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Abstract. The construction of Riemannian metrics on the base manifold of

any given Finsler space by averaging suitable objects over indicatrices, such

that the Levi-Civita connection of the metric coincides with the canonical

Berwald connection of the Finsler space when the Finsler space is a Berwald

space, is discussed. Some examples of such metrics are already known, but

several new ones, all in principle different, are defined and analysed.

1. Introduction

Szabó’s celebrated analysis of Berwald spaces starts from the existence of a

Riemannian metric whose Levi-Civita connection coincides with the symmetric

linear connection given by the Berwald structure. Known methods of constructing

such metrics apply to any Finsler space. Consider a Finsler space over a manifold

M with Finsler function F : we require a way of constructing a Riemannian metric

on M out of F . One approach, due to Vincze [8], is to average the fundamental

tensor g of F over each indicatrix {y ∈ TxM : F (x, y) = 1} with respect to the

volume form induced from g. In [2], and more recently in [4, 5, 7], further methods

of associating Riemannian metrics with Finsler functions by averaging have been

introduced. The metrics obtained in [2, 4, 5, 7, 8], of which there are actually

three distinct ones, satisfy the required property when the space is Berwald. The

question arises, are these the only ways of constructing a Riemannian metric for a

Finsler function by averaging, such that when the Finsler space is a Berwald space
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2 M. CRAMPIN

its connection is the Levi-Civita connection of the metric? As a further desider-

atum, when the Finsler function is actually the length function of a Riemannian

metric the construction should actually return that metric.

It turns out that there are surprisingly many ways of producing such a metric

by averaging. In this note I shall discuss the general procedures involved, and give

eight specific conceptually distinct examples; these include the three mentioned

above but the rest are new. I do not claim that my list is exhaustive, only that it

contains an interesting and instructive sample. The proof I give of the Berwald

property is systematic, in the sense that it reduces to showing that the functions

to be averaged all satisfy the same simple condition.

A Finsler structure is defined on the slit tangent bundle T ◦M of a manifold

M . The averaging process takes place fibre by fibre, so that in the first place

one may concentrate one’s attention on an individual fibre T ◦xM , x ∈ M , of

T ◦M →M . This is a Minkowski space, with Minkowski norm Fx determined by

restriction of the Finsler function F . I begin therefore, in Section 2, by considering

averaging in Minkowski spaces. The eight specific examples mentioned above are

all described initially in this section. In Section 3 I extend the constructions

to Finsler spaces, and prove the main result, that each of the metrics obtained

satisfies the required condition when the space is a Berwald space. Section 4

contains some observations about the relation between the volume form induced

on M by any of these Riemannian metrics and the canonically defined Busemann-

Hausdorff form. There are some concluding remarks in Section 5.

References [4] and [5] mentioned above are concerned in part with the pos-

siblity of generalizing the concept of a Finsler function by relaxing the strict

convexity requirement and allowing the function to be only partially smooth in a

certain sense. These generalizations are taken up in the specific case of a Berwald

space in [7], where the notion of a Berwald-Matveev space is introduced. These

developments are clearly interesting and important, but I have not attempted to

pursue them here: so I emphasise that this paper is conerned entirely with smooth

strongly convex y-global Finsler functions.

2. Averaging on Minkowski spaces

Consider a Minkowski norm F on Rn. Denote the natural coordinates by (yi),

and set dny = dy1 ∧ dy2 ∧ · · · ∧ dyn. Set Rn
◦ = Rn − {0}. With r > 0, denote by

B(r) the closed ball of radius r determined by F : B(r) = {y ∈ Rn
◦ : F (y) ≤ r};

and by S(r) the sphere: S(r) = {y ∈ Rn
◦ : F (y) = r}. Set B(1) = B, S(1) = S.
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Denote by ∆ the Liouville vector field:

∆ = yi
∂

∂yi
.

