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KEY POINTS

e Among alternative treatment approaches for attention-deficit/hyperactivity disorder
(ADHD), neurofeedback has gained empirical support in recent years.

¢ Via neurofeedback, children with ADHD are trained to regulate their neurophysiologic pro-
file or to bring it closer to that of nonaffected children; learning of self-regulation is thus a
key mechanism.

e According to recent meta-analytic evidence, neurofeedback leads to significant de-
creases of ADHD core symptoms; however, if only probably blinded ratings are applied,
these effects were reduced to a statistical trend. The evidence remains inconclusive
because subsequent studies could demonstrate neither learning of self-regulation nor sig-
nificant effects for the best blinded assessments.

e There is a strong need for more evidence from well-blinded, methodologically sound, and
sensitive trials demonstrating also learning of self-regulation, before neurofeedback can
be assigned the highest level of evidence as a front-line treatment of ADHD.
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Continued

e Future research should focus on testing different types of neurofeedback techniques, es-
tablishing the quality of the intervention, the long-term stability of effects, and predictors
and mediators of response.

e Neurofeedback may be used within a multimodal treatment setting.

Abbreviations

ADHD Attention-deficit/hyperactivity disorder

CNV Contingent negative variation

EEG Electroencephalography

ERP Event-related potential

fMRI Functional magnetic resonance imaging

NICE National Institute for Health and Clinical Excellence
QEEG Quantitative electroencephalography

SCP Slow cortical potential

SMR Sensorimotor rhythm

INTRODUCTION/BACKGROUND
Target of Treatment

Attention-deficit/hyperactivity disorder (ADHD) is the most common psychiatric disor-
der of childhood with an estimated prevalence of about 5% in school-aged children.’
Core symptoms include impaired attention and/or hyperactivity/impulsivity. ADHD
often has a chronic course with up to 65% of affected children displaying ADHD symp-
toms in adulthood.? ADHD is associated with high levels of externalizing (eg,
oppositional-defiant and conduct disorders) and internalizing (eg, depression and
anxiety) comorbidity as well as learning disorders and leads to impairment in various
domains, including poor academic performance, lower occupational success, poor
social relationships, and higher risk-taking behavior.

Need for the Treatment

Because of the significant impact of ADHD on children’s functioning, considerable
effort has been directed at developing effective treatments. Although treatment with
psychostimulant and non-psychostimulant medication is efficacious® and widely
used, it has several limitations: a considerable minority of children treated with stim-
ulants either fail to show an improvement in ADHD symptoms or suffer adverse effects
on sleep, appetite, growth, and, less commonly, the cardiovascular system.*® In addi-
tion, normalization is rare, and long-term effectiveness remains to be established.
Some parents, patients, and/or clinicians have a preference for nonpharmacologic
treatments. In summary, these limitations highlight the need for therapeutic innovation
in ADHD to develop effective nonpharmacologic interventions that can improve short-
term and long-term outcomes.

Arange of nonpharmacologic interventions is available to treat ADHD (eg, psycholog-
ical interventions, dietary elimination strategies, nutritional supplements, and herbal
and homeopathic treatments). Evidence for the efficacy of some of these approaches
has been partly supported in systematic reviews and meta-analyses, for example,
Refs.® % Because of the inclusion of nonrandomized controlled trials designs, non-
ADHD samples, and/or non-ADHD outcomes, current meta-analyses allow only limited
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conclusions to be drawn regarding the effect of these interventions on core ADHD
symptoms.’’ Among nonpharmacologic treatment approaches, neurofeedback has
emerged as a promising noninvasive treatment for children with ADHD. Neurofeedback
is a form of biofeedback, which itself is based on behavior therapy. It may be best
described as a training of self-regulation aiming to achieve control over brain activity
patterns or to normalize them and thereby reduce the symptoms of ADHD. Neurofeed-
back with electroencephalography (EEG) (EEG-biofeedback) has been used as a treat-
ment strategy since the 1970s."? Initially, the lack of suitably controlled large-scale
studies inhibited the acceptance of neurofeedback within the wider psychological, psy-
chiatric, and educational communities. Neurofeedback over time has gained more
empirical support.® This article reviews the underlying theory and empirical research
on the use of neurofeedback in children and adolescents with ADHD.

INTERVENTIONS
Theoretic Overview: Why Does Theory Suggest the Treatment Should Work?

