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Abstract

The deployment of highly interactive, media-rich applications on mobile devices is hindered by the inherent
limitations on compute power, memory and battery capacity of these hand-held platforms. The cloudlet concept,
opportunistically offloading computation to nearby devices, has proven to be a viable solution in offering resource-
intensive applications on mobile devices. In this paper, we propose to extend the cloudlet concept with collaborative
scenarios, in which not only hardware resources for processing are shared between all cloudlet users, but also the data
computed.

In a cloudlet, the resource demand should be spread over all available cloudlet nodes. User mobility and fluctu-
ations in wireless bandwidth will cause the optimal resource allocation to vary over time. The cloudlet middleware
must continuously balance the performance gain of reallocating components with the operational costs in terms of user
experience and management complexity. In this paper, we formulate this optimization problem based on a theoretical
cloudlet model capturing the infrastructure, application structure and user behaviour.

In order to solve this problem, two heuristic allocation algorithms based on Steepest Descent (SD) and Simulated
Annealing (SA) are described. Besides optimality of the found solution, it is also important to limit the number
of reallocations at runtime. To evaluate the performance and stability of the algorithms, we propose a discrete-
event model for cloudlet simulation. For multiple application scenarios, we observe that SD performs 4 times less
reallocations than SA. By introducing hysteresis, the number of reallocations by SA can be nearly halved without any
significant degradation of application performance.

Keywords: mobile cloud computing, cloudlet, collaborative applications, discrete-event simulation

1. Introduction

Mobile devices such as smartphones and tablets have become more popular than ever. Gartner [1] has estimated
the total number of smartphones exceeding 1.8 billion items sold in 2013. Recently, even smaller mobile devices and
wearable computers have become available on the consumer market. Manufacturers such as Samsung [2] and Sony [3]
have introduced smart watches acting as easily-accessible dashboards for their smartphones. Meanwhile, Google [4]
has introduced a pair of nearly-autonomous smart glasses with video-capture and voice-recognition functionality.
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The popularity of these mobile devices has multiple reasons. Not only are they portable and always-connected, but
they have access to hundreds of thousands of easy-to-install apps. Due to the high number of sensors (such as cameras
and microphones, inertial sensors, location sensors and so on) and high-resolution touchscreens, mobile devices are
prime candidates for highly-interactive and media-rich experiences, such as immersive games and Augmented Reality
(AR). Even though continuous advances in mobile processors and battery technology have made mobile devices more
powerful, they still struggle to execute this kind of applications due to their inherent limitations on resources such as
processing power, memory and battery capacity. These limitations are even more pressing on the newest generation
of wearable computers.

To offset resource limitations, offloading computation and/or storage to infrastructure in the network has become
a necessity [5]. Due to the large and variable network delay, offloading to a distant cloud is however infeasible for
applications involving highly responsive user interaction. To offload such applications, resources need to be available
closer to the user, e.g. co-located with the wireless access point or at the base station [6]. This is the concept of cyber
foraging [7]. As the infrastructure is placed in the vicinity of the mobile users, the network delay is limited to the
delay incurred in the single-hop wireless access network.

Cyber foraging can be realized using VM-based cloudlets [8], which are personalized Virtual Machines (VMs) on
a nearby trusted server that execute (parts of) the mobile application. The concept of VM-based cloudlets has recently
evolved to component-based cloudlets [9, 10]. These are systems consisting of a group of computing nodes, both
fixed and mobile, that are sharing resources with one another. Mobile applications consist of several loosely-coupled
components that can quickly be redeployed at runtime in order to offload parts of the application to other devices.
Using smaller software components instead of VMs as a unit of deployment, allows for both faster and more flexible
offloading.

Another type of applications that are gaining popularity, are collaborative applications. Also called groupware,
these are applications where multiple users work together in a shared context to accomplish a common goal, possibly
in an interactive and real-time fashion. Niantic Labs’ Ingress [11] is an example of an interactive and collaborative
AR game with over half a million active users. These applications face additional challenges when executed in a
mobile environment. Not only does the group of users change over time, with new users arriving and others leaving,
the wireless connectivity may cause users to become temporarily disconnected.

The resource-sharing concept of cloudlets offers an interesting opportunity for collaborative scenarios: besides
sharing computing resources, users may also share data such as processing results or context information. They could
even share a software component that holds the same user data to reduce resource consumption. For example, in
a location-based collaborative game, users in close proximity of each other could share the same virtual space and
interact with the same virtual objects.

To realize interactive collaboration in a way that is transparent to the user and easy to implement by the application
developer, we propose to use a middleware platform that offers support for collaboration through state sharing. In [12],
we extended the architecture of the component-based cloudlet middleware from [13] with support for collaborative
scenarios to create a collaborative cloudlet middleware. The basic mechanisms facilitating collaboration are shared
offloading, whereby a component instance is shared between multiple users, and state synchronization, whereby state
is shared through the active exchange of state updates. These mechanisms are described in more detail in Section 3 of
this paper.

An important aspect of any cloudlet middleware is the autonomous deployment and configuration of all applica-
tion components currently executed in the cloudlet. The cloudlet middleware should optimize the user experience
while coping with the processing and network limitations of the cloudlet. Collaborative scenarios bring additional
configuration complexity since some components are used by multiple users. This optimization problem is formally
described in Section 4 based on a theoretical model of both the cloudlet infrastructure and the behaviour and resource
usage of the application components. In Section 5, two heuristic allocation algorithms, based on the search heuristics
Simulated Annealing (SA) and Steepest Descent (SD), are discussed that optimize the allocation of components over
the different nodes in the cloudlet while taking into account all necessary state sharing.

Evaluating the actual performance of such allocation algorithms is a difficult task. For a suitable allocation, it is
not only important that (i) the resource consumption is optimized, (ii) the device and infrastructure constraints are
satisfied, but also that (iii) the application deployment remains stable over time, i.e. unnecessary reallocations are
avoided. In [12], the SA heuristic is evaluated in the static case by comparing the heuristic outcome for a number of
randomly generated problems to the optimal solution obtained by exhaustive search. While this may give an indication
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of the performance of the applied heuristics, the evaluation in this previous paper did not take into account runtime
parameters. In practice, allocation algorithms are used in control loops, where the differences in input parameter
values are typically minor between different runs. This is an important consideration when evaluating time-related
performance metrics of the algorithm such as stability. Preferably, the full impact of cloudlet system dynamics on the
allocation result should be evaluated, such as arriving and departing users, variations in computational and network
demand, etc.

Setting up real-life experiments is however costly and time-consuming, especially for cloudlets of realistic pro-
portions. Not only does the infrastructure need to be correctly configured, it is nearly impossible to exactly reproduce
experimental conditions with different algorithms or algorithm configurations. This is however required for a fair com-
parison. Therefore, in Section 6, a discrete-event simulation model is proposed that captures the dynamic behaviour
of the cloudlet on a method-level granularity. Using simulations, different allocation algorithms can be compared
under the same circumstances and a wider range of experimental settings can be explored. In Section 7, different
configurations of SA and SD are compared for different scenarios. Finally, Section 8 presents our main conclusions
and ideas for future work.

2. Related work

2.1. Cyber foraging

Early cyber foraging systems, such as Spectra [14] and Chroma [15], required the application developer to pre-
install routines on devices offering offloading. As this approach quickly becomes infeasible for multiple applications
and devices, more recent systems use runtime code migration. These can roughly be split up into two categories:
VM-based and component-based systems.

VM-based systems “copy” entire applications from mobile devices to nearby infrastructure on a virtual machine
level. Either the mobile application is executed entirely in the dedicated VM, such as in the VM-based cloudlets in [8]
and [16] or the decision is made on a per-routine basis, as in CloneCloud [17] by using profiling and code analysis.
COMET [18] uses a Distributed Shared Memory (DSM) approach which allows for easy migration of individual
application threads between VMs.