There is a Riemannian metric g on Rn
◦ canonically associated with F , given in

terms of the natural coordinates by

gij = F
∂2F

∂yi∂yj
+
∂F

∂yi
∂F

∂yj
=

∂2E

∂yi∂yj

where E = 1
2F

2 is the energy of F . If we allow linear transformations of coor-

dinates then the gij transform tensorially in the manner indicated by the posi-

tion of the indices; the formula defines what may be called a linear tensor. Let

Ω =
√

det g dny be the volume form on Rn
◦ defined by g. Then ∆ is the unit

outward normal field on S, and ω = ∆ Ω, pulled back to S, is the volume form

on S induced by g. (Actually one should be a little careful here to take account

of orientation. I mean that Ω is the unique n-form whose expression in terms

of natural coordinates is that just given. If ỹi are new linear coordinates then

Ω = ±
√

det g̃ dnỹ where g̃ is the transformed tensor, and one takes the plus sign

if the transformation is orientation-preserving, the minus sign if it is orientation-

reversing. However, this nicety will turn out to have no real significance.) We

have ω =
√

det g λ where λ = ∆ dny. In [1] volumes calculated with respect to

dny or λ are referred to as Euclidean, those calculated with respect to Ω or ω

as Riemannian: I mention this as a way of drawing attention to the distinction,

though I shan’t use this terminology here.

For any function f on S define averages of f over S, with respect to the volume

forms ω and λ, by

〈f〉ω =

∫
S
fω∫
S
ω
, 〈f〉λ =

∫
S
fλ∫
S
λ
.

Observe that 〈f〉ω is coordinate-independent, that is, unchanged under a lin-

ear change of coordinates: this is evidently the case if the transformation is

orientation-preserving, while both terms change sign if the transformation is

orientation-reversing. The same is true of 〈f〉λ: the numerator and denominator

both change, but by the same constant factor (the determinant of the coordinate

transformation). One can easily express either average in terms of the other: for

example

〈f〉λ =
〈f/
√

det g〉ω
〈1/
√

det g〉ω
In the literature averages are often defined instead in terms of integrals over the

unit ball B. If f is actually the restriction to S of a function on Rn
◦ (also denoted
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by f) which is homogeneous then the two definitons are related in a simple way,

as I now show. I first require a lemma.

Lemma 2.1. Let f be a C∞ function on Rn
◦ which is homogeneous of degree

k ≥ 0. Then
∫
B
fdny is well-defined, and∫

S

fλ = (n+ k)

∫
B

fdny.

(This is a slight generalization of a result which appears in [7].)

Proof. I show first that d(fλ) = (n + k)fdny. We have ∆f = kf , and so

L∆(fdny) = (n + k)dny; the result follows immediately from the homotopy for-

mula for the Lie derivative. By Stokes’s Theorem, for small positive ε∫
S

fλ−
∫
S(ε)

fλ = (n+ k)

∫
B−B(ε)

fdny.

But

lim
ε→0

∫
S(ε)

fλ = lim
ε→0

∫
S(ε)

f∆ dny = lim
ε→0

εn+k

∫
S

f∆ dny = 0.

So we may set ∫
B

fdny = lim
ε→0

∫
B−B(ε)

fdny

and the result follows. �

Corollary 2.2. With f as before,∫
S

fω = (n+ k)

∫
B

fΩ.

Proof. The function
√

det g is homogeneous of degree 0. �

Proposition 2.3. With f as before,

〈f〉ω =
n+ k

n

∫
B
fΩ∫

B
Ω
, 〈f〉λ =

n+ k

n

∫
B
fdny∫

B
dny

.

Proof. These results follow directly from the lemma above and its corollary. �

These averaging processes may be extended to (smooth) linear-tensor fields

on Rn
◦ . Consider, for example, a tensor field a of type (0, 2). Let aij be its

components with respect to natural coordinates, and set āij = 〈aij〉ω. Then ā

transforms tensorially under a linear change of coordinates, and therefore defines

an element of Rn∗ ⊗Rn∗, or in other words a bilinear form on Rn, such that for

any u, v ∈ Rn, ā(u, v) = 〈a(u, v)〉ω. For convenience I shall write (in this case)

ā = 〈a〉ω.
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(Strictly speaking it is necessary only that a be defined on S, that is, that it

be a tensor field along the injection S → Rn
◦ . However, in all cases of interest

a will be a linear-tensor field on Rn
◦ , which is homogeneous in the sense that

its components with respect to natural coordinates are homogeneous functions

of some common degree k, so that their values are determined everywhere from

their values on S.)

Proposition 2.4. Let a be a smooth type (0, 2) tensor field on Rn
◦ , and set

ā = 〈a〉ω or 〈a〉λ. Then

(1) If a is symmetric so is ā.

(2) If a is itself constant (that is, if it is an element of Rn∗⊗Rn∗ considered

as a linear-tensor field on Rn
◦ ) then ā = a.