The growing acceptance of neurofeedback can be understood against the backdrop
of an increased understanding of the neurodevelopmental basis of ADHD. The ratio-
nale for using neurofeedback as an intervention in ADHD derives from the consistent
observation of altered brain activation in many children with ADHD detected in EEG
and imaging studies. By repeated training of improved cortical (or subcortical) self-
regulation, neurofeedback aims to address these deficits by making use of the brain’s
plasticity. Available treatment protocols mainly address 2 different kinds of deviant
cortical activity in ADHD children: although EEG frequency band training is directed
at the modification of oscillatory brain activity (eg, the reduction of slow wave activity
and increase of faster activity), the training of slow cortical potentials (SCPs) ad-
dresses the regulation of phasic cortical activity to optimize allocation of cortical re-
sources. Key findings of EEG studies in ADHD are summarized in the following
paragraphs to clarify the theoretic background for the choice of electrophysiologic
treatment targets.

EEG frequency band studies

EEG research dating back 80 years has established the presence of various abnor-
malities of oscillatory brain activity in children with ADHD (then named “behavior
problem children”). These early cross-sectional studies used visual evaluation of
paper recordings of EEG; the most common finding was an increase in slow-wave
activity, often in frontal regions.®'* Findings of “cortical slowing” have been repli-
cated by a variety of studies applying quantitative electroencephalography (QEEG).
QEEG applies computerized mathematical algorithms (typically spectral analysis us-
ing fast Fourier transformation) to convert raw EEG data into frequency bands of in-
terest for statistical comparisons between conditions and groups or against norms.
Traditionally, 5 wide frequency bands have been studied, typically defined as delta
(1.5-3.5 Hz), theta (3.5-7.5 Hz), alpha (7.5-12.5 Hz), beta (12.5-30 Hz), and finally,
also gamma (30-70 Hz). The absolute and relative power (ie, percentage of total po-
wer) in each frequency band is then calculated. Pediatric EEG differs from adult EEG
because of developmental maturation. Decreases in the lower frequency bands are
most prominent during the first years of life but continue until adulthood and parallel
decreases in hemodynamic fluctuations,’® whereas increases in relative alpha and
beta typically continue until adolescence or adulthood.'® Most EEG and QEEG
studies have initially reported that a substantial group of ADHD children show
elevated levels of slow wave (delta and theta) activity in comparison with healthy chil-
dren and psychiatric controls.””'® The most reliable measures of this have been
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increased relative theta power, whereas reduced amounts of relative alpha and beta
18 are less consistent. In addition, the theta/alpha and theta/beta ratios have been
claimed to be reliable measures differentiating ADHD and control children.'® Mean-
while, several studies using cluster analysis have reported distinct EEG-defined sub-
groups within their ADHD samples,?®2! comprising among others a cortical
hypoarousal subtype (increased relative theta and theta/beta ratio), a subtype indic-
ative of a maturational lag, and a hyperarousal subtype (excess of beta activity).
Because of more recent results, however, doubt has been cast on claims that the
theta and beta ratio may serve as simple and reliable QEEG markers for ADHD,
which has led to a major paradigm shift toward neurophysiologic subtyping. Indeed,
increasing evidence across clinical groups and studies now indicates that the theta
or theta/beta increase is not a specific marker of ADHD??2° and may also be more
closely related to impaired activation following task demands rather than to hypoar-
ousal,?* thus implicating somewhat different regulation mechanisms.?® As a conse-
quence, subgrouping or clustering approaches to QEEG deviance characterization
may better characterize ADHD as a heterogeneous disorder.?® The longitudinal sta-
bility of alterations in EEG frequency bands due to ADHD from childhood into adult-
hood has also been questioned in recent years.?>2’

