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Abstract We present a fine-grained scheme for the annotation of polar sentiment

in text, that accounts for explicit sentiment (so-called private states), as well as

implicit expressions of sentiment (polar facts). Polar expressions are annotated

below sentence level and classified according to their subjectivity status. Addi-

tionally, they are linked to one or more targets with a specific polar orientation and

intensity. Other components of the annotation scheme include source attribution and

the identification and classification of expressions that modify polarity. In previous

research, little attention has been given to implicit sentiment, which represents a

substantial amount of the polar expressions encountered in our data. An English and

Dutch corpus of financial newswire text, consisting of over 45,000 words each, was

annotated using our scheme. A subset of this corpus was used to conduct an inter-

annotator agreement study, which demonstrated that the proposed scheme can be

used to reliably annotate explicit and implicit sentiment in real-world textual data,

making the created corpora a useful resource for sentiment analysis.
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1 Introduction

Due to the explosive growth of the World Wide Web in the past few decades,

Internet users today are exposed to a vast amount of information, from which they

can no longer manually distill the information that is relevant to them. This

evolution has resulted in a rapidly growing interest in text mining applications, by

means of which users can automatically extract and analyze information from the

web and other collections of text. One of these text mining tasks is sentiment

analysis, also referred to as opinion mining, which is aimed at the automatic

identification and analysis of ‘‘people’s opinions, sentiments, evaluations, ap-

praisals, attitudes, and emotions towards entities such as products, services,

organizations, individuals, issues, events, topics, and their attributes’’ (Liu 2012).

The automatic extraction of opinions from text has a wide range of application

possibilities: it can be used by companies to track how their brand is perceived by

consumers (Zabin and Jefferies 2008), by individuals who need advice on

purchasing the right product or service (Dabrowski et al. 2010), by nonprofit

organizations [e.g. for the detection of suicidal messages (Desmet and Hoste 2014)],

etc. An extensive overview of existing work on sentiment analysis is given by Pang

and Lee (2008) and Liu (2012).

A large amount of the research on sentiment analysis and opinion mining focuses

on user-generated content, e.g. product reviews (Turney 2002; Pang et al. 2002;

Dave et al. 2003; Hu and Liu 2004; Popescu and Etzioni 2007), blogs (Ounis et al.

2006; Boldrini et al. 2009; O’Hare et al. 2009), tweets (Kouloumpis et al. 2011;

Roberts et al. 2012; Nakov et al. 2013), etc. These types of texts are characterized

by the use of subjective language, by means of which opinions and other types of

sentiment are expressed. Correspondingly, most sentiment analysis research is

dedicated to the detection and analysis of subjective words and phrases. However,

objective utterances can also express sentiment, be it in an indirect way. It is

possible for readers of a text to infer a positive or negative impression of a certain

topic from factual information using world knowledge or common sense. Implicit

expressions of sentiment like this are particularly common in more general, factual

text types, such as newswire for example. As a consequence, researchers working on

sentiment analysis in these kinds of texts have started to pay attention to implicit

ways of expressing sentiment (Musat and Trausan-Matu 2010; Balahur et al. 2011a,

b; Zhang and Liu 2011; Feng et al. 2013). The amount of work dedicated to this

issue, however, is limited.

In this paper, we present a new annotation scheme for the detection of explicit as

well as implicit expressions of sentiment on a sub-sentential level. In addition, the

annotation scheme also allows to analyze these expressions in a fine-grained manner

through the annotation of sentiment sources, targets, modifiers, etc. To our

knowledge, none of the other existing annotation schemes for sentiment combine

the identification of explicit and implicit sentiment expressions with the fine-grained

analysis of these expressions below sentence level. We applied the annotation

scheme to an English and Dutch corpus of financial news articles, in which we

expected sentiment to be uttered both explicitly and implicitly. The resulting

annotated corpus can serve as a training and evaluation dataset for the detection of
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explicit and implicit sentiment. It can also be useful for tackling sentiment analysis

subtasks like polarity classification and source and target identification. We

conducted an inter-annotator agreement study on a subset of the corpus to assess

whether the annotation scheme can be reliably applied to real-world textual data.

The results of this study show that overall, the agreement between annotators is

high. Furthermore, we calculated some statistics on the entire annotated corpus,

from which we can conclude that the annotation of explicit as well as implicit

expressions of sentiment is instrumental to capturing the full spectrum of sentiment

conveyed in financial newswire text.

The remainder of this paper is structured as follows. Section 2 gives an overview

of existing work on the creation of annotated corpora for sentiment analysis. In

Sect. 3, we present our annotation scheme. We discuss how it differs from other

existing schemes, and present the different properties of our scheme, including

examples for each annotation step. Section 4 elaborates on the results of our

annotation efforts. First, we describe the data and annotation procedure used. Then,

we discuss the results of the inter-annotator agreement study that was conducted to

assess the annotation scheme. Next, we present some statistics calculated on the full

annotated corpus. Finally, Sect. 5 gives some conclusions and prospects for future

work.

2 Related work

Existing approaches to sentiment analysis can be roughly divided into two main

categories: lexicon-based and machine learning approaches. Hybrid methods

combine both approaches. Lexicon-based methods make use of sentiment or

subjectivity lexicons (Turney 2002; Hu and Liu 2004; Esuli and Sebastiani 2006;

Ding et al. 2008). These lexicons contain sentiment words, also called opinion

words, listed with their polarity and strength. Taboada et al. (2011) provide an

overview of work on lexicon-based sentiment analysis. Machine learning-based

systems are trained on datasets in which the sentiment is labeled. Sentiment labels

can be extracted from existing resources such as product reviews assigned a rating

by consumers (Pang et al. 2002; Turney 2002; Dave et al. 2003), or they can be

created through manual annotation. The latter approach allows researchers to tailor

the annotations to their domain, level of granularity or application of interest. In the

following paragraphs, we give an overview of existing efforts in the manual

annotation of sentiment in text. In Sect. 3, we present our new annotation scheme

and compare it to existing annotation studies. Furthermore, we refer to sentiment

analysis tasks for which the different properties of our annotation scheme could be

useful.

When annotating sentiment, the first step is usually determining whether a piece

of text is opinionated (i.e. subjective) or not. This annotation task is often performed

at the sentence level (Yu and Hatzivassiloglou 2003; Kim and Hovy 2005; Seki

et al. 2007; Strapparava and Mihalcea 2007; Bermingham and Smeaton 2009;

Abdul-Mageed and Diab 2011), or sometimes at the document or paragraph level

(Ounis et al. 2006; Devitt and Ahmad 2007; Macdonald et al. 2007; Ferguson et al.
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2009; Roberts et al. 2012). However, documents, paragraphs and even sentences

can be made up of a mixture of subjective and objective content. Furthermore, they

can contain multiple opinions.

Wiebe et al. (2005) suggested that for information extraction systems, it would

be useful to identify the individual clauses containing opinions. They developed a

detailed annotation scheme for the identification of key components and properties

of opinions and emotions in text. The goal of the scheme is to distinguish subjective

from factual information and is centered around the notion of so-called private

states, which Quirk et al. (1985) define as states that are ‘‘not open to objective

observation or verification’’ (e.g. opinions, emotions, etc.). Three types of

expressions of private states are annotated in context, at the word and phrase level:

explicit mentions of private states, speech events expressing private states and

expressive subjective elements (Banfield 1982). For each of these expressions, a

private state frame is defined, which includes the source of the private state, its

intensity, the type of attitude (positive, negative, other or none) and other properties

of the private state. The annotation scheme has been used to annotate the MPQA

corpus1, a freely available English corpus consisting mainly of newswire text, which

has been used for sentiment analysis experiments at the expression level (Wilson

et al. 2005; Breck et al. 2007). In other work, the annotations have been extended

with attitude frames tied to the private frames that represent a wider set of attitude

types (e.g. positive/negative arguing, positive/negative intentions, speculation) and

target frames (Wilson and Wiebe 2005). Furthermore, topic annotations have been

added to part of the MPQA corpus by Stoyanov and Cardie (2008). The linguistic

work most related to the annotation scheme of Wiebe et al. (2005) is the Appraisal

Theory framework (Martin and White 2005), which stems from systemic functional

linguistics (SFL) (Halliday 1994) and is concerned with construing interpersonal

meaning in written text. The framework consists of three interacting domains:

attitude (feelings), engagement (taking positions with regards to attitudes) and

graduation (the grading of attitudes).

Aside from the fine-grained sentiment annotation scheme of Wiebe et al. (2005),

which is the most well-known, a number of other studies exist on the annotation of

sentiment expressions, their properties and components. The work of Read and

Carroll (2012), for instance, can also be linked to the Appraisal Theory framework.