Instead of using VMs as offloadable units, component-based systems operate at the granularity level of software
components, providing more flexibility for reallocation of applications. These systems can be differentiated by the
type of the components they use. In some systems, these are the routines themselves, such as in MAUI [19] and
Scavenger [20]. The components can be larger, such as Open Services Gateway initiative (OSGi) components in
AlfredO [21] and AIOLOS [9]. Zhang et al. propose Weblets [22], which are RESTful web services, as units suitable
for offloading. In [13], applications consist of several OSGi components running in an Execution Environment (EE).
These components depend on and refer to one another through their required and offered interfaces. By changing
component references from local to remote instances, redeployment operations by the cloudlet middleware happen
transparently to both user and application developer. An in-depth comparison of cyber foraging and other mobile
cloud computing systems is presented in [23].

2.2. Runtime optimization

In component-based cloudlets, components can be redeployed on other nodes at runtime according to a given
optimization criterion, such as the execution time [9, 20], energy consumption [19], and/or throughput [24]. The
algorithms used to allocate software components in component-based cyber foraging systems are often based on well-
known graph-partitioning algorithms [25], although other techniques for runtime optimization have been successfully
used, such as Naive Bayesian Learning in [22]. The management of collaborative cloudlets poses additional chal-
lenges, however, as we have to account for the collaboration requirements. Specifically, reallocating one component
might affect multiple users.

In this paper, the use of search heuristics for runtime optimization of collaborative cloudlet middleware is evalu-
ated. Simulated Annealing (SA), also known as annealing-based greedy, is a well-studied stochastic search heuristic
which has been used successfully for runtime optimization of various cloud systems. In [26], the authors use SA for
scheduling computing tasks on a multi-cloud system generated by Internet of Things (IoT) applications. As these tasks
consist of few parallel jobs, but have high arrival rates and run-time variation, they require more specialised scheduling
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algorithms. Results show that SA outperforms Shortest Queue First (SQF) techniques in terms of both performance
and cost. Zhang et al. [27] use SA with similar success for bandwidth-aware scheduling of data-intensive tasks, where
data transfer times and network congestion are non-negligible factors in minimizing completion time. The MAPCloud
system, presented in [28], employs a variation on SA called CRAM for decomposing the workflow of mobile appli-
cations to execute on the mobile client and hybrid 2-tier cloud and incorporates Quality of Service (QoS). Their work
is similar to ours in the sense that they use nearby infrastructure to offload tasks and use a SA heuristic to perform
the decision. Our work, however, considers component-based instead of task-based applications and incorporates
collaborative aspects.

2.3. Middleware for collaboration

In order for users to collaborate, information needs to be exchanged between them. With users joining and (pos-
sibly temporarily) leaving the group, support from the application middleware is needed to cope with these issues in
transparent way, both for the user and developer. MoCa [29] is a middleware system specifically focused on mobile
and collaborative applications. Mobile applications are statically divided in an application client and a server, with
the server residing on infrastructure in the network alongside the MoCa-services and client proxies.

In [30], it is argued that due to the nature of mobile collaborative applications, a peer-to-peer architecture is more
suited. This approach does not require a reliable centralized infrastructure, but also improves flexibility and scalability.
A recent effort to create a large-scale collaborative middleware has been ContextNet [31, 32]. ContextNet aims to offer
context-aware services and builds upon the Scalable Data Distribution Layer (SDDL) communication layer which
provides robust, scalable and real-time data distribution between thousands of mobile clients. ContextNet however
still requires a SDDL core network with management nodes. LaCOLLA [33] takes the concept of collaboration even
further and introduces the idea of collectivism, where participants explicitly provide resources for the group’s benefit.
Moreover, these resources not only comprise data(storage) but also processing capabilities. While the focus lies more
on availability of services and self-sufficiency of the user group, this is fairly similar to what happens in a collaborative
cloudlet without runtime optimization.

Our collaborative cloudlet middleware adopts a peer-to-peer-like architecture, in the sense that any server-like
entities required for cloudlet management and state sharing are autonomously assigned to the devices of the cloudlet.
If high-capacity infrastructure is available, it will automatically be chosen to handle the more challenging processing,
including any centralized processing tasks. However, if no such high-capacity infrastructure is available, these tasks
are assigned to other nodes in the cloudlet.

2.4. Cloud simulators

In order to efficiently compare resource provisioning policies, simulation is often used in the domain of cloud
computing as the cost of setting up testbeds that reflect operational cloud systems is prohibiting. One of the most
established cloud simulators is CloudSim [34], which itself is built on GridSim [35], a discrete-event simulator for
grid computing environments that models cluster behaviour, including traffic profiles and resource usage. CloudSim
extends GridSim with models for cloud-specific aspects, such as virtualization, resource provisioning, application
services and so on. The main benefit of CloudSim is that it is able to simulate clouds of very large scale, containing
tens of thousands of VMs. CloudSim has been modified and extended by various authors to focus on specific aspects
of cloud computing.

Another simulator, GreenCloud [36], uses a more sophisticated and accurate network model by building on top
of a network simulator. The main focus of GreenCloud is the measurement of energy consumption. MDCSim [37]
on the other hand, focusses on detailed simulation of multi-tier data centres. Finally, iCanCloud [38] aims to predict
performance and cost of using specific hardware for a particular set of applications. In [39], a more detailed overview
is given of available cloud simulators. However, these simulators are aimed at large-scale, centralized cloud systems
and are not able to model the mobile aspects of a component-based cloudlet. Moreover, the simulated clouds are used
for back-end processing of discrete tasks, not for the long-lived user sessions with many time-critical calls that occur
in a cloudlet. Finally, they provide no means for modelling collaboration as described in the following section. We
present in this paper a new discrete-event model on top of which a custom cloudlet simulator is implemented.
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Figure 1: Collaboration in a cloudlet. Solid lines represent collaboration through a shared component instance, dashed lines represent collaboration
through explicit synchronization messages. The shaded components are disabled.

3. Support for collaboration in cloudlet middleware

Implementing collaborative applications can be a tedious task for the application developer, as this involves distri-
bution and synchronization of state between all application instances, and correctly handling arriving and leaving of
users. To alleviate this task, we have built a framework on top of the component-based cloudlet middleware proposed
in [13], by adding mechanisms to transparently share components and their state between multiple users. State sharing
and user arrivals are handled by the framework, which minimizes the burden put on the application developer. In this
section, we give an overview of the framework and the different collaboration mechanisms.

Fig. 1 shows the architecture of the cloudlet middleware. Applications consist of several components that are
managed by an Execution Environment (EE). A single device in the cloudlet may host multiple EEs. The EE is
responsible for starting and stopping components and resolving dependencies by matching the required and offered
interfaces of each component.

In the cloudlet middleware, migrating an individual component from a user’s mobile device to another node,
further called solitary offloading, is achieved by instantiating the component on the target EE. All method calls from
depending components are then redirected to the offloaded instance. In a collaborative scenario, this can be easily
extended to shared offloading, where multiple mobile devices redirect their method calls to the same remote instance,
and thus implicitly sharing the state of this single remote component. The general idea is shown in Fig. 1. Component
C7 is shared between users: the depending components C2 and C5 refer to the same instance. Shared offloading is a
passive mechanism, as it requires no further action after the initial set-up.

To access this shared instance implies that on all nodes, except the node hosting the shared instance, remote
method calls will be needed. This may introduce additional network delays. Also, for some components, offloading
is simply not feasible due to hardware dependencies. To address these issues, state synchronization is proposed as
a second collaboration mechanism. State synchronization uses an active exchange of messages between multiple
component instances of the same type. Components can thus remain allocated on user devices, while users are still
able to collaborate by state sharing, as shown in Fig. 1. The EE will identify other instances of the same component
deployed on other connected EEs, and will actively distribute state updates of this component to the other EEs. This is
done using a client-server model, where one instance becomes responsible for correctly distributing the state updates
and resolving any conflicts.