Studies of event-related SCP

Event-related potentials (ERPs) are small voltage fluctuations in the EEG resulting from
evoked brain activity. ERP components reflect, with high temporal resolution, the pat-
terns of neuronal activity in response to stimuli. ERPs in ADHD allow the examination
of electrical representations of preparatory and preattentive processes, auditory and
visual attention systems, the frontal inhibition system, and time processing. With re-
gard to ADHD, the most replicated and robust findings in early components are a
lower amplitude, longer latency, and different topography of the P300 in affected chil-
dren compared with healthy controls.?® However, neurofeedback of ERPs almost
exclusively addresses changes in later, slower, or sustained components, which are
registered in a latency range of 500 to 1000 ms after cue presentation (SCPs). SCPs
represent changes of cortical direct current electrical activity and have been related
to the level of excitation of underlying cortical regions. Negative SCP shifts may reflect
the depolarization of large cortical cell assemblies leading to higher excitability and the
allocation of more neuronal resources; positive shifts reflect reduced excitability or
even inhibition.?° Experimental evidence from animals and humans supports the
idea that the contingent negative variation (CNV) of the typical SCP is closely related
to cognitive preparation, decision-making, and time estimation. Larger CNV ampli-
tudes reveal greater activation in sets of neurons involved in time processing.*’
Although alterations of some faster cognitive and inhibitory ERP components such
as P300 in ADHD patients diminish in early adulthood (partly compatible with the
developmental lag model), decreased CNV amplitudes remain detectable even in
young adult ADHD subjects, regardless of their remission status.>! These results
seem to indicate residual attentional dysfunctions and timing deficits even in young
adults with clinically remitted ADHD.

Description: How Is the Treatment Delivered?

The aim of neurofeedback training can be thought of in 1 of 2 related ways: first, to teach
ADHD children to adapt their neurophysiologic profile to more closely approximate that
of typically developing children. Second, to help them learn to regulate attentional
states and brain functions better on demand, resulting in subsequent improvements
of symptoms. The self-regulation of cortical activity is realized through a process of
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operant learning using real-time representation of EEG parameters. Many different
animated feedback presentations that are suited for children and adolescents are
now available. EEG measures of interest are converted into visual or acoustic signals
and fed back in real time. In some feedback animations, the cortical activity is, for
example, represented by the height or speed of a feedback object (eg, a ball, plane,
or cartoon character moving across the screen). If the EEG activity is regulated in the
desired way, the object rises, falls, or advances more quickly. In other animations,
the patient must try to view a movie, or change the color of an object on the screen
by generating the neural activity of interest. To date, no studies directly assessed the
effects of feedback modality (visual or auditory or combined) on outcome measures.*?
Successful trials are immediately rewarded by a tone, a “smiley,” or points. Therefore,
neurofeedback may be regarded as “a fine-grained form of cognitive behavior modifi-
cation.”®® Individual parameter thresholds are typically adjusted throughout the course
of the training so that an encouraging amount of positive feedback is guaranteed. Like
other operant training approaches, neurofeedback requires a transfer from the training
context to the everyday life of the patient. Therefore, some training trials without feed-
back can be incorporated to catalyze generalization.

Training protocols

Based on the above-mentioned alterations of electrophysiologic parameters (QEEG and
ERPs) in ADHD, clinicians utilize 2 basic types of training protocols. In neurofeedback,
the term “protocol” also refers to a wide range of details that form a part of the overall
training paradigm (eg, a specific selection of reinforcement and inhibitory parameters),
and the EEG-montage to deliver the training.®2 In ADHD, a conventional QEEG neuro-
feedback protocol for reducing inattention and impulsivity consists of operant suppress-
ing of theta activity and enhancement of beta activity.®>* To reduce hypermotoric
symptoms, enhancement of sensorimotor rhythm (SMR; low beta 12-15 Hz activity) is
sometimes used in addition to this theta-beta protocol. Based on the electrophysiologic
evidence of altered SCPs in ADHD, a different protocol has emerged aiming at the mod-
ifications of SCPs to regulate cortical excitation thresholds.3°3¢