(3) Suppose that for every non-zero u ∈ Rn, a(u, u) is non-negative on S,

and non-vanishing at some point of S: then ā is positive definite.

If a is instead a type (2, 0) tensor field then the same results hold, mutatis mu-

tandis.

Proof. Only item 3 is not immediately obvious. For any u ∈ Rn we have

〈a(u, u)〉ω ≥ 0. But since for u 6= 0, a(u, u) > 0 at some point of S, and therefore

in some neighbourhood of that point, in fact 〈a(u, u)〉ω > 0. The same argument

works with λ in place of ω. �

This proposition, applied fibrewise, with different choices of a, provides the

foundation for numerous methods of constructing a Riemannian metric on the

base manifold of a Finsler space by averaging over the indicatrix in each fibre. I

give below a list of possibilities, some of which have appeared in the literature,

others of which are variations on methods that have appeared in the literature,

and yet others are to the best of my knowledge completely new. Here we are

concerned just with the construction in a Minkowski space, which will be a typical

fibre in the application to Finsler spaces in the next section. The construction

leads to a bilinear form on Rn which is symmetric and positive definite. In each

case I denote this bilinear form by ḡ and its components (with respect to the

standard basis) by ḡij . In certain cases apparently extraneous numerical factors

appear: these have been introduced for later convenience. Note that in each case

condition 3 of Proposition 2.4 is satisfied, so that ḡ is indeed positive definite.

(1)

ḡij = 〈gij〉λ.
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This construction, apart from some minor details, was introduced by

Matveev et al. in [4], and appears also in the recent paper [7] by Szi-

lasi et al. In both of these papers the term
∫
S
λ is omitted from the

definition of the average, but instead the construction begins with a vol-

ume n-form c dny, with constant c, normalized so that
∫
B
c dny = 1. As

a result the bilinear form defined in these papers differs from mine by a

numerical factor.

(2)

ḡij = 〈gij〉ω.
This is Vincze’s original specification, in [8], of a metric associated with a

Finsler space obtained by averaging over the indicatrix. It has also been

discussed in [3].

(3)

ḡij = n〈yiyj〉λ.
Note that in this case the average leads to the contravariant form, so that,

as a matrix, ḡ is the inverse of the matrix whose components are given

above. To the best of my knowledge this definition was first given by

Centore in [2], albeit in terms of integrals over B; for exact comparison

with his definition it is necessary to observe that in this case the argument

is homogeneous of degree 2. Centore calls ḡ the osculating metric. An

equivalent definition appears in a recent paper by Matveev et al., [5],

where the ellipsoid defined by the averaged metric is named the Binet-

Legendre ellipsoid.

(4)

ḡij = n〈yiyj〉ω.
This is an obvious alternative to item 3. This example has not already

appeared in the literature so far as I know, nor have any of those following.

(5)

ḡij = n〈yiyj〉λ,
where

yi = gijy
j = F

∂F

∂yi
=
∂E

∂yi
.

(6)

ḡij = n〈yiyj〉ω.
This example is dual to that of item 4, in the following sense. The map L :

Rn
◦ → Rn∗

◦ where L(yi) = (gijy
j) = (yi) is the Legendre transformation

associated with the Lagrangian E. It is a diffeomorphism, with ∂Li/∂y
j =
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gij ; its inverse is L−1(pi) = (gijpj). The function F ∗ = F ◦ L−1 is a

Minkowski norm on Rn∗
◦ , whose associated metric is (gij) and associated

volume form is Ω∗ = (1/
√

det g)dnp. (For the details see [1] Section

14.8.) The construction of item 4 applied to these data on Rn∗
◦ leads to

an average ḡ on Rn∗
◦ where ḡij ◦ L = n〈yiyj〉ω.

(7)

ḡij =
n

n− 1
〈gij − yiyj〉λ.

The argument here is the restriction to S of the component hij of the

angular metric h. In order to express ḡ as an average over B one needs

to remember that the general formula for hij is hij = gij −yiyj/F 2 (both

terms of which are homogeneous of degree zero).

(8)

ḡij =
n

n− 1
〈hij〉ω.

There is a certain, probably spurious, elegance in this formula coming

from the fact that ω is the volume form on S induced by h considered as

a metric on S.

I now show that for each of these examples, if g is actually constant, so that

F (y) =
√
gijyiyj is effectively Euclidean, then ḡ = g.

Proposition 2.5. If g is constant then ḡ = g.

