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Abstract

Adaptive logics (ALs) in standard format are defined in terms of a
monotonic core logic L, a distinct set of “abnormal” formulas Ω and a
strategy, which can be either reliability or minimal abnormality. In this
paper we we ask under which conditions the consequence relation of two
ALs that use the same strategy are identical, and when one is a proper
subrelation of the other. This results in a number of sufficient (and some-
times necessary) conditions on L and Ω which apply to all ALs in standard
format. In addition, we translate our results to the closely related family
of default assumption consequence relations.

keywords: adaptive logics, standard format, default assumptions, metatheory,
nonmonotonic logic

1 Intro

Getting to Know One’s Tools Over the past few decades, the field of
non-monotonic logic has grown incessantly, resulting in a wide range of formal
systems: default logic, circumscription logic, auto-epistemic logic, inheritance
networks, adaptive logics, etc. The study and comparison of these systems at
various levels of generality and abstraction has been an integral part of the field,
at least since the publication of [19].

In [20, p. 14], Makinson makes the following remark concluding the great
variety of non-monotonic systems in the literature (even within one framework):

Leaving technical details aside, the essential message is as follows.
Don’t expect to find the nonmonotonic consequence relation that will
always, in all contexts, be the right one to use. Rather, expect to find
several families of such relations, interesting syntactic conditions
that they sometimes satisfy but sometimes fail, and principal ways
of generating them mathematically from underlying structures.
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Still, even if we grant ourselves this multitude of nonmonotonic logics and
consider it as fruitful rather than problematic, this does not take away the need
to bring order in the apparant chaos, and to develop theoretic means for doing
so. For instance, it is crucial that one tries to find out which of these logics in
the end coincide (at least with respect to the resulting consequence relation),
how they translate into one another, which ones are stronger than others, etc.
The ultimate goal of such research is perhaps not to end up with a single model
of nonmonotonic reasoning, but to obtain better insight into the various tools
we have at our disposal, when modelling such reasoning. This paper contributes
to this general aim.

Narrowing Down the Scope In this paper, we will mostly be concerned
with one type of nonmonotonic logics, viz. adaptive logics in standard format
[10].1 Such adaptive logics are defined in terms of (i) a monotonic core logic
L, (ii) a set Ω of formulas in the object language of L, which are taken to be
characteristic of abnormality, and (iii) a strategy, which can be thought of as a
kind of a specific policy for avoiding abnormalities in the face of the available
information. The standard format covers two such strategies, viz. reliability and
minimal abnormality. Exact definitions of the standard format will be given in
Section 2; here we will briefly explain some of its history and underlying ideas
to motivate the technical work that follows.

Adaptive logics can be traced back to [4] and some earlier papers by Batens,
where a “dynamic dialectic proof theory” is presented for reasoning about in-
consistent premise sets. The main idea is that we should use a paraconsistent
logic L to reason sensibly about inconsistent theories, but we can neverthe-
less assume that inconsistencies are false unless the premises indicate otherwise.
With hindsight, one may say that in the logics from [4], the set of abnormalities
consists of all inconsistencies, i.e. all formulas of the form A ∧ ∼A.2

In later work, the underlying idea behind the logic from [4] has been used to
characterize other types reasoning in which certain logical principles are defea-
sible. For instance, in the context of a conflict-tolerant, non-aggregative deontic
logic, one may assume that any two obligations A and B can be aggregated un-
less they are incompatible [17, 22]. In the context of first order predicate logic,
one can assume that any (possibly complex) property Π holds of all objects
whenever there is no counterinstance to Π [8, 11]. In the context of the doxastic
logic K, one may assume that any proposition A is true whenever it is believed
[32].

As explained in the cited works, these are but basic ideas which need further
refinement in order to obtain a workable and sensible logic for their respective
intended applications. Such refinements moreover give rise to several variants
and combinations thereof. The standard format unifies the resulting systems
in terms of one basic underlying structure, thereby allowing us to study their

1We will actually consider a slightly more general format than the one from [10], allowing
arbitrary sets of abnormalities. We return to this point in Section 2.