The typology of Appraisal is applied to a corpus of book reviews, in which different

units of appraisal are annotated. Different emotions are also identified by the

EmotiBlog annotation scheme (Boldrini et al. 2009), which is inspired by Wiebe

et al. (2005) and aims at a finer-grained annotation of emotions in non-traditional

textual genres. Building on the work of Scherer (2005), Boldrini et al. (2009)

selected groups of emotions to be identified such as criticism, happiness, guilt,

surprise, etc. Polarity, sources and targets are annotated as well. The annotation

scheme has been used to annotate the EmotiBlog corpus, a collection of English,

Spanish and Italian blog posts (Boldrini et al. 2012). Somasundaran et al. (2008)

identify two types of opinions in a corpus of group meetings: sentiment and arguing.

For these opinions, the polarity and target are determined. Opinion frames are

1 http://mpqa.cs.pitt.edu/corpora/mpqa_corpus/
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annotated which are composed of two opinions with targets that are related. For the

NTCIR-7 MOAT Task (Seki et al. 2008), opinion annotation was performed on the

sub-sentence level. Annotations were made for different subtasks, including

determining the polarity of each opinion expression and detecting opinion holders

and targets. In the corpora of tweets and SMS collected for the SemEval-2013 task

on Sentiment Analysis in Twitter (Nakov et al. 2013), subjective words and phrases

were annotated with their respective polarity. For the SemEval-2014 task on Aspect

Based Sentiment Analysis (Pontiki et al. 2014), aspects i.e. features of certain target

entities (e.g. the screen of a laptop) and the polarity of the opinions expressed

towards these aspects were annotated in a corpus of restaurant and laptop reviews.

Kessler et al. (2010) annotate sentiment expressions with their polarity, targets,

modifiers and opinion holder. Finally, Asher et al. (2008) annotate opinions using

discourse relations. As opposed to the other studies mentioned, in which expressions

of sentiment can take various forms, the annotation scheme of Asher et al. (2008)

only allows the annotation of an opinion expression if it contains an opinion word

from their lexicon, or if it is related to an opinionated expression via a rhetorical

relation.

As we discussed in Sect. 1, most of the existing research on sentiment focuses on

the detection and analysis of explicit sentiment. The amount of work dedicated to

implicit expressions of sentiment is, at this moment, limited (Musat and Trausan-

Matu 2010; Balahur et al. 2011a, b; Zhang and Liu 2011; Feng et al. 2013). Implicit

sentiment has, however, been annotated in consumer reviews by Toprak et al.

(2010) and in meeting content by Wilson (2008) [the latter uses an adaptation of the

scheme of Wiebe et al. (2005)]. The annotation schemes proposed in these two

studies allow for the detection of not only explicit expressions of opinions, but also

of factual information that implies a positive or negative evaluation. Wilson (2008)

and Toprak et al. (2010) refer to objective utterances like this as resp. objective
polar utterances and polar facts.

3 Annotation scheme for polar expressions

The most important motivation for developing a new sentiment annotation scheme

was the fact that, to our knowledge, no annotation scheme exists for the fine-grained

annotation of explicit as well as implicit expressions of sentiment below sentence

level. Toprak et al. (2010) and Wilson (2008) detect so-called polar facts/objective

polar utterances, but these are only identified on the sentence and utterance2 level,

respectively. Similar to explicit expressions of opinions, we want to pinpoint the

particular phrases that express sentiment in an implicit way. Drury and Almeida

(2011) identified so-called event words in business news stories; these words

indicate a positive or negative event, depending on the context (e.g. ‘drop’,

‘increase’, etc.). However, we want to consider all kinds of implicit sentiment

2 Wilson (2008) states that an utterance ‘‘may be a single phrase or expression, but whenever possible it

is a sentence or proposition with references to the source and target of the subjectivity included in the

span that is marked’’.
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expressions (not just expressions of so-called events), including those containing

more than one word. We therefore propose a new fine-grained annotation scheme,

for which we build on the insights of Wiebe et al. (2005), Wilson (2008), Toprak

et al. (2010) and other studies.

The main goal of our annotation scheme is to detect and analyze explicit as well

as implicit expressions of positive and negative sentiment, which we call polar

expressions. These expressions are annotated and assessed at expression level. Two

types of polar expressions are identified:

• private state expressions explicit expressions of positive or negative sentiment

towards a target entity or entities. Private states are internal states that cannot be

directly observed by others, e.g. opinions, beliefs, thoughts, feelings, emotions,

judgments, etc. (Quirk et al. 1985; Wiebe et al. 2005). They represent

someone’s personal attitude towards a target entity. An example of a private

state expression can be found in Fig. 1. Here, Stephen Robertson explicitly

utters a negative opinion about the target ‘the data’ by means of the expression

‘were ‘‘disappointing’’’.3 Contrary to Wiebe et al. (2005), we do not make a

distinction between different types of private state expressions (i.e. explicit

mentions of private states, speech events expressing private states and

expressive subjective elements), in order to facilitate the application of the

annotation scheme.

• polar fact expressions implicit expressions of positive or negative sentiment, i.e.

expressions conveying a piece of factual information that, when relating to a

certain target entity or entities, results in a positive or negative impression of

that target/those targets. Sometimes, a person does not explicitly express his/her

personal opinion about a certain topic, but an evaluation of it can nonetheless be

inferred from what he/she says using common sense, world knowledge and

context. Objectively verifiable sentences from which a positive or negative

evaluation can be inferred are referred to by Toprak et al. (2010) as polar facts4.

Whereas Toprak et al. (2010) identify full sentences as polar facts, we pinpoint

the particular phrases that convey the relevant factual information. When

regarding these so-called polar fact expressions in combination with their target

entities, the polarity of the expressed sentiment can then be determined. For

instance, in Fig. 2, ‘is still facing action from US federal, state and local

governments’ is a polar fact expression with ‘BP’ as its target entity, because the

fact that BP is facing legal action results in a negative impression of BP.

Because the distinction between private state expressions and polar fact

expressions (i.e. between subjective expressions and factual information) is not

always an easy one to make, the type of a polar expression is not specified by

3 When applying our fine-grained annotation scheme to text, we make use of the brat annotation tool (see

Sect. 4.2). In brat, the polarity of the sentiment expressed by a polar expression about a certain target is

denoted by the colour of the arrow pointing from the polar expression to that target (viz. green for

positive, red for negative, purple for unknown and orange for other) and a symbol (viz. ?, -, ? and � ).
4 Other sources use the terms objective polar utterances (Wilson 2008) or evaluative factuals (Nigam and

Hurst 2004) for polar facts.
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assigning it to one of these two categories, but by locating the expression on a

continuum ranging from objective to subjective (see Sect. 3.1).

A sentence can contain multiple polar expressions, and a mixture of private state

expressions and polar fact expressions is possible. Furthermore, polar expressions

can be identified on different sentence levels. This means that one polar expression

can be embedded in another. Our annotation scheme does not only allow for the

detection of each of these polar expressions, it also enables annotators to analyze the

expressions in a comprehensive manner. For every polar expression, several related

elements and attributes are identified, e.g. targets, sources, modifiers, etc. Because

private state expressions and polar fact expressions are not regarded as two strictly

distinct categories of expressions, but rather as two overlapping categories located

on a continuum ranging from objective to subjective, the same annotation procedure

is used for both types of expressions. This ensures that the same types of elements

and attributes are identified for each polar expression, and makes the annotation

scheme as a whole more consistent and easier to apply. Besides polar expressions,

the scheme covers the identification of a few types of relations that are not directly

related to sentiment analysis (viz. coreference and feature relations), but could be

useful for certain subtasks in the sentiment analysis field. To apply the full

annotation scheme to the test corpus described in Sect. 4, we made use of the brat

rapid annotation tool (Stenetorp et al. 2012).

The following subsections describe the different properties of our annotation

scheme. Figure 3 provides a schematic overview of the scheme. The annotation

procedure is illustrated by means of example sentences and phrases from the test

corpus, annotated in the brat environment. Note that not every polar expression in

the example sentences and phrases is (fully) discussed.

3.1 Polar expressions

Polar expressions are the core element of our annotation scheme. They are linguistic

expressions that (explicitly or implicitly) convey positive or negative sentiment

towards a certain entity (or entities). As can be seen in Figs. 4, 5 and 6, polar

expressions can take different forms: they can be adjectives, verbal constructions,

noun phrases, etc. Therefore, no strict rules were defined about boundary detection

Fig. 1 Example of a private state expression

Fig. 2 Example of a polar fact expression
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or the types of words or phrases to be annotated as polar expressions. Furthermore, a

polar expression can consist of non-consecutive tokens5. Note that we do not

identify polar expressions below word level or above sentence level.

For each polar expression, three attributes are determined: type (with

corresponding confidence score), insubstantiality and causativity.