To support collaboration, the application developer only has to define the state of a component and how state
updates of possibly multiple sources have to be merged in a consistent way. This is done by implementing a set of

5



method calls for each component that needs to share state. Specifically, the mergeState-method will be invoked
on the synchronization server component to process a state update, after which the setState-method is called on
all client components to distribute the processed update. The collaboration mechanisms and programming model are
described in more detail in [12].

4. Theoretical model for runtime optimization

The collaborative cloudlet middleware previously introduced offers various possibilities for configuring collabo-
ration and component deployment. In the case of shared offloading, a decision needs to be made on the allocation of
the shared instance and in the case of state synchronization, on the server instance that will merge and distribute state
updates. The configuration of the cloudlet should be adaptable at runtime in order to cope with the dynamic behaviour
of the cloudet, such as users joining and leaving, and variations in processing and network load. This makes manual
configuration infeasible and requires an autonomous control loop.

A well-known approach is to use a Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) control loop as pro-
posed by [40]. In this approach, an element to be autonomously managed (in our case, the cloudlet) is controlled by
a 4-step loop. In the monitor step, monitoring information (device load, application behaviour, etc.) is collected for a
certain time interval. This information is aggregated and stored in the knowledge component. Based on the knowledge
and a model, the analyze step will perform possibly complex analysis of and reasoning on the state of the system (e.g.
check if all service requirements are met). The plan function will then determine which actions need to be taken in
order to meet certain goals. In our case, this plan step implies executing the allocation algorithm in order to optimize
the cloudlet. Finally, the execute step will actually perform the actions suggested by the previous step.

In our middleware, this control loop is performed by a cloudlet manager node, which is autonomously chosen
based on available node resources. The allocation algorithm can be seen as solving an optimization problem, based
on a mathematical model of the cloudlet infrastructure and application behaviour.

4.1. Cloudlet model

We extend the cloudlet model presented in [41] by incorporating aspects of collaboration. There are three main
aspects of the cloudlet model: the infrastructure, the components and their allocation and the observed behaviour.

4.1.1. Infrastructure
The infrastructure of the cloudlet consists of the devices (or computing nodes) and the network. The computing

nodes are grouped in a set D, with every node d ∈ D having two properties: the processing speed speedd of a single
core (e.g. instructions per second) and the number of cores #coresd. The network is modelled as a single shared
(wireless) medium that can be represented by its bandwidth.

4.1.2. Application structure
The application structure is modelled as a group of components c. All the components in the cloudlet form the

component set C. To track the current allocation of individual components, we define the allocation matrix Xcd.

Xcd =

{
1 if c is allocated on d
0 otherwise (1)

Using Xcd, we define the variable Hcic j as being 1 if and only if components ci and c j are allocated on different
nodes, so any communication between these components needs to go over the network.

Hcic j = 1 −
∑
d∈D

Xcid · Xc jd (2)

Each component c also has a certain type, τ (c), so an application consists of a group of components with distinct
types. To run the application, a component instance of each type needs to be deployed. Different instances of the
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same type may be running in the cloudlet, originating from application instances belonging to different users. For
collaboration, this implies that components requiring state sharing only do so with components of the same type.

In order to incorporate shared offloading into the model, we use an additional variable Ycic j , which is 1 if ci is
currently being substituted by c j. After performing shared offloading on a set components C′ to a shared instance
cshared, it should hold that Ycic j = 1⇔ c j = cshared,∀ci ∈ C′.

Ycic j =

{
1 if ci is substituted by c j

0 otherwise (3)

4.1.3. Application behaviour
The runtime behaviour of an application is modelled using sequences of method calls between component in-

stances. Each sequence follows a specific path in the control flow graph of the application, and is assumed to be
executed in a single thread. Note that an application is therefore defined by its component types and the sequences of
method calls that occur between these components.

A sequence s ∈ S occurs with a certain frequency f reqs and consists of a number of successive method calls
ms

cic j
originating from ci and executed by c j. Every method call in s generates a load loadms

cic j
(e.g. a number of

instructions) that needs to be processed, an argument and result of size, argms
cic j

and resms
cic j

respectively, and occurs

#callsms
cic j

times in the sequence (e.g. in a loop). Each method also has a name ν
(
ms

cic j

)
. Note that #callsms

cic j
is an

inherent property of the sequence, a different number of calls of ms
cic j

yields a different sequence.
While state synchronization is technically not part of any application behaviour, it can be modelled in a similar

way. When using the client-server approach described in Section 3, each state update of component ci will first
generate a method call mmerge

cicserver , with τ (ci) = τ (cserver) and ν
(
mmerge

cicserver

)
= mergeState. Afterwards, a set of mset

cserverc j

calls will be generated, for ∀c j ∈ C : τ
(
c j

)
= τ (cserver) with ν

(
mset

cserverc j

)
= setState.

4.2. Objective

Using the model described above, a performance metric of the collaborative cloudlet to be optimized can be
defined. The objective to be minimized is the average relative usage usageavg of all the nodes in the cloudlet. By
minimizing this objective function, the load on the mobile devices can be reduced while not overloading the high-
capacity nodes. For the same usage, a high-capacity, fixed node is generally able to process more load than a mobile
node as it has a higher speed and/or has more cores. The average usage is calculated by averaging the usaged of all
nodes in the cloudlet.

usageavg =

∑
d∈D usaged

#D
(4)

The relative usage of a single node usaged can be found by dividing the imposed load (per unit of time) by the
maximum load the node can process. The maximum load a node can process is the speed of a single core multiplied
by the number of cores.

usaged =
loadd

speedd · #coresd
(5)

The load on a single node is simply the sum of the load imposed by each observed sequence on the node.

loadd =
∑
s∈S

loadsd (6)

The load per unit of time on a specific node d incurred by a specific sequence s can be calculated as the sum of
the loads per unit of time of the method calls ms

cic j
in the sequence. A single call of ms

cic j
generates a load loadms

cic j
.
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By multiplying this by the number of calls #callsms
cic j

in the sequence and the frequency f reqs at which the sequence
occurs, we get the total load per unit of time of ms

cic j
. However, we are only interested in the methods ms

cic j
of s that

are actually executed on node d. A method call is executed on d if the target component c j is allocated on d, or if
Xc jd = 1. However, we also need to account for any substitutions of c j by ck using Yc jck . Only if the actual target
component ck is allocated on d (Xckd = 1), may the load generated by ms

cic j
be added to loadsd.

loadsd =
∑
ci∈C

∑
c j∈C

∑
ck∈C

Xckd · Yc jck · loadms
cic j
· #callsms

cic j
· f reqs (7)

4.3. Constraints

Besides the objective to be minimized, there are certain constraints that need to be satisfied when solving the
optimization problem. A first constraint is that all software components need to be deployed. This constraint is
however implicitly satisfied by the allocation algorithm if only valid reallocations are allowed (see Section 5). Other
constraints reflect the limited capacity of the infrastructure in the cloudlet. A first constraint is that the total load
imposed on any node cannot exceed its total capacity.

loadd ≤speedd · #coresd,∀d ∈ D (8)

Because each sequence is assumed to be processed in a single thread (as explained above), the load of any single
sequence may not exceed the speed of any node in the cloudlet.

loadsd ≤speedd,∀s ∈ S ,∀d ∈ D (9)

Finally, the network must be able to cope with the bandwidth needed for remote method calls, i.e. it must fit within
the available bandwidth.

tra f f ic ≤bandwidth (10)

The total bandwidth needed can be found by summing the generated traffic of every observed sequence.

tra f f ic =
∑
s∈S

tra f f ics (11)

The amount of traffic generated by a given sequence tra f f ics can be calculated based on the argument and result
sizes of the remote method calls in the sequence. Only when the source and target components are on different nodes,
is the call ms

cic j
a remote call and hence generates traffic. These are calls ms

cic j
for which Hcic j = 1. However, we must

again take any substitutions Ycick and/or Yc jcl into account. If a call ms
cic j

is remote, the amount of traffic it generates
equals the sum of the argument and result sizes, multiplied by the number of calls it occurs in the sequence and the
frequency of the sequence itself.

tra f f ics =
∑
ci∈C

∑
c j∈C

∑
ck∈C

∑
cl∈C

Hckcl · Ycick · Yc jcl ·
(
argms

cic j
+ resms

cic j

)
· #callsms

cic j
· f reqs (12)

To incorporate these constraints into the optimization problem, they are added as additional terms to the objective
function. This gives us the following, complete objective function.
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fob j = usageavg

+ α · V (tra f f ic, bandwidth)

+ β ·
∑
d∈D

V (loadd, speedd · #coresd)

+ γ ·
∑
d∈D

∑
s∈S

V (loadsd, speedd) (13)

The function V is the cost function associated with the constraints and is defined as follows.

