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SUMMARY 

Pollination is required for the cultivation in an agricultural context of many fruit, nut, vegetable and 

crops. European honey bees (Apis mellifera) are considered the most economically valuable 

pollinators for crop monocultures worldwide, followed by bumble bees (Bombus spp.). However, 

over the last decade unusually high honey bee colony losses have been reported. Several factors 

contribute to their decline, of which pathogens are the main culprits. We could confirm the presence 

of several parasites which were previously not known for Belgium. This included viruses (ALPV strain 

Brookings, AmFV, LSV and VdMLV), trypanosomatids (Crithidia mellificae and Lotmaria passim) and 

parasitic flies (Apocephalus borealis). Other pathogens were already reported from Belgian bumble 

bees, namely the neogregarine Apicysis bombi and the bacteria Spiroplasma apis and Spiroplasma 

melliferum, but remained ignored so far in honey bees.  

In this work, the pathosphere of Apis mellifera was extensively exploited. After the initial 

examination, we selected a few parasites for further characterisation. Our knowledge about most of 

these novel or neglected parasites is limited. For instance only few nucleotide sequences are 

available for some of them, such as A. bombi, A. borealis and AmFV. The transmission routes are also 

not yet known. Nevertheless, vertical transmission was proved for the viruses ALPV strain Brookings, 

LSV and VdMLV since we detected them in honey bee eggs. This demonstrates a vertical 

transmission, in accordance with previous studies on other viruses. Numerous of these pathogens 

were also discovered in solitary bees, caught nearby an apiary. Although solitary bees can suffer from 

honey bee parasites, as demonstrated for DWV and Nosema ceranae, spillover appears to occur in 

both direction. Indeed we detected SBV solely in solitary bees and not in honey bees. Nevertheless, 

solitary bees can also be infected by their specific pathogens. For the moment only microsporidians 

and fungi are known. 

The poor knowledge about some pathogens is demonstrated in this work since we could 

demonstrate that at least two trypanosomatids can infect honey bees and the presence of several 

novel LSV genotypes. Comprehensive characterisation revealed that a broad complex of related LSV 



 
 

genotypes exists in honey bees. We were able to assemble almost the entire genome of four LSV 

strains and observed high strain diversity.  Moreover, we could demonstrate several strains within 

single bee specimens. Soon after its initial report in the USA, LSVs were reported from other 

countries and even from other hosts. The negative strand intermediate, a marker for replication of 

ssRNA (+) viruses, was also detected in honey bees and the mason bee Osmia cornuta. Also 

replication of ALPV strain Brookings and VdMLV in honey bees was demonstrated for the first time, 

besides LSV replication in the solitary bee O. cornuta. Concluding, during this work it became clear 

that honey bees face more parasites, and in particular more viruses, than previously thought. 

 

  



 
 

SAMENVATTING 

 

Honingbijen worden wereldwijd ingezet voor de bestuiving van allerlei fruit en gewassen. De laatste 

decenia worden echter ongewoon hoge kolonie sterftes waargenomen op verscheidene continenten 

zonder een eenduidige oorzaak. Ook de Belgische bijenkolonies worden jaarlijks hard getroffen. 

Verschillende oorzaken dragen bij aan deze sterftes, maar vooral de bijenpathogenen spelen een 

belangrijke rol. In dit doctoraatswerk zijn een breed gamma aan pathogenen onderzocht in Belgische 

bijenkolonies. Dit leidde tot de ontdekking van parasieten die nog niet eerder vermeld werden voor 

België, waaronder virussen (ALPV stam Brookings, AmFV, LSV en VdMLV), trypanosomen (Crithidia 

mellificae en Lotmaria passim) en parasitaire vliegen (Apocephalus borealis). Sommige andere 

gevonden pathogenen werden al eerder in Belgische hommels gedetecteerd, zoals de neogregarine 

Apicystis bombi en de bacteriën Spiroplasma apis en Spiroplasma melliferum. Tot nu toe werden ze 

echter verwaarloosd als honingbij parasieten. 

De pathosfeer, het totale scala aan pathogenen die de honingbij infecteren, werd in dit 

doctoraatswerk grondig bestudeerd. Na prevalentie onderzoeken in verscheidene stadia 

selecteerden we aan aantal van hen om verder te karakteriseren. Onze kennis is immers beperkt 

wanneer het gaat om een aantal verwaarloosde of nieuw ontdekte soorten. De manieren waarop 

deze zich verspreiden is ook niet goed gekend. Zo konden we de virussen ALPV stam Brookings, LSV 

en VdMLV aantonen in honingbij eitjes, wat dus verticale transmissie aantoont. Velen van de 

honingbij pathogenen werden eveneens aangetoond in solitaire bijen die we in de buurt van een 

bijenstand collecteerden. Voor een aantal parasieten zoals DWV en Nosema ceranae is aangetoond 

dat ze ook andere (solitaire) bijen kunnen aantasten. Toch blijkt de transmissie in beide richtingen te 

gebeuren. Zo konden we SBV enkel in solitaire bijen aantonen en niet in honingbijen. Behalve de 

honingbij parasieten blijken solitaire bijen ook een specifieke patosfeer te hebben, maar momenteel 

zijn echter enkel microsporidiën en schimmels gekend. 



 
 

Onze gebrekkige kennis over sommige pathogenen is in dit werk aangetoond door de vondst van niet 

één, maar twee trypanosomen die honingbijen infecteren. Bovendien bleken er verscheidene LSV 

genotypen te bestaan. Door dit viraal complex verder te analyseren waren we in staat om het bijna 

volledige genoom van maar liefst vier stammen te achterhalen. Bovendien bleek er een hoge 

diversiteit te bestaan, zelfs in één enkele bij. Nadat we LSV in enkele solitaire bijensoorten hadden 

aangetoond, konden we zelfs replicatie van dit virus aantonen in honingbijen en in de gehoornde 

metselbij (Osmia cornuta). In de loop van dit doctoraatswerk werd dus duidelijke dat de pathosfeer 

van honingbijen uitgebreider is dan voordien verwacht. 
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CHAPTER 1: 

 

GENERAL INTRODUCTION 

 

1. Honey bee colony collapses 

The famous quote “If the bee disappears from the surface of the earth, man would have no more 

than four years to live” is attributed to Albert Einstein. Although he probably never said this, honey 

bees (Apis mellifera) are considered the most valuable pollinators for crop monocultures, like fruit, 

nuts and vegetable crops. The annual worldwide value of insect pollination to agriculture is 

estimated at € 153 billion (Gallai et al., 2009).  

In the last decade unusually high honey bee colony losses were reported in Europe (Potts et 

al., 2010) and North America (vanEngelsdorp et al., 2008). In addition, a recent European survey on 

honey bee health revealed that the Belgian colony mortality in winter 2012-2013 was the highest of 

all member states (Figure 1) (Chauzat et al., 2013). While beekeepers in the USA have suffered high 

losses since 2004, the colony collapse disorder (CCD) phenomenon was first reported in 2006 

(Holden, 2006). A strict definition of CCD has been proposed (Cox-Foster et al., 2007; vanEngelsdorp 

et al., 2009): (i) rapid loss of adult workers as evidenced by large amounts of capped brood within a 

collapsing colony, (ii) when workers remain, they appear young and the queen is present, (iii) lack of 

dead workers within or proximal to collapsed colonies, (iv) ample food stores in collapsed colonies, 

(v) delayed invasion by other hive pests and (vi) collapsing colonies did not have damaging levels of 

the ectoparasitic  mite Varroa destructor and/or the microsporidian endoparasite Nosema spp. at the 

time of collapse. At present, CCD has been only documented in the USA (Cox-Foster et al., 2007) and 

in Switzerland (Dainat et al., 2012b) although unusually high colony losses are observed in many 

countries across the Northern hemisphere. Initially, researchers thought to be dealing with only one 

ethiological agent but most known bee killers, like parasites and pesticides, could be eliminated 
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(Stokstad, 2007). Though, extensive colony losses have occurred repeatedly at different continents 

during the history of beekeeping. The first documented record of colony collapses appeared in 1869. 

Although many causes have been proposed in the past for these losses, none has been assigned with 

certainty (Underwood and vanEngelsdorp, 2007).  

An unbiased metagenomic study revealed many pathogens in bee samples, and indicated 

Israeli Acute Bee Paralysis Virus (IAPV) as a marker for CCD (Cox-Foster et al., 2007). Nevertheless, 

this was not confirmed in a follow-up broad holistic screening (vanEngelsdorp et al., 2009). Several 

studies revealed a high pathogen load in samples from collapsed colonies (Cornman et al., 2012; Cox-

Foster et al., 2007; vanEngelsdorp et al., 2009), but is not clear whether this is a primary or a 

secondary effect. In conclusion, there is a currently consensus that no single explanation can be given 

for these losses, and that there are several contributory factors. Causes can differ in the different 

continents because of the tradition of massive migratory beekeeping in the USA, in contrast to 

Europe. 

 

Figure 1: Winter mortality rates during 2012-2013 in the member states of the European Union 

(Chauzat et al., 2014). 
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2. Pathogenic drivers of honey bee declines 

Numerous parasites will be discussed in this section. A target species is included if it meets one of the 

following criteria: (1) known marker for honey bee mortality, (2) neglected parasite (which may 

contribute to the decline) and (3) parasite occurring in Europe. This implicates that several pathogens 

are not discussed, although they can be emerging threats to apiculture elsewhere like the small hive 

beetle (Aethina tumida) and Tropilaelaps mites. 

2.1 Mites (Acari: Varroidae) 

2.1.1 Varroa destructor 

Publications before the year 2000 about Varroa mites on A. mellifera refer to Varroa jacobsoni, 

which appeared to be a complex of two related species. The ‘true’ V. jacobsoni is restricted to the 

Malaysia–Indonesia region, where it parasitizes on Apis cerana. On the other hand, V. destructor 

infests A. cerana in mainland Asia and A. mellifera almost worldwide (Anderson and Trueman, 2000). 

Currently, Australia is the only country free of V. destructor. The mites are also absent in parts of 

Norway (Dahle, 2010) and some islands of Hawaii and New Zealand (Martin et al., 2012; Mondet et 

al., 2014). 

A female mite will enter a brood cell with a last instar honey bee larva. Approximately 70 

hours after capping of the cell, the first egg is laid. This is unfertilised, so it develops into a male. 

Afterwards, fertilised female eggs will be laid in intervals of 30 hours. The male develops first and 

starts mating when the nymphal females are molted into adults, so reproduction occurs within the 

brood cell. One mite will reproduce approximately five eggs in worker brood and six eggs in drone 

brood (Figure 2). The offspring passes through two nymphal stages; protonymph and deutonymph, 

before molting into an adult (Rosenkranz et al., 2010). 

The Varroa mite feeds on the hemolymph of last instar larvae, pupae and adult bees. This 

causes a serious weight loss and reduced life span (Rosenkranz et al., 2010). Moreover, this 

infestation has a severe impact on honey bee health by suppressing antimicrobial peptides and 

immunity-related enzymes (Navajas et al., 2008; Yang and Cox-Foster, 2005). 
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Figure 2: The reproductive cycle of V. destructor within the sealed honey bee worker brood cell 

(Rosenkranz et al., 2010). 

 

However, the most important consequence is that V. destructor can transmit several viruses 

(Chen and Siede, 2007). Even viral replication was demonstrated in Varroa mites (Di Prisco et al., 

2011; Ongus et al., 2004). 

Without treatment, a colony will collapse within two years (Rosenkranz et al., 2010). The 

Varroa mite has been indisputable assigned as a key factor in recent colony losses (Dainat et al., 

2012a; Genersch et al., 2010; Guzman-Novoa et al., 2010; Schafer et al., 2010; van Dooremalen et al., 

2012). Moreover, Norwegian beekeepers reported significantly fewer losses in regions without 

Varroa (Dahle, 2010). 

2.1.2 Acarapis woodi 

This mite is an internal parasite of the respiratory system, which feeds on the hemolymph. 

Infestation of Acarapis woodi can cause obstructions of the trachea, lesions and hemolymph 

depletion (Sammataro et al., 2013). It is considered to be associated with poor winter survival 

(McMullan and Brown, 2009; Otis and Scott-Dupree, 1992). Acarapis mites were associated with 

recent A. cerana collapses in Japan (Kojima et al., 2011). This mite has been reported almost 

worldwide (Ellis and Munn, 2005). Although it was thought to be diminishing due to Varroa 

treatments, A. woodi was recently detected in Japan (Kojima et al., 2011) and Spain (Garrido-Bailon 

et al., 2012). 
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2.2 Viruses 

2.2.1 Introduction 

Viruses can infect all organisms, from animals to bacteria. Those viruses infesting honey bees are 

positive sense single-stranded RNA viruses, with the exception of the DNA viruses Apis mellifera 

Filamentous Virus (AmFV) and Apis Iridescent Virus (only detected in A. cerana). The positive sense 

implicates that the RNA can be immediately translated into viral proteins. Replication requires an 

infected host cell, where the genome is copied to a negative-stranded intermediate. This serves as a 

template from which new viral genomes are copied. Several virus families can be distinguished, 

based mainly on the gene arrangement (Figure 3). 

 

Figure 3: Genomic maps for the different virus families known to infect honey bees (deMiranda 2010). 

 

Dicistrovirises have a dicistronic RNA genome. This implicates that two non-overlapping open 

reading frames (ORFs) are separate from each other by an internal ribosomal entry site (IRES), in 

contrast to the monocistronic Iflaviruses. Their structural proteins are located at the N-terminus and 
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the non-structural proteins at the C-terminus. This order is reversed in the Dicistrovirus genome. 

Several functional domains were identified in both genomes, which led to the formation of the order 

Picornavirales, comprising the genera Iflavirus and Dicistrovirus, among others (Le Gall et al., 2008). 

The non-structural proteins include RNA-dependent RNA polymerase (RdRP), helicase, protease, 

genome-linked viral protein (VPg) and leader protein (Lp). They are involved in translation of viral 

proteins and virus replication, except Lp and Vpg. The latter is attached to the 5’ end and is involved 

in the RNA stabilisation, like the CAP in the CBPV RNAs. The Lp has probably a protease function but 

is very variable in amino acid sequence. The genome of Picornavirales encodes four structural 

proteins (VP1-4). Three related proteins (VP1-3) determine the virion capsid. They are unrelated to 

the small protein VP4, which is probably cleaved from the polyprotein (Le Gall et al., 2008).  

The Varroa destructor Macula-like Virus (VdMLV) is included in the Tymoviridae. The genome 

consists of around 6,500 nucleotides and encodes for one coat protein.  Several replication 

associated proteins are also present in the genome, in addition with two proteins with unknown 

functions (deMiranda, unpublished information). 

Chronic Bee Paralysis Virus (CBPV) is not officially assigned to a genus. Its genome contains 

two RNA strands: RNA 1 (3,674 nucleotides in length) and RNA 2 (2,305 nucleotides). These RNAs 

have a 5’ CAP structure and are not polyadenylated at the 3’ end, in contrast to the other honey bee 

viruses. Analysis of the RNA 1 and 2 sequences predicts respectively three and four overlapping open 

reading frames (ORFs). One of them, ORF 3 on RNA 1, encodes for a RdRP (Olivier et al., 2008). Lake 

Sinai Virus (LSV) has not been officially assigned to a genus either. Their genomes vary between 

5,355 (LSV2, Genbank: HQ888865) and 5,508 nucleotides (LSV1, Genbank: HQ871931) (Runckel et al., 

2011). They have overlapping ORFs, coding for RdRP, one capsid protein and one protein with 

unknown function (ORF1).   Although originally no similarities were found for the unknown CBPV and 

LSV ORFs, homologues with Alphavirus methyltransferase-guanylyltransferase and virion proteins 

were recently reported (Kuchibhatla et al., 2014). 
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2.2.2 Transmission routes 

Most bee viruses usually persist as ‘covert’ infections, without disease symptoms, in strong and 

healthy colonies. Due to external factors like parasite pressure, they can convert into ‘overt’ 

infections with high viral levels and obvious symptoms. Viruses can be transmitted both horizontally 

and vertically (figure 4). The spread between bees from the same generation is called horizontal 

transmission, which includes oral transmission and mite-vectored transmission. Transfer from the 

parents towards their offspring, via eggs or semen, is called vertical transmission. Several studies 

showed that honey bee viruses can be transmitted through both pathways (reviewed by deMiranda 

(deMiranda et al., 2011)). The different transmission routes can cause a rapid spread of these viruses 

in the dense colony. Although the Varroa mite is considered as an important transmitter, honey bees 

themselves spread viruses by feeding and cleaning. Although there are some reports about contact 

and airborne transmission (Bailey et al., 1983; Lighthart et al., 2005), little is known about this in 

comparison to the other routes. The queen can pass on viruses to her offspring when the ovaries or 

spermatheca become infected.  

 

Figure 4: Diagram describing the different possible transmission routes for honey bee viruses 

(deMiranda et al., 2013). 
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2.2.3 Deformed Wing Virus 

Deformed Wing Virus (DWV) is part of a complex consisting of the three related viruses: DWV, 

Kakugo Virus (KV) and Varroa destructor Virus-1 (VDV-1) (deMiranda and Genersch, 2010). The 

genomes of these Iflaviruses consist of around 10,000 nt (Fujiyuki et al., 2006; Lanzi et al., 2006; 

Ongus et al., 2004). Since these viruses have a high sequence similarity, they are mostly considered 

as strains of one virus. Most nucleotide differences are located in the Lp gene, which is a variable 

region (deMiranda et al., 2010). Besides, several recombinants between VDV-1 and DWV have been 

reported (Moore et al., 2011; Wang et al., 2013; Zioni et al., 2011). A phylogenetic analysis of DWV 

samples from diverse geographical origins revealed a highly conserved genome (Berenyi et al., 2007). 

Nevertheless, the Lp gene was not included in this study. DWV has a high prevalence in many 

countries nowadays (De Smet et al., 2012; Tentcheva et al., 2004), but before the Varroa invasion it 

was mainly present as a covert virus. The recent infestation of V. destructor across parts of Hawaii 

demonstrated a huge decrease of DWV diversity and prevalence, leading to the predominance of one 

strain (Martin et al., 2012). Later on, the strain domination was experimentally confirmed after 

Varroa-mediated or oral transmission (Ryabov et al., 2014).  

 

Figure 5: Adult honey bee with deformed wings and a phoretic Varroa mite (Genersch and Aubert, 

2010). 
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Distinctive symptoms can be caused by DWV in adult bees. The high virus levels are 

associated with shrivelled wings (Figure 5), increased mortality and learning deficits (deMiranda et 

al., 2010). Wing deformities were also observed in a Varroa-free colony, although DWV was only 

present in low quantities (Forsgren et al., 2012). Nevertheless, several studies showed that winter 

colony collapses are strongly associated with the amount of DWV present in the bees (Dainat et al., 

2012a; Genersch et al., 2010; Highfield et al., 2009) 

2.2.4 Acute Bee Paralysis Virus 

Acute Bee Paralysis Virus (ABPV) is one of the first described honey bee viruses, although it was 

serendipitously discovered during Chronic Bee Paralysis Virus (CBPV) research. ABPV, Kashmir Bee 

Virus (KBV) and Israeli Acute Paralysis Virus (IAPV) are closely related viruses, which are well 

separated in phylogenetic analyses. Still, several genetic ‘groups’ can be distinguished in particularly 

for IAPV (Chen et al., 2014; Palacios et al., 2008). The genomes of these Iflaviruses comprise around 

9,500 nt and are polyadenylated (deMiranda et al., 2004; Govan et al., 2000; Maori et al., 2007). 

An overt infection causes a rapid paralysis, trembling and inability to fly, eventually followed 

by death one day after paralysis. All members of this viral complex have been associated with V. 

destructor (deMiranda et al., 2010a; Di Prisco et al., 2011; Shen et al., 2005). Prior to the arrival of 

Varroa, ABPV rarely caused colony collapses. The transmission enables ABPV to quickly kill both adult 

bees and pupae, leading to an inadequate replacement of adult bees. ABPV appears to be the most 

prevalent in Europe and South America, KBV in North America and New Zealand, and IAPV in the 

Middle East and Australia (deMiranda et al., 2010a). 

IAPV was initially identified as a predictive marker for colony losses in the USA (Cox-Foster et 

al., 2007). However, a retrospective study revealed that this virus was already present before the first 

colony collapse disorders were ever reported (Chen and Evans, 2007). In Europe, ABPV was linked 

with colony losses in Belgium, Germany and Switzerland (Berthoud et al., 2010; Genersch et al., 

2010; Nguyen et al., 2011) . 
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2.2.5 Other common viruses 

Several other honey bee viruses are commonly detected in surveys. Although most of them can 

cause clear clinical symptoms, colony collapses are not associated with these viruses.  

 

Figure 6: Disease symptoms of honey bee larvae infected with SBV (deMiranda et al., 2011). 

  

Black Queen Cell Virus (BQCV) contains a 8,550 nt polyadenylated genome (Leat et al., 2000). 

This iflavirus is lethal for queen larvae and prepupae. The initially yellow larva will rapidly turn dark 

following death, eventually also discolouring the cell walls. Symptomatic drone pupae have also been 

reported. This virus persists as asymptomatic infections in worker bees and brood (reviewed in 

deMiranda 2010).  

Sacbrood Virus (SBV) causes mortality in larvae, but adult bees can be asymptomatically 

infected. The infected larvae develops apparently normal, but they fail to pupate. During this molt, 

the larval skin will not be discarded. This causes an accumulation of fluid, so the larva will resemble a 

pale sac (Figure 6). Larvae which are not removed will dry out and form a scale. Infected adults 

forage earlier and have a reduced lifespan (deMiranda et al., 2011). Although this virus has no severe 

impact on Apis mellifera, several harmful genotypes have been described from Apis cerana (Choe et 

al., 2012; Nguyen and Le, 2013). SBV is one of the earliest sequenced honey bee viruses, with a 

genome of 8,832 nt (Ghosh et al., 1999). 
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Figure 7: Bees infected with CBPV type 1 (a) and type 2 (c), compared with a healthy 

individual (b) (Ribiere et al., 2008). 

CBPV causes paralysis of honey bees, like ABPV. Experimentally infected bees are 

symptomatic after 6 days, and die several days later. Two syndrome types have been reported (figure 

7). Type 1 causes a paralysis, abnormal wing trembling and bloated abdomen. These bees are unable 

to fly and crawl together, which can cause masses of dead bees in front of the hive. Type 2 bees are 

apparently healthy, but they become hairless, flightless and paralysed after which they die soon after  

(Ribiere et al., 2010). The virions are irregularly shaped, mostly ellipsoidal, and contain two RNA 

fragments. 

2.2.6 Enigmatic honey bee viruses 

Several other honey bee viruses have been reported whose genomes are not completely 

characterized or are rarely found. This includes the Bee Virus X-Y complex, Arkansas and Berkeley 

Bee Virus and Cloudy Wing Virus (Bailey et al., 1980a; Bailey et al., 1980b; Bailey and Woods, 1974; 

Lommel et al., 1985).  

In Europe, Slow Bee Paralysis Virus (SBPV) is only reported in Britain (Bailey et al., 1974) and 

Switzerland (deMiranda et al., 2010b). This is another lethal virus that causes paralysis of two pairs of 

legs after 12 days. SBPV has been associated with colony mortalities in Britain (Carreck et al., 2010). 

The genome of this Iflavirus is 9,500 nt and contains a polyadenylated 3’ end (deMiranda et al., 

2010b). 
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Genome sequences of Varroa destructor Macula-like virus (VdMLV), belonging to the 

Tymoviridae, were discovered during the characterisation of DWV. It is principally associated with 

Varroa mites, but appears to be very common in honey bees as well (deMiranda et al., 2011). The 

genome is not yet published but is around 6,500 nt.  

Apis mellifera Filamentous Virus (AmFV) is one of the few DNA viruses infecting honey bees. 

The virion is very large and contains a coiled nucleoprotein. Severely infected bees have a milky-

white hemolymph, but AmFV is not considered as harmful. The recently obtained AmFV  genome 

(Hartmann et al., unpublished)  suggests  that this virus  is  related  to  both  the  baculo-  and 

ascoviruses. It is probably very prevalent since AmFV is reported from several countries (Bailey et al., 

1981; Clark, 1978a; Sitaropoulou et al., 1989). 

By the use of unbiased molecular techniques, like next-generation sequencing, several novel 

honey bee viruses were discovered: Aphid Lethal Paralysis Virus strain Brookings, Big Sioux River 

Virus and Lake Sinai Virus (strains 1 and 2) (Runckel et al., 2011). Their pathology towards honey bees 

is not yet known. The canonical ALPV, isolated from an aphid, was characterised as a Dicistrovirus 

which is 9,812 nucleotides in length (van Munster et al., 2002). Later on, ALPV strains from honey 

bees and the pea aphid (Acyrthosiphon pisum) are proposed as isolates from a new species (Liu et al., 

2014). BSRV is another Dicistrovirus, but only reported from the USA (Runckel et al., 2011). The LSVs 

are not assigned to a genus, and appear to be very divergent (Cornman et al., 2012).  

2.2.7 Other hosts 

Several studies have reported the presence of honey bee viruses in other Hymenopteran hosts, 

mainly in bumble bees and social wasps. Concerning the viruses, it involved ABPV complex 

(Anderson, 1991; Bailey and Gibbs, 1964; Singh et al., 2010), BQCV (Peng et al., 2011; Singh et al., 

2010), CBPV (Celle et al., 2008), DWV (Furst et al., 2014; Genersch et al., 2006; Li et al., 2011; Singh et 

al., 2010) and SBV (Singh et al., 2010).  Most of these viruses were also retrieved in non-

Hymenopteran insects, like cockroaches (Blattodea) and earwigs (Dermaptera) (Levitt et al., 2013). 

Even replication could be demonstrated in some of them. However, these insects were sampled 
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nearby or within an apiary.  The detection rates are smaller when urban or arable sites are studied 

(Evison et al., 2012). 

2.3 Microsporidian pathogens 

2.3.1 Introduction 

An unusual group of eukaryotic, intracellular parasites is formed by the microsporidian. They are 

considered as the earliest diverging clade of fungi nowadays (Capella-Gutierrez et al., 2012; James et 

al., 2006). Microsporidia form solid spores which can survive outside the host cells. They contain 

several specialized structures like the polar tube and polaroplast involved in host cell invasion. The 

former is internally coiled and anchored at the apex of the spore (Figure 8A). The latter is a 

membranous structure that is incorporated in the polar tube during germination. In this stage the 

osmotic pressure builds up in the spore. This will cause the extrusion of the polar tube at a relative 

high speed which enables the parasite to pierce a nearby host cell, and delivers the sporoplasm 

intracellularly. At this merogonic stage, the parasite will reproduce vegetatively. Infected cells are 

enlarged by the proliferative cycles of the parasite.  Later on, the spore walls and organelles like the 

polar tube will develop in the sporogonic phase. The spores are released by rupture of the host cell 

(figure 8B) (Keeling and Fast, 2002). 

2.3.2 Microsporidia infecting honey bees 

Honey bees can be infested by two microsporidian parasites, i.e. Nosema apis and Nosema ceranae. 

The latter was originally described as a parasite of A. cerana (Fries et al., 1996). Later on, it was 

reported as an A. mellifera pathogen (Higes et al., 2006; Huang et al., 2007). It is suggested that N. 

ceranae has jumped to another host and spread worldwide due to transportation (Klee et al., 2007). 

However, retrospective analyses revealed that N. ceranae infected A. mellifera decades ago (Chen et 

al., 2008; Invernizzi et al., 2009; Paxton et al., 2007; Teixeira et al., 2013). This microsporidian is also 

known to infect several honey bee (Chaimanee et al., 2010; Suwannapong et al., 2011) and bumble 

bee species (Furst et al., 2014; Graystock et al., 2013; Li et al., 2012; Plischuk et al., 2009). Lately, it 
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was demonstrated that N. ceranae isolated from honey bees can be virulent towards bumble bees 

(Furst et al., 2014; Graystock et al., 2013). 

 

Figure 8: A) The internal structure of a N. ceranae spore by electron microscopy. D: diplokaryon, PF: 

coils of the polar tube. Scale bar = 0.5 µm.(Fries, 2006)  B) Light microscopy of fresh Nosema spores in 

water, scale bar = 10 µm (Fries, 2010). 

 

Several recent studies proposed an apparent displacement of N. apis by N. ceranae (Paxton 

2007, Martin-Hernandez 2007). However, N. ceranae infections appear to dominate the warmer and 

temperate regions, whereas N. apis is more common in colder climates (Martin-Hernandez et al., 

2012; Martin-Hernandez et al., 2007; Williams et al., 2008). Both species seem to have different 

seasonal patterns (Martin-Hernandez et al., 2012; Runckel et al., 2011).  

The role of N. ceranae in causing colony collapse is still controversial (Fries, 2010; Higes et al., 

2013). Sudden colony collapses in Spain were attributed to N. ceranae infection (Higes et al., 2008; 

Martin-Hernandez et al., 2012), but these observations were not confirmed in any other countries 

(Gisder et al., 2010; Invernizzi et al., 2009). At the individual level, infestation of this parasite can 

cause a decreased longevity (Martin-Hernandez et al., 2011) and several sub-lethal effects (Higes et 

al., 2013).  



Chapter 1 

21 
 

2.4 Protists 

2.4.1 Introduction 

Protists are defined as “eukaryotic organisms with unicellular, colonial, filamentous, or 

parenchyniatous organization that lack vegetative tissue differentiation, except for reproduction” 

(Adl et al., 2005). It is a large and very diverse group, whose higher level classification was recently 

revised (Adl et al., 2012). A few unrelated protists have been detected in honey bees.  

2.4.2 Trypanosomatid parasites 

The Trypanosomatida is an order of widespread parasites, belonging to the class Kinetoplastea 

(phylum Euglenozoa). Kinetoplastea are characterised by kinetoplast DNA, a network of condensed 

mitochondrial DNA (Adl et al., 2012). In addition, they contain some unusual features like RNA 

editing, trans-splicing and nucleotide modification (Simpson 2006 and references therein). Some 

groups complete their lifecycle in one host (monoxenous), others like the human parasites 

Trypanosoma spp. and Leishmania spp. require a second host (dixenous) (Lukes et al., 2014). 

Trypanosomatida contain one flagellum, which exits the cytoplasm through asmall invagination of 

the plasma membrane, the flagellar pocket. This is involved in many cell processes (Field and 

Carrington, 2009). Trypanosomatids can change their morphology during their life cycle. 

Monoxenous insect  trypanosomatids  are  predominantly  found  in  the gut, where they mostly 

attach to the wall (Wallace, 1966). 

Honey bees can be parasitized by trypanosomatids, although these have been little studied. 

Crithidia mellificae (family Trypanosomatidae) was described in 1967 (Langridge and Mcghee, 1967), 

but remained neglected until molecular markers became available (Schmid-Hempel and Tognazzo, 

2010). Investigations were further boosted by a recent cell culture (Runckel et al., 2011) and the 

corresponding draft genome (Runckel et al., 2014). Its current role in colony collapses is unclear, 

despite the fact that the related bumble bee pathogen Crithidia bombi is known to have serious 

effects, particularly under starvation conditions (Brown et al., 2000; Brown et al., 2003).  
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2.4.3 Neogregarine pathogens 

Gregarines (subclass Gregarinasina) are protists belonging to the class Conoidasida, phylum 

Apicomplexa). This phylum is characterized by the apical complex, an assemblage at the apical end of 

the infectious stage. This structure is essential for gliding motility and invasion of the host cell 

(Gubbels and Duraisingh, 2012). Most apicomplexans also contain an apicoplast, consisting of circular 

extrachromosomal  DNA. It encodes for genes of several essential metabolic pathways (McFadden, 

2011). The ethiological agents of the human diseases malaria (Plasmodium spp.) and toxoplasmosis 

(Toxoplasma gondii) are apicomplexan pathogens. Gregarines on the other hand infect only 

invertebrates. Ingested oocysts release four or more sporozoites, which penetrate the gut into the 

body cavity and infect the appropriate tissue. They feed and develop into trophozoites. When a male 

and a female are matured, they pair up and develop into gamonts. They associate to form a 

gametocyst, which is released from the host. After the cell wall formation this gametocyst divide into 

numerous gametes. Pairs of them will fuse into zygotes, which will become oocysts (Kuriyama et al., 

2005). The taxonomy was recently revised, which led to the invalidity of the former order 

Neogregarinorida (Cavalier-Smith, 2014). 

The gregarine Apicystis bombi (family Lipotrophidae, order Arthrogregarida) is reported from 

several bumble bee species where it develops in the fat body (Lipa and Triggiani, 1996; Macfarlane et 

al., 1995). Although it was once found in honey bees in 1996 (Lipa et al., 1996), publication of the 

following report lasted until 2011 (Plischuk et al., 2011) after a molecular detection method became 

available (Meeus et al., 2010). This parasite can inhibit foraging, reduce the productiveness and 

increase queen mortality in bumble bees (Rutrecht and Brown, 2008). Little is known about its 

seasonality and virulence in honey bees. 

2.5 Bacteria 

Honey bees harbour an extensive range of commensal or beneficial bacteria, comprising a consistent 

microbiota in the gut (Martinson et al., 2011), with several phylotypes present in every honeybee 

(Moran et al., 2012). These bacteria belong to a diverse number of bacterial classes. Recently, a 
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diverse lactic acid bacterial flora was discovered within the honey stomach (Olofson 2008). Besides 

this microbiota, some pathogenic bacteria can be present in honey bees.  

Paenibacillus larvae and Melissocccus plutonius, both belonging to the phylum Firmicutes, 

cause respectively American and European foulbrood which are lethal diseases of the larvae 

(Forsgren, 2010; Genersch, 2010). They are deleterious for the colony and notifiable in many 

countries. Honey bee colonies need to be certified that they are free of American foulbrood in the 

context of import and export. 

Spiroplasmas are situated in the Mollicutes class, characterized by the absence of a cell wall. 

They are related to the genus Mycoplasma, which contains several human pathogens. Spiroplasmas 

infect the gut and can penetrate it to subsequently invade the hemolymph (Gasparich, 2010). Two 

spiroplasma species can lethally infect honey bees (Clark, 1978b; Mouches et al., 1984; Mouches et 

al., 1982), namely Spiroplasma apis (Mouches et al., 1983) and Spiroplasma melliferum (Clark et al., 

1985). These spiroplasmas were both described decades ago, but a molecular detection method was 

only recently reported (Meeus et al., 2012). Despite the genome assembly of S. melliferum KC3 and 

the discovery of virulence factors in its proteome (Alexeev et al., 2012), its pathogenicity has not yet 

been made clear. Most of these bacteria appear to be commensals, but several arthropod diseases 

are attributed to spiroplasmas (Gasparich, 2010). 

 

3. Non-pathogenic drivers 

Although this PhD work is focussed on the relation between pathogens and honey bee colony 

collapses, some other factors can also contribute to these losses. They are here only briefly 

discussed, in contrast to the pathogenic drivers above. 

3.1 Pesticides 

Many pesticides are known to cause poisoning of honey bees by toxic dust or direct application. Their 

use is regulated by several laws and decrees to protect non-target species, so acute intoxications are 

seldom reported today. Nevertheless, there is growing evidence that they cause numerous severe 
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sub-lethal effects. Especially the effects of neonicotinoid insecticides have recently received 

considerate attention (reviewed by Blacquire and collegues (Blacquiere et al., 2012)). Apart from 

insecticides and fungicides from agricultural use, honey bees are also exposed to acarides. These 

pesticides originate mainly from beekeeping practices to control Varroa mites, but also from 

agricultural use. In some countries antibiotics are also used in beekeeping for treatment of 

nosemosis and foulbrood, but they are not permitted in the European Union (Reybroeck et al., 2012). 

The combination of all these chemicals can interact, causing a heightened toxicity (Johnson et al., 

2013). Most of these pesticides accumulate in beeswax due to their lipophilic structure. This might 

cause sub-lethal effects on the queen (Collins and Pettis, 2013; Pettis et al., 2004) and the developing 

larvae (Wu et al., 2011; Wu et al., 2012). 

3.2 Genetic variability 

The introduction of non-native subspecies, monoandric insemination methods and massive 

propagation of selective bee breeds seems to have reduced the genetic variability of honey bees, 

although there is conflicting evidence concerning the latter (Harpur et al., 2012). It is important to 

note that adequate genetic variability within the colony is important for the overall fitness and 

productivity of that colony (Mattila and Seeley, 2007; Tarpy, 2003). 

3.3 Nutrition 

Poor nutrition may be involved in colony declines. Both the quality and diversity of pollen can shape 

the honey bee health and immunity (Di Pasquale et al., 2013). Adequate nutrition reduces the 

susceptibility to parasites (Basualdo et al., 2014; Foley et al., 2012). However, this cannot reverse the 

severe effects of Varroa infestation (Alaux et al., 2011). 

 

4. Defence mechanisms against pathogens 

4.1 General immunity 

Defence levels against parasites are placed on different levels. Besides the individual defence 

pathways (humeral and cellular immunity), honey bees can interact behaviourally which results in a 
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‘social immunity’. This includes grooming, hygienic behaviour and task differentiation (Evans and 

Spivak, 2010). 

Since honey bees are susceptible to many pathogens, they have evolved several methods to 

control them. Insects have to rely on their innate immunity consisting of cellular and humoral 

immune defences. The honey bee genome encodes for four interconnected routes for responding to 

parasite exposure: the Toll, Immune Deficiency (Imd), Janus kinase/signal transducers and activators 

of transcription (Jak/STAT), and c-Jun N-terminal kinases (Jnk) pathways (Evans et al., 2006; Evans et 

al., 2010). However, the gene numbers of these pathways are severely reduced when compared with 

other insects like Drosophila melanogaster (Honeybee Genome Sequencing Consortium, 2006). An 

invading parasite can be recognized by microbe associated molecular patterns (MAMP) like 

peptidoglycan recognition proteins and Gram-negative binding protein. These proteins trigger the 

signaling pathways, leading to the activation of several effector molecules like antimicrobial 

peptides, prophenoloxidase (PPO) and thiolester-containing proteins (Evans et al., 2006).  

Cellular immunity can also be activated, but less is known about the cellular defences. 

Several hemocytes circulate in the hemolymph of honey bees. Nevertheless, the different subsets 

were only recently profiled by flow cytometry (Marringa et al., 2014). These cells can phagocytose 

single bacteria and form nodulations around bacterial aggregations. Larger pathogens are also 

encapsulated. These nodules and capsules can be melanized by effectors like PPO. Hemocytes also 

forms clots in response to wounding (Govind, 2008; Lavine and Strand, 2002), such as punctures from 

Varroa mites. 

4.2 Antiviral immunity 

In addition to the above pathways, RNA interference (RNAi) is an important mechanism of antiviral 

immunity. RNAi is involved in three related pathways, from which the silencing RNA pathway 

regulates double-stranded RNA (dsRNA) derived from exogenous or endogenous sources (figure 9). 

This dsRNA, originated from a replicating virus or a viral RNA with a secondary structure, will be 

recognized by Dicer proteins. These endoribonucleases cleave the RNA in smaller fragments of 20-25 
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double-stranded nucleotides, called small interfering RNA (siRNA). They are loaded into the RNA-

induced silencing complex (RISC), where the siRNA is unwinded and one strand is retained. This 

activated RISC will bind to complementary viral sequences, which are degraded by the Argonaute 

(AGO) RNases (Bronkhorst and van Rij, 2014; Kingsolver et al., 2013). 

Several homologue genes for RNA interference have been discovered in the honey bee 

genome. This includes Dicer, SID-1 and several RISC components like AGO and R2D2 (Honeybee 

Genome Sequencing Consortium, 2006).  Most work on honey bee immunity has been focused on 

bacterial pathogens (Cornman et al., 2013; Evans, 2004), but the immune response against other 

parasites like N. ceranae and C. mellificae were also elucidated (Chaimanee et al., 2012; Schwarz and 

Evans, 2013). Resistance mechanisms against viruses have recently received a lot of interest, mainly 

in Drosophila. Several studies indicated that the Imd, Jak/STAT and Toll cascades are activated in 

Drosophila melanogaster after viral infection (Costa et al., 2009; Dostert et al., 2005; Zambon et al., 

2005), along the RNAi pathway (Sabin et al., 2010).  

 

Figure 9: Overview of the siRNA pathway. A Dicer protein will cleave viral dsRNA in smaller 

fragments. After unwinding, one strand will be selected. When this bounds to complementary RNA, 

the RISC cleaves it, consequently inhibiting viral replication (Kingsolver et al., 2013)).  