Empirical Support

The quality of study design and reporting regarding the effectiveness of neurofeed-
back on ADHD have both clearly improved in recent years.®>”-*® Several controlled
studies produced evidence of short-term improvements in core symptoms, neuro-
psychological functions, and electrophysiologic correlates of ADHD; for overviews,
see Refs.®?*2 Meanwhile, meta-analyses have been published on the effects of
neurofeedback on ADHD symptoms. The first meta-analysis on the effects of neuro-
feedback on ADHD core symptoms® included data on 467 subjects from 10 pro-
spective, controlled trials. Control conditions comprised waiting list groups,
interventions like EMG-feedback, and computerized cognitive training and stimulant
pharmacotherapy. Mean effect sizes (Cohen’s ) for neurofeedback were 0.81 for
inattention, 0.39 for hyperactivity (both assessed via rating scales), and 0.68 for
impulsivity as measured by continuous performance tests. No differential improve-
ment was observed between the 2 basic protocols (QEEG and SCP), in line with
direct comparisons.*®** Some of the studies included in this meta-analysis have,
however, been criticized for lacking appropriate controls and follow-up, failing to
randomly allocate participants to treatment conditions, using poor diagnostic
criteria, and using subjective and unblinded outcome measures.®”*° In addition,
they failed to take into account the influence of the training setting provided during
extensive biofeedback.
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A subsequent meta-analysis from the European ADHD Guidelines Group,'" using a
more rigorous and selective approach, included 8 studies meeting high methodolog-
ical standards (Table 1). Neurofeedback yielded a significant (P<.0001) treatment
effect (effect size [ES] = 0.59; 95% CI: 0.31-0.87) using ADHD scores from raters
(often unblinded) closest to the therapeutic setting. These effects were substantially
reduced to a statistical trend (P = .07) when probably blinded ratings were applied
(ES = 0.30; 95% CI: —0.02-0.61). Because blinded assessments were only available
from 4 of the 8 included studies, the authors concluded that better “evidence of effi-
cacy from blinded assessments is required before Neurofeedback is likely to be sup-
ported as ADHD treatment.”"" Since then, and by March 2014 (when this article was
finalized), several neurofeedback studies targeting children with ADHD meeting similar
rigorous inclusion criteria and using at least partly blinded measures have been pub-
lished (Table 2). Although these recent studies were well controlled, most used partly
innovative but nonstandard protocols or equipment and none demonstrated system-
atic learning of cortical control (considered a prerequisite for specificity, see later dis-
cussion). Although only the largest study found a significant advantage for
neurofeedback over control treatment on any primary outcome, the nonsignificant
advantage reached small to medium effect size for some blinded primary outcomes
in all studies. The smallest study®® compared neurofeedback (tomographic SCP
plus frequency neurofeedback) to EMG biofeedback with effective parent blinding.
The advantage for tomographic neurofeedback was not significant but reached a
medium effect size for all (blinded) parent ratings (ES = 0.57 for the total ADHD score).
The larger study comparing individualized frequency training to sham control*®
included the data from Ref.“® No significant advantage for the (blinded) primary out-
comes was observed, but the effect for the decrease of hyperactivity/impulsivity
symptoms reached a small to medium effect size (ES = 0.31, computed from their
data). The largest recent study*’ used school-based neurofeedback. Although
blinding of participants, parents, and teachers was not attempted in this study,
blinded behavioral classroom observations indicated a significant reduction (ES =
0.43) of verbal-motor ADHD (off-task) behaviors corresponding to hyperactivity/impul-
sivity after the intervention,*” as well as at follow-up when using a nonlinear model of
change.*® The advantage of neurofeedback was also maintained for blinded class-
room observation when compared with an active computer training, including atten-
tion and working memory games of similar duration and intensity. However, when
teacher ratings were used as the best blinded outcome for,>*° and when the class-
room observations of inattention were included for,*° following the protocol of,'" these
moderate effects were reduced substantially and no longer significant. This consider-
ably less positive picture, and the lack of stability across properly blinded outcomes,
may reflect reduced bias (due to an unknown mechanism given proper blinding), but
could also suggest that teacher and classroom observations are less sensitive to neu-
rofeedback effects on core ADHD symptoms than parent ratings. The results highlight
the need for future studies to examine in more detail the reasons for the differences
between outcomes.

Methodological issues

The most recent neurofeedback meta-analysis'' has been criticized for underestimat-
ing neurofeedback efficacy because it included trials with training approaches with
nonstandard protocols impeding learning and uncontrolled changes in medication
dosage.®° However, these criticisms reflect mainly problems inherent in the field rather
than the meta-analysis per se. Controlling for medication changes (through sensitivity
analysis) was indeed considered important and part of the authors’ protocol,’" but



