
Model-based and model-free learning strategies for wet clutch control

Abhishek Dutta*a, Yu Zhonga, Bruno Depraetereb, Kevin Van Vaerenberghd, Clara Ionescua, Bart Wynsa, Gregory Pinteb, Ann
Nowed, Jan Sweversc, Robin De Keysera

aElectrical Energy, Systems and Automation, Ghent University, Sint-Pietersnieuwst. 41 Block B2, 9000 Gent, Belgium
Corresponding author* email: Dutta.Abhishek@UGent.be

bFlanders’ Mechatronics Technology Center, Celestijnenlaan 300D, Leuven 3001, Belgium
cDepartment of Mechanical Engineering, Celestijnenlaan 300D, Leuven 3001, Belgium

dAI Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

Abstract

This paper presents an overview of model-based (Nonlinear Model Predictive Control, Iterative Learning Control and Iterative
Optimization) and model-free (Genetic-based Machine Learning and Reinforcement Learning) learning strategies for the control
of wet-clutches. The benefits and drawbacks of the different methodologies are discussed, and illustrated by an experimental
validation on a test bench containing wet-clutches. In general, all strategies yield a good engagement quality once they converge.
The model-based strategies seems most suited for an online application, because they are inherently more robust and require a
shorter convergence time. The model-free strategies meanwhile seem most suited to offline calibration procedures for complex
systems where heuristic tuning rules no longer suffice.

Keywords: nonlinear predictive control, iterative learning control, genetic algorithm, reinforcement learning, hydraulic clutch
transmission

1. Introduction

Wet clutches are commonly used in automatic transmissions
for off-highway vehicles and agricultural machines to transfer
torque from the engine to the load. By disengaging one clutch
and engaging another, different transmission ratios can be re-
alized. When a clutch engagement is requested, an operator
expects a fast response without vibrations. The torque trans-
fer should thus begin as soon as possible without introducing
torque discontinuities and peaks. These machines are operated
through several years and under varying environmental con-
ditions such that clutches undergo significant amount of wear
and tear, thereby making the clutch control a challenging in-
dustrial problem [1]. Contrary to wet-clutches, modeling and
control of dry-clutches has received considerable attention in
research, often considering a stick-slip hybrid model for anal-
ysis. A slip control using linear quadratic regulator with force
on clutch piston as input is developed in [2]. While [3] con-
cluded that an online MPC scheme for clutch control is not
practically implementable due to the high computation costs,
an explicit Model Predictive Control is derived in [4], using a
linear cost function for slip control, amongst others. The rep-
resentative work on wet-clutch includes optimal control of au-
tomotive transmission clutch filling [5], PID control for a wet
plate clutch actuated by a pressure reducing valve [6], predic-
tive control of a two stage actuation system using piezoelectric
actuators for controllable industrial clutches [7], predictive con-
trol of an electro-hydraulic actuated wet-clutch for automatic
transmission [8] and fast and smooth clutch engagement con-
trol for dual-clutch transmissions [9].

The two main challenges for wet clutch control are (i) the in-
trinsic complex, non-linear behavior [10], and (ii) the variation
of these dynamics over time due to changes in load, oil temper-
ature and wear [11]. When similar or repetitive operations have
to be carried out, e.g. the successive engagements of a clutch,
learning can be introduced to address these issues. By grad-
ually improving the performance with respect to the previous
trial, the complex system behavior can be learned at the cost of
a convergence period, and it also becomes possible to automat-
ically adapt to variations in the system’s behaviour or operating
conditions.

In this paper, the potential of several model-based (Non-
linear Model Predictive Control (NMPC), Iterative Learning
Control (ILC) and Iterative Optimization(IO)) and model-free
(Genetic-based Machine Learning (GA) and Reinforcement
Learning(RL)) learning strategies are analyzed for the control
of a wet clutch engagement. The model-based approaches rely
on a model of the clutch dynamics to update the control sig-
nals at each engagement, while in contrast, the model-free ones
omit this model and directly explore the input space of possible
clutch control signals using a guided trial-and-error procedure,
attempting to maximize the reward/fitness.

The remaining content of this paper is laid out as follows.
Section 2 briefly describes the wet-clutch dynamics and objec-
tives. Sections 3 and 4 introduce the model-based and model-
free learning techniques respectively, and illustrate their appli-
cation to wet clutch control. Section 5 details the experimental
results followed by a comparison of their benefits and draw-
backs in section 6. Section 7 finally concludes the paper.

Preprint submitted to Mechatronics March 25, 2014

2. The Wet-clutch

A wet clutch is a device which is used to transmit torque from
one shaft to another by means of friction force. As illustrated
in Fig. 1, it contains two sets of friction plates, one that can
slide in grooves on the inside of the drum, and another that can
slide in grooves on the outgoing shaft. Torque can be trans-
ferred between the shafts by pressing both sets together with a
hydraulic piston, which can be realized by sending an appro-
priate control signal to the servovalve in the line to the clutch.
Initially, during the filling phase, the clutch chamber fills up
with oil and the pressure builds up, until it is high enough to
compress the return spring and accelerate the piston. When the
piston advances far enough and presses the plates together, the
filling phase ends and the slip phase begins. During the slip
phase, torque is transferred, so that the difference in the angular
speeds between the shafts starts to change. This difference in
angular speeds is called the slip speed, and will be shortened
to slip in the remainder. This slip decreases until both shafts
have the same rotation speed. A dynamic model of a hydraulic
multi-plate clutch actuator controlled by an electro valve with
internal pressure feedback [12] or a model based on power ori-
ented graphs [13] have been reported in literature. However,
it has been argued that, it is frequently unfeasible to transfer
these models to other applications because of major modifica-
tions that would be needed [8]. Building on this argument, the
work in this paper either uses simple system identified models
or model free control approaches.

Input shaft Output shaftTo valve

Piston

Drum

Friction plates

Return spring
Chamber

Figure 1: Schematic overview of a wet-clutch and its main components.

So far, the goals for the control were not strictly defined. In
general, we want both a fast and smooth engagement. As a
measure for this smoothness, we use the highest absolute value
of the second derivative of the slip (the jerk), since it is strongly
related to the experienced operator comfort [14]. For a given
engagement duration, we then want to find the control yielding
the lowest absolute value of jerk. This can be realized by a short
filling phase (without torque transfer) followed by a smooth
transition into the slip phase (buildup of torque), after which
the load has to be synchronized further, still in a smooth man-
ner (significant torque transfer).