Type: Two types of polar expressions are defined: private state expressions and

polar fact expressions. However, categorizing a polar expression as either a private

state or a polar fact expression can be a difficult task, since the distinction between

subjectivity and objectivity is not always an easy one to make. The type of a polar

expression is therefore specified by locating it on a continuum ranging from

objective to subjective (cf. Riloff and Wiebe (2003), who divide subjectivity clues

into strongly and weakly subjective clues). The further an expression is situated on

the scale, the more subjective it is. Polar expressions can take 1 of 4 positions on the

obj                  subj 

ssource 
o explicit 
o implicit 

o impersonal 
o author 

o negation 
o
o diminisher

modality

intensifier
 

o

modifies

o past 
o future 
o question 
o conditional 
o perspective 
o specifying 
o other 

Polar expression

causative 
insubstantial 

Target relation
polarity   
o positive 
o negative 
o other 
o unknown 

intensity 
o high 
o medium 
o low 

0       1        2       3 

Source expression
opinionated 

type 

Entity

Entityrefers to 

feature of 

Entity
source 

polar expression is 
also source expression 

cause 

Fig. 3 Schematic overview of the annotation scheme

Fig. 4 Example of a polar expression in the form of an adjective

Fig. 5 Example of a polar expression in the form of a verb

Fig. 6 Example of a polar expression in the form of a noun

5 The same applies to the other elements covered by our annotation scheme, viz. modifiers, sources,

source expressions, targets and causes.
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subjectivity continuum, denoted by the values 0, 1, 2 and 3. Polar fact expressions
are objective and consequently receive the value 0. Private state expressions are

situated on the other side of the subjectivity scale and are labeled 3. If a polar

expression cannot unambiguously be classified as a polar fact or a private state

expression, the values 1 and 2 can be used to locate the polar expression somewhere

between the two extremes of the subjectivity continuum. 1 is chosen when

annotators have a slight preference for the type polar fact expression, whereas the
use of 2 indicates a preference for private state expression. In Fig. 7, the polar

expression ‘are expected to rise modestly from Pounds 10 bn to Pounds 10.2 bn’ has

received the value 1. A rise from Pounds 10 to 10.2 bn can be objectively measured,

but the word ‘modestly’ makes the information conveyed by this expression slightly

subjective.

These type annotations can be useful for research on subjectivity classification

(Wiebe et al. 1999; Riloff and Wiebe 2003). The four-point scale used by the

annotators allows users of the data to perform subjectivity classification on a fine-

grained or coarse-grained (by reducing the annotations to a two-point objec-

tive/subjective scale) level. When specifying the type of a polar expression,

annotators also determine a confidence score (viz. low, medium or high), which
indicates how certain they are about the type value assigned to the polar expression.

This gives users of the annotations the possibility to only take into account polar

expressions which are assigned a type label with high confidence.

Insubstantiality For the annotation of private states, Wiebe et al. (2005)

introduced the notion of insubstantiality. Insubstantial private states are private

states that are not real, because the presupposition that the state exists is removed

via the context (or the state is explicitly asserted not to exist). Because most

sentiment analysis applications want to ignore insubstantial expressions of

sentiment, it is useful to be able to detect insubstantiality and thus to incorporate

this notion in our annotation scheme. Polar expressions conveying a sentiment that

is not real, are marked using the polar expression attribute Is_insubstantial. An
example of an insubstantial polar expression is the phrase ‘will be found guilty of

gross negligence over the spill’ in Fig. 8.

Causativity Polar expressions sometimes express causality in that they refer to a

positive or negative effect being exerted on a target entity or entities by another

entity. Polar expressions like this are marked using the attribute Is_causative, which
is discussed in detail in Sect. 3.5.

3.2 Modifiers

Modifiers are lexical items that cause a shift in the prior polarity of other nearby

lexical items. To determine whether a polar expression conveys positive or negative

sentiment, we need to take into account the presence of modifiers (Polanyi and

Fig. 7 Example of a polar expression labeled 1 on the subjectivity continuum
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Zaenen 2004; Ikeda et al. 2008; Li et al. 2010). As an example, Fig. 9 shows the

polar expression ‘is n’t too rosy’. Here, the word ‘rosy’ has a positive prior polarity.

Due to the presence of the negation modifier ‘n’t’, however, the polarity of the

sentiment expressed towards the target ‘the outlook for the consumer electronics

industry’ shifts to negative.

When a modifier is detected, it is linked to the polar expression at hand and

assigned a modification type. We define 11 types of modifiers, for each of which a

description and example is provided below. The selection of modifier categories was

based on the types of modifier categories considered in existing sentiment analysis

research. We further altered and extended the list of modifier categories based on a

preliminary annotation study conducted on a test set of newswire text. Our

annotation study is the first to cover such a broad range of modifiers. Toprak et al.

(2010) mark modifiers of sentiment expressions as well, but focus on the detection

of negators, intensifiers and diminishers. Kessler et al. (2010) identify negators,

intensifiers, diminishers, committers (expressing the author’s certainty) and

neutralizers (found in, for instance, hypothetical and conditional sentences).

• negation modifiers (see Polanyi and Zaenen 2004; Kennedy and Inkpen 2006;

Wiegand et al. 2010) These modifiers invert the polarity of the expressed

sentiment (e.g. ‘not yet’ in Fig. 10). The identification of negation modifiers is

indispensable to determine whether the opinion expressed by a certain polar

expression is positive or negative.

• intensifiers6 (see Polanyi and Zaenen 2004; Kennedy and Inkpen 2006) These

modifiers increase the intensity of the expressed sentiment (e.g. ‘very’ in

Fig. 11). The detection of intensifiers helps us determine the strength of a certain

polar expression.

• diminishers7 (see Polanyi and Zaenen 2004; Kennedy and Inkpen 2006) These

modifiers decrease the intensity of the expressed sentiment (e.g. ‘slightly’ in

Fig. 8 Example of an insubstantial polar expression

Fig. 9 Example of a modifier

Fig. 10 Example of a negation modifier

6 These modifiers are also sometimes referred to as amplifiers (Quirk et al. 1985).
7 These modifiers are also sometimes referred to as downplayers or downtoners (Quirk et al. 1985).
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Fig. 12). Similar to intensifiers, they need to be taken into account when

determining the strength of a certain polar expression.

• modality modifiers (see Polanyi and Zaenen 2004; Taboada et al. 2011) The

identification of these modifiers (e.g. ‘could’ in Fig. 13) helps us distinguish

between opinions that are asserted to be real (realis) and not real (irrealis)
(Wilson et al. 2005).

• question modifiers (see Taboada et al. 2011) Question modifiers (e.g. ‘whether’

in Fig. 14) indicate that the polar expression at hand is not real i.e. insubstantial

(see Sect. 3.1).

• conditional modifiers (see Taboada et al. 2011) Conditional modifiers (e.g. ‘if

wage growth accelerates’ in Fig. 15) are an indication that the polar expression

at hand is only real i.e. substantial under certain conditions.

• past modifiers Past modifiers (e.g. ‘last year’ in Fig. 16) do not have a direct

influence on the polarity and intensity of a polar expression. However, we

believe that positive and negative opinions (or facts) expressed in the past are

typically perceived as less salient than those asserted to exist at this moment.

• future modifiers Our motivation for the detection of future modifiers (e.g. ‘is

forecast to’ and ‘in the next three years’ in Fig. 17) is similar to the reason why

we identify past modifiers. Opinions and facts referred to as coming about in the

Fig. 11 Example of an intensifier

Fig. 12 Example of a diminisher

Fig. 13 Example of a modality modifier

Fig. 14 Example of a question modifier
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future are believed to influence people in a different way compared to current

opinions and facts.

• perspective modifiers When using perspective modifiers (e.g. ‘for continuing

investors’ in Fig. 18), the writer of a text indicates that a polar expression

conveys positive or negative sentiment when assessed from a certain

perspective.

• specifying modifiers Specifying modifiers (e.g. ‘by 50 %’ in Fig. 19) provide

more specific information about the positive or negative opinion/situation

described by the polar expression at hand.

• other modifiers This modifier type is provided for cases where annotators are not

sure which category to assign a certain modifier to.

3.3 Sources and source expressions

The source of a polar expression is the person or entity expressing or implying

positive or negative sentiment about the target entity (or entities). Like Bethard

et al. (2004), Wiebe et al. (2005), Seki et al. (2008), Somasundaran et al. (2008),

Boldrini et al. (2009), Kessler et al. (2010) and Toprak et al. (2010), we identify the

source, sometimes also referred to as the opinion holder, of each sentiment

expression. Corpora in which the sources of sentiment expressions are marked are a

Fig. 15 Example of a conditional modifier

Fig. 16 Example of a past modifier

Fig. 17 Example of a future modifier

Fig. 18 Example of a perspective modifier
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valuable resource for the task of source attribution (Choi et al. 2005; Kim and Hovy

2006).

The source of a polar expression is sometimes explicited in the text. If this is the

case, it is marked. The source expression is the linguistic expression linking the

polar expression to its source. Identifying this source expression can be useful when

linking sentiment expressions to their sources (Choi et al. 2006). Figure 20 shows

the polar expression ‘were ‘‘disappointing’’’, of which the source is ‘Stephen

Robertson, the BRC ’s director-general’. The source expression is ‘said’; this

linguistic expression indicates that Stephen Robertson is the person expressing

negative sentiment about the target ‘the data’ by means of the polar expression

‘were ‘‘disappointing’’’. For some polar expressions, no separate source expression

is found, because the polar expression can directly be linked to its source. These

polar expressions are also marked as source expressions through the use of the polar

expression attribute Is_also_source_expression. An example of this is shown in

Fig. 21, where ‘welcomed’ is a private state expression that expresses positive

sentiment about ‘Beijing ’s decision’. At the same time, it is the source expression

linked to the source of this positive sentiment, ‘The American Chamber of

Commerce in China’.