Table 1
Characteristics of studies included in the meta-analysis of the European ADHD Guidelines Group
N
Duration of Treatment; Treatment Age Range in
Study Design Number of Sessions Treatment Control Condition Control Years
Bakshayesh et al,’® 2011 RCT; parallel 30 sessions; 10-15 wk Theta-Beta EMG 18 6-14
groups 17
Beauregard & Levesque,®® RCT; parallel 40 sessions; 13 wk Theta-Beta No treatment 15 8-12
2006 groups 5
Gevensleben et al,** 2009 RCT 36 sessions, 2 mo 18 sessions Theta-Beta + Attention skills training 59 8-12
18 sessions SCP in 35
balanced order
Heinrich et al,*> 2004 RCT 25 sessions; 3 wk SCP Waiting list 13 7-13
9
Holtmann et al,”” 2009 RCT, parallel 20 sessions in 2 wk Theta-Beta Attention skills training 20 7-12
groups 14
Lansbergen et al,*¢ 2011 Stratified, RCT 30 sessions, 3 mo Individualized frequency Placebo, neurofeedback 8 8-15
band training 6
Linden et al,** 1996 RCT 40 sessions, 6 mo Theta-Beta Waiting list 9 5-15
9
Steiner et al,*° 2011 RCT Average 23.4 sessions,  Theta-Beta Waiting list 13 Not reported
4 mo 13 Mean 12.4 £ 0.9

Abbreviation: RCT, randomized controlled trial.
Adapted from Sonuga-Barke EJ, Brandeis D, Cortese S, et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized
controlled trials of dietary and psychological treatments. Am J Psychiatry 2013;170(3):280.
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Table 2
Characteristics of studies published following the meta-analysis of the European ADHD Guidelines Group meeting inclusion criteria or testing neurofeedback
against medication
Duration of N
Treatment; Number Treatment
Study Design of Sessions Treatment Control Condition Control Age Range in Years
Van Dongen- Stratified, RCT 30 sessions, 3 mo Individualized Placebo, 22 8-15
Boomsma et al,* frequency band neurofeedback 19 Mean 10.62 + 2.25
2013 training
Maurizio et al,?® RCT 36 units in 18 SCP and Theta-Beta EMG biofeedback 13 8.5-12.9
2014 sessions, 6 mo (tomographic) (matched) 12 Means 10.6 + 1.3,
10.0+ 1.2
Steiner et al,*’ 2014 RCT 40 sessions, 5 mo, at Theta-Beta Community 34 Not reported
school treatment/ 36 Mean 12.4 +£ 0.9
standard care
Duric et al,>> 2012 RCT, head-to-head, 30 sessions, 2.5 mo Theta-Beta Medication 6-18
combination Medication + Theta-
Beta
Meisel et al,® 2013 RCT, head-to-head 40 sessions, 5 mo Theta-Beta Medication 12 7-14
management 1 Means 9.53 + 1.8,
8.9+ 1.53
Ogrim & Hestad,** RCT, head-to-head 30 sessions, Theta-Beta Medication 7-16
2013 7-11 mo management

8

|e 19 uuewy|oH

Abbreviation: RCT, randomized controlled trial.
Adapted from Sonuga-Barke EJ, Brandeis D, Cortese S, et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized
controlled trials of dietary and psychological treatments. Am J Psychiatry 2013;170(3):280.
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required a larger number of probably blinded studies.®’ The lack of standards
regarding neurofeedback protocols is even more problematic for the field. Controlled
studies on the optimal frequency bands, scalp sites, feedback timings, and thresholds
are largely lacking, and clinical practice is still based on early animal studies and diver-
gent clinical experience without control. This seems particularly problematic for QEEG
(frequency band) training, whereby recent evidence no longer supports the presump-
tion that increased theta and beta or SMR reduction are reliable ADHD markers (dis-
cussed above). These findings question the standard unidirectional “normalization”
rationale of QEEG neurofeedback and suggest instead the adoption of bidirectional,*?
individualized,*®-°® or SCP-based regulation approaches. In addition, allowing “prob-
ably blinded” rather than strictly blinded measures in the largest studies may well have
counterbalanced this bias in this meta-analysis.

A particularly relevant question from a clinical point of view is how neurofeedback
compares to standard medication in the short term. Arns and coworkers® included
a meta-analysis of 5 such head-to-head comparison studies of neurofeedback with
stimulant medication and found no difference for impulsivity ratings. Although these
studies were not randomized or blinded, the findings are difficult to explain through
expectancy bias, which would be likely in favor of the “gold-standard” stimulant treat-
ment in such a comparison. Several randomized controlled trial studies have since
compared neurofeedback to medication alone or in combination (see Table 2).
Although one of them®* found neurofeedback effects inferior to medication effects,
the other 2 studies®®°° found no differences between medication and neurofeedback
effects, and one study®® reported that neurofeedback or medication alone was as
effective as the combination.