 

Although only few members of the silencing RNA pathway in honey bees have been 

described, viral siRNAs from DWV, KBV and IAPV were recently discovered (Chejanovsky et al., 2014). 



Chapter 1 

27 
 

Also, the oral uptake of specific dsRNAs reduced the infection of DWV and IAPV (Desai et al., 2012; 

Hunter et al., 2010). However, some viruses are able to evade the RNAi response. A putative viral 

interference motive was recently identified in all members of the ABPV complex (Chen et al., 2014). 
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CHAPTER 2: 

 

OBJECTIVES 

 

The Laboratory of Molecular Entomology and Bee Pathology focuses on three research themes. The 

first is the study on the function and composition of venoms of bees and wasps. The second 

concentrates on the pathology of the honeybee due to viral, bacterial and parasitic agents and the 

last topic focuses on cellular and humoral immunity of insects. The study of honey bee pathology was 

launched more than ten years ago. This resulted in an important progress about our knowledge of 

American foulbrood, such as the taxonomy and diagnosis. Recently that research pillar was further 

extended to study the drivers that are responsible for the decline of honey bee colonies, and 

research-based corrective measurements for the beekeeping sector. This PhD is mainly situated in 

that last topic. 

This PhD thesis had two general objectives. The first objective is to perform a comprehensive survey 

of honey bee pathogens in Flanders.  The screened pathosphere included not only viruses, but also 

bacteria, protists and fungi. Secondly, we further explored two poorly studied pathogens, Lake Sinai 

Virus and Crithidia mellificae. The results addressing these topics are described in the following 

chapters, which were assembled in two parts. 

The objective of part 1 was the screening of numerous honey bee pathogens. In chapter 3 we 

developed the BeeDoctor, a MLPA-based tool, that allowed us to screen for  ten different honey bee 

viruses in one reaction. This BeeDoctor tool was used to survey the virus load in more than 360 

honey bee colonies. The same sample set was more extensively studied in chapter 4 to survey a 

parasitic fly (Apocephalus borealis), two well known microsoporidian parasites (Nosema apis and 

Nosema ceranae), newly described viruses (Aphid Lethal Paralysis Virus strain Brookings, Big Sioux 

River Virus, Lake Sinai Virus and Varroa destructor Macula-like Virus), neglected protists (Apicystis 
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bombi and Crithidia mellificae) and two infectious bacteria (Spiroplasma apis and Spiroplasma 

melliferum). These studies brought new insights in the Belgian honey bee pathosphere. We this 

knowlegede, we investigated their occurrence in solitary bees which is described in chapter 5 while 

in chapter 6 the vertical transmission of honey bee viruses was explored. 

The aim of part 2 was the in-depth characterization of some selected honey bee parasites. In chapter 

7 we investigated the diversity of trypanosomatids present in honey bees by genetic 

characterization, phylogenetics and ultrastructural analyses, which eventually led to the description 

of a novel species. Since no convenient identification method was available, high resolution melting 

and fragment length polymorphism were evaluated in chapter 8 to identify these trypanosomatids 

without the need for sequencing. Finally, the objective of chapter 9 was to gain insights in the 

diversity of LSV strains present in Belgium by genome sequencing, phylogenetics and negative strand 

detection.  
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CHAPTER 3 

 

BEEDOCTOR, A VERSATILE MLPA-BASED DIAGNOSTIC TOOL FOR 

SCREENING BEE VIRUSES 

 

 

The work presented in Chapter 3 was adapted from the following manuscript: 

 

L. De Smet, J. Ravoet, J.R. deMiranda, T. Wenseleers, M.Y. Mueller, R.F.A. Moritz, D.C. de Graaf. 

BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. Plos ONE, 2012, 7(10): 

e47953. doi: 10.1371/journal.pone.0047953. 

 

 

 

 

 

 

 

 

Contributions 

R.F.A. Moritz and D.C. de Graaf assisted with the study design. L. De Smet optimized the MLPA 

technique to detect honey bee viruses by designing RT-primers, probes and constructing of a specific 

ladder. J. Ravoet extracted the viral RNA and conducted the virus survey.  J.R. deMiranda performed 

the association analyses. M.Y. Mueller analyzed the MLPA amplicons using the QIAxcel platform. The 

manuscript was written by L. De Smet and was assisted by the co-authors through the writing phase. 
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1. Abstract  

The long-term decline of managed honey bee hives in the world has drawn significant attention to 

the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial 

role in this phenomenon, with the bee viruses being key players. Most of the currently characterized 

honey bee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA 

signatures are widely used to determine the viral load in honey bee colonies. High throughput 

screening for viral loads necessitates the development of a multiplex polymerase chain reaction 

approach in which different viruses can be targeted simultaneously. A new multiparameter assay, 

called “BeeDoctor”, was developed based on multiplex ligation-dependent probe amplification 

(MLPA) technology. This assay detects 10 honey bee viruses in one reaction. “BeeDoctor” is also able 

to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative 

strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA 

assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in 

honey bee populations. “BeeDoctor” was used for screening 363 samples from apiaries located 

throughout Flanders; the northern half of Belgium.  Using “BeeDoctor”, virus infections were 

detected in almost eighty percent of the colonies, with Deformed Wing Virus by far the most 

frequently detected virus and multiple virus infections were found in 26 percent of the colonies. 

 

2. Introduction 

Honey bees provide both honey and key pollination services to much of the world (Aizen and Harder, 

2009; Bos et al., 2007; Garibaldi et al., 2011). Overall pollinator populations, including wild and feral 

honey bee (Apis mellifera) populations, have been declining consistently worldwide due to a variety 

of causes (Biesmeijer et al., 2006). Annual losses of managed honey bee populations have also 

increased significantly during the last decades, highlighted by the recent dramatic mass colony losses 

in the USA due to Colony Collapse Disorder (CCD; (VanEngelsdorp et al., 2009)), as well as increased  

winter colony losses and reduced honey bee and queen vitality, largely due to pathogens and 
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parasites (VanEngelsdorp and Meixner, 2010), including mites (Varroa destructor, Acarapis woodi, 

Tropilaelaps spp.), microsporidia (Nosema spp.), fungi (chalkbrood; Ascosphaera apis), bacteria 

(American foulbrood (Paenibacillus larvae), European foulbrood (Melissococcus plutonius)), viruses, 

and pests (large wax moth Galleria melonella, small hive beetle Aethina tumidae) (Evans and 

Schwarz, 2011; Genersch, 2010). 

Recently the role of pathogenic viruses gained particular interest since they have been 

suspected to be important drivers of colony declines. Honey bees are host to between 12-20 viruses, 

depending on classification (Bailey L and Ball BV, 1991), most of which are positive strand RNA 

viruses belonging to the order Picornavirales (Mayo, 2002). Black Queen Cell Virus (BQCV) (Leat et al., 

2000) and the Acute Bee Paralysis Virus complex (deMiranda et al., 2010a), which includes Acute Bee 

Paralysis Virus (ABPV) (Govan et al., 2000), Kashmir Bee Virus (KBV) (deMiranda et al., 2004) and 

Israeli Acute Paralysis Virus (IAPV) (Maori et al., 2007), belong to the Dicistroviridae family. Deformed 

Wing Virus (DWV) (Lanzi et al., 2006) and its close relatives Varroa destructor  Virus-1 (VDV-1) (Ongus 

et al., 2004)) and Kakugo Virus (KV) (Fujiyuki et al., 2004), Slow Bee Paralysis Virus (SBPV) (deMiranda 

et al., 2010b) and Sacbrood Virus (SBV) (Ghosh et al., 1999) belong to the Iflaviridae family while 

Chronic Bee Paralysis Virus (CBPV) (Olivier et al., 2008) is related to the Nodaviridae (Runckel et al., 

2011). Several other known viruses, including Bee Virus X and Y (BVX; BVY), Cloudy Wing Virus (CWV), 

Apis mellifera Filamentous Virus (AmFV), Apis Iridescent Virus (AIV); Arkansas Bee Virus (ABV) and 

Berkeley Bee Picorna-like Virus (BBPV) remain to be fully characterized molecularly (deMiranda et al., 

2012), while on the other hand next-generation sequencing techniques have  identified several novel 

viruses (some of which may be the same as the uncharacterized viruses named above) and microbes 

(Cox-Foster et al., 2007; Runckel et al., 2011; Singh et al., 2010) through which the honey bee 

pathosphere has been expanded and this is likely to continue in the near future. Symptoms 

associated with specific viruses include wing deformities (DWV), hairless, dark, shiny bees (CBPV), 

swollen yellow larvae and/or dark-brown larva carcasses in the cells of worker-bees (SBV) or in queen 

cells (BQCV). Many virus infections also cause behavioural aberrations, such as shivering, paralysis, 
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disorientation, aggression or altered foraging preferences or changes in brood care (Aubert, 2008). 

The appearance of symptoms generally requires high virus titres; the result of close transmission 

within the colony. Most commonly however, viral infections in honey bees are low-medium titre and 

thus asymptomatic. An accurate diagnosis of such asymptomatic virus infections therefore requires 

molecular techniques.  

The detection of viral infections in honey bees is increasingly based on the detection of 

specific viral genomic nucleic acids. Since most (honey bee) viruses have RNA genomes, this means 

the detection of virus-specific RNA signatures. The most widely used method is reverse transcriptase 

quantitative PCR (RT-qPCR). Many individual RT-(q)PCR protocols have been described for the 

detection of specific honey bee viruses (review (deMiranda, 2008)) as well as several multiplex RT-

PCR approaches (Chen et al., 2004; Grabensteiner et al., 2007; Meeus et al., 2010). Multiplex 

detection approaches, where several targets are detected and quantified simultaneously, are 

increasingly important, both for reducing costs and more importantly for studying the complex 

interactions between different targets, which can include important host genes as well as RNA-based 

pathogens. However, the optimization of multiplex RT-PCR can pose several difficulties, including 

poor sensitivity and specificity, and/or preferential amplification of certain specific targets 

(Markoulatos et al., 2002). Furthermore, real-time multiplex assays are mostly restricted to detection 

of up to four or five targets in a reaction, depending on the number of channels available in the used 

PCR machine. Multiplex Ligation-dependent Probe Amplification (MLPA) is an amplification 

technique that allows simultaneous detection of up to 45 different targets with the use of a single 

primer set (Schouten et al., 2002). MLPA is based on the ligation of two adjacent oligonucleotides 

hybridizing next to each other on a single-stranded target template. The ligated oligonucleotides 

(‘probe’) serve as template for PCR-based amplification and detection. Apart from virus-specific 

sequences, each oligonucleotide (‘half-probe’) contains a universal tag, for simultaneous PCR-based 

amplification of multiple targets with a single PCR primer pair, and a non-specific stuffer fragment for 

generating controlled size differences between different targets. The different targets are identified 
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by size using electrophoresis. Because honey bee viruses are RNA viruses, a reverse transcription 

step is added prior to MLPA (RT-MLPA). MLPA and RT-MLPA assays have recently been developed for 

the simultaneous detection of several virus species causing central nervous system infections (Wolffs 

et al., 2009). Another application called RespiFinder™ tests differentially for fifteen respiratory 

viruses (Reijans et al., 2008). MLPA is also used for the detection of other pathogens like 

Mycobacterium tuberculosis (Bergval et al., 2008), bacterial species in oral biofilms (Terefework et 

al., 2008), Penicillium marneffei (Zhang et al., 2011) and different opisthorchid liver fluke species (Sun 

et al., 2011). 

Replication in positive-strand RNA viruses, such as many honey bee viruses, proceeds via the 

production of a negative-strand intermediate. Strand-specific RT-PCR was first developed for 

detection of negative-strand RNAs of viruses (Gisder et al., 2009; Yue and Genersch, 2005). However, 

strand-specific RT-PCR is very sensitive to false-positive results, primarily due to mis-priming and self-

priming of the RNA during reverse transcription (Haddad et al., 2007). These inadequacies have been 

addressed with a combination of additional steps, primarily by using tagged cDNA primers and 

purifying the cDNA from residual primer prior to PCR amplification (Boncristiani, Jr. et al., 2009; 

Boncristiani et al., 2009). The RT-MLPA is ideal for strand-specific detection of nucleic acids since it 

amplifies a probe (rather than the original target) that can only be produced in a strand-specific 

manner, through ligation of two oligonucleotide half-probes hybridizing to a complementary cDNA 

target. The ligase-65 used to ligate the two half-probes to each other is not active on RNA-DNA 

hybrids, thus avoiding possible false-positive results due to ligation of the half-probes that hybridize 

directly on target RNA of the same polarity as the cDNA to the opposite strand.  

Our report here shows the application of RT-MLPA for simultaneously detecting 10 targeted 

honey bee viruses. Two MLPA probe sets were developed which are able to detect selectively the 

positive strand RNA or the replicative negative strand RNA intermediate. The possibility to screen 

easily for replication will be valuable for studying virus replication and pathogenesis in naturally 

infected hosts. Because of its high sensitivity and specificity, the RT-MLPA assay is also a useful tool 
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for prompt diagnosis and epidemiological studies of viruses in honey bee populations. At last, we 

used this newly developed method in an epidemiological survey of honey bee viruses based on adult 

bee samples collected in Flanders during the summer of 2011. 

 

3. Material and Methods 

3.1 Samples 

All Flemish beekeepers were invited to participate in an epidemiological survey for virus screening; 

170 beekeepers accepted the invitation and submitted a total of 363 samples of 30 adult bees, 

collected in July 2011 at the entrance of colonies that seemed healthy and that were not (yet) 

treated against Varroa. Generally, each beekeeper sent two samples from their apiary. The bees 

were immediately frozen at -20°C until their shipment to the laboratory, where upon arrival they 

were stored at -80°C until RNA extraction. Excess bees were archived for long-term -80°C storage.  

3.2 Nucleic acid extraction 

To detect the positive strand viral RNA was isolated by using the QiaAmp Viral RNA mini kit (Qiagen). 

Individual whole adult bees were ground in a mortar in 1ml ice-cold PBS per bee. The extract was 

centrifuged at 14 000 x g and RNA was extracted from 140 µl of the liquid supernatant according to 

the manufacturer’s instructions, eluting the RNA in a final volume of 50 µl. In the negative strand 

detection mode the total RNA was isolated using the RNeasy lipid tissue mini kit (Qiagen) starting 

from one complete honey bee. The tissue was homogenized by mechanical agitation in a TissueLyser 

(Precellys) for 90 sec at 30Hz, in the presence of a pair stainless steel beads and 1ml QIAzol lysis 

reagent. The total RNA was isolated according to the recommendation of the manufacturer’s 

protocol, eluting the RNA in a final volume of 50 µl.  These RNA samples from individual bees were 

solely used to develop the MLPA analysis tool for positive- and negative-strand detection of multiple 

honey bee viruses. 

For the Flanders virus survey, 10 bees per colony were homogenized in a total of 5 ml PBS by 

mechanical agitation in a TissueLyser for 90 sec at 30Hz, in the presence of glass beads.  
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Table 1. Primers and half-probes used for detecting either the positive or negative (replicative) strand of different honey bee viruses and virus species 

complexes through RT-MLPA. The PCR sequence tags on each halfprobe are in lower-case letters, the non-specific stuffer sequences (for generating PCR 

products with pre-determined sizes) are shown in upper-case letters and the target-specific sequences are shown in underlined upper-case letters. Each 

RPO probe is 5’-phosphorylated (indicated by P-) to permit ligation of the 5’ end of the RPO to the 3’ end of the LPO.  

VIRUS STRAND FUNCTION SEQUENCE (5’-3’) SIZE (bp) 

  
(-)cDNA GCCCCGATCATATAAGCAAA 

 

 
+ (pos) (+)MLPA-LPO gggttccctaagggttggaCCGTAGCTGTTTCTGCTGCGGT 88 

CBPV 
 

(+)MLPA-RPO 
P-

ACTCAGCTCAGCTCGACGCTCAGAtctagattggatcttgctggcac 
 

  
(+)cDNA GAACATCCGGAACAGACGAT 

 

 
- (neg) (-)MLPA-LPO gggttccctaagggttggaTCTGAGCGTCGAGCTGAGCTGAGT 88 

  
(-)MLPA-RPO 

P-
ACCGCAGCAGAAACAGCTACGGtctagattggatcttgctggcac 

 

  
 

(-)cDNA TCACATTGATCCCAATAATCAGA 
 

  + (pos) (+)MLPA-LPO gggttccctaagggttggaTGACCGATTCTTTATGCAGCGAGCTCT 95 

DWV/KV 
 

(+)MLPA-RPO 
P-

TACGTGCGAGTCGTACTCCTGTGACAtctagattggatcttgctggcac 
 

VDV-1 
 

(+)cDNA GTGTGGTGCATCTGGAATTG 
 

  - (neg) (-)MLPA-LPO gggttccctaagggttggaGTTGTCACAGGAGTACGACTCGCA 95 

  
 

(-)MLPA-RPO 
P-

CGTAAGAGCTCGCTGCATAAAGAATCGGTtctagattggatcttgctggcac 
 

  
 

(-)cDNA (ABPV) CAATGTGGTCAATGAGTACGG 
 

  + (pos) (-)cDNA (KBV&IAPV) TCAATGTTGTCAATGAGAACGG 104 

ABPV 
 

(+)MLPA-LPO gggttccctaagggttggaCTCACTTCATCGGCTCGGAGCATGGATGAT 
 

KBV 
 

(+)MLPA-RPO 
P-

ACGCACAGTATTATTCAGTTTTTACAACGCCCtctagattggatcttgctggcac 
 

IAPV 
 

(+)cDNA TGAAACGGAACAAATCACCA 
 

  - (neg) (-)MLPA-LPO gggttccctaagggttggaCGAGCCGATGAAGTGTCTTGAGCCATGG 104 

  
 

(-)MLPA-RPO 
P-

GGGTATTGATCCTATTTGGAGTTTCCACATCATGtctagattggatcttgctggcac 
 

  
(-)cDNA CGGGCCTCGGATAATTAGA 

 

 
+ (pos) (+)MLPA-LPO gggttccctaagggttggaCTTCATGTTGGAGACCAGGTTTGTTTGCCGACTTACGGAA 122 

BQCV 
 

(+)MLPA-RPO 
P-

TGTCGTTAAACTCTAGGCTTTCCGGATGGCTTCTTCATGGtctagattggatcttgctggcac 
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(+)cDNA TTAAAAGCCCCGTATGCTTG 122 

 
- (neg) (-)MLPA-LPO gggttccctaagggttggaTCAGCGCAACAGAAGCCATCCGGAAAGCCTAGAGTTTAACG 

 

  
(-)MLPA-RPO 

P-
ACATTCCGTAAGTCGGCAAACAAACCTGCCTTATCTGGTtctagattggatcttgctggcac 

 

 
+ (pos) (-)cDNA CGCAAACACGACGAATTTTA 

 

 
+ (pos) (+)MLPA-LPO gggttccctaagggttggaCGTTCAATGGTCGAGATAGAAGCCACAGTAGAAGTATTACGCGCT 131 

SBPV 
 

(+)MLPA-RPO 
P-

TCTTGTGTTTTGGCTTATGGGCGTGGGCCTGATCTTCATTCAGCtctagattggatcttgctggcac 
 

  
(+)cDNA GGTGTCATAAACAGAATGACGAG 

 

 
- (neg) (-)MLPA-LPO gggttccctaagggttggaTCAGCGCAACACTCAGGCCCACGCCCATAAGCCAAAACACAAGAA 131 

  
(-)MLPA-RPO 

P-
GCGCGTAATACTTCTACTGTGGCTTCTATCTCGCCTTATCTGGTtctagattggatcttgctggcac 

 

  
(-)cDNA TGGACATTTCGGTGTAGTGG 

 

 
+ (pos) (+)MLPA-LPO gggttccctaagggttggaCGTTGATCCAATGGTCAGTGGACTCTTATACCGATTTGTTTAATGGTTGG 140 

SBV 
 

(+)MLPA-RPO 
P-

GTTTCTGGTATGTTTGTTGACAAGAACGTCCACCTTCAGCCATTCAGCtctagattggatcttgctggcac 
 

  
(+)cDNA CCTTACCTCTAGTAAGAAGACATTTGA 

 

 
- (neg) (-)MLPA-LPO gggttccctaagggttggaTAAAAAACTACCGTGTAGTGGACGTTCTTGTCAACAAACATACCAGAAA 140 

  
(-)MLPA-RPO 

P-
CCCAACCATTAAACAAATCGGTATAAGAGTCCACTGAAAAGTCGGTGGAtctagattggatcttgctggcac 

 

  
(-)cDNA TTTCATGGTGGATGGTGCTA 

 
β-Actin + (pos) (+)MLPA-LPO gggttccctaagggttggaGCAGGAAGTCGTTACCACCTGGCCCACGGAGCCAATTTCTCATGCTTGCCAACACTGTCCTTTCTGGAGGT 182 

  
(+)MLPA-RPO 

P-
ACCACCATGTATCCTGGAATCGCGAAAACGTGGTGTACCGGCTGTCTGGTATGTATGAGTTTGTGGTGAtctagattggatcttgctggcac 

 

  
(-)cDNA TGCTTTACCAATATGTTGATGATT 

 
RPL8 + (pos) (+)MLPA-LPO gggttccctaagggttggaTCGGTGAGACGTGGGAGGCGAAAATTGGCGTGTTGGCCTAAGGTTCGTGGTGTTGCTATGAAC 168 

  
(+)MLPA-RPO 

P-
CCTGTTGAACATCCACACGGTGGTGGTAATCATAACGTCCGGATGCTGAAGTGATGGCAGAGCtctagattggatcttgctggcac 

 

PCR PCR-Forward Gggttccctaagggttgga n.a. 

 
PCR-Reverse Gtgccagcaagatccaatctaga 
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The extract was centrifuged at 14 000 x g and RNA was extracted from 140 µl of the liquid 

supernatant using the QiaAmp Viral RNA mini kit according to the manufacturer’s instructions, as 

outlined above. 

3.3 Probe design 

MLPA probes and RT-primers were designed for 6 virus targets, covering the 10 most common honey 

bee viruses, and for two honey bee internal reference genes; β-actin and ribosomal protein 8 (RPL8), 

as positive controls for the quality of the RNA samples.  For each virus or virus-complex a pair of   

probes was designed following the guidelines described in the manual “Design synthetic MLPA 

probes” (MRC Holland, Amsterdam, The Netherlands). All probe pairs contain the same universal 

binding sites for the reverse PCR primer on the right probe oligo (RPO) and for the forward PCR 

primer on the left probe oligo (LPO). The probes were designed using the AlleleID software (PREMIER 

Biosoft) against the most conserved regions within each virus or virus family as determined by 

aligning all available gene sequences in the Genbank using Clustal X program. An additional selection 

criterion was the absence of mismatches within 5 nucleotides from the ligation site. The uniqueness 

of our selected probe sequences was inspected by BLAST analysis at the NCBI website 

(www.ncbi.nlm.nih.gov). The primers for cDNA synthesis were positioned immediately adjacent to 

the MLPA probe, with no more than 15 nucleotides between the last nucleotide of the RT primer and 

the first nucleotide of the probe sequence, and with a maximum overlap of 7 nucleotides. The RT 

primers were designed with Primer 3 software (http://primer3.sourceforge.net). All primers and 

probes were synthesized by Integrated DNA Technologies (Leuven, Belgium). The RPO should be 5’ 

phosphorylated and synthesized with ‘ultramers’ quality. The RT-primers, MLPA half-probes (LPO and 

RPO) and PCR amplification primers used in the experiments are listed in Table 1. 

3.4 MLPA reaction 

MLPA analysis was performed essentially as described earlier (Schouten et al., 2002). All the MLPA 

reagents were obtained from MRC-Holland (Amsterdam, the Netherlands). All reaction steps were 

performed in a thermocycler with heated lid (105°C) using 0.2 ml thin-walled PCR tubes. Briefly, 1 µl 
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RNA (between 10 – 500 ng total RNA), unless otherwise mentioned, was reverse transcribed using 30 

U MMLV reverse transcriptase (Promega) in a 6 µl reaction with 0.5 µl RT primer/dNTP mix consisting 

of 5 pmol/µl of the RT primer for each target virus and 5 mM dNTPs. After 1 min 80°C and 5 min 45°C 

the reverse transcriptase was added to reaction and was incubated for 15 min at 37°C and 

deactivated for 2 min at 98°C. A probe mix containing all half-probe oligos for either positive–strand 

detection or negative-strand detection was prepared containing 1.33 fmol/µl of each oligo.  

A mixture of 1.5 µl of the probe-mix and 1.5 µl of MLPA buffer was added to each RT reaction and 

hybridized overnight at 60°C after 1 min denaturation at 95°C. The hybridized probes were ligated 

together using the Ligase-65 enzyme in a 40 µl reaction at 54°C for 15 min followed by ligase 

inactivation at 98°C for 5 min. Subsequently, 10 µl of the ligation reaction was used as template for 

the PCR reaction, using the universal forward and reverse PCR primers (Table 1) in a total reaction 

volume of 50 µl. PCR amplification was performed for 35 cycles (30 s – 95°C, 30 s – 55°C and 1 min – 

72°C) with a final extension step at 72°C for 20 min.  

3.5 Analysis of PCR products 

The amplified MLPA products were analyzed on different detection platforms. The MLPA was 

optimized by analysis 10 µl of the MLPA reaction on 4% high resolution agarose gel electrophoresis. 

As alternative an aliquot of 10 µl was also analysed via capillary electrophoresis using a High 

Resolution gel cartridge on a QIAxcel platform (Qiagen, Hilden, Germany). For the Flanders virus 

survey study the MLPA reactions were analyzed using 4% high resolution agarose gel electrophoresis. 

3.6 Cloning and construction of specific MLPA ladder 

Fragments generated by the RT-MLPA reactions were desalted with MSB Spin PCRapace (Invitek) and 

subsequently cloned into pCR4-TOPO vector from TOPO TA Cloning Kit for sequencing (Invitrogen, 

USA) according to manufacturer’s instructions. The cloned inserts were sequenced on a ABI 3130XL 

platform using the vector primers. Positive constructs were used as template in a standard PCR 

reaction to amplify the expected MLPA reaction products. The concentrations of the different 

products were determined using a nanodrop ND-1000 spectrophotometer (Thermo Scientific). The 
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different products were mixed in equal amounts and 10 ng of each fragment was loaded on a gel as 

marker to simplify the interpretation of the results. 

 

4. Results and discussion  

The MLPA is a popular technique in the human genetics but, according to our knowledge, it has not 

yet been used in the field of veterinary virology. The multiplexing capacity of the technique is much 

higher than for PCR assays but far below the capability of microarrays. This medium-scale (1-40-fold) 

multiplexing ability makes MLPA extremely useful for the simultaneous screening of all honey bee 

viruses and its simplicity can facilitate widespread acceptance of the technique even in small size 

molecular laboratories. 

We designed an RT-MLPA approach to detect 6 targets simultaneously covering 10 common 

honey bee viruses: ABPV, BQCV, IAPV, KBV, DWV, KV, VDV-1, SBPV, SBV and CBPV. We opted for 

detection by agarose gel electrophoresis, although this part of the protocol can be easily transferred 

to other platforms, such as capillary electrophoresis or the Agilent Bioanalyzer. A spacer in the RT-

MLPA probes was included to adjust the final length of the specific RT-MLPA products so that they 

are separated by 7-9 nucleotide increments, for unambiguous identification of the fragments after 

electrophoresis (Figure 1A). For DWV, KV and VDV-1 we were not able to design specific probes as 

their sequences are too related and therefore a consensus probe set was developed for the entire 

DWV-complex. Similarly, a single consensus probe set was developed for the ABPV-complex of 

viruses (ABPV, KBV and IAPV). An overview of the probes is given in Table 1.  

The diagnostic capacity of the RT-MLPA-assay was tested on (RT-PCR) proven virus positive 

samples (Figure 1A). All amplicons were cloned and sequenced to confirm their identity. The 

specificity of the primers and the probes were tested by running all RT primers and MLPA probes in 

either a monoplex or a multiplex MLPA reaction with different samples. There was no cross-reactivity 

among the different probes and/or primers.  
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We constructed an MLPA ladder by mixing equimolar amounts from the different expected 

RT-MLPA amplicons each corresponding to a specific virus. These were amplified in a PCR reaction 

using the different pCR4-cloned RT-MLPA amplicons as templates. The use of this marker greatly 

facilitates the interpretation of the MLPA results after electrophoresis (Figure 1A). The sensitivity of 

the MLPA was tested using synthetic templates for DWV and BQCV. A serial dilution of these 

templates in total RNA from a non-infected honey bee showed that as few as 1000 copies can be 

detected with clearly discernible signals. 

 

Figure 1. High resolution analysis of MLPA amplicons using the Qiaxcel platform. A The result of a 

MLPA reaction on different samples from which the status was determined by RT-PCR. The status is 

indicated on top of each lane. The MLPA amplicons were analyzed via capillary electrophoresis using 

a High Resolution gel cartridge on a QIAxcel platform. Different amplicons of the MLPA ladder are 

indicated at the right site of panel A. B The result of a MLPA reaction on samples with clinical signs of 

DWV. Both strands, positive and negative strand intermediate could be determined (marked by arrow 

head). In lane 1 and 3 some weak nonspecific bands are present. In the RT-free control some non-

specific products were amplified. C A bee with DWV symptoms. 
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This detection limit is in accordance with the detection limit obtained in other studies (Reijans et al., 

2008; Wolffs et al., 2009; Zhang et al., 2011). However, too much template in the MLPA reaction can 

lead to lower detection signals due to inhibition of the PCR reaction (Schouten et al., 2002). 

Therefore it is recommended to reduce the initial amount of RNA in the RT-MLPA reaction to 100 ng, 

in order to minimize the chance of false-negative results. 

Well-designed MLPA probes have the ability to discriminate between single-nucleotide 

polymorphism (SNP) (Schouten et al., 2002). This means that the viral RT-MLPA probes require a 

more generic design, as viruses, especially RNA viruses, are generally highly variable due to their very 

high mutation rates (Schouten et al., 2002). Therefore, a major concern in the design of the RT-MLPA 

probes was the compatibility of virus-specific probes with as many known strains of each virus as 

possible. At the same time, however this generic design should not compromise the specificity of the 

probe. The probes were therefore positioned in well-conserved regions and no mismatch within 5 

nucleotides from the ligation site was tolerated. Although MLPA is widely used to detect SNPs, we 

tested the robustness of our MLPA technique for the presence of mismatches at the ligation site. We 

synthesized different templates which mimic the DWV target sequences but with either one or two 

mutations at the ligation point (i.e. the last nucleotide of the LPO and/or the first nucleotide of the 

RPO). These synthetic templates were used in the MLPA assay, using 5 ng template. Clear positive 

MLPA results were obtained with the template containing one mutation. The template with two 

mutations, either side of the ligation site gave very faint signals and the signal was lost completely 

when the ligation time was shortened from 15 min to 3 min, or when the final amplification step was 

prematurely aborted at 26 cycles. Other parameters of the MLPA which could influence the detection 

of mutant templates were also investigated. A positive result was obtained for all mutated templates 

when the amplification reaction was run for at least 30 cycles. Raising the hybridization temperature 

up to 66°C did not influence the results. For this particular diagnostic purpose, the detection of 

honey bee viruses, the insensitivity of the RT-MLPA reaction to nucleotide variations in the target 
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should be seen as an advantage. This makes the diagnostic power of the RT-MLPA approach even 

stronger.   

“BeeDoctor” is optimized to detect various honey bee viruses simultaneously. MLPA is able 

to multiplex up to 45 targets. Probes used in MLPA usually range between 80 to 400 nucleotides in 

length. Accurate chemical synthesis of MLPA probes is possible up to a length of approximately 180 

nucleotides (Stern et al., 2004). As we are using synthetic probes the number of targets in our 

approach will be limited to 15 to 20. Anyhow the multiplex power of this technique rises far beyond 

the multiplex power of a real-time quantitative PCR approach which is typically limited to four or five 

targets depending on the platform used. In order to test the quantitative potential of the assay, we 

selected two reference genes which were used frequently in honey bee virus research: β-actin and 

RPL8. A dilution series of DWV synthetic template was spiked into the RNA of non infected honey 

bees. Unfortunately we observed strong competition between the simultaneously amplified MLPA 

probes in this case β-actin and DWV probes and hence failed to establish this technique in a 

quantitative way. However this technique can be widely used in high throughput screening studies. 

By mixing synthetic templates mimicking the binding sites for DWV en BQCV we could show that the 

competition problem will not generate false negative results when multiple infected honey bees 

would be screened. Only the intensities of the generated product are influenced which makes 

quantification difficult. 

All positive-strand RNA viruses replicate and express their genomes through negative-strand 

RNA intermediates that are used as templates for the production of positive-strand progeny RNAs 

that are then packaged in new virion particles. Therefore, the presence of negative-strand RNA 

intermediates is a reliable marker for active virus replication in infected honey bees. It is also a very 

effective means to distinguish between active infections and the non-infectious, passive presence of 

virus particles, which is an important epidemiological distinction.  RT-MLPA is the ideal technique to 

selectively detect the positive strand genomic RNA or the negative-strand intermediate RNA, since an 

amplifiable probe can only be generated in a strand-specific manner, through the ligation of the two  
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Table 2: Prevalence, co-infection rates and the results of the association analysis of honey bee viruses 

in Flemish apiaries. 

   FREQUENCY TOTAL  ASSOCIATION  
    PREVALENCE ANALYSIS 

ZERO VIRUSES TOTAL 78 21,5%  n.a. 
      

ONE VIRUS ABPV 1 0,3% 3,3% n.a. 
 BQCV 14 3,9% 13,5% n.a. 
 CBPV 2 0,6% 1,7% n.a. 
 DWV 164 45,2% 69,4% n.a. 
 SBV 10 2,8% 19,0% n.a. 
 SBPV 0 0,0% 0,0% n.a. 
 TOTAL 191 52,6%   

     χ2
(1) 

TWO VIRUSES ABPV-BQCV 0 0,0% - 0,06n.s. 

 ABPV-CBPV 0 0,0% - 0,06n.s 

 ABPV-DWV 9 2,5% - 0,04n.s. 

 ABPV-SBV 1 0,3% - 0,03n.s. 

 BQCV-CBPV 0 0,0% - 0,02n.s. 

 BQCV-DWV 23 6,3% - 1,79n.s. 

 BQCV-SBV 5 1,4% - 1,11n.s. 

 CBPV-DWV 2 0,6% - 0,00n.s. 

 CBPV-SBV 0 0,0%  - 0,00n.s. 

 DWV-SBV 45 12,4% - 2,19n.s. 

 TOTAL 85 23,4%   
     χ2

(3) 

THREE VIRUSES ABPV-BQCV-CBPV 0 0,0% - 0,53n.s. 

 ABPV-BQCV-DWV 0 0,0% - 4,47n.s. 

 ABPV-BQCV-SBV 0 0,0% - 1,10n.s. 
 ABPV-CBPV-DWV 1 0,3% - 0,42n.s. 
 ABPV-CBPV-SBV 0 0,0% - 0,24n.s. 

 ABPV-DWV-SBV 0 0,0% - 6,91P<0.10 

 BQCV-CBPV-DWV 0 0,0% - 1,86n.s. 

 BQCV-CBPV-SBV 0 0,0% - 1,12n.s. 

 BQCV-DWV-SBV 7 1,9% - 5,33n.s. 

 CBPV-DWV-SBV 1 0,3% - 1,94n.s. 

 TOTAL 9 2,5%   
     χ2

(9) 

FOUR VIRUSES ABPV-BQCV-CBPV-DWV 0 0,0% - 3,09n.s. 

 ABPV-BQCV-CBPV-SBV 0 0,0% - 2,22n.s. 

 ABPV-BQCV-DWV-SBV 0 0,0% - 9,04n.s. 

 ABPV-CBPV-DWV-SBV 0 0,0% - 5,94n.s. 

 BQCV-CBPV-DWV-SBV 0 0,0% - 4,81n.s. 

 TOTAL 0 0,0%   
     χ2

(21) 

FIVE VIRUSES ABPV-BQCV-CBPV-DWV-SBV 0 0,0% - 7,32n.s. 

 TOTAL 363 100,0%   
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half-probes hybridizing next to each other on a single-stranded cDNA target. Strand specific 

probes were developed (Table 1) and tested on the total RNA extracted from DWV infected honey 

bees showing clinical symptoms. In order to have a better recovery of negative strand intermediates 

from replicating viruses, RNA was isolated with RNeasy Lipid Tissue Mini kit. Samples from honey 

bees with deformed wings tested positive for the presence of the negative and positive strand 

(Figure 1B). No band of the correct size was obtained in the RT-free controls, for either the positive-

strand or negative-strand MLPA reaction (Figure 1B), showing that the NAD-dependent ligase-65 

used in RT-MLPA cannot ligate DNA probe oligonucleotides that are hybridized to RNA.  

The newly developed technique, “BeeDoctor”, was used in a survey of the prevalence and 

distribution of the targeted viruses in Flemish apiaries. This survey revealed that almost 80% of the 

samples were positive for at least one of the viruses screened for by “BeeDoctor” (Table 2). No virus 

was detected in 21.5% of samples, 52.6% of samples had only a single virus detected, with DWV the 

most common virus; 23.4% of samples had double infections, with DWV-SBV the most common 

combination, and 2.5% of samples had 3 viruses detected. There was no regional variation in 

prevalence for any of the viruses. Association studies (Table 2) shows that the double, triple, fourfold 

and fivefold infections are totally predictable from the individual prevalences of the different viruses. 

The occurrence of each virus is thus independent from the other viruses and this on all virus levels. 

The most prevalent virus was DWV, with 69.4% of colonies screened being positive for the 

presence of this virus. The high occurrence of DWV in A. mellifera has also been reported in several 

other countries (Antunez et al., 2006; Baker and Schroeder, 2008; Tentcheva et al., 2004). On the 

other hand, Spain had in 2006 and 2007 a very low prevalence of 18.6 and 5.9% respectively 

(Antunez et al., 2012).  

BQCV was detected in 13.5% of the colonies and is reported to have a variable prevalence in 

different colonies. The prevalence changes from 10 to 90% across Europe (Antunez et al., 2012; 

Antunez et al., 2006; Forgach et al., 2008; Tentcheva et al., 2004). SBV was present in 19% of the 

Flemish colonies which is high in comparison with 2% in Hungary, 1.4% in England and 1.1% in Spain 
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(Antunez et al., 2012; Baker et al., 2008; Forgach et al., 2008). However, in France and Uruguay 

detection rates of respectively 86% and 100% were reported (Antunez et al., 2006; Tentcheva et al., 

2004). CBPV was detected in only 1.7% of the samples which is in correspondence with the findings 

of Tentcheva et al. in France, who found a maximum frequency in colonies of 4%. These low 

frequency rates can be explained by the finding that CBPV might persist at undetectable levels in 

healthy colonies (Tentcheva et al., 2004). SBPV could not be detected which confirms the low natural 

prevalence of SBPV across a large part of Europe (deMiranda et al., 2010b). 

The prevalence of the virus complex ABPV, IAPV and KBV is also very low, with only 3.3% of 

the Flemish colonies infected. These three viruses are closely related and were detected 

simultaneously. The infection rate of 3.3% for the ABPV family is low as each of the viruses separately 

have higher prevalences in other European countries. ABPV is present in 29% of the colonies sampled 

in England while KBV was not detected (Baker et al., 2008). In Spain, 13% of the colonies was infected 

with IAPV in 2006 and 25,7% in 2007, while KBV was very low abundant in both years (<1%) (Antunez 

et al., 2012). In France ABPV was present in 58% of the colonies and KBV in 17% (Tentcheva et al., 

2004). 