To validate the developments an experimental setup is used,
where an electromotor (30 kW) drives a flywheel (2.5 kgm2) via
a torque converter and two mechanical transmissions, as shown
in Fig. 2. The controllers are applied to the first range clutch of
the left transmission while the right transmission is used only
to vary the load observed by the first transmission and to ap-
ply an adjustable braking torque. The controlled transmission
is equipped with sensors measuring the speeds of the different

Electromotor

Controlled transmission Load transmission

Flywheel

Motor

Torque converter

Clutch

Ratio
selector

Flywheel

Brake

Figure 2: Experimental setup with wet clutches.

shafts and the pressure of the oil in the line to the clutches.
An additional torque sensor is installed to illustrate the perfor-
mance, but it is not used for the control itself. All experiments
are performed with a fixed engine speed, while the output starts
at standstill and is then accelerated by engaging the clutch for
first gear in the controlled transmission. The initial conditions
are zero current and atmospheric pressure. A dSPACE 1103
board is used to control the setup. The entire wet-clutch dy-
namics is subjected to the following physical constraints:

0 ≤ Current (Amps) ≤ 0.8 (1)
0 ≤ Pressure (Bars) ≤ 14
0 ≤ S lip (normalized) ≤ 1

Clearly, the outlined goals are qualitative and therefore to
realize them as parametric trajectories, an element of learning
is necessary for the control of wet-clutches. This motivates us
to integrate learning in model-based controllers or to develop
completely model-free learning strategies.

3. Model-Based Learning Control

This section discusses three model-based learning techniques
for wet clutch control. A two-level learning control scheme
based on NMPC is presented first, followed by a similar two-
level control scheme using ILC instead of MPC. Afterwards,
the IO technique is presented as an alternative.

3.1. Two-level NMPC (2l-NMPC)

For the wet clutch with its nonlinear transitions between two
phases, it is difficult to develop a single performant control al-
gorithm. We therefore propose to use separate controllers for

2

Nonlinear model Nonlinear model

Optimization

yes

no

Process

Impulse input

|U |≤εUbase=Ubase+U

R Ȳ G

Ubase

u(t|t)=ubase(t|t)+δu(t|t)

y(t)

Figure 3: NEPSAC algorithm flowchart, where R, Ȳ ,G,Ubase are the reference
base output, step response matrix, base input and u, δu, y are the input, incre-
ment and output respectively.

each phase. This simplifies the control design, but also the iden-
tification, since a model for each phase separately is sufficient
instead of a global model. To further reduce the complexity,
we only consider tracking controllers. For the clutch, we then
have a first controller aiming to track a pressure reference in
the filling phase, which is deactivated once the slip phase be-
gins, at which point a second controller is activated to track a
slip reference.

MPC is a form of control in which the current control action
is obtained by solving on-line, during each sampling period,
a finite horizon open-loop optimal control problem taking into
account the various constraints on the system [15]. Over the
last three decades MPC has occupied the center stage in the
control research community and had a tremendous impact on
the advances in process industry as well [16].

The (Nonlinear) Extended Prediction Self-Adaptive Control
i.e. (N)EPSAC [17], (N)MPC principle is depicted in Fig. 3.
The process is modeled as in [18]:

y(t) = x(t) + n(t) (2)

with y(t), x(t), n(t) as process output, model output, pro-
cess/model disturbance respectively. The fundamental step is
based on the output prediction using the process model given
by:

y(t + k|t) = x(t + k|t) + n(t + k|t) (3)

where y(t + k|t) is the prediction of process output after k sam-
ples made at time instant t, over the prediction horizon from
N1 to N2, based on prior measurements and postulated values
of inputs. Prediction of model output x(t + k|t) and of colored
noise process n(t + k|t) can be obtained by the recursion of pro-
cess model and filtering techniques, respectively. The future
response can be expressed as:

y(t + k|t) = ybase(t + k|t) + yoptimize(t + k|t) (4)

where the two contributing terms have the following origins:

• ybase(t + k|t) is the cumulative effect of past control inputs,
the apriori defined future control actions ubase(t + k|t) and
the predicted disturbances. To predict these disturbances,
n(t) = C(q−1)/D(q−1).e(t) is used, with e(t) white noise,
and the filter C/D is often chosen as an integrator to en-
sure zero steady state error and (q−1) is the backward shift
operator.

• yoptimize(t + k|t) is the effect of the additions δu(t + k|t)
that are optimized and added to ubase(t + k|t), accord-
ing to δu(t + k|t) = u(t + k|t) − ubase(t + k|t). The ef-
fect of these additions is the discrete time convolution of
∆U = {δu(t|t), . . . δu(t + Nu − 1|t)} with the impulse re-
sponse coefficients of the system (G matrix), where Nu is
the chosen control horizon.

The control ∆U is the solution to the following constrained op-
timization problem:

min∆U{V = Σ
N2
k=N1

[r(t + k|t) − y(t + k|t)]2 + λΣ
Nu−1
k=0 [δu(t + k|t)]2}

sub ject to M.∆U ≤ N (5)

where the first term in V aims to achieve a good tracking of the
reference r(t + k|t), while the second term aims to reduce the
control effort, and the weighting factor λ selecting their relative
importance. The various input and output constraints can all be
expressed in terms of ∆U, resulting in the matrices M,N and
is solved online by active-sets based primal-dual optimization
[19].

When a nonlinear system f [.] is used for x(t), the superpo-
sition of (4) is valid only if the term yoptimize(t + k|t) is small
enough compared to ybase(t + k|t). This is true when δu(t + k|t)
is small, which is the case if ubase(t + k|t) is close to the opti-
mal u∗(t + k|t). To address this condition, the idea is to recur-
sively compute δu(t + k|t), within the same sampling instant,
until δu(t + k|t) converges to 0. Inside the recursion ubase(t + k|t)
is updated each time to ubase(t + k|t) + δu(t + k|t). This is illus-
trated in Fig. 3, where R, Ȳ ,Ubase are now in the vector form of
the signals r, ybase, ubase introduced before.

A third-order linear input-output model for the filling phase
(from current to pressure) sampled at 1ms and a fourth-order
polynomial nonlinear state-space (PNLSS) model containing
terms in powers of states and input for the slip phase (from
current to slip) sampled at 10ms have been identified [20]. An
MPC controller with N1 = 2,Nu = 1,N2 = 10, λ = 0, C

D =

1/(1 − q−1) is used to obtain a mean-level control in the fill
phase. The short control-horizon ensures that the optimization
is tractable within the allowed 1ms sampling time. The NMPC
controller is designed with parameters N1 = 1,Nu = 4,N2 =

5, λ = O(102),C/D = 1/(1 − q−1) for slip control. The chosen
combination of control horizon and control penalty gives the
controller enough degrees of freedom for tracking and simul-
taneously ensures smooth control action. The slower sampling
time of 10ms allows sufficient time for the NEPSAC iterations
(less than 5) to converge. The prediction horizons for both these
controllers are chosen to ensure feasibility and stability as they
are subjected to polytopic input and output constraints (1).

3

Figure 4: A schematic illustration of the proposed two-level control scheme,
where pc, pre f , pwid , plow are the clutch pressure, reference pressure, high pres-
sure width, low pressure value respectively and sc, sre f , sinit , ṡinit are the mea-
sured, reference, initial, derivative of initial values of slip respectively with
tswitch,∆T, Ic denoting switching time,slip interval, input current respectively

It is clear that an iterative procedure is required to solve
the optimization problem with inequality constraints, because
we did not know which constraints would become active con-
straints. The maximum number of constraints that can be ac-
tive equals the number of decision variables. If there are many
constraints, the computational load is quite large. Since, we
work with shorter control, prediction horizons and impose con-
vex polytopic constraints on inputs and outputs separately, even
in the worst case the computation times for the linear and non-
linear MPC are well within the sampling intervals. Note that
computational cost can be further reduced by checking for and
removing redundant constraints. Further details on the control
design can be found in [21].

