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A recent computational neural model of medial prefrontal cortex (mPFC), namely the
predicted response-outcome (PRO) model (Alexander and Brown, 2011), suggests that
mPFC learns to predict the outcomes of actions. The model accounted for a wide range of
data on the mPFC. Nevertheless, numerous recent findings suggest that mPFC may signal
predictions and prediction errors even when the predicted outcomes are not contingent
on prior actions. Here we show that the existing PRO model can learn to predict outcomes
in a general sense, and not only when the outcomes are contingent on actions. A series
of simulations show how this generalized PRO model can account for an even broader
range of findings in the mPFC, including human ERP, fMRI, and macaque single-unit data.
The results suggest that the mPFC learns to predict salient events in general and provides
a theoretical framework that links mPFC function to model-based reinforcement learning,
Bayesian learning, and theories of cognitive control.
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INTRODUCTION
Medial prefrontal cortex (mPFC), especially dorsal anterior
cingulate cortex (ACC) has been repeatedly and extensively
implicated in processing and monitoring behavior and action
(Falkenstein et al., 1991; Carter et al., 1998; Shima and Tanji,
1998; Botvinick et al., 2001; Holroyd and Coles, 2002; Behrens
et al., 2007; Matsumoto et al., 2007; Rudebeck et al., 2008). A new
unified model of the mPFC, the predicted response-outcome (PRO)
model (Alexander and Brown, 2011), proposes that mPFC learns
predictions of future outcomes, and signals unexpected non-
occurrences of predicted outcomes. The model comprehensively
accounts for a range of results observed in mPFC (including
from fMRI, EEG, and single-unit neurophysiology) in the context
of cognitive control, including effects of error, conflict, error
likelihood, and several others.

While earlier simulations of the PRO model focused on the
role of mPFC in predicting the outcomes of actions, the mPFC
is also engaged in tasks without a significant behavioral com-
ponent, or when a specific motor command is neither planned
nor executed (Büchel et al., 2002; Chandrasekhar et al., 2008), in
processing novel stimuli (Dien et al., 2003; Crottaz-Herbette and
Menon, 2006), in predicting task-related stimuli that cue future
behavior but require no immediate response (Koyama et al., 2001;
Aarts et al., 2008; Aarts and Roelofs, 2010), and in response to
painful stimuli (Büchel et al., 2002; Chandrasekhar et al., 2008).
These findings suggest a role for mPFC in deploying attention
(Bryden et al., 2011; Vachon et al., 2012) and processing novelty or
salience (Downar et al., 2002; Litt et al., 2011; Wessel et al., 2012).

These findings present a significant challenge to accounts of
mPFC function that emphasize its role in the regulation and
correction of behavior alone. Furthermore, theories regarding

mPFC function will necessarily be incomplete so long as findings
regarding the role of mPFC in processing stimuli remain unex-
plained. One possibility is that stimulus-related activity in mPFC
reflects a separate, independent function of mPFC which operates
concurrently with mPFC involvement in control of behavior. A
second option is that these findings are a product of the same
mechanisms that produce effects in mPFC related to action and
outcome.

Can the same principle that informed the PRO model,
prediction of likely outcomes and detection of unexpected non-
occurrence, be deployed to explain mPFC activity related to task-
related cues? In order to answer this question, we first (re)consider
what we mean by “outcome”. In the original PRO model, out-
comes were conceived as events, usually reflecting performance-
related feedback, occurring at the end of a trial. After the model
was presented with an outcome, all learning within the model
ceased and all activity was set to 0 in order to prepare the model
for the next trial.

In reality, however, a person’s experience is not divided into
discrete trials in this fashion. Even in the highly-constrained
reality of a behavioral experiment, trials are followed by still more
trials, each identical to the last modulo experimental manipu-
lations. Each time an “outcome” is observed by a subject, it is
reliably followed by a stimulus indicating the onset of a new
trial, which is itself followed by another outcome, ad infinitum
(or at least until the experimenter allows the subject to leave).
From this perspective, the distinction between an outcome and a
stimulus becomes ambiguous, with the difference seeming to rest
on experimenter fiat.

With this in mind, we propose a modest extension to the
original PRO model (Figure 1). Namely, in the extended PRO
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model, we regard stimuli and their associated outcomes as generic
events, where events are considered to be any salient sensory
input that can be associated with subsequent events, and may
itself be predicted by previous events. It is essential to note from
the outset that this extension is a conceptual expansion only, and
the extended PRO model below is identical to the original PRO
model, including all the same equations and parameters. With this
simple conceptual extension, we are able to demonstrate how
the PRO model, in addition to accounting for mPFC activity
associated with response monitoring, can reproduce a range of
effects observed in mPFC and related primarily to processing
sensory stimuli from fMRI, EEG, and single-unit neurophysiolog-
ical studies. These findings provide additional evidence that the
hypothesis underlying the PRO model, that mPFC is involved in
prediction and detecting discrepancies, is the most comprehensive
account of mPFC function to date.