In conclusion, in this study we developed an RT-MLPA approach to diagnose for the most 

common honey bee viruses in one single procedure. We were also able to develop a strand specific 

assay in which we can specifically screen for the negative strand intermediate as marker for effective 

virus replication. The multiplex power is an enormous advantage in comparison with other well 

established RT-PCR approaches. The “BeeDoctor” can easily be expanded with probes for additional 

pathogens and/or markers for honey bee health and disease. Moreover, the “BeeDoctor” and RT-

MLPA in general also works well even with highly degraded RNA, since it requires only very short 

fragments of intact RNA, since the probe-specific RT primers can partly overlap with their 

corresponding probe and have to be elongated by only 50 nucleotides. Proper sample preservation is 

often difficult to achieve in practical beekeeping and sampling in the field, and often is a limiting 

factor for many other screening techniques (Dainat et al., 2011).  
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The “BeeDoctor” assay was used to screen 363 apparently healthy colonies from randomly 

selected apiaries throughout Flanders. This survey showed that almost 80% of colonies are infected 

with at least one virus, and many with multiple infections, showing that virus infections in apiaries 

are quite common, even in the absence of clinical symptoms. 
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1. Abstract 

Since the last decade, unusually high honey bee colony losses have been reported mainly in North-

America and Europe. Here, we report on a comprehensive bee pathogen screening in Belgium 

covering 363 bee colonies that were screened for 18 known disease-causing pathogens and correlate 

their incidence in summer with subsequent winter mortality. Our analyses demonstrate that, in 

addition to Varroa destructor, the presence of the trypanosomatid parasite Crithidia mellificae and 

the microsporidian parasite Nosema ceranae in summer are also predictive markers of winter 

mortality, with a negative synergy being observed between the two in terms of their effects on 

colony mortality. Furthermore, we document the first occurrence of a parasitizing phorid fly in 

Europe, identify a new fourth strain of Lake Sinai Virus (LSV), and confirm the presence of other little 

reported pathogens such as Apicystis bombi, Aphid Lethal Paralysis Virus (ALPV), Spiroplasma apis, 

Spiroplasma melliferum and Varroa destructor Macula-like Virus (VdMLV). Finally, we provide 

evidence that ALPV and VdMLV replicate in honey bees and show that viruses of the LSV complex 

and Black Queen Cell Virus tend to non-randomly co-occur together. We also noticed a significant 

correlation between the number of pathogen species and colony losses. Overall, our results 

contribute significantly to our understanding of honey bee diseases and the likely causes of their 

current decline in Europe. 

 

2. Introduction 

Pollination is vital to the functioning of natural ecosystems, boosting the reproduction of wild plants, 

on which many other organisms depend. Likewise, many fruit, nut, vegetable and seed crops 

cultivated in an agricultural context depend on pollination. Honey bees (Apis mellifera) are 

considered the most economically valuable pollinators for crop monocultures worldwide (UNEP, 

2010).  

However, over the last decade unusually high honey bee colony losses have been reported, 

mainly in North-America (Vanengelsdorp and Meixner, 2010) and Europe (Potts et al., 2010). There is 
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a consensus nowadays that no single explanation can be given for these losses, and that there are 

several contributory factors to their decline, including pathogens, pesticides, nutrition and limited 

genetic diversity (Evans and Schwarz, 2011; Vanengelsdorp et al., 2010).  

The ectoparasitic mite Varroa destructor is almost certainly a key player in causing the 

observed elevated colony losses (Dahle, 2010; Dainat et al., 2012b; Genersch et al., 2010; Guzman-

Novoa et al., 2010; Schafer et al., 2010; van Dooremalen et al., 2012). This mite jumped from the 

Asian honey bee (Apis cerana) to the European honey bee (Apis mellifera) more than fifty years ago 

and has since become an almost cosmopolitan pest (Anderson and Trueman, 2000). The mite 

weakens the bees by sucking hemolymph from both adult bees and pupae (Garedew et al., 2004). In 

addition, they can transmit many of the known honey bee viruses (Bowen-Walker et al., 1999; Chen 

et al., 2004; Di Prisco et al., 2011; Genersch and Aubert, 2010; Shen et al., 2005)  and cause a 

reactivation of covert virus infections due to host immune suppression (Yang and Cox-Foster, 2005). 

The mite destabilizes the within-host dynamics of viruses due to this immune suppression, which can 

then reach lethal levels (Nazzi et al., 2012). Further, V. destructor and Deformed Wing Virus (DWV) 

will reduce the life span of winter bees, which can cause a colony collapse (Dainat et al., 2012a). 

So far, only three viruses have been correlated with colony losses: DWV, Acute Bee Paralysis 

Virus (ABPV) and Israeli Acute Bee Paralysis Virus (IAPV). ABPV and IAPV are members of a complex 

of closely related Dicistroviridae (de Miranda et al., 2010). IAPV was initially identified as a predictive 

marker for colony losses in the USA (Cox-Foster et al., 2007). An expanded study could not confirm 

this result (Vanengelsdorp et al., 2009). Moreover, a retrospective study revealed that this virus was 

already present before the first colony collapse disorders were ever reported (Chen and Evans, 

2007). In Europe, ABPV was linked with colony losses in Belgium (Nguyen et al., 2011), Germany 

(Genersch et al., 2010) and Switzerland (Berthoud et al., 2010). Furthermore, DWV has been linked to 

winter mortality in both Switzerland (Berthoud et al., 2010) and Germany (Genersch et al., 2010). 

The role of the Microsporidian fungus Nosema ceranae, another parasite that originates from 

the Asian honey bee (Fries et al., 1996), in causing colony collapse is still controversial. Sudden colony 
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collapses in Spain were attributed to N. ceranae infection (Higes et al., 2008; Higes et al., 2009), but 

these observations could not be confirmed by later independent studies in and outside Spain (Cox-

Foster et al., 2007; Fernandez et al., 2012; Gisder et al., 2010; Invernizzi et al., 2009; Vanengelsdorp 

et al., 2010). 

Recently, a prospective study revealed the presence of the little reported pathogens Crithidia 

mellificae, Spiroplasma apis and Spiroplasma melliferum in large-scale migratory beekeeping 

operations in the USA. Furthermore, the novel viruses (Aphid Lethal Paralysis Virus (ALPV) strain 

Brookings, Big Sioux River Virus (BSRV), Lake Sinai Virus (LSV) 1 and 2) and the phorid fly Apocephalus 

borealis were discovered as honey bee pathogens (Runckel et al., 2011). Earlier descriptions of 

spiroplasmas in honey bees go back to the early eighties (Clark et al., 1985; Mouches et al., 1983). 

Also C. mellificae has been little studied since its first description in 1967 (Langridge and Mcghee, 

1967), even though the related Crithidia bombi is known to have serious effects on bumble bees, 

particularly under starvation conditions (Brown et al., 2000; Brown et al., 2003). The prevalence of 

these and other new pathogens and their potential correlation with winter losses in Europe, where 

no large-scale migratory commercial beekeeping occurs, is at present unknown.  

In 2011, we performed an epidemiological study of the most common honey bee viruses in 

Belgium (De Smet et al., 2012). As shortly afterwards several neglected and new honey bee 

pathogens were described in the USA (Runckel et al., 2011), we decided to re-examine these samples 

in order to type them for several of these other known honeybee pathogens. In addition, we 

examine whether the presence of these pathogens in the summer can be used as a predictor of later 

winter mortality, and study possible associations in the prevalence of these pathogens. 

 

3. Materials and methods 

3.1 Honey bee sampling and preparation 

For detailed description of the worker bee sampling procedure we refer to our previous paper (De 

Smet et al., 2012). In brief, in July 2011 around 30 bees were randomly sampled at the hive entrance 
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of 363 colonies. RNA was extracted from 10 bees per colony for the molecular detection of 

pathogens. In addition, the natural Varroa drop was monitored by placing a sheet of paper under the 

open mesh floor during one week, and counting the mites in the laboratory. Optimization of the PCR 

for VdMLV was done on mites collected at the apiary of Ghent University, campus Sterre. This is a 

newly discovered virus in both mites and honey bees (Gauthier et al., 2011). 

3.2 MLPA analysis  

BeeDoctor (De Smet et al., 2012), a ‘multiplex-ligation probe dependent amplification’ (MLPA) based 

method capable of detecting CBPV, DWV complex, ABPV complex, BQCV, SBPV and SBV, was 

expanded with probes to detect the positive and the negative strand each of BSRV, ALPV strain 

Brookings and viruses of the LSV complex (Table S1). Because of the high similarities of the two 

described LSV strains (Runckel et al., 2011), we were unable to differentiate between them. This new 

prototype of BeeDoctor was used for screening purposes in the present study. All probes were 

synthesized by Integrated DNA Technologies (Leuven, Belgium). BeeDoctor analysis was performed 

as described before (De Smet et al., 2012), starting from 1 µl RNA. All the MLPA reagents were 

obtained from MRC-Holland. The amplified MLPA products were analysed using 4% high resolution 

agarose gel electrophoresis. 

3.3 PCR analysis 

Five µl RNA (variable concentration) was retro-transcribed using random hexamer primers with the 

RevertAid™ First Strand cDNA Synthesis Kit (Thermo Scientific), according to the manufacturer’s 

instructions. All PCR reaction mixtures contained 2 µM of each primer; 1.5 mM MgCl2; 0.2 mM dNTP; 

1.25 U Hotstar Taq DNA polymerase (Qiagen) and 1 µl cDNA product. The primers used are shown in 

Table S1. Temperature cycles for slowly-evolving trypanosomatids and neogregarines were as 

described (De Smet et al., 2012), but PCRs were performed in their uniplex mode. Samples that were 

positive for trypanosomatids were sequenced to confirm the presence of C. mellificae. Positive 

samples of neogregarines were subsequently re-analyzed with A. bombi-specific primers. Fifteen 

amplicons were sequenced for verification. Spiroplasmas were detected as described (Meeus et al., 
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2012), based on the 16S ribosomal RNA (rRNA) sequence. Due to unspecific bands from N. ceranae 

rRNA around 700 bp, only universal Spiroplasma primers were used. Amplicons around 1kb were 

extracted using the GeneJET Gel Extraction Kit (Thermo Scientific) and sequenced for S. apis and S. 

melliferum differentiation. For the differentiation of Nosema apis and N. ceranae, PCR conditions 

described by (Chen et al., 2008; Chen et al., 2009) were used. Samples negative with these primers 

but positive for Nosema spore counting, were re-analyzed with primers specific for Microsporidia. A 

subset of the amplicons was sequenced for verification. 

In order to detect the LSV strain 1 and 2, we followed the procedure described by (Runckel et 

al., 2011). However, when other strains appeared to be present we developed a PCR to detect a 

partial sequence of the Orf1 and RNA-dependent RNA polymerase genes of any known member of 

the LSV complex (strain 1, 2 and 3 at that time) using a degenerated primer set and the following 

cycling conditions: 94°C for 15 min; 94°C for 30 sec, 60°C for 30 sec, 72°C for 1 min; 35 cycles; final 

elongation 72°C for 10 min; hold at 4°C. Amplicons around 600 bp were extracted and sequenced. 

Temperature cycles for Microsporidia, Phoridae, ALPV and VdMLV were as described above, but with 

the annealing temperature set at respectively 60°C, 59°C, 60°C and 51°C. All PCR products were 

electrophoresed in 1.4% agarose gels, stained with ethidium bromide and visualised under UV light. 

We developed a positive control for the Phoridae PCR and the MLPA-based detection of ALPV 

and BSRV by synthesizing 486-mer, 160-mer and 190-mer oligonucleotides respectively in a 

pIDTSmart vector (done by Integrated DNA Technologies). In other cases, the first positive sample 

detected in preliminary screenings served as a positive control. 

3.4 Cloning and sequencing 

Amplicons of ALPV strain Brookings, LSV complex, VdMLV and Phoridae were cloned into the pCR4 

TOPO vector from TOPO TA Cloning Kit for sequencing (Invitrogen, USA) according to manufacturer’s 

instructions. The cloned inserts were sequenced on an ABI 3130XL platform using M13 primers after 

isolation of the plasmids with the GeneJetTM Plasmid Miniprep kit (Thermo Scientific). 
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DNA sequences obtained by direct sequencing of amplicons or by sequencing cloned PCR 

products were BLAST-searched at http://blast.ncbi.nlm.nih.gov/. Alignments of the LSV amplicons 

and strict consensus sequences (100% threshold) from LSV 1 (Genbank: HQ871931), LSV 2 (Genbank: 

HQ888865) and LSV 3 (Genbank: JQ480620) RNA polymerases and Orf1 genes were generated with 

Geneious 5.6.4. 

3.5 Nosema spore counting 

We determined the Nosema spore levels in the extracts from 10 bees using light microscopy and a 

haemocytometer according to Cantwell (Cantwell, 1970). This extract was diluted when necessary. 

3.6 Statistics 

The multiple-kind lottery model of (Janovy et al., 1995) was used to infer the theoretical distribution 

of pathogens in surviving and collapsed colonies. By use of the individual infection percentage of 

each pathogen (n = 16) the model calculates the expected pathogen distribution or the number of 

colonies infected with 0 to 16 pathogens. As described earlier (Rutrecht and Brown, 2008), significant 

deviations between the observed and theoretically predicted pathogen distributions imply an 

interaction between different pathogens in this multi-pathogen host system. By means of a Pearson 

Chi-square test (P < 0.05) with SPSS 21.0 we compared if the observed pathogen distribution differed 

from the theoretical distribution. The same approach was followed to infer which interaction 

between pathogen pairs occurred within this multi-pathogen host system. 

 Pathogen prevalence was correlated with winter mortality using a binomial generalized 

linear model with probit link function using function glm in package stats in R 2.16. This analysis was 

performed with a subset of the samples (229), since we excluded colonies for which the beekeepers 

did not provide any data on winter mortality, as well as colonies that had undergone queen 

supersedure. To select the most parsimonious model we used an exhaustive search based on the 

Akaike Information Criterion (AIC). This was done using R package glmulti, based on a set of predictor 

variables which either included all main effects (but excluding pathogens S. apis, CBPV and ABPV, 

since they occurred in fewer than 10 out of 229 colonies), or one which also considered possible first 

http://en.wikipedia.org/wiki/Frequency_distribution
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order interaction effects, and which included the pathogens which in a full main effects model had 

probit coefficients > 0.2 (N. ceranae, C. mellificae, V. destructor, S. melliferum and BQCV) as well as 

DWV, which had been linked to winter mortality before (Berthoud et al., 2010; Genersch et al., 2010) 

. In addition, we also ran a model in which all main effects were included as well as a first and third 

order polynomial model in which the total number of detected pathogens was used as a predictor of 

winter mortality. Significance was assessed using Type III likelihood ratio tests using function Anova 

in R package car. In all cases, one-sided p-levels were used, since pathogens a priori are expected to 

increase colony mortality. The predictive power of our resulting models was assessed using function 

CVbinary in R package DAAG. 

 

4. Results 

4.1 Survey of pathogens 

An overview of the prevalences of the investigated pathogens is given in Table 1. The natural Varroa 

destructor drop ranged from 0 to more than 500 mites per week. A value equal to 0 does not 

necessarily imply that the colony is uninfected, only that the Varroa drop is below the detection limit. 

Within the boundaries, a prevalence of 93.7% (313/334) was found. Nosema spores were found in 

75.2% (273/363) of the samples, and ranged from 105 till 109 per bee. PCR-based detection reveals 

10.2% N. apis infection (37/363) and 92.6% N. ceranae infection (336/363), accounting for a total 

Nosema prevalence of 93.9% (341/363). Mixed infections, single N. apis and N. ceranae infection 

occurred in respectively 8.8% (32/363), 1.4% (5/363) and 83.7% (304/363) of the samples. 

Amplicons had an almost complete nucleotide similarity with sequences of N. apis (Genbank: 

U97150) or N. ceranae (Genbank: DQ486027). 

While an ALPV strain and different LSV strains were fairly abundant, with prevalences of 

56.2% (204/363) and 14.6% (43/363) in our studied colonies, BSRV could not be detected. ALPV 

amplicons shared 97% nucleotide identity with two strains isolated from honey bees (Genbank: 

HQ871932; JX045858) and 89% with the canonical ALPV sequence (Genbank: AF536531). At the 
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amino acid level, our isolates (Genbank: KC880119) appeared to be identical to ALPV strain Brooking 

and 99% identical to a Spanish strain (Genbank: JX045858), caused by one substitution of valine to 

isoleucine. Moreover, we could show that ALPV and VdMLV are replicating in honey bees by 

demonstrating the presence of their negative strand intermediate, a marker for replication of 

positive sense single stranded RNA viruses, by a strand specific MLPA reaction. Surprisingly, VdMLV 

was detected in the majority of our bee samples (84.3%; 306/363). The Belgian strain (Genbank: 

KC880120) showed high sequence homology (97% on nucleotide level, 99% on amino acid level) with 

a French strain (Genbank: HQ916350).  

The spiroplasmas S. apis and S. melliferum were found only in respectively 0.3% (1/363) and 

4.4% (16/363) of the tested samples. One sequence appeared 100% identical to the S. apis strain 

ATCC 33834 (Genbank: GU993267); all others matched to S. melliferum IPMB4A (Genbank: 

JQ347516) (4 sequences with 100% identity and 6 sequences with only a single nucleotide 

substitution).  

The little reported trypanosomatid C. mellificae was found in 70.5% (256/363) of the 

samples. The amplicons showed 100% sequence identity with a partial sequence of the small subunit 

ribosomal RNA of C. mellificae (Genbank: AB745488). We also found molecular evidence that the 

neogregarine A. bombi, primarily known as a bumble bee parasite (Lipa and Triggiani, 1996), was 

present in 40.8% (148/363) of our samples. The 15 sequenced amplicons showed 100% identity with 

a partial small subunit ribosomal RNA sequence of A. bombi (Genbank: FN546182).  

Unexpectedly, we were also able to demonstrate the molecular presence of phorid flies in 

31.1% (118/363) of the samples. These amplicons fully matched a partial A. borealis 18S ribosomal 

RNA sequence (Genbank: JF808447).  

4.2 Identification of the LSV strains 

In order to determine which LSV strains we had found by MLPA, we re-investigated the positive 

samples by PCR using the primers specific for LSV 1 and LSV 2 (Runckel et al., 2011). These specific 

primers did not work on our samples and therefore a degenerated primer set was developed. The 
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sequence of the amplicons generated with the degenerated primer set revealed one sample 

(Genbank: KC880123) with high resemblance to a known strain (Genbank: JQ480620) (96% 

nucleotide and 94% amino acid identity with LSV 3, a third LSV type that was described in the 

meanwhile (Cornman et al., 2012)), while others gave only moderate similarity to any of them 

(Genbank: KC880121, KC880122, KC880124-KC880126). Amplicons from six apiaries had the same 

trimmed sequence, which aligned very well with the consensus sequence of the RNA-dependent RNA 

polymerases of the three different strains (Figure S1). We designated this sequence representative 

for a new fourth strain of LSV (Genbank: JX878492). The LSV Orf1 sequences showed a high degree of 

sequence divergence (data not shown) but the majority of the conserved Orf1 amino acids were also 

retrieved in LSV 4 and our other sequences. 

4.3 Effect of pathogens on colony winter losses 

Overall, 46.5% of the sampled colonies were reported to be lost over the winter of 2011-

2012. Combined with our data on the prevalence of 16 known honeybee pathogens in these colonies 

in summer (July 2011), including several little reported ones detected in the present paper, but also 

the more common viruses detected previously in these samples (De Smet et al., 2012), we decided to 

test whether these winter losses could be predicted on the bases of the presence or absence of these 

pathogens (Table 1). Based on a probit binomial model in which only main effects were considered, 

an exhaustive model search showed that V. destructor and C. mellificae contributed most to 

explaining winter mortality (AIC=317.21) (C. mellificae: p=0.03, marginal odds ratio=1.3; V. 

destructor: p=0.07, marginal odds ratio=1.3, Table 2a). Nevertheless, if we also included first order 

interaction effects and carried out an exhaustive search we obtained a model with slightly better 

explanatory power (AIC=316.11). C. mellificae, N. ceranae, V. destructor and as well as the interaction 

effect C. mellificae x N. ceranae, significantly contributed to explaining winter mortality in this model 

(p=0.01, 0.02, 0.07 and 0.03, respectively; Table 2 and Figure 1). The significant interaction effect was 

due to a negative synergy between C. mellificae and N. ceranae on winter mortality (Figure 1). 
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Table 1. Honey bee pathogen incidences. Prevalences of honey bee pathogens found in Belgian honey 

bee colonies, the relationships between these pathogens and the effect of the occurrence of each 

pathogen on colony winter losses.  * These data includes a subset of the samples (229), since 25% of 

the beekeepers did not provide data about winter losses of the monitored colonies 

 

Pathogen Type Prevalences Associations 
  Overall Surviving 

colonies* 
Collapsed 
colonies* 

Between 
pathogens 

With 
winter 
losses* 

ABPV Dicistroviridae 3.3% 
(12/363) 

3.3% 
(4/122) 

3.7% 
(4/107) 

 No 

ALPV Dicistroviridae 56.2% 
(204/363) 

59.0% 
(72/122) 

54.2% 
(58/107) 

Nosema 
spores (p = 
0.011) 

No 

Apicystis 
bombi 

Ophryocystidae 40.8% 
(148/363) 

41.8% 
(51/122) 

41.1% 
(44/107) 

 No 

Apocephalus 
borealis 

Phoridae 31.1% 
(118/363) 

32.8% 
(40/122) 

33.6% 
(36/107) 

 No 

BQCV Dicistroviridae 13.5% 
(49/363) 

10.7% 
(13/122) 

14.0% 
(15/107) 

LSV complex 
(p = 0.009) 

No 

CBPV Unclassified RNA 
virus 

1.7% 
(6/363) 

0.0% 
(0/122) 

1.9% 
(2/107) 

 No 

Crithidia 
mellificae 

Trypanosomatidae 70.5% 
(256/363) 

71.3% 
(87/122) 

81.3% 
(87/107) 

 Yes (p = 
0.03) 

DWV Iflaviridae 69.4% 
(252/363) 

61.5% 
(75/122) 

67.3% 
(72/107) 

 No 

LSV complex Unclassified RNA 
virus 

14.6% 
(43/363) 

17.2% 
(21/122) 

15.0% 
(16/107) 

BQCV (p = 
0.009) 

No 

Nosema apis Nosematidae 10.2% 
(37/363) 

13.1% 
(16/122) 

10.3% 
(11/107) 

 No 

Nosema 
ceranae 

Nosematidae 92.6% 
(336/363) 

89.3% 
(109/122) 

94.4% 
(101/107) 

VdMLV (p < 
0.001) 

No 

Nosema 
spores 

Nosematidae 75.2% 
(273/363) 

71.3% 
(87/122) 

72.9% 
(78/107) 

ALPV (p = 
0.011) 

No 

SBV Iflaviridae 19.0% 
(69/363) 

17.2% 
(21/122) 

21.5% 
(23/107) 

 No 

Spiroplasma 
apis 

Spiroplasmataceae 0.3% 
(1/363) 

0.0% 
(0/122) 

0.0% 
(0/107) 

 No 

Spiroplasma 
melliferum 

Spiroplasmataceae 4.4% 
(16/363) 

3.3% 
(4/122) 

6.5% 
(7/107) 

 No 

Varroa 
destructor 

Varroidae 93.7% 
(313/334) 

91.0% 
(111/122) 

95.3% 
(102/107) 

 Yes 
(p=0.07) 

VdMLV Tymoviridae 84.3% 
(306/363) 

79.5% 
(97/122) 

84.1% 
(90/107) 

N. ceranae 
(p < 0.001) 

No 
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Figure 1. Effect of Crithidia mellificae, Nosema ceranae and Varroa destructor on honey bee colony 

winter losses. The presence of C. mellificae, N. ceranae and V. destructor in summer all increase later 

winter mortality (binomial probit model, Table 2b, p=0.01, 0.03 and 0.07, respectively). In addition, 

there is a synergistic effect of C. mellificae and N. ceranae on winter mortality (Table 2b, p=0.03). Cm 

= C. mellificae, Nc = N. ceranae. 

 

Table 2. Effects of the screened pathogens in summer on the observed honeybee winter mortality, 

based on probit models and exhaustive model searches in which the Akaike Information Criterion 

(AIC) was minimized. 

Pathogen Probit 
coefficients 

Marginal 
odds ratios 

LR χ2 p value  

(a) Best model based on  main effects onlya   
(AIC 317.21) 

    

Intercept -0.82    
Crithidia mellificae  0.37 1.3 3.57 0.03 
Varroa destructor  0.49 1.4 2.11 0.07 
(b) Best model based on most important main 
effects and their 1st order interactionsb  
(AIC 316.11) 

    

Intercept -5.70    
Crithidia mellificae  5.09 1.3 6.16 0.01 
Nosema ceranae  4.97 1.4 4.88 0.03 
Varroa destructor  0.49 1.4 2.10 0.07 
Crithidia mellificae x Nosema ceranae -4.80 0.8 3.37  0.03  
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a Based on an exhaustive search with the following set of predictor variables: presence or absence of 

N. apis, N. ceranae, C. mellificae, A. bombi, S. melliferum, A. borealis, ALPV, DWV, BQCV, SBV, LSV, 

VDMLV, V. destructor as well as the natural V. destructor drop  and Nosema spore load. 

b Based on an exhaustive search, including all pathogens which occurred in more than 10 out of 229 

colonies and which in a full main effects model had probit coefficients >0.2 (N. ceranae, C. mellificae, 

V. destructor, S. melliferum and BQCV) and DWV, which has been linked to winter mortality before 

(Berthoud et al., 2010; Genersch et al., 2010) , as well as their first order interaction effects. 

 

 

Figure 2. Effect of the number of detected pathogens on winter mortality, based on a third order 

binomial probit model. The predicted winter mortality goes up markedly when the number of 

detected pathogens increase from 3 to 6 (from 5.9% to 52%), but then stabilizes around 50% when 

colonies have higher total numbers of pathogens. 

 

It means that the combination of both pathogens has a lesser output than the sum of each 

pathogen. Nevertheless, a clear enhancing effect can still be observed. Based on this model, the 

accuracy of the prediction of whether a colony would die or not in the winter was 55% using internal 

estimates, or 52% using cross-validation. Overall, higher numbers of detected pathogens in summer 

also resulted in a significantly increased winter mortality, as shown by a first order probit model 

(AIC=316.93, p=0.03).  
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Figure 3. Graphical representation of significant pathogen correlations. LSV complex is significantly 

associated with BQCV (p = 0.009) (A and B), VdMLV with N. ceranae (p < 0.001) (C and D) and ALPV 

strain Brookings with Nosema spores (p = 0.011) (E and F). 
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In addition, the use of a third order probit model further increased the accuracy of the fit to the data 

(AIC=316.12), and resulted in a significantly positive first order effect  (p=0.02) and a significantly 

negative second order effect (p=0.03) of the number of detected pathogens on winter mortality 

(Figure 2). When the amount of detected pathogens increases from 3 to 6 (from 5.9% to 52%), the 

predicted winter mortality goes up markedly but stabilizes around 50% at higher numbers of 

pathogen species. 

4.4 Relationships between pathogens 

As determined by a Pearson Chi-square test, we found evidence for positive associations between 

different pathogens (p < 0.05). LSV was significantly associated with BQCV (χ2 = 9.41, df = 2, p = 

0.009), ALPV with Nosema spores (χ2 =9,087, df = 2, p = 0.011) and VdMLV with N. ceranae (χ2 

=28.067, df = 2, p < 0.001). These pathogen associations are presented graphically in Figure 3. 

 

5. Discussion 

Overall, our data represent among the most comprehensive prevalence studies of honey bee 

pathogens carried out to date in Europe. The recent discovery of new bee viruses and neglected 

parasites in several countries highlighted the narrow window of pathogens that are the subject of 

many monitoring programs. As a result, we decided to re-investigate samples from July 2011 and 

statistically analyze whether the detected pathogens in summer had any effect on the winter 

mortality.  

Our analysis confirmed the importance of V. destructor in summer as a marker for colony 

collapses (Dainat et al., 2012b) (Figure 1). Importantly, our analysis also demonstrated a large effect 

of the occurrence of C. mellificae in summer on later winter losses, even enhanced through N. 

ceranae co-infection (Figure 1). The protozoan C. mellificae has been ignored for a long time, but the 

current data highlight it as a new putative key player in honey bee colony declines. This trypanosome 

has probably a cosmopolitan distribution since it has been reported in Australia (Langridge et al., 

1967), China (Yang et al., 2013), France (Dainat et al., 2012c), Japan (Morimoto et al., 2013), 
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Switzerland (Schmid-Hempel and Tognazzo, 2010) and USA (Runckel et al., 2011). Besides, the 

related C. bombi, also reported from Asian honey bees (Li et al., 2012), has serious effects on the 

survival of bumble bees under stress conditions (Brown et al., 2000). Recently, complex dynamic 

immune responses to C. mellificae infection were reported, with a distinct response when individuals 

were infected with C. mellificae and N. ceranae simultaneously (Schwarz and Evans, 2013). In 

addition, an association between both pathogens was reported in the USA (Runckel et al., 2011). 

Possibly, the controversial role of N. ceranae (Cox-Foster et al., 2007; Higes et al., 2009; Higes et al., 

2013) might be explained by the synergistic effect of N. ceranae and C. mellificae on colony mortality. 

We also observed a significant correlation between the number of detected pathogens and colony 

losses, as was likewise reported in the USA (Vanengelsdorp et al., 2009). Collapsing colonies, induced 

by e.g. V. destructor and C. mellificae, are probably more vulnerable to a diverse set of parasites 

(Cornman et al., 2012), which elucidate this correlation. Moreover, it appeared that several 

pathogens can act synergistically and eventually cause a collapse of the honey bee colony (Cornman 

et al., 2012). The outcome of these pathogen interactions can vary between regions (Cornman et al., 

2012), probably because of the multifactorial origin of colony losses and the interplay between 

different stressors. 

Additionally, our results confirm that Lake Sinai Viruses are a viral complex (Figure S1). 

Diverse viral sequences are reported in the USA (Cornman et al., 2012; Runckel et al., 2011) and 

Spain (Granberg et al., 2013). We could also confirm the presence of one known American LSV strain 

in Belgium, namely LSV 3. Another strain, designated LSV 4 (Genbank: JX878492), was retrieved in 

several independent samples. An ALPV strain was detected for the first time in Belgium. This virus 

was also detected in American (Runckel et al., 2011) and Spanish honey bees (Granberg et al., 2013). 

Remarkable was its rather high incidence in the present study (56.2%; 204/363), akin to similar 

observations in different regions in the USA (Runckel et al., 2011). We could detect the presence of 

the ALPV negative strand intermediate, demonstrating that it is a replicating virus in honey bees. It is 

associated with the presence of Nosema spores, being indicative for a common oral transmission 
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route. Another less known virus, VdMLV, was suggested to be a virus of V. destructor, which can be 

transmitted to honey bees (de Miranda et al., 2011). Surprisingly, our study indicates a high 

prevalence in honey bees and a correlation with N. ceranae. The impact of this virus on honey bees 

remains unclear, but might well be significant since it replicates in honey bees.  

The bacteria, S. apis and S. melliferum, are known as honey bee pathogens for a long time 

(Clark et al., 1985; Mouches et al., 1983), including Asian honey bees (Ahn et al., 2012). They seem to 

be uncommon in honey bees, with a sudden incidence in the summer (Runckel et al., 2011) which 

may be related to transmission via flowers. 

Another unexpected discovery was the detection of phorid flies. Since the found amplicons 

had a 100% nucleotide similarity, we have strong molecular evidence that A. borealis or a similar 

phorid fly also infects honey bees outside the USA. To our knowledge this is the first description of a 

parasitizing phorid fly in honey bee samples in a Palaearctic region. This phorid fly was recently 

described as a new honey bee pathogen which alters the host behaviour by hive abandonment, 

eventually causing death (Core et al., 2012). 

Besides viruses, bacteria and fungi, honey bees can also be parasitized by neogregarines. Our 

study revealed a high prevalence of Apicystis bombi in honey bees. This parasite is believed to be 

highly virulent in bumble bee spring queens, but re-emerges later on in worker bumble bees 

(Rutrecht et al., 2008). However, real empirical data is missing to describe the pathology of A. bombi. 

After its detection in honey bees in Finland (Lipa et al., 1996), A. bombi was also reported in honey 

bees in Japan (Morimoto et al., 2013) and Argentina (Plischuk et al., 2011).  

The presence in Argentina is probably induced by spillover from invasive Bombus terrestris 

(Arbetman et al., 2013), an introduced pollinator outside the West Palaearctic area (Rasmont et al., 

2008). The high prevalence (40.8%; 148/363) of A. bombi, without correlation with winter losses, 

indicates that it is not highly virulent in honey bees. Surprisingly, unbiased molecular studies in the 

USA did not report the occurrence of this pathogen (Cornman et al., 2012; Cox-Foster et al., 2007). 
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Besides pathogens, other factors like air quality, electromagnetic radiation, food deficiency 

and meteorological conditions can have an influence on colony losses. Later on, multiple linear 

regression modelling was applied on all combinations of explanatory variables and revealed no 

additional correlations with winter losses (BeeHappy, unpublished information). 

 

6. Conclusions 

Colony winter losses in Belgium seem to be associated with (1) V. destructor and (2) the detection of 

C. mellificae and N. ceranae in summer, with an enhancing effect on colony mortality being observed 

between the latter two. Thus, the present study not only extends the number of pathogens bees are 

exposed to in Europe, but also assigned the trypanosomatid parasite C. mellificae as a new 

contributory factor to explain winter losses, in addition to the parasitic mite V. destructor and the 

microsporidian parasite N. ceranae. Moreover, the present study describes the occurrence of 6 new 

pathogens in Belgian honey bee: ALPV strain Brookings, VdMLV, viruses of the LSV complex, S. 

melliferum, A. bombi and A. borealis. This phorid fly and S. melliferum were hitherto not reported as 

honey bee pathogens in Europe before. From LSV a new fourth strain was discovered. Screening for 

negative strand intermediate of these viruses demonstrated replication of ALPV and VdMLV in honey 

bees, which had never been demonstrated before. Furthermore, we found associations between 

viruses of the LSV complex and BQCV, between VdMLV and N. ceranae, and between an ALPV strain 

and Nosema spores. The latter might indicate a common oral route of transmission. We did not 

found a correlation between V. destructor and DWV. This can be caused since previous studies used 

quantitative data (Gisder et al., 2009; Martin et al., 2012), in contrast to our binomial dataset. 

Nevertheless, it seems advisory to look at a broader range of pathogens in nationwide monitoring 

programs. 
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8. Corrigendum 

As demonstrated by Schwarz and colleagues (Schwarz et al., 2015), two trypanosomatid species can 

infect honey bees, namely C. mellificae and Lotmaria passim. It appears that nearly all of the C. 

mellificae identified the Belgian samples should be redubbed L. passim (J. Ravoet, unpublished 

information; Chapter 8). 
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9. Supplementary information 

 

Figure S1. Sequence variability of Lake Sinai Virus RNA-dependent RNA polymerase. Amino 

acid alignment of a consensus sequence (generated from LSV 1, 2 and 3) with known and 

new Lake Sinai Virus RNA-dependent RNA polymerase sequences. 
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Table S1. Primers and MLPA probes used in this study. Half-probes used for detecting different honey bee viruses or virus species complexes 

through RT-MLPA and primers used for detecting honey bee viruses or other pathogens. Each RPO probe is 5’- phosphorylated (indicated by P­) 

to permit ligation of the 5’ end of the RPO to the 3’ end of the LPO. The PCR sequence tags on each halfprobe are in lower-case letters, the non-

specific stuffer sequences (for generating PCR products with pre-determined sizes) are shown in upper-case letters and the target-specific 

sequences are shown in underlined upper-case letters. 

 

Target Primers Sequence (5' - 3') Size (bp) Reference 

MLPA detection     

ALPV-Br  
(- strand) 

MLPA_ALPV_rep_
LPO 

gggttccctaagggttggaTCCGTGGATTTATCATGCATAGCCAGTTCGGTTAATCC 
119 This work 

 ALPV_rep_RPO P­GCCGCTGATTGTGTCAACACAGATACGTAGAGGTAGTTGtctagattggatcttgctggcac   

 RT_ALPV_rep CCTAACTGGGTACGTGTTGG   

ALPV-Br  
(+ strand) 

MLPA_ALPV_LPO 
gggttccctaagggttggaTCTGACCTTTCACATCTGGACAGCCAACTACCTCTACGTATCTG
TGTTGACACAATCAGC 

160 This work 

 
MLPA_ALPV_RPO 

P­GGCGGATTAACCGAACTGGCTATGCATGATAAAGTACAAGCCCGTTCAGCACCTGG
GTtctagattggatcttgctggcac 

  

 RT_ALPV_new TCATCTTAGACCTCCATTTAGAATCC   

BSRV BSRV-LPO gggttccctaagggttggaGTGAGCAGTCAGGTGGCGTGATACGTGGTGTTTTTGATGACCT
TGATCGAGTTCCAAAAGCACTGAGTGGCATG 

190 This work 

 BSRV-RPO P­GAGAGTATGTGGAAACGCATAGACTCCGTGTCACTGAAAATATCAGCTATGCCGGA
CAGGGCGTGCGCGTTGAAtctagattggatcttgctggcac 

  

 RT_BSRV CCATCCAATTCCATAGTACAGTTG   

LSV complex LSV-LPO gggttccctaagggttggaGACTCCCAGCTGGACCGCTACGAAATGCGCGTATCCTCGTGCG
GACCTCATTTCTTCATGTCAGTGT 

175 This work 
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 LSV-RPO P­GTGAGCATGATGAGTCAATACCTACGGTGTTCCGGGGATGGGGGCCGGGTGAGGA
AAGCTGGCTGATCTAGATTGGATCTTGCTGGCACtctagattggatcttgctggcac 

  

 RT_LSV CCACCGAGTGTGCATGG   

PCR detection     

ALPV-Br 
ALP-Br-F-2936 AACGTCGTATGCTACGATGAACTCG 464 

Runckel et al., 
2011 

 ALP-Br-R-3400 GGGTTAAATTCAATTCCAGTACCACGG   

A. bombi 
ApBF1 CGTACTGCCCTGAATACTCCAG ~ 511 

Meeus et al., 
2010 

 ApUR2 TTTCTCATTCTTCAGATGATTTGG   

A. borealis 
Phorid_rRNA 1F GTACACCTATACATTGGGTTCGTACATTAC 486 

Runckel et al., 
2011 

 Phorid_rRNA 1R GAGRGCCATAAAAGTAGCTACACC   

LSV complex LSVdeg-F GCCWCGRYTGTTGGTYCCCCC 578 This work 

 LSVdeg-R GAGGTGGCGGCGCSAGATAAAGT   

LSV 1 LSV1-F-2294 TTATCTCGCGCCGCCACCTC 672 Runckel et al., 
2011 

 LSV1-R-2966 ATCGCCGCTGCAACGTGACC   

LSV 2 LSV2-F-3954 CGGCCGGTCTAGCGTGGTTG 558 Runckel et al., 
2011 

 LSV2-R-4512 TGGCAAGCTGTGACGAATCCCT   

Neogregarines 
NeoF: CCAGCATGGAATAACATGTAAGG 258 

Meeus et al., 
2010 

 NeoR: GACAGCTTCCAATCTCTAGTCG   

Microsporidia 
V1F CACCAGGTTGATTCTGCCTGAC ~ 406 

Vossbrinck 
and Woese, 
1986 
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530R CCGCGGCTGCTGGCAC  

Baker et al., 
1995 

Nosema apis 
Napis-sense CCATTGCCGGATAAGAGAGT 269 

Chen et al., 
2009 

 Napis-antisense CCACCAAAAACTCCCAAGAG   

Nosema ceranae 
NceranaeF CGGATAAAAGAGTCCGTTACC 250 

Chen et al., 
2008 

 NceranaeR TGAGCAGGGTTCTAGGGAT   

Spiroplasma spp. 
BS1-F AAGTCGAACGGGGTGCTT 976 

Meeus et al., 
2012 

 BS1-R TGCACCACCTGTCTCAATGT   

Trypanosomatids 
SEF CTTTTGGTCGGTGGAGTGAT 406 

Meeus et al., 
2010 

 SER GGACGTAATCGGCACAGTTT   

VdMLV 
VdMLV-F ATCCCTTTTCAGTTCGCT 438 

Gauthier et al., 
2011 

 VdMLV-R AGAAGAGACTTCAAGGAC   
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CHAPTER 5 

 

WIDESPREAD OCCURRENCE OF HONEY BEE PATHOGENS IN 

SOLITARY BEES 

 

The work presented in Chapter 5 was adapted from the following manuscript: 

 

 

J. Ravoet, L. De Smet, I. Meeus, G. Smagghe, T. Wenseleers, D.C. de Graaf. Widespread occurrence of 

honey bee pathogens in solitary bees. Journal of Invertebrate Pathology, 2014, 122: 55-58.  

doi: 10.1016/j.jip.2014.08.007. 
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1. Graphical abstract 

 

 

 

2. Abstract 

Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative 

pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be 

infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as 

Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in 

solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema 

thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other 

pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. 