V (a, b) = W
(

a − b
b

)
(14)

W (c) =

{
0 c ≤ 0
c 0 ≤ c (15)

By defining W as the hinge cost function, V expresses the relative violation of value a with respect to its limit b.
The coefficients α, β and γ express the penalty of violating the corresponding constraint (here α = β = γ = 102).

4.4. Complexity

At first glance, the complexity of Equation 7 seems to be of order O
(
#C3

)
, where #C is the total number of

components. However, this calculation can be simplified by using an indexing operation (complexity O (1)) to find
the substitute ck of the target component instead of a summation, and by only iterating over the known methods
ms

cic j
occurring in sequence. If #smax denotes the maximum number of different methods occurring in all observed

sequences s, then the complexity of Equation 7 is O (#smax). This implies that the complexity of Equations 6 and 5
is O (#S · #smax), where #S is the number of observed sequences. Furthermore, the complexity of Equation 4 and the
first term of the objective function becomes O (#D · #S · #smax), where #D is the number of nodes.

In a similar way, the complexity of Equation 12 can be reduced to O (#smax). Equation 11 and the second term
of the objective function are therefore of complexity O (#S · #smax). By storing and reusing the values of loadsd and
loadd when calculating usageavg, the third and fourth term of the objective function are of complexity O (#D) and
O (#D · #S ) respectively. Evaluating the full objective function is then of complexity O (#D · #S · #smax).

5. Allocation algorithms for runtime optimization

In order to be used in an operational cloudlet, allocation algorithms must find a solution in limited time. This
implies that the execution time of the algorithm is no longer than the desired control loop period discussed in Sec-
tion 4.1. Consider the scenario of a cloudlet where every component is offloadable to every node, then the total number
of valid reallocations scales as O

(
#D#C

)
, where #D is the number of nodes in the cloudlet and #C is the total number

of components. Looking at how the number of reallocations scales exponentially with the number of components, a
brute-force, exhaustive approach is infeasible. Even more intelligent solvers such as Quadratic Programming (QP) do
not scale well enough with the cloudlet size to be applied at runtime.

Heuristic allocation algorithms are hence needed for runtime optimization of the cloudlet. While heuristics are
not guaranteed to find the optimal solution, the goal is to provide a sufficient approximation in limited execution time
and to scale better with problem size. The output of an allocation algorithm is a set of actions that improve the current
allocation of the cloudlet.

5.1. Actions

In a collaborative cloudlet which supports the mechanisms discussed in Section 3, valid actions belong to either
one of the following types.
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Solitary offloading This type of action will migrate a single component instance c from node d to d′ in the cloudlet.
This boils down to updating Xcd ← 0 and Xcd′ ← 1. These actions are only applicable to components that are
offloadable but do not require state sharing.

Shared offloading When multiple instances ci of a component type exist, shared offloading will replace them with
a single, shared instance cshared. This results in updating Ycici ← 0 and Ycicshared ← 1, for ∀ci ∈ C : τ (ci) =

τ (cshared). Shared offloading can also change the allocation of the shared instance to node d′. This requires
updating Xcsharedd ← 0 and Xcsharedd′ ← 1. Shared offloading is only possible for component types that are
offloadable and need to share state.

Switch server This will change the synchronization server for a component type that is currently using state synchro-
nization as collaboration mechanism. State synchronization is also used as the default collaboration mechanism,
as it is applicable to any component type that needs to share state, in contrast to shared offloading. This switch-
ing requires updating the sequences representing the synchronization messages. For every mergeState call
mmerge

cicserverold
,∀ci ∈ C : τ (ci) = τ

(
cservernew

)
, the target node has to be changed from cserverold to cservernew . Likewise,

the source node for every setState has to be changed to the new server.

Sync2Shared This action switches from using state synchronization for collaboration, to sharing a component in-
stance. The synchronization server is chosen as the shared instance. These actions are only possible for offload-
able component types and require the sequences representing synchronization messages to be excluded when
calculating the objective function.

Shared2Sync Actions of this type will switch from sharing an instance to state synchronization as the collaboration
mechanism. The shared instance will become the new synchronization server. Synchronization messages are
again included in calculating the objective function.

If these actions are performed on a valid configuration of the cloudlet, i.e. all components are deployed and all
required state sharing is possible, the result will also be a valid configuration. If the input of the allocation algorithm
is a valid configuration, then the result will also be valid, as long as the suggested actions belong to any of these types.

5.2. Search heuristics

In the following sections two well-known heuristics, Steepest Descent (SD) and Simulated Annealing (SA), are
described and their application in autonomous management of collaborative cloudlets is evaluated. Both search heuris-
tics explore the solution space by performing selected actions from the types discussed above.

5.2.1. Steepest Descent
A first heuristic algorithm to be described is SD, for which the procedure is shown in Algorithm 1. SD is a

deterministic algorithm that will immediately converge to a minimum following the steepest decline available. After
initialisation with the current deployment, the gain of all valid actions from the current deployment is determined and
the action with the highest positive gain is applied. The gain of an action is defined as the difference in objective
function that would occur by performing that action. This process repeats itself until no further actions with a positive
gain are found or the number of iterations reaches a given threshold. SD is easily parallelizable, as the gain of every
action can be calculated independently.

5.2.2. Simulated Annealing
The major disadvantage of SD is that only a limited part of the solution space is explored and it may hence

converge to a local minimum instead of the global minimum. To cope with this issue, an algorithm that performs a
random instead of deterministic search can be used.

SA is a more advanced random search heuristic that uses a control factor called the temperature. The procedure is
shown in Algorithm 2. SA is initialised using the current deployment of the cloudlet, after which a starting temperature
and an epoch length are determined. The algorithm then advances through a number of epochs between which the
temperature is gradually decreased. During each epoch, a fixed number of valid actions are randomly selected. A
selected action is accepted with probability exp (G/T ), where G is the gain in the objective function by performing the
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Algorithm 1 Steepest Descent
Input: Initial
Output: Best

Best ← Initial
repeat

Kmax ← ∅

Gmax ← 0
for ∀K ∈ allActions (Best) do

G ← gain (K, Best)
if G > Gmax then

Gmax ← G
Kmax ← K

end if
end for
if Kmax , ∅ then

Best ← per f ormAction (Kmax, Best)
end if

until the stop criterion is met

action and T is the current temperature. Actions with a positive gain are always accepted, but actions with negative
gain also have a chance of being accepted depending on the temperature. By initialising with a high temperature, a lot
of actions with negative gain are likely to be accepted and a large part of the solution space can be explored. Decreasing
the temperature is required for the algorithm to converge. In our implementation, the stop criterion depends on the
fraction of actions that are accepted during an epoch.

A number of variations of the SA algorithm exist, among others on how the initial solution is chosen and on
the choice of the cooling scheme. Johnson et al. [42] show that most of these variations have little to no impact
on performance in the general case and the SA configuration boils down to a trade-off between running time and
solution quality. We have opted for the well-performing baseline approach described in [42], except for the random
initialisation being replaced with the current cloudlet deployment to avoid unnecessary actions. This approach was
also described and evaluated in [25]. The different parameters of SA are described below.