Relation between training performance and clinical improvement
A key question regarding the specificity of the effects is whether treatment success is
related to the degree of effective learning during neurofeedback (ie, the learning curve
at the neural level). Some studies reported correlations between measures of
improved cortical self-regulation and clinical gains. In one SCP study,*® participants
were divided into groups of successful or unsuccessful regulators, based on the ability
to produce the required EEG activity in negativity trials without feedback. Children who
showed good performance in cortical self-regulation demonstrated a better clinical
outcome at the end of training than the unsuccessful regulators. Evidence from
Ref.>” points in a similar direction. Although only half the children in their neurofeed-
back condition learned to regulate cortical activation during a transfer condition
(without direct feedback), the neurofeedback training performance of these good per-
formers was closely related to clinical improvement in hyperactivity (- = 0.81) and
impulsivity (r = 0.75). However, the poor regulators also showed comparable clinical
improvement, indicating considerable nonspecific effects. Neurofeedback may also
involve learning to reduce motor activity through artifact feedback and instructions
to sit still, but this type of learning does not seem to directly account for clinical
improvement.>? Similarly, although learning was superior for EMG biofeedback (tar-
geting motor control, the control condition) compared with neurofeedback (targeting
cortical control) in one study,?® the clinical effects did not reflect that advantage and
even nonsignificantly favored neurofeedback. These results also illustrate that learning
in the control condition may be required to match motivation and the experience of
self-efficacy and suggest that sham control conditions that do not allow learning
may not be suitable.

Together, these findings indicate that although learning can correlate with clinical
improvement and thereby provide important evidence for the specificity of effects,
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the relation may not be trivial, may involve learning of other behavioral and physiologic
states than the targeted ones, and may involve delays until evident in clinical improve-
ment. Demographic, symptomatic, or other patient characteristics, which might pre-
dict successful neurofeedback learning and transfer performance, have not yet
been identified.®>” In summary, the increased use of blinded ADHD measures and
multiple control conditions in recent neurofeedback research is encouraging, but
most recent results remain ambiguous without evidence for the learning of self-regu-
lation®®-°8 and leave open whether the neurofeedback protocols were compromised.
Effect size considerations still tend to support some efficacy for neurofeedback, at
least when considering some blinded outcomes, and may yield a slightly more positive
picture than offered in the recent meta-analysis,'" but evidence from larger studies us-
ing standard neurofeedback and examining learning under way®® will be crucial to
allow firmer conclusions. Also, most of these finding were obtained for groups
including a considerable proportion of medicated ADHD patients, and most support
the use of neurofeedback only in multimodal treatment schemes (but see Ref.>%). How-
ever, the best blinded controlled effects were nonsignificant in the small group studies
and remained considerably reduced when compared with more proximal ratings.
These recent studies also raise the possibility that “good,” partly active control condi-
tions, may themselves bring about considerable improvement in ADHD symptoms,
with 19% symptom reduction for EMG biofeedback?® and 17.8% for sham neurofeed-
back,*® compared with 9.4% reduction for the computer training control in the largest
study.** Further research should clarify whether these sizable and clinically relevant
effects are just nonspecific placebo effects mediated by expectancy, or whether
active attempts to learn physiologic self-regulation through feedback and transfer,
even though unsuccessful by design or targeting peripheral control, induce similar
brain plasticity as implicated for neurofeedback.

Imaging studies

Neurofeedback appears to involve regulation of an extended cortical and subcortical
network, with partly distinct regions for central negativity (activation) and positivity
(deactivation) trials following successful SCP training. In a first controlled functional
magnetic resonance imaging (fMRI) study on neurofeedback in ADHD,®° it was
reported that the enhancement of SMR, beta activity, and the suppression of theta
activity led to a normalization of neural activity within brain regions key to selective
attention and response inhibition (ie, the anterior cingulate cortex, caudate nucleus,
and substantia nigra). As these studies lack an active control condition, the possibil-
ity that the effects may be explained by unspecific variables of the treatment setting
cannot be excluded. An essential part of neurofeedback training is the reinforcement
of desired “behavior,” which will in itself induce the production of cortical (and, at
least indirectly, subcortical) brain alterations in regions known to be involved in rein-
forcement processing. Via visual feedback, the trainee receives a high amount of
rewarding stimuli throughout the training. It could, therefore, be hypothesized that
part of the clinical outcome could be mediated by effects on the reward system.
Simultaneous EEG-fMRI imaging findings during reward anticipation in fact demon-
strated that negative SCPs (CNV activity) correlated with cortical and subcortical
reward system activation.®’ Evidence to support this prediction in ADHD is still
limited, but preliminary results of an ongoing study seem to point in this direction.®?
Although participants with ADHD showed a significant hypoactivation in the neural
reward pathway before training compared with healthy controls,?® sessions of
SCP-neurofeedback led to a modification and partial functional normalization in
pivotal reward-related structures.
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Stability over time