 

3. Introduction 

There is a long tradition of studying the pathogens of the Western honey bee (Apis mellifera) and the 

list of honey bee pathogens has been expanded significantly from the sixties on. It became recently 

evident that common honey bee pathogens such as Deformed Wing Virus (DWV) can infect other 

bees as well (Furst et al., 2014; Levitt et al., 2013). Although several macroparasites of wild bees are 

well known (Westrich, 1990), reports on their microparasites are rather scarce. The few known 
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solitary bee specific parasites are fungi, including Ascosphaera spp. (Wynns et al., 2013) and 

Antonospora scoticae (Fries et al., 1999). The aim of this study was to investigate whether solitary 

bees sampled nearby an apiary harbour some of the known or recently discovered honey bee 

pathogens (Runckel et al., 2011). We screened for a broad set of parasitic micro-organisms, including 

fungi, protists, spiroplasmas and viruses. 

 

4. Material and methods 

4.1 Sample collection 

For each species, three pooled samples of 10 bees were collected in 2012 at campus Sterre of Ghent 

University. Osmia bicornis, Osmia cornuta and Heriades truncorum were sampled at a bee hotel, 

close to an apiary. Andrena vaga and Andrena ventralis (only one sample of 10 bees) were caught 

nearby their nest aggregations. These species were identified using suitable keys (Scheuchl, 1996; 

Schmid-Egger and Scheuchl, 1997). Three different honey bee colonies were simultaneously (within 

one week) sampled at the neighbouring apiary. 

4.2 RNA and DNA extraction 

Ten bees were homogenised in 5 ml PBS in the presence of glass beads. Total RNA was extracted 

from 100 µl supernatant using the RNeasy Lipid Tissue Kit (Qiagen). Using random hexamer primers, 

1 µg RNA was retro-transcribed with the RevertAid First Strand cDNA Synthesis Kit (Thermo 

Scientific). DNA was extracted from 120 µl supernatant using the DNeasy Blood & Tissue Kit (Qiagen) 

according to the manufacturer’s instructions for animal tissues. 

4.3 PCR and BeeDoctor analysis 

All PCR reaction mixtures contained: 2 µM of each primer (Table A1); 1.0 mM MgCl2; 0.2 mM dNTPs; 

1.25 U Hotstar Taq DNA polymerase (Qiagen) and 1 µl cDNA or 3 µl DNA product (Apis mellifera 

Filamentous Virus (AmFV) and Ascosphaera spp. Detection) using described PCR cycles (Table A1). 

For our developed primers we used: 94°C for 15 min; [94°C for 30 s, 50°C (Crithidia spp. cytochrome 

b) or 55°C (LSV Orf1) for 30 s, 72°C for 1 min] 35 cycles, 72°C for 10 min. Positive and negative 
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controls were always included. Amplicons intended for Genbank submission were amplified with 

Hotstar High Fidelity Taq DNA polymerase (Qiagen). PCR products were electrophoresed using 1.4% 

agarose gels, stained with ethidium bromide and visualised under UV light.  Honey bee samples (1 µl 

RNA) were screened using the BeeDoctor tool, capable of detecting actin (honey bee control gene), 

Acute  Bee Paralysis Virus (ABPV), BQCV, Chronic Bee Paralysis Virus (CBPV), DWV, Sacbrood Virus 

(SBV) and Slow Bee Paralysis Virus (SBPV) (De Smet et al., 2012). ABPV probes amplify ABPV, Israeli 

Acute Paralysis Virus and Kashmir Bee Virus; DWV probes amplify DWV, Kakugo Virus and Varroa 

destructor Virus-1 (VDV-1). Solitary bees were analysed for these viruses using RT-PCR. Other viruses 

(Aphid Lethal Paralysis Virus strain Brookings (ALPV), AmFV, Big Sioux River Virus (BSRV), Lake Sinai 

Virus (LSV), Tobacco Ringspot Virus (TRSV) and Varroa destructor Macula-like Virus (VdMLV), bacteria 

(Spiroplasma spp.), fungi (Ascosphaera spp. and Nosema spp.) and protists (Apicystis bombi and 

Crithidia spp.) were screened by PCR. The cytochrome c oxidase subunit I gene was used as control 

gene for the solitary bees. 

4.4 Sequence analysis 

Amplicons were cloned using the TOPO TA Cloning Kit for Sequencing (Invitrogen). Plasmids and PCR 

products were sequenced using gene-specific or M13 primers. Sequences are deposited as 

AB859946-AB859948 (DWV), AB860145-AB860146 (Crithidia spp.), AB859949-AB859952 (VdMLV), 

HG764796-HG764797 (BQCV), HG764798-HG764799 (SBV), KF768348-KF68351 (LSV), KJ685944 

(AmFV), KJ685945-KJ685947 (Ascosphaera spp.). Phylogenetic trees were inferred via maximum 

likelihood (ML) using PhyML 3.0 (Guindon et al., 2010) with the Le-Gascuel (LG) amino acid 

substitution model (Le and Gascuel, 2008) and approximate likelihood ratio test non-parametric 

branch support based on a Shimodaira-Hasegawa-like (aLRT SH-like) procedure (Anisimova and 

Gascuel, 2006). 
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5. Results and discussion 

We were able to demonstrate the presence of AmFV in all samples. Most other viruses (BQCV, DWV, 

SBV and VdMLV) were detected both in honey bees and in a smaller subset of solitary bees (see 

Table 1). ALPV was detected in honey bee samples only, but the viruses ABPV, BSRV, CBPV, SBPV and 

TRSV were not discovered at all. Protists and fungi appeared to be pervasive, whereas spiroplasmas 

were found only scarcely. 

The discovered AmFV sequences were mutually identical and highly similar to Baculovirus 

sequences from Swiss bees (Genbank: JF304814) and V. destructor mites (Cornman et al., 2010) (Fig. 

A.1). Further, amplicons of the ribonucleotide reductase small subunit and thymidylate synthase 

were identical to those found in V. destructor (Genbank: GU980896-GU980897). The LSV strains 

found in honey bees, A. vaga, O. bicornis and O. cornuta were almost identical (Genbank: KF768348-

KF68350). However, a deviating LSV strain (Genbank: KF768351) was detected both in A. ventralis 

and in some honey bees. Their Orf1 sequences showed only 76.7% amino acid similarity with each 

other. DWV was detected in all honey bee hives and in O. bicornis. Their 5’ untranslated region (UTR) 

was equal to published DWV sequences. Although the 5’ UTR amplicons appeared mutually identical, 

phylogenetic analysis of the DWV L protein resulted in two divergent strains (Figure 1). Strain e3 

(Genbank: AB859948), only detected in honey bees, was part of the DWV clade. The other strains e5 

and e10 (Genbank: AB859946, AB859947), detected in (different) honey bees and in O. bicornis, 

appeared to lie between DWV and VDV-1. The finding of VdMLV in several solitary bees was 

remarkable as they are not a known host of V. destructor, which is considered to be the primary 

vector (de Miranda et al., 2011). This indicates that transmission can occur by other means, like 

contaminated flowers (Singh et al., 2010).  

Honey bee tryponasomatids were identified as Crithidia mellificae haplotype A (Morimoto et 

al., 2013) by their cytochrome b sequence (Genbank: AB860145). O. bicornis and A. vaga appeared to 

be infected with Crithidia bombi (Genbank: AB860146), hitherto only reported in bumble bees 

(Macfarlane et al., 1995). 
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The neogregarine A. bombi, found in the present study in all bee species, was previously only 

discovered in social bees (Lipa and Triggiani, 1996). Sequencing of its internal transcribed spacer (ITS) 

region from isolates of honey bees and O. cornuta assigned them as haplotype Uni (Maharramov et 

al., 2013).  

 

Figure 1. Phylogeny of DWV L protein amino acid sequences of various isolates, including VDV-1 and 

Kakugo Virus. The phylogenetic tree was constructed using the maximum likelihood method under the 

LG parameter. Each sequence is indicated by its Genbank accession number. Strain e3 (Genbank: 

AB859948) is designated in blue, strains e5 and e10 (Genbank: AB859946, AB859947) in green. The 

VDV-1 clade is showed in red. Brach support for each node is indicated by aLRT values.  

 

Ascosphaera apis was detected in several honey bee samples. The other Ascosphaera spp. 

that we discovered in O. cornuta and H. truncorum (Genbank: KJ685945-KJ685947) matched (~98%) 

Ascosphaera callicarpa (Genbank: JX070046), previously reported from Chelostoma florisomne 

(Megachilidae) (Wynns et al., 2013). The related Bettsia alvei was also found in O. cornuta. Several 

sequences had no strong match (<93%) as reported before (Evison et al., 2012).   
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Table 1: Summary of pathogens detected in honey bees and solitary bees. Hive 3, 5 and 10: hive identification number 

Sample Date Virus 
Crithidia 
spp. 

Neogregarinida Nosema spp. 
Ascosphaera 
spp. 

Spiroplasma spp. 

Hive 3-1 4 April 2012 
ALPV, BQCV, LSV, 
AmFV 

- A. bombi 
N. apis, N. 
ceranae 

- - 

Hive 5-1 4 April 2012 
ALPV, BQCV, LSV, 
AmFV 

C. mellificae 
A. bombi N. apis, N. 

ceranae 
- - 

Hive 10-1 4 April 2012 
ALPV, BQCV, LSV, 
AmFV 

C. mellificae 
A. bombi 

N. ceranae 
- - 

O. cornuta 1 4 April 2012 
BQCV, LSV, AmFV, 
VdMLV 

- 
A. bombi 

N. ceranae 
Ascosphaera 
spp. 

- 

Hive 3-2 
16 April 
2012 

ALPV, BQCV, LSV, 
AmFV 

C. mellificae 
A. bombi N. apis, N. 

ceranae 
A. apis - 

Hive 5-2 
16 April 
2012 

ALPV, BQCV, LSV, 
AmFV 

C. mellificae 
A. bombi 

N. ceranae 
A. apis - 

Hive 10-2 
16 April 
2012 

ALPV, BQCV, LSV, 
AmFV 

C. mellificae 
A. bombi 

N. ceranae 
A. apis - 

O. cornuta 2 
16 April 
2012 

BQCV, LSV, AmFV, 
VdMLV 

- 
A. bombi 

N. ceranae 
Ascosphaera 
spp. 

- 

Hive 3-3 
23 April 
2012 

ALPV, BQCV, LSV, 
AmFV 

- 
A. bombi N. apis, N. 

ceranae 
Ascosphaera 
spp. 

- 

Hive 5-3 
23 April 
2012 

ALPV, BQCV, LSV, 
AmFV 

C. mellificae 
A. bombi 

N. ceranae 
Ascosphaera 
spp. 

- 

Hive 10-3 
23 April 
2012 

ALPV, BQCV, LSV, 
AmFV 

C. mellificae 
A. bombi 

N. ceranae 
Ascosphaera 
spp. 

- 

O. cornuta 3 
24 April 
2012 

BQCV, LSV, AmFV, 
VdMLV 

- 
A. bombi 

N. ceranae 
Ascosphaera 
spp. 

- 

A. vaga 1 
24 April 
2012 

BQCV, LSV, AmFV C. bombi 
A. bombi 

N. thomsoni 
- - 

A. ventralis 
24 April 
2012 

LSV, AmFV C. mellificae 
A. bombi 

N. ceranae 
- - 

Hive 3-4 15 May 2012 ALPV, BQCV, LSV, - A. bombi N. apis, N. A. apis - 
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AmFV ceranae 

Hive 5-4 
15 May 2012 ALPV, BQCV, LSV, 

AmFV 
- 

A. bombi 
N. ceranae 

- - 

Hive 10-4 
15 May 2012 ALPV, BQCV, LSV, 

AmFV 
C. mellificae 

A. bombi 
N. ceranae 

A. apis - 

A. vaga 2 8 May 2012  LSV, SBV, AmFV C. bombi A. bombi N. thomsoni - - 

A. vaga 3 8 May 2012  LSV, AmFV C. bombi A. bombi N. thomsoni -  

Hive 3-5 31 May 2012 
ALPV, BQCV, 
DWV, LSV, 
VdMLV, AmFV 

C. mellificae 
A. bombi 

N. ceranae 
- S. melliferum 

Hive 5-5 
31 May 2012 ALPV, BQCV, 

DWV, LSV, 
VdMLV, AmFV 

C. mellificae 
A. bombi 

N. ceranae 
- - 

Hive 10-5 
31 May 2012 BQCV, DWV, LSV, 

VdMLV, AmFV 
C. mellificae 

A. bombi 
N. ceranae 

- - 

O. bicornis 1 
30 May 2012 DWV, LSV, AmFV, 

VdMLV 
C. bombi 

A. bombi 
N. ceranae 

Ascosphaera 
spp. 

S. melliferum 

O. bicornis 2 
30 May 2012 DWV, LSV, AmFV, 

VdMLV 
C. bombi 

A. bombi 
N. ceranae 

Ascosphaera 
spp. 

S. apis 

O. bicornis 3 
30 May 2012 DWV, LSV, AmFV, 

VdMLV 
C. bombi 

A. bombi 
N. ceranae 

Ascosphaera 
spp. 

S. melliferum 

Hive 3-6 9 July 2012 
ALPV, BQCV, 
DWV, LSV, 
VdMLV, AmFV 

C. mellificae 
A. bombi 

N. ceranae 
- S. melliferum 

Hive 5-6 
9 July 2012 DWV, LSV, 

VdMLV, AmFV 
C. mellificae 

A. bombi 
N. ceranae 

A. apis S. melliferum 

Hive 10-6 
9 July 2012 ALPV, BQCV, 

DWV, LSV, 
VdMLV, AmFV 

C. mellificae 
A. bombi 

N. ceranae 
- S. melliferum 

H. truncorum 1 5 July 2012 BQCV - - N. ceranae - - 

H. truncorum 2 5 July 2012 - - - N. ceranae - - 

H. truncorum 3 5 July 2012 BQCV - A. bombi N. ceranae - - 
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The microsporidian parasite N. ceranae was detected in all species, except A. vaga. This gut 

parasite was previously also detected in bumble bees (Furst et al., 2014; Graystock et al., 2013; Li et 

al., 2012). Some honey bees were co-infected with N. apis. Surprisingly, the microsporidium detected 

in A. vaga (Genbank: KC596023) appeared to be highly related (99.8%) to N. thomsoni and other 

microsporidia from the same clade (Li et al., 2012). The spiroplasmas found in honey bees appeared 

to be Spiroplasma melliferum. Spiroplasma apis and S. melliferum were both discovered in O. 

bicornis, an unprecedented host (Clark et al., 1985; Mouches et al., 1983). 

 

6. Conclusions 

Our study identified several honey bee pathogens in solitary bees living in the proximity of an apiary. 

Our results suggest that bee hives represent a putative source of pathogens for other pollinators. 

Similarly, solitary bees may act as a reservoir of honey bee pathogens. 
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8. Corrigendum 

As demonstrated by Schwarz and colleagues (Schwarz et al., 2015), two trypanosomatid species can 

infect honey bees, namely C. mellificae and Lotmaria passim. It appears that nearly all of the C. 

mellificae identified the Belgian samples should be redubbed L. passim (J. Ravoet, unpublished 

information; Chapter 8). 
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9. Supplementary information 

 

Figure A.1: Alignment of Baculovirus repeated open reading frame N-terminal domain (BroN) 

gene sequences. VDK00064516-1660_1, present in contig 154 of additional file 2 of 

(Cornman et al., 2010) was detected in Varroa mites in the USA. JF304814 originated from 

honey bees in Switzerland, KJ685944 was amplified in honey bees and several solitary bee 

species in Belgium. 

 

Table A.1: List of PCR primer used for each pathogen in this study.  

Target Primers Sequence (5’-3’) Size (bp) Reference 

A. bombi ApBF1 CGTACTGCCCTGAATACTCCAG 
294 

(Meeus et 

al., 2010)  ApBR1 TGAAAGCGGCGTATACATGA 

AKI AKI-F CTTTCATGATGTGGAAACTCC 

100 

(Francis and 

Kryger, 

2012) 
 AKI-R AAACTGAATAATACTGTGCGTA 

ALPV-Br ALP-Br-F-2936 AACGTCGTATGCTACGATGAACTCG 

464 
(Runckel et 

al., 2011)  ALP-Br-R-3400 
GGGTTAAATTCAATTCCAGTACCACG

G 

AmFV AmFV-BroN-F * CAGAGAATTCGGTTTTTGTGAGTG 
551 

(Hartmann 

et al., 2012)  AmFV-BroN-R * CATGGTGGCCAAGTCTTGCT 

 rrSSU-F ACGAACGACTATCTAGCCATGAAC 
591 

(Cornman et 

al., 2010)  rrSSU-R GTCCGTTTCGGAGTGCATGAC 

 TS-F CGCATGTACCAACAACTCGTAC 
361 

(Cornman et 

al., 2010)  TS-R CACAGTTGGTGTAGCGCAGT 

Ascosphaera spp AscoAll1 * GCACTCCCACCCTTGTCTA 

550 

(James and 

Skinner, 

2005) 
 AscoAll2 * GAWCACGACGCCGTCACT 

 TW81 GTTTCCGTAGGTGAACCTGC variable (Curran et 
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 AB28 ATATGCTTAGTTCAGCGGGT al., 1994) 

BSRV BSRV-4714F RGTGCAGCTTTATGCGTTGCC 

519 
(Runckel et 

al., 2011)  BSRV-37R 
CCGCTGTTGAGAATAAGGATATCCA

GG 

BQCV BQCV-UTR-F TGGTCAGCTCCCACTACCTTAAAC 
700 

(Singh et al., 

2010)  BQCV-UTR-R GCAACAAGAAGAAACGTAAACCAC 

CBPV CBPV 1-1 TCAGACACCGAATCTGATTA TG 
570 

(Blanchard 

et al., 2008)  CBPV 1-2 ACTACTAGAAACTCGTCGCTTCG 

DWV L protein DWV-F1425 * CGTCGGCCTATCAAAG 
417 

(Forsgren et 

al., 2009)  DWV-B1806 * CTTTTCTAATTCAACTTCACC 

DWV UTR DWV 20f CGAATTACGGTGCAACTAAC 
559 

(Berenyi et 

al., 2007)  DWV 578r ACAATAGATGGTCGGTGACA 

LSV complex LSVdeg-F * GCCWCGRYTGTTGGTYCCCCC 
578 

(Ravoet et 

al., 2013)  LSVdeg-R * GAGGTGGCGGCGCSAGATAAAGT 

 770LSVorf-F ACGATGTGCAGYYATGAGTA 
770 This study 

 770LSVorf-R GAGGCCAACTGRTCAGG 

 866LSVorf-F CGCCTGAYCAGTTGGCC 
866 This study 

 866LSVorf-R CGWGGCCTCAGCACGA 

Nosema apis NosaRNAPol-F2 AGCAAGAGACGTTTCTGGTACCTCA 

297 

(Gisder and 

Genersch, 

2013) 
 NosaRNAPol-R2 CCTTCACGACCACCCATGGCA 

Nosema ceranae NoscRNAPol-F2 TGGGTTCCCTAAACCTGGTGGTTT 
662 

(Gisder et 

al., 2013)  NoscRNAPol-R2 TCACATGACCTGGTGCTCCTTCT 

Nosema spp. NOS-FOR * TATGCCGACGATGTGATATG 

 ~250 

(Fernandez 

et al., 2012) 

 NOS-REV * CACAGCATCCATTGAAAACG 
(Higes et al., 

2006) 

 SS18SF GTTGATTCTGCCTGACGT 

~1240 

(Weiss and 

Vossbrinck, 

1999) 
 SS1537R TTATGATCCTGCTAATGGTTC 

SBV SBV-VP1b-F GCACGTTTAATTGGGGATCA 
693 

(Singh et al., 

2010)  SBV-VP1b-R CAGGTTGTCCCTTACCTCCA 

SBPV F8156 GATTTGCGGAATCGTAATATTGTTTG 
868 

(de Miranda 

et al., 2010)  B9023 ACCAGTTAGTACACTCCTGGTAACTT
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CG 

Spiroplasma spp. BS1-F AAGTCGAACGGGGTGCTT 
976 

(Meeus et 

al., 2012)  BS1-R TGCACCACCTGTCTCAATGT 

Trypanosomatids SEF * CTTTTGGTCGGTGGAGTGAT 
406 

(Meeus et 

al., 2010)  SER * GGACGTAATCGGCACAGTTT 

 Tryp-cytb-F TGTGGWGTKTGTTTAGC 
490 This study 

 Tryp-cytb-R CRTCWGAACTCATAAAATAATG 

TRSV TRSV-F2  GTGTGCTGTGACGGTTGTTCC 
731 

(Li et al., 

2014)  TRSV-R2 TGCCAGACCACCCAAGATTCC 

VdMLV VdMLV-F ATCCCTTTTCAGTTCGCT 
438 

(Gauthier et 

al., 2011)  VdMLV-R AGAAGAGACTTCAAGGAC 

 

A. bombi: Apicystis bombi, ABPV: Acute Bee Paralysis Virus complex, ALPV-Br: Aphid Lethal Paralysis 

Virus strain Brookings, AmFV: Apis mellifera Filamentous Virus, BSRV: Big Sioux River Virus, BQCV: 

Black Queen Cell Virus,CBPV:  Chronic Bee Paralysis Virus, DWV: Deformed Wing Virus (DWV) 

complex, LSV: Lake Sinai Virus, SBV: Sacbrood Virus, SBPV: Slow Bee Paralysis Virus, TRSV: Tobacco 

Ringspot Virus, UTR: untranslated region, VdMLV: Varroa destructor Macula-like Virus 

* PCR primers used for screening purposes 
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CHAPTER 6 

 

VERTICAL TRANSMISSION OF HONEY BEE VIRUSES IN A BELGIAN 

QUEEN BREEDING PROGRAM 

 

 

The work presented in Chapter 6 was adapted from the following manuscript: 

 

J. Ravoet, L. De Smet, T. Wenseleers, D.C. de Graaf. Vertical transmission of honey bee viruses in a 

Belgian queen breeding program. BMC Veterinary Research, 2015, In Press.  
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1. Abstract 

The Member States of European Union are encouraged to improve the general conditions for the 

production and marketing of apicultural products. In Belgium, programmes on the restocking of 

honey bee hives have run for many years. Overall, the success ratio of this queen breeding 

programme has been only around 50%. To tackle this low efficacy, we organized sanitary controls of 

the breeding queens in 2012 and 2014. We found a high quantity of viruses, with more than 75% of 

the egg samples being infected with at least one virus. The most abundant viruses were Deformed 

Wing Virus and Sacbrood Virus (≥ 40%), although Lake Sinai Virus and Acute Bee Paralysis Virus were 

also occasionally detected (between 10-30%). In addition, Aphid Lethal Paralysis Virus, Black Queen 

Cell Virus, Chronic Bee Paralysis Virus and Varroa destructor Macula-like Virus occurred at very low 

prevalences (≤ 5%). Remarkably, we found Apis mellifera carnica bees to be less infected with 

Deformed Wing Virus than Buckfast bees (p < 0.01), and also found them to have a lower average 

total number of infecting viruses (p < 0.001). This is a significant finding, given that Deformed Wing 

Virus has earlier been shown to be a contributory factor to winter mortality and Colony Collapse 

Disorder. Moreover, negative-strand detection of Sacbrood Virus in eggs was demonstrated for the 

first time. High pathogen loads were observed in this sanitary control program. We documented for 

the first time vertical transmission of some viruses, as well as significant differences between two 

honey bee races in being affected by Deformed Wing Virus. Nevertheless, we could not demonstrate 

a correlation between the presence of viruses and queen breeding efficacies. 

 

2. Background 

In view of the spread of varroasis – a mite infestation of the honey bee – over Europe and the 

problems which this disease has brought about in the beekeeping sector, the Member States of the 

European Union have been encouraged to set up national programmes aimed at improving the 

general conditions for the production and marketing of apicultural products. In Belgium, such 

apicultural programmes now exist for many years and particularly in the Flemish region, a lot of 

effort has been put in the restocking of hives. Within this programme, a limited number of 

recognized breeders are provided with the possibility to travel to a land mating yard in Belgium 
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(Kreverhille) and island mating yards in Germany (Spiekeroog, Norderney) and the Netherlands 

(Ameland, Marken) with selected virgin queens. When these fertilized queens perform well they 

become the new breeding queens two years later, and are distributed on a large scale among the 

other beekeepers. Overall, this programme enjoyed a high participation rate amongst the 

beekeepers, but failed to a certain extent in terms of the efficacy of the queen breeding programme. 

This is evident from the fact that in the past four years, between 5,948 and 6,195 larvae were 

grafted, but only 61.4-70.8% could be raised to newborn queens and from these only 75.0-79.9% 

became egg-laying. Thus overall, the success ratio of the queen breeding programme has been only 

49.1-53.1%, a fairly low number (Buchler et al., 2013). 

 One of the measures that were taken to tackle this low breeding efficacy was the publication 

and distribution of a technical brochure describing the proper way to introduce a new queen into a 

bee colony. Since the problems persisted, we subsequently organized sanitary controls of the 

breeding queens in 2012 and 2014. This measure was taken given that honey bees can be exposed to 

several single stranded RNA viruses and transmission can occur both horizontally and vertically 

(reviewed by Chen et al.  (Chen et al., 2006a; Chen and Siede, 2007)). In horizontal transmission, 

viruses are transmitted among individuals of the same generation. Vertical transmission occurs from 

mothers to their offspring and can have two main causes: (I) infected sperm originating from the 

drones and (II) contaminated eggs originating from infected spermatheca and/or ovaries of the 

queen. The reproducing individuals, the queen and the drones, have a protective status in the colony 

because they are fed by the nurse bees. Nevertheless, both castes are susceptible to parasites. 

Several viruses were already demonstrated in individual queens and drones (Chen et al., 2005a; Chen 

et al., 2006b; Chen et al., 2005b; Gregorc and Bakonyi, 2012; Retschnig et al., 2014; Shen et al., 

2005). The presence of viruses in reproductive tissues of queens and drones were also investigated 

(Fievet et al., 2006; Francis et al., 2013; Gauthier et al., 2011; Yanez et al., 2012; Yue et al., 2006).  

A non-destructive method to investigate whether vertical transmission occurs relies on 

examination of freshly laid eggs. In this study, we focused on a number of commonly occurring bee 
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viruses (Chen et al., 2007) e.g. Deformed Wing Virus (DWV), but also on a set of viruses that were 

recently discovered in the USA such as Lake Sinai Virus (LSV) (Runckel et al., 2011), and which we 

discovered to be present in Belgian apiaries as well (Ravoet et al., 2013). Moreover, using the 

BeeDoctor diagnostic tool (De Smet et al., 2012) which is based on the multiplex ligation-dependent 

probe amplification technology, we were also able to screen in parallel for the negative-strand 

intermediate. 

Both Apis mellifera carnica-breeders and Buckfast-breeders participated in our study. Apis 

mellifera carnica or the carniolan honey bee is the subspecies of the European honey bee native to 

the Balkan Peninsula and represents the majority of Belgian bee populations due to massive import. 

This race is favoured for several reasons, e.g. non-aggressiveness and honey yield. The Buckfast bee 

is a combination race, a cross of various Apis mellifera subspecies and was developed in the United 

Kingdom during several decades.  

 

3. Methods 

Flemish honey bee queen breeders were instructed to collect 10 eggs from worker cells from the 

same honey bee colony, per sample. In the summer of 2012, 35 queen breeders collected a sample 

from one colony each. In 2014, a further 43 egg samples were obtained. This set originated from 11 

queen breeders, who surveyed each several colonies, varying from one to nine. This resulted in a 

total of 78 egg samples used in this study. The eggs were preserved at -20°C, transported to the 

laboratory on dry ice and then stored at -80°C until the RNA was isolated, using the RNeasy Lipid 

Tissue (Qiagen). The eggs were homogenised in the presence of zirconium beads and 0.5 ml QIAzol 

lysis reagent (Qiagen). Using random hexamer primers, 200 ng RNA was retro-transcribed with the 

RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Scientific).  

Although the BeeDoctor tool is capable to detect ten honey bee viruses (De Smet et al., 

2012), we did not obtained good results due to the low virus concentrations in the eggs. Therefore, 

we examined the egg samples by RT PCR assays for the presence of viruses of the Acute Bee Paralysis 
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Virus (ABPV) complex (Francis and Kryger, 2012), Aphid Lethal Paralysis Virus strain Brookings (ALPV) 

(Ravoet et al., 2013), Black Queen Cell Virus (BQCV) (Singh et al., 2010), Chronic Bee Paralysis Virus 

(CBPV) (Blanchard et al., 2008),DWV (Forsgren et al., 2009), LSV (Ravoet et al., 2013), Sacbrood Virus 

(SBV) (Singh et al., 2010) and Varroa destructor Macula-like Virus (VdMLV) (Gauthier et al., 2011). 

Samples positive for the ABPV complex were re-analysed with specific primers for ABPV (Tentcheva 

et al., 2004), Israeli Acute Bee Paralysis Virus (Palacios et al., 2008) and Kashmir Bee Virus (Tentcheva 

et al., 2004). We used honey bee β-actin (Scharlaken et al., 2008) as a control gene to monitor the 

efficiency of the PCR reaction and its previous steps. All PCR reaction mixtures contained: 2 µM of 

each primer; 1 mM MgCl2; 0.2 mM dNTPs; 1.2 U Hotstar Taq DNA polymerase (Qiagen) and 2 µl cDNA 

product. 

Positive samples from the 2012 screening were analysed for the negative-strand of each 

detected virus, namely ABPV, ALPV, DWV, LSV and SBV. They were screened with the BeeDoctor tool 

(De Smet et al., 2012) in its uniplex modus, using 3 µl RNA. 

PCR products were separated by electrophoresis using 1.4% agarose gels or 4% high 

resolution agarose gels for the MLPA PCR products, stained with ethidium bromide and visualised 

under UV light. Amplicons of each virus were sequenced on an ABI 3130XL platform with M13 

primers after cloning with the TOPO TA Cloning Kit for sequencing (Invitrogen). DNA sequences were 

analysed using Geneious R7. 

The incidence of the screened viruses (percentage infected) as well as the total virus load 

(total number of detected viruses) in carnica and Buckfast bees was compared using binomial and 

Poisson generalized linear mixed models with function glmer in package lme4 v. 1.1-7 in R v. 3.1.1. In 

these analyses, race and year were coded as fixed factors and breeder was coded as a random factor, 

and significance was assessed using Wald tests. Least square means on average infection 

percentages and total virus load and 95% Wald confidence limits were calculated using the effects 

package v. 3.0-3. Finally, a linear regression analysis was used to test the effect of virus load (total 

number of infecting viruses) on the percentage of queens that were born from grafted larvae, the 
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percentage of queens that went on to lay out of all larvae that were grafted and the percentage of all 

queens that were born that went on to lay. This analysis was performed in GraphPad Prism 6. 

 

4. Results and discussion  

In this study, we found a high prevalence of different honey bee viruses in eggs used in queen 

breeding operations (Table S1). Although we investigated representative samples consisting of ten 

eggs per sample, false negatives can be present.  Over two sampling years, 75% (58/78) of the egg 

samples were infected with at least one virus whereof 32% (25/78) of the samples were infected 

with a single virus and 42% (33/78) were infected with  multiple viruses (Figure 1). 

 

Figure 1. Number of detected viruses and their prevalences. The samples used in our study were co-

infected with a number of viruses, ranging from 1 to 5. In almost 26% of the samples were no viruses 

detected. 

 

The most abundantly detected viruses were DWV (40%, 31/78) and SBV (42%, 33/78). LSV 

and ABPV were moderately detected in 28% (22/78) and 14% (11/78) of the samples. The other 

viruses ALPV, BQCV, CBPV and VdMLV had only low prevalences, respectively 5% (4/78), 5% (4/78), 

1% (1/78) and 3% (2/78). Remarkably, carnica had a significantly lower infection rate with DWV than 
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Buckfast [binomial GLMM, z=-3.048, p=0.002, 30% mean infection rate in carnica ([20%, 43%] 95% 

C.L.) vs. 73% mean infection rate in Buckfast ([49%, 88%] 95% C.L.)] (Figure 2) as well as a significantly 

lower total virus load (total number of detected viruses) per sample [Poisson GLMM, z=-3.911, 

p=9.10-5, average of 1.1 infecting viruses in carnica ([0.8, 1.4] 95% C.L.) vs. an average of 2.3 infecting 

viruses in Buckfast ([1.7, 3.2] 95% C.L.)]. No significant differences were found in the incidence of the 

other viruses screened (binomial GLMM, p > 0.05).  

 

Figure 2. Comparison of the incidence of different viruses in Apis mellifera carnica and Buckfast bees, 

together with 95% confidence limits based on fitted binomial mixed models (incidence over the 

sampling years 2012 and 2014 was averaged and bee breeder was included as a random factor, n=78 

samples). Accurate confidence limits could not be calculated for species with very low infection rates 

(≤5%), and are omitted from this graph. ***: significant difference with p < 0.01 (Wald tests, binomial 

GLMM). 

 

Our results, however, did not indicate a correlation between the virus burden (total number 

of infecting viruses) and queen breeding efficacy (Figure S1). It might be the case though that 

variation in beekeeping management skills required for successful queen breeding (Buchler et al., 

2013) hides any effect of virus burden on queen breeding efficacy. Given the important effects that 

some of the viruses detected here have on honey bee health, including a large effect on winter 
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mortality (Berthoud et al., 2010; Genersch et al., 2010; Highfield et al., 2009; Nguyen et al., 2011), 

delayed negative effects on honey bee health are likely, particularly given the implied vertical 

transmission to offspring workers. Indeed, this study is the first to document vertical transmission for 

ALPV, LSV and VdMLV.  This is another confirmation that these viruses can infect honey bees, 

especially given that the negative strand was previously detected (Ravoet et al., 2013; Runckel et al., 

2011). Moreover, BQCV lethally affects developing queen larvae and pupae. After death of the 

pupae, the wall of the queen cell eventually colours dark (Chen et al., 2007). This virus is reported to 

be a common cause of queen larvae mortality (Anderson, 1993) and is correlated with the queenless 

condition of an apiary (Nguyen et al., 2011). 

Furthermore, we have detected the negative-strand of SBV.  Although this might indicate 

that SBV replicates in eggs, it is also possible that this originates from transovum transmission, such 

as  surface contamination with sperm containing negative-strand RNAs. Replication of SBV was 

previously reported in adults and larvae of European (A. mellifera) and Asian honey bees (Apis 

cerana) (Bailey, 1968; Bailey, 1969; Mussen and Furgala, 1977). This virus is frequently found in adult 

bees that are covertly infected. A Belgian screening of adult forager bees revealed a prevalence of 

19% (De Smet et al., 2012), but this varies greatly in other European countries (Antunez et al., 2012; 

Forgach et al., 2008; Tentcheva et al., 2004). Larvae can be overtly infested, which then results in a 

failure to pupate and eventually death (Chen et al., 2007). Nonetheless, problems with this virus are 

seldom reported by beekeepers, in contrast to the Asian serotypes that infect A. cerana (Liu et al., 

2010; Roberts and Anderson, 2014). Although SBV is mainly horizontally transmitted, its detection in 

eggs demonstrated that vertical transmission also occurs. It can be expected that a replicating virus 

in honey bee eggs can have consequences for the development into a queen, resulting in a clinical 

relevance for queen breeding, and can also have knock-on effects after being transmitted to the 

offspring workers or drones (Chen et al., 2007).  

A broad virus screening of honey bee eggs was not yet performed. Nevertheless, few studies 

reported the presence of viruses (Chen et al., 2005a; Chen et al., 2006b; Shen et al., 2005; Singh et 
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al., 2010; Yue et al., 2007) but only limited numbers of colonies were screened. However, our study 

of fertilised eggs does not allow us to pinpoint the infection source, queen or drone, which could be 

important for eventual remedial actions. Because surface-sterilisation was not applicable in our study 

design, we could not distinguish between viruses on the surface of the eggs (transovum 

transmission) or within the eggs (transovarian transmission). Because of the possible transovum 

transmission, the emerging larvae will not necessarily be infected with viruses as previously 

demonstrated (Chen et al., 2006b). Nevertheless, these larvae are exposed to horizontal transmission 

via feeding (reviewed by Chen et al. (Chen et al., 2006a)). 

 

5. Conclusions 

A survey of viruses in honey bee eggs in the context of a queen breeding program demonstrated high 

incidences of two viruses (DWV and SBV) and moderate to low incidences of a further six viruses 

(ABPV, ALPV, BQCV, CBPV, LSV and VdMLV). Transmission (transovum or transovarian) of some 

viruses (ALPV, LSV, VdMLV) was demonstrated for the first time as well as negative-strand detection 

of SBV. We could not demonstrate a correlation between the presence of viruses and the low queen 

breeding efficacies. Remarkably, we found Apis mellifera carnica bees to be less infected with 

Deformed Wing Virus (p < 0.01) than Buckfast bees, and also found them to have a lower average 

total number of infecting viruses (p < 0.001). This is a significant finding, given that Deformed Wing 

Virus has earlier been shown to be a contributory factor to winter mortality, and offers interesting 

perspectives for breeding virus-resistant bees. However, we cannot make general conclusions about 

the virus-resistant state of carnica race compared to Buckfast race solely based on our data. We can 

only state that this was observed in our limited dataset. Concluding, further sanitary screenings in 

the context of queen breeding seems advisory, especially because BQCV infection is a common cause 

of queen larval death (Anderson, 1993).  
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10. Supplementary information 

 

Figure S1. Linear regression analysis of the effect of virus loads (total number of detected viruses) on 

queen breeding efficacies: effect on (A) the percentage of queens that were born from grafted larvae, 

(B) the percentage of queens that went on to lay out of all larvae that were grafted and (C) the 

percentage of all queens that were born that went on to lay. 
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Table S1: Overview of the detected viruses in honeybee egg samples, subdivided per year. For each sample is the corresponding apiary, bee race and total 

virus burden shown. The virus prevalence per sampling year and the overall occurrence are indicated. 

ABPV: Acute Bee Paralysis Virus, ALPV: Aphid Lethal Paralysis Virus strain Brookings, BQCV: Black Queen Cell Virus, CBPV: Chronic Bee Paralysis Virus, DWV: 

Deformed Wing Virus, LSV: Lake Sinai Virus, SBV: Sacbrood Virus and VdMLV: Varroa destructor Macula-like Virus 

SAMPLING IN 2012 

Apiary Race ABPV ALPV BQCV CBPV DWV LSV SBV VdMLV Negative Virus load 

1 Buckfast 0 0 0 0 1 0 1 0 0 2 
2 Buckfast 0 0 0 0 1 0 1 0 0 2 
3 Buckfast 0 0 0 0 1 0 1 0 0 2 
4 Buckfast 0 0 0 0 0 0 0 0 1 0 
5 Buckfast 0 0 0 0 0 0 0 0 1 0 
6 Buckfast 0 0 0 0 1 0 0 0 0 1 
7 Buckfast 0 0 0 0 1 1 0 0 0 2 
8 Buckfast 0 1 0 0 1 1 1 0 0 4 
9 Buckfast 0 0 0 0 0 0 1 0 0 1 

10 Carnica 0 0 0 0 0 0 1 0 0 1 
11 Carnica 0 0 0 0 0 0 1 0 0 1 
12 Carnica 0 0 0 0 0 0 1 0 0 1 
13 Carnica 0 0 0 0 0 0 1 0 0 1 
14 Carnica 0 0 0 0 1 0 1 0 0 2 
15 Carnica 0 0 0 0 0 0 0 0 1 0 
16 Carnica 0 0 0 0 0 0 0 0 1 0 
17 Carnica 0 0 0 0 0 1 1 0 0 2 
18 Carnica 0 0 0 0 0 0 0 0 1 0 
19 Carnica 0 0 0 0 0 1 1 0 0 2 
20 Carnica 0 0 0 0 0 0 0 0 1 0 
21 Carnica 0 0 0 0 1 0 0 0 0 1 
22 Carnica 0 0 0 0 0 0 0 0 1 0 
23 Carnica 0 0 0 0 0 0 0 0 1 0 
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24 Carnica 1 0 0 0 0 0 1 0 0 2 
25 Carnica 0 0 0 0 1 0 1 0 0 2 
26 Carnica 0 0 0 0 0 0 1 0 0 1 
27 Carnica 0 0 0 0 1 0 1 0 0 2 
28 Carnica 0 1 0 0 1 0 0 0 0 2 
29 Carnica 0 0 0 0 1 0 0 0 0 1 
30 Carnica 0 0 0 0 0 1 0 0 0 1 
31 Carnica 1 0 0 0 0 0 0 0 0 1 
32 Carnica 0 0 0 0 0 0 0 0 1 0 
33 Carnica 0 0 0 0 1 0 1 0 0 2 
34 Carnica 0 0 0 0 0 0 1 0 0 1 
35 Carnica 0 0 0 0 0 0 1 0 0 1 

Total  2 2 0 0 13 5 19 0 9 41 
Percentage 6% 6% 0,0% 0,0% 37% 14% 54% 0,0% 26% N.A. 