2Throughout this paper, we use ∧ for classical conjunction and ∼ for a paraconsistent
negation, the meaning of which is disambiguated whenever necessary.
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generic properties. In addition, the characterization of ALs in standard format
by means of a triple (L, set of abnormalities, strategy) provides modularity, a
simple recipe to develop new logics and variants, and to fine-tune logics whenever
the need arises.

The basic metatheory of ALs in standard format is summarized in [10]. Some
further results were established in [14], where it is argued that ALs have a num-
ber of advantages over alternative approaches to paraconsistent and defeasible
reasoning. The interested reader may find a detailed overview of the theory and
applications of ALs in Part I of [28]. As the latter work shows in particular, the
standard format is by now a well-established framework for defeasible reasoning,
which has a place of its own in the field of non-monotonic logic.

Our focus on the standard format of ALs is further motivated by another,
independent reason. As shown in [30], the class of Makinson’s default assump-
tion consequence relations [20] corresponds to the class of ALs that use minimal
abnormality. Hence all metatheoretic properties of the standard format nicely
carry over to DACRs. We will return to this observation in Section 5, where we
apply it to the results of the present paper.

Aim of this paper Notwithstanding its relative success, there has been little
investigation so far of the standard format as a parametric framework, asking
how different ALs relate to each other in view of the constants they are defined
from. That is, on the assumption that we work within the standard format,
how and when do variations on a particular L and Ω affect the adaptive conse-
quence relation?3 When is this consequence relation preserved or conservatively
extended, when do we obtain a stronger logic, and when are we guaranteed to
end up with (generally) incomparable logics?

Such investigations are interesting not only from a theoretical perspective:
they also point at means to change a given AL or enrich its language, while
either keeping its consequence relation unchanged or strengthening it. They
allow us to simplify our formal models, e.g. when it turns out that we may
equivalently express a given AL by using a much simpler or smaller set of ab-
normalities. Finally, in view of the connections between ALs and the other
frameworks mentioned above, the generic metatheory of ALs nicely carries over
to those frameworks as well. Each of these points will be illustrated by means
of concrete examples below.

Outline In Section 2, we introduce the standard format in detail, using inconsistency-
ALs as our running example. In the next two sections, we focus on the first and
second parameter used in the AL framework: the monotonic core L (Section 3)
and the set of abnormalities (Section 4). Our main technical results are sum-
marized by Corollaries 4-7, 8 and 9 in Section 3, and Theorem 21 in Section
4. These state a number of sufficient (and, in the case of L, necessary) condi-
tions, which are then applied to concrete cases in order to show their usefulness.
In Section 5, we show how our results carry over to the class of DACRs from

3The relation between the two adaptive strategies is studied in [29].
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[20], and how they give rise to an interesting variant of those systems which
corresponds to the reliability strategy.

2 The Adaptive Logic Framework

In this section, we define the consequence relation of ALs in standard format. In
addition, we mention some basic metatheorems concerning the standard format
which will be called upon in subsequent sections.

Let us insert some remarks about presentation. First, in the current paper,
we only define the semantics of ALs and prove all metatheorems on the basis
of it. A proof theory in terms of conditional, defeasible derivations and a cor-
responding syntactic consequence relation can be found e.g. in [10]. Since the
standard format warrants soundness and completeness, all results from this pa-
per automatically apply to the syntactic consequence relation of ALs in standard
format as well.

Second, we will consider a slightly generalized version of the standard format
of ALs, in the sense that we allow the set of abnormalities Ω to be arbitrary.4

This allows us to present our results in their most generic form, to use simple
examples in order to illustrate certain negative results, and to translate our
results about ALs in a straightforward way to the DACR-format (we return to
this point in Section 5).