Initial fraction accepted actions with loss The initial temperature is selected so that a given fraction of the actions
with a negative gain will be accepted in the first epoch.

Temperature coefficient The temperature decreases geometrically between epochs, i.e. the temperature is multiplied
with a temperature coefficient < 1 after each epoch.

Epoch coefficient The number of actions tried during each epoch is proportional to the total number of valid actions
in the current cloudlet configuration, scaled with an epoch coefficient.

Fraction accepted actions threshold When the fraction of actions that got accepted during an epoch falls below this
threshold, a stopcounter is increased. This stopcounter is reset when a globally better solution is found. Higher
values of this threshold will make the algorithm return more quickly. For the sake of clarity, this logic was not
included in Algorithm 2.

Stop threshold When the stopcounter itself exceeds the stop threshold, the algorithm terminates.

5.3. Stability

While any suggested action or set of actions that reduces the objective function can be applied to the cloudlet,
the gain achieved from performing these actions may only be marginal. While not incorporated into the optimization
problem, performing each action in an operational cloudlet comes with a cost. Two issues may arise. Software
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Algorithm 2 Simulated Annealing
Input: Initial
Output: Best

Current ← Initial
Best ← Initial
T ← startTemperature(Initial)
L← epochLength(Initial)
repeat

for L times do
K ← randomAction (Current)
G ← gain (K,Current)
if accepted with probability exp (G/T ) then

Current ← per f ormAction (K,Current)
if fob j (Current) < fob j (Best) then

Best ← Current
end if

end if
end for
Decrease T

until the stop criterion is met

components may be unavailable while offloading and any calls will need to be halted until the migration is complete.
The resulting cost may be significantly higher than the realized gains.

Another problem arises from the dynamic behaviour of the cloudlet. The effect of actions may be undone by
new observations or varying user count. This may cause actions to be reverted and can lead to unwanted oscillations
and therefore unstable behaviour. In order to improve the stability of the cloudlet, a hysteresis coefficient η ≤ 1
is incorporated into the allocation algorithm and a proposed solution is only accepted if fob j (Best) ≤ fmax with
fmax = η · fob j (Initial). This hysteresis coefficient ensures that a minimum relative gain needs to be achieved before
the suggested actions are performed.

6. Discrete-event cloudlet simulator

In order to thoroughly compare the proposed allocation algorithms, the dynamic behaviour of a collaborative
cloudlet and the impact of the allocation algorithm thereon needs to be assessed. However, for cloudlets consisting
of dozens of users, an experimental set-up quickly becomes too costly and time-consuming. Not only do we need to
correctly configure dozens of devices, we also need to be able to meticulously repeat every user action to be able to
compare algorithms or parameter settings. Hence the need for simulating a collaborative cloudlet arises. This allows
to evaluate algorithm configurations in a large array of application scenarios and cloudlet sizes. We propose a discrete-
event simulation that is able to capture the dynamic behaviour of the cloudlet. These events reflect the changes that
may occur in a real cloudlet system on a method-call granularity.

6.1. Discrete-event model

The discrete-event model consists of several types of events. The user-related events reflect the arrival and de-
parture of users. The application-related events model the behaviour of the applications in the system, while special
synchronization-related events are required for the exchange of synchronization messages. Finally, the management-
related events model the autonomous control loop of the collaborative cloudlet middleware and the events related to
the simulation itself. An overview of the event model is shown in Fig. 2. Each event, regardless of its type, has a time
stamp at which it occurs in the simulated time frame and instructions to be processed at that time stamp. All events
are processed chronologically.
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(a) User-related events. Both the inter-arrival time Ta and participation time Td are stochastic variables. The plan events
coinciding with the user events provide the reactive planning strategy.
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(b) Application-related events. Tm̂s
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(c) Synchronization-related events. The stop state update event is only processed after all the sets have been fully
executed.
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(d) Management-related events. Both measure and plan events follow a periodic process, with Tp and Tm constant.

Figure 2: Overview of the discrete-event model used for cloudlet simulation.
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6.1.1. User-related events
The user-related events model the arrival and departure of users in the simulated cloudlet system and are shown

in Fig. 2a. At the start of the simulation no users are present in the cloudlet, so in turn no application components are
present. A number of fixed nodes #D0 may be present for offloading components to. User arrivals are modelled as
a stochastic process, with the inter-arrival times Ta being stochastic variables following a given distribution. When a
user arrives, its node di and application components Ci are added to the cloudlet, deployed on the user node ∀c ∈ Ci :
Xcd = 1 ⇔ d = di. For now we assume that each user is executing the same collaborative application, so application
components are the same for every user. The component types and properties (i.e. sharing state and being offloadable)
of this application are pre-determined parameters of the simulation.

The user’s participation time Td is also a stochastic variable sampled from a distribution. A user departure event
can be scheduled based on his arrival and participation time. When a user leaves the cloudlet, components deployed
on its device are removed. When a shared component or synchronization server is present on the user node, care
needs to be taken to restore the collaboration as fast as possible. For this reason, and to ensure fast collaboration when
a new user arrives, a reactive planning strategy is employed. At each user arrival or departure event, the allocation
algorithm will be executed pre-emptively to ensure a valid cloudlet configuration. These plan events are discussed in
Section 6.1.4.

6.1.2. Application-related events
Events of the application-type reflect the behaviour of the applications that are running in the cloudlet. These are

shown in Fig. 2b. As discussed in Section 4.1, we use method call sequences to represent this behaviour. Before simu-
lation, a number of method call sequences between components is generated to model possible application behaviour.
A stochastic process will model the generation of observations of each particular sequence. Each sequence (possibly)
has a different distribution of its inter-arrival times Ts. Inter-arrival times of observations of a particular sequence are
sampled independently of the user generating the observation. Essentially, each additional user in the system initiates
a stochastic process associated with each sequence.

For each method call in a sequence observation, a method event will represent the start of the execution of the
call. At this time, the observed method load, argument and result size are sampled from their respective distributions.
These distributions are different for each method. While the first call in the sequence starts executing simultaneously
with the start sequence event, successive method calls will need to wait until the previous call has finished executing.
The execution time Tm̂s

cic j
of an observed method m̂s

cic j
can be calculated as follows. Note that #callsms

cic j
is inherent to

the sequence and not to the specific observation.

Tm̂s
cic j

=
∑
d∈D

∑
ck∈C

Xckd · Yc jck · loadm̂s
cic j
· #callsms

cic j
/speedd (16)

Tm̂s
cic j

is only calculated when the respective method event is processed. The execution time depends on the alloca-
tion of components, which may change during the sequence and even during the execution of a method call. When all
methods are executed, a sequence stop event signals the end of the sequence observation and the observed sequence
is added to a set of observations. This set of observations is part of the input of the allocation algorithm in future plan
events, along with the component deployment. Only a limited observation window To is considered and a sequence
remove event is scheduled To after the stop event (To being constant), which will remove the sequence observation
from the set. The frequency f reqs of a sequence s is then estimated by counting the number of observations in this
window.

6.1.3. Synchronization-related events
Synchronization messages can not simply be modelled using the same event-model as application-related events

and thus require special attention. Sequence observations only occur between components of a single user (except
when shared offloading is used, but Ycic j makes this transparent for the event-model), while state synchronization
involves multiple users. Where every sequence has a separate stochastic process modelling its observations, each
component type that shares state has a separate stochastic process modelling its state updates. These state updates
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have stochastic inter-arrival times Tu. Analogous to regular sequences, these stochastic processes are duplicated for
each user as each client component generates synchronization events.