SAMPLING IN 2014 

Apiary Race ABPV ALPV BQCV CBPV DWV LSV SBV VdMLV Negative Virus load 

1 Buckfast 1 0 0 0 1 1 1 0 0 4 
1 Buckfast 0 0 0 0 1 1 1 0 0 3 
1 Buckfast 1 0 1 0 1 1 1 0 0 5 
1 Buckfast 1 0 0 0 1 0 1 0 0 3 
1 Buckfast 0 0 0 0 1 0 1 0 0 2 
2 Buckfast 1 0 0 0 0 1 0 0 0 2 
2 Buckfast 0 1 0 0 0 0 1 0 0 2 
2 Buckfast 0 0 1 0 1 1 1 0 0 4 
3 Buckfast 0 0 0 0 1 1 1 0 0 3 
4 Carnica 0 0 0 0 0 1 1 0 0 2 
4 Carnica 0 0 0 0 0 1 1 0 0 2 
5 Carnica 0 0 0 0 0 0 1 0 0 1 
5 Carnica 1 0 0 0 1 0 1 0 0 3 
6 Carnica 0 0 0 0 1 1 0 0 0 2 
6 Carnica 1 0 0 0 0 1 0 0 0 2 
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6 Carnica 0 0 1 0 1 1 0 1 0 4 
6 Carnica 0 0 0 0 0 0 0 0 1 0 
6 Carnica 0 1 0 0 1 0 0 0 0 2 
6 Carnica 0 0 0 0 0 0 0 0 1 0 
7 Carnica 0 0 0 0 0 1 1 0 0 2 
7 Carnica 0 0 0 0 1 1 0 1 0 3 
8 Carnica 0 0 0 0 0 1 0 0 0 1 
8 Carnica 0 0 0 0 0 0 0 0 1 0 
8 Carnica 1 0 0 0 0 1 0 0 0 2 
8 Carnica 0 0 0 0 0 1 0 0 0 1 
9 Carnica 0 0 0 0 0 1 0 0 0 1 
9 Carnica 0 0 0 0 1 0 0 0 0 1 
9 Carnica 0 0 0 0 0 0 0 0 1 0 
9 Carnica 1 0 0 0 0 0 0 0 0 1 
9 Carnica 1 0 0 0 0 0 0 0 0 1 
10 Carnica 0 0 0 0 1 0 0 0 0 1 
10 Carnica 0 0 0 0 0 0 0 0 1 0 
10 Carnica 0 0 1 0 1 0 1 0 0 3 
10 Carnica 0 0 0 0 0 0 0 0 1 0 
11 Carnica 0 0 0 1 0 0 0 0 0 1 
11 Carnica 0 0 0 0 0 0 0 0 1 0 
11 Carnica 0 0 0 0 0 0 0 0 1 0 
11 Carnica 0 0 0 0 0 0 0 0 1 0 
11 Carnica 0 0 0 0 1 0 0 0 0 1 
11 Carnica 0 0 0 0 0 0 0 0 1 0 
11 Carnica 0 0 0 0 1 0 0 0 0 1 
11 Carnica 0 0 0 0 1 0 0 0 0 1 
11 Carnica 0 0 0 0 0 0 0 0 1 0 

Total  9 2 4 1 18 17 14 2 11 67 
Percentage 21% 5% 9% 2% 42% 40% 33% 5% 26% N.A. 

Overall prevalence 14% 5% 5% 1% 40% 28% 42% 3% 26% N.A. 
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CHAPTER 7 

 

CHARACTERIZATION OF TWO SPECIES OF TRYPANOSOMATIDAE 

FROM THE HONEY BEE APIS MELLIFERA: CRITHIDIA MELLIFICAE 

LANGRIDGE AND MCGHEE, 1967 AND LOTMARIA PASSIM N. GEN., 

N. SP. 

 

 

The work presented in Chapter 7 was adapted from the following manuscript: 

 

R.S. Schwarz, G. Bauchan, C. Murphy, J. Ravoet, D.C. de Graaf, J.D. Evans. Characterization of Two 

Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and 

McGhee, 1967 and Lotmaria passim n. gen., n. sp., Journal of Eukaryote Microbiology. In Press. 

doi: 10.1111/jeu.12209. 
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1. Abstract 

 Trypanosomatids are increasingly recognized as prevalent in European honey bees (Apis mellifera) 

and by default are attributed to one recognized species, Crithidia mellificae Langridge and McGhee, 

1967. We provide genetic and ultrastructural data for type isolates of C. mellificae (ATCC 30254 and 

30862) in comparison with two recent isolates from A. mellifera (BRL and SF). Phylogenetics 

unambiguously identify strains BRL/SF as a novel taxonomic unit  distinct from C. mellificae strains 

30254/30862 and assign all four strains as lineages of a novel clade within the subfamily 

Leishmaniinae. In vivo analyses show strains BRL/SF preferably colonize the hindgut, lining the lumen 

as adherent spheroids in a manner identical to previous descriptions from C. mellificae. Microscopy 

images show motile forms of C. mellificae are distinct from strains BRL/SF. We propose the binomial 

Lotmaria passim n. gen., n. sp. for this previously undescribed taxa. Analyses of new and previously 

accessioned genetic data show C. mellificae is still extant in bee populations, however L. passim n. 

gen., n. sp. is currently the predominant trypanosomatid in A. mellifera globally. Our findings require 

that previous reports of C. mellificae be reconsidered and that subsequent trypanosomatid species 

designations from Hymenoptera provide genetic support. 

 

2. Introduction 

Due to their worldwide agricultural significance, eusocial colony behavior and semi-domestication, 

European honey bees (Apis mellifera) are model organisms for a variety of applied and pure research 

endeavors (Dietemann et al. 2013). Correspondingly, the suite of pathogens and symbionts they host 

are of heightened interest (e.g. Cox-Foster et al. 2007; Evans and Schwarz 2011; Forsgren and Fries 

2010; Genersch et al. 2005; Higes et al. 2013; Klee et al. 2007; Moran et al. 2012; Vásquez et al. 

2012). Currently recognized enteric unicellular parasites of A. mellifera represent four suprakingdom-

level groups of the eukaryotes (sensu Adl et al. 2005; Adl et al. 2012): Amoebozoa, Chromalveolata, 

Excavata, and Opisthokonta. Of these, trypanosomatids belonging to Excavata [Euglenozoa: 

Kinetoplastea: Trypanosomatida: Trypanosomatidae] have been known to infect A. mellifera since at 
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least 1912 (Fantham and Porter 1912) with a peppering of reports in the following century 

supporting their generally common and global distribution including Europe (Fantham and Porter 

1912; Fyg 1954; Lom 1962; Lotmar 1946; Orantes-Bermejo 1999; Ravoet et al. 2013), Africa (Porter 

1945), Australia (Langridge 1966; Langridge and McGhee 1967), North America (e.g. Cox-Foster et al. 

2007; Runckel et al. 2011; van Engelsdorp et al. 2009), South America (Teixeira et al. 2008) and Asia 

(Morimoto et al. 2012; Yang et al. 2013). Reports of their taxonomic diversity have been in conflict, 

however, with some researchers reporting multiple species (Fantham and Porter 1912; Fyg 1954) 

while others believed a single, polymorphic species was present (Langridge and McGhee 1967; 

Lotmar 1946). This confusion was not surprising since taxonomy of trypanosomatids at the time 

relied on morphological characteristics (e.g. Hoare and Wallace 1966; Vickerman 1976; Wallace 

1966), which genetic analyses have since shown are often unreliable and misleading. 

Trypanosomatidae are obligate parasites and include in part genera (i.e. Leishmania, 

Phytomonas, Trypanosoma) comprised of dixenous species, requiring two hosts to complete their 

lifecycle (invertebrate and vertebrate or plant). Although comparatively less studied, many 

invertebrates are parasitized by lineages of monoxenous trypanosomatid species, requiring only one 

host to complete their lifecycle, and are important to consider for a clear understanding of the 

biology and evolutionary history of this entire family. Classically, trypanosomatids have been 

categorized according to six major morphotypes based on the flagellated stage of development 

(reviewed in Wheeler et al. 2013), yet multiple genera can be assigned to individual morphotypes. 

This is most pronounced with the promastigote morphotype, which has been described from the 

following genera: Crithidia, Leishmania, Leptomonas, Herpetomonas, Phytomonas, and Wallaceina 

(recently argued to be renamed as Wallacemonas by Kostygov et al. 2014). Thus, phylogenetics are 

essential for accurate taxonomic classification to circumvent homoplasies among unrelated lineages 

of trypanosomatids (e.g. Vickerman 1994; Votýpka et al. 2012; Wheeler et al. 2013; Yurchenko et al. 

2008) and to identify cryptic species within morphologically indistinguishable populations (Schmid-

Hempel and Tognazzo 2010). For this reason, current trypanosomatid research efforts rely on 
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phylogenetics when characterizing new (e.g. Jirku et al. 2012; Maslov et al. 2010; Votýpka et al. 2013; 

Yurchenko et al. 2006a,b) and previously described taxa (e.g. Teixeira et al. 2011; Yurchenko et al. 

2014). Nonetheless, most of these new taxa continue to be arbitrarily assigned to previously 

accepted genera based on morphotypes despite conflicting phylogenetic placement. This approach 

has artificially created polyphyletic genera within the Trypanosomatida (e.g. Merzlyak et al. 2001; 

Yurchenko et al. 2008) that are only now beginning to be revised based entirely on phylogenetics 

(Teixeira et al. 2011; Borghesan et al. 2013; Kostygov et al. 2014). 

Phylogenetic analyses of trypanosomatids typically involve two nuclear DNA loci for which 

sequences across a large diversity of taxa are available: glycosomal glyceraldehyde-3-phosphate 

dehydrogenase (gGAPDH) and the 18S small subunit ribosomal RNA (SSU). These two loci have 

recently been used to establish the newly recognized trypanosomatid subfamily Leishmaniinae (Jirku 

et al. 2012), previously referred to as the slowly evolving (SE) clade (Merzylak et al. 2001). This 

subfamily includes a robust lineage comprised of Leishmania species (the namesake of the subfamily) 

as well as two polyphyletic genera, Crithidia and Leptomonas. However, taxonomic research of this 

subfamily has focused on species derived from Hemiptera (suborder Heteroptera) or Diptera hosts, 

highlighting the need for additional  taxa from a broader host range to clarify lineages within this 

subfamily (Maslov et al. 2013). The class to which trypanosomatids belong, Kinetoplastea, refers to 

the unique mass of kinetoplast DNA (kDNA) within the elongated mitochondria of these cells. The 

kDNA provides an alternative source of genetic material to which traditional nuclear phylogenetics 

can be compared, and its value has yet to be broadly applied by systematists. The cytochrome b gene 

encoded on kDNA, Cytb, is an important locus for distinguishing genotypes within species of 

Trypanosoma (Spotorno et al. 2008) and Leishmania (Asato et al. 2009) and has recently been used 

(in part) to characterize two closely related taxonomic lineages of trypanosomatids infecting 

bumblebees, Crithidia bombi and Crithidia expoeki (Schmid-Hempel and Tognazzo 2010). 

Early research interests on honey bee trypanosomatids produced two key reports from A. 

mellifera. First (Lotmar 1946) was a detailed account of adult bees with a unique gut scarring 
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pathology, termed “Schorfbienen” (scab bees), with which trypanosomatids were intimately 

associated and suggested to cause. Both motile, flagellated forms and non-motile round forms 

(described here as ‘spheroids’) were described as adherent to the lumenal epithelium surrounding 

melanized ‘scab’ regions in a specific area of the gut called the pylorus, a highly infolded region that 

regulates the transition of gut contents between the ventriculus (midgut) and ileum (small intestine). 

Although no physical specimens were archived, detailed illustrations and photomicrographs showed 

these flagellates typically had acutely pointed anteriors from which the flagellum extended and 

enlarged rounded posteriors as well as some thin, highly elongated forms consistent with 

promastigote and choanomastigote morphotypes. Additional emphasis was placed on their highly 

specific niche within the pylorus, hence the association with melanized tissue here, which rarely 

extending anteriorly into the midgut or distally into the small intestine. The population was 

attributed to a new species with the provisional name Leptomonas apis, with genus assignment 

based on morphological standards at the time. 

Two decades later another trypanosomatid from A. mellifera was characterized and 

denominated Crithidia mellificae (Langridge 1966; Langridge and McGhee 1967), thus becoming the 

first formally and widely accepted species in honey bees. While the description of L. apis was noted 

by Langridge and McGhee, their isolate was ascribed to an entirely different genus and species. This 

was justified by differences in cell morphology and site of tissue colonization described for each. 

Crithidia mellificae showed occasional slightly elongated promastigotes but primarily 

choanomastigotes, with truncated anteriors and rounded to acute posteriors. Within the host gut, C. 

mellificae primarily colonized the rectum in large numbers via spheroids attached to the lumenal 

surface that formed a compact, single layer of parasites. An earlier report of trypanosomatids 

(uncharacterized) in A. mellifera also recognized the rectum as a primary site of colonization (Fyg 

1954). Axenic cultures of C. mellificae were successfully established for its characterization and 

thereafter, two archived type cultures from Georgia, U.S.A. were deposited by one of the authors, R. 
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B. McGhee, to the American Type Culture Collection (ATCC): strain ATCC 30254 isolated from A. 

mellifera and strain ATCC 30862 isolated from the wasp Vespula squamosa (eastern yellow jacket). 

These two key descriptions provided an excellent foundation for understanding honey bee 

trypanosomatids. However, interest in them waned and gave way to the common practice of 

lumping honey bee trypanosomatids into a single taxon, with C. mellificae the largely accepted 

species. Recent applications of molecular methods used in diagnostic bee pathogen surveys (e.g. 

Ravoet et al. 2013; Runckel et al. 2011; van Engelsdorp et al. 2009) have confirmed the general 

abundance of trypanosomatids, yet the lack of clarity surrounding their taxonomy is an impediment. 

Studies that aimed to understand the role of microbes in diseased colonies (Cox- Foster et al. 2007; 

vanEngelsdorp et al. 2009) used vague reference of trypanosomatid genetic signals to family 

(Trypanosomatidae) only, ignoring any species level insight. Alternatively, despite the historical 

disparity over taxa, publicly accessioned trypanosomatid genetic data have been arbitrarily assigned 

to C. mellificae when isolated from A. mellifera (Morimoto et al. 2012; Runckel et al. 2011; Runckel et 

al. 2014; Schmid-Hempel and Tognazzo 2010) and from Asian honey bee Apis cerana (Yang et al. 

2013), leading others to speciously designate homologous sequence data (Cornman et al. 2012; 

Ravoet et al. 2013). However, one study (Cornman et al. 2012) specifically used reference genetic 

material from a type strain of C. mellificae (ATCC 30254) to recognize that a divergent clade of 

trypanosomatids existed in honey bee colonies from the USA. This type strain of C. mellificae has also 

been used in controlled studies where they were found to stimulate complex honey bee immune 

responses (Schwarz and Evans 2013), identifying important implications these parasites may have on 

overall honey bee health. 

Toward improved understanding of trypanosomatids in bees and insect trypanosomatid 

taxonomy, we examined the two archived type strains of C. mellificae (30254 and 30862) and provide 

the first nuclear and kDNA sequence data for this species. We also provide nuclear and kDNA 

sequence data from two recent trypanosomatid axenic cultures established from A. mellifera in the 

USA (strains BRL and SF) that are genetically and morphologically distinct from C. mellificae. 
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Phylogenetic analyses of concatenated gGAPDH and SSU clarify 3 distinct clades within the 

Leishmaniinae subfamily: the Leishmania (Clade 1), the Crithidia (Clade 2) and a novel clade (Clade 3) 

that includes all trypanosomatids isolated from Hymenoptera (e.g. bees, bumblebees and wasps) and 

comprised of species classically assigned to either Crithidia or Leptomonas based on morphology. We 

propose that strains BRL and SF are type specimens (hapantotype BRL strain; parahapantotype SF 

strain) for a new genus and species of Trypanosomatidae within Clade 3. 

 

3. Material and methods 

3.1 Cell line cultures 

All cell lines were maintained at 25°C axenically in “supplemented DS2” medium: Insectagro DS2 

(Cellgro, Manassas, U.S.A.), 5% (v/v) fetal bovine serum (Cellgro) and 100 IU/mL penicillin – 100 

μg/mL streptomycin (Cellgro). Two axenic cell lines of C. mellificae were obtained from ATCC 

(Manassas, U.S.A.): 1) C. mellificae Langridge and McGhee (ATCC 30254) and 2) C. mellificae 

Langridge and McGhee (ATCC 30862). An axenic trypanosomatid culture isolated from the dissected 

ileum of an adult female A. mellifera at the Bee Research Lab (BRL strain ATCC 00359) in Beltsville, 

Maryland, U.S.A. was established in September 2012. The ileum was removed with sterile tools, 

submerged in 1 mL of supplemented DS2 medium in a 1.7 mL microtube and gently macerated with a 

sterile pestle. After 48 hours incubation at 25°C, an active culture was expanded in supplemented 

DS2 with added amphotericin B (2.5 μg/mL) until bacterial and fungal contaminants were no longer 

observed at which point cultures were cryopreserved. A fourth trypanosomatid axenic cell line (SF 

strain ATCC PRA-403) was isolated from A. mellifera in San Francisco, California, U.S.A. as described 

previously (Runckel et al. 2011). 

3.2 In vivo Inoculations with Strain BRL 

Promastigotes of strain BRL were cultured in supplemented DS2 media and prepared for per os 

inoculation as described previously (Schwarz and Evan 2013) in 20% sucrose solution (1:5 sucrose to 

1x phosphate buffered saline (PBS)) at the time of inoculation. A brood frame was removed from a 
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colony maintained at the U.S.D.A. BRL and incubated in a frame cage to recover recently emerged 

workers (< 2 d) that were then divided into two treatment groups and hand fed either 5 μl of 1:1 

sugar water or 5 μl of a strain BRL suspension (10,000 cells / μl) then maintained separately 

according to treatment group in bee cups (Evans et al. 2009) at 34 °C + 50% relative humidity with ad 

libidum sterile sucrose solution until dissection of foregut and hindgut tissues at 10 to 11 days post 

inoculation (p.i.) (n = 20 per treatment group) and light microscopy examination at 400x to 1,000x 

magnification. 

3.3 DNA purification, gene cloning, and sequencing 

DNA was extracted from cultures of axenic trypanosomatid cell lines by homogenizing cells with 

1mm glass beads in 2% (w/v) hexadecyltrimethylammonium bromide (CTAB) buffered with 100 mM 

Tris-HCl (pH 8.0), 1.4 M NaCl, 20 mM EDTA, 0.2% 2-mercaptoethanol, 50 μg proteinase K (Promega; 

Madison, U.S.A.) and 5% (v/v) RNase cocktail (Life Technologies, Carlsbad, U.S.A.) using a FastPrep 

FP120 cell disrupter (Qbiogene, Carlsbad, U.S.A.). DNA was purified with phenol:chloroform:isoamyl 

alcohol (25:24:1) phase separation followed by alcohol precipitation and then resuspended in 

nuclease-free water. 

DNA purified from each cell line was used as template for polymerase chain reaction (PCR) to 

clone 3 nuclear genome loci: 1) gGAPDH, 2) SSU rRNA and 3) the internal transcribed spacer (ITS) 

regions from 18S to 28S rRNA (partial 18S, entire ITS-1, 5.8S rRNA, ITS-2, partial 28S rRNA) and one 

mitochondrial locus, Cytb. Primers targeting these 4 loci were as follows: gGAPDH forward 5’-ATG 

GCT CCG (A/C)TC AAG GTT GGC-3’ and reverse 5’-TTA CAT CTT CGA GCT CGC G(C/G)(C/G) GTC-3’ with 

a 55°C annealing step (modified from Yurchenko et al. 2006); SSU forward 5’-GGC GTC TTT TGA CGA 

ACA AC-3’ and reverse 5’- TAC GTT CTC CCC CGA ACT AC-3’ with a 60°C annealing step (designed 

using Primer 3 in this study); ITS region forward 5’-GTC GTT GTT TCC GAT GAT GGT G-3’ and reverse 

5’- CCT GCC AAC TTG ACA CTG C-3’ with a 57°C annealing step (forward modified from Teixeira et al. 

2008 and reverse designed in this study), Cytb forward 5’-TCG TGT AAA GCG GAG AAA GAA GA-3’ and 
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reverse 5’-ACA CAA ACG TTC ACA ATA AAA AGC A-3’ with a 60°C annealing step (designed in this 

study using Primer3). 

Several honey bee samples from a Belgian trypanosomatid screening (Ravoet et al. 2013) 

were selected for this study. Five μl of RNA (variable concentration) were reverse transcribed using 

random hexamer primers with the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, 

Vilnius, Lithuania). Four specimens of O. bicornis were also collected in May 2012 at campus Sterre, 

Ghent, Belgium. Temporary trypanosomatid cultures (with contaminating bacteria) were established 

using a described protocol (Popp and Latorff 2011), from which DNA was extracted with Dneasy 

Blood & Tissue Kit (Qiagen, Hilden, Germany) following the protocol for cell cultures. To amplify 

trypanosomatid specific genes from infected bees (A. mellifera, O. bicornis), previously published 

primers were used for gGAPDH (Yang et al. 2013), Cytb was amplified using the primer Tryp-cytb-F 5’-

TGT GGW GTK TGT TTA GC-3’ and Tryp-cytb-R 5’-CRT CWG AAC TCA TAA AAT AAT G-3’ with a 50°C 

annealing step, and SSU was amplified using the above primers designed for this study. PCR reactions 

contained 2 μM of forward and reverse primer; 1 mM MgCl2; 1.25 U Hotstar HiFidelity DNA 

polymerase (Qiagen) and 1 μl cDNA (A. mellifera) or 100 ng DNA (O. bicornis). 

Column purified (QIAprep, Qiagen) recombinant plasmid amplicons were bidirectionally 

sequenced with T7 and SP6 priming sites using BigDyeR Terminator on a ABI3730XL capillary 

sequencer (Macrogen, Rockville, U.S.A.). Sequencher 5.2.3 (Gene Codes Corporation, Ann Arbor, 

U.S.A.) software was used to assess sequence quality, unambiguously determine DNA sequence, and 

build contigs for each insert. All non-redundant sequences isolated were accessioned to Genbank 

and are presented in Table S1-S5. 

3.4 Phylogenetic analyses 

Previously accessioned trypanosomatid sequences were retrieved from Genbank and aligned with 

sequences we recovered from each locus using MUSCLE (Edgar 2004) with minor hand correction to 

minimize gaps. Single locus alignments were analyzed using both maximum likelihood (ML) discrete-

character method and Neighbor-Joining (NJ) distance method in MEGA 6.06 for MacOS (Tamura et al. 
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2013). Best-fit nucleotide substitution testing of 24 models based on lowest Bayesian information 

criterion (BIC) inferred by Nearest-Neighbor Interchange heuristic search determined the General 

Time Reversible (GTR) + discrete Gamma Distribution (G) + evolutionarily invariable sites (I) was 

optimal for ML analysis of gGAPDH and SSU while Tamura-Nei (TN93) + G was optimal for Cytb. All NJ 

method analyses used Tamura-Nei model including transitions and transversions, uniform rates 

among sites and pairwise deletion of gaps/missing data. All sites in aligned regions were used and 

areas of no coverage in shorter sequences were ignored. Since both gGAPDH and SSU alignments had 

BIC support for the same optimal model, we generated a concatenated alignment for analysis using 

the most commonly recovered sequence variants from each locus to create a single, representative 

sequence for each trypanosomatid cell line. Tree topologies were tested with 1,000 bootstraps using 

Bodo (SSU and gGAPDH) or Trypanosoma (Cytb) species as outgroups. Optimal phylograms were 

imported to TreeGraph 2 (Stover and Muller 2010) for editing. The trees shown in this manuscript 

(Fig. 1-2) are available in TreeBASE ID 16436. 

3.5 Confocal Laser-scanning microscopy 

Live cells were pelleted from axenic cultures for 5 min at 425x g, fixed in 4% paraformaldehyde in 1x 

PBS (w/v) for 30 min at 4 °C, pelleted at 239x g and resuspended in 1x PBS then stained using 4’,6-

diamidino-2-phenylindole (DAPI) (NucBlueR Fixed Cell Stain, Life Technologies) for 5 min. Stained 

cells were placed in cover glass bottom petri dishes (MatTeck Corp., Ashland, U.S.A.) and viewed with 

differential interference contrast (DIC) on a ZeissTM LSM710 confocal laser scanning microscopy 

(CLSM) system as described previously (Macarisin et al. 2010 and 2012). Briefly, the images were 

observed using a Zeiss Axio ObserverTM inverted microscope with 100x 1.4 NA Plan-Apochromat 

objectives and a 405 nm diode laser with a pin hole of 63 μm passing through a MBS 405 beam 

splitter filter with limits set between 410-485 nm. Zeiss ZenTM 2012 software was used to obtain 15-

20 z-stack images to produce the 3D renderings which were used to develop 2D maximum intensity 

projections. 
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3.6 Electron microscopy 

Scanning electron microscopy (SEM). Live cells were pelleted for 5 min at 425x g and fixed with 3% 

glutaraldehyde in 0.05M PBS for 2 h at room temperature then overnight at 4 °C. Fixed cells were 

washed 6 times in PBS then dehydrated in a graded series of ethanol. Samples were critical point 

dried in a Tousimis Samdri-780A (Tousimis Research Corporation, Rockville, U.S.A.), placed onto ultra 

smooth (12mm diameter) carbon adhesive discs (Electron Microscopy Sciences, Inc., Hatfield, U.S.A.) 

attached to 15 cm x 30 cm copper plates and sputter coated using a magnetron sputter head 

equipped with a platinum target. Samples were observed in an S-4700 field emission SEM (Hitachi 

High Technologies America, Inc., Dallas, U.S.A.) equipped with a Quorum CryoPrep PP2000 (Quorum 

Technologies Ltd., East Sussex, U.K.) cryotransfer system using accelerating voltage of 5 kV. Images 

were captured using a 4pi Analysis System (Agilent Technologies, Durham, U.S.A.). 

Transmission electron microscopy (TEM). Live cells were fixed in 2.5% glutaraldehyde (v/v) in 0.1M 

sodium cacodylate buffer (pH 7.4) for 2 h at room temperature then overnight at 4 °C. Samples were 

then rinsed 6 times in 0.1M sodium cacodylate buffer, post-fixed in 2% (w/v) osmium tetroxide for 2 

h, dehydrated in ethanol series then embedded in acrylic resin (LR White Resin System, London, U.K.) 

and cured at 55 °C for 24 h prior to sectioning using a Reichert- Jung/AO ultra-microtome fitted with 

a Diatome diamond knife. Sections were stained with 4% uranyl acetate and 3% lead citrate, viewed 

in an HT-7700 microscope (Hitachi High Technologies America) at 80 kV and imaged using an AMT 

High-Res CCD camera. 

 

4. Results 

4.1 Genetic characterization of four axenic trypanosomatid strains 

DNA templates from each of the C. mellificae type strains (30254 and 30862) as well as two recent 

axenic isolates from A. mellifera, strain BRL and strain SF, were PCR amplified at three nuclear loci 

(gGAPDH, SSU, and ITS1-5.8S-ITS2) and one kDNA (Cytb) locus. From 226 total recombinant plasmid 

clone inserts, we obtained 99 unique sequences in total that were accessioned to Genbank as  
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Table 1. Inter- and intraspecific identity among unique DNA sequences from Lotmaria passim n.gen., 

n. sp. (strains BRL and SF) and Crithidia mellificae (strains 30254 and 30862) trypanosomatid isolates 

at four genetic loci. 

 Cytb gGAPDH SSU ITS1-5.8S-ITS2 

 Identity (%) between L. passim and C. mellificae 

BRL vs. 30254 88.46 – 88.62 92.32 – 92.80 94.84 – 95.48 64.69 – 65.69 

SF vs. 30254 88.29 – 88.46 93.18 – 93.66 94.84 – 95.48 65.57 – 66.50 

BRL vs. 30862 88.12 – 88.29 91.07 – 92.89 95.35 – 95.48 65.57 – 65.69 

SF vs. 30862 87.95 – 88.12 91.93 – 93.76 95.23 – 95.48 66.44 – 66.50 

Alignment length 589 sites 1,041 sites 775 sites 1,606 sites 

 Identity (%) within L. passim 

BRL vs. SF 99.32 – 99.49 98.66 – 99.04 99.74 – 100 98.35 – 99.14 

BRL only 99.66 – 99.83 99.62 – 99.71 99.87 98.48 – 99.87 

SF only 99.66 – 99.83 98.85 – 99.81 99.74 – 99.87 98.09 – 99.93 

Alignment length 589 sites 1,041 sites 773 sites 1,519 sites 

 Identity (%) within C. mellificae 

30254 vs. 30862 99.49 – 99.66 97.12 – 99.23 99.87 – 100 98.46 – 98.77 

30254 only 99.66 – 99.83 98.94 – 99.42 99.34 – 99.87 98.53 – 99.38 

30862 only 99.66 – 99.83 97.69 – 99.90 99.87 99.54 – 99.92 

Alignment length 589 sites 1,041 sites 763 sites 1,296 sites 

 
 

reference material for these 4 strains (Table S1). Nucleotide sequence identity among the axenic 

strains at these four loci revealed two consistent and distinct taxonomic groups: strains BRL and SF 

each shared higher identity with one another than with strains 30254 or 30862 (Table 1). Nucleotide 

identity among sequences from strains BRL and SF ranged from 98.09% (ITS1-5.8S-ITS2) to 100% 

(SSU) while identity from strains 30254 and 30862 ranged from 97.12% (gGAPDH) to 100% (SSU). 

When sequences from strains BRL and SF were both compared to those of strains 30254 and 30862, 

identity ranged from 64.69% (ITS1-5.8S-ITS2) to 95.48% (SSU) between these two taxonomic groups. 

Sequence identity between taxonomic group BRL/SF compared to group 30254/30862 was 
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consistently lower at all four loci than sequence identity among strains BRL/SF or among 

30254/30862. 

Variation among sequences at the gGAPDH and Cytb locus were due to single nucleotide 

polymorphisms (SNPs) while the SSU and ITS1-5.8S-ITS2 loci included variation due to SNPs and 

insertions/deletions (indels). Homologous regions of SSU were 10 bp shorter in strains 30254 and 

30862 (763 bp) compared to strains BRL and SF (773 bp). Cloned fragments spanning the full ITS1-

5.8S-ITS2 region in strains BRL and SF ranged from 1,492 to 1,511 bp (1,519 aligned sites) and ranged 

from 1,279 to 1,294 bp (1,296 aligned sites) in strains 30254 and 30862. 

 

Table 2. Predicted protein identity among axenic isolates of Lotmaria passim n. gen., n. sp. (strains 

BRL and SF) and Crithidia mellificae (strains 30254 and 30862). 

Isolate Identity (%) to BRL consensus 
Identity (%) to 30254 

consensus 

 agGAPDH   

BRL  99.1 to 100  93.6 to 94.2  

SF  97.6 to 99.4  93.6 to 95.9  

30254  93.3 to 94.5  99.1 to 100  

30862  92.7 to 94.5  97.9 to 100  

 b,cCytb   

BRL  99.4 to 100  97.9 to 98.4  

SF  99.4 to 100  97.9 to 98.4  

30254  97.9 to 98.4  99.4 to 100  

30862  97.9 to 98.4  99.4 to 100  

 
a Based on 28 unique sequences 347 aa’s in length. 
b Based on 13 unique sequences 195 aa’s in length. 
c Translated using genetic code for protozoan mitochondrial DNA. 
 

To assess potential functional variation, we contrasted predicted protein sequences of 

gGAPDH and Cytb (Table 2). The range of identities at both loci formed two, non-overlapping groups: 

one was comprised of strains 30254/30862 and the other of strains BRL/SF. Identity across 347 

predicted amino acids (aa’s) of gGAPDH ranged from 97.6% to 100% 323 within strains BRL/SF and 

97.9% to 100% within strains 30254/30862. Between these two taxonomic groups, identity ranged 

from 92.7% to 95.9%. Similarly, the 195 predicted aa’s of Cytb showed strains BRL/SF were more 

similar to each other than to any 30254/30862 sequences and vice versa (both were 99.4% to 100% 
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identical within group). Contrasting the two groups to each other, identity ranged from 97.9% to 

98.4%. Predicted aa alignments are available in Fig. S1 (gGAPDH) and Fig. S2 (Cytb). 

4.2 Trypanosomatid sequences isolated in vivo from bees 

Fragments of trypanosomatid nucleic acids (gGAPDH, 492 bp; SSU, 763 to 775 bp; Cytb, 452 bp) 

amplified directly out of A. mellifera and Osmia bicornis (red mason bee) collected in Belgium 

recovered 39 (A. mellifera) and 2 (O. bicornis) unique sequences that shared high sequence identity 

to either taxonomic group BRL/SF or 30254/30862. Nearly all sequences isolated from A. mellifera 

(gGAPDH, KM066212-KM066224; SSU, KM066227-KM066239; Cytb, KM066240-KM066250) had high 

identity to sequences of group BRL/SF (99.34% to 100%). However, two SSU sequences recovered 

from A. mellifera (KM066225, KM066226) were 99.87% and 100% identical to taxonomic group 

30254/30862. The two trypanosomatid sequences recovered from O. bicornis also belonged to the 

30254/30862 group (gGAPDH, KM066211, 99.56%; Cytb, KM066251, 100%). 

4.3 Phylogenetic analyses 

Unambiguous and unique gGAPDH, SSU and Cytb DNA sequences isolated from axenic strains 30254, 

30862, BRL and SF along with sequences isolated in vivo from infected honey bees (A. mellifera) and 

red mason bees (O. bicornis) were aligned to homologous sequences extracted from Genbank that 

represented a broad range of available Trypanosomatidae taxa. Both gGAPDH and SSU were the best 

represented loci in Genbank with which we produced alignments containing 160 and 126 sequences 

in total, respectively, while Cytb was poorly represented for which we aligned 51 sequences in total. 

Concatenated gGAPDH-SSU analyses (Fig. 1) placed all of our Trypanosomatidae strains (30254, 

30862, BRL, SF) into a novel clade within the Leishmaniinae subfamily (sensu stricto Maslov and Lukeš 

in Jirku et al. 2012) adjacent to two additional clades with strong ML and NJ bootstrap support, 

respectively: Clade 1 (Leishmania; 98, 99), Clade 2 (Crithidia; 72, 67) and novel Clade 3 (87, 86).  
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Figure 1. Phylogeny reconstruction by ML method using concatenated gGAPDH and SSU sequences 

from four axenic strains (30254/30862 Crithidia mellificae; BRL/SF Lotmaria passim n. gen., n. sp.) 

and from in vivo isolated sequences. Alignments were made with previously accessioned 

Kinetoplastea (accession numbers available in TreeBASE ID 16436), totaling 53 sequences and 1,978 

sites. Both loci were independently best modeled using GTR+G+I based on lowest BIC, justifying 

concatenation and analysis with the same model. Original sequences are in bold font, represented by 

the most prevalent sequence variants from each strain. Node support values for ML and NJ methods 

are shown, respectively, with support <50% (1,000 bootstraps) not shown and 100% support using 

both methods indicated with a black circle. Some taxa for which only the gGAPDH locus was available 

are noted. The base of the Leishmaniinae subfamily is indicated and robust clades within are 

highlighted (Clade 1, 2 and 3). Country of origin and host species are given for non-cultured isolates. 

*Originally accessioned as C. mellificae. Cross-hatched branches are half their original length. 
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Figure 2. Trypanosomatid phylogeny reconstruction using Cytb sequences provides resolution of 

genotype lineages within Clade 3. Sequence alignments (593 sites) were analyzed by ML and NJ 

methods and best-fit model TN93+G (G = 0.2521; lnL = -3726.7857 from lowest BIC = 8728.709), with 

brach support >50% (1,000 bootstraps) shown, respectively. Nodes with black circles have 100% 

support. All original sequences are shown in bold font with the multiple of identical sequences 

recovered in parentheses where applicable. Country of origin and host species are given for non-

cultured isolates. For brevity, select leaves are shown from the original tree (Fig. S9-S10). *These 

sequences were originally accessioned as Crithidia mellificae. **Accessioned as C. mellificae (Schmid-

Hempel and Tognazzo 2010) but identified here as Crithidia expoeki based on sequence identity to 

this species. Tree files with accession numbers available via TreeBASE ID 16436. 
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Within Clade 3, our sequences consistently resolved into two clearly distinct taxonomic units with 

strong support (bootstrap % for ML and NJ methods): strains 30254/30862 (99, 98) and strains 

BRL/SF (100, 100). Single gene trees for gGAPDH, SSU and Cytb robustly resolved all sequence 

variants according to these two taxonomic groups as well, among a broader range of previously 

accessioned Trypanosomatidae sequences (Fig. S3-S10).  

First, all sequences isolated from strains 30254 and 30862 (C. mellificae) in addition to two 

SSU sequences isolated in vivo from A. mellifera (Fig. S4) and two sequences isolated in vivo from O. 

bicornis, gGAPDH (Fig. S3) and Cytb (Fig. 2) formed a novel taxonomic unit (ML and NJ bootstrap 

support %, respectively): gGAPDH (98, 100), SSU (93, 99), Cytb (98, 100). A second clade consistently 

resolved was comprised of all sequence variants from strains BRL and SF as well as all but two 

sequences isolated in vivo from A. mellifera in Belgium (ML and NJ bootstrap support %, 

respectively): gGAPDH (98, 100), SSU (99, 96), Cytb (87, 100). 

All trypanosomatid sequences previously accessioned as C. mellificae belong to the BRL/SF 

clade and not to the 30254/30862 C. mellificae clade (Fig. 1-2, S3-S10). gGAPDH sequences isolated 

from A. mellifera in the U.S.A. (JF423199) and Japan (AB716357) and a gGAPDH sequence isolated 

from Apis cerana (Asian honey bee) in China (AB745489) are all members of the BRL/SF clade (Fig. 1 

indicated by *). An SSU sequence (GU321196) isolated from A. mellifera in Switzerland (Fig. S4 

indicated by *) and three Cytb sequences (AB716358, AB716359 and AB744129) originally ascribed to 

C. mellificae as “haplotype” variants A, B and C, respectively (Fig. 2 indicated by *), all belong to the 

BRL/SF clade as well. BLAST heuristic algorithm searches using promiscuous to strict parameters did 

not identify additional sequences belonging to the BRL/SF or 30254/30862 clades not already 

included in our alignments. 

Despite flawed species designations, “haplotype” distinctions made previously using Cytb 

(Morimoto et al. 2012) are corroborated by our data and show strain BRL forms a distinct subclade 

(ML = 60, NJ = 55) with “haplotype B” sequence and strain SF forms a distinct subclade (ML = 73, NJ = 

79) with “haplotype A” sequence (Fig. 2, S9-10). None of the sequences we isolated were within the 



Chapter 7 

142 
 

“haplotype C” subclade, represented solely by a sequence from A. cerana, yet our analyses support 

that this sequence is a lineage of the BRL/SF clade. Similarly, distinct subclades within the 

30254/30862 clade were resolved using Cytb, such that the 5 unique sequences obtained from strain 

30862 formed a distinct subclade from strain 30254 by ML (87) and NJ (52) analyses. The Cytb 

sequence we isolated from O. bicornis clustered with the 30254 subclade. Finally, one Cytb sequence 

(GU321191) originally accessioned as C. mellificae clearly belongs to the Crithidia expoeki clade (Fig. 2 

indicated by **). Tables S2-S5 correlate sequence names used in the phylogenies to their Genbank 

accession numbers for novel sequences obtained from this study. Concatenated gGAPDH-SSU and 

Cytb alignment files are available in Table S6-S7 and contain accession numbers for each sequence. 

 

4.4 Morphology and ultrastructure 

Cultures of C. mellificae 30254 and 30862 had noticeably different predominant cell morphology 

when compared to those of strain BRL and SF. Representative confocal microscopy images show the 

predominant morphology of C. mellificae 30254 (Fig. 3A) and strain BRL (Fig. 3D) in culture, both of 

which had a single, long, free flagellum inserted at the apical end of the cell. We regularly observed 

cells with the choanomastigote morphology in cultures of both C. mellificae isolates (30254 and 

30862) and cell polymorphism consistent with what has already been described (Langridge and 

McGhee 1967). In contrast, BRL and SF strains predominantly exhibited more elongated, tear-drop 

shaped cells typical of a promastigote morphotype that narrowed posteriorly to a short caudate (tail-

like) extension. Brightly fluorescent kDNA and slightly more diffusely fluorescent nuclear DNA were 

localized with DAPI fluorescence and CLSM. The kDNA was located anterior (closer to the flagellum 

insertion point) to the nucleus in both C. mellificae 30254 (Fig. 3B-C) and strain BRL (Fig. 3E-F) cells. 