A major advantage of neurofeedback and other neurotherapeutic approaches®® over
typical pharmacologic interventions (as for other behavioral, learning-based interven-
tions) is the potential for sustained, long-term benefits after successful completion of
treatment. Investigations®® indeed found positive effects on ADHD symptoms being
stable 6 months after training. Similarly, 2 studies*®5® reported sustained advantages
following neurofeedback at 6-month follow-ups, and one study®* even reported stabil-
ity after 2 years, following neurofeedback and a few booster sessions. However, inter-
pretation of these findings is complicated by the fact that most ratings of long-term
effects (except for the behavioral observation measure in Ref.*®) were not blinded
and thus subject to bias.

Despite evidence for beneficial effects of neurofeedback on ADHD symptoms, the
National Institute for Health and Clinical Excellence (NICE) guidelines on ADHD do not
recommend it as a treatment option,®® but the most recently published studies were
not yet part of the NICE review process.

CLINICAL DECISION-MAKING
Who Is Most Likely to Respond?

To guide the decision whether a training approach which is as intensive and time-
consuming as neurofeedback is justified for a given patient, a better understanding
is needed of how treatment effects are related to individual clinical and neurocogni-
tive characteristics and electrophysiologic markers. Predictors and mediators of
response in subgroups of ADHD patients and/or individual patients have only been
studied in some of the most recent ftrials. Initial evidence for predictive and
protocol-specific EEG or ERP markers is encouraging, as detailed in the following
subsections.

Relation between pretreatment EEG characteristics and clinical improvement
Pretraining EEG measures seem to indicate later treatment response at least for SCP
training (while similar findings have not yet been reported for EEG frequency band
training). A larger pretraining CNV is associated with a larger reduction of ADHD symp-
toms for SCP training, accounting for about 20% of the variance in outcome.®® Simi-
larly, pretraining alpha resting activity is associated with behavioral improvements.
Concerning the improvement of ADHD core symptoms induced by the SCP training,
nearly 30% of the variance was explained by the combined predictor variables CNV
and alpha activity.

Training intensity

Positive changes on the behavioral, neurophysiologic, and neuropsychological
levels have been reported after as few as 20 and as many as 40 sessions of neuro-
feedback. Although no trial has systematically examined the number, frequency,
and duration of sessions required to elicit a positive and enduring effect, a meta-
analysis of 6 indicated a moderate positive correlation (r = 0.55) between the treat-
ment effect on inattention and the number of training sessions across studies.
Achievement of cortical self-regulation via neurofeedback was also related to the
individual’s ability for visual imagery.®” This line of thought has not been further pur-
sued in recent years, but the limited strength of the reported correlations (r = 0.37)
and clinical experience suggests that imagery may only explain a small proportion
of the interindividual variance in learning and treatment outcome and that other fac-
tors may play a substantial role in the mechanisms responsible for treatment
response to neurofeedback.

1
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Role of parents and parenting style on treatment success

Parenting style may moderate the effectiveness of neurofeedback. Patients whose
parents were systematically using reinforcement principles in their normal practice
were more likely to demonstrate a reduction in the frequency of core ADHD symptoms
following neurofeedback training than children of parents with a nonsystematic
parenting style.’® When “systematic” parenting approaches were used, improve-
ments were even maintained when the concomitant medication was discontinued.
Similar results®” indicated that parental support significantly mediates clinical
improvement for both learners and nonlearners of self-regulation. Other less specific
factors, such as effort, time (and attention!) invested, improved feedback and reward
processing, and learning to reduce motor hyperactivity and to sit still to avoid arti-
facts,®? may also contribute to the considerable effects common to neurofeedback
and partly active control trainings.