METHODS
The PRO model was developed to account for mPFC activity
related to the prediction of response-outcome conjunctions, and
signaling unexpected deviations from expected outcomes. In our
extended implementation of the PRO model, we generalize these

two basic functions of the PRO model to include prediction of any
salient sensory event (including outcomes), as well signaling devi-
ations from expected events. In order to describe our implemen-
tation of the extended model, we first review relevant equations
from the original model, and then show how these equations have
been updated to generalize the events they represent.

PRO MODEL
In order to explain effects observed in mPFC related to the
prediction and observation of outcomes following a behavioral
response, the original PRO model is based on standard reinforce-
ment learning (RL) models, especially temporal difference (TD)
learning (Sutton, 1988), that have been extended in the following
ways. First, in typical formulations, RL models learn a scalar
prediction of the discounted value of the current state. In contrast,
the PRO model learns predictions of multiple possible outcomes,
regardless of their affective valence, using a vector-valued error
signal. Activity in the PRO model therefore reflects a temporally
discounted prediction of various outcomes in proportion their
probability of occurrence. Second, mPFC effects related to error
are explained as “negative surprise”, a value which reflects the
aggregate of outcome predictions generated by the model minus

FIGURE 1 | Model schematics. In the original publication of the PRO
model (A), the model learned predictions of future outcomes (e.g., error or
correct feedback) based on task-related cues such as those observed in
the Eriksen flanker task. In our extension to the PRO model (B and C), the

model continues to learn the association between task-related cues and
feeback (B). Task-related feedback then acts as a stimulus in its own right
in order to learn associations between feedback and future task-related
cues (C).
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observed outcomes. The PRO model represents time as a tapped-
delay line in which each unit reflects the amount of time elapsed
since the presentation of a stimulus. Each iteration of the model
was interpreted as lasting 10 ms.

Formally, predictions in the model are computed as:

Pi,t =
∑

j,k

Sjk,t ×Wijk,t (1)

where S is the tapped-delay representation of a stimulus, W
are learned prediction weights associating stimuli with possible
outcomes, P, and i,j and k index outcomes, tapped-delay units,
and stimulus identity, respectively. Weights are updated according
to:

Wijk,t+1 = Wijk,t + αδi,t S̄jk (2)

where α is a learning rate parameter. W is further constrained by
W> 0. S̄ is an eligibility trace computed as:

S̄jk,t+1 = Sjk,t + 0.95S̄jk,t (3)

Finally, δ is a TD error:

δi,t = Oi,t + γPi,t+1 − Pi,t (4)

where O is the outcome i observed on the current model iteration
t, and γ is a temporal discount factor (γ = 0.95).

EXTENDED MODEL
As described above, the central premise underlying our extended
implementation of the PRO model is that outcomes and the
stimuli which precede them can be regarded as generic events,
by which we mean any salient information (i.e., experimental
variables) a subject may encounter in the course of an experiment,
up to and including information that may not pertain to the
experimental task as such but merely signals the onset of a new
trial (e.g., fixation points). Accordingly, the relevant equations
given above are rewritten as:

Pi,t =
∑

j,k

Ejk,t ×Wijk,t (5)

Wijk,t+1 = Wijk,t + αδi,t Ējk (6)

Ējk,t+1 = Ejk,t + 0.95Ējk,t (7)

δi,t = Ei,t + γPi,t+1 − Pi,t (8)

These equations are identical with Eqs. 1–4, with the exception
that all instances of S and O are now replaced by E, reflecting
the more general role of both stimuli and outcomes as events
that can be predicted as well as serve as the basis for predicting
future events. In order to accommodate learning predictions
about the relationship between events, broadly construed, the
model was further altered by allowing learning to occur even
after the conclusion of a trial. Finally, activity in the model was
computed as “negative surprise”:

ωN
t =

∑
i

bPi,t − Ei,tc
+ (9)

reflecting the unexpected non-occurrence of a predicted event.
Except for simulation 6 (discussed below), this measure of model
activity is used in all simulations.

In addition to these four core equations, the original PRO
model incorporated mechanisms by which the model was able
to interact with simulated cognitive control tasks. These mech-
anisms remain unchanged, and the parameters used for previous
simulations are the same as previously reported (Alexander and
Brown, 2011). These parameters were derived from model fits
to behavioral data from a previously reported study (Brown
and Braver, 2005). Model parameters were not altered from one
simulation to the next. For simulations in which an event was not
associated with a particular behavior (e.g., experiments in which
certain stimuli do not require a response), stimulus-response
weights in the model were set to 0.