Measurements from microscopy images of C. mellificae 30254 choanomastigotes showed 

cells (n = 50) averaged 6.62 μm in length (S.D. ± 1.23 μm, range 4.61 – 8.88 μm) by 3.32 μm widest 

width (S.D. ± 0.43 μm, range 2.47 – 4.38 μm). Average promastigote length of strain BRL cells (n = 50) 

were 7.44 μm in length (S.D. ± 1.59 μm, range 4.66 – 11.40 μm) by 3.15 μm widest width (S.D. ± 0.76 
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μm, range 1.50 – 4.65 μm). These measurements were made on the dominant morphotype from 

axenic cultures and do not include transitional variants that were approaching or at the spheroid 

stage. SEM (Fig. 4A-C) and TEM (Fig. 4D-K) imaging of C. mellificae 30254 revealed the 

choanomastigotes had deep, narrow lateral grooves (Fig. 4A-C) formed by the plasma membrane 

that were most likely structurally supported by a network of subpellicular microtubules (Fig. 4D,K). A 

single flagellum inserted into a narrow, anterior pocket that extended 415 into approximately half 

the length of the cell (Fig. 4D, H) with no apparent spicules or extensions at the point of insertion 

(Fig. 4B arrowhead). The flagellum was comprised of an axoneme (Fig. 4D-E) with typical 9x2 +2 

microtubule structure (Fig. 4F) and a cryptic paraflagellar rod (PFR; Fig. 4H-J). kDNA was adjacent to 

the basal bodies at the base of the flagellum (Fig. 4E) within an elongated mitochondrion (Fig. 4E-G). 

TEM imaging corroborated confocal microscopy results that showed kDNA lies just anterior to the 

adjacent nucleus (Fig. 4D, I), which showed an electron dense nucleolus (Fig. 4G). Additional typical 

trypanosomatid cell structures included glycosomes, acidocalcisomes and spongiome (Fig. 4D). The 

unique promastigote cell morphology of strain BRL was more clearly discerned via SEM (Fig. 5A-C, E) 

and TEM (Fig. 5D, F-L) from that of C. mellificae 30254. In addition to the caudate, posterior 

extension (Fig. 5A-C, K) BRL promastigotes had a broad, deep lateral groove (Fig. 5A-C) in contrast to 

the narrow grooves of C. mellificae (Fig. 4A-C). Distinguishing these strains further was the common 

presence of a short spicule that extended from the flagellar pocket (Fig. 5C-D arrowheads) of strain 

BRL promastigotes that appeared to arise from the flagellum at its insertion point into the flagellar 

pocket, and thus did not appear to be emergent flagella from early cell division since each flagellum 

originated deep within the flagellar pocket and was comprised of an axoneme independently 

surrounded by plasma membrane (Fig. 5I arrowheads). 5H) was localized anterior and adjacent to the 

nucleus (Fig. 5K, L), as determined with DAPI staining (Fig. 3D-F), at the base of a flagellum that had 

an axoneme with 9x2 +2 microtubule structure and a proximal cryptic PFR (Fig. 5G, J). Additional 

ultrastructural features included a large nucleus and nucleolus, acidocalcisomes, glycosomes, basal 

bodies and a contractile vacuole (Fig. 5D, F, J-L). 
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Figure 3. Confocal microscopy of Crithidia mellificae strain 30254 (A-C) and Lotmaria passim n. gen., 

n. sp. strain BRL (D-F) showing the smaller and overall brighter kinetoplast in relation to the larger 

and less bright nucleus. Typical cell morphology of fixed axenic cell culture with DAPI fluorescence and 

DIC (A, D). Single cell view of fixed and DAPI-stained C. mellificae with DIC and fluorescence (B) and 

with fluorescence only (C). DAPI-stained L. passim with fluorescence and DIC (E) and with fluorescence 

only (F). Arrows point to the anterior flagellum insertion point. Scale bars: 10 μm (A, D) and 2 μm (B-

C, E-F).  
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Figure 4. SEM (A-C) and TEM (D-K) images of Crithidia mellificae strain 30254. A-C. Views of typical 

choanomastigotes with multiple deep, narrow lateral grooves and anterior flagellum insertion point. 

Anterior view into insertion point of flagellum (B, arrowhead). D, H. Longitudinal sections of 

choanomastigotes showing typical cell and organelle features. The paraflagellar rod (PFR) is indicated 

(H, white arrowheads). E. Higher magnification of (D) showing kinetoplast in extended mitochondrion, 

microtubules of the axoneme and basal bodies. F. Cross section of flagellar pocket (seen as the 

plasma membrane ring encircling the flagellum) showing 9x2 + 2 microtubule architecture of the 

axoneme. G. Cross section of a choanomastigote showing extended mitochondrion. I. Cytokinesis in 

progress along the longitudinal axis with two flagella (black arrowheads), kinetoplasts and nuclei 

visible. PFR is indicated (white arrowheads). J. Cross-section of a free flagellum with PFR (white 

arrowheads). K. Subpellicular microtubule network (black arrowheads) visible beneath the plasma 

membrane shown in cross section at a lateral groove. Abbreviations: acidocalcisome (“ac”), axoneme 

(“a”), basal bodies (“b”), flagellum (“f”), flagellar pocket (“fp”), glycosome (“g”), kinetoplast (“k”), 

mitochondrion (“mt”), nucleus (“nu”), nucleolus (“n”), subpellicular microtubules (“sm”), spongiome 

(“sp”). Scale bars: 5 μm (C), 2 μm (A-B, D, G-I), 500 nm (E-F, J), 200 nm (K). 
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Figure 5. SEM (A-C, E) and TEM (D, F-L) of Lotmaria passim n. gen., n. sp. strain BRL. A-B. Typical 

lanceolate promastigote cell morphology with broad, deep lateral groove, anterior flagellum insertion 

point and caudate posterior extension visible. C-D. A commonly present spicule (black arrowheads) at 

the insertion point of the flagellum is an extension of the plasma membrane from the flagellum (D). E-

F. Cytokinesis along the longitudinal axis seen using SEM (E) with two developed flagella (white 

arrowheads) and in TEM cross section (F) where only a small section of plasma membrane (black 

arrowhead) remains holding the two cells together. G. Longitudinal section of flagellum proximal to 

the cell body with paraflagellar rod (PFR, white arrowheads) alongside the axoneme 

146uminal146ules. H-I. Cross sections of promastigotes showing subpellicular microtubule network 

(H, black arrowheads) beneath the plasma membrane and early stage cell division (I) showing two 

flagella developed within the flagellar pocket (black arrowheads). J. Cross section of free flagellum 

showing cryptic PFR (white arrowhead). K-L. Longitudinal sections of promastigotes showing typical 

cell and organelle ultrastructure. A portion of the extending mitochondrion from the kinetoplast is 

shown in detail (L). Abbreviations: acidocalcisome (“ac”), axoneme (“a”), basal bodies (“b”), 

contractile vacuole (“cv”), flagellum (“f”), flagellar pocket (“fp”), glycosome (“g”), kinetoplast 

(“k”),mitochondrion (“mt”), nucleus (“nu”), nucleolus (“n”). Scale bars: 4 μm (A), 1008 2 μm (B-E, K), 1 

μm (F-G), 500 nm (H-J, L). 
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Figure 6. Light microscopy of Lotmaria passim n. gen., n. sp. strain BRL in vivo followingexperimental 

inoculation of Apis mellifera showing both spheroid (white arrowheads) andpromastigote (black 

arrowheads) morphology. A. Tissue from lower ileum of uninfected controlbee. B-C. Spheroids form a 

single, dense layer along the 147uminal surface of the lower ileumwith several promastigotes among 

them. D. Spheroid layer peeling away from the lumenalsurface of the ileum where it was cut just 

anterior to the rectum. E-F. Rectal tissue macerateswith typical dense colonization by spheroids 

among pollen grains (“p”) and severalpromastigotes (F). G-I. Free swimming promastigotes from 

dissected hindgut tissues amongdislodged spheroids and unidentified bacteria (“b”) from the rectum 

(H,I). Promastigotesshowed identical morphology to those from axenic culture, including the broad, 

deep lateralgroove (I). Scale bars: 10 μm (B-C, E, H-I), 20 μm (A, D, F-G). 

 

Further, flagellated cells from both C. mellificae 30254 (Fig. 4I) and BRL (Fig. 5E-F) cultures were 

regularly seen undergoing cytokinesis yet only BRL strain cells were observed to have these spicules. 

The flagellar pocket of strain BRL did not extend as deeply into the cell (Fig. 5K) as C. mellificae. kDNA 

within a large extended mitochondrion lying just beneath the subpellicular microtubule network (Fig. 
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5H) was localized anterior and adjacent to the nucleus (Fig. 5K, L), as determined with DAPI staining 

(Fig. 3D-F), at the base of a flagellum that had an axoneme with 9x2 +2 microtubule structure and a 

proximal cryptic PFR (Fig. 5G, J). Additional ultrastructural features included a large nucleus and 

nucleolus, acidocalcisomes, glycosomes, basal bodies and a contractile vacuole (Fig. 5D, F, J-L). 

In addition to typical cytokinesis, two additional states of intercellular adherence were 

regularly observed in our trypanosomatid cell cultures (not shown). First, both C. mellificae 

30254/30862 and BRL/SF strain cells would occasionally form aggregates of up to ~30 cells by 

entwining their flagella, forming what are known as “rosettes” (Dwyer et al. 1974). Second, adherent 

pairs of BRL/SF strain promastigotes occasionally formed when two cells conjoined via the caudate 

extensions, in a posterior-posterior fashion, forming a “doublet” (Wheeler et al. 2011). This form of 

intercellular adherence was not observed in C. mellificae cultures. Both of these examples of 

intercellular adherence may have been artifacts of cell culture since they were not observed in vivo. 

4.5 Tissue tropism of strain BRL 

 Primary site of colonization in experimentally infected bees (n = 20) was the anterior rectum, 

particularly surrounding the rectal papillae, often extending into the distal end of the ileum just 

proximal to the rectum. The lumenal surfaces of these sites in uninfected bees (Fig. 6A) were 

noticeably different from infected bees, which were largely covered by a dense layer of spheroids 

(Fig. 6B-C) approximately 3-4 μm in diameter. When disrupted from their in vivo location (Fig. 6D-I), 

these cells often separated from one another. Spheroids were only observed in the hindgut and were 

common in the rectum (n = 17) and occasional in the ileum (n = 8). Within the ileum, spheroids were 

almost exclusively observed attached at the distal end proximal to the rectum, except for one 

observation in the pylorus of the ileum (n = 1). No spheroids were observed in the crop or midgut. 

Less numerous but consistently present were promastigotes distributed among the spheroids 

on the hindgut lumenal surface (Fig. 6C-D). In vivo morphology of promastigotes was identical to 

those from axenic culture and showed typical acute posteriors (Fig. 6G-H) and a deep lateral groove 

(Fig. 6I). Rarely, more rounded (blunt posterior) promastigotes were observed in the ileum and 
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rectum (not shown). Promastigotes also displayed the spiraling motility as observed from axenic 

cultures. Promastigotes were common in the rectum (n = 17), occasional in the ileum (n = 10), and 

rare in the midgut (n = 1) and crop (n = 2). Three bees from the experimentally infected group did not 

have detectable trypanosomatids at the time of observation, apparently having cleared the infection. 

No scarring nor specific colonization of the pylorus as described by Lotmar (1946) was observed from 

any of these experimental inoculations. None of the sugar water control group bees had visually 

detectable trypanosomatids (n = 20). 

 

5. Discussion 

This study was spurred by a recognized need to contrast recent trypanosomatid isolates from honey 

bees to type strain species of C. mellificae (Evans and Schwarz 2011), with building evidence provided 

by a study that contrasted healthy versus diseased colonies and identified trypanosomatid sequences 

as highly divergent from C. mellificae strain 30254 (Cornman et al. 2012). This study further fueled 

interest with the finding that these were the most prevalent non-viral parasites in honey bee 

colonies. The establishment of two recent honey bee Trypanosomatidae strains in axenic culture, SF 

(Runckel et al. 2011) and BRL (this study), allowed us to reliably obtain genetic data and contrast it 

with the putative axenic type strains of C. mellificae. Our analyses of gGAPDH, SSU, Cytb and ITS1-

5.8S-ITS2 loci from these four strains consistently resolved stains BRL/SF and strains 30254/30862 

into two non-overlapping taxonomic groups, both of which were nested within the Leishmaniinae 

subfamily. Trypanosomatidae strains BRL and SF represent a novel taxonomic unit distinct from any 

previously published characterizations and Trypanosomatidae strains 30254 and 30862 are 

conspecifics of the previously designated taxa C. mellificae. For these reasons, strains BRL and SF are 

denominated and described as type specimens for a novel taxon, Lotmaria passim n. gen., n. sp. in 

accordance with ICZN guidelines (ICZN 1999). 

Phylogenetics using gGAPDH-SSU placed all Hymenoptera trypanosomatids within a novel 

clade (Clade 3) of the Leishmaniinae subfamily that includes the following lineages: 1) L. passim from 

A. mellifera (including strains BRL/haplotype B, SF/haplotype A), 2) L. passim from A. cerana (China 
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haplotype C), 3) C. mellificae from A. mellifera (strain 30254) 4) C. mellificae from V. squamosa (strain 

30862) 5) C. bombi from Bombus lucorum and 6) C. expoeki from B. lucorum. Importantly, this shows 

that these species shared a common ancestor that was different from the common ancestor of 

species within the Leishmania clade (Clade 1) and the Crithidia clade (Clade 2). The phylogenetic 

placement of hymenopteran trypanosomatids to the same clade within the Leishmaniinae, referred 

to here as Clade 3, has been a consistent finding (Morimoto et al. 2012; Runckel et al. 2014; Schmid-

Hempel and Tognazzo 2010). In addition to the hymenopteran trypanosomatids, we show that Clade 

3 also contains species from Hemiptera hosts (C. abscondita, L. jaderae, L. neopamerae, L. podlipaevi, 

L. pyrrhocoris, L. scantii, and L. seymouri). Review of studies that have included only the hemipteran 

trypanosomatids from Clade 3 confirm the common ancestry of these seven species (e.g. Kostygov et 

al. 2014; Yurchenko et al. 2014) and the validity of Clade 3 as a distinct lineage of this subfamily. 

Single gene analyses of gGAPDH sequences corroborated this result, but SSU data alone did not 

resolve any phylogenetic positions of taxa within the Leishmaniinae. Too few Cytb accessions are 

available at present to decipher broader relationships among the Leishmaniinae taxa, but this was 

the most valuable locus tested to phylogenetically differentiate honey bee Trypanosomatidae strains 

from one another and interspecific relationships to C. mellificae, C. bombi and C. expoekii, as found in 

previous work (Morimoto et al. 2012; Schmid-Hempel and Tognazzo 2010). These findings confirm 

the value of kDNA for resolving strain differences within monoxenous trypanosomatids (Wallace et 

al. 1983), similar to what has been found in dixenous species (e.g. Asato et al. 2009; Spotorno et al. 

2008). 

Trypanosomatid systematics originally used morphological features to define monoxenous 

taxa to genera but it soon became apparent that this was creating immense confusion since many 

were indistinguishable due to intraspecific polymorphism and homoplasies across lineages. This was 

particularly true for taxa assigned to the genus Leptomonas or Crithidia based on two morphotypic 

homoplasies: promastigotes and choanomatigotes, respectively. As a first attempt to reduce the 

confusion and refine trypanosomatid taxonomy, recommendations were put forth for new species 
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descriptions to use not only host type and cell morphology but also the establishment of axenic cell 

cultures from which kDNA fingerprinting, nutritional requirements and growth parameters could be 

assessed (Wallace et al. 1983). Although most of these recommendations were rarely applied, 

establishment of axenic cell cultures did gain support and resulted in an invaluable resource of 

monoxenous trypanosomatid cell lines that were archived, primarily at ATCC. Because of such 

archived specimens (ATCC 30254 and ATCC 30862), we were able to determine that the honey bee 

trypanosomatid C. mellificae is distinct from the novel honey bee isolates here defined as L. passim. 

Current standards for protist descriptions and taxonomy require genetic data, which by 

default, becomes the sole determinant for taxa that cannot be reliably distinguished from other 

genera and/or species by morphological features. Among the Trypanosomatidae, the current broadly 

standard loci are gGAPDH and SSU, with Cytb a standard locus for some taxa. Phylogenetics using 

primarily gGAPDH and SSU either individually or concatenated have confirmed that classical 

taxonomic assignments based on morphology do not accurately reflect the evolutionary history of 

some lineages. For a time, Crithidia and Leptomonas were accepted as polyphyletic but it is now easy 

to explain that this is a result of traditional genus assignment misled by morphotypic homoplasies, 

which probably reflect convergent evolution rather than evolution from a common ancestor. Despite 

this recognition and self admonishment for doing so, authors have continued to assign new 

Trypanosomatidae taxa based on cell morphology to the limited, classically defined genera that are 

deeply entrenched in the literature instead of defining novel genera in accordance with the current 

standards of phylogenetics. The massive undertaking of restructuring monoxenous trypanosomtid 

taxa based on phylogenetics is underway, by validation and new assignments to existing genera 

(Borghesan et al. 2012; Teixeira et al. 2011) and by erecting novel genera (Kostygov et al. 2014; 

Votypka et al. 2013; Votypka et al. 2014), to which our report contributes. 

5.1 Novel genus assignment of strains BRL and SF 

As a member of the novel Clade 3, strains BRL and SF are shown to be evolutionarily associated with 

other species classically assigned to Crithidia and Leptomonas based on morphology. Crithidia 
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fasciculate Leger, 1904 is the type species for the genus and is part of a distinct clade (“Crithidia” 

Clade 2) within Leishmaniinae shown here and similarly in prior work (e.g. “C” clade in Yurchenko et 

al. 2009; “Cf” clade in Jirku et al. 2012). Since phylogenetics did not place strains BRL and SF within 

the accepted type species clade, we could not justify assigning it to this genus. 

Validity of the genus Leptomonas Kent, 1880 was brought into question at its inception by 

Kent himself (Kent 1880) when he described the type species L. bütschlii Kent, 1880 from an aquatic 

nematode (Nematoda; Adenophorea; Enoplida; Tobrilidae; Tobrilus gracilis (syn. Trilobus gracilis)). 

Nonetheless, a parasitic flagellate discovered in the hindgut of a water scorpion (Hemiptera, 

Nepidae, Nepa) shared the same general cell features described from the Leptomonas type species 

and was assigned to this genus as L. jaculum Leger, 1902. This paved the way for subsequent genus 

denominations of insect flagellates with a promastigote morphotype, the validity of which has been 

in question for decades (Maslov et al. 2013; Wallace 1966). Although no type material for L. bütschlii 

or L. jaculum are available to our knowledge, a trypanosomatid was recently isolated from the same 

host genus from which L. jaculum was originally described (Nepa sp.) and established as a ‘neotype’ 

(Kostygov et al. 2007). If this neotype is accepted, it represents the type material for the first insect 

Trypanosomatidae assigned to the genus Leptomonas. Phylogenetics using type DNA from this 

neotype (EF184218) and other Trypanosomatidae sequences established the phylogenetic clade for 

L. jaculum (Clade 5 in Maslov et al. 2013), which is not a member of the Leishmaniinae subfamily and 

is clearly a sister clade to the Blastocrithidia as shown repeatedly in numerous studies (e.g. Maslov et 

al. 2010; Votypka et al. 2012; Yurchenko et al. 2009). This invalidates Leptomonas as a candidate 

genus for taxa within the Leishmaniiane subfamily. Since genus assignment of strains BRL and SF 

within our Clade 3 to Crithidia or Leptomonas could not be justified, we were required to 

denominate the new genus Lotmaria Evans and Schwarz, 2014. 
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5.2 Comparison of L. passim n. gen., n. sp. to prior descriptions of honey bee 

trypanosomatids 

The characterization of a honey bee trypanosomatid by R. Lotmar (1946) provided thorough written 

and diagrammatic descriptions for the species proposed as L. apis, however no archived type 

specimens nor genetic characterizations were made. Although we now know morphology cannot be 

the determining factor for putative species identification, it is valuable and required to address this 

point since it is the only information with which to make comparisons to historical characterizations. 

The description of L. apis is distinct from the BRL/SF L. passim taxon we propose here in two 

important ways. First, several careful drawings and descriptions of L. apis characterized the 

flagellated stages as having a narrow anterior end from which the flagellum originated with the cell 

widening distally to culminate in a large, rounded posterior end that typified this species. This 

morphology is more consistent with C. mellificae than with L. passim. No promastigotes with acute 

posteriors like those characteristic of L. passim were described for L. apis. Interestingly, a later report 

on trypanosomatids found in honey bees (Lom 1962) described flagellated stages as having “…the 

posterior end tapering and often drawn out into a sharp point”, which is consistent with L. passim 

and as we show is a feature helpful to differentiate L. passim from C. mellificae. However, these 

trypanosomatids were attributed by the author to the genus Crithidia and presumed to be 

opportunistic infections, thus no species designation was proposed. Rarely thin, elongated forms of L. 

apis were also observed by Lotmar, which is a morphology reported from other insect 

trypanosomatids (e.g. Blechomonas maslovi, Blechomonas wendygibsoni, Leptomonas spiculata) but 

never for C. mellificae (Langridge 1966, Langridge and McGhee 1967, this report) and we have not 

observed such morphotypes from L. passim. 

A second distinction we identified from Lotmar’s characterization of L. apis was her careful 

description that L. apis specifically settled on and colonized the epithelium of the pyloric region of 

the gut, occasionally slightly anterior or posterior into the midgut and upper ileum. She occasionally 

observed flagellated stages throughout various regions of the gut, but never noted a case of 
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colonized rectum tissue, which we show appears to be the preferred niche colonized by L. passim 

and has previously been shown as the preferred niche for C. mellificae as well (Langridge and 

McGhee 1967). These key distinctions support to the best possible ability that L. passim, represented 

by strains BRL and SF, is not the proposed L. apis taxa Lotmar observed in honey bees from several 

regions of Europe. The description of L. apis also does not fully support the features of C. mellificae 

as understood by Langridge and McGhee (1967) who noted Lotmar’s report of L. apis but did not 

contrast their novel species description of C. mellificae to L. apis. 

We also note that the spheroid morphotype we describe for L. passim (non-motile, round 

adherent cell) is identical to descriptions and images of C. mellificae in honey bees as “large numbers 

of the rounded parasites attached to the wall of the rectum…” (Langridge and McGhee 1967). 

Although these cells have the same morphology as amastigotes described from Leishmania spp., this 

term is associated with the intracellular stage within mammalian hosts. Spheroids are a diagnostic 

feature of both C. mellificae and L. passim (Clade 3) in honey bee hosts, but given that limited 

experimental in vivo work has been performed with monxenous insect trypanosomatids, it remains 

to be seen if and how prevalent this morphotype is in other clades. 

5.3 Identifying trypanosomatids from Hymenoptera and host specificity 

Our data support that L. passim is currently more prevalent in honey bees than C. mellificae, is 

globally distributed, and has been present in A. mellifera since at least 2010 based on the earliest 

accessioned sequence we were able to confirm (GU321196). The majority of original trypanosomatid 

sequences amplified from A. mellifera in Belgium belonged to L. passim except for two SSU 

sequences from C. mellificae. Thus, current populations of A. mellifera host both species but L. 

passim predominates. It is unclear at this time why C. mellificae has been infrequently detected in A. 

mellifera recently, yet must have been relatively prevalent nearly 50 years ago when it was 

repeatedly isolated and described in Australia (Langridge 1966, Langridge and McGhee 1967) and 

from the U.S.A. (type specimen accessions). We have determined that all previously accessioned 

sequence data designated as C. mellificae are incorrectly attributed and actually belong to the new 
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species L. passim. Given that 1) both axenic isolates (BRL and SF) of L. passim were established from 

the U.S.A. between 2010 and 2012, 2) the vast majority of original sequence data obtained from A. 

mellifera in Belgium are from L. passim and 3) all previously accessioned data from honey bees in 

China, Japan, Switzerland and the U.S.A. are actually lineages of L. passim and not C. mellificae as 

previously presumed, we conclude that L. passim is global and commonly infects honey bees (A. 

mellifera) while C. mellificae is currently comparatively infrequent. Further, L. passim is not strictly 

host-specific as sequence data obtained from A. cerana (AB744129) also belongs to this new species. 

As trypanosomatids progress through different stages of their cell cycle, variation in 

promastigote morphologies are well documented from Leishmania (Clark 1959; Wheeler, Gluenz and 

Gull 2011). The flagellated stage of C. mellificae and L. passim as we have shown here can be 

generally useful to help discern these two species within honey bees, however, putative species 

designation requires genetic confirmation. Previously published light microscopy images of C. bombi 

and C. expoeki from bumblebees are indistinguishable from the images of C. mellificae we present 

here and cross-infections of bumblebee and honey bee eukaryotic endoparasites do occur (Plischuk 

et al. 2011; Ruiz-Gonzalez and Brown 2006). Further, cryptic species may be present that cannot be 

distinguished from one another by cell morphology, further supporting the need for genetic 

confirmation. 

Our analyses clarify that C. mellificae promiscuously utilizes a wide variety of hymenopteran 

hosts, including not only A. mellifera but also V. squamosa, O. bicornis (shown here) and Osmia 

cornuta (unpublished results) and provides a contradictory example to the paradigm that insect 

trypanosomatids are host-specific. By contrast, L. passim has so far only been isolated from A. 

mellifera and in one instance A. cerana, supportive of the paradigm that trypanosomatids have limits 

to the range of hosts they can infect. Certainly, behavioral and metabolic differences may provide 

barriers that drive evolutionary divergence and host specificity. Previous discussions have speculated 

that parasites (Evans and Schwarz 2011) and trypanosomatids specifically (McGhee and Cosgrove 

1980) may be delimited among honey bees due to unique social behaviors such as adult-to-larva 
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food provision (royal jelly) and adult-to660adult food sharing (trophallaxis). Metabolic limits to cross-

species susceptibility have been empirically demonstrated specifically in A. mellifera via challenges 

with trypanosomatids isolated from flies (Diptera), including Crithidia luciliae, Crithidia fasciculata, 

Crithidia culicidarum, and Stigomonas (Crithidia) oncopelti, none of which established successful 

infections within A. mellifera (Lom 1962). Now, this improved characterization of inter- and 

intragenetic diversity among C. mellificae and L. passim provides the foundation for future work on 

host diversity and distribution that will elaborate on the life history of these key representatives of 

monoxenous trypanosomatids. 

 

6. Taxonomic summary 

Super-group Excavata (Cavalier-Smith, 2002) emend. Simpson, 2003 

Phylum Euglenozoa (Cavalier-Smith, 1981) emend. Simpson, 1997 

Class Kinetoplastea Honigberg, 1963 

Subclass Metakinetoplastina Vickerman, 2004 

Order Trypanosomatida (Kent, 1880) emend. Vickerman, 2004 

Family Trypanosomatidae Doflein, 1901 

Subfamily Leishmaniinae Maslov and Lukeš, 2012 

 

Lotmaria n. gen. Evans and Schwarz, 2014 

Diagnosis: Monoxenous parasites strictly of the Leishmaniinae subfamily and part of a distinct 

phylogenetic clade, referred to here as Clade 3, that currently includes taxa assigned to two other 

genera based on classical morphology, which is now recognized as unacceptable for taxonomic 

characterization: Crithidia abscondita, Crithidia bombi, Crithidia expoeki, Crithidia mellificae, 

Leptomonas jaderae, Leptomonas neopamerae, Leptomonas podlipaevi, Leptomonas pyrrhocoris, 

Leptomonas scantii, and Leptomonas seymouri. 

Remarks: Phylogenetics invalidates Leptomonas Kent, 1880 as a genus assignment for taxa within the 

Leishmaniianae subfamily. Phylogenetics also show that species assigned to the genus Crithidia 
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Leger, 1904 must fall within the lineage associated with the type species for this genus, C. fasciculata, 

referred to here as Clade 2. 

Type species: Lotmaria passim n. sp. 

Etymology: The genus is named in honor of microbiologist and honey bee expert Ruth Lotmar, who 

produced extremely detailed reports of trypanosomatids from Hymenoptera in the middle of the 

20th century. Ruth Lotmar was chosen as a representative for the many Hymenoptera 

trypanosomatid researchers whose combined work has pioneered an understanding of the host 

parasite biology of monoxenous insect trypanosomes and to underscore the value Hymenoptera 

trypanosomatids have made toward improved understanding of Trypanosomatidae evolutionary 

history. The genus suffix “-ia” was chosen to show phylogenetic affiliation with the two other 

prominent clades of the Leishmaniinae subfamily, Leishmania and Crithidia. 

 

Lotmaria passim n. sp. Schwarz, 2014 

Diagnosis: Promastigotes are lanceolate to tear-drop shaped, have a single free flagellum lacking a 

membrane that inserts into a flagellar pocket opening at the broad, rounded anterior end of the cell. 

Length 7.44 μm (4.66 - 11.40 μm), width 3.15 μm (1.50 - 4.65 μm). Promastigotes are horizontally 

compressed with a deep groove oblique to the anterior-posterior axis, creating a wide axis and a 

narrow axis tapering to a typically caudate posterior extension. The kinetoplast is anterior to the 

nucleus. A short spicule (finger-like projection) often occurs at the opening of the flagellar pocket 

adjacent to the flagellum, visible only using electron microscopy. Spheroids (diameter = 3 - 4 μm) 

adhere to the gut wall in a single layer and often in dense aggregates, particularly among the rectal 

papillae (anterior rectum) and into the lower ileum. Polymorphic cell stages that range between the 

described promastigote to the spheroid form may be seen. 

Type taxon: Hapantotype strain BRL (ATCC 00359). 

Type host: In hind gut (ileum) of adult female Apis mellifera ligustica (Hymenoptera, Apidae). 

Other hosts: Apis cerana. 
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Type locality: U.S. Department of Agriculture Bee Research Lab apiary in Beltsville, Maryland, U.S.A. 

(39° 2'26.09"N, 76°51'42.25"W). 

Type material: Giemsa-stained hapantotype specimen mounts have been deposited to the U.S. 

National Parasite Collection (USNPC) in Beltsville, Maryland, U.S.A. for L. passim n. gen., n. sp. strain 

BRL (USNPC No. 108271.00) as well as parahapantotype mounts of L. passim n. gen., n. sp. strain SF 

(USNPC No. 108272.00). Cultures of the hapantotype strain BRL have been accessioned and are 

available (ATCC 00359, Protistology Collection in Manassas, Virginia, U.S.A.) 

Etymology: The species name is derived from the Latin word passim meaning “everywhere” in 

reference to its global and pervasive distribution within honey bees. The species name also contains 

the anagram “apis m” for its type host species Apis mellifera. 

Gene sequences: The species is identified by the following unique DNA sequences obtained from the 

L. passim n. gen., n. sp. hapantotype strain BRL and deposited to GenBank: gGAPDH (KJ713353 to 

KJ713356), SSU rRNA (KJ713377 and KJ713378), Cytb (KJ684960 to KJ684964), and ITS1, 5.8S, and 

ITS2 region (KJ722737 to KJ722744). Unique genetic sequences from the L. passim n. gen., n. sp. 

parahapantotype strain SF deposited to Genbank may also be used: gGAPDH (KJ713346 to 

KJ713352), SSU rRNA (KJ713371 and KJ713376), Cytb (KJ684955 to KJ684959), and ITS1, 5.8S, and 

ITS2 region (KJ722728 to KJ722736). 

 

7. Acknowledgements 

Christopher Pooley of the USDA Soybean Genomics and Improvement Lab prepared digital 

photographs and strain SF was kindly provided by Dr. Michelle Flenniken of Montana State 

University. R.S.S. is grateful to Dr. Allen Smith of the USDA Diet, Genomics and Immunology Lab for 

cell culture knowledge and material support, Dawn Lopez and Margaret Smith of the USDA Bee 

Research Lab for helpful discussions regarding the manuscript, Dr. Eric Hoberg and Patricia Pilitt of 

the USNPC for clarification of type specimen designations and accessioning assistance, Juliane Birke 

who provided an English translation of the R. Lotmar manuscript. The thorough efforts of three 



Chapter 7 

159 
 

anonymous reviewers greatly improved this manuscript. R.S.S. was supported in part by U.S. National 

Science Foundation Dimensions in Biodiversity grant 1046153. J.R. and D.C.G. acknowledge funding 

by the Research Foundation-Flanders (FWO, research grant G.0628.11). 

 

8. References 

Adl, S.M., Simpson, A.G.B., Farmer, M.A., Andersen, R.A., Anderson, O.R., et al., 2005. The new 
higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot 
Microbiol, 52:399-451. 

Adl, S.M., Simpson, A.G.B., Lane, C.E., Lukeš, J., Bass, D., et al., 2012. The revised classification of 
eukaryotes. J Eukaryot Microbiol, 59:429-493. 

Asato, Y., Oshiro, M., Myint, C.K., Yamamoto, Y., Kato, H., Marco, J.D., Mimori, T., Gomez, E.A.L., 
Hashiguchi, Y., Uezato, H., 2009. Phylogenetic analysis of the genus Leishmania by cytochrome b 
gene sequencing. Exp Parasitol, 121:352-361. 

Borghesan, T. C., Ferreira, R. C., Takata, C. S. A., Campaner, M., Borda, C. C., Paiva, F.,Milder, R. V., 
Teixeira, M. M. G., Camargo, E. P. 2013. Molecular phylogenetic redefinition of Herpetomonas 
(Kinetoplastea, Trypanosomatidae), a genus of insect parasites associated with flies. Protist, 164:129-
152. 

Clark, T. B. 1959. Comparative morphology of four genera of Trypanosomatidae. J. Protozool.,6:227-
232.Cornman, R. S., Tarpy, D. R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J. S., vanEngelsdorp, D., Evans, 
J. D., 2012. Pathogen webs in collapsing honey bee colonies. PLoS ONE,7:e43562. 

Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evand, J. D., Moran, N. A., Quan, P.L., Briese, 
T., Hornig, M., Geiser, D. M., Martinson, V., vanEngelsdorp, D., Kalkstein, A.L., Drysdale, A., Hui, J., 
Zhai, J., Cui, L., Hutchison, S. K., Simons, J. F., Egholm, M.,Pettis, J. S., Lipkin, W. I,. 2007. A 
metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318:283-287. 

Dietemann, V., Ellis, J. D., Neumann, P., 2013. COLOSS BEEBOOK: Standard Methods for Apis 
mellifera research. International Bee Research Association, Treforest, United Kingdom.p. 1-614. 

Dwyer, D. M., Langreth, S. G., Dwyer, N. K., 1974. Evidence for a polysaccharide 781 surface coatin 
the developmental stages of Leishmania donovani: a fine structure-cytochemical study. Z Parasitenk, 
43:227-249. 

Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. 
Nucleic Acids Res, 32:1792–1797. 

Evans, J. D., Chen, Y. P., di Prisco, G., Pettis, J. S., Williams, V. 2009. Bee cups: single-use cages for 
honey bee experiments. J Apicult Res, 48:300–302. 

Evans, J. D. and Schwarz, R. S., 2011. Bees brought to their knees: microbes affecting honey bee 
health. Trends Microbiol, 19:614-620. 

Fanthan, H. B. and Porter, A., 1912. Note on certain protozoa found in bees. Suppl J Board Agricul, 
19:138. 

Forsgren, E. and Fries, I., 2010. Comparative virulence of Nosema ceranae and Nosema apis in 
individual European honey bees. Vet Parasitol, 170:212-217. 

Fyg, W., 1954. Uber das Vorkommen von Flagellaten im Rectum der Honigbiene (Apis mellifica L.). 
Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 27:423-428. 



Chapter 7 

160 
 

Genersch, E., Ashiralieva, A., Fries, I., 2005. Strain- and genotype-specific differences in virulence of 
Paenibacillus larvae subsp. larvae, a bacterial pathogen causing American foulbrood disease in 
honeybees. Appl Env Microbio., 71:7551-7555. 

Higes, M., Meana, A., Bartolome, C., Botias, C., Martin-Hernandez, R., 2013. Nosema ceranae 
(Microsoporidia), a controversial 21st century honey bee pathogen. Env Microbiol Rep 5:17-29. 

Hoare, C. A. and Wallace, F. G., 1966. Developmental stages of trypanosomatid flagellates: a new 
terminology. Nature, 212:1385-1386. 

ICZN, 1999. International Code of Zoological Nomenclature. 4th ed. The International Trust for 
Zoological Nomenclature, London. 

Jirku, M., Yurchenko, V. Y., Lukeš, J., Maslov, D. A., 2012. New species of insect trypanosomatids from 
Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol, 
59:537-547. 

Kent, W. S. 1880. A manual of the infusoria, volume 1. David Bogue, London, United Kingdom. p. 1-
472. 

Klee, J., Besana, A. M., Genersch, E., Gisder, S., Nanetti, A., Tam, D. Q., Chinh, T. X., Puerta, F., Ruz, J. 
M., Kryger, P., Message, D., Hatjina, F., Korpela, S., Fries, I., Paxton, R. J., 2007. Widespread dispersal 
of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis 
mellifera. J Invert Pathol, 96:1-10. 

Kostygov, A. Y., Frolov, A. 2007. Leptomonas jaculum (Leger, 1902) Woodcock 1914: a leptomonas or 
a blastocrithidia? Parazitologiia, 41:126-136.  

Kostygov, A. Y., Grybchuk-Ieremenko, A., Malysheva, M. N., Frolov, A. O., Yurchenko, V., 2014. 
Molecular revision of the genus Wallaceina. Protist, 165:594-604. 

Langridge, D. F., 1966. Flagellated protozoa (Trypanosomidae) in the honey bee, Apis mellifera, in 
Australia. J Invert Pathol, 8:124-126. 

Langridge, D. F., McGhee, R. B., 1967. Crithidia mellificae n. sp. an acidophilic trypanosomatid of the 
honey bee Apis mellifera. J Protozool, 14:485-487. 

Lom, J., 1962. The occurence of a Crithidia-species within the gut of the honey-bee, Apis mellifica L. 
Entomophaga Mémoire hors Série, 2:91-93. 

Lotmar, R., 1946. Uuber flagellaten und bakterien im duundarm der honigbiene (Apis mellifica). Beih. 
Schweiz. Bienen-Zeit., 2:49-76. 

Macarisin, D., Bauchan, G., Fayer, R., 2010. Spinacia oleracea L. leaf 827 stomata harboring 
Cryptosporidium parvum oocysts: a potential threat to food safety. Appl Env Microbiol, 76:555-559. 

Macarisin, D., O’Brien, C., Fayer, R., Bauchan, G., Jenkins, M., 2012. Immunolocalization of β- and δ-
giardin within the ventral disk in trophozoites of Giardia duodenalis using multiplex laser scanning 
confocal microscopy. Parasitol Res, 111:241-248. 

Maslov, D. A., Yurchenko, V. Y., Jirku, M., Lukeš, J., 2010. Two new species of trypanosomatid 
parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol, 57:177-188. 

Maslov, D. A., Votypka, J., Yurchenko, V., Lukeš, J., 2013. Diversity and phylogeny of insect 
trypanosomatids: all that is hidden shall be revealed. Trends Parasitol, 29:43-52. 

McGhee, R. B., Cosgrove, W. B., 1980. Biology and physiology of the lower Trypanosomatidae. 
Microbiol Rev, 44:140-173. 

Merzlyak, E., Yurchenko, V., Kolesnikov, A. A., Alexandrov, K., Podlipaev, S. A., Maslov, D. A., 2001. 
Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of 
Leptomonas and Blastocrithidia. J Eukaryot Microbiol, 48:161-169. 



Chapter 7 

161 
 

Moran, N. A., Hansen, A. K., Powell, J. E., Sabree, Z. L., 2012. Distinctive gut microbiota of honey bees 
assessed using deep sampling from individual worker bees. PLoS ONE, 7(4): e36393. 

Morimoto, T., Kojima, Y., Yoshiyama, M., Kimura, K., Yang, B., Peng, G., Kadowaki, T., 2012. Molecular 
detection of protozoan parasites infecting Apis mellifera colonies in Japan. Environ Microbiol Rep, 
5:74-77. 