What Outcomes Are Most Likely to Be Affected by Treatment?

Neurofeedback aims at the improvement of ADHD core symptoms and their underly-
ing neuropsychological pathways. Regarding the 3 symptom domains of ADHD, cur-
rent evidence suggests stronger effects of neurofeedback on attention and impulsivity
than hyperactivity.®

What Are the Contraindications for Treatment?

There are no known contraindications for standard neurofeedback protocols. How-
ever, because epilepsy has been treated with SCP downregulation targeting positiv-
ity/deactivation,®® epilepsy may represent a contraindication for the typical SCP
upregulation protocol (ie, targeting negativity/activation in ADHD). Further research
is required for this.

What Are Potential Adverse Effects of the Treatment?

To date, no severe or permanent side effects of neurofeedback have been reported,
and adverse effects systematically decrease over training as for placebo control
with blinded assessment.*®> Headaches and fatigue have been occasionally docu-
mented, which seem to be attributable to the intentional demands and associated
muscular tension during training sessions.*® Some patients with a simultaneous and
well-tolerated regime of psychostimulants may experience typical medication side
effects in the course of neurofeedback training that may require dose adjustment.
This phenomenon might be related to the additional stimulating effect of the
training.

How Should the Treatment Be Sequenced and/or Integrated with Drug Therapy and
with Other Nondrug Treatments?

Although current evidence has not sufficiently addressed the differential efficacy of the
existing neurofeedback protocols, evidence from one study suggests that the order of
SCP and QEEG can affect results (favoring a start with the simpler QEEG training).
Clinical practice may be based on established principles of learning; make use of clear
instructions, the importance of regular, short, and repetitive sessions; and transfer into
everyday life. Some of the high-quality studies with longer follow-up included “booster
sessions” time-tabled after several weeks after treatment to refresh the ability of self-
regulation and to maintain treatment effects.
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FUTURE DIRECTIONS

The question whether one of the established training protocols (SCP training and
training of EEG frequency bands) is more effective than the other is not yet fully
resolved, but the initial evidence for distinct EEG and ERP outcome predictors sug-
gests that the response may depend on the neurophysiologic subtype. Future
research on neurofeedback should focus on such differential effects (which inter-
vention works for whom?). Although EEG-based neurofeedback can build on a large
evidence base of controlled studies and will continue to dominate for reasons of low
cost and ease of use, new neurofeedback techniques based on hemodynamic mea-
sures are emerging. Both near infrared spectroscopy neurofeedback’® and real-
time fMRI neurofeedback may offer advantages in terms of targeting well-defined
brain regions, and such studies are ongoing.”" Notably, real-time fMRI additionally
opens the possibility for more rapid learning to regulate deep structures, such as
the dopaminergic midbrain regions’® implicated in ADHD along with cortical
regions.”®

Additional Outcome Parameters

With regard to the multiple identified pathways to ADHD, initial steps have been
undertaken to target deficits in executive dysfunction (eg, making use of inhibition
or working memory trainings; see the article by Sonuga-Barke and colleagues
elsewhere in this issue) and reward-related impairments. All neurofeedback proto-
cols are characterized by reinforcement for the improvement of targeted “neural
behavior,” but the impact of training-induced neurobiological and neuropsycho-
logical changes on reward-related functions and structures has been rarely stud-
ied yet. In addition, temporal processing deficits as the third dissociable
neuropsychological component of ADHD have not been explicitly addressed in
many intervention studies. Neurofeedback studies aiming at the modulation of
the CNV as an on-line marker of temporal coding and time-based decision-making
may explicitly address impaired timing as an important treatment outcome.”*

SUMMARY

Based on current knowledge, neurofeedback is likely to be used as an element in
the broader set of nhonpharmacologic treatments for ADHD in multimodal therapy.
It has recently been claimed that neurofeedback is “efficacious and specific.”®4?
However, the authors think that in light of the most recent findings from sham-
controlled studies”® and the analysis of probably blinded measures,'’ there is a
strong need for more evidence from well-blinded, methodologically sound and
sensitive trials before neurofeedback can be assigned this highest level of evi-
dence as a front-line treatment of ADHD. Firmer conclusions must await upcoming
evidence from larger, well-controlled neurofeedback studies, which demonstrate
learning of self-regulation in addition to using well-blinded and sensitive outcome
measures.
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