The use of a certain source expression can be a way for the author of the text to

express an opinion about the sentiment expressed by the polar expression at hand. In

Fig. 22, ‘BP’ expresses positive sentiment about itself by means of the private state

Fig. 19 Example of a specifying modifier

Fig. 20 Example of a polar expression with its source and source expression

Fig. 21 Example of a polar expression that it also a source expression

Fig. 22 Example of an opinionated source expression
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expression ‘is recovering from the near-fatal blow it suffered in 2010’. By using the

source expression ‘insists’, the author of this sentence implies that he might not

agree with this positive sentiment, i.e. he voices an opinion about it. Source

expressions like this can be marked as opinionated using the source expression

attribute Is_also_opininionated.
The source of a polar expression is not always explicited in the text. It is possible

that sentiment is expressed or implied by an impersonal source or by the author of

the text. Consider the example in Fig. 23. Here, the private state expression ‘fears

of’ expresses negative sentiment towards the target ‘a downturn in mining capital

expenditure’. The source of the polar expression is the impersonal ‘the people’, but

it is not explicited in the text. In cases like this, the source of the polar expression is

denoted by the polar expression attribute Impersonal_source. In Fig. 24, the author

of the text is the source of the polar expression ‘is n’t too rosy’. This can be

indicated by means of the polar expression attribute Author_is_source. If a

lexicalization of the author (e.g. ‘I’) can be found in the text, however, it is marked

as the source of the polar expression. In cases where the source of a polar expression

is not lexicalized in the proximity of the polar expression (i.e. only in one of the

previous or following sentences), it is linked to the polar expression but considered

implicit. This is indicated by means of the attribute Implicit_source.

3.4 Targets and sentiment polarity

For each polar expression, at least one target is identified. This is the entity

sentiment is being expressed or implied about. The annotation of these targets can

be useful for topic-dependent sentiment analysis (Hu and Liu 2004; Zhuang et al.

2006; Popescu and Etzioni 2007). In Fig. 25, the polar expression ‘were

‘‘disappointing’’’ expresses negative sentiment about the entity ‘the data’, which

is marked as the target.

Fig. 23 Example of a polar expression with an impersonal source

Fig. 24 Example of a polar expression with the author of the text as its source

Fig. 25 Example of a target
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It is possible for a polar expression to have multiple targets. This is, for example,

the case if the polar expression at hand describes a situation which can be assessed

from the perspective of different entities. Figure 26 shows the polar expression ‘has

outperformed’, which has two targets.

For each identified target, the sentiment expressed or implied about it by the

polar expression is analyzed by determining two attributes: the polarity and the

intensity of the sentiment. Sentiment polarity and intensity are marked on the target

level, because a polar expression can express a different sentiment towards each of

its targets (see Fig. 26). Like Wilson et al. (2005), our annotation scheme allows

annotators to attribute several targets and corresponding sentiment polarity values to

a single polar expression.

The polarity of the expressed sentiment can take the values positive (Fig. 27),

negative (Fig. 28), other (Fig. 29) or unknown (Fig. 30). The value other is used for

private states conveying a sentiment that is neither positive nor negative, such as the

emotion surprise in example 29. Unlike Read and Carroll (2012); Boldrini et al.

Fig. 26 Example of a polar expression with multiple targets

Fig. 27 Example of positive sentiment expressed about a target

Fig. 28 Example of negative sentiment expressed about a target

Fig. 29 Example of non-polar sentiment expressed about a target

Fig. 30 Example of sentiment with ambiguous polarity expressed about a target
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(2009), our annotation scheme is not aimed at the detection of various types of

emotions, but focuses on the distinction between positive and negative sentiment,

since most sentiment analysis studies aim at polarity classification (Wilson et al.

2005; Choi and Cardie 2008). Since polar facts do not explicitly express sentiment

towards a target entity, a positive or negative evaluation of this entity needs to be

inferred from the factual information conveyed by these polar expressions. This

requires interpretation, which can pose a problem because some polar facts can be

interpreted from different perspectives. If a polar expression conveys ambiguous

sentiment towards a target entity, the polarity of that sentiment is labeled unknown.

Figure 30 shows the polar expression ‘lowers’ with its target ‘interest rates’.

Whether the lowering of the interest rates results in a positive or negative

impression of this target, is hard to determine. A lower interest rate is positive for

people who want to take out a loan, but can also be considered negative in that it

may cause inflation. For this reason, the polarity attribute unknown is assigned.

The intensity of the sentiment can be low, medium or high.8 As stated by Wiebe

et al. (2005), intensity ratings are useful for ‘‘distinguishing inflammatory messages

from reasoned arguments, and for recognizing when rhetoric is ratcheting up or

cooling down in a particular forum. In addition, intensity ratings help in

distinguishing borderline cases from clear cases of subjectivity and objectivity.’’

When analyzing the sentiment expressed by a polar expression, modifiers

affecting the polarity and intensity of the sentiment are taken into account (as can be

seen in Fig. 28).

3.5 Causativity

Private state or polar fact expressions sometimes express causativity in that they

refer to a positive or negative effect being exerted on a target entity or entities by

another entity. In Fig. 31, for instance, the private state expression ‘could damage’

indicates that a negative effect is exerted on the target ‘the global economy’ by the

entity ‘higher oil prices’. We refer to private state and polar fact expressions like

this as polar resultative causatives. In contrast to simple causatives, which only refer

to the causal link between two entities, resultative causatives are causative

constructions that refer to a causal link plus a part of the resulting situation (Girju

2003)9. If a causative construction is resultative, and the resulting situation referred

to by that resultative causative results in a positive or negative impression of the

Fig. 31 Example of a polar resultative causative

8 In brat, the intensity of the positive or negative sentiment is denoted by the number of plus or minus

signs accompanying the arrow pointing from the polar expression to the target at hand.
9 While Girju (2003) uses the term resultative causative for verbal constructions, we also identify other

causative constructions.
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target entity or entities (i.e. expresses a private state or polar fact), it is a polar

resultative causative.

If a private state or polar fact expression is a polar resultative causative, it is

marked using the attribute Is_causative. Additionally, the entity exerting a positive

or negative effect on the target entity or entities (for instance ‘higher oil prices’ in

Fig. 31) is annotated as the cause and linked to the private state or polar fact

expression at hand.

In related work, Deng et al. (2013) annotated so-called benefactive and

malefactive events, also referred to as goodFor/badFor (gfbf) events, which

positively/negatively affect entities.

3.6 Coreferential relations

The source, target or cause entities of a polar expression can be referred to in a text

with multiple, coreferring linguistic expressions. If this is the case, we mark the

linguistic expression that is in a syntactic relation with the polar expression or is

closest to it. Consequently, expressions marked as sources, targets or causes can be

anaphora, items with little or no intrinsic meaning. These sources, targets and causes

are linked to the closest meaningful antecedent by means of a coreferential relation.

Coreferential relations are also incorporated in the annotation schemes of Kessler

et al. (2010) and Toprak et al. (2010). The use of coreference resolution can help

improve the performance of topic-dependent sentiment analysis approaches. An

example of a coreferential relation can be found in the sentence in Fig. 32. Here, the

pronoun ‘it’ is marked as the target of the polar expression ‘is recovering from the

near-fatal blow it suffered in 2010’. It is linked to its antecedent ‘BP’ through a

coreferential relation.

3.7 Feature relations

Sometimes, the sentiment being expressed or implied about a certain target is also

indirectly aimed at another entity, because the target is a feature of this entity, i.e. a

part or property of it. An example of a feature relation can be found in Fig. 33. The

polar fact expression ‘would have increased by 50 % compared with 2011’ results

in a positive impression of the target entity ‘its operating cash flow’ and,

furthermore, of ‘BP’, since the target is a feature of this company. For this reason,

these two entities are linked by means of a feature relation. Feature-based sentiment

Fig. 33 Example of a feature relation

Fig. 32 Example of a coreferential relation
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analysis has been an important topic of interest in the domain of product reviews

(Hu and Liu 2004; Zhuang et al. 2006; Popescu and Etzioni 2007; Pontiki et al.

2014), where researchers detect and analyze the sentiment expressed towards the

features of a certain topic i.e. product (e.g. the picture quality and size of a digital

camera). Kessler et al. (2010), for instance, have annotated feature relations in a

corpus of blog posts about automobiles. However, as can be seen in Fig. 33, topics

in other text genres (e.g. companies in financial news) can also have features (for

instance the profits and liquidity of a company). Feature relations can be annotated

for targets, causes and sources of polar expressions.