SIMULATIONS
Unless otherwise note, simulated experiments included 10 indi-
vidual simulations, each corresponding to a single subject, of the
PRO model in the tasks described below. In each task, or in each
experimental condition within each task, the model was presented
with 300 trials. At the beginning of each individual simulation,
adjustable model weights were set to 0. Because trials for each task
were selected randomly, and because responses were influenced
both by learned and static weights as well as by an additional noise
component, the development of activity in the model varied from
one individual simulation to the next. In our simulations, we did
not simulate variability in inter-trial or inter-stimulus intervals
due to the dependence of the model on consistent timing of
events to converge (resulting from its formulation based on TD
learning).

SIMULATION 1: FREQUENT VS. INFREQUENT TRIALS
Effects of trial frequency on model activity were simulated using
an Eriksen flanker task (Eriksen, 1995) in two separate simulated
experiments in which the frequency of trial types (congruent
and incongruent) was manipulated. In the frequent condition for
both experiments, frequent trials were observed approximately
75% of the time, while infrequent trials were approximately
25% of all trials. A total of eight events were modeled: left and
right target cues, left and right flanker cues, as well as the four
possible response-outcome conjunctions (left/error, right/error,
left/correct, right/correct). Model activity was averaged over the
first 20 model iterations following the onset of the target and
flanker cues.

SIMULATION 2: ITEM-SPECIFIC VS. GLOBAL CONTROL
The model was run in three separate simulated experiments using
a version of the Stroop task (Stroop, 1935) in which the frequency
of congruent vs. incongruent trials was manipulated both at a
global level, as well as at the level of individual stimuli as in Blais
and Bunge (2010). In each experiment, two classes of stimuli
were used. In each stimulus class, two specific colors could be
combined to generate Stroop stimuli. For example, one stimulus
class might include the colors red and green used to generate
incongruent and congruent stimuli—the word “red” displayed
in green font, or vice versa (incongruent trials), or the word
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“red” (or green) displayed in red (or green) font (congruent
trials), while the 2nd stimulus class would generate stimuli using
two different colors (e.g., yellow and blue). In each experiment,
both the global probability of observing an incongruent trial
(regardless of stimulus class), as well as the item-specific (class-
dependent) probability of observing an incongruent trial were
manipulated. In the 1st experiment, the global probability of
observing an incongruent trial was 0.3, while the item-specific
probability was 0.1 and 0.5 for the two stimulus class. In the
second experiment, both the global and item-specific probabilities
of an incongruent trial were 0.5. Finally, in experiment 3, the
global probability was 0.7 while the item-specific probabilities
were 0.5 and 0.9 for the two stimulus classes. In each simulated
experiment, a total of eight events were modeled: one event for
each color word, and one for each font color, as well as four possi-
ble response-outcome conjunctions (Color1/Error, Color2/Error,
Color1/Correct, Color2/Correct). For each experiment, the model
was simulated for 200 trials, and model activity was averaged over
the first 20 iterations following presentation of the stimulus.

SIMULATION 3: MISMATCH NEGATIVITY
The mismatch negativity (MMN) was simulated as a punctuate
stimulus presented to the model that repeated every 30 model
iterations (300 ms). Since no response was required by the model,
components of the PRO model related to response generation
were lesioned by setting all weights for connections projecting
to and from those components to 0. The model was trained on
the repeating stimulus for 200 repetitions, following which single
trials were simulated in which the stimulus was withheld follow-
ing a number of repetitions (1–7). Model activity for all trials
involving a withheld stimulus was averaged together regardless of
the number of stimulus repetitions observed prior to the withheld
stimulus, and activity for was recorded for the 40 iterations prior
to the usual presentation time of the stimulus to 20 iterations after
the usual presentation. Model activity for non-mismatch trials
was averaged over all trials in which a stimulus was presented as
expected, and activity was recorded as for mismatch trials.

SIMULATION 4: INFORMATIVE VS. UNINFORMATIVE CUES
The task used by Aarts et al. (2008) was an arrow-word version
of the Stroop task in which subjects were presented with both a
word and visual cue indicating the direction in which they should
respond (e.g., the word “right” printed within an arrow pointing
left). On congruent trials, both the word and the visual cue indi-
cated the same direction, while on incongruent trials, the word
and visual cue indicated opposite responses. Prior to the onset of
the task itself, subjects were presented one of three possible cues,
each of which indicated whether the upcoming task would involve
an incongruent trial (approximately 1/3 of all trials), a congruent
trial (approximately 1/3 of all trials), or providing no information
as to the nature of the trial (approximately 1/3 of all trials). A
total of 11 events were modeled: 1 for each of the cue conditions
(informed/congruent, informed/incongruent, uninformative), 3
events for task stimuli (1 for the central target stimulus, and
1 each for congruent and incongruent flankers) and 4 for the
possible response-outcome conjunctions (left/error, left/correct,
right/error, right/correct). Model activity was averaged over the 20

iterations following cue presentation for cue-related effects, and
averaged over the 20 iterations following presentation of the trial
(and preceding the model response or feedback) for target-related
effects.