Proof. This is obvious for examples 1 and 2. We may assume without loss

of generality that F is Euclidean with respect to the coordinates (yi), that is,

that gij = δij . Then λ = ω, so it is enough to consider just one of each of the

remaining pairs. For example 4 we take advantage of the fact that both S (which

is just the Euclidean unit sphere) and ω are invariant under proper orthogonal

transformations. Using this observation for the transformation, for any i, j with

i < j,

(y1, y2, . . . , yn) 7→ (y1 . . . ,−yj , . . . , yi, . . . , yn)

we see that ∫
S

(yi)2ω =

∫
S

(yj)2ω =
1

n

∫
S

n∑
i=1

(yi)2ω =
1

n

∫
S

ω.

On the other hand, using the transformation

(y1, y2, . . . , yn) 7→
(
y1 . . . ,

1√
2

(yi − yj), . . . , 1√
2

(yi + yj), . . . , yn
)
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we see that for i 6= j ∫
S

(yiyj)ω = 0.

It follows that ḡij = δij , as required. Now∫
S

(yiyj)ω = δikδjl

∫
S

(ykyl)ω = δikδjlδ
kl = δij ,

which deals with examples 6 and 5. Finally, we have

〈δij − yiyj〉ω = δij −
1

n
δij =

n− 1

n
δij ,

which proves the result for the final two examples. �

The proof above for item 4 is adapted from the one given in [5]. There is a

quite different proof, which is perhaps more elegant, but less straightforward, in

[2].

3. Constructing metrics for Finsler spaces by averaging

Now consider a Finsler space over a manifold M of dimension n; let F be its

Finsler function, defined on T ◦M , its slit tangent bundle. Given any coordinate

system (xi) about x ∈M , we can identify TxM with Rn by means of the canonical

fibre coordinates (yi). Let Sx ⊂ T ◦xM be the indicatrix at x, that is, the unit

sphere of the Minkowski norm Fx defined on T ◦xM by F ; let S be the indicatrix

bundle, the submanifold of T ◦M on which F takes the value 1, whose fibre over

x is Sx. The quantities

gij =
∂2Ex
∂yi∂yj

are usually regarded as the components of a tensor along the projection τ : T ◦M →
M . But they also determine a Riemannian metric on each fibre, where the compo-

nents of the metric gx on T ◦xM with respect to the fibre coordinates are gij(x, y).

Let ωx be the volume form on Sx induced by gx (that is, induced by the volume

form on T ◦xM determined by gx). One can carry out the constructions of the

previous section pointwise over M , to obtain eight possibly different Riemannian

metrics ḡ on M by averaging over indicatrices.

Recall that the canonical horizontal distribution of a Finsler space is spanned

by local vector fields

Hi =
∂

∂xi
− Γji

∂

∂yj
,
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the horizontal lifts of the coordinate fields on M , where the coefficients Γij are

given in terms of the connection coefficients Γ i
jk of the canonical Berwald connec-

tion by

Γij = Γ i
jky

k, Γ i
jk =

∂Γij
∂yk

= Γ i
kj .

The Finsler function F is constant along horizontal curves, so the horizontal

distribution is tangent to S.

A Finsler space is a Landsberg space if g satisfies

Hk(gij) = gilΓ
l
jk + gjlΓ

l
ik;

that is to say, g is covariant constant along horizontal curves with respect to the

Berwald connection. In other words, in a Landsberg space, parallel transport

(with respect to the Berwald connection) along horizontal curves is an isometry

of fibres of T ◦M , regarded as Riemannian manifolds. A Finsler space is a Berwald

space if its canonical Berwald connection is actually a connection on M , that is,

if the connection coefficients are local functions on M . It is known that every

Berwald space is a Landsberg space (see for example [6]).

Proposition 3.1. In a Landsberg space, for any function f on T ◦M

∂

∂xi
〈f〉ω = 〈Hif〉ω,

where 〈f〉ω is the function on M whose value at x is 〈fx〉ωx
.

Proof. Take a curve c in M with c(0) = x, ċ(0) = v ∈ TxM , and let t 7→ cH(t, y)

be the horizontal lift of c through y ∈ T ◦xM . For t in the domain of c define a map

ρ(t) : T ◦xM → T oc(t)M by ρ(t)(y) = cH(t, y): then since the space is Landsberg, ρ(t)

maps Sx isometrically onto Sc(t). Thus in particular ρ(t) is volume preserving:

ρ(t)∗ωc(t) = ωx. It follows that∫
Sc(t)

f ωc(t) =

∫
ρ(t)(Sx)

f ωc(t) =

∫
Sx

ρ(t)∗(f ωc(t)) =

∫
Sx

ρ(t)∗(f)ωx.