4 Annotation study

4.1 Data

The sentiment annotation scheme described in Sect. 3 was applied to a corpus of

English and Dutch financial newswire text10. We hypothesized that this type of data

contains explicit expressions of sentiment (e.g. opinions of financial analysts about

certain companies, markets or events) as well as implicit ones (viz. factual news

content resulting in positive or negative opinions), making it an appropriate text genre

for the evaluation of our annotation scheme. English news articles were taken from

The Financial Times, Dutch articles from the Belgian economic newspaper De Tijd.

They were sampled between November 2004 and May 2005, and between November

2011 andMay 2012, and includemacroeconomic, sector and company news coverage.

Each document was split into sentences and tokenized using the LeTs Preprocess

toolkit (Van de Kauter et al. 2013). Table 1 gives an overview of the amount of

material that has currently been annotated for both languages. The inter-annotator

agreement study discussed in Sect. 4.3 was conducted on a subset of this corpus.

The statistics presented in Sect. 4.4 were calculated on the full corpus.

For both languages together, 185 documents and 4790 sentences have been

annotated. The corpus size approaches that of the fully annotated section of the

MPQA v2.0 corpus, which contains 344 documents and 5957 sentences, but which,

contrary to our annotated dataset, is a monolingual corpus.

4.2 Annotation process

The sentiment annotation scheme we developed was applied to the English and

Dutch financial newswire corpus by means of the brat rapid annotation tool

(Stenetorp et al. 2012), a web-based tool for text annotation. It is freely available

and open source and allows for the annotation of text spans as well as relations.

Examples of excerpts from the corpus annotated with polar expressions and related

elements using the brat tool can be found in Sect. 3.

Because the annotation of explicit and implicit sentiment in particular requires a

substantial amount of interpretation and thus a substantial knowledge of the

10 The resulting annotations will be made available for research purposes.
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language at hand, the annotations for both English and Dutch were performed by

annotators mastering these languages at a high level. All annotators of the newswire

corpus had a background in linguistics and were native speakers of English or

Dutch, or (higher education) students in the language at hand. Before starting on the

annotation of the corpus, the annotators went through a training phase of about 3

working days in which they learned to apply the annotation scheme based on the

guidelines detailed in Van de Kauter et al. (2014). This training phase also

familiarized annotators with the brat annotation tool. They annotated a number of

example texts (also taken from financial newspapers), were able to ask questions

about the annotation scheme and tool, and received feedback about their

annotations.

After completing their training, the annotators began to annotate articles from the

newswire corpus describe above. Each text was annotated by two annotators. First,

these annotators analyzed each article independently. In a second step, they

compared their individual annotations and only retained those annotations on which

they both agreed. In future work, these consensus annotations will be used as

training data for automatic sentiment analysis in financial news articles.

4.3 Inter-annotator agreement study

To assess whether the sentiment annotation scheme described in Sect. 3 can be

reliably applied to real-world textual data, we conducted an inter-annotator

agreement study. A small subset of the news articles collected for English and

Dutch was independently annotated by three annotators11, in order to avoid the

results being dependent on the differences between two individual annotators. The

individual annotations of these annotators were then compared to each other.

Table 2 shows the size of the sub-corpus used for the agreement study.

To measure agreement between the three annotators, we average the inter-

annotator agreement scores of all three annotator pairs. These scores are calculated

for various annotation tasks. First, we measure inter-annotator agreement for polar

expression identification, which is the main task defined in our annotation scheme.

For each of the polar expressions identified by both annotators of a pair, agreement

scores are then calculated for subsequent annotation tasks such as polar expression

type classification, target identification, source identification, etc. This allows us to

measure the extent to which polar expressions are further analyzed in the same way

by different annotators.

Table 1 Properties of the full annotated corpus

Language No. of documents No. of sentences No. of words

English 87 1685 44,645

Dutch 98 3105 47,650

11 Note that not all annotators for Dutch (three Dutch native speakers) are the same persons who

annotated the English corpus (two Master’s students in English and one English native speaker). Only one

annotator participated in the inter-annotator agreement study for both English and Dutch.
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Inter-annotator agreement is measured using four different metrics, depending on

the type of annotation task at hand. For classification tasks (e.g. assigning polar

expressions to a category of the subjectivity continuum), Cohen’s kappa (Cohen

1960) and Krippendorff’s alpha (Krippendorff 1970, 2004) are used, two measures

which correct for chance agreement. Kappa is used for nominal classifications (e.g.

modifier classification), whereas Krippendorff’s alpha is applied in cases where not

all disagreements should be treated equally, with squared distance as a distance

metric (e.g. for polar expression classification by subjectivity type). For identifi-

cation tasks, accuracy or F-score ðb ¼ 1Þ (van Rijsbergen 1979) is calculated.

Accuracy is used for classification tasks where only one item can be identified (this

is for example the case for source identification). For identification tasks permitting

the identification of multiple items (e.g. modifier identification, target identifica-

tion), F-score is the metric of choice, since annotators do not always identify the

same set of items and agreement measures such as kappa or alpha can therefore not

be used. F-scores are calculated by considering the annotations of one annotator as

the gold standard, and measuring precision and recall of the second annotator on

that gold standard set of annotations. This is equivalent to averaging precision or

recall in both directions. The same approach is adopted by Wiebe et al. (2005).

When discussing the inter-annotator agreement results, kappa and alpha scores

are interpreted using the conventions proposed by Landis and Koch (1977) and

Krippendorff (1980). The former consider 0.6 and 0.8 the minimum values for resp.

substantial and almost perfect agreement, whereas the latter regards 0.67 and 0.8 to

be sufficient for resp. tentative conclusions and good reliability. However, we

should note that, as discussed by Artstein and Poesio (2008), in more recent work,

0.8 or even 0.9 is considered the threshold for acceptable reliability.

4.3.1 Polar expressions

Polar expressions are the central component of our annotation scheme and,

therefore, also the starting point for this inter-annotator agreement study. Tables 3

and 4 show the number of polar expressions identified by each of the annotators in

resp. the English and Dutch sub-corpora presented in Table 2.

Table 3 Number of polar expressions identified by the annotators in English

Annotator No. of polar expressions

A 201

B 217

C 183

Table 2 Properties of the sub-corpus used for the inter-annotator agreement study

Language No. of documents No. of sentences No. of words

English 4 119 2808

Dutch 6 179 2771
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To measure the extent to which the annotators have identified the same polar

expressions, we compare the set of annotations made by each of the annotators to

the annotations of the two other annotators and look for matching polar expressions.

Similar to Wiebe et al. (2005), we do not focus on boundary detection when

comparing polar expressions marked by two annotators, since this issue is less

crucial for the task of sentiment analysis. It is most important that both annotators

have annotated the same general expression. Hence, we do not only take into

consideration exact polar expression matches, but also look for fuzzy matches. An

example of a fuzzy match between polar expressions marked by two annotators can

be found in Fig. 34, where the polar expressions ‘the ravages of’ and ‘the ravages’

(marked by resp. annotators B and C for English) are considered to be the same

expression.

Tables 5 and 6 show the number of matching polar expressions found for each of

the annotator pairs.

To measure inter-annotator agreement for the identification of polar expressions,

we calculate F-score (b = 1) for each annotator pair by considering the polar

expressions of the first annotator as the gold standard, and measuring precision and

recall of the second annotator on that gold standard set of expressions. Recall and

precision are calculated by dividing the number of matching polar expressions by

the number of polar expressions identified by resp. the first and second annotator.

The average F-scores for English and Dutch can be found in Table 7. Similar scores

are obtained for both languages, viz. 0:67 for English and 0:66 for Dutch.

Because most of the existing sentiment annotation schemes focus on the

detection of explicit expressions of sentiment, we also want the measure the extent

to which implicit sentiment in particular can be identified in a reliable way. Table 7

therefore also contains separate inter-annotator agreement scores for the identifi-

cation of explicit and implicit sentiment expressions, which indicate that for implicit

expressions, agreement is lower. We believe this observation can be explained by

Table 4 Number of polar expressions identified by the annotators in Dutch

Annotator No. of polar expressions

A 204

B 201

C 175

Fig. 34 Example of a fuzzy polar expression match
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the fact that the detection of implicit sentiment requires more interpretation, i.e. the

inference of a positive or negative impression from factual information.