The remaining difficulty is the generation of good references
profiles, since the specifications for a good engagement do not
allow to easily formulate optimal references. To address this
issue, we use two-level control scheme as illustrated in Fig. 4.
On the low level, a classical tracking-based NMPC controller
is used, while at the high level, ILC-type learning algorithms
are added that learn the parameters of parameterized references,
aiming to translate the original non-tracking problem into a
tracking problem. The goal is to learn the parameters of these
references based on the observed system behaviour, such that
they eventually lead to the desired engagements. To achieve
this, these high-level laws further also have to ensure a smooth
transition between the two controllers, and to compensate to
changes in the operating conditions.

To define the high-level update laws, we start with process
knowledge to select a profile or procedure that allows to con-
struct the reference trajectories from a few discrete parameters,
say wi(k), with i the variable index and k the iteration number.
These parameters are then related to some observable perfor-
mance indices PIest

i , for which we also define a target value
PId

i . We then choose an initial set of parameters, evaluate the
resulting performance to obtain PIest

i , and calculate a parame-
ter update based on the difference between the desired and the
measured indices as follows:

wi(k + 1) = wi(k) + ηi · (PId
i (k) − PIest

i (k)), (6)

System

System

ILC −
+

ui yi

ui+1 yi+1

rei

Figure 5: Schematic representation of an ILC controller; first, during trial i, the
system to be controlled is excited using ui, then after completion of this trial, ui
is used along with the measured tracking error ei = r − yi to find the excitation
ui+1 to be used during trial i + 1.

where ηi is a gain depending on the specific quantities involved.
This process is repeated until the parameters of the references
converge to the desired optimal values. For the clutch, the ref-
erence profiles are shown in (Fig. 4), where we can see that the
profile for the pressure Pre f has two two parameters, the dura-
tion of the high pressure phase pwid = tswitch − 50 ms and the
pressure at the end of the reference, plow. These are both up-
dated based on estimates on the time instants at which torque
starts to be transferred, since we ideally want this to occur
just after the high pressure pulse (to avoid high initial torque
spikes), and we want to gradually build up torque. Thus Pre f

accelerates the piston for fast engagement and at the same time
prepares for smooth engagement. For the slip reference, we
learn the two initial values sinit and ṡinit, based on the observed
values at the end of the filling phase. Once these are specified
the remainder of the slip reference is calculated analytically by
finding the trajectory of a given duration ∆T that minimizes the
highest absolute value of the jerk, given the initial conditions
above and terminal conditions sre f (∆T) = ṡre f (∆T) = 0 [22].

3.2. Two-Level ILC (2l-ILC)

In this section, a similar approach is used as in the last two-
level NMPC, but the low-level controllers are now ILC instead
of NMPC controllers. The reason for doing so it that ILC is it-
self a learning control technique, unlike NMPC, which uses ex-
perience gained during previous iterations to improve the track-
ing performance for repetitive systems [23, 24]. An NMPC thus
requires an accurate model to be able to obtain a good tracking
performance, whereas an ILC algorithm can, due to its learning
strategy, realize a good tracking performance even when there
is a large model uncertainty due to its learning behaviour. The
downside of this is that we will not be able to update the ref-
erence profile parameters after each trial, since we cannot yet
judge the parameter’s quality since the ILC controller has not
yet learned to track the profile closely. Instead, we wait for 5
trials now each time the parameters are updated, allowing the
ILC to converge before we calculate the performance indices
and update the reference parameters.

Fig. 5 shows a first order ILC control scheme, as is used in
this paper. Here, y is the output of the plant and r is a reference
trajectory. The ILC control signal for the (i+1)th iteration, ui+1,
is calculated based on the previous ILC control signal, ui and
the previous tracking error ei. We use a linear update law such
that

ui+1(k) = Q(q−1)
(
ui(k) + L(q−1)ei(k)

)
, (7)

4

with linear operators Q and L that can be chosen during the
design of the ILC controller. For this update law, a convenient
frequency domain criterion for monotonic convergence can be
derived [23, 24]. For a plant with FRF P(ω), a monotonically
decreasing tracking error is obtained with controller (7) if

|Q(jω)
(
1 − L(jω)P(jω)

)
| < 1, (8)

with Q(jω) and L(jω) the frf’s of the operators Q and L. It
is also possible to derive an expression for the remaining error
after convergence, E∞(jω), which becomes

E∞(jω) =
1 − Q(jω)

1 − Q(jω)
(
1 − L(jω)P(jω)

)R(jω), (9)

where R(ω) is the Fourier transform of the reference r.
Based on these expressions, [23] and [24] show that by se-

lecting L(jω) = P(jω)−1 and Q(jω) = 1, perfect tracking would
be obtained after only one iteration. However when there is un-
certainty about P(jω), this choice of L(jω) becomes impossi-
ble. It is then needed to select an estimate P̂(jω) of the plant
and use L(jω) = αP̂(jω)−1 with 0 < α < 1. This way, the
robustness increases while the learning slows down, but a good
performance is still achieved. This is possible for all frequen-
cies where the angular deviation between the system and the
nominal model does not exceed 90◦. Once this deviation be-
comes larger, the value of |Q(jω)| has to be decreased in order
to satisfy (8). It then follows from (9) that perfect tracking can
no longer be achieved, not even by learning more slowly. As the
uncertainty typically increases with the frequency, Q(jω) is of-
ten chosen as a low pass filter, effectively deactivating the ILC
controller for high frequencies with much uncertainty, while
obtaining good tracking in the less uncertain, lower frequency
range.

Since an accurate plant model is not required to achieve a
good tracking performance, ILC is well suited to the control
of wet-clutch engagements, where the plant dynamics are non-
linear and vary significantly over time. For each of the two ILC
controllers, a single, linearized model, approximating the plant
dynamics in all conditions suffices, keeping the required mod-
eling effort small. With these choices it becomes possible to
design ILC controllers that achieve bandwidths of > 10 Hz, but
in practise the controllers are detuned intentionally. Especially
in the slip phase this is needed, as it is preferable to keep the
jerk low instead of aggressively tracking the reference.

For ILC the computational cost is very low, since it only re-
quires linear filtering operations (Q and L), but to do so it does
require storing a number of vectors of a length equal to the du-
ration of an engagement (for example the previous tracking er-
ror). Implementation on typical industrial controllers is thus
possible, but when this is not the case it is more likely due to
memory problems than due to a high computational load. A
more detailed description of the implementation applied to the
wet clutch can be found in [25].