If state synchronization is actually used when processing a state update event, a merge event is generated that
represents the start of the mergeState call m̂merge

cicserver , as shown in Fig. 2c. This call is executed by the current syn-
chronization server and its execution time Tm̂merge

cicserver
can be estimated in similar way as for a regular method. After

the merge is processed, a setState m̂set
cserverc j

is performed on all the client components c j. The assumption is made,
however, that all these setState-invocations happen in parallel. As these invocations are performed on multiple
nodes with possibly different hardware characteristics, their execution times may also be different. We generate a
stop event only after all the setState-calls have finished. In this stop event, each mergeState and setState is
added to the observations as a separate sequence because the sequence model requires sequential and not parallel
method calls per sequence. After To, these sequences are again removed from the observation set. In the case that the
synchronization server is changed during execution or the collaboration mechanism is switched to shared offloading,
the synchronization sequences are not added to the observations, as would be if the state synchronization session are
interrupted.

6.1.4. Management-related events
The management-related events describe the types of events that take care of the performance monitoring and

autonomous control of the simulated collaborative cloudlet. An overview is shown in Fig. 2d. The performance
monitoring is done in measure events, which will calculate the desired performance metrics based on the current set
of observations. These include the generated traffic, average usage, the constraint violations, the number of users, and
the cumulative number of actions performed. Due to the high computing cost of the metrics, calculating them on a
per-event basis would slow down the simulation significantly. A periodic measuring process with period Tm was opted
for instead.

Similarly, a periodic process with period Tp generates proactive plan events and models the MAPE-K autonomous
control loop executing the allocation algorithm. The knowledge consists of the set of sequence observations and the
allocation and substitution matrices. The monitoring step for the proactive plan events spans the intervals

[
k · Tp − To,

k · Tp

]
, k ∈ N, while the analyze, plan and execute step take place the moment the plan event is processed. In the

simulated cloudlet, these last steps are assumed to be instantaneous, implying that the execution time of the allocation
algorithm is not incorporated in the simulator. Likewise, the actions suggested by the allocation algorithm are also
performed at the same time stamp. The measure events coinciding with the plan events (see Fig. 2d) are processed
after the suggested actions have been performed, and thus capture the expected effects of these actions.

While the main goal of the reactive plan events described in Section 6.1.1 is to maintain a valid cloudlet con-
figuration, the goal of the proactive plan events is to optimize its configuration. Both types of events are necessary.
Imagine, for example, a user node leaving on which a shared component instance or synchronization server is running.
This would effectively interrupt the collaboration. By triggering a reactive plan event, however, one can immediately
restore collaboration. In our case, when a synchronization server of shared component instance is removed from the
cloudlet, we fall back to state synchronization with a randomly chosen synchronization server. On the other hand, if
no proactive plan events were performed, the autonomous control of the cloudlet would depend entirely on the user
arrival rate.

6.2. Assumptions

The cloudlet is essentially modelled as a M/M/∞ queue, meaning that the user arrival process is a Poisson Process
(PP) with exponentially distributed inter-arrival times and users participate an exponentially distributed time in the
cloudlet. The exact distributions used during experiments are presented in Section 7.2. Node speed is assumed to
follow a strictly-positive normal distribution. A separate distribution is used for fixed nodes and user nodes to represent
the average difference in speed. The number of cores is uniformly distributed. The process modelling the start of each
sequence is also a PP. However, as we want different sequences to have different arrival rates, we use a strictly-
positive normal prior distribution on the parameter of the exponential distributions modelling the inter-arrival times.
Similarly, the applications methods have an exponential prior distribution on the parameters of the strictly-positive
normal distributions modelling the load, argument and result size of each method. The number of calls a method
occurs in a sequence, as well as the number of different methods in the sequence, are both geometrically distributed.
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The available bandwidth, number of application components and sequences follow a shifted Dirac distribution, i.e.
they are a predetermined constant.

We further assume that for all distributions, including the inter-arrival times of the stochastic processes, all samples
can be drawn independently of each other. While this may not always be the case for real-life applications, this suffices
for evaluating and comparing the allocation algorithms. We also make the assumption that the speedd of all nodes
and the bandwidth of the network can be measured in an operational system. Determining and updating these values
at runtime would require periodic benchmarking, which adds additional load to the operational cloudlet. We instead
assume that these values remain constant during the simulation. Furthermore the assumption is made that each user
runs the same application in the cloudlet and interacts with it in the same way. This can however be extended in future
work to multiple applications per user or different user behaviour for the same application.

6.3. Implementation

As discussed in Section 3, no existing cloud simulator provides the means to easily and efficiently simulate the
long-lived sessions of mobile users and frequent calls that occur in a collaborative cloudlet middleware. Therefore,
and because a Java implementation of the allocation algorithms was already available, we opted to implement our own
cloudlet simulator in Java. For simplicity and efficiency, a custom discrete-event package was written, which however
follows many of the design principles of discrete-event packages such as SimJava [43].

The cloudlet simulator has three important data-structures: an event queue, an observation blackboard and a
parameter blackboard. The event queue is essentially a priority queue with the highest priority assigned to the event
with the lowest time stamp. Events are pushed in and popped from the queue until the time stamp of the next event
to be processed exceeds the desired simulated time. The observation blackboard contains, as the name implies, every
sequence observation, as well as the properties of the nodes in the system and the variables Xcd and Ycic j . This
blackboard provides the necessary input for the allocation algorithm. The parameter blackboard on the other hand
contains all the parameters governing the dynamic cloudlet behaviour. This includes all the (prior) distributions, but
also the generated application parameters such as the methods, sequence processes and component properties. These
parameters are generated during initialization.

Random numbers are generated using the generator suggested by [44], which consists of two XOR-shift generators
combined with a Linear Congruential Generator (LCG) and a multiply-with-carry generator. Using the parameters
described in 7.2 and a default allocation algorithm, which only ensures correct state synchronization, we achieve a
speed-up of about 70 compared to real-time at an event rate of about 8500 events/s on a Intel Core i5-3230M 2.6 GHz
quad-core processor. Note that the simulator itself is implemented in a single thread, whereas the allocation algorithms
are using multiple threads to achieve acceptable execution times.

7. Results and discussion

In this section, the performance of the allocation algorithms is evaluated using the model and discrete-event
simulator presented in the previous section. While the main figures of merit are the average usage of the computational
and network resources in the cloudlet, it is also important to minimize the number of constraint violations and the
number of reallocation actions. Component reallocation affects user experience and introduces additional management
overhead. First, we describe the algorithm configuration in Section 7.1 and simulated application scenarios in 7.2.
These scenarios capture different application characteristics in terms of computational and network load. Next, we
make a detailed comparison of SA and SD for a single scenario in Section 7.3 and discuss the effect of employing
hysteresis for this scenario in Section 7.4. Finally, we extend the evaluation to multiple scenarios in Section 7.5.

7.1. Algorithm configuration

Both SA and SD have a number of parameters which need to be chosen carefully. The parameters have an influence
on both the quality of the resulting deployment and the execution times needed to achieve this deployment. The goal
of a heuristic allocation algorithm is to find the best possible solution in the least amount of time. While the execution
time of the algorithm is not explicitly incorporated into the event-model of the simulation, it will have the largest
impact when running in an operational cloudlet. Therefore the execution time still needs to be accounted for.
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Table 1: Parameter settings for the SA algorithm.

Parameter Value

Initial fraction accepted actions with loss 0.02
Temperature coefficient 0.05
Epoch coefficient 0.1
Fraction accepted actions threshold 0.5
Stop threshold 5

Initial values of the five parameters of the SA algorithm were selected based on previous work [12], where its
performance and execution time were compared to an optimal, exhaustive algorithm. Tuning the SA parameters
resulted in solutions within 2% of the optimum for an execution time of less than a second. However, the cloudlet
sizes considered in [12] are smaller than the ones we want to simulate here, hence the parameters have to be further
adapted to achieve feasible simulation times. The resulting SA-parameters are listed in Table 1. The only parameter
of the SD algorithm, the iteration threshold, was set to 2. This results in similar execution times as the SA algorithm
and ensures a fair comparison.