Moreover,
∫
Sc(t)

ωc(t) =
∫
Sx
ωx. Thus

〈f〉ωc(t)
= 〈ρ(t)∗(f)〉ωx

= 〈f ◦ cH(t, ·)〉ωx
.

On differentiating with respect to t at t = 0 we obtain

v〈f〉ω = 〈vHf〉ωx
,

which is equivalent to the stated result. �

(This proof is taken from [3].)
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Corollary 3.2. In a Berwald space

∂

∂xi
〈f〉λ = 〈Hif〉λ.

Proof. I show first that in a Landsberg space

∂

∂xi
〈f〉λ = 〈Hif〉λ − 〈fΓi〉λ + 〈f〉λ〈Γi〉λ

where Γi = Γjji. Recall that

〈f〉λ =
〈f/
√

det g〉ω
〈1/
√

det g〉ω
We can obtain an expression for ∂〈f〉λ/∂xi by differentiating the quotient on

the right and applying the result of the proposition. For this we need to evaluate

Hi(1/
√

det g). In a Landsberg space Hi(det g) = 2Γi det g, by a calculation almost

identical to the one which leads to the corresponding result in the Riemannian

case. Thus Hi(1/
√

det g) = −Γi/
√

det g. One finds that

∂

∂xi
〈f〉λ =

〈Hi(f/
√

det g)〉ω〈1/
√

det g〉ω − 〈f/
√

det g〉ω〈Hi(1/
√

det g)〉ω
〈1/
√

det g〉2ω

=
〈Hif/

√
det g〉ω

〈1/
√

det g〉ω
− 〈fΓi/

√
det g〉ω

〈1/
√

det g〉ω
+
〈f/
√

det g〉ω
〈1/
√

det g〉ω
〈Γi/
√

det g)〉ω
〈1/
√

det g〉ω
= 〈Hif〉λ − 〈fΓi〉λ + 〈f〉λ〈Γi〉λ

as claimed. But in a Berwald space

〈fΓi〉λ − 〈f〉λ〈Γi〉λ = 〈f〉λΓi − 〈f〉λΓi = 0.

�

For any symmetric connection on M I denote the covariant derivative, in com-

ponent form, with a semi-colon. For any Berwald connection on T ◦M I denote

the covariant derivative (of a tensor along τ) with a solidus. When dealing with

a Berwald space I assume of course that the two connections are the same, even

if presented in different guises.

Lemma 3.3. Let a be any type (0, 2) tensor field along τ , ā the type (0, 2) tensor

field on M obtained by averaging over indicatrices with respect either to ω or to

λ. If the space is a Berwald space then

āij;k = 〈aij|k〉

where the average on the right is taken with respect to ω or λ as appropriate. A

similar result holds for any type (2, 0) tensor field along τ .



AVERAGED METRICS FOR BERWALD SPACES 11

Proof. I give the proof for a type (0, 2) field using the ω average. The other

results are obtained by similar means, taking into account Corollary 3.2. We have

aij|k = Hk(aij) + aljΓ
l
ik + ailΓ

l
jk.

It follows, using the assumption that the space is Berwald, that

〈aij|k〉ω = 〈Hk(aij)〉ω + 〈alj〉ωΓ lik + 〈ail〉ωΓ l
jk

=
∂āij
∂xk

+ āljΓ
l
ik + āilΓ

l
jk

= āij;k.

�

For what it is worth, an analogous formula evidently holds for any tensor field

along τ , whatever its type.

A symmetric connection on M is the Levi-Civita connection of a metric ḡ if

and only if ḡij;k = 0, or equivalently ḡij ;k = 0.

Theorem 3.4. In a Berwald space, for each of the eight Riemannian metrics

ḡ defined in the previous section, the associated Levi-Civita connection coincides

with the canonical Berwald connection.

Proof. From the lemma, it is enough to show that for each of the three tensors

aij =


gij
yiyj
hij

aij|k = 0, while for

aij = yiyj ,

aij |k = 0. In the case aij = gij , this is true for a Landsberg space, and so a fortiori

for a Berwald space. For the case aij = yiyj we see first that Hk(yi) = −Γikly
l,

so that

aij |k = Hk(aij) + aljΓilk + ailΓjlk

= −Γikly
lyj − yiΓjkly

l + ylyjΓilk + yiylΓjlk

= 0.