SIMULATION 5: BAYESIAN SURPRISE
In the stop signal task, subjects are presented with a cue indicating
that a response is to be made. On a subset of trials, the subjects
are subsequently presented with a second cue indicating that the
subject should cancel the response to the first cue. We simulated
the PRO model performing the stop signal task with the same
frequency of go vs. stop trials reported in Ide et al. (2013) (75%
and 25%, respectively). Model activity was averaged over the 20
model iterations following the presentation of a Stop cue. For each
trial, the probability of observing a stop trial was calculated as
proportion of stop trials over the previous ten trials. High and low
probability trials were classified by a median split of the estimated
probabilities of all trials experienced by the model. Seven events
were modeled: 1 for the fixation point presented at the beginning
of each trial, 1 each for the go and stop signals, and 4 for the
possible response-outcome conjunctions (Go/Correct, Go/Error,
Stop/Correct, and Stop/Error).

SIMULATION 6: SINGLE-UNIT ACTIVITY
In the expect reward task (Sallet et al., 2007) conducted with
monkeys, the animal was presented with a cue indicating the mag-
nitude of a reward that would be delivered following a subsequent
presentation of the same cue. Reward magnitudes could be either
small, medium or large. On a subset of trials in the large and small
magnitude conditions, the cue for the opposite reward (small
instead of large, large instead of small) was presented following
the initial cue. We simulated the PRO model on 200 trials of the
expect reward task. A total of 10 events were modeled: 1 event
for the starting position presented at the beginning of the trial,
3 events represented the reward magnitude cues during the Cue
phase of the trial, 3 events represented the reward cues presented
during the Go phase of each trial, and 3 events rewarded the
reward received (small, medium, or large). Note that the activity
of reward events was binary, and was intended to simulate the
identity of the reward rather than its salience or value. This is
consistent with the theory underlying the PRO model that states
that mPFC learns the likely outcomes of actions rather than the
value of those outcomes. Activity for cue related activity was
averaged over 20 iterations following the presentation of the first
cue and, separately, following the presentation of the second cue.
Since we sought to account for single-unit activity, the activity of
single units in the model was computed as in Eq. 9, but the results
were not summed.

RESULTS
In previously published simulations (Alexander and Brown,
2011), we selected tasks on which to test the PRO model based
on their potential to highlight a key strength of the model.
Namely, we showed how the straightforward intuition underlying
the model, that mPFC predicts future outcomes and signals
deviations from expectations, can account for a wide range of
data under a single, unifying framework. Specifically, we showed
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how the PRO model accounted for data from fMRI, EEG, and
single-unit neurophysiology studies, while also showing how
Bayesian accounts of mPFC activity could be reconciled with
RL formulations. At the same time, we demonstrated that the
PRO model, beyond capturing effects also accounted for by
other models of mPFC (e.g., Botvinick et al., 2001; Holroyd
and Coles, 2002; Brown and Braver, 2005), could addition-
ally reproduce patterns of activity competing models could not
(e.g., Amador et al., 2000; Amiez et al., 2006; Jessup et al.,
2010).

Our goal in the present study is similar, in that we seek to
demonstrate how, with a minimal amount of alteration, the PRO
model may be extended to address results from the neuroscience
literature showing mPFC involvement in the expectation and
detection of stimuli. Accordingly, the data we have chosen
to simulate include results from fMRI, EEG, and single-unit
neurophysiology studies, as well as results implicating mPFC in
Bayesian surprise.

SIMULATION 1: FREQUENT VS. INFREQUENT TRIALS
Some fMRI and EEG studies manipulate the relative fre-
quency of congruent vs. incongruent trials in common cog-
nitive control tasks (e.g., the Eriksen flanker task or the
Stroop task). They have observed an inverse correlation of
conflict-related effects with the frequency of incongruent tri-
als (Carter et al., 2000). The PRO model explains this as
an increased prediction of the likelihood of an incongru-
ent trial occurring in high-frequency incongruent conditions,
with an attendant decrease in surprise when a predicted
incongruent trial is experienced (Figure 2A). These studies
also find that activity for infrequent incongruent trials is
greater than for infrequent congruent trials when trials are
matched for frequency. The PRO model captures this effect
and explains it, as in previously published simulations, as
the effect of multiple concurrent predictions for incongruent
trials that proceed from the appearance of an incongruent
stimulus.