For the set of polar expressions marked by both annotators of an annotator pair,

we calculate inter-annotator agreement for the classification of these polar

expressions by subjectivity type. In other words, we measure the extent to which

annotators assign a polar expression to the same position on the subjectivity

continuum. Since the starting point is the set of polar expressions annotated by both

annotators, agreement for this task can be calculated by means of Krippendorff’s

alpha or Cohen’s kappa. Agreement is measured by means of Krippendorff’s

weighted alpha measure, with squared distance used as a distance metric, since not

all disagreements for this classification task should be treated equally. On the

subjectivity continuum (0–1–2–3), the value 1, for instance, is closer to 0 than the

value 3. Table 8 shows the agreement scores obtained for English and Dutch. Alpha

scores of resp. 0:65 and 0:54 are obtained. According to Krippendorff (1980), this

means that tentative conclusions can be drawn from the annotation for English, but

not for Dutch. Following the conventions proposed by Landis and Koch (1977),

substantial agreement is obtained for English, whereas the agreement score

Table 5 Number of matching polar expressions identified in English

Annotator pair No. of matching polar expressions

A–B 137

A–C 133

B–C 134

Table 6 Number of matching polar expressions identified in Dutch

Annotator pair No. of matching polar expressions

A–B 138

A–C 117

B–C 129

Table 7 Inter-annotator agreement for polar expression identification

Language Overall Explicit PEs Implicit PEs

English 0.67 0.70 0.64

Dutch 0.66 0.72 0.58

Table 8 Inter-annotator agreement for polar expression classification by subjectivity type

Language Alpha score

English 0.69 a

Dutch 0.59 a
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achieved for Dutch indicates moderate agreement. In other words, labeling a polar

expression as either objective (implicit) or subjective (explicit) is a difficult task.

After having determined the set of polar expressions identified by both annotators

of an annotator pair, we measure the extent to which both annotators further analyze

these polar expressions in the same way. Inter-annotator agreement scores for target,

source, source expression and modifier annotation are calculated for the sets of polar

expressions described in Tables 5 and 6.

4.3.2 Targets and sentiment polarity

For each of the polar expressions marked by both annotators of an annotator pair,

we investigate whether the annotators have identified the same targets. Since a polar

expression can have multiple targets, inter-annotator agreement is measured by

calculating F-score (b = 1). The targets marked by the first annotator are considered

to be the gold standard. Precision and recall of the second annotator are then

measured on that gold standard set of targets. Strict as well as relaxed inter-

annotator agreement scores are calculated. To measure agreement in a strict manner,

we look for matches between direct targets of the polar expressions. When

calculating relaxed agreement scores, we also take into account entities linked to the

targets of a polar expression by means of a coreference or feature relation. Table 9

shows the inter-annotator agreement scores for target identification. Strict agree-

ment scores of 0:89 and 0:88 are obtained for resp. English and Dutch. These scores

rise to over 0:90 in a relaxed scenario. This means that annotators achieve very high

agreement when assigning targets to polar expressions they have both identified,

even if we do not take into account coreference and feature relations.

Next, we assess whether the annotators agree on the polarity of the sentiment

expressed towards the targets identified by both annotators of an annotator pair.

First, a kappa score for polarity classification is calculcated on a coarse-grained

level (positive–negative–other–unknown). Second, agreement is measured on a fine-

grained level by means of Krippendorff’s alpha metric, using squared distance as a

distance metric. For this fine-grained evaluation of the annotations, the intensity of

the sentiment expressed towards the targets was taken into account, which resulted

in the following scale: -3 (high negative), -2 (medium negative), -1 (low

negative), 0 (other or unknown), 1 (low positive), 2 (medium positive), 3 (high

positive). The inter-annotator agreement scores for polarity classification on a

coarse- and fine-grained level can be found in Table 10. According to Landis and

Koch (1977), these scores indicate almost perfect agreement for both languages on a

coarse-grained as well as on a fine-grained level. Following the conventions of

Krippendorff (1980), good reliability is obtained.

Table 9 Inter-annotator agreement for target identification

Language Strict Relaxed

English 0.89 0.96

Dutch 0.88 0.92
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4.3.3 Sources and source expressions

Since only one source is assigned to each polar expression, inter-annotator

agreement for source identification is measured by calculating accuracy scores. The

number of polar expressions for which two annotators have identified the same

source is divided by the total number of polar expressions annotated by both

annotators. A source can be explicitly marked in the text, or it can be specified by a

source attribute of the polar expression (viz. Author_is_source or Impersonal_-
source). Similar to target identification, inter-annotator agreement for source

identification is measured in a strict and relaxed manner. As shown in Table 11,

fairly high relaxed as well as strict scores are achieved for both English and Dutch.

For the set of polar expressions assigned the same source by both annotators of an

annotator pair, we also measure inter-annotator agreement for source expression

identification by calculating accuracy scores (Table 12). Like sources, source

expressions can be explicitly marked in the text, or they can be specified by the

attribute Is_also_source_expression of the polar expression at hand. The average

accuracy scores obtained for both languages are very high, indicating that

annotators are able to reliably identify the source expression of a polar expression.

4.3.4 Modifiers

Finally, we measure inter-annotator agreement for the identification of modifiers.

Since the polarity and intensity of the sentiment expressed by a polar expression can

be modified by multiple lexical items, agreement is calculated using F-score (b = 1).

Table 13 shows the overall inter-annotator agreement scores for modifier

Table 10 Inter-annotator agreement for polarity classification

Language Coarse-grained Fine-grained

English 0.87 j 0.93 a

Dutch 0.83 j 0.89 a

Table 11 Inter-annotator agreement for source identification

Language Strict Relaxed

English 0.83 0.84

Dutch 0.81 0.82

Table 12 Inter-annotator agreement for source expression identification

Language Accuracy

English 0.99

Dutch 0.95
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identification as well as separate F-scores for each type of modifier. The wide spread

of the results for the different modifier types and the differences across the two

languages can be explained by the small size of the sub-corpus used for the inter-

annotator agreement study. In this corpus, the absolute number of occurrences for

several individual categories is limited; a small absolute number of disagreements

for these modifier types can thus lead to a significant decrease in F-score. For

instance, in the Dutch corpus, only 3, 0 and 2 question modifiers were identified by

Table 13 Inter-annotator agreement for modifier identification

Type English Dutch

Overall 0.60 0.69

Negation 0.75 0.85

Intensifiers 0.61 0.65

Diminishers 0.63 0.33

Modality 0.61 0.49

Past 0.66 0.78

Future 0.55 0.68

Question 0.00 0.13

Conditional 0.89 1.00

Perspective 0.36 0.55

Specifying 0.55 0.67

Other 0.40 0.48

Table 14 Inter-annotator agreement for modifier classification

Language Kappa

English 0.89 j

Dutch 0.83 j

Table 15 Number of annotations in the full English and Dutch corpora

English Dutch

Polar expressions 3787 4323

Average number of polar expressions per word 0.09 0.09

Modifiers 3478 3337

Average number of modifiers per polar expression 0.92 0.77

Source expressions 758 304

Average number of source expressions per polar expression 0.20 0.07
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resp. annotators A, B and C. In the English corpus, annotator B marked 2 question

modifiers, whereas no modifiers of this type were identified by annotators A and C.

The latter results in an inter-annotator agreement score of 0:00 F for English.

To measure the extent to which modifiers are assigned to the same modifier

category, kappa scores for modifier classification are calculated on the sets of

modifiers identified by both annotators of an annotator pair. As can be seen in

Table 14, kappa scores of 0:89 and 0:83 are obtained for resp. English and Dutch,

indicating that good reliability is obtained according to the conventions of

Krippendorff (1980). When considering the conventions proposed by Landis and

Koch (1977), the conclusion can be drawn that almost perfect agreement is achieved

for modifier classification in both languages.

Overall, we can conclude from the inter-annotator agreement study that our

annotation scheme allows reliable identification of polar expressions, that polar

expression type classification is somewhat ambiguous, and that targets, sources and

modifiers are consistently annotated.

4.4 Corpus statistics

In this section, we present statistics on the entire annotated corpus, as described in

Sect. 4.1 and Table 1. Calculations are based on the consensus annotations from

two annotators. We should note that the size and the specific domain of the corpus

do not allow us to draw general conclusions about the differences between English

and Dutch with regards to the expression of sentiment, since the differences found
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Fig. 35 Relative frequency of polar expressions by subjectivity type
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in the corpus could be attributable to the writing style employed in this specific

domain or in these specific newspapers.

The absolute numbers of annotations for English and Dutch are shown in

Table 15. Relative to the number of words, both corpora have a similar amount of

polar expressions. We can therefore assume that the corpora are comparable with

regards to the amount of polarity that is encountered. In the English corpus, a

greater number of polar expressions is modified, and more of them can be linked to

a source by means of a source expression.

4.4.1 Polar expressions

The distribution of polar expressions on the subjectivity scale is presented in

Fig. 35. It is immediately apparent that polarity is not only present in subjective

expressions: for English, less than half of the polar expressions are annotated as

Fig. 36 Relative frequency of target relation intensity, by coarse polar expression type (top English,
bottom Dutch)

Annotating explicit and implicit sentiment 711

123



pos neg both other

Polarity of targets associated with polar expressions

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

English
Dutch

Fig. 37 Relative frequency of polar orientation of target links associated with polar expressions

ne
ga

tio
n

in
cr
ea

se

de
cr
ea

se

m
od

al
ity

pa
st

fu
tu
re

qu
es

tio
n

co
nd

iti
on

al

pe
rs
pe

ct
iv
e

sp
ec

ify
in
g

ot
he

r

Modification type frequencies

0.00

0.05

0.10

0.15

0.20

0.25

0.30
English
Dutch

Fig. 38 Relative frequency of modification types

712 M. Van de Kauter et al.

123



subjective (types 2 and 3), and for Dutch, fewer than 60 %. We can state with

considerable confidence that, for a comprehensive view on polarity in text, both

explicit and implicit expressions have to be accounted for. Failing to annotate

implicit polarity would result in a substantial amount of the expressed polarity being

missed, at least in our data.