A default algorithm will be used to compare the performance achieved by the SA and SD algorithms. This
algorithm will return a valid, but otherwise unoptimized, cloudlet configuration by selecting a random synchronization
server for each component that shares state. When the user hosting the synchronization server leaves the cloudlet,
another instance of the same type will be randomly selected as the new server. In other words, the default algorithm
uses the minimal effort possible to establish collaboration. The comparison of our heuristics with this algorithm can
show the benefits of simultaneously providing collaboration and runtime allocation optimization.

The performance of the algorithms will be evaluated by measuring the average usage, the generated traffic and the
total relative constraint violation at each measure event. The total constraint violation is calculated as follows, with
δ = α + β + γ.

fcon =
α

δ
· V (tra f f ic, bandwidth)

+
β

δ
·
∑
d∈D

V (loadd, speedd · #coresd)

+
γ

δ
·
∑
d∈D

∑
s∈S

V (loadsd, speedd) (17)

7.2. Application scenarios

Three different scenarios are simulated, which generate a different computational and network load. A timespan
of one hour, or 3600 seconds, is simulated for all application scenarios. No users are present in the cloudlet at the start
of the simulation. During simulation itself, events will be generated and processed as discussed in Section 6.1. At the
plan events, one of three allocation algorithms (SA, SD or the default algorithm) will be executed and its suggested
actions performed. As the focus of this paper lies on evaluating the performance of the allocation algorithms for
different scenarios, we only perform a single simulation run for each configuration. As all the stochastic processes in
the simulation are assumed to be memoryless, this should not affect the obtained results.

Table 2 shows the constant values used for all simulations. We assume a shared wireless network with a bandwidth
of 200 Mbps and a single server co-located with the access point which can be used for offloading. The bandwidth was
selected so that at each moment in time, all constraints can possibly be satisfied by correctly deploying components.
The collaborative application that each user is executing is fixed to 8 components and 16 sequences.

A High-Load High-Traffic (HLHT) scenario, where an application generates a relatively high load and a large
amount of traffic, is considered first. All stochastic variables and their distributions for this scenario are listed in
Table 3. U (n) is the discrete uniform distribution in [1, n], Exp (λ) is the exponential distribution with expected
value 1/λ. Bern (p) is the Bernoulli-distribution with expected value p, G1 (p) is the associated shifted geometric
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Table 2: Selected values of all constants in the simulation.

Description Symbol Value

Simulator parameters
Plan period (s) Tp 30
Measure period (s) Tm 1
Observation window (s) To 30

Infrastructure parameters
Fixed nodes #D0 1
Fixed node speed (load/ms) speedd0 4
Fixed node cores #coresd0 4
Bandwidth (Mbps) bandwidth 200

Application parameters
Application components #Ci 8
Application sequences #S i 16

Table 3: Distributions of all stochastic variables for the HLHT application scenario. F (p1,F2 (p2)) represents a distribution with a constant
parameter p1 and a stochastic parameter which itself has a prior distribution F2 (p2).

Description Symbol Distribution

User parameters
User inter-arrival (ms) Ta Exp

(
1/60 × 10−3

)
User participation (ms) Td Exp

(
1/600 × 10−3

)
User node speed (load/ms) speeddi N+ (1, 0.4)
User node cores #coresdi U (4)

Application parameters
Component is offloadable N/A Bern (2/3)
Component shares state N/A Bern (1/2)
Sequence size #s G1 (1/4)

Sequence parameters
Sequence inter-arrival (ms) Ts Exp

(
N+

(
1 × 10−4, 1/4 × 10−4

))
Method load (load) loadm̂s

cic j
N+

(
Exp

(
1/4 × 10−1

)
,Exp (1/6)

)
Method argument (bits) argm̂s

cic j
N+

(
Exp

(
1/8 × 10−5

)
,Exp

(
1/12 × 10−4

))
Method result (bits) resm̂s

cic j
N+

(
Exp

(
1/8 × 10−4

)
,Exp

(
1/12 × 10−3

))
Method calls #callsms

c jc j
G1 (1/4)

Synchronization parameters
State update inter-arrival (ms) Tu Exp

(
N+

(
1 × 10−4, 1/4 × 10−4

))
Merge load (load) loadm̂merge N+

(
Exp

(
1/2 × 10−1

)
,Exp (1/3)

)
Set load (load) loadm̂set N+

(
Exp

(
1 × 10−1

)
,Exp

(
1/15 × 101

))
Update size (bits) argm̂merge N+

(
Exp

(
1/8 × 10−5

)
,Exp

(
1/12 × 10−4

))

distribution. Finally, N+ (µ, σ) represents the normal distribution N (µ, σ), with expected value µ and variance σ2,
restricted to strictly-positive values.

Simulation with these parameters results in variations of the user count as illustrated in Fig. 3. The user count
varies between 0 at the beginning of the simulation to 16 after an hour of simulation. A total of 54 user arrivals are
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Figure 3: User count for all simulated scenarios.

Table 4: Selected distributions of all stochastic variables in the HLLT application scenario.

Description Symbol Distribution

Method argument (bits) argm̂s
cic j

N+
(
Exp

(
1/4 × 10−5

)
,Exp

(
1/6 × 10−4

))
Method result (bits) resm̂s

cic j
N+

(
Exp

(
1/4 × 10−4

)
,Exp

(
1/6 × 10−3

))
Update size (bits) argm̂merge N+

(
Exp

(
1/4 × 10−5

)
,Exp

(
1/6 × 10−4

))
Table 5: Selected distributions of all stochastic variables in the LLHT application scenario.

Description Symbol Distribution

Method load (load) loadm̂s
cic j

N+
(
Exp

(
1/2 × 10−1

)
,Exp

(
1/3 × 100

))
Merge load (load) loadm̂merge N+

(
Exp

(
1 × 10−1

)
,Exp

(
1/15 × 101

))
Set load (load) loadm̂set N+

(
Exp

(
2 × 10−1

)
,Exp

(
1/75 × 102

))
observed during this period, with an average of 9 users present at each time in the cloudlet. The long-term average
according to Little’s law is slightly higher, with 10 users.

Two other scenarios will be evaluated. In the High-Load Low-Traffic (HLLT) application scenario, the same load
is generated as in the HLHT scenario but the amount of traffic is reduced so that the available bandwidth is plentiful.
The opposite happens in the Low-Load High-Traffic (LLHT) scenario, where the amount of traffic stays the same as
in the first scenario but the generated load is reduced. The used parameters for these scenarios are shown in Table 4
and Table 5 respectively. Parameters that are not mentioned in these tables are the same as in the HLHT scenario. The
variation in user count remains the same as in Fig. 3.

7.3. Evaluation of the High-Load High-Traffic scenario
First a detailed comparison of the allocation algorithms is made for the HLHT scenario. Fig. 4a shows how the

main optimization criterion, the average usage, varies as a function of time for the three algorithms. No hysteresis is
used at this time. The default algorithm shows the average usage without optimization. We get an average of 65.2%
over the entire hour. Note that the average usage may exceed 100% when nodes in the cloudlet become overloaded.
When using the SA and SD algorithms, a significant decrease in the average usage is achieved, with 27.3% and
26.6% for the SA and SD algorithm. SD only performs slightly better than SA in terms of average usage, but their
performance is generally very similar. This is confirmed when looking at the Cumulative Distribution Function (CDF)
in Fig. 4b.

While the average usage is the main optimization criterion, it is also important to look at when, and to what
extent, the constraints are violated. Fig. 5a shows the total constraint violation varying in time, Fig. 5b shows the
accompanying CDF. We see that severe violations of the constraints occur when no optimization is in place, with
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Figure 4: The effect of using the SA and SD optimization algorithms on the average usage for the HLHT scenario. The usage varying in time is
shown on the left. The right plots shows the CDF, which gives the fraction of the time the average usage is less then or equal to a given value.
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Figure 5: The total constraint violation for the HLHT scenario is shown as a function of time on the left for all tested algorithms. The CDF is
shown on the right.

violations occurring 78.3% of the time, and total violations reaching 655%. When using the SA or SD algorithm,
constraint violations only occur 3.8% and 3.4% of the time, with total violations never exceeding 53% and 25%
respectively. We again observe that SD performs slightly better than SA.