FIGURE 2 | Trial frequency, item-level control, and the mismatch
negativity. (A) Activity in the PRO model at the onset of a trial in the
Eriksen flanker task reflects the overall frequency with which a particular
trial type (congruent or incongruent) is observed. When mostly
congruent trials are experienced, infrequent incongruent trials result in
increased model activity relative to congruent trials, while the reverse
holds true for conditions in which mostly incongruent trials are
observed. (B) Activity in the model is proportional to the frequency with

a particular trial type (e.g., incongruent or congruent) is observed with
respect to a particular stimulus type (e.g., Stroop stimuli constructed
using the color pair RED and GREEN vs. stimuli constructed using the
color pair BLUE and YELLOW), and is not sensitive to the overall
frequency of a trial type without regard for stimulus types. (C) Activity
in the PRO model is greater following the surprise absence of a
stimulus that commonly occurs as part of a sequence of stimuli (cf.
Crottaz-Herbette and Menon, 2006).
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SIMULATION 2: ITEM-LEVEL VS. GLOBAL CONTROL
The conflict model of ACC/mPFC suggests that cognitive control
is proportional to the global statistics of a task; as the proportion
of incongruent trials increases, so too does the overall need for
top-down control to be deployed in order to successfully perform
a task, with a resultant decrease in levels of conflict-related activity
in ACC. However, both behavioral and fMRI studies (Bugg et al.,
2008; Blais and Bunge, 2010) investigating this prediction have
found that control appears to depend on the frequency of item-
specific incongruent trials; particular stimuli associated with a
higher proportion of incongruent trials appear to benefit more
from adaptation effects relative to stimuli with a lower proportion
of incongruent trials. Accordingly, since the PRO model learns
predictions of likely events contingent on stimuli presented, sim-
ulated model activity at the onset of incongruent trials is inversely
proportional to the overall item-specific frequency of incongruent
trials (Figure 2B).

SIMULATION 3: MISMATCH NEGATIVITY
The MMN ERP component is observed when, in the course
of presentation of a predictable sequence of stimuli, a partic-
ular stimulus within that sequence is surprisingly altered (e.g.,
a high tone rather than a usual low tone) or withheld alto-
gether. The MMN is most apparent in sensory cortices related
to the stimulus modality, though EEG studies have also iden-
tified generators in frontal cortex, especially mPFC (Crottaz-
Herbette and Menon, 2006) with an onset delayed compared
to sensory cortex. The PRO model accounts for the MMN
observed within mPFC as the surprising absence of a stimulus
in a sequence whose occurrence was predicted by the previous
stimulus (Figure 2C). Note that because activity in the PRO
model derives entirely from the unexpected non-occurrence of an
expected event, the model’s interpretation of the MMN remains
the same regardless whether a predicted stimulus in a sequence
is absent, or if a novel stimulus is inserted in its place (i.e.,
oddball paradigm). In both cases, the predicted event failed to
occur.

SIMULATION 4: INFORMATIVE VS. UNINFORMATIVE CUES
Aarts et al. (2008) observed increased activity in ACC follow-
ing informative cues (cues which indicated whether the subject
would subsequently perform a congruent or incongruent trial
of a modified Stroop task) vs. uninformative cues. ACC activity
at the time the cued task was presented was lower following
informative cues relative to tasks occurring after uninformative
cues, regardless of whether the trial itself was incongruent or
congruent. The PRO model accounts for increased activity fol-
lowing an informative cue (Figure 3A) as the increased pre-
dictive activity related to the certain occurrence of either an
incongruent or congruent trial vs. the weak activity following
uninformative cues related to uncertain predictions regarding the
nature of the next trial. Similarly, activity at the onset of the
target task following an informative cue is reduced regardless of
trial type (Figure 3B) since the model’s prediction corresponds
with the observed event, while activity at trial-onset following
uninformative cues reflects the unexpected non-occurrence of
at least one of the model’s predictions. Note that although the

FIGURE 3 | Informative vs. uninformative cues. (A) Activity in the PRO
model is greater when a cue is presented indicating the type of trial (e.g.,
incongruent or congruent) that will be presented to the model in the near
future, as compared to a cue that is uninformative (i.e., equal chance of
either trial type). (B) Conversely, when a trial is presented, model activity is
lower when the trial type has been previously cued compared to trials that
have been preceded by an uninformative cue. (C) When model activity is
recorded over a longer duration following trial presentation, reflecting the
low temporal resolution of fMRI, trial-related activity for incongruent trials
increases relative to high temporal resolution recording (frame B).