We also find that the Dutch corpus is skewed more towards subjective

expressions, whereas the English data presents more polar facts. Annotators score

most polar expressions at the extremes of the subjectivity continuum.

4.4.2 Targets and sentiment polarity

It might be that explicit expressions are associated with more intense polarity than

implicit ones. Figure 36 plots polar expression type against the intensity of its target

relation. For English, there is no significant difference between types, so polarity

stemming from objective expressions tends to be no less intense. For Dutch, on the

other hand, subjective expressions trigger somewhat higher intensities. Overall,

annotators most frequently link targets with medium intensity.

Fig. 39 Relative frequency of modification type, by coarse polar expression type (top English, bottom
Dutch)
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The polar orientations of target links associated with polar expressions are shown

in Fig. 37. The Dutch data contains more positive than negative links, the English

data is balanced. Both languages present a small number of polar expressions to

which targets are linked with opposing or other polarities.

4.4.3 Modifiers

Figure 38 presents the distribution of modification types. The distributions are

similar between English and Dutch, with past, intensifiers and specifying being the

most common modification types. In the Dutch data, other, negation and question

types occur proportionally more frequently. For English, future modifiers are more

frequent.

Figures 39 and 40 show the correlation between the type of a modifier and the

type and target link orientation of its associated polar expression, respectively.

For both languages, we can observe that specifying modifiers occur almost

exclusively with objective polar expressions, whereas negation and modality

modifiers are rarely associated with them.

Fig. 40 Relative frequency of modification type, by polar expression polarity orientation (top English,
bottom Dutch)
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Modifier types appear to be independent from polarity orientation, except for

negation, which proportionally occurs only rarely with positive target links. This

suggests that positive expressions are switched to become negative much more often

than the other way around. In our corpus, the presence of a negation marker can

therefore be considered indicative of an utterance with negative polarity.

5 Conclusions and future work

We have developed and described a new scheme for the fine-grained annotation of

polar sentiment in text. It defines polar expressions, which may be subjective

(private states i.e. explicit expressions of sentiment) or objective (polar facts i.e.

implicit expressions of sentiment) in nature. These expressions are annotated on a

sub-sentential level. Furthermore, the scheme allows annotation of sources, target

attribution and polar expression modification. These entities can be linked to other

entities with coreferential or feature relations. To our knowledge, none of the other

existing sentiment annotation schemes combine the identification of explicit and

implicit sentiment expressions with the fine-grained analysis of these expressions

and their components below sentence level.

We tested the applicability of the annotation scheme on real-world textual data

using a corpus of Dutch and English financial news. First, we performed an inter-

annotator agreement study between three annotators, on a small subset of this

corpus. The identification of polar expressions proved to be non-trivial, especially

for implicit occurrences of sentiment (polar facts). However, agreement is around

0:66 F-score, and once annotators agree on the presence of a polar expression,

further annotations can be done with moderate to very high agreement (viz. source,

source expression and target attribution, and polarity classification). For modifiers,

agreement is moderate for identification and high for classification. A particularly

difficult task is the classification of polar expressions as objective or subjective.

Based on these findings, we can state that the fully annotated corpora are valuable

resources for research on coarse- and fine-grained automatic sentiment analysis,

with 44,645 words of English and 47,650 words of Dutch economic newswire text.

The proportion of subjective polar expressions is below 60% for both languages.

This validates the claim that implicit as well as explicit polar expressions need to be

annotated for a comprehensive account of polarity.

Since overall, similar inter-annotator agreement scores were obtained for the

English and Dutch corpora, we believe our annotation scheme can be reliably

applied to different languages. In future research, we will investigate the suitability

of our annotation scheme for domains other than financial newswire. The results of

a preliminary inter-annotator agreement study conducted on a collection of Dutch

tweets about the Belgian local elections of 2012 indicate that for a corpus of

political Twitter messages, agreement scores similar to those measured for the

financial newswire corpora can be obtained. This suggests that our sentiment

annotation scheme is applicable to various domains and text genres.

In future work, we will also make use of the annotated corpora as training and

evaluation datasets for the automatic detection of explicit and implicit expressions
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of positive and negative sentiment in text. Implicit sentiment is not only found in

financial news, but can also occur in other text types. Balahur et al. (2011a, b), for

example, capture implicit expressions of sentiment in ISEAR, a corpus in which

student respondents describe situations in which they experienced certain emotions

(e.g. anger, joy, etc.).

Since the created corpora do not only provide us with annotations of polar

sentiment expressions, they can be used for more than sentiment detection and

polarity classification. The annotations of other components such as sources, source

expressions, targets and modifiers make the datasets a valuable resource for other

sentiment analysis tasks as well. In the near future, we will, among others, focus on

the task of target attribution for topic-dependent sentiment analysis. Detecting the

target of sentiment expressions would allow us to extract only the sentiment relevant

to a given subject of interest. This can be useful, for example, for the analysis of

sentiment expressed about certain product features in product reviews (Hu and Liu

2004; Zhuang et al. 2006), or for the detection of sentiment related to specific

companies, sectors or events in the financial domain (O’Hare et al. 2009).
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Balahur, A., Hermida, J. M., Montoyo, A., & Muñoz, R. (2011b). EmotiNet: A knowledge base for

emotion detection in text built on the appraisal theories. In Proceedings of the 19th conference on
applications of natural language to information systems (NLDB 2011), volume 6716 of lecture notes
in computer science (pp. 27–39). Springer.

Banfield, A. (1982). Unspeakable sentences. Boston: Routledge and Kegan Paul.

Bermingham, A., & Smeaton, A. F. (2009). A study of inter-annotator agreement for opinion retrieval. In

Proceedings of the 32nd annual international ACM SIGIR conference on research and development
in information retrieval (SIGIR 2009) (pp. 784–785). Boston, Massachusetts, USA.

Bethard, S., Yu, H., Thornton, A., Hatzivassiloglou, V., & Jurafsky, D. (2004). Automatic extraction of

opinion propositions and their holders. In Proceedings of the AAAI spring symposium on exploring
attitude and affect in text: Theories and applications (pp. 20–27). Palo Alto, California, USA.

Boldrini, E., Balahur, A., Martı́nez-Barco, P., & Montoyo, A. (2009). EmotiBlog: An annotation scheme

for emotion detection and analysis in non-traditional textual genres. In Proceedings of the 2009
international conference on data mining (DMIN 2009) (pp. 491–497). Las Vegas, Nevada, USA.

716 M. Van de Kauter et al.

123

http://www.lt3.ugent.be/en/projects/sentifm/
http://www.lt3.ugent.be/en/projects/sentifm/
http://www.lt3.ugent.be/en/projects/subtle/


Boldrini, E., Balahur, A., Martı́nez-Barco, P., & Montoyo, A. (2012). Using EmotiBlog to annotate and

analyse subjectivity in the new textual genres. Data Mining and Knowledge Discovery, 25(3),
603–634.

Breck, E., Choi, Y., & Cardie, C. (2007). Identifying expressions of opinion in context. In Proceedings of
the 20th international joint conference on artificial intelligence (IJCAI-2007) (pp. 2683–2688).

Hyderabad, India.

Choi, Y., Breck, E., & Cardie, C. (2006). Joint extraction of entities and relations for opinion recognition.

In Proceedings of the 2006 conference on empirical methods in natural language processing
(EMNLP 2006) (pp. 431–439). Sydney, Australia.

Choi, Y., & Cardie, C. (2008). Learning with compositional semantics as structural inference for

subsentential sentiment analysis. In Proceedings of the 2008 conference on empirical methods in
natural language processing (EMNLP 2008) (pp. 793–801). Honolulu, Hawaii, USA.

Choi, Y., Cardie, C., Riloff, E., & Patwardhan, S. (2005). Identifying sources of opinions with conditional

random fields and extraction patterns. In Proceedings of the conference on human language
technology and empirical methods in natural language processing (HLT-EMNLP 2005) (pp.

355–362). Vancouver, British Columbia, Canada.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1), 37–46.

Dabrowski, M., Acton, T., Jarzebowski, P., & O’Riain, S. (2010). Improving customer decisions using

product reviews—CROM—Car Review Opinion Miner. In Proceedings of the 6th international
conference on Web information systems and technologies, Volume 1 (WEBIST 2010) (pp. 354–357).
Valencia, Spain.

Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and

semantic classification of product reviews. In Proceedings of the 12th international conference on
World Wide Web (WWW 2003) (pp. 519–528). Budapest, Hungary.

Deng, L., Choi, Y., & Wiebe, J. (2013). Benefactive/malefactive event and writer attitude annotation. In

Proceedings of the 51st annual meeting of the association for computational linguistics (Vol. 2:
Short Papers) (pp. 120–125). Sofia, Bulgaria.