3.3. Iterative Optimization
Another technique based on learning control, denoted itera-

tive optimization, has been developed as an alternative to the

Control signal optimization

Quality assessment

Recursive identification Memory

System

High level

Low level

Models

Constraints

Figure 6: Two-level iterative optimization control scheme: At the high level,
the models and constraints for the optimization problem are updated after each
engagement, which are then used at the low level to optimize the control signal
for the next engagement.

two-level ILC approach. It is aimed at (i) reducing the amount
of time needed before a good performance is obtained, at (ii)
allowing an easier adaptation mechanism to deal with changes
in the oil temperature and the load, and at (iii) removing the de-
pendence on the parameterization of the reference profile. The
method should however not require accurate models, as was the
case for two-level NMPC scheme, but should instead operate
using simplified linear models. To achieve this result, it is use-
ful to note that the two-level ILC scheme learns in an indirect
manner. At the low level learning takes place, but there the only
goal is to accurately track a reference so this reference’s quality
can be evaluated, even though this reference’s parameters are
likely to change at the high level so that the low learning will
have to be restarted. This is a consequence of the fact that the
task itself does not deal with tracking at all, but was formulated
in such a manner to be able to use classical tracking-based ILC
techniques. The idea in iterative optimization is to omit this in-
direct approach, and to directly learn based on the specifications
themselves. Solving the problem more directly will reduce the
convergence period and reduce the effort needed to adjust to
varying conditions, and since this effectively removes the pa-
rameterized reference, this will also remove the dependence on
the chosen parameterization.

The resulting IO technique again uses a two-level control
scheme, but learning is now only included at the high level. At
the low level, a numerical optimal control problem is solved,
formulated directly from the specifications. Since it is in gen-
eral very difficult to accurately solve such a problem without a
large amount of prior information, some constraints can be in-
cluded whose exact value in order to reach optimality is initially
unknown, and afterwards learning laws can be added at the high
level to find appropriate values for these constraints, based on
the results observed using the control signals calculated with
the current values. Besides these laws, the high level also con-
tains algorithms for a recursive model estimation to describe the
system dynamics, combining previously estimated models with
the newly measured data. A schematic overview of this control
scheme is presented in Figure 6, where it can be seen that an
optimal control problem is essentially solved before each trial,
using models and constraints that are adapted after completion
of each trial based on the observed performance.

When applying this method to the clutch a numerical opti-
mization problem has to be formulated and solved, and we will
again try to separate the two phases, although a single large op-
timization is solved. First, in the filling, the goal is to advance

5

into to the slip phase as soon as possible, without causing un-
wanted torque spikes that could cause operator discomfort. Af-
terwards, once the slip phase begins, the goal becomes to fur-
ther engage the clutch while keeping the jerk as low as possi-
ble. To optimize the control signals accordingly, a piece-wise
linear model structure is selected, with one model to predict the
pressure and piston position in the filling phase and one to pre-
dict the pressure and the slip in the slip phase, while recursive
estimation techniques are added to learn these online, so that
these models are tuned to the observed behaviour. Transition
constraints are also added to ensure a smooth transition occurs
between both phases, but since the optimal conditions in which
to go from the filling to the slip are unknown, values for these
are chosen and afterwards their optimal values are found using
learning laws. Using the notation that ż(k) denote the discrete
time finite difference (z(k + 1) − z(k))/Ts with Ts the sampling
time, the problem to be solved at the low level is then

min
u(:),

x(:), p(:), s(:), z̃(:),
jmax,K1,K2

K1 + γ ∗ jmax, (10a)

s.t.

filling phase: k = 1 : K1

x(k + 1) = A1x(k) + B1u(k), (10b) p(k)

z̃(k)

 = C1x(k) + D1u(k), (10c)

umin ≤ u(k) ≤ umax, (10d)
pmin ≤ p(k) ≤ pmax, (10e)

slip phase: k = K1 + 1 : K1 + K2

x(k + 1) = A2x(k) + B2u(k), (10f) p(k)

s(k)

 = C2x(k) + D2u(k), (10g)

0 ≤ s(k) ≤ strans, (10h)
− jmax ≤ s̈(k) ≤ jmax, (10i)

transition and terminal constraints:
x(K1 + 1) = xtrans, (10j)

p(K1) = p1, (10k)
z̃(K1) = zfinal, ˙̃z(K1) ≤ ε, (10l)

s(K1 + K2) = 0, ṡ(K1 + K + 2) = 0 (10m)

In this problem, the piecewise structure can clearly be seen, as
the problem is split into two parts with K1 and K2 samples for
each phase respectively (with K1 + K2 = T/Ts), and a set of
constraints which need to be respected during the transition. In
order for the solutions of this problem to yield good engage-
ments, the high-level learning laws recursively identify the ma-
trices Ai, Bi, Ci and Di. Since the piston position is not mea-
sured, its model z̃ can however not be estimated so easily, so
here we use a simple first principles model and rescale it using
a rule similar to (6). Similar rules are included for xtrans, p1 and
zfinal.

In terms of computational load, problem (10) reduces to a
convex optimization problem (either a linear or quadratic pro-
gram depending on the regularization), assuming we know the
duration of the filling phase. Since in reality we don’t know
this duration and need to find the optimal one, this problem is
not solved as a single convex problem, but we instead solve it
by solving a series of convex sub-problems, each with a differ-
ent but fixed filling phase duration, after which we then use the
one with the shortest still feasible duration. Since this only re-
quires solving a series of convex problems, the total solutions
are found in about 1s on a normal laptop CPU. However, no
attempts have been made to further reduce the calculation time
since the problems are solved in between engagements (and not
at every timestep), so that the calculation can be spread out over
time. A more detailed description of the implementation can be
found in [26].

The control techniques presented so far are based on cer-
tain characterization of the system dynamics. In very complex
systems, however, another approach could be to focus entirely
on improving the performance without the intermediate step of
modeling the system. Two representative techniques which fall
in this category are discussed next.

4. Model-free Learning Control

Next to the model-based algorithms described so far in sec-
tion 3, the potential of model-free algorithms has also been
investigated. To date, most complex mechatronic systems are
controlled using either a model-based technique, or using con-
trollers tuned during an experimental calibration. Even though
these latter are often tuned without the use of a model, this
tuning is usually done in an ad-hoc manner derived from sys-
tem knowledge or insight, and a systematic model-free ma-
chine learning (ML) strategy is rarely applied. These strate-
gies would however make it possible to also learn controllers
for more complex situations, where insight would not be suffi-
cient to yield the desired behavior. This can improve the current
controllers by being able to use more complex control laws, or
allowing to optimize a cost criterion and taking into account
constraints. This can further also make it possible to develop
controllers for more complex applications, for which now no
good controllers can be tuned automatically.

Nowadays, wet clutches in industrial transmissions are filled
using a feed forward controller of the current (with a set of tun-
able parameters) to the electro-hydraulic valve. These are now
tuned using some heuristic rules, but now we will use model-
free learning control methods instead, while still looking for
optimal parameterized control signals.

4.1. Genetic Algorithm

Genetic Algorithm (GA) is a stochastic search algorithm that
mimics the mechanism of natural selection and natural genet-
ics, and belong to the larger class of evolutionary algorithms
(EA). They are routinely applied to generate useful solutions
for optimization and search problems, often for complex non-
convex problem where gradient-based methods fails to find the

6

Figure 7: General structure of a genetic algorithm

correct solution. One of the main strengths of GA is that multi-
objective optimization problems [27, 28] can be studied.