PRO model captures the broad pattern observed in Aarts et al.
(2008), the model reverses the direction of the effect observed
at the onset of congruent tasks vs. incongruent task following
uninformative cues. To explain this discrepancy between model
predictions and empirical results, we note that our simulations
sampled only a limited window of time following tonset of
the task, equivalent to 200 ms of real time and far below the
2100 ms repetition time used by Aarts et al. to obtain their
data. During this window, subjects were required to perform the
task and monitor the outcomes of their behavioral responses.
We therefore simulated the Aarts task again, this time using a
window of 1000 ms following the onset of the target task, and
find that the discrepancy between congruent and incongruent
trials in the uninformed condition is eliminated (Figure 3C).
In this simulation, all inter-stimulus and inter-trial intervals
were identical to the initial simulation. In the model, increased
activity to uninformed congruent trials (relative to uninformed
incongruent trials) in the first 200 ms following task onset is
due to stronger predictive activity related to the almost certain
successful completion of the congruent task. At longer intervals,
activity for uninformed incongruent trials is higher relative to
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FIGURE 4 | Bayesian surprise. The PRO model reproduces the pattern of
activity observed in ACC based on local estimates of the likelihood of
observing STOP or GO trials in a stop signal task. Activity at the onset of a
GO trial is higher when the estimated likelihood of observing a STOP trial is
high. Conversely, activity at the onset of a STOP trial is higher when the
estimated likelihood of a STOP trial is believed to be low.

uninformed congruent trials due to both the increased timed
needed to perform an incongruent trial, as well as surprise signals
related to both correct and incorrect performance. At the tempo-
ral resolution at which data can be measured via fMRI, these early
and late components of the task are not separable. Our finding
of differential model activity for incongruent vs. congruent trials
during early periods following the onset of the target task is a
novel prediction of the PRO model which may be tested using
techniques with higher temporal resolution than standard fMRI
allows.

SIMULATION 5: BAYESIAN SURPRISE
MPFC activity has been linked to computations related to
Bayesian decision-making. In previous simulations, we showed
how the PRO model might establish a link between mechanistic
models of mPFC with more abstract Bayesian models by show-
ing that it could reproduce effects of environmental volatility
(Behrens et al., 2007) as estimated by a Bayesian algorithm.
Recently, Ide et al. (2013) applied a Bayesian model (the Dynamic
Belief Model (Yu et al., 2009)) to the analysis of fMRI data from a
stop-signal task. The Dynamic Belief Model updates its estimation
of the likelihood of observing a stop-signal trial based on the
recent history of stop and go trials that have been observed.
This estimation is used to calculate a Bayesian surprise signal,
essentially the unsigned prediction error calculated as the absolute
difference between the model’s estimation of the probability of
a trial type and the actual trial type observed. The PRO model,
which at its core is a model concerned with predicting likely events
and signaling discrepancies between observed and actual events,
accounts for the data in much the same way as reported earlier
(Ide et al., 2013). When faced with a Stop trial, the activity of
the PRO model is higher for situations in which recent trials
have included only a few Stop trials, relative to situations in
which recent trials have had a higher proportion of Stop trials
(Figure 4). Similarly, when given a Go trial, PRO model activity

is greater when the estimation of the likelihood of a Stop trial
occurring is high vs. a low estimation of the likelihood of a Stop
trial.

SIMULATION 6: SINGLE-UNIT ACTIVITY
A major strength of the original PRO model is its ability to
account for effects related both to the activity of ensembles
of neurons (fMRI and EEG), as well as the activity of single
neurons within mPFC. Here we demonstrate that, by extending
the PRO model to predict events, broadly construed, it is capable
of capturing additional single-unit data related to the occurrence
of task-related stimuli. In earlier work (Sallet et al., 2007), single
neurons in monkey ACC were observed whose activity following
the presentation of an initial cue was specific to the amount of
reward to be eventually received by the monkey: cues indicating
small rewards activated a separate population of neurons than did
cues indicating large rewards. Following a delay after the initial
cue, an additional cue was presented. On the majority of trials
(75%), the 2nd cue was identical to the initial cue–if the first cue
indicated a small reward, the second cue did as well. On 25% of
trials, however, the second cue indicated a different reward than
did the first cue; if the monkey had initially been shown the small
reward cue, it would now be shown the large reward cue, and
vice-versa.