Desmet, B., & Hoste, V. (2014). Recognising suicidal messages in Dutch social media. In Proceedings of
the 9th international conference on language resources and evaluation (LREC 2014) (pp. 830–835).
Reykjavik, Iceland.

Devitt, A., & Ahmad, K. (2007). Sentiment polarity identification in financial news: A cohesion-based

approach. In Proceedings of the 45th annual meeting of the association of computational linguistics
(pp. 984–991). Prague, Czech Republic.

Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. In

Proceedings of the 2008 international conference on Web search and data mining (WSDM 2008)
(pp. 231–240). Palo Alto, California, USA.

Drury, B. & Almeida, J. J. (2011). Identification of fine-grained feature-based event and sentiment

phrases from business news stories. In Proceedings of the international conference on Web
intelligence, mining and semantics (WIMS 2011). Sogndal, Norway.

Esuli, A., & Sebastiani, F. (2006). SentiWordNet: A publicly available lexical resource for opinion

mining. In Proceedings of the 5th conference on language resources and evaluation (LREC 2006)
(pp. 417–422). Genoa, Italy.

Feng, S., Kang, J. S., Kuznetsova, P., & Choi, Y. (2013). Connotation Lexicon: A dash of sentiment

beneath the surface meaning. In Proceedings of the 51st annual meeting of the association for
computational linguistics (Vol. 1: Long Papers) (pp. 1774–1784). Sofia, Bulgaria.

Ferguson, P., O’Hare, N., Davy, M., Bermingham, A., Tattersall, S., Sheridan, P., et al. (2009). Exploring

the use of paragraph-level annotations for sentiment analysis of financial blogs. In Proceedings of
the 1st workshop on opinion mining and sentiment analysis (WOMSA 2009) (pp. 42–52). Seville,
Spain.

Girju, R. (2003). Automatic detection of causal relations for question answering. In Proceedings of the
ACL 2003 workshop on multilingual summarization and question answering, Vol. 12 (MultiSumQA
2003) (pp. 76–83). Sapporo, Japan.

Halliday, M. (1994). An introduction to functional grammar. London: Edward Arnold.

Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the 10th ACM
SIGKDD international conference on knowledge discovery and data mining (KDD 2004) (pp.

168–177). Seattle, Washington, USA.

Annotating explicit and implicit sentiment 717

123



Ikeda, D., Takamura, H., Ratinov, L.-A., & Okumura, M. (2008). Learning to shift the polarity of words

for sentiment classification. In Proceedings of the 3rd international joint conference on natural
language processing (IJCNLP 2008) (pp. 296–303). Hyderabad, India.

Kennedy, A., & Inkpen, D. (2006). Sentiment classification of movie reviews using contextual valence

shifters. Computational Intelligence, 22(2), 110–125.
Kessler, J. S., Eckert, M., Clark, L., & Nicolov, N. (2010). The ICWSM 2010 JDPA sentiment corpus for

the automotive domain. In 4th international AAAI conference on weblogs and social media data
workshop challenge (ICWSM-DWC 2010). Washington, DC, USA.

Kim, S.-M., & Hovy, E. (2005). Automatic detection of opinion bearing words and sentences. In

Companion volume to the proceedings of the 2nd international joint conference on natural language
processing (IJCNLP 2005) (pp. 61–66). Jeju Island, Korea.

Kim, S.-M., & Hovy, E. (2006). Extracting opinions, opinion holders, and topics expressed in online news

media text. In Proceedings of the workshop on sentiment and subjectivity in text (SST 2006) (pp.
1–8). Sydney, Australia.

Kouloumpis, E., Wilson, T., & Moore, J. (2011). Twitter sentiment analysis: The good the bad and the

OMG!. In Proceedings of the 5th international AAAI conference on weblogs and social media
(ICWSM 2011) (pp. 538–541) Barcelona, Spain.

Krippendorff, K. (1970). Estimating the reliability, systematic error and random error of interval data.

Educational and Psychological Measurement, 30, 61–70.
Krippendorff, K. (1980). Content analysis: An introduction to its methodology, chapter 12. Beverly Hills:

Sage.

Krippendorff, K. (2004). Content analysis: An introduction to its methodology (2nd ed.). Thousand Oaks:

Sage.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data.

Biometrics, 33(1), 159–174.
Li, S., Lee, S. Y. M., Chen, Y., Huang, C.-R., & Zhou, G. (2010). Sentiment classification and polarity

shifting. In Proceedings of the 23rd international conference on computational linguistics (Coling
2010) (pp. 635–643). Beijing, China.

Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language
technologies. San Rafael: Morgan & Claypool.

Macdonald, C., Ounis, I., & Soboroff, I. (2007). Overview of the TREC-2007 blog Track. In Proceedings
of the 16th text REtrieval conference (TREC 2007) (pp. 31–43). Gaithersburg, Maryland, USA.

Martin, J. R., & White, P. R. (2005). The language of evaluation: Appraisal in English. Hampshire/New

York: Palgrave Macmillan.

Musat, C., & Trausan-Matu, S. (2010). The impact of valence shifters on mining implicit economic

opinions. In Proceedings of the 14th international conference on artificial intelligence: Method-
ology, systems, and applications (AIMSA 2010), volume 6304 of Lecture Notes in Computer Science
(pp. 131–140). Springer.

Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., & Wilson, T. (2013). SemEval-2013

Task 2: Sentiment analysis in Twitter. In Proceedings of the 7th international workshop on semantic
evaluation (SemEval 2013) (pp. 312–320). Atlanta, Georgia, USA.

Nigam, K., & Hurst, M. (2004). Towards a robust metric of opinion. In Proceedings of the AAAI spring
symposium on exploring attitude and affect in text: Theories and applications (pp. 598–603). Palo
Alto, California, USA.

O’Hare, N., Davy, M., Bermingham, A., Ferguson, P., Sheridan, P., Gurrin, C., et al. (2009). Topic-

dependent sentiment analysis of financial blogs. In Proceedings of the 1st international CIKM
workshop on topic-sentiment analysis for mass opinion measurement (TSA 2009) (pp. 9–16). Hong
Kong, China.

Ounis, I., de Rijke, M., Macdonald, C., Mishne, G., & Soboroff, I. (2006). Overview of the TREC-2006

blog track. In Proceedings of the 15th text REtrieval conference (TREC 2006) (pp. 17–31).

Gaithersburg, Maryland, USA.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in
Information Retrieval, 2(1–2), 1–135.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine

learning techniques. In Proceedings of the ACL-02 conference on empirical methods in natural
language processing, volume 10 (EMNLP 2002) (pp. 79–86). Philadelphia, Pennsylvania, USA.

718 M. Van de Kauter et al.

123



Polanyi, L., & Zaenen, A. (2004). Contextual valence shifters. In Proceedings of the AAAI spring
symposium on exploring attitude and affect in text: Theories and applications (pp. 106–111). Palo
Alto, California, USA.

Pontiki, M., Papageorgiou, H., Galanis, D., Androutsopoulos, I., Pavlopoulos, J., & Manandhar, S.

(2014). SemEval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th
international workshop on semantic evaluation (SemEval 2014) (pp. 27–35). Dublin, Ireland.

Popescu, A.-M., & Etzioni, O. (2007). Natural language processing and text mining, chapter Extracting
product features and opinions from reviews. London: Springer.

Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A comprehensive grammar of the English
language. London: Longman.

Read, J., & Carroll, J. (2012). Annotating expressions of appraisal in English. Language Resources and
Evaluation, 46, 421–447.

Riloff, E., & Wiebe, J. (2003). Learning extraction patterns for subjective expressions. In Proceedings of
the 2003 conference on empirical methods in natural language processing (EMNLP 2003) (pp.

105–112). Sapporo, Japan.

Roberts, K., Roach, M. A., Johnson, J., Guthrie, J., & Harabagiu, S. M. (2012). EmpaTweet: Annotating

and detecting emotions on Twitter. In Proceedings of the 8th international conference on language
resources and evaluation (LREC 2012) (pp. 3806–3813). Istanbul, Turkey.

Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information,
44(4), 695–729.

Seki, Y., Evans, D. K., Ku, L.-W., Chen, H.-H., Kando, N., & Lin, C.-Y. (2007). Overview of opinion

analysis pilot task at NTCIR-6. In Proceedings of the workshop meeting of the National Institute of
Informatics (NII) test collection for information retrieval systems (NTCIR-6) (pp. 265–278). Tokyo,
Japan.

Seki, Y., Evans, D. K., Ku, L.-W., Sun, L., Chen, H.-H., & Kando, N. (2008). Overview of multilingual

opinion analysis task at NTCIR-7. In Proceedings of the 7th NTCIR workshop meeting on evaluation
of information access technologies (NTCIR-7) (pp. 185–203). Tokyo, Japan.

Somasundaran, S., Ruppenhofer, J., & Wiebe, J. (2008). Discourse level opinion relations: An annotation

study. In Proceedings of the 9th SIGdial workshop on discourse and dialogue (SIGdial 2008) (pp.
129–137). Columbus, Ohio, USA.
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