gene-disease relationships. The
knowledge-based support for the models is attributed
by implication index, which is simply a number of data
sources that provide evidence of gene-gene interaction
or gene-disease relationship, and is calculated by sum-
ming the number of data sources supporting each of the
two genes and the connection between them (see [19] for
more details). In practice, to make the prioritization pro-
cedure in Biofilter more focused on CD, we apply a list
of candidate genes for CD (120 genes collected from the
publications [18,20-23]) and 160 groups (collected bas-
ing on selective search in Biofilter using keywords crohn,
enteritis, inflam, autoimmune, immune, bowel, gastroin-
test, ileum, ileitis, intestine, lleocolic, diarrhea, stenosis and
cytokine). Using this approach/analysis we ended up with
12,471 SNPs that we further analyze in MB-MDR.
Table 3 lists all theMBMDR-3.0.3 statistically significant

interactions for the Crohn’s disease data under investi-
gation. Note that these results are adjusted for testing
about 77 million pairs of SNPs. Table 4 shows the genomic

Table 2 Execution times ofMBMDR-3.0.3

SNPs MBMDR-3.0.3 MBMDR-3.0.3 MBMDR-3.0.3 MBMDR-3.0.3

sequential execution sequential execution parallel workflow parallel workflow

Binary trait Continuous trait Binary trait Continuous trait

100 45 sec 1 min 35 sec <1sec <1sec

1,000 1 hour 16 minutes 2 hours 39 minutes 38 sec 1 min 17 sec

10,000 5 days 13 hours 11 days 19 hours 1 hour 3 min 2 hours 14 min

100,000 ≈ 1.5 year ≈ 3 years 4 days 9 hours ≈ 9 days

The parallel workflow was tested on a cluster composed of 10 blades, containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. The sequential
executions were performed on a single core of this cluster. The results prefixed by the symbol “≈” are extrapolated.
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Table 3 SNP-SNP interactions having amultiple testing
corrected p-value< 0.05

First SNP Second SNP p-value

rs11209026 rs7573680 0.004

rs11465804 rs7573680 0.017

rs11209026 rs2064689 0.018

rs11209026 rs6911639 0.021

rs11209026 rs4766584 0.023

rs11465804 rs2064689 0.025

rs11465804 rs4766584 0.028

rs11465804 rs6911639 0.029

rs11465804 rs10849401 0.033

rs11209026 rs296513 0.037

rs1343151 rs2076756 0.04

rs11209026 rs10849401 0.044

rs11209026 rs7786745 0.048

rs11209026 rs4655683 0.048

location of SNPs involved in these interactions. A total of
13 out of 14 significant interactions involves rs11209026
or rs11465804. Both SNPs are located in the interleukin-
23 receptor (IL23R) gene, a known susceptibility gene
for CD. The SNP rs11209026 is a non-synonymous cod-
ing SNP (Arg381Gln substitution), while rs11465804 is
intronic and in strong linkage disequilibrium (LD) with
rs11209026 (r2=0.97). In the original GWA studies, these
two SNPs gave the most significant association signals
with p < 10−9. Given the strong correlation between
the SNPs, it is to be expected that all interactions found
for one SNP are also found for the other (Table 3). The
most significant interaction is between rs11209026 and
rs7573680 (p=0.004). The latter is an intronic SNP located
in HDAC4 (histone deacetylase 4). Figure 5 shows a syn-
ergy disequilibrium plot [24] for the SNPs listed in Table 3.
Such a plot is able to highlight disease-associated haplo-
types, as well as epistatically interacting loci with respect
to disease. Interestingly, when we adjust the MB-MDR
screen for main effects [9], no significant SNP pair is
relevant.