The authors identified two groups of neurons that appeared
to code for the gain or loss of reward associated with infrequent
cue switches. One group showed a large increase in activity in
response to being shown a large reward cue after having been
initially shown a small reward cue. These same neurons also
responded (although somewhat more weakly) when the initial
cue shown to the monkey was associated with the large reward. A
second group of neurons showed the reverse pattern, responding
strongly when a second cue indicated a small reward following an
initial cue signaling a large reward, and responding more weakly
when the initial cue indicated a small reward. This pattern of
activity is interpreted by the authors as evidence for the hypothesis
that mPFC neurons code for both unexpected events, but also
specifically for reward gains and losses.

The notion that mPFC neurons signal discrepancies, both
positive and negative, between expected and actual reward magni-
tudes in separate neuronal populations is broadly consistent with
the theory underlying the PRO model insofar as the PRO model
characterizes mPFC as a region involved in signaling deviations
from expectations. The extended PRO model is able to capture
the pattern of effects observed by Sallet et al. (2007), as shown
in Figure 5. Rather than specifically coding for gains and losses,
however, the PRO model suggests that increased activity follow-
ing an unexpected second cue represents the unexpected non-
occurrence of a predicted cue. This interpretation applies as well
to activity observed at the presentation of the initial cue, where the
prediction of the presentation of a either a cue indicating a small
magnitude reward or a cue indicating a large magnitude reward is
unmet.

DISCUSSION
In this article, we have presented an extended implementation of
the PRO model of mPFC, and conducted a number of simulations
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FIGURE 5 | Single-unit data (cf. Sallet et al., 2007, Figure 7). The
activity of single units in the PRO model corresponds with data showing
populations of neurons within ACC whose activity appears to code for
LARGE (A and B) or SMALL (C and D) reward magnitudes. When
presented with an initial cue indicating either reward magnitude (left
panels), a subset of individual units remain active while the activity of
other units falls to 0. Following a second GO cue (center panels), individual

units appear to indicate surprising gains or losses, as would be the case
when a LARGE reward is initially cued, followed by a second cue
indicating a SMALL reward (top panels), and vice versa (bottom panels).
Model activity is greater for GO cues than for initial cues when the reward
magnitude indicated by the two cues is consistent (right panels), while
activity is maximal for GO cues which are inconsistent with initial cues,
either indicating a greater or lesser reward.

showing that, using this extended framework, the model can cap-
ture an additional range of effects observed within mPFC primar-
ily related to the detection and processing of task-related stimuli.
The extended PRO model is not different from the original PRO
model, in that it uses the same formal equations and parameter
values. The key innovation underlying our extension to the model
is conceptual—we treat stimuli and outcomes, elements of the
study of behavior that have long existed at opposite ends of a
trial, as being functionally equivalent in terms of their ability to
serve as the basis for future predictions and to signal discrepancies
between expected and actual events.

In our previous work, we noted that the PRO model offered
a unifying account of mPFC activity in the context of cognitive
control. The PRO model posited two main signals of prediction
and comparison (i.e., prediction error) (Alexander and Brown,
2010, 2011; Brown, 2013) These functions are consistent with a
variety of recent empirical results (Kennerley et al., 2011; Hayden
et al., 2011a), and the prediction error signals may be a key signal
that updates behavior (Hayden et al., 2011b; Kolling et al., 2012).
Our recent neuroimaging findings show distinct prediction and
prediction error regions within the mPFC, consistent with the
PRO model (Jahn et al., 2014). In the present manuscript, we
extend the earlier PRO model account to include experimental
paradigms not explicitly related to response generation. Indeed,
recent studies outside the purview of the original PRO model have
yielded results that are readily interpretable within the framework
of the extended PRO model, including findings regarding mPFC
activity when monitoring the actions of others (Apps et al.,
2012), during tasks focusing on predicting and detecting painful

stimuli (Büchel et al., 2002; Chandrasekhar et al., 2008), or
processing unexpected salient stimuli (Talmi et al., 2013). The
extended PRO model here may be viewed as continually trying
to build an accurate internal model of the environment. Every
surprising event in turn adjusts the model to minimize future
surprise. In that sense, the model is generally consistent with
the theoretical principles of free energy minimization (Friston,
2010).