The generated traffic is shown in Fig. 6a. With an average of 96 Mbps for SD compared to 103 Mbps for SA,
one could again conclude that SD performs slightly better, although the amount of traffic is only incorporated into the
optimization problem as a constraint and is not a direct minimization objective.

A metric that is not included into the optimization problem, but is important for the cloudlet stability, is the number
of actions that are performed. Fig. 6b shows the cumulative number of actions for each algorithm. With the default
algorithm, a total of 16 actions need to be performed to maintain a correct configuration of the cloudlet. The difference
between SA and SD becomes very clear: SA performs a total of 1326 actions, more than five times as much as SD,
which only performs 250 actions. Clearly, SA will result in more unstable behaviour than SD, even though their
performance is very similar otherwise. This is due to the random nature of SA: while the final result of the algorithm
may be as good as SD, the path to find this solution is random and may contain many unnecessary actions that have
little to no impact on the overall performance. The goal is now to improve the stability of the cloudlet by employing
hysteresis and removing these unnecessary actions.
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Figure 6: The plot on the left shows the amount of generated traffic as a function of time for the HLHT scenario. The right plot shows the cumulative
number of actions performed.
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Figure 7: The effect of using a hysteresis coefficient η ≤ 1 on the cumulative number of actions for the HLHT scenario.

7.4. Improving stability

Fig. 7 shows the cumulative number of actions for the HLHT scenario when using a hysteresis coefficient η ≤ 1.
Fig. 7a shows that for the SA algorithm, a minimum relative gain of only 1% can reduce the total number of actions
by 15.7%. By further decreasing the hysteresis coefficient, the total number of actions is reduced even more. The
amount of actions does however not decrease linearly with the hysteresis coefficient. For example, when decreasing η
from 0.95 to 0.9, the number of actions is reduced by 374, while further decreasing η to 0.5 only further reduces the
number of actions by 232. This implies that there is only a subset of actions that realize a significant decrease in the
objective function. By choosing a small η, the performed actions are effectively reduced to this set. Fig. 7b shows the
same observations for the SD algorithm. Note that for η = 0.5, SA still performs almost double the amount of actions
as SD performs without hysteresis.

While reducing the number of performed actions will indeed increase the stability of the cloudlet, this impacts the
objective minimisation and the constraints. Figure 8 shows what happens to the average usage CDF when applying
hysteresis to both SA and SD. For SA, an impact is only noticeable when employing relatively extreme values of η.
By requiring that a proposed solution has a minimum relative gain of 50% or more, solutions are only accepted when
the cloudlet is already in a state of high constraint violations and/or high device usage and these kinds of gains in the
objective function are possible. This effect is even more visible when looking at SD, as the impact on the average
usage is already noticeable for a minimum relative gain of 5%. By construction, SD will suggest less actions to be
performed and the quality of the result is hence more influenced by the hysteresis coefficient.

Fig. 9 shows the effect of hysteresis on the constraint violation CDF. For SD, both the fraction of time that
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Figure 8: While the use of a hysteresis coefficient with SA (left) does not noticeably affect the achieved average usage except for very low values,
its impact is much greater with the SD (right) algorithm. Values shown are for the HLHT scenario.
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Figure 9: As on the average usage, the hysteresis coefficient only has a small impact on the total constraint violation when using the SA algorithm
compared to SD. Values shown are for the HLHT scenario.

constraints are violated and the maximum observed violation increase with decreasing η, which is to be expected as
less optimization takes place. As these increases are significant, the hysteresis coefficient should not be set any lower
than 0.99. This still lowers the number of actions by 11.6%, down to 221. For SA, more erratic behaviour is observed,
as for example η = 0.99 results in more frequent constraint violations than when η = 0.9. For η ≥ 0.9 however, the
constraints are only violated 1.3% of the time more than when no hysteresis is used. Keeping in mind the previous
results, a hysteresis coefficient of 0.9 is best suited for the SA algorithm, which reduces the number of actions down
to 728, a reduction of 45.1%.

While we are able to nearly halve the number of actions suggested by the SA algorithm without noticeably de-
creasing its performance, this is still more than double the number of actions suggested by the SD algorithm when no
hysteresis is employed, while the same or slightly better performance is achieved.

7.5. Evaluation of the other scenarios

Fig. 10 shows the total number of actions that are performed for all the simulated scenarios, for both allocation
algorithms and for different values of the hysteresis coefficient. While the number of actions of the SA algorithm vary
more between scenarios compared to SD, it decreases in a similar way for each scenario with decreasing hysteresis
coefficient for both SA and SD.

The impact on the global average usage of each scenario is shown in Fig. 11. For each scenario, a smaller hysteresis
coefficient increases the global average usage. However, the impact is larger in the LLHT scenario. Using η = 0.5
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Figure 10: The total number of actions performed for each value of the hysteresis coefficient and the different scenarios.
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Figure 11: The effect on the average usage over time of different hysteresis coefficients for the three scenarios.

compared to no hysteresis, the global average usage increases by 2.3% (SA) and 10.5% (SD) for the HLHT scenario,
3.1% and 10.5% for the HLLT scenario and 4.5% and 15.1% for the LLHT scenario. This happens as a system put
under relatively low load will most likely also have less infrastructure constraints that are violated. This implies that
the relative share of the average usage in the objective function increases and thus more gains needs to be obtained by
reducing the average usage rather than reducing constraint violations. This also implies that the hysteresis will have a
greater impact on the average usage for low-load scenarios.

When comparing the SA algorithm to SD, the same observations from Section 7.3 hold. While the impact of
hysteresis on the performance of SA is less severe than on SD, the number of moves can not be lowered enough to
achieve the same quality of SD is equal or less moves.

8. Conclusion

In this paper we evaluated algorithms for the runtime optimization of a collaborative cloudlet middleware. The
runtime optimization problem is formulated based on a theoretical model of the cloudlet, which describes the cloudlet
infrastructure, application structure and application behaviour. In order to find a solution for this problem in an opera-
tional cloudlet system, two heuristic allocation algorithms based on Steepest Descent (SD) and Simulated Annealing
(SA) are proposed. In order to evaluate these algorithms for different application scenarios and with dynamic cloudlet
behaviour, a model for discrete-event simulation is proposed that captures the dynamics of the cloudlet per method
call. We compare these algorithms by how well they minimize the average CPU usage, how well they satisfy the
resource constraints and by the stability of the resulting allocation.
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When simulating different application scenarios, we found that SD and SA yield very similar performance, with
little difference in the average CPU usage and constraint violations. However, compared to SD, SA requires over five
times more actions (e.g. component migrations) to be performed in total. This causes unstable behaviour, i.e. small
changes in the observed application behaviour may result in many reallocations.

To improve the stability of the allocation, we introduced a hysteris factor enforcing a minimum gain before a
reallocation is accepted, at the cost of a less optimal deployment. For SA, we found that the number of performed
actions can almost be halved without any significant impact on performance. For SD, the number of actions can only
be reduced by about 10% before the performance suffers noticeably. Moreover, the impact of employing hysteresis
is greater for application scenarios with a relatively low generated load. In summary, to achieve the same quality of
allocation compared to SA, SD requires less than halve as many actions to be performed.

In future work, other application scenarios can be evaluated, as well as scenarios involving different applications
running in the cloudlet simultaneously. In this paper we assumed the network bandwidth to be constant. An interesting
scenario would be to let the bandwidth vary over time as well, instead of only the user count. To further increase the
stability of the cloudlet, the theoretical model used for runtime optimization could be extended to include the cost
associated with the suggested actions.
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