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Abstract—In the past decade, several data distribution strate-
gies for the parallel, distributed-memory Multilevel Fast Multi-
pole Algorithm (MLFMA) have been introduced. The common
goal is to distribute the computations in the MLFMA uniformly
over the different parallel processes, while minimizing dependen-
cies and data communication between them. However, as clusters
with thousands of CPU cores are becoming increasingly available,
the asymptotic behavior of algorithms for a very large number of
processes P and problem size N (weak scaling analysis) starts to
play a dominant role. Parallel MLFMA implementations based
on a hierarchical distribution of boxes and radiation pattern
sampling points that exhibit excellent weak scaling behavior
appear to be attractive candidates to tackle even larger problems
on future hardware clusters.

Index Terms—parallel MLFMA, weak scaling analysis

I. INTRODUCTION

The Multilevel Fast Multipole Algorithm (MLFMA) is a fast
matrix-vector multiplication scheme, used during the iterative
solution of a Method of Moments (MoM) discretization of
large boundary integral equation problems. Its computational
complexity is O(N logN) [1], with N the number of un-
knowns. State-of-the-art sequential MLFMA implementations
can handle over a million of unknowns on a single worksta-
tion. However, several real-life, electrically large geometries
require discretization into hundreds of millions, if not billions
of unknowns. In order to handle those effectively, parallel,
distributed-memory implementations are developed in order
to take advantage of the aggregated memory and compute
capacity of clusters.

In [2], the weak scaling behavior of a number of existing
partitioning schemes was examined. Weak scaling implies
that larger problems can be solved on proportionally larger
computational clusters without loss of efficiency. In a weak
scaling setup, the number of processes P scales linearly with
N , i.e., P = O(N) and hence, the number of unknowns per
process is kept fixed. Given a sequential complexity for the
MLFMA of O(N logN), this implies that the complexity per
node should not exceed O(1) per level, or hence, O(logN)
in total.

None of the existing schemes for the parallel MLFMA
(spatial partitioning (SP), hybrid partitioning (HyP) [3] and
hierarchical partitioning (S-HiP) [4], [5]) were found to exhibit
good weak scaling behavior. In all cases, the worst-case
computational complexity per node and per level exceeds O(1)
(see entries 1-3 of Table I). As a consequence, when consid-
ering larger problems on larger clusters, the load imbalance

TABLE I
OVERVIEW OF THE DIFFERENT PARTITIONING STRATEGIES AND THE

WORST-CASE COMPUTATIONAL COMPLEXITY FOR A NODE PER LEVEL.

partitioning worst-case complexity
strategy per node and per level

spatial (SP) O(N)

hybrid (HyP) O(
√
N)

hierarchical - strip (S-HiP) O(
√
N)

hierarchical - block (B-HiP) O(1)

between processes will grow, leaving many processes idle
while only a few of them are performing useful calculations.

The major difficulty in the parallelization of the MLFMA
is the fact that the data structures and the relative contribution
from different types of computations differ from level to level
in the MLFMA tree. At the top levels, there are only few
boxes, each box containing a large number of radiation pattern
sampling points, whereas at the lower levels, there are many
boxes, each box containing much smaller radiation patterns.
Existing data distribution schemes (SP, HyP and S-HiP) fail
to distribute the load evenly on all levels (for sufficiently high
N and P ). For the SP, the load imbalance becomes already
apparent for a very modest number of parallel processes (e.g.
at 16 processes). For the more advanced S-HiP scheme, the
load imbalance only manifests itself at a very high number of
parallel processes and very large problem sizes.

We proposed a modification of the hierarchical scheme,
in which the sampling points on the sphere are uniformly
sampled in elevation θ and azimuth φ [6], and distributed in
both θ and φ [2]. This scheme, denoted by B-HiP (see last
entry of Table I), was found to exhibit excellent weak scaling
behavior (i.e., worst-case complexity of O(1) per node and
per level [7]), at the cost of being significantly more complex
to implement.

Nowadays, computational clusters with thousands of CPU
are available, enabling the solution of problems with hundreds
of millions or even billions of unknowns. For such extremely
large-scale problems and high number of parallel processes,
the load imbalance in the SP, HyP and even the S-HiP
scheme are becoming apparent. In the next section, we analyze
such large-scale problem and indicate where the bottlenecks
emerge. At the time of conference, the accurate solution of
a problem involving billions of unknowns using thousands of
CPU cores will be presented.