Orantes-Bermejo, F. J., 1999. A scientific note on the prevalence of trypanosomatid parasites of 
honey bees (Apis mellifera L.) in southern Spain. Apidologie, 30:77-78. 

Plischuk, S., Meeus, I., Smagghe, G., Lange, C, E., 2011. Apicystis bombi (Apicomplexa: 
Neogregarinorida) parasitizing Apis mellifera and Bombus terrestris (Hympenoptera: Apidae) in 
Argentina. Environ Microbiol Rep, 3:565–568. 

Popp, M. and Latorff, H. M. G., 2011. A quantitative in vitro cultivation technique to determine cell 
number and growth rates in strains of Crithidia bombi (Trypanosomatidae), a parasite of 
bumblebees. J Eukaryot Microbiol, 58:7-10. 

Porter, A,. 1945. Some animal parasites of bees observed in three continents. Brit Beekeepers Assoc 
In Lotmar R. 1946. 

Ravoet, J., Maharramov, J., Meeus, I., De Smet, L., Wenseleers, T., Smagghe, G., de Graaf, D. C., 2013. 
Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory 
factor to winter mortality. PLoS ONE, 8:e72443. 

Ruiz-Gonzalez, M. X. and Brown, M. J. F., 2006. Honey bee and bumblebee trypanosomatids: 
specificity and potential for transmission. Ecol Entomol, 31:616-622. 

Runckel, C., Flenniken, M. L., Engel, J. C., Ruby, J. G., Ganem, D., Andino, R., DeRisi, J. L., 2011. 
Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence 
of known viruses, Nosema, and Crithidia. PLoS ONE, 6:e20656. 

Runckel, C., DeRisi, J., Flenniken, M. L., 2014. A draft genome of the honey bee trypanosomatid 
parasite Crithidia mellificae. PLoS ONE, 9:e95057.  

Schmid-Hempel, R. and Tognazzo, M., 2010. Molecular divergence defines two distinct lineages of 
Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J Eukaryot Microbiol, 57:337-345. 

Schwarz, R. S. and Evans, J. D., 2013. Single and mixed-species trypanosome 872 and microsporidian 
infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Dev 
Comp Immunol, 40:300–310. 

Spotorno, A. E., Cordova, L., Solari, A., 2008. Differentiation of Trypanosoma cruzi I subgroups 
through characterization of cytochrome b gene sequences. Inf Gen Evol, 8:898-900. 

Stover, B. C. and Muller, K. F., 2010. TreeGraph 2: combining and visualizing evidence from different 
phylogenetic analyses. BMC Bioinformatics, 11:7. 

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary 
Genetics Analysis version 6.0. Mol Biol Evol, 30:2725-2729. 

Teixeira, E. W., Message, D., Chen, Y., Pettis, J., Evans, J. D., 2008. First metagenomic analysis of 
microorganisms in honey bees from Brazil. B Indústr Anim, 65:355-361. 

Teixeira, M. M. G., Borghesan, T. C., Ferreira, R. C., Santos, M. A., Takata, C. S. A., Campaner, M., 
Nunes, V. L. B., Milder, R. V., de Souza, W., Camargo, E. P., 2011. Phylogenetic validation of the 
genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the 
description of new species of trypanosomatids and of proteobacterial symbionts. Protist, 162:503-
524. 



Chapter 7 

162 
 

vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., Frazier, M., 
Frazier, J., Cox-Foster, D., Chen. Y., Underwood, R., Tarpy, D. R., Pettis, J. S., 2009. Colony collapse 
disorder: a descriptive study. PLoS ONE, 4:e6481. 

Vasquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., Olofsson, T. C., 2012. 
Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE, 
7(3):e33188. 

Vickerman, K. 1976. The diversity of the kinetoplastid flagellates. In: Lumsden, W. H. R., Evans, D. A. 
(ed.), Biology of the Kinetoplastida. Academic Press, London. p. 1-34. 

Vickerman, K. 1994. The evolutionary expansion fo the trypanosomatid flagellates. Int J Parasitol, 
24:1317-1331. 

Votypka, J., Klepetkova, H., Jirku, M., Kment, P., Lukeš, J. ,2012. Phylogenetic relationships of 
trypanosomatids parasitising true bugs (Insecta: Heteroptera) in sub-Saharan Africa. Int J Parasitol, 
42:489-500. 

Votypka, J., Sukova, E., Kraeva, N., Ishemgulova, A., Duži, I., Lukeš, J., Yurchenko, V., 2013. Diversity 
of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and 
description of a new genus Blechomonas gen. n. Protist, 164:763-781. 

Votypka, J., Kostygov, A. Y., Kraeva, N., Grybchuk-Ieremenko, A., Tesařova, M., Grybchuk, D., Lukeš, 
J., Yurchenko, V., 2014 Kentomonas gen. n., a new genus of endosymbiont containing 
Trypanosomatids of Strigomonadinae subfam. n. Protist, ahead of print doi.org/10.1016. 

Wallace, F. G., 1966. The trypanosomatid parasites of insects and arachnids. Exp. Parasitol., 18:124-
193. 

Wallace, F. G., Camargo, E. P., McGhee, R. B., Roitman, I., 1983. Guidelines for the description of new 
species of lower trypanosomatids. J Protozool, 30:308-313. 

Wheeler, R. J., Gluenz, E., Gull, K., 2011. The cell cycle of Leishmania: morphogenetic events and their 
implications for parasite biology. Molec Microbiol, 79:647-662. 

Wheeler, R. J., Gluenz, E., Gull, K., 2013. The limits on trypanosomatid morphological diversity. PLoS 
ONE, 8:e79581. 

Yang, B., Peng, G., Li, T., Kadowaki, T., 2013. Molecular and phylogenetic characterization of honey 
bee viruses, Nosema microsporidia, protozoan parasites, and parasitic mites in China. Ecol Evol, 
3:298-311. 

Yurchenko, V., Lukeš, J., Xu, X., Maslov, D. A., 2006a. An integrated morphological and molecular 
approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi 
n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol, 53:103-111. 

Yurchenko, V., Lukeš, J., Jirku, M., Zeledón, R., Maslov, D. A., 2006b. Leptomonas costaricensis sp. n. 
(Kinetoplastea: Trypanosomatidae), a member of the novel phylogenetic group of insect 
trypanosomatids closely related to the genus Leishmania. Parasitology, 133:537-546. 

Yurchenko, V. Y., Lukeš, J., Tesařová, M., Jirku, M., Maslov, D. A., 2008. Morphological discordance of 
the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist, 
159:99-114. 

Yurchenko, V. Y., Lukeš, J., Jirku, M., Maslov, D. A., 2009. Selective recovery of the cultivation-prone 
components from mixed trypanosomatid infections: a case of several novel species isolated from 
neotropical Heteroptera. Int J Syst Evol Microbiol, 59:893-909.  



Chapter 7 

163 
 

Yurchenko, V. Y., Votýpka, J., Tesařová, M., Klepetková, H., Kraeva, N., Jirku, M., Lukeš, J., 2014. 
Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from 
flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitologica, 61:97-112 

  

 

  



Chapter 7 

164 
 

 



Chapter 8 

165 
 

CHAPTER 8 

 

DIFFERENTIAL DIAGNOSIS OF THE HONEY BEE TRYPANOSOMATIDS CRITHIDIA 
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1. Graphical abstract 

 

 

2. Abstract 

Trypanosomatids infecting honey bees have been poorly studied with molecular methods until 

recently. After the description of Crithidia mellificae Langridge and McGhee, 1967 it took about forty 

years until molecular data for honey bee trypanosomatids became available and were used to 

identify and describe a new trypanosomatid species from honey bees, Lotmaria passim Evans and 

Schwarz, 2014. However, an easy method to distinguish them without sequencing is not yet 

available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki 

revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled 

species discrimination. In search of fragment length polymorphisms for differential diagnostics in 

honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and 

L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and 

ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee 

trypanosomatid species without the need for sequencing. Further investigation confirmed that L. 

passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely 

in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was 

also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the 

characterization and comparison of additional markers from L. passim strain SF (published as C. 

mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, 
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ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the 

gp63 virulence factor. 

 

3. Introduction 

Trypanosomatids can infect a diverse range of organisms like insects, plants and vertebrates 

(Simpson et al., 2006). Human parasites with an insect-mediated transmission (dixenous 

trypanosomatids), such as some Trypanosoma spp. and Leishmania spp., received a lot of attention 

due to their medical importance. In contrast, trypanosomatids solely infecting insects (monoxenous 

trypanosomatids) are comparatively neglected.  

The early descriptions of these monoxenous parasites were based on their morphology and 

host (Wallace, 1966). It was believed that a trypanosomatid could infect only one host species, the so 

called ‘one host – one parasite’ paradigm. The rise of molecular methods like PCR led to the 

awareness that the previously used criteria of morphology and host species had only limited 

significance in taxonomy, thus invalidating  this paradigm (Maslov et al., 2013). Numerous molecular 

markers, like the 18S ribosomal RNA (rRNA), the spliced leader RNA and the glycosomal 

glyceraldehyde-3-phosphate dehydrogenase (gGAPDH), are commonly used in current genotyping 

studies of insect trypanosomatids (Cepero et al., 2014; Hamilton et al., 2004; Maslov et al., 1996; 

Schwarz et al., 2015; Westenberger et al., 2004).  

Several insect groups like true bugs (Heteroptera), flies (Diptera) and fleas (Siphonaptera) 

were recently studied for their trypanosomatid diversity (Maslov et al., 2007; Tyc et al., 2013; 

Votypka et al., 2013; Westenberger et al., 2004), but many other insect groups remain inadequately 

studied. For instance, most currently known hymenopteran trypanosomatids were described 

decades ago, based on the outdated morphology and host species criteria. For example, 

Herpetomonas swainei (Smirnoff and Lipa, 1970) and Crithidia cimbexi (Lipa and Smirnoff, 1971) 

were reported from sawflies (Hymenoptera, suborder Symphyta) yet they remained neglected after 

the initial research and no molecular markers are currently available. In contrast, trypanosomatids 
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from social bees (bumble bees and honey bees) were poorly studied for a long time but interest in 

them revived since they were shown to have negative effects on these economically important and 

interesting pollinators (Brown et al., 2000; Brown et al., 2003; Gegear et al., 2005; Ravoet et al., 

2013; Schwarz and Evans, 2013). 

Nowadays, Crithidia bombi (Lipa and Triggiani, 1988) is a well studied parasite from bumble 

bee species (Bombus spp.) that occurs worldwide. Microsatellite data showed that many clones are 

circulating (Schmid-Hempel and Reber, 2004) and by investigating several molecular markers it 

became clear that a second species can also infect bumble bees, namely Crithidia expoeki (Schmid-

Hempel and Tognazzo, 2010). It was also suggested that C. bombi can be vectored by honey bees 

(Ruiz-Gonzalez and Brown, 2006). 

Contrary to bumble bees, trypanosomatids infecting honey bees (Apis mellifera) were poorly 

studied until some years ago despite the fact that Crithidia mellificae was already described in 1967 

(Langridge and Mcghee, 1967). A trypanosomatid cell culture from American honey bees was later on 

deposited as C. mellificae ATCC 30254 in 1974, followed by C. mellificae ATCC 30862 from Vespula 

squamosa in 1978. When sequence data of the 18S rRNA, gGAPDH and cytochrome b markers 

became recently available for the bumble bee trypanosomatids, sequences from a honey bee 

trypanosomatid were presumed to be derived from C. mellificae (Schmid-Hempel et al., 2010). At the 

same period, trypanosomatids were readily detected in the USA from multiple studies (Cox-Foster et 

al., 2007; Runckel et al., 2011; vanEngelsdorp et al., 2009).  The honey bee trypanosomatid cell 

culture strain SF (ATCC PRA 403) (Runckel et al., 2011) and subsequent draft genome assembly 

(Runckel et al., 2014) were arbitrarily assigned as C. mellificae yet current honey bee trypanosomatid 

sequences from colonies in the U.S. were noted to be divergent from C. mellificae ATCC 30254 

(Cornman et al., 2012). The high genetic distance between this strain and recently obtained 

sequences published as C. mellificae was later on demonstrated by analysing the gGAPDH gene and 

recognized that the latter group belonged to another taxon which should be renamed accordingly 

(Cepero et al., 2014).  Concurrently, a third honey bee trypanosomatid cell culture isolated in 2012 
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from the USA, strain BRL (ATCC 000359), was in use along with strain SF to formally contrast C. 

mellificae with the newly recognized taxon now denominated as Lotmaria passim (Schwarz et al. 

2015), represented by hapantotype strain BRL and parahapantotype strain SF.  

Nowadays, L. passim appears to be the predominant parasite in honey bees worldwide 

(Schwarz et al., 2015), in contrast to the ‘true’ (=taxonomically valid) C. mellificae. Since the 

prevalence of C. mellificae might be underestimated, we searched for a convenient diagnosis 

method. Several loci, including cytochrome b and gGAPDH, showed enough interspecific identity to 

discriminate between both species, but sequencing remains necessary. Techniques like fragment 

length polymorphism and high resolution melting (HRM) were previously used to identify 

trypanosomatids in other host species (Higuera et al., 2013; Schmid-Hempel et al., 2010; Zackay et 

al., 2013). We investigated both methods using infected honey bee samples from different 

geographic locations and trypanosomatid cell types from honey bees and bumble bees. This can 

provide an easy diagnostic method to differentiate both honey bee trypanosomatids, without the 

need for sequencing.  

 

4. Material and methods 

4.1 Sample selection 

For this study we used honey bee (A. mellifera) samples from Japan (10 cDNA samples), Spain (bee 

samples from 10 colonies), Switzerland (10 DNA samples) and Turkey (30 cDNA samples), infected 

with trypanosomatids as confirmed by previous 18S rRNA detection. In addition, we used 8 Belgian 

honey bee samples (cDNA) from which the partial 18S rRNA, GAPDH and cytochrome b genes of 

trypanosomatids were previously determined (Schwarz et al., 2015). Single bee specimens from one 

of these Belgian samples were further investigated. DNA samples of C. bombi types A1 (BJ08.079) 

and A2 (AK08.053), C. expoeki types B1 (BJ08.078) and B2 (AK08.231), C. mellificae (ATCC 30862, 

ATCC 30254) and L. passim strain SF (ATCC PRA-403; deposited as C. mellificae strain SF (Runckel et 
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al., 2014; Runckel et al., 2011)) and L. passim strain BRL (ATCC 00359 (Schwarz et al., 2015)) were 

also included. 

4.2 Cell culture 

Crithidia mellificae ATCC 30254 was first cultivated in ATCC medium 355 as recommended. Further 

sub-cultivation was performed in Brain Heart Infusion (BHI) medium, supplemented with 3.5 µg/ml 

hemin and 2% (v/v) anti-contamination cocktail (Maser et al., 2002). The other cell lines were 

cultivated as described previously (Salathe et al., 2012; Schwarz et al., 2015). Cultivation of 

trypanosomatids from Osmia bicornis and Osmia cornuta were attempted as described earlier (Popp 

and Lattorff, 2011). 

4.3 DNA/RNA extraction and cDNA synthesis 

The nucleic acids from the infected Belgian (Ravoet et al., 2013), Japanese (Morimoto et al., 2013), 

Swiss (unpublished results) and Turkish honey bee samples (unpublished results) were extracted 

earlier. For the Spanish samples, ten bees were homogenized in 5 ml PBS by mechanical agitation in a 

BulletBlender for 5 minutes. After centrifugation at 13,300 g for 5 minutes, extracellular RNA was 

isolated from 140 µl supernatant using the QiaAmp Viral RNA mini kit (Qiagen). Total RNA was 

extracted from five individual honey bees from one Belgian sample, which appeared to be infected 

with the two trypanosomatids. The individual bees were only used to investigate the trypanosomatid 

diversity. They were directly homogenized in 1 ml QIAzol by mechanical agitation in the presence of 

glass beads (2 mm). RNA was further extracted using the RNeasy Lipid Tissue mini kit (Qiagen).For 

the cDNA synthesis with the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific), 5 µl 

extracellular RNA or 2 µg total RNA were reverse transcribed using random hexamer primers.  

DNA was extracted from 4 ml liquid culture (supplemented BHI medium) of Crithidia 

mellificae ATCC 30254 and trypanosomatids from Osmia bicornis and Osmia cornuta using the 

protocol for cell cultures of the DNeasy Blood & Tissue Kit (Qiagen). DNA from C. bombi, C. expoeki, 

C. mellificae ATCC 30862 and L. passim strain SF (ATCC PRA-403; deposited as C. mellificae strain SF 
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(Runckel et al., 2014; Runckel et al., 2011)) and L. passim strain BRL (ATCC 00359 (Schwarz et al., 

2015)) was extracted as previously described (Salathe et al., 2012; Schwarz et al., 2015). 

4.4 PCR amplification 

All PCR reaction mixtures contained: 2 µM of each primer (Table A1); 1.0 mM MgSO4; 1.25 U Hotstar 

Taq HiFidelity DNA polymerase (Qiagen) and 1 µl cDNA or DNA. Published PCR assays were 

performed (see Table A1 for references), but for the newly designed primers we used the following 

cycling conditions: 95°C for 5 min; 94°C for 30 s, 55°C or 50°C (the latter only for the cytochrome b 

amplification) for 30 s, 72°C for 1 min, 35 cycles; final elongation 72°C for 10 min, hold at 4°C. Several 

new primer pairs for the amplification of 18S rRNA, cytochrome b, gp63 (glycoprotein of 63 kDa) and 

ITS1-2 (partial 18S rRNA – complete ITS1 – complete 5.8S rRNA – complete ITS 2 – partial 28S rRNA) 

were designed based on published sequences of C. bombi, Crithidia fasciculata, C. mellificae and/or L. 

passim (Table A1).  

All PCR products were electrophoresed in 1.5% agarose gels, stained with ethidium bromide 

and visualised under UV light. Amplicons were purified or gel-extracted, and subsequently cloned 

using the TOPO TA Cloning Kit for sequencing (Invitrogen). Four plasmids of each amplicon were 

purified and sequenced using M13 primers on an ABI3730XL platform (Applied Biosystems). Different 

internal primer pairs (Table A1) were used to sequence the 18S rRNA amplicons. 

Cloned plasmids were processed for 30 min with FastDigest EcoRI (Thermo Scientific) and 

analysed using 1.5% agarose gel electrophoresis or capillary electrophoresis on a Bioanalyzer (Agilent 

Technologies). For the latter, the fragments were separated using a Agilent DNA 1000 kit (Agilent 

Technologies). The different wells were aligned at 15 bp and 15,000 bp. 

4.5 High resolution melting analysis 

Using the Type-it HRM PCR kit (Qiagen) with 10 µM primer pairs (HRM-cytb-F – HRM-cytb-R or IR1 - 

5.8R; Table A1) and 1 µl cDNA or DNA, we performed the high resolution melting (HRM) analyses. 

PCR products were analyzed with a LightScanner machine (BioFire Diagnostics). 
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4.6 Sequence analysis 

All obtained sequences were assembled, BLAST-searched and aligned with MUSCLE in Geneious R7 to 

confirm their identity. The 18S rRNA sequences of the C. bombi, C. expoeki, C. mellificae and L. 

passim strains were assembled de novo. Afterwards, they were mapped onto the genome sequence 

of L. passim strain SF; ATCC PRA-403 (published as C. mellificae strain SF (Runckel et al., 2014; 

Runckel et al., 2011)), together with 18S rRNA sequences assigned to C. mellificae (Genbank: 

AB738082, AB745487, AB745488, GU321196, KF607064, KJ704242-KJ704251). The draft genome of 

L. passim strain SF; ATCC PRA-403 was BLAST-searched to identify homologous gp63, 18S rRNA, 28S 

rRNA and ITS1-2 sequences. In addition, ITS1 sequences from C. bombi (Genbank: GU321121-

GU321168, KF002565), C. expoeki (Genbank: GU321169-GU321186) were downloaded from 

Genbank.  Additional sequences were made available for this study by R. Schwarz: C. mellificae ATCC 

30254 (Genbank: KJ722745- KJ722753), C. mellificae ATCC 30862 (Genbank: KJ722754-KJ722757), L. 

passim strain BRL; ATCC 00359 (Genbank: KJ722738- KJ722744) (Schwarz et al., 2015) and L. passim 

strain SF; ATCC PRA-403 (Genbank: KJ722728-KJ722737). Gp63 proteins from Crithidia spp. were 

retrieved by a BLASTP-search and investigated for conserved domains (Marchler-Bauer et al., 2011).  

Phylogenetic analysis of the ITS1 locus was performed to assign the trypanosomatid 

sequences. Selection of the best fitted maximum likelihood models was based on the Bayesian 

information criterion (BIC), as implemented in MEGA6. The analysis was performed using the Kimura 

2-parameter model with gamma distributed rate variation among sites (K80+G) using PhyML 3.0 

(Guindon et al., 2010). The reliability was assessed by approximate likelihood ratio test non-

parametric branch support based on a Shimodaira-Hasegawa-like (aLRT SH-like) procedure 

(Anisimova and Gascuel, 2006). 

All unique sequences obtained in this study were deposited in Genbank under accession 

numbers KM980179 (L. passim gp63 fragment from honey bees), KM980180-81 (L. passim 

cytochrome b sequences from honey bees), KM980182-KM980188 (C. bombi, C. expoeki, C. mellificae 

and L. passim 18S rRNA sequences from bumble bees and honey bees), KM980189-90 (L. passim 28S 



Chapter 8 

173 
 

rRNA fragments from honey bees), KM980191-98 (C. bombi, C. expoeki, C. mellificae and L. passim 

ITS1-2 sequences from bumble bees and honey bees), KP133036-KP133039, KP133020,KP133022, 

KP133023 (C. mellificae ITS1 sequences from honey bees), KP115801-KP115804 (C. mellificae ITS1 

sequences from mason bees) and KP132992-KP133019, KP133021, KP133023-KP133035 (L. passim 

ITS1 sequences from honey bees). 

 

5. Results 

Using the hapantotype (ATCC 30254 and ATCC 00359) and parahapantotype (ATCC 30862 and PRA 

403) strains of C. mellificae and L. passim, respectively (hereafter ‘type strains’), we were able to 

distinguish them in initial HRM analyses. Nevertheless, a broader screening with infected honey bee 

samples from a widespread origin failed to differentiate them (data not shown). Therefore we 

investigated several loci in search for a PCR based fragment length polymorphism. 

 

Figure 1: Example of ITS1 fragment length polymorphism visualized by capillary electrophoresis. L: 15-

15.000 bp molecular weight ladder (Agilent Technologies). Clones derived from C. mellificae ATCC 

30254 (Cm), L. passim strain BRL (Lp), O. cornuta trypanosomatid culture (Oc1 and Oc2) and  a pooled 

honey bee sample (Am1-Am7) are included in this analysis. The fragments of C. mellificae are situated 

around 410 bp and those of L. passim around 550 bp. The fragments above 1.500 bp are derived from 

the pCR4 cloning vector. 
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First the 18S rRNA (Genbank: KM980182-7), ITS1 and ITS1-2 (Genbank: KM980195-98) were 

amplified from the type strains. The ITS1 locus appeared to be very useful for species discrimination 

since we found a length difference of around 70 nt between the two clades of honey bee 

trypanosomatids, clearly envisioned by 1.5% agarose gel or capillary electrophoresis (Figure 1). 

Although the ITS1-2 locus differed by around 200 nucleotides (~930 bp for C. mellificae and ~1,140 

bp for L. passim), it could not be assigned unambiguously using 1.5% agarose gel electrophoresis and 

this marker was not readily amplified in infected honey bee samples. Also, the ITS1-2 marker did not 

allow easy differentiation between the C. bombi and C. expoeki type strains due to the small 

fragment length polymorphism of 22 nt. The 18S rRNA fragments showed no usable fragment length 

polymorphisms (Figure A1), but possess several nucleotide differences between the bee 

trypanosomatids. By mapping published C. mellificae sequences from China, Japan, Spain, 

Switzerland and Turkey (Genbank: AB738082, AB745487, AB745488, GU321196, KF607064, 

KJ704242-KJ704251) onto the 18S rRNA of the type strains, we could assign them as previously 

discussed (Cepero et al., 2014; Schwarz et al., 2015). 

While the ITS1 locus was easily acquired from the type strains, we could not successfully 

amplify it from all infected honey bee samples. This was also observed using the cytochrome b and 

gGAPDH markers (Schwarz et al., 2015). Nonetheless, we obtained ITS1 sequences from nine Belgium 

honey bee samples, seven Japanese samples, three Swiss samples but none of the Spanish and 

Turkish samples.  

To assess the specificity of the observed ITS1 polymorphism, we performed a phylogenetic 

analysis which included our unique sequences and published sequences from C. bombi, C. expoeki, C. 

mellificae and L. passim. All ITS1 amplicons from Japan (Genbank: KP133004-KP133018), Switzerland 

(Genbank: KP132992-KP133003) and almost all Belgium honey bee samples (Genbank: KP133019, 

KP133024-KP133035) could be assigned to the L. passim clade (strain BRL/SF) by phylogenetic 

analysis (Figure 2). This was confirmed for a Swiss sample using the cytochrome b marker (Genbank: 
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KM98018), as already employed for the Belgian and Japanese samples (Morimoto et al., 2013; 

Schwarz et al., 2015).  

 

Figure 2: Phylogenetic analysis of trypanosomatid ITS1 clones. Each isolate is indicated by its 

accession number, but those of C. bombi and C. expoeki are compressed. The clades are visualized by 

named brackets. Branch support is indicated by aLRT statistics, although only values higher than 70% 

are shown. Accessions of the C. mellificae types are indicated by squares and those of the L. passim 

types by circles. The sequences of the co-infected sample from Belgium are shown in bold italic. 

 

Surprisingly, sequences of C. mellificae were detected in two Belgian honey bee samples. One 

sample was solely infected with this species (Genbank: KP133036-KP133039), but the other sample 
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(Genbank: KP133020, KP133022, KP133023) was co-infected with L. passim (Genbank: KP133021) 

(Figure 2). Investigation of single honey bee specimens from this sample with mixed infection 

revealed that L. passim was detected in all bee specimens. Only one of five bees was co-infected with 

C. mellificae. In addition to honey bees, we could detect C. mellificae in trypanosomatid cultures 

derived from O. cornuta and O. bicornis (Genbank: KP115801-KP115804). The 18S rRNA and the ITS1 

marker from both infected solitary bees were identical to the type strain C. mellificae ATCC-30254. 

A Belgian honey bee sample infected with L. passim was used to characterize multiple loci, 

which were compared to L. passim strain SF. Sequencing of the 18S rRNA (Genbank: KM980188) and 

28S rRNA (Genbank: KM980189-90) amplicons indicated only few nucleotide differences with the L. 

passim strain SF genome (Genbank: AHIJ01002555), resulting in ~99% identity. The complete ITS1-2 

(Genbank: KM980191-94) region was also very similar (98% nucleotide identity). The cytochrome b 

amplicon (0.8 kb) of the Belgian isolate (Genbank: KM980180) was even completely identical 

(Genbank: AHIJ01002387). On the other hand, the virulence factor gp63 (Genbank: KM980179) was 

largely identical (93.6% nucleotide and 91.1% amino acid similarity) to strain SF (Genbank: 

AHIJ01002023) but a small variable region of 10 amino acids was present (Figure 3). The predicted 

gp63 protein of strain SF contains the conserved Peptidase_M8 (leishmanolysin) superfamily domain. 

Two additional gp63 proteins were retrieved from Crithidia fasciculata (Genbank: AAA30319, 

Q06031) which had around 70% amino acid similarity with those of L. passim.  

 

Figure 3: Alignment of gp63 amino acid sequences from the trypanosomatids Crithidia fasciculata 

(Genbank: AAA30319, Q06031) and L. passim strain SF (Genbank: AHIJ01002023 contig 298) and the 

obtained sequence from an infected Belgian honey bee sample (Genbank: KM980179). 
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6. Discussion 

In this study, we wanted to design a convenient method to diagnose infections of the 

trypanosomatid parasites C. mellificae and L. passim in honey bee samples, without the need to 

sequence amplicons. HRM proved to be a simple technique to classify genotypes of Leishmania 

donovani and Trypanosoma cruzi (Higuera et al., 2013; Zackay et al., 2013) and was also used to 

assess the strain diversity of Deformed wing virus (Martin et al., 2012). While HRM analysis of the 

type strains of C. mellificae, C. bombi, C. expoeki and L. passim appeared successful, we were not able 

to genotype infected honey bee samples. This can be caused by the different extraction methods and 

elution buffers. 

Another method to discriminate between two trypanosomatids is the amplification of a locus 

with a fragment length polymorphism. We succeeded in amplifying the ITS1 marker in the 

trypanosomatid type strains, which revealed a fragment length polymorphism between C. mellificae 

and L. passim, as already demonstrated for C. bombi and C. expoeki (Schmid-Hempel et al., 2010). 

The ITS1-2 marker was also amplified, but this was less usable than the ITS1 marker. 

The ITS1 marker could be amplified in a subset of the infected honey bee samples from a 

widespread origin. We confirmed the omnipresence of L. passim (Schwarz et al., 2015) and the rare 

detection of C. mellificae, since the latter is only known from Australia (Langridge et al., 1967), 

Belgium (Schwarz et al., 2015) and the USA (origin of C. mellificae ATCC-30254 and ATCC-30862). Its 

presence in Australia is not certain since no molecular data are available. Surprisingly, we found a 

coincidence of both parasites in one Belgian honey bee sample. Further research demonstrated that 

C. mellificae was only very scarcely detected in this colony. The presence of C. mellificae in this 

sample was not demonstrated before based on the 18S rRNA, cytochrome b and gGAPDH markers 

(Schwarz et al., 2015). Furthermore, we provide evidence for O. cornuta as another hymenopteran 

host of C. mellificae, in addition to A. mellifera, O. bicornis and Vespula squamosa (Schwarz et al., 

2015). Since another Belgian honey bee sample was infected exclusively with C. mellificae, we can 

presume that this trypanosomatid still infects hymenopterans nowadays. It is possible that the 
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presence of C. mellificae is underestimated in honey bees due to its apparent low prevalence. 

Moreover, some primer sets do not detect both trypanosomatids (Cepero et al., 2014) but broad 

range primers for both honey bee trypanosomatids are now available for several loci like the 18S 

rRNA, cytochrome b, gGAPDH and ITS1 (this study and (Cepero et al., 2014; Ravoet et al., 2014; 

Schwarz et al., 2015)). Phylogenetic analysis of the ITS1 sequences validated the fragment length 

polymorphism. Remarkably, C. mellificae isolates from Belgian honey bees formed a separate 

subclade, while those from the Belgian mason bees clustered with the type strains.   

We could corroborated assignment of published 18S rRNA sequences from China, Japan, 

Switzerland, Spain and Turkey to L. passim (Schwarz et al., 2015). This parasite was also detected in 

all investigated samples. However, amplicons obtained with the primers SE-F and SE-R appeared to 

be too conserved while sequences amplified with the primer sets 609F-706R or 18SF-18SR contained 

the most indels and point mutations. This implicates that the latter primer sets can be used for 

species assignment of C. mellificae and L. passim in addition to primers targeting the cytochrome b 

and gGAPDH loci (Cepero et al., 2014; Schwarz et al., 2015), although sequencing remains necessary 

in contrast to the ITS1 marker.   

In search of intraspecific variation, we compared several loci of L. passim strain SF and a 

Belgian honey bee sample infected with L. passim. The almost complete 18S rRNA, 28S rRNA and 

ITS1-2 regions were almost identical, but they do not encode for proteins. The gp63 virulence factor 

on the other hand showed a variable amino acid stretch. This protein belongs to a multi-gene family 

(Mauricio et al., 2007) and has been widely detected in trypanosomatids (d'Avila-Levy et al., 2014; 

Etges, 1992). Its role in insect parasites is understudied, but they are probably involved in cell 

adhesion and nutrition (d'Avila-Levy et al., 2014). 

We can conclude that an easy differentiation method between both honey bee 

trypanosomatids was found using the ITS1 marker. The fragment length polymorphism in this region 

can also reveal the presence of the rarely detected C. mellificae, which can be missed using other 



Chapter 8 

179 
 

common markers like the 18s rRNA, cytochrome b and gGAPDH. Sequence variation was found in 

gp63 virulence factor, which might be a good indicator of intraspecific variation.  
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9. Supplementary information 

 

 

Figure S1: Mapping of 18S rRNA sequences from C. bombi, C. expoeki, C. mellificae and L. passim 

isolates, indicated by their accession numbers. The genome draft of L. passim strain SF was used as 

reference sequence. The primers used in this study to amplify 18S rRNA fragments are indicated in 

blue. 
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Table A1: List of PCR primers used for trypanosomatid fragment detection in this study. Most targets 

have a small size difference, due to some indels between C. mellificae and L. passim sequences. The 

mentioned sizes are referring to those of L. passim. 

Target Primers Sequence (5’-3’) 
Size 
(bp) 

Reference 

18S rRNA CB-SSUrRNA-F2 CTTTTGACGAACAACTGCCCTATC 

~717 

Schmid-
Hempel and 
Tognazzo, 
2010 

 CB-SSUrRNA-B4 AACCGAACGCACTAAACCCC 

 18S-F* GGCGTCTTTTGACGAACAAC 
~817 

Schwarz et al., 
2015  18S-R* TACGTTCTCCCCCGAACTAC 

 609F CACCCGCGGTAATTCCAGC 
~842 

Maia Da Silva 
et al., 2004  706R CTGAGACTGTAACCTCAA 

 350Crith-F CCCACGGGAATATCCTCAGC 
350 This study 

 350Crith-R GGTAAAACCCGCCGATGAGT 

 SE-F CTTTTGGTCGGTGGAGTGAT 
406 

Meeus et al., 
2010  SE-R GGACGTAATCGGCACAGTTT 

 CrU-F1 TTGAGATCTGGTTGATTCTGC ~2040# 
Meeus et al., 
2010 

28S rRNA S-1842 
GGGTCTAGAGTAGGAAGACCGAT
AGC 

~1008 
Maslov et al., 
1996 

 S-1843 
GTGGTACCGGTGGATTCGGTTGGT
GAG 

ITS1 IR1 
GCTGTAGGTGAACCTGCAGCAGCT
GGATCATT variable 

Maia Da Silva 
et al., 2004 

 5.8R GGAAGCCAAGTCATCCATC 

ITS1-2 Cr-ITS-F CCTGCAGCTGGATCATTTTC 
~1100 This study 

 Cr-ITS-R TTTCTTTTCCTCCGCTGAGT 

Cyt b HRM-cytb-F GCCATTTAGGTTTTGTAATACGAA 
187 This study 

 HRM-cytb-R CGCACATATCCAATAAAGCCT 

 SF-cytb-F AAAGCGGAGAAAGAAGAAAAG 
830 This study 

 SF-cytb-R CAGGCACAGCTTTTAAGAAAC 

 Tryp-cytb-F TGTGGWGTKTGTTTAGC 
490 

Ravoet et al., 
2014  Tryp-cytb-R CRTCWGAACTCATAAAATAATG 

Gp63 Cr-gp63-F ACGAGATCGCACATTCCCTC 
414 This study 

 Cr-gp63-R GGAACTGTGTCACGTTGTCG 

* These primers were used for screening purposes. 

# Size is referring to the primer combination CrU-F1 and SE-R. This was used for the C. bombi, 

C. expoeki and C. mellificae ATCC-30862 strains 

To span the 18S rRNA amplicons, we used published primer sets and designed another primer pair 

based on the Crithidia bombi partial 18S rRNA gene (Genbank: FN546181). Primers for the ITS 1-2 

region (partial 18S, entire ITS 1, 5.8S rRNA, ITS-2, partial 28S rRNA) were designed using published 

sequences of C. mellificae and L. passim (Genbank: KJ722728- KJ722744). ITS 1, 28S rRNA and 

cytochrome b regions were amplified with published primers. An alignment of L. passim cytochrome 

b sequences (Genbank: AB744129, AB716358, AB716358) served as a template for the design of 
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HRM primers. The complete L. passim cytochrome b gene (Genbank: AHIJ01002387, contig 625) and 

a partial Crithidia fasciculata metalloproteinase gene (Genbank: M94364) served also as template to 

design primers.  
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CHAPTER 9 

 

GENOME SEQUENCE HETEROGENEITY OF LAKE SINAI VIRUS FOUND IN HONEY 

BEES AND ORF1/RDRP-BASED POLYMORPHISMS IN A SINGLE HOST  
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1. Graphical abstract 

 

 

2. Abstract 

Honey bees (Apis mellifera) are susceptible to a wide range of pathogens, including a broad 

set of viruses. Recently, next-generation sequencing has expanded the list of viruses with, 

for instance, two strains of Lake Sinai Virus. Soon after its discovery in the USA, LSV was also 

discovered in other countries and in other hosts. In the present study, we assemble four 

almost complete LSV genomes, and show that there is remarkable sequence heterogeneity 

based on the Orf1, RNA-dependent RNA polymerase and capsid protein sequences in 

comparison to the previously identified LSV 1 and 2 strains. Phylogenetic analyses of LSV 

sequences obtained from single honey bee specimens further revealed that up to three 

distinctive clades could be present in a single bee. Such superinfections have not previously 

been identified for other honey bee viruses. In a search for the putative routes of LSV 

transmission, we were able to demonstrate the presence of LSV in pollen pellets and in V. 

destructor mites. However, negative-strand analyses demonstrated that the virus only 

actively replicates in honey bees and mason bees (Osmia cornuta) and not in Varroa mites. 
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3. Introduction 

Honey bees (Apis mellifera) are susceptible to a wide range of pathogens, including viruses 

(Evans and Schwarz, 2011). The first honey bee viruses were described in 1963 (Bailey et al., 

1963), and many others were discovered later. At present, more than 20 bee viruses have 

been reported, but some of them, such as Arkansas Bee Virus (Bailey and Woods, 1974), 

have not been characterized in detail at the biochemical or genomic level. Other viruses, 

such as Deformed Wing Virus (DWV) and Acute Bee Paralysis Virus (ABPV) have been 

extensively studied over recent decades, as they have been found to have important effects 

on honey bee health, including associations with honey bee colony collapses (reviewed by de 

Miranda et al. (de Miranda et al., 2010; de Miranda and Genersch, 2010)).  

Generally, replication has been regarded as a prerequisite of pathogenicity, and an 

overt DWV infection is correlated with replication in honey bees and mites (Gisder et al., 

2009; Yue and Genersch, 2005). Replication of positive single-stranded RNA viruses, which 

include most of the honey bee viruses, is indicated by the production of a negative-strand 

intermediate. In the particular case of DWV, the predominant site of replication coincides 

with the site of deformities, representing the typical clinical sign of the illness, i.e. wing 

deformities (Boncristiani et al., 2009).  

Several metagenomic studies were recently performed to elucidate the cause of 

declining numbers of honey bee colonies (Cornman et al., 2012; Cox-Foster et al., 2007; 

Granberg et al., 2013; Runckel et al., 2011). This resulted in the detection of new honey bee 

viruses, such as Aphid Lethal Paralysis Virus strain Brookings (ALPV), Big Sioux River Virus 

(BSRV) and two strains of Lake Sinai Virus (LSV 1 and LSV 2) (Runckel et al., 2011). Whereas 

ALPV and BSRV are members of the common Dicistroviridae family, the LSVs are unclassified, 

but related to Anopheline-associated C virus (AACV) and Chronic Bee Paralysis Virus (CBPV) 
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(Cook et al., 2013). They have a different genome organization, leading to the proposition of 

the genus Sinaivirus for the LSVs and Chroparavirus for AACV and CBPV (Kuchibhatla et al., 

2014). The capsid protein from Mosinovirus (MoNV) is also related to the LSVs, although this 

virus is taxonomically placed within the Nodavirirdae based on its RdRP protein (Schuster et 

al., 2014).  

 Interpreting the clinical significance of these newly discovered viruses is far from 

simple, especially in regard to subtle syndromes or chronic disease, and when morphological 

deformities, paralysis or even sudden death are absent. In the case of the plant viruses that 

were recently discovered in honey bees (Cornman et al., 2012; Granberg et al., 2013), an 

indication of putative clinical relevance was provided by the negative-strand detection of 

Tobacco Ringspot Virus in honey bees (Li et al., 2014). 

Soon after its discovery in the USA, LSV was also found in Belgian (Ravoet et al., 2013) 

and Spanish apiaries (Granberg et al., 2013). The Belgian bee health study revealed a 

prevalence of 14.6% (Ravoet et al., 2013). LSV was also found in the solitary bees A. vaga, A. 

ventralis, O. bicornis and O. cornuta (Ravoet et al., 2014). Previous sequence analyses 

pointed to a remarkable heterogeneity among the identified LSV strains (Cornman et al., 

2012; Ravoet et al., 2013; Runckel et al., 2011). 