For aij = yiyj we use the fact that aij = gilgjmy
lym: the result then follows from

the previous case, given that gil|k = gjm|k = 0. The case aij = hij then follows

from the first and third cases. �
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The case aij = gij with volume ω gives Vincze’s proof of Szabó’s theorem [8],

the case aij = gij with volume λ is proved in [7], and the case aij = yiyj with

volume λ is proved in [5]. The remaining results are new.

4. Volume invariants

For any Finsler space there is a canonical volume n-form on M , called the

Busemann-Hausdorff form: its expression in terms of coordinates (xi) on M is(
σn∫
S
λ

)
dnx,

where σn is a numerical factor, the volume of the Euclidean unit n-sphere, whose

presence ensures that when F comes from a Riemannian metric the Busemann-

Hausdorff form coincides with the induced volume form. It is easy to see that

this is the coordinate expression of a well-defined nowhere-vanishing n-form. In

fact the Busemann-Hausdorff form is usually defined in terms of unit balls rather

than unit spheres (see [2, 5, 6]), but the formulation above is equivalent and more

in keeping with the approach in the present paper.

On the other hand, any of the Riemannian metrics ḡ defined earlier leads to

a volume form in the usual way, namely
√

det ḡ dnx. In [2], Centore calls the

non-vanishing function which is the ratio of the second of these volume forms to

the first, in the case ḡij = n〈yiyj〉λ which he discusses, the volume invariant. He

shows, by an argument involving the use of normal coordinates, that in the case

of a Berwald space this volume invariant is a constant.

Evidently a volume invariant may be defined for each of the metrics ḡ. I show,

by a direct calculation, that in a Berwald space each of them is constant, thus

both extending Centore’s result and simplifying its proof.

Theorem 4.1. In a Berwald space, for each of the metrics ḡ defined earlier the

volume invariant is constant.

Proof. Apart from the constant factor σn the volume invariant is√
det ḡ

∫
S

λ.

Since ḡ has the canonical Berwald connection as its Levi-Civita connection,

∂
√

det ḡ

∂xi
= Γi

√
det ḡ.

On the other hand, ∫
S

λ =

∫
S

1√
det g

ω,
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and by slight modifications of the arguments in the proofs of Proposition 3.1 and

Corollary 3.2 we obtain

∂

∂xi

(∫
S

λ

)
=

∫
S

Hi

(
1√

det g

)
ω = −

∫
S

Γiλ = −Γi

∫
S

λ.

Thus
∂

∂xi

(√
det ḡ

∫
S

λ

)
= Γi

√
det ḡ

∫
S

λ− Γi
√

det ḡ

∫
S

λ = 0,

and the volume invariant is constant. �

Incidentally there is another volume form on M , called the Holmes-Thompson

form ([6] Section 5.1), given by(∫
S

(det g)λ

σn

)
dnx;

the volume invariant between this and the Busemann-Hausdorff form, which can

be written ∫
S

√
det g ω

∫
S

1√
det g

ω,

is easily shown to be constant in a Berwald space by a similar argument to that

used in the proof of the theorem above.

5. Concluding remarks

We appear to have an embarras de richesses, if all these metrics are distinct.

Indeed, the situation is actually worse than this, because I have dealt only with

metrics defined by averaging. There are yet other means of constructing metrics:

for example, in each fibre there is a unique ellipsoid, centred at the origin, of least

volume (calculated with respect to the volume form c dny for which B has unit

volume) which contains B, the so-called Loewner ellipsoid of B. The metric so

defined is discussed in [7], where it is shown that, again, in a Berwald space its

Levi-Civita connection is the canonical Berwald connection.

The freedom in choice of Riemannian metrics for which a given symmetric

linear connection is the Levi-Civita connection (assuming there are any) is deter-

mined by the holonomy of the connection, via de Rham’s decomposition theorem.

In particular (as pointed out in [7]) if the holonomy group acts irreducibly then

all such metrics are homothetic. In [7] this observation is used to show that under

such circumstances the metric obtained by the Loewner ellipsoid construction is

homothetic to the one obtained in item 1 above. But in fact it applies to all of

the metrics discussed in the present paper, all of which must then be homothetic

to each other.
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