Unlike conventional optimization techniques, GA starts with
an initial set of random solutions (satisfying the boundary
and/or system constraints though), called the population. Each
individual in the population is called a chromosome, which rep-
resents a possible solution to the implementation. Usually, a
chromosome is a string of symbols, but not necessarily is a
binary bit string. The idea of a GA is that the chromosomes
evolve through successive iterations called generations, and
converge towards the solution. To achieve this, the chromo-
somes are evaluated throughout their evolution by a function to
obtain a fitness value. Once a complete generation is evaluated,
the next generation, with new chromosomes called offspring,
are formed by i) copying from the parents using a reproduction
operator; ii) merging two chromosomes from current genera-
tion using a crossover operator; iii) modifying a chromosome
using a mutation operator [29]. The selection of which par-
ents’ chromosomes will be used is based on the fitness values,
with fitter chromosomes having a higher probability of being
selected. Fig. 7 illustrates how a generation is used to define
the next one in simple genetic algorithm [30].

For the application to the clutch, each chromosome contains
values of the parameters of the parameterized control signal that
is applied to engage the clutch. It contains five variables for tun-
ing as shown in Fig. 8. First, a step signal with maximum height
and width d1 is sent to the valve to generate a high pressure level
in the clutch. With this pressure, the piston will overcome the
force from the return spring, and start to get closer to the clutch
disks. After this pulse, the signal will give some lower current

Figure 8: Parameterized signal with five tunable parameters d1, h1, d2, h2, h3,
optimized by both GA and RL to obtain fast and smooth engagement

with fixed height and width to decelerate the piston and try to
position it close to the clutch disks. Once the piston is close to
the clutch disks and with very low velocity, a force is needed to
push the piston forward further, so that the clutch disks are com-
pressed together. Since, the change between the fill phase and
slip phase would happen within this period, by providing more
freedom to the signal, better engagement performance can be
achieved. As a result, two slopes are used to cover this critical
period, defined by combination of h1, d2, h2, h3 . Then a ramp
current signal with fixed slope and the end height is sent to the
valve so that the pressure inside the clutch will increase again
gradually. In order to secure the full closing of the clutch, the
current signal will be kept constant at the end.

In each generation, each of the chromosomes is evaluated,
which is done by applying the corresponding control signal ex-
perimentally to the clutch, and afterwards calculating a scalar
reward to express the engagement quality1. For the reward,
we want a function that is monotonically decreasing with the
maximum jerk. We could therefore choose it as r(jerk) =

ek1(1− jerk/k2), with k2 = 5000, corresponding to what can be
considered a typical value for the jerk during an engagement.
Regardless of the value of k1, this will give a reward r = 1 for
a jerk of jerk = k2 = 5000, and rewards higher and lower than
1 for lower and higher jerk values. The constant k1 controls
the steepness of the reward, and we choose it as k1 = 5. Next,
to take into account engagement time, we discount the reward
with a discount factor γ, so the overall reward is given by

r = γent.e(5− jerk/1000) (11)

where the ent is the engagement time. Since γ is chosen as
γ = 0.8, longer engagements will yield lower rewards than
shorter engagements, so that to find the highest reward it is
needed to do an engagement that is both smooth and fast, simi-
lar to our control objectives. A more detailed description of the
implementation applied to the wet clutch can be found in [31].

4.2. Reinforcement Learning
RL problems [32] are a class of machine learning problems,

where an agent must learn to interact with an unknown environ-
ment, using a trial and error approach. At a given timestep t, the

1For GA’s, we can also treat is as a multi-objective problem, in which the
reward is not a scalar function. For comparison to the RL technique discussed
further on, we do use GA with a scalar reward here though. See [31] for more
details and an example of using multi-objective GA for wet clutch control.

7

agent may execute one of a set of actions, possibly causing the
environment to change its state and generate a (scalar) reward.
Both state and action spaces can be multidimensional, contin-
uous or discrete. An agent is represented by a policy, mapping
states to actions. The aim of a RL algorithm is to optimize the
policy, maximizing the reward accumulated by the agent.

In this work, we apply an existing variant of the basic Policy
Gradient method [33], called Policy Gradients with Parameter-
based Exploration (PGPE) [34]. In this approach, the param-
eters of a controller are adapted based on the return collected
during the whole epoch, regardless of the trajectory in the state
space. The advantage of using a direct policy search method is
that it easily allows to use a policy that has been optimized on a
simulated plant as a good starting point for learning to control
the real plant. In the remainder of this section we briefly de-
scribe PGPE, referring the reader to [34, 35] for further details.

In Policy Gradients (PG) methods, the policy is represented
as a parametric probability distribution over the action space,
conditioned by the current state of the environment. Epochs are
subdivided into discrete time steps: at every step, an action is
randomly drawn from the distribution, conditioned by the cur-
rent state, and executed on the environment, which updates its
state accordingly. After an epoch has been completed, the pa-
rameters of the policy are updated, following a Monte Carlo
estimate of the expected cumulative (discounted) reward.

0 1

π0

a0

µ0

σ0

0 1

π0

a0

∂p(a0)
∂µ

∂p(a0)
∂σ

0 1

π0

π1

a0

µ1

σ1

Figure 9: A simple example illustrating the effect of one step of PGPE, with no
state information and single stage epochs (T = 1). A single policy parameter
A = [0, 1] is sampled from a Gaussian prior π, with θ = (µ, σ). Left: the
first epoch is executed, drawing a parameter value a0 ∼ π0(a), and observing
a return R0. Center: as R0 > b, following the gradient (12) increases π(a0).
Right: updated prior π1, ready for the next epoch.

A major disadvantage of PG methods is that drawing a ran-
dom action at every timestep may result in noisy control signals,
as well as noisy gradient estimates. Moreover, the policy is re-
quired to be differentiable w.r.t. its parameters. To overcome
these issues, PG with Parameter-based Exploration (PGPE) was
introduced [34, 36]. In this method, the random sampling and
policy evaluation steps are, in a sense, ’inverted’: the policy is
a parametric function, not necessarily differentiable, therefore
it can be an arbitrary parametric controller; the parameter value
to be used is sampled at the beginning of each epoch from a
Gaussian distribution, whose parameters are in turn updated at
the end of the epoch, again following a Monte Carlo estimate of
the gradient of the expected return. In other words, rather than
searching the parametric policy space directly, PGPE performs

a search in a ’meta-parameter’ space, whose points correspond
to probability distributions over the (parametric) policy space.

To simplify notation, we consider a parametric policy fa with
a scalar parameter a. Be α = (µ, σ) the meta-parameter defin-
ing the Gaussian distribution pα(a) over parameter values. The
index we intend to maximize is the expected value of the return
R given a, J = E{R|a}. The gradient of this expected return J
with respect to the metaparameter α is then estimated as follows
(see [34] for details):

∇αJ ≈
1
N

N∑
n=1

∇α log pα(an)(Rn − b), (12)

where θn is the parameter used at the n-th of the N epochs con-
sidered (typically N = 1), and b is a baseline return, which, in
the simplest case, is the average return observed so far. Based
on this estimated gradient, the policy is then updated, as illus-
trated in Fig. 9.