The present study was aimed at further exploring the LSV sequence heterogeneity. 

Furthermore, we investigated (1) polymorphisms within single host (honey bee) specimens, 

(2) putative routes of transmission and (3) virus replication in bees. These results should be 

of great value to elucidate the effects of LSV on honey bee health. 
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4. Material and methods 

4.1 Sampling and RNA isolation 

We used honey bee samples, collected in Belgium in July 2011, which were previously 

screened for LSVs (Ravoet et al., 2013). Ten LSV positive samples were selected for further 

genetic characterization of the LSV genome. Their viral RNA was isolated using the QiaAmp 

Viral RNA mini kit (Qiagen), as described previously (De Smet et al., 2012). Briefly, ten bees 

per sample were homogenized in 5 ml PBS by mechanical agitation in a TissueLyser for 90 

sec at 30 Hz. After centrifugation at 13,300 g for 5 minutes, the viral RNA was extracted from 

140 µl of the supernatant. 

To investigate virus replication and possible routes of transmission, we used 

additional samples of LSV-positive honey bees, solitary bees (A. vaga, A. ventralis, O. bicornis 

and O. cornuta, collected in 2012 (Ravoet et al., 2014)), pollen pellets from the corbiculae of 

forager bees (collected in July 2011) and Varroa destructor mites (collected in July 2012). All 

samples were obtained at the apiary of Ghent University (campus Sterre, Ghent, Belgium). In 

these cases, total RNA was extracted using the RNeasy Lipid Tissue mini kit (Qiagen). Ten 

mites per sample were first manually ground in 500 µl PBS. For the pollen samples, 100 mg 

pollen pellets were collected and mixed with 500 µl QIAzol. Total RNA was isolated from the 

bees using 200 µl of the suspension (of the PBS crushed bees) and 1 ml QIAzol reagent. 

Single specimens of an infected honey bee sample were directly homogenized in 1 ml QIAzol 

by mechanical agitation in the presence of glass beads (2 mm). The RNA was extracted 

according to the manufacturer’s instructions. 

4.2. Reverse transcriptase-PCR 

Using random hexamer primers, 5 µl viral RNA or 1 µg total RNA was reverse-transcribed 

using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). All PCR reaction 
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mixtures contained: 2 µM of each primer (Table S1), 1.0 mM MgSO4, 1.25 U Hotstar Taq 

HiFidelity DNA polymerase (Qiagen) and 1 µl cDNA. The following cycling conditions were 

used: 95°C for 5 min; 35 cycles of [94°C for 30 s, 56°C for 30 s, 72°C for 45 s or 1 m 40 s (for 

amplicons > 1 kb)]; final elongation 72°C for 10 min; hold at 4°C. All PCR products were 

electrophoresed in 1.5% agarose gels, stained with ethidium bromide and visualized under 

UV light. 

4.3. Genome sequence 

All sequence analyses were performed in Geneious R7. Conserved nucleotide sequences 

were determined by aligning the genomes of two American LSV strains (LSV 1, Genbank: 

HQ871931; LSV 2, Genbank: HQ888865) using the MUSCLE plugin. Several degenerate 

primer pairs were designed to amplify the majority of the Orf1, RdRP and capsid genes and 

overlapping fragments (Figure 1, Table S1). Amplicons of the expected size were gel-

extracted and cloned into a pGEM-T Easy vector (Promega). The purified plasmids were 

sequenced using M13 primers and internal primers (Table S1). The obtained genome 

sequences were assembled de novo and mapped onto the LSV 1 genome as a reference. 

4.4. Genome analysis and phylogenetics 

The resulting Orf1, RdRP and capsid genes and proteins from the honey bee samples were 

aligned with those of LSV strain 1 and 2 using the MUSCLE plugin. The gene alignments 

served as templates to design primers for negative-strand detection using the Primer3 

plugin. The proteins were aligned to assess the amino acid similarity. Furthermore, the 

whole RdRP proteins of all LSVs were aligned with those of AACV (Genbank: YP_009011225), 

CBPV (Genbank: YP_001911137A), MoNV (Genbank: AIO11151) and the Nodaviridae types 

Nodamura virus (Genbank: NP_077730) and Striped Jack nervous necrosis virus (Genbank: 
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NP_599247). The LSV capsid proteins were aligned with those of AACV (Genbank: 

AGW51753), CBPV (Genbank: YP_001911140) and MoNV (Genbank: AIO11154). 

To investigate LSV polymorphisms, we analysed an Orf1/RdRP fragment (primers 

LSV1765-F and LSV2368-R) originating from four single bee specimens. Five clones per bee 

were obtained and aligned with sequences retrieved from the same apiary (Genbank: 

KF768348- KF768351). 

The capsid and RdRP protein alignments (of AACV, CBPV, LSVs, MoNV and 

Nodaviridae) and the Orf1/RdRP gene alignment were used for phylogenetic analyses. In the 

capsid and RdRP protein alignments, poorly aligned blocks were first removed with Gblocks 

(Talavera and Castresana, 2007), which retained 66% (485/733) and 47% (630/1325) of the 

amino acids, respectively. Selection of the best fitted maximum likelihood models was based 

on the Bayesian information criterion (BIC), as implemented in MEGA6 (Tamura et al., 2013).  

The phylogenetic analyses for the capsid, RdRP and the Orf1/RdRP alignments were 

performed with the Whelan And Goldman model with a discrete gamma distribution 

(WAG+G), the Le-Gascuel model with a discrete gamma distribution (LG+G) and the Kimura 

2-parameter model with invariable sites (K80+I), respectively, using PhyML 3.0 (Guindon et 

al., 2010). The branch reliability was assessed using approximate likelihood-ratio tests based 

on a Shimodaira-Hasegawa-like (aLRT SH-like) procedure (Anisimova and Gascuel, 2006). 

4.5. Negative-strand detection  

LSV replication was investigated in honey bees and solitary bees using strand-specific RT-

PCR, following the tagged cDNA procedure described in the COLOSS BEEBOOK (de Miranda 

et al., 2013). We synthesized cDNA using 1 µg total RNA (from honey bees, A. vaga, A. 

ventralis, O. bicornis and O. cornuta) and 20 pmol of the tagged negative-strand-specific 

forward primer (TAG-repLSV2158-F). Later on, the cDNA was purified using the GeneJET PCR 
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Purification Kit (Thermo Scientific) to remove unincorporated primers, which could cause 

false positive results. PCR reactions were performed using 2 µl of purified cDNA, 2 µM of the 

tag-specific forward primer TAG-F and 2 µM of the LSV-specific reverse primer repLSV2490-

R. The following cycling conditions were used: 95°C for 5 min; 35 cycles of [94°C for 30 s, 

58°C for 30 s, 72°C for 45 s]; final elongation 72°C for 10 min; hold at 4°C. To validate this 

PCR-based negative-strand detection method, the purified cDNA was amplified in a PCR 

reaction with addition of only the primer repLSV2490-R (and no TAG-F). This ensures the 

complete removal of unincorporated TAG-repLSV2158-F primers. 

 

5. Results 

5.1 Genome analysis 

Our genome sequencing strategy covered almost the entire LSV genomes and consisted of 

the cloning and sequencing of 3 gene-specific amplicons and 3 overlapping fragments that 

spanned the gaps between these genes (Figure 1). Only the untranslated regions at the 

termini were incomplete. This approach resulted in the successful assembly of four almost 

complete LSV genomes from honey bee samples, designated as LSV strains VBP022, VBP166, 

VBP256 and exp10, which are deposited in Genbank under the accession numbers 

KM886902-KM886905. 

The identified nucleotide sequences of these strains were between 5,187 and 5,192 

nt long. They have a variable spacer (19-23 nucleotides) between the RdRP and capsid genes. 

A similar spacer of 18 nt was found in LSV 2, whereas LSV 1 shows a gene overlap of 125 nt 

(Runckel et al., 2011). The 6 LSV genomes (2 American and 4 Belgian) have a very similar GC 

content, varying between 50.7% and 51.7%.  
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Figure 1: Graphical overview of the amplified fragments (grey boxes), based on an alignment of LSV 1 

(HQ871931) and 2 (HQ888865). The primers are indicated by numbers, corresponding to the positions 

in the LSV 1 genome. The LSV proteins are shown in green boxes, and the UTRs are shown in blue. 

 

 

 

Figure 2: Trimmed alignment of the RdRP proteins from AACV (Genbank: YP_009011225), CBPV 

(Genbank: YP_001911137A), LSV strains from the USA (LSV 1 and 2; Genbank: AEH26187, AEH26192) 

and Belgium (LSV strains VBP022, VBP166, VBP256, exp10; Genbank: KM886902-KM886905), MoNV 

(Genbank: AIO11151) and the Nodaviridae types Nodamura virus (Genbank: NP_077730) and Striped 

Jack nervous necrosis virus (Genbank: NP_599247). The eight conserved viral RdRP domains (Koonin 

et al., 1993) are shown below the alignment in green boxes. 
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Table 1: Similarity matrix of the whole Orf1, RdRP and capsid genes and proteins from American 

(Genbank: HQ871931, HQ888865) and Belgian LSV strains (Genbank: KM886902- KM886905), 

expressed in percent identity. The nucleotide identify is given first and the amino acid identity after 

the semicolon. 

Orf1       

 HQ871931 HQ888865 KM886902 KM886903 KM886904 KM886905 

HQ871931  73% : 72% 71% : 71% 76% : 75% 72%  : 71% 72% : 73% 

HQ888865 73% : 72%  79% : 83% 72% : 70% 76% : 78% 78% : 81% 

KM886902 71% : 71% 79% : 83%  74% : 71% 74% : 75% 92% : 87% 

KM886903 76% : 75% 72% : 70% 74% : 71%  70% : 69% 73% : 71% 

KM886904 72%  : 71% 76% : 78% 74% : 75% 70% : 69%  79% : 84% 

KM886905 72% : 73% 78% : 81% 92% : 87% 73% : 71% 79% : 84%  

       

RdRP       

 HQ871931 HQ888865 KM886902 KM886903 KM886904 KM886905 

HQ871931  76% : 80% 74% : 82% 76% : 83% 77% : 80% 75% : 84% 

HQ888865 76% : 80%  93% : 80% 76% : 77% 74% : 82% 77% : 78% 

KM886902 74% : 82% 93% : 80%  76% : 91% 74% : 78% 78% : 83% 

KM886903 76% : 83% 76% : 77% 76% : 91%  74% : 80% 78% : 85% 

KM886904 77% : 80% 74% : 82% 74% : 78% 74% : 80%  80% : 85% 

KM886905 75% : 84% 77% : 78% 78% : 83% 78% : 85% 80% : 85%  

       

Capsid       

 HQ871931 HQ888865 KM886902 KM886903 KM886904 KM886905 

HQ871931  69% : 71% 74% : 71% 65% : 87% 66% : 69% 66% : 91% 

HQ888865 69% : 71%  70% : 94% 60% : 70% 60% : 83% 62% : 72% 

KM886902 74% : 71% 70% : 94%  65% : 69% 67% : 82% 67% : 86% 

KM886903 65% : 87% 60% : 70% 65% : 69%  72% : 68% 71% : 86% 

KM886904 66% : 69% 60% : 83% 67% : 82% 72% : 68%  79% : 69% 

KM886905 66% : 91% 62% : 72% 67% : 86% 71% : 86% 79% : 69%  

 

The genome sequence heterogeneity is reflected in the variance of the sequence identity for 

the different genes: 70.1-92.1% for Orf1, between 74.0-92.6% for RdRP and between 60.1-

78.7% for capsid (Table 1) was confirmed. At the protein level, the most extreme values of 

amino acid sequence identity were found in the capsid, which varied between 67.9% and 

94.4% (Table 1). Nevertheless, many conserved regions were observed in the three viral 

proteins (Figures S1-S3). All RdRP genes encode the DxSRFD and SG amino acid motifs, a 

conserved domain in the NTP binding pocket of some viral families (Runckel et al., 2011). 

The RdRP proteins even share conserved regions with those of the related viruses AACV, 
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CBPV, MoNV and Nodaviridae (Figure 2). Moreover, all eight conserved viral RdRP domains 

(Koonin and Dolja, 1993) were found. Based on this RdRP alignment, a phylogenetic tree was 

constructed (Figure S4). This was also performed on an alignment of the capsid proteins of 

AACV, CBPV, LSVs and MoNV (Figure S5). 

 

Figure 3: Phylogenetic analysis of LSV clones from single bee specimens. LSV strains from the same 

apiary, shown in black, were included in the analysis. Each isolate is indicated by its accession 

number. LSV clones isolated from individual bees (1-4) are designated by colour and shape (red circle, 

blue square, green triangle and fuchsia rhombus). Branch support for each node is designated by 

aLRT (approximate Likelihood-Ratio Test) values (>70%). 

4.2 Orf1/RdRP-based polymorphism in a single bee 

During our genome assembly, it became evident that multiple LSV strains occur within the 

pooled honey bee samples. We evaluated the virus heterogeneity in single honey bee 

specimens, and phylogeny of the identified strains revealed that up to three distinct clades 
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were present in a single bee (Figure 3). The obtained Orf1/RdRP sequences were deposited 

in Genbank under the accession numbers KM886906-KM886925. 

4.3 Transmission routes and viral replication 

In our search for the putative routes of LSV transmission, we were able to demonstrate the 

presence of LSV in pollen pellets and in V. destructor mites (Figure 4). Moreover, we were 

able to detect the negative-strand intermediate in honey bees and in O. cornuta (Figure 4). 

Nevertheless, we did not detect viral replication in the other solitary bees (A. vaga, A. 

ventralis and O. bicornis) or in V. destructor mites. 

 

Figure 4: Molecular detection of the positive- and negative-strands of LSV in different hosts.  LSV 

sequences were amplified from pooled honey bee, pollen and V. destructor mite samples using 

strand-specific RT-PCR, and visualized by gel-electrophoresis. These amplicons are verified by cloning 

and sequencing; LSV negative-strand-specific PCR product = 376 bp, LSV positive-strand-specific PCR 

product size = 603 bp. No templates were added in both negative controls. A diluted plasmid was 

used as a positive control. The pooled honey bee samples used for negative-strand detection were 

positive for LSV using positive-strand PCR. 

HB: honey bee samples, MW: molecular weight marker (Generuler 1 kb DNA ladder, Thermo 

Scientific), N: negative control, P: pollen samples, PC: positive control, Vd: Varroa destructor mite 

samples. The numbers indicate different samples. The amplicon size of the positive and negative- 

strand PCR reactions, respectively 603 bp and 376 bp, are shown on both sides of the gel. The non-

specific product of 167 bp in honey bee samples 1-3 corresponded to the Apis mellifera retinoid – and 

fatty acid-binding glycoprotein (Genbank: XM_006561492).  
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5. Discussion 

Recently, several insect viruses that are related to the Nodaviridae family received 

considerable attention. Although the four studied LSV genomes show a similar organization 

as LSV 2, with variable spacers between the RdRP and capsid genes, the sequence identity of 

the capsid gene could be as low as 60.1% with LSV 2. This confirms the genome sequence 

heterogeneity of numerous LSV strains (Cornman et al., 2012). Remarkably, this sequence 

heterogeneity seems to have no geographic link, as the phylogenetic tree of the RdRP 

protein from the American and Belgian LSV strains showed no clustering by country (Figure 

S4). In contrast, several geographic lineages were identified in the bee virus Israeli Acute 

Paralysis Virus (IAPV) (Chen et al., 2014; Palacios et al., 2008). The phylogenetic tree of the 

capsid protein also demonstrated no geographic clustering, but confirmed the close 

relationship of the MoNV capsid to the LSVs (Figure S5). 

The LSV genomes encode three genes: Orf1, RdRP and capsid. The RdRP gene 

encodes a RNA-dependent RNA polymerase that is strongly conserved in the different LSV 

strains. A Tetravirus-like capsid protein is predicted to be encoded by the capsid gene 

(Runckel et al., 2011). Although the function of Orf1 remains unclear, it contains a domain 

homologous to the Alphavirus methyltransferase-guanyltransferase, a putative membrane 

protein. This is also present in the ORF1 of CBPV RNA 1 (Kuchibhatla et al., 2014). 

In addition to the sequence heterogeneity between samples, we also observed an 

Orf1/RdRp-based polymorphism in a single bee. Sequence analysis and subsequent 

phylogeny of numerous clones from individual bees revealed the presence of multiple LSV 

strains in the same specimen. This high level of intra-individual variation has not yet been 

revealed for a honey bee virus, although some DWV sequence polymorphisms were already 

reported in the variable leader protein (Lp) gene of pupae infested with the mite 
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Tropilaelaps mercedesae (Forsgren et al., 2009). DWV is part of a complex, together with the 

related viruses Kakugo Virus and Varroa destructor Virus-1. The nucleotide differences are 

concentrated in the 5’ UTR and the Lp (de Miranda et al., 2010; Lanzi et al., 2006). Honey 

bees can be infected by another viral complex, formed by the related viruses APBV, IAPV and 

Kashmir Bee Virus (de Miranda et al., 2010). Their nucleotide differences are situated in the 

5’ UTR. Although a low genetic variability was assumed for these members, a high frequency 

of nucleotide polymorphisms was observed at the population level for DWV and IAPV (Chen 

et al., 2014; Cornman et al., 2013). 

Honey bee viruses can be transmitted by several routes (Chen et al., 2006), and the 

most basic mode is probably oral uptake, for instance by contaminated pollen (Singh et al., 

2010). Nevertheless, the hematophagous mite V. destructor represents by far the most 

important vector of honey bee viruses, as it delivers the virus directly into the hemocoel by 

puncturing the integument during nourishment (Rosenkranz et al., 2010). It has been 

demonstrated that some honey bee viruses, for instance DWV and IAPV, even replicate 

within this mite (Di Prisco et al., 2011; Ongus et al., 2004). We found no evidence that this is 

also the case for LSV. Nevertheless, even horizontal transmission alone could have important 

consequences for the population dynamics and epidemiology of honey bee viruses. In fact, 

in the Hawaiian islands, the introduction of Varroa has been shown to have led to the 

establishment of just one single, virulent strain of DWV (Martin et al., 2012). 

Our discovery that LSV can be found in pollen and Varroa mites is an important step 

to fully elucidate the transmission routes of this new honey bee virus. It implies that 

horizontal transmission of LSV can occur via infected bees, via the vectoring mite or via 

contaminated pollen. Although we do not provide causal evidence of transmission, cross-
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species transmission of honey bee viruses and subsequent infection has previously been 

experimentally demonstrated (Furst et al., 2014; Mazzei et al., 2014; Singh et al., 2010). 

Detection of viral replication was based-negative strand analyses, which might bear 

some pitfalls. Nevertheless, we included several controls to avoid them, e.g. purification of 

the tagged cDNA. The ability of LSV replication in honey bees (Runckel et al., 2011) was 

confirmed, suggesting that LSV infections are not entirely harmless. Moreover, the 

demonstration of virus replication in the solitary bee O. cornuta suggests that LSV is a multi-

host virus, akin to other honey bee viruses such as DWV and IAPV. This solitary bee is also 

susceptible to DWV infection (Mazzei et al., 2014), but replication of these viruses is 

demonstrated in several pollinators (Levitt et al., 2013; Li et al., 2011; Zhang et al., 2012). 

Even clinical symptoms of an overt DWV infection, such as crippled wings, have been 

observed in bumble bees (Genersch et al., 2006). Our results indicate that LSV is a common 

honey bee virus, which might represent an infection risk for other pollinators as well. 
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8. Supplementary information 

 

Table S1: List of PCR primers used for LSV fragments in this study. The position of the primers and the 

ampicon size are referring to LSV 1 (Genbank: HQ871931). The sequence of the tag used in the 

negative strand detection is indicated in bold. #: primers used for screening of the positive strand, ¥: 

primers used for screening of the negative strand 

 

Target gene Primers Sequence (5’-3’) Size (bp) 

Orf1 LSV0180-F 1 ACGATGTGCAGYYATGAGTA 
1616 

Orf1 LSV1796-R 1 CGWGGCCTCAGCACGA 

Orf1 LSV0931-F 1 CGCCTGAYCAGTTGGCC 
N.A. 

Orf1 LSV0950-R 1 GAGGCCAACTGRTCAGG 

Orf1 – RdRP  LSV1765-F  # TCAAYCTKGAGCGATTTCGTGCTG 
603 

Orf1 – RdRP  LSV2368-R 2, # GAGGTGGCGGCGCSAGATAAAGT 

Orf1 – RdRP  LSV1479-F CTSGACTTCATYATCCATCTGTG 
398 

Orf1 – RdRP LSV1877-R GTCACMARRCTTGATATCATGTT 

RdRP LSV2156-F GTGCGGACCTCATTTCTTCATG 
1571 

RdRP LSV3727-R TTYACGCGTAAAGAACAGACCT 

RdRP LSV2481-F AGATTTARGGGATACGACACCTTTGA 
860 

RdRP LSV3341-R ACRATCAAATTGTTGGGWAGACCAT 

RdRP – Capsid LSV3575-F GCATATCTCCTGCGTTGCA 
275 

RdRP – Capsid LSV3850-R GTTACGGCGCCTACGATT 

Capsid LSV3703-F TTYAGGTCTGTTCTTTACGCGT 
1710 

Capsid LSV5413-R CGACTGATTACCAGTAACCACAC 

Capsid LSV4028-F ATGGKTCTGCTGTYACCACATG 
1210 

Capsid LSV5238-R ACCRAGCCAGTTCCACGC 

Capsid LSV4480-F CTTGARACTCAGGGATTYGTCACMGC 
751 

Capsid LSV5231-R CAGTTCCACGCMGGCTTGATGAG 

RdRP 
TAG-
repLSV2158-F 

GGCCGTCATGGTGGCGAATAAGCGGACCT
CATTTCTTCATG 

 

 TAG-F 3,¥ GGCCGTCATGGTGGCGAATAA 
376 

RdRP repLSV2490-R ¥ CCAAGGTCAAAGGTGTCGTATCC 

 

1: Ravoet, J., De Smet, L., Meeus, I., Smagghe, G., Wenseleers, T., de Graaf, D. C., 2014. Widespread 

occurrence of honey bee pathogens in solitary bees. J Invertebr.Pathol. 122, 55-58. 

 

2: Ravoet, J., Maharramov, J., Meeus, I., De Smet, L., Wenseleers, T., Smagghe, G., de Graaf, D. C., 

2013. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new 

contributory factor to winter mortality. PLoS ONE 8, e72443. 

 

3: Plaskon, N.E., Adelman, Z.N., Myles, K.M., 2009 Accurate Strand-Specific Quantification of Viral 

RNA. PLoS ONE  4: e7468. 
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Figure S1: Alignment of the complete Orf1 proteins from the USA (LSV 1 and 2; Genbank: AEH26187, 

AEH26192) and Belgium (LSV strains VBP022, VBP166, VBP256, exp10; Genbank: KM886902-

KM886905). 
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Figure S2: Alignment of the complete RdRP proteins from the USA (LSV 1 and 2; Genbank: AEH26187, 

AEH26192) and Belgium (LSV strains VBP022, VBP166, VBP256, exp10; Genbank: KM886902-

KM886905). 

 

 

Figure S3: Alignment of the complete capsid proteins from the USA (LSV 1 and 2; Genbank: 

AEH26194, AEH26188) and Belgium (LSV strains VBP022, VBP166, VBP256, exp10; Genbank: 

KM886902-KM886905). 
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Figure S4: Phylogeny of the RdRP proteins from American (LSV 1 and 2; Genbank: AEH26187, 

AEH26192) and Belgian (LSV strains VBP022, VBP166, VBP256, exp10; Genbank: KM886902-

KM886905) LSVs, AACV (Genbank: YP_009011225), CBPV (Genbank: YP_001911137A), MoNV 

(Genbank: AIO11151) and the Nodaviridae types Nodamura virus (Genbank: NP_077730) and Striped 

Jack nervous necrosis virus (Genbank: NP_599247).  Each isolate is indicated by its accession number 

and the clades are designated by genus or family names. Branch support for each node is designated 

by aLRT (approximate Likelihood-Ratio Test) values (>70%). 
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Figure S5: Phylogeny of the capsid proteins from American (LSV 1 and 2; Genbank: AEH26194, 

AEH26188) and Belgian (LSV strains VBP022, VBP166, VBP256, exp10; Genbank: KM886902-

KM886905) LSV strains and MoNV (Genbank: AIO11154). The capsids of AACV (YP_009011225) and 

CBPV (YP_001911137A) were used as outgroups. Each isolate is indicated by its accession number and 

the clades are designated by genus names. Branch support for each node is designated by aLRT 

(approximate Likelihood-Ratio Test) values (>70%). 

 

 

 

  



Chapter 9 

208 
 

 
 



 

209 
 

PART IV 
 
 

DISCUSSION 
 

 

 

 

 

 

 

 

 



 

210 
 

 



Chapter 10 

211 
 

CHAPTER 10 

 

GENERAL DISCUSSION 

 

1. The relation between parasites and colony losses 

Unusually high colony collapses were reported almost a decade ago. Several pathogens like DWV, N. 

ceranae and V. destructor have been suggested as main culprits (Higes et al., 2008; Highfield et al., 

2009; Rosenkranz et al., 2010). Nowadays, an emerging hypothesis is that synergistical interactions 

among various parasites can lead to these colony declines (Figure 1) (Cornman et al., 2012; Cox-

Foster et al., 2007). 

 

Figure 1: Multiple interactions between honeybees and environmental factors. Green and red 

arrows denote positive and negative interactions, respectively (Nazzi and Pennacchio, 2014). 

An extensive model is proposed by Francesco Nazzi and colleagues (Nazzi et al., 2012; Nazzi et al., 

2014). This model proposes that V. destructor infestation causes an immune suppression in the 

honey bee, leading to very high DWV titers. Eventually this virus cannot be controlled by the bee, 
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therefore contributing to the bee mortality and colony collapse. An additional issue is the viral 

replication within the bee, but also within the mite (Ongus et al., 2004; Yue and Genersch, 2005). 

Moreover, other factors such as pesticides (Di Prisco et al., 2013) can also deplete the immune 

system of the honey bee. 

 

2. The honey bee pathosphere 

The first honey bee pathogens were published more than a century ago, e.g. V. jacobsoni in 1904 and 

N. apis in 1909. Smaller parasites like viruses were described several decades later. Although the first 

evidence for the viral nature of a paralysis causing agent was reported in 1945 (Burnside, 1945), 

conclusive evidence was only twenty years later published (Bailey et al., 1963). Later on, numerous 

honey bee viruses were characterised in a relative small time period. This was caused by the rise of 

techniques like electron microscopy and immune-diffusion tests. Today we see the same thing 

happening. Sequencing of PCR amplicons revealed the existence of N. ceranae (Fries et al., 1996) and 

cryptic species in the mite genera Varroa and Tropilaelaps (Anderson and Morgan, 2007; Anderson 

and Trueman, 2000). Next-generation sequencing, combined with RACE (Rapid amplification of cDNA 

ends) and qPCR, has further boosted our knowledge of honey bee pathology. Also several new honey 

bee viruses were discovered since the start of this PhD thesis (Runckel et al., 2011). As a result the 

honey bee patosphere, the total assembly of parasites, has been expanded and comprises more than 

30 taxa (Figure 2). 

Most of the viruses described in the 20th century were discovered due to the clinical 

symptoms that they cause in honey bees. One of the most famous examples is DWV, which cause 

shrivelled wings (see Part I, Chapter 1). Nevertheless, the clinical differences between several viruses 

can be subtle such as between ABPV and CBPV. The methodology of virus preparation from sick bees 

and subsequent propagation can cause contamination, but can also lead to a serendipitous discovery 

of novel pathogens e.g. TRSV (Li et al., 2014). 
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Figure 1: Overview of all known Apis mellifera pathogens, with their taxonomic ranking. The bee lice 

(Braula coeca), the small hive beetle (Aethina tumida) and wax moths (Achroia grisella and Galleria 

mellonella) are not included since they are no true endo- or ectoparasitoids. Some obscure viruses like 

Arkansas Bee Virus and Berkeley Bee Picorna-like Virus are not included since nucleotide information 

is lacking.  

 

Previous screenings of honey bee parasites were based on single PCR assays and included 

only small numbers of samples because of the cost price and labour intensity. This implicated that 

each pathogen was separately surveyed (Tentcheva et al., 2004), but multiplex PCR assays were later 

on developed (e.g. (Martin-Hernandez et al., 2007; Meeus et al., 2012; Sguazza et al., 2013)). Also 

microarray based detection methods were lately published (Glover et al., 2011; Runckel et al., 2011). 

However, the MLPA technology allows the screening of numerous viruses in one PCR reaction, 

without the need for a fluorescent microarray scanner or the possibility of non-specific PCR products 

from a multiplex PCR reaction. This technology was already used for the detection of respiratory 

viruses (Berning et al., 2014; Reijans et al., 2008) and sexually transmitted pathogens (Muvunyi et al., 
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2011). We could adapt this technology for the detection of 10 bee viruses, which resulted into the 

development of the BeeDoctor tool (Part II, Chapter 3). The BeeDoctor enables to survey numerous 

honey bee pathogens in one sample and thus a fast and comprehensive screening without high 

expenses. 

The pathosphere of Belgian honey bees was poorly studied during the last decade. Only few 

studies reported the common viruses ABPV, BQCV, CBPV, DWV and SBV (de Graaf et al., 2008; 

Nguyen et al., 2011), but they took only a limited number of colonies into account. Several other 

pathogens were known to be present, but their prevalence remained uncertain, with exception of P. 

larvae (de Graaf et al., 2001).  

To clarify this situation, a survey of a large number of pathogens in more than 300 honey bee 

samples was conducted (Figure 3; Part II, Chapters 3 en 4). Quite a few of them were reported for the 

first time from Belgium: A. bombi, A. borealis, C. mellificae, LSV and VdMLV. Some of these neglected 

pathogens appeared to have an abundant prevalence but were previously only occasionally detected 

in other countries. 

 

Figure 3: Overview of the screened apiaries in the Flemish part of Belgium 

 

While this study comprised one of the early detections of the viruses LSV and VdMLV. The former 

was first reported from the USA (Runckel et al., 2011). Although two strains were originally 

described, later on it became clear that other strains were present in the USA (Cornman et al., 2012) 

and Spain (Granberg et al., 2013). In this PhD thesis we were able to design a PCR assay that amplifies 
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all known LSV variants, based on their sequence data. Subsequent to the analysis of the Belgian LSVs, 

one strain was detected in different honey bee samples which we designated LSV strain 4 (Genbank: 

JX878492). Other sequence variants were detected as well (Part II, Chapter 4), which drew our 

attention to these puzzling complex of viral genotypes. The almost complete genomes of four strains 

were obtained by combining amplification of large fragments and subsequent primer walking (Part 

III, Chapter 9). Next-generation sequencing can possibly reveal other complete LSV genomes, 

although this is not always successful (Granberg et al., 2013). The LSV virus was also detected in V. 

destructor mites.  

Honey bee pathogens can be transmitted via several routes (Figure 4), which are rather well 

known (Chen et al., 2006). This includes both horizontal transmission and vertical transmission. The 

former concerns all pathogens, but the latter is only applicable to viruses (and possibly honey bee 

spiroplasmas).  

 

Figure 4: Illustration of the different transmission routes for honey bee pathogens (de Miranda et al., 

2013). 

 

Many honey bee viruses were already detected in eggs, semen, spermatheca and/or ovaries. 

Nevertheless, possible vertical transmission was not yet investigated for the recently described 

viruses. In this PhD work, we proved that ALPV strain Brookings, LSV and VdMLV can infect eggs (Part 
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II, Chapter 6) and thus are also vertically transmitted. Moreover, we detected the negative-strand of 

SBV within the eggs. Since they were not surface-sterilised, it is also possible that this originates from 

transovum transmission, such as  surface contamination with sperm containing negative-strand 

RNAs.  It can be expected that a replicating virus in honey bee eggs can have consequences for the 

development into a queen, resulting in a clinical relevance for queen breeding. A broad sanitary 

screening of the breeder queens seems advisory. The colonies of these queens are screened for a 

limited number of pathogens, like American foulbrood, but only in case of import or export of these 

colonies. Horizontal transmission is mainly mite-vectored or between honey bees mutually via 

feeding, cleaning etc. The vectoring via mites is demonstrated for several viruses (Bowen-Walker et 

al., 1999; Celle et al., 2008; Di Prisco et al., 2011; Ongus et al., 2004) and we could extend this with 

LSV (Part III, Chapter 9). The impact of viruses can be seriously affected by a shift in transmission. 

Before the introduction of V. destructor in European honey bee colonies was DWV a rather harmless 

honey bee virus. The ability to replicate within the mite (Ongus et al., 2004) causes high viral 

concentrations which can be lethal for honey bees. Moreover, this led to a tremendous decrease in 

the DWV strain diversity and increase in DWV prevalence (Martin et al., 2012), and ultimately a 

virulent strain has prevailed (Ryabov et al., 2014). 

Pollen pollets can contain multiple viruses (Singh et al., 2010) which are infectious towards 

honey bees and other pollinators. Therefore we wondered if other pollinators are also involved in 

virus transmission, a very dynamic process. Few other studies demonstrated the presence of honey 

bee pathogens in other insects (Celle et al., 2008; Evison et al., 2012; Furst et al., 2014; Singh et al., 

2010). Even replication (Levitt et al., 2013) and clinical symptoms (Genersch et al., 2006) were 

already demonstrated in other bees. Although commercial bumble bee colonies seem to be an 

important sink of pathogen spillover towards wild bees (Graystock et al., 2013; Murray et al., 2013; 

Otterstatter and Thomson, 2008), honey bees are also considered as a likely source (Furst et al., 

2014). However, only a limited number of parasites have been detected in wild bees. In a case study 

we sampled five solitary bee species around an apiary and screened them for many parasites (Part II, 
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Chapter 5). As a result, we could detect numerous pathogens including AmFV, LSV and VdMLV which 

were previously restricted to honey bees. Equally surprising was the finding of the protist C. bombi, 

thought to be restricted to bumble bees. 

This PhD study (Part II, Chapter 5) and some recent studies (Furst et al., 2014; Levitt et al., 

2013; McMahon et al., 2015) revealed that many honey bee parasites are not restricted to honey 

bees, but infect also other pollinators. This generalism can have important effects on the virulence 

and pathogenicity in the different hosts (Woolhouse et al., 2001). Transmission of bee parasites can 

occur via mites or beetles (Eyer et al., 2009; Forsgren et al., 2009; Ongus et al., 2004), but also via 

flowers (Durrer and Schmidhempel, 1994) as demonstrated for a bumble bee protist. 

Honey bees can be infected by only a few protists such as amoebas, neogregarines and 

trypanosomatids. Some of them were lately detected in several countries (Morimoto et al., 2013; 

Runckel et al., 2011; Yang et al., 2013). Contrarily to neogregarines (A. bombi), trypanosomatids 

became a popular subject. Molecular detection methods were reported, which soon led to sequence 

data of multiple loci like the 18S rRNA, cytochrome b and gGAPDH (Runckel et al., 2011; Schmid-

Hempel and Tognazzo, 2010). The correlation of C. mellificae with winter losses and the synergistic 

effect of N. ceranae in Belgium (Part II, Chapter 4) boosted further research. When new cell cultures 

were established, it became evident that a second trypanosomatid species, namely L. passim, can 

infect honey bees (Part III, Chapter 7). Moreover we could develop an easy detection method 

between these two trypanosomatid species, based on a fragment length polymorphism of the ITS 1 

locus (Part III, Chapter 8). This is more reliable than sequencing of other loci, especially in case of co-

infection. 

 

3. Critical note on the apicultural industry 

The high pathogen load found in honey bees (Part II) forces us to reflect the current apicultural 

industry. Several parasites have been correlated with the recent colony collapses (Higes et al., 2008; 
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Highfield et al., 2009) and even the number of parasites can be correlated (Part II, Chapter 4). This 

should urge the apicultural industry to alter some beekeeping practices, like breeding and mobility. 

Currently, honey bee breeding is focussed on characteristics like honey yield, low aggression 

and low swarming activity. Moreover, the kept honey bee races in Belgium (and several other 

countries) are no endemic subspecies but were imported. The mobility of honey bee colonies is also 

reflected in the transportation of hives for pollination services. These extensive trades in bees poses 

the main risk for disease dissemination around the world (Gordon et al., 2014; Mutinelli, 2011). 

There are plenty of examples that demonstrate this, such as the global spread of Varroa destructor 

(reviewed by Rosenkranz and colleagues (Rosenkranz et al., 2010)) and the recent introduction of the 

small hive beetle (Aethina tumida) (Palmeri et al., 2014) in Italy. Once established the further 

spread of a disease can occur extremely fast: for instance, the spread of the Varroa-mite reached a 

maximum progression 12 km/year in New Zealand (Stevenson et al., 2005) and 40 km/year in 

Madagascar (Rasolofoarivao et al., 2013). A similar pattern of spread was seen when fluvalinate-

resistant mites were spread throughout Europe (Martin, 2004). One can assume that new pathogens, 

brought to us by international trade of bees, can become omnipresent in no time. 

The restrictions on the import of honey bee colonies from outside the European Union is 

regulated by the European Directive 92/65/EEC and amended by the Commission Decision 

2010/270/EU. Nevertheless, the obliges health certificate for intra-Union trade concerns only 

American foulbrood and two exotic parasites (Aethina tumida and Tropilaelaps spp.), which 

is far too less than needed. This certificate should be extended with qualitative analyses of 

ABPV, DWV and N. ceranae, which can cause colony collapses when high titers are present 

(Berthoud et al., 2010; Dainat et al., 2012; Higes et al., 2008; Nguyen et al., 2011). 

The apicultural industry should also shift its focus more on the honey bee itself. The 

breeding of honey bees is nowadays focused on the manageability and the production. This 

is part of the problem concerning the intolerance towards Varroa infestation and parasite 
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infections in general. The tolerance of Apis cerana towards Varroa mites consists of many 

aspects, such as hygienic behaviour, grooming and disturbance of the mite population 

dynamics (Rosenkranz et al., 2010). Natural selection of Apis mellifera has been reported 

from few isolated locations in Europe (Fries et al., 2006; Le Conte et al., 2007). Besides, 

selective cross-breeding of different subspecies resulted in Varroa tolerant honey bee strains 

like Russian (Primorsky) honey bees. Also the aggressive Africanized honey bees, a cross 

between African and European A. mellifera subspecies,  appears to be less  infested by mites 

and viruses (Hamiduzzaman et al., 2014; Medina-Flores et al., 2014; Yanez et al., 2014). 

Recently, the molecular mechanisms of this honey bee defence behaviour were partly 

elucidated (Behrens et al., 2011; Haddad et al., 2015; Spotter et al., 2012). This can result in 

the selective breeding of honey bee subspecies that are tolerant to viruses and mites, 

without focussing on the manageability and the production. 

The individual beekeeper can also improve some of its beekeeping management by 

limiting the stress on the honey bee colonies. A stressed colony is more susceptible to 

diseases, resulting in a higher chance to collapse. This stress can result from pesticides (both 

from agricultural use and beekeeping practices), food deficiency and beekeeping practices 

like queen supersedure, colony dividing and honey harvesting.   

 

4. Future perspectives 

Although some parasites were neglected for a long time, the spotlight has fallen on a few of them. 

Since the start of this PhD work, our knowledge about honey bee trypanosomatids and Lake Sinai 

Virus has been greatly expanded. Nevertheless, other pathogens remain obscure. For instance, we 

know little about the gregarines and amoebas that infect honey bees. Despite numerous next-

generation sequencing projects of honey bees there is still no molecular data available for the 

amoeba Malpighamoeba mellificae. Recent studies proposed that more than one neogregarine and 
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tracheal mite can infect honey bees (Cepero et al., 2014a; Cepero et al., 2014b). In addition, the 

number of honey bee viruses had been expanded since the start of this PhD work. This includes ‘true’ 

bee viruses like ALPV, but also plant-pathogenic viruses such as TRSV. Some other plant viruses (e.g. 

Turnip Ringspot Virus) were also discovered in honey bees (Cornman et al., 2012; Granberg et al., 

2013), but their pathogenicity towards honey bees has not been demonstrated. Nevertheless, the 

pathogenicity of TRSV was also not expected. Concluding, several new honey bee pathogens are 

described lately with advanced molecular techniques so others will probably follow in the next few 

years.  
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