II. NUMERICAL EXAMPLE

We examine the behavior of all three previously existing
partitioning strategies (SP, HyP and S-HiP) for a large, but
nowadays realistic problem size N and a high, but again
realistic number of parallel processes P . For each of the
schemes, the load imbalance that causes bad performance is
pinpointed. We emphasize that these bottlenecks will become
even more pronounced when N and P are increased even
further, as can be expected with future hardware and problems.

Consider a perfectly electrically conducting (PEC) cube
geometry with an edge size of 1638λ. Using a λ/10 dis-
cretization, this problem contains slightly over 1.2 billion
of unknowns. Table II shows, for the different levels of the
MLFMA tree, the sampling rate of the radiation patterns and
the number of boxes at the level of tree. Assume that we
wish to solve this problem using 4096 parallel processes. This
results in roughly 300 000 unknowns per process.

If this problem were to be solved using the spatial partition-
ing (SP) technique, then the boxes on all levels would have
to be partitioned evenly among all parallel processes. Clearly,
this is only possible for the lowest levels. For levels 6 and
higher, the number of boxes is even lower than the number
of parallel processes. At these levels, the load balancing will
be particularly problematic as there are fewer boxes than
processes, leaving many processes idling. At level 9, only 56
out of 4096 processes would be active. However, the amount
of work at this level is roughly the same as on all other levels.
This explains why the SP achieves only very limited efficiency.
The same reasoning can be applied to the hybrid (HyP) scheme
at the transition level (i.e., the highest level that is still using
spatial partitioning, typically the middle level).

If the hierarchical partitioning technique with a one-
dimensional partitioning of radiation patterns (S-HiP) were to
be used (e.g. only in the θ or φ direction), then at level 9,
the 2871 sampling directions along θ or the 5744 sampling
directions along φ would have to be distributed uniformly
among the 4096 processes. Again, it is impossible to obtain a
uniform partitioning, however, the amount of load imbalance is
clearly less severe than in the SP or HyP case. Nevertheless,
the number of sampling points in either θ or φ direction at
a top level only grows as O(

√
N) whereas the number of

parallel processes grows as P = O(N). This means that the
load imbalance will effectively become more severe for higher
N and P .

This analysis also explains why smaller simulations (tens
or hundreds of millions of unknowns) using a (for current
standards) moderate number of parallel processes (e.g. 128)
can effectively be performed with high efficiency using the
HyP or S-HiP approach. Whereas the breakdown for the SP
technique becomes apparent already at 16 parallel processes,
the breakdown for the S-HiP scheme appears only when the
number of processes exceeds the number of sampling points
in the θ or φ direction. This occurs only when considering
the very largest problems with over thousands of parallel
processes.

TABLE II
SAMPLING RATE AND NUMBER OF BOXES PER LEVEL OF THE MLFMA

TREE FOR A CUBE GEOMETRY WITH A SIZE OF 1638 λ.

MLFMA box size radiation pattern number of
level sampling rate (θ × φ) boxes

0 0.5λ 17× 36 1 6098 266
1 1λ 26× 54 4 024 568
2 2λ 40× 82 1 003 688
3 4λ 66× 134 249 698
4 8λ 115× 232 62 426
5 16λ 209× 420 15 608
6 32λ 392× 786 3 752
7 64λ 751× 1504 866
8 128λ 1462× 2924 218
9 256λ 2873× 5748 56
10 512λ 5683× 11368 8
11 1024λ 11286× 22574 1

III. CONCLUSION

We reviewed several schemes (SP, HyP, S-HiP, B-HiP) for
the distributed-memory parallel MLFMA, and reviewed their
weak scaling behaviour by asymptotic analysis and through
a numerical example for finite N and P . Only the B-HiP
scheme exhibits good weak scaling behaviour. The B-HiP
scheme attains a per node complexity of O(logN) when using
P = O(N) parallel processes. As future clusters will likely
incorporate more and more parallelism, the B-HiP scheme
appears to be the most attractive approach to handling even
larger problems.
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