For application of PGPE to control of the wet clutch, choice
of the policy and reward function are critical. We discard
the state information entirely, and adopt an open loop ap-
proach, defining the five DOF control signal parameterized in
d1, h1, d2, h2, h3, as stated before in Fig. 8 as the policy to be ap-
plied to the plant. Thus the RL problem is reduced to a simpler
optimization problem, in which only the parameters of the con-
trol signal need to be optimized. To do so, we use a scalar re-
ward function r as in (11) that favours both the objectives of fast
and smooth engagement at once, which is the same as used by
GA described in the previous section. Note that, the important
thing is just that this reward function monotonically decreases
in the objective which we intend to minimize. A more detailed
description of the implementation applied to the wet clutch can
be found in [37].

5. Experimental results

To validate the three model-based and two model-free con-
trol techniques developed in 3, 4 respectively, they have been
applied to the experimental setup described in section 2. The
objective is to keep the engagement time during slip, ∆T within
1s and fill as fast as possible, such that the bound on jerk is
minimized.

5.1. Model-based controllers

In a first test, the goal is to investigate the performance at a
fixed set of nominal conditions, with the oil maintained at 40◦C
and the observed inertia fixed at 8.4kgm2. All parameter values
to be learned are intentionally initialized poorly to illustrate the
convergence process. First, let’s compare the two-level NMPC
and ILC approaches, for which the evolution of the reference
parameters is shown in Fig. 10, and the resulting engagements
are shown in Fig. 11. For both, the initial performance is poor,
with a high torque peak due to an initial overfilling, resulting
in an uncomfortable engagement for the operator. As a result,
during the first parameter update, which is after 1 engagement
for the NMPC approach and after 5 engagements for the ILC

8

Figure 10: Two-level NMPC (left) and ILC (right): Evolution of the reference
signal parameters, where tswitch, Plow, S init , dS init/dt are the switching time, low
pressure, initial slip and its derivative respectively.

approach (to allow the low-level tracking time to converge),
the high-level controller reacts by reducing tswitch as shown in
Fig. 10. Over the course of the following iterations, this and the
other parameters are further adapted, and eventually smooth en-
gagements are obtained, after 10 and 30 iterations respectively.

The results for the IO technique are shown in Fig. 12, where
similarly to the two-level NMPC and ILC approaches, we can
see that the performance improves as more iterations pass by,
and eventually smooth engagements are found, synchronizing
the clutch in a similar timeframe. This improvement is par-
tially due to the learning of a few constraint parameters, but
also due to the improving prediction accuracy of the models
used in the low-level optimization, as shown in Fig. 13. The
convergence period is 10 trials, significantly shorter than that
for the two-level ILC scheme and similar to that of the two-level
MPC scheme. This reduction with respect to the two-level ILC
scheme results form removing the indirect approach and instead
directly optimizing based on the real specifications.

In a second test, the robustness is investigated by changing
the operating conditions under which the engagements are per-
formed. First, the load is kept at the same value but the oil
temperature is increased to 70◦C. Next, the oil is 40◦C again,
but the observed inertia is increased to 28.6kgm2. Fig. 14 de-
picts the obtained results of the two-level NMPC and ILC con-
trollers, after convergence, which again takes around 10 and 30
iterations respectively. For the increased temperature, the main

Figure 11: Two-level NMPC (left) and ILC (right): Improving engagement
quality during convergence period at nominal conditions.

Figure 12: Iterative optimization: Improving engagement quality during con-
vergence period at nominal conditions.

9

Figure 13: Iterative optimization: Improving prediction accuracy during con-
vergence period.

Figure 14: Two-level NMPC (left) and ILC (right): Demonstration of robust-
ness to various operating conditions.

Figure 15: Iterative optimization: Demonstration of robustness to various oper-
ating conditions.

difference is that the filling is completed sooner, which results
from the decreased oil viscosity, and which has been compen-
sated for mainly by reducing the value of pwid in the pressure
reference. More differences can be observed when the observed
load is increased, as then higher torques and pressures are re-
quired, but despite this the slip signals remain very similar to
the nominal case.

For the IO technique, the same tests have been performed,
and the results after convergence are shown in Fig. 15. As be-
fore, a good performance is still achieved by having the high-
level laws adapt to the observed changes. The fact that the per-
formance is similar to those of the two-level NMPC and ILC ap-
proaches illustrates that the parameterization used for those two
is well-chosen, as they perform similar adaptations using only
a few parameters. The reconvergence period is again around
10 trials, similar to that of the two-level NMPC approach, and
shorter than for the two-level ILC approach.

Apart from the shorter reconvergence period, the two-level
and IO techniques share the additional advantage that if learn-
ing were to be restarted for a different operating point, it is eas-
ier to hotstart with a good guess of either the reference parame-
ters or the constraint parameters and models, since it is easy to
store and interpolate these values. For the two-level ILC ap-
proach the reference parameters could also be stored, but to
fully allow a hotstarting and reuse all knowledge learned at a
previous set of operating conditions, it would also be needed
to transform the learned control signal to the current operating
conditions, which is not a straightforward task.

5.2. Model-free controllers

Before we look into the results, it should be noted that each
set of control signal parameters were first tested under condi-
tions with a reduced load, to ensure it could be safely applied to
the clutch under normal operating conditions. These additional
tests are not included in any of the results, nor are they counted
in the number of trials before convergence, but they do slow
down the overall learning process. Ideally, other methods to

10

0 5 10 15
0

0.5

1

1.5

2

2.5

3

Generation number

F
it
n
e
s
s

Max

Median

Min

Figure 16: GA: Minimum, median, and maximum fitness values during the GA
evolution process.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

E
n
g
.
ti
m

e

0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

epoch

J
e
rk

0 10 20 30 40 50 60 70 80 90 100
0

5

10

epoch

R
e
tu

rn

Figure 17: PGPE: Evolution of engagement time (above), jerk (center), and
reward (below) during learning process.

ensure safety would need to be derived, not requiring (as many)
additional experiments.

To illustrate the convergence process of the model-free meth-
ods, the nominal conditions defined earlier for model-based
controllers are reused. Under these conditions, the optimiza-
tion processes for both are shown in Fig. 16 and Fig. 17 respec-
tively. The GA maximized the fitness within 13 generations;
each generation containing 50 individuals, while for reinforce-
ment learning the reward is maximized after 85 test runs. The
results obtained with each are presented in Fig. 18, where it can
be seen that engagements similar to those of the model-based
techniques are obtained.

The robustness with respect to an increase in the oil temper-
ature has also been checked for these methods. In this case, we
reuse knowledge from the previous experiment under nominal
conditions to narrow down the range of the parameter’s value
to reduce the amount of learning needed, and the results after
convergence are also included in Fig. 18. Similar observations
can be made as before with the model-based controllers, with a
good performance still being achieved by both controllers.

6. Comparison of model-based and model-free learning
control

This section compares the results of all the methods on the
clutch, and presents a general discussion of their benefits and
drawbacks.