In addition to accounting for a new set of neural data, our
present simulations provide further evidence in support of the
role of mPFC in model-based RL (Dayan and Niv, 2008), impli-
cating the mPFC in building internal models of the environment.
Other studies (Gläscher et al., 2010; Ide et al., 2013) have iden-
tified signals in the brain that appear to be consistent with some
form of model-based RL (as opposed to model-free RL), includ-
ing signals that occur in regions that are known to interact with
mPFC. Model-based RL is distinct from model-free RL in that
it is concerned with learning a model of an environment, often
rendered as a state-transition matrix containing the estimated
probabilities of transitioning from one state to another (Simon
and Daw, 2011), while model-free RL uses a scalar value signal
to improve estimates of future rewards. Neurally, model-free RL
is generally considered to involve primarily subcortical struc-
tures heavily innervated by dopamine neurons, including nucleus
accumbens and striatum, areas that are frequently observed to
respond to value and reward in decision-making tasks, and sub-
stantial research has linked DA activity in VTA to model-free RL
(Cardinal and Cheung, 2005; Daw and Doya, 2006; Doya, 2007;
Cohen et al., 2009).
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Although it is generally accepted that complex cognitive
behaviors such as planning and decision-making require that a
model of the world be learned and maintained, it is still unclear
what regions of the brain govern how or when a model is learned,
or which regions are involved in maintaining that model. We
previously noted that the vector error signal calculated by the PRO
model is consistent with a state prediction error, although we note
that the PRO model is not itself a model-based RL algorithm per
se. However, it does suggest that activity in mPFC may be used as a
learning signal by other brain regions that are directly involved in
model maintenance (Alexander and Brown, 2011). A likely candi-
date in this regard is dorsolateral prefrontal cortex (PFC), a region
implicated in working memory and rule representation (Wallis
et al., 2001; Nee and Brown, 2013; Mian et al., 2014) and known to
project reciprocally to mPFC (Barbas and Pandya, 1989). Another
possible substrate of model-based prediction is the hippocampus
(van der Meer and Redish, 2010). Future work should investigate
how the interaction of these regions may contribute to model-
based RL.

Our results show that the essential functions of the PRO
model, namely that of prediction and detection of discrepancy,
can account for a range of results primarily related to processing
stimulus-related information. This suggests a role for mPFC in
processes related to attention or attention-like processes. Previous
associative (Mackintosh, 1975; Pearce and Hall, 1980), connec-
tionist (Kruschke, 2001), and RL models (Alexander, 2007) have
exploited prediction errors to drive attentional learning. One
possible role of the mPFC signal may therefore involve allocating
attention to relevant stimuli. We do not claim that the mPFC
is the only brain region that signals prediction error though.
There is evidence that other regions including the cerebellum
may also signal prediction errors (Blakemore et al., 2001). An
important question raised by our results concerns the distinc-
tion between the functions of orbitofrontal cortex (OFC) and
mPFC. It has previously been thought that these two regions play
complementary roles in decision making, with mPFC encoding
action values while OFC encodes the value of stimuli (Gold-
stein et al., 2007; Rudebeck et al., 2008; Camille et al., 2011;
Kennerley et al., 2011). The extension of the PRO model to
include prediction of events in general (rather than solely pre-
dicting the consequences of actions) blurs this otherwise appeal-
ing distinction. A recent computational model (Wilson et al.,
2014) interprets OFC as being involved in state representation,
and thus, in conjunction with the PRO model, may provide
an alternative account for the distinct, complementary roles of
the two regions in model-based RL. Specifically, state represen-
tations maintained by OFC may serve as the basis for predic-
tions generated within mPFC, while prediction errors signaled
by mPFC may provide information relevant to determining task
state to OFC. More generally, while the PRO model accounts
for a range of data observed in mPFC, the region is highly
interconnected with additional areas of the brain whose function
may represent variables in the PRO model that appear to be
not directly related to mPFC activity, including stimulus/state
representation, the relative value of immediate options (Boor-
man et al., 2013), or the implementation of top-down control.
Our results organize a wide range of data on the mPFC in

an expanded theoretical framework, which suggests that mPFC
learns to predict the outcomes of salient events in general, and
provide critical constraints on the function of regions with which
mPFC interacts.

A potential weakness of the current study relates to the depen-
dence of the PRO model on consistent inter-event timing in order
to converge on predictions reflecting the likelihood of observing
an event. This weakness has been noted in other reports (Jahn
et al., 2014), and is due to the formulation of the model based
on TD learning and the temporal representation of stimuli as a
tapped-delay line. The manner in which stimuli are represented
through time by the brain, and how that representation informs
activity in mPFC, is likely more sophisticated than the scheme
implemented in the PRO model. While mPFC is known to
be sensitive to violations of temporal expectancies (Yeung and
Nieuwenhuis, 2009; Forster and Brown, 2011; Grinband et al.,
2011), it is generally assumed that jittered delay intervals do not
unduly influence BOLD activity related to underlying cognitive
processes, and the use of consistent inter-event timing in our
simulations reflects this assumption. However, to the extent that
mPFC activity reflects deviations from temporal expectancies
in addition to effects related to cognitive processes, it may be
necessary to re-evaluate our current interpretations of mPFC
activity in the context of a more realistic model of temporal
representation.
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