Discussion
Several studies have suggested that different signals
exist in IL23R, conferring risk or protection to Crohn’s
disease. A study by Taylor et al [25], where they aimed
to estimate the total contribution of the IL23R gene
to CD risk using a haplotype approach, showed that
the population attributable risk for these haplotypes
was substantially larger than that estimated for the
IL23R Arg381Gln variant alone. MBMDR-3.0.3 iden-
tified several “epistatic” signals from pairs of SNPs

Table 4 Location of the SNPs involved in a significant
SNP-SNP interaction

SNP Position Gene

rs11209026 chr1:67705958 IL23R

rs11465804 chr1:67702526 IL23R

rs7573680 chr2:240169077 HDAC4

rs2064689 chr1:67653010 IL23R

rs6911639 chr6:32978178 HLA-DOA

rs4766584 chr12:109663581 ACACB

rs296513 chr1:200906473 C1orf81

rs10849401 chr12:6273238 intergenic

rs7786745 chr7:18422684 intergenic

rs4655683 chr1:67611613 intergenic

rs1343151 chr1:67719129 IL23R

rs2076756 chr16:50756881 NOD2

Locations obtained by GenomeBuild 37.1.

located in the IL23R gene. It should be noted though
that epistasis signals on SNPs in LD are considered
to be non-synergetic. The MB-MDR discoveries on
Crohn’s disease also seem to give us a new working
hypothesis to expand on the current knowledge (histone
deacetylation). Indeed, histone deacetylation results in
a compact chromatin structure commonly associated
with repressed gene transcription (epigenetic repression),
and hereby plays a critical role in transcriptional regu-
lation, cell cycle progression and developmental events.

Figure 5 SD plot. Synergy Disequilibrium (SD) plot of potential
epistasis interactions between the loci indicated in Table 3.
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Although not known to physically interact directly, IL23R
and HDAC4 could be linked trough MAPK1/STAT3
signaling: MAPK1 has been shown to associate
with phosphorylate HDAC4 [26]. Protein phos-
phorylation regulates the corepressor activity of
the deacetylase. MAPK1 also acts as an impor-
tant activator of STAT3 (signal transducer and
activator of transcription 3) which is an essential reg-
ulator of immune-mediated inflammation. In addition,
the IL23/IL23R pathway modulates STAT3 transcrip-
tional activity, and recently it has been shown that
CD8+ T cells from Arg381Gln IL23R carriers showed
decreased STAT3 activation compared with WT CD8+
T cells [27]. It can thus be hypothesized that a balanced
action between the HDAC1/MAPK1 and IL23/IL23R
pathways, converging on STAT3 signaling, are impor-
tant for CD pathogenesis. The fact that no significant
SNP pairs remain, following an adjustment of the
MB-MDR screen for main effects (an observation that
already emerged after interpreting Figure 5) seems to
suggest that the significant results for the SNP pairs of
Table 3 are mainly induced by important main effect
players.
MBMDR-3.0.3 can accommodate a variety of study

designs and outcome types, can correct for important
lower order effects and satisfactory deals with the compu-
tational burden induced by highly-dimensional complex
data. In order to upscale the applicability of the MB-MDR
methodology towards genome-wide association interac-
tion analyzes, the method was implemented in C++ and
a new version of the maxT algorithm was incorporated.
This version requires an amount of memory that is inde-
pendent from the number of genetic effects to be investi-
gated. We were able to further reduce the execution time,
first by parallelizing the processes and second by opti-
mizing the test-statistic function capturing the degree of
association between a pair of SNPs and a trait. All of
these features, available in MBMDR-3.0.3, are promising
in the light of GWAI studies. Alternative approaches to
deal with execution time are proposed, for example GPU
[28] and cloud computing [29]. Used in conjunction with
MB-MDR, those methods could lead to very fast software
tool to solve GWAI studies problems.

Conclusions
In this paper we have presented the epistasis screening
software MBMDR-3.0.3. It is based on a new implemen-
tation of maxT. The main advantage of this improve-
ment, is that it solves memory problems for any kind
of analysis by becoming independent from the num-
ber of SNPs, without loss of power. We have also pre-
sented a fast implementation of a test-statistic function
indicating the association between the trait and a pair
of SNPs.

We have tested our program on simulated datasets
of increasing size. The parallel workflow was tested
on a cluster composed of 10 blades, containing each
four Quad-Core AMD Opteron(tm) Processor 2352
2.1 GHz and is able to analyze all pairwise gene-
gene interactions with a dataset of 100,000 SNPs
typed on 1000 individuals within 4 days and 9 hours,
using 999 permutations of the trait to assess statistical
significance.
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Liège, Belgium. 2Bioinformatics and Modeling, GIGA-R, University of Liège,
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