0

0.2

0.4

0.6

0.8

C
u
r
r
e
n
t
(
A

)

0

0.5

1

N
o
r
m

.
S

li
p
 (

−
)

Nominal

High Temp

0 0.5 1 1.5
0

500

1000

Time (s)

T
o
r
q
u
e
 (

N
m

)

0

0.2

0.4

0.6

0.8

C
u
r
r
e
n
t
(
A

)

0 0.5 1 1.5
0

200

400

600

800

Time (s)

T
o
r
q
u
e
 (

N
m

)

0

0.5

1

N
o
r
m

.
S

li
p
 (

−
)

Nominal

High Temp

Figure 18: GA (left) and RL (right): Illustration of engagements achieved under
nominal conditions and with an increased temperature.

6.1. Comparison of engagement results

A comparison of all the presented methods for clutch control
in terms of engagement time and jerk is presented in Table 1.
Among the model-based methods, the results are fairly simi-
lar, and none of them are clearly worse than any of the others
in both categories. Among the model-free methods, RL per-
forms slightly better than GA though in both categories, which
probably indicates that the GA has not fully converged yet, as
it should normally find a similar result as RL. Comparing the
model-based and model-free techniques, we see that the model-
based ones find engagements that are both faster and yield lower
jerk values. This can be explained by the parameterization that
is used for the model-free methods, which restricts the possi-
ble adaptations made by the controller, and which can lead to a
reduced performance.

6.2. Discussion on model-based techniques

Comparing the model-based techniques, we immediately see
that the two-level NMPC and IO technique require a similar
convergence period, which is shorter than for the two-level ILC
technique. This is a result of the fact that the two-level ILC
technique learns at both low and high levels, requiring addi-
tional iterations in which the low level converges, before good
high-level updates can be made. As a result, the reconvergence
period when the operating conditions change is also better for
the two-level NMPC and the IO technique. Apart from the
shorter reconvergence period, they have the additional advan-
tage that if learning were to be restarted for a different operating
point, it is easier to hotstart with a good guess of either the refer-
ence parameters or the constraint parameters and models, since
it is easy to store and interpolate these values. This could also
be done for the reference parameters of the two-level ILC ap-
proach, but to fully allow a hotstarting and reuse all knowledge
learned at a previous set of operating conditions, it would also

11

Index 2l-NMPC 2l-ILC IO GA RL
Abs(Max(Jerk)) 3.6683 2.8945 3.4133 3.9256 3.618
Eng.Time(s) 1.199 1.39 1.277 1.434 1.317

Table 1: An empirical comparison between the model-based and non-model based control techniques based on jerk and engagement times

Method/Property 2l-NMPC 2l-ILC IO GA RL
Modeling requirement _ ^ ^ ^^ ^^

Learning rate ^^ ^ ^^ __ _

Stability ^ ^ −− −− −−

Learning transient/Safety ^ ^ ^ __ __

Multi-objective ^ ^ ^ ^^ ^

Table 2: Characteristic features of the model-based and model-free techniques

be needed to transform the learned control signal to the current
operating conditions, which is not a straightforward task.

When comparing the required modeling effort, the two-level
ILC technique outperforms the other methods however, as a
highly accurate tracking control can be achieved despite hav-
ing a large model uncertainty. In contrast, for NMPC it is
needed to have an accurate non-linear model, which requires
a time-consuming identification. For the IO technique this is
not needed again, but here the performance is limited by the
chosen model structure, of which the parameters are afterwards
learnt online.

Even though the ILC approach improves the tracking be-
haviour, so that the references can be tracked more accurately
than with the NMPC approach, it turns out that this may not be
beneficial for the current application, where aggressive control
can lead to unwanted vibrations and high jerk values.

6.3. Discussion on model-free techniques

Comparing the model-free techniques, we see that with the
same reward/fitness function, both methods manage to yield
similar engagements, but RL converges faster than GA.

The type of reward/fitness that was used is the same for both,
and is a trade-off between the jerk and the engagement duration.
These can be combined into a single scalar reward, which is
the way in which RL typically operates. For GA it is however
also possible not to use a fixed trade-off, but to really treat it
as multiple objectives without extra cost, and find a complete
pareto-front.

6.4. Comparison of model-based and model-free techniques

Model-based methods have a few advantages over model-
free methods. First of all, they allow more freedom in the de-
termination of the shape of the control signals. They will there-
fore generally be able to find the optimal solution, whereas for
the model-free methods this is only possible if the chosen pa-
rameterization allows this. The convergence period is also sig-
nificantly shorter for model-based methods, and hotstarting is
often possible, which makes them more applicable for online
adaptive purposes. Another advantage is that they posses an in-
herent robustness to parameter uncertainties due to the ability
to use feedback. They finally also make it easier to predict the

behaviour and thus ensure safety, even during the convergence
period.

Despite these advantages of model-based methods, model-
free methods also have some attractive properties for the con-
trol of mechatronic systems. Their main benefit is that they
can operate without model, and thus require no identification
or apriori system knowledge. This makes them ideal for usage
as an add-on to complex existing systems, or to automate of-
fline calibration procedures where it is not possible to rely on
heuristics or insight to manually design tuning rules. It should
however be stated that parameterizations are typically needed
to limit the convergence period, and it is practically impossi-
ble to select the shape of the signal beforehand without system
knowledge or some simple tests. While these parameterizations
generally do lead to a reduced performance, a well-chosen pa-
rameterization can limit this reduction, and this choice is thus
important. Since more parameters lead to a better performance
but longer convergence, the difficult part is to select parameter-
izations with only a low number of parameters, yet which still
allow a performance close to the true optimum to be achieved.

These results have been summarized in Table 2, which gives
a qualitative comparison between the different techniques. The
key ^^ means the best in the category, followed by ^ for
good and then _ for bad to __ for worst in the category. The
−− key signifies that the corresponding property has not been
established.

7. Conclusions

In this paper we presented different model-based and model-
free methods for the control of wet clutches, which are typical
complex mechatronic systems with fast dynamics, uncertainty,
nonlinearity and unknown optimal reference trajectories. All
techniques have been implemented and validated experimen-
tally, and good results are generally achieved by all.

The model-based methods do converge in shorter time pe-
riods, and make it easier to guarantee safety during the con-
vergence period, which makes then more suitable to online ap-
plications. The model-free methods on the other hand can be
applied to complex systems whenever models are hard to come
by, and are especially useful as an automated tuning method

12

when insight in the dynamics does not allow an experienced
user to define proper tuning rules. These model-free methods
can further also be used to learn complete pareto-fronts of op-
timal controllers, allowing a selection of which controller to be
used to be made later on.

The combination and extension of all the stated methodolo-
gies for distributed control is a work in progress.

8. Acknowledgements

This work is carried within the framework of the LeCoPro
project (grant nr. 80032) of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-
Vlaanderen).

References
[1] Z.Sun, K.Hebbale, Challenges and opportunities in automotive transmis-

sion control, in: American Control Conference, Oregon, USA, 2005, pp.
3284–3289.

[2] L. Glielmo, F. Vasca, Engagement control for automotive dry clutch, in:
American Control Conference, Chicago, USA, 2000, pp. 1016–1017.

[3] P. J. Dolcini, Contribution to the clutch comfort, Institut National Poly-
technique de Grenoble, Grenoble, France, 2007.

[4] A. Heijden, A. Serrarens, M. Camlibel, H. Nijmeijer, Hybrid optimal con-
trol of dry clutch engagement, International Journal of Control (2007)
1717–1728.

[5] M. Z. X. Song, M. Azrin, Z. Sun, Automotive transmission clutch fill
optimal control: An experimental investigation, in: American Control
Conference, Baltimore, USA, 2010, pp. 2748–2753.

[6] R. Morselli, R. Zanasi, E. Sereni, E. Bedogni, E. Sedoni, Modeling and
control of wet clutches by pressure-control valves, in: IFAC Symposium
on Advances in Automotive Control, Salerno, Italia, 2004, pp. 79–84.

[7] V. A. Neelakantan, G. N. Washington, N. K. Bucknor, Model predictive
control of a two stage actuation system using piezoelectric actuators for
controllable industrial and automotive brakes and clutches, Journal of In-
telligent Material Systems and Structures 19 (7) (2008) 845–857.

[8] C. L. Constantin, F. C. Andreea, E. Balau, Modelling and predictive con-
trol of an electro-hydraulic actuated wet clutch for automatic transmis-
sion, in: Industrial Electronics (ISIE), 2010 IEEE International Sympo-
sium on, 2010, pp. 256 –261.

[9] K. van Berkel, T. Hofman, A. Serrarens, M. Steinbuch, Fast and smooth
clutch engagement control for dual-clutch transmissions, Control Engi-
neering Practice 22 (2014) 57–68.

[10] M. Montanari, F. Ronchi, C. Rossi, A. Tilli, A. Tonielli, Control and per-
formance evaluation of a clutch servo system with hydraulic actuation,
Control Eng. Practice, vol. 12(11) (2004) 1369–79.

[11] M. Watson, C. Byington, D. Edwards, S. Amin, Dynamic modeling and
wear-based remaining useful life prediction of high power clutch systems,
Tribol. Trans., vol. 48(2) (2005) 208–17.

[12] M.J.W.H.Edelaar, Modeling of a wet plate clutch in a driveline, in: WFW
Report 96.071, Eindhoven, 1996.

[13] R. Morselli, R. Zanasi, Modeling of Automotive Control Systems Using
Power Oriented Graphs, 32nd Annual Conference of the IEEE Industrial
Electronics Society, IECON (2006) 7–10.

[14] J. Wong, Theory of ground vehicles (Third Edition), John Wiley & Sons,
2001.

[15] J. Maciejowski, Predictive Control with Constraints, Prentice Hall, 2002.
[16] J. H.Lee, Model predictive control: Review of the three decades of de-

velopment, International Journal of Control, Automation, and Systems
(2011) 415–424.

[17] R. De Keyser, A. Van Cauwenberghe, A self-tuning multistep predictor
application, Automatica 17 (1) (1981) 167–174.

[18] R. D. Keyser, Model based predictive control for linear systems, UN-
ESCO Encyclopaedia of Life Support Systems http://www.eolss.net
(available online at: http://www.eolss.net/sample-chapters/c18/e6-43-16-
01.pdf). Article contribution 6.43.16.1, Eolss Publishers Co Ltd, Oxford
(2003) 35 pages.

[19] L. Wang, Model predictive control system design and implementation us-
ing matlab, Springer-Verlag, 2009.

[20] W.D.Widanage, J.Stoev, A.VanMulders, J.Schoukens, G.Pinte, Nonlinear
system-identification of the filling phase of a wet-clutch system, Control
Engineering Practice (2011) 1506–1516.

[21] A. Dutta, M. Loccufier, C. M. Ionescu, R. De Keyser, Penalty adap-
tive model predictive control (pampc) of constrained, underdamped, non-
collocated mechatronic systems, in: Control Applications (CCA), 2013
IEEE International Conference on, 2013, pp. 1006–1011.

[22] A. Dutta, B. Depraetere, C. Ionescu, G. Pinte, J. Swevers, R. De Keyser,
Comparison of two-level nmpc and ilc strategies for wet-clutch control,
Control Engineering Practice 22 (2014) 114–124.

[23] D. Bristow, M. Tharayil, A. Alleyne, A survey of iterative learning con-
trol, Control Systems Magazine, IEEE 26 (3) (2006) 96–114.

[24] R. Longman, Iterative learning control and repetitive control for engineer-
ing practice, International Journal of Control 73 (2000) 930–954.

[25] B. Depraetere, G. Pinte, W. Symens, J. Swevers, A two-level Iterative
Learning Control scheme for the engagement of wet clutches, Mecha-
tronics 21 (3) (2011) 501–508.

[26] B. Depraetere, G. Pinte, J. Swevers, A reference free iterative learning
strategy for wet clutch control, in: Proceedings of the 2011 American
Control Conference, 2011, pp. 2442–2447.

[27] D. Kalyanmoy, Optimization for engineering design: Algorithms and ex-
amples, PHI Learning Pvt. Ltd., 2004.

[28] R. E. Steuer, Multiple criteria optimization: theory, computation, and ap-
plication, Krieger Malabar, 1989.

[29] T. Weise, K. Geihs, Genetic programming techniques for sensor networks,
in: Proceedings of, Vol. 5, 2006, pp. 21–25.

[30] R. J. Urbanowicz, J. H. Moore, Learning classifier systems: a complete
introduction, review, and roadmap, Journal of Artificial Evolution and
Applications (2009) 1–25.

[31] Y. Zhong, B. Wyns, R. De Keyser, G. Pinte, J. Stoev, An implementa-
tion of genetic-based learning classifier system on a wet clutch system,
in: Applied Stochastic Models and Data Analysis Conference, 14th, Pro-
ceedings, 2011, pp. 1431–1439.

[32] R. Sutton, A. Barto, Reinforcement learning: An introduction, MIT Press,
1998.

[33] J. Peters, S. Schaal, Policy gradient methods for robotics, in: Proceedings
of the IEEE Intl. Conf. on Intelligent Robotics Systems (IROS), 2006.

[34] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, J. Schmidhu-
ber, Parameter-exploring policy gradients, Neural Networks 23 (4) (2010)
551–559.

[35] M. Gagliolo, K. V. Vaerenbergh, A. Rodriguez, A. Nowe, S. Goossens,
G. Pinte, W. Symens, Policy search reinforcement learning for automatic
wet clutch engagement, in: 15th International Conference on System The-
ory, Control and Computing, IEEE, 2011, pp. 250–255.

[36] F. Sehnke, C. Osendorfer, T. Ruckstiess, A. Graves, J. Peters, J. Schmid-
huber, Policy gradients with Parameter-Based exploration for control, in:
Proceedings of the 18th international conference on Artificial Neural Net-
works, Part I, Springer-Verlag, 2008, pp. 387–396.

[37] M. Gagliolo, K. Van Vaerenbergh, A. Rodriguez, A. Nowé, S. Goossens,
G. Pinte, W. Symens, Policy search reinforcement learning for automatic
wet clutch engagement, in: System Theory, Control, and Computing (IC-
STCC), 2011 15th International Conference on, IEEE, 2011, pp. 250–
255.

13