Third and last, we will often refer to the same specific example throughout
this paper, viz. inconsistency-adaptive logics based on the paraconsistent logic
CLuN (see below). Apart from the fact that these logics played a prominent
role in the development of ALs – see also the introduction of this paper – this is
mainly motivated pragmatically: they are fairly easy to define, which allows us
to focus on the new results and their motivation. However, it should be stressed
that none of our technical results hinge on this choice of example: they apply
to all ALs in the format defined below.

2.1 Preliminaries

Where X,Y are sets, we write X ⊆f Y (X ⊂f Y ) to denote that X is a finite
(proper) subset of Y . Let ℘(X) be the power set of X , and ℘f (X) = {Y |
Y ⊆f X}. Where ≺ is a binary relation on the set X , let min≺(X) = {x ∈ X |
for no y ∈ X, y ≺ x}.

Where L,L′, . . . are formal languages, we use Φ,Φ′, . . . to denote the sets of
all well-formed formulas in these languages. In this notation, we always assume
that each of Φ,Φ′, . . . is closed under the unary connective ¬ and the binary

4In most papers on ALs, Ω is supposed to be closed under uniform substitution of non-
logical symbols for other non-logical symbols of the same type (e.g. propositional variables
for other propositional variables, predicates for other predicates of the same arity, etc). Note
that this does not imply that Ω is closed under uniform substitution in general, which does
not hold for most ALs in the literature (the CLuN-based ALs which we use in this paper are
rather exceptional in this respect).
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connectives ∨,∧,⊃,≡. Where Φ is given, we use A,B, . . . as metavariables for
its members and Γ,∆, . . . as metavariables for its subsets.

We use L,L′, . . . as metavariables for logics which are defined on the basis of
the respective languages L,L′, . . .. Every such L is defined from a set of models
ML and a validity relation |=L ⊆ ML × Φ. It is moreover presupposed that
|=L satisfies the following truth conditions:

(C¬) for all M ∈ ML, M |=L ¬A iff M 6|=L A;
(C∨) for all M ∈ ML, M |=L A ∨B iff M |=L A or M |=L B;
(C∧) for all M ∈ ML, M |=L A ∧B iff M |=L A and M |=L B;
(C⊃) for all M ∈ ML, M |=L A ⊃ B iff M 6|=L A or M |=L B;
(C≡) for all M ∈ ML, M |=L A ≡ B iff (M |=L A iff M |=L B);

and the following semantic version of compactness:

(Cf) for all Γ ⊆ Φ: if every Γ′ ⊆f Γ has models, then Γ has models.

Where Γ ⊆ Φ, let ML(Γ) be the set of all M ∈ ML such that M |=L A

for all A ∈ Γ. We define 
L as usual, putting Γ 
L A iff M |=L A for all
M ∈ ML(Γ). Let CnL(Γ) =df {A | Γ 
L A}.

In view of the construction of 
L , it is a Tarskian consequence relation.
In other words, CnL has the following three basic properties: monotonicity
(CnL(Γ) ⊆ CnL(Γ∪Γ′)), transitivity (where Γ′ ⊆ CnL(Γ), CnL(Γ

′) ⊆ CnL(Γ)),
and reflexivity (Γ ⊆ CnL(Γ)). By (C¬)-(C≡) respectively, the connectives
¬,∨,∧,⊃,≡ behave classically in L. Finally, by (C¬) and (Cf) we can derive
that CnL is compact: A ∈ CnL(Γ) iff there is a Γ′ ⊆f Γ such that A ∈ CnL(Γ

′).

Remark 1 Where a given consequence operation CnL : ℘(Φ) → ℘(Φ) satisfies
each of the conditions from the previous paragraph, we can easily construct a
semantics for it in the above sense. This is done by letting ML be the set of
all sets Θ ⊆ Φ that are maximally consistent w.r.t. CnL, and putting Θ |=L A

iff A ∈ Θ. Conversely, where we have an L-semantics in the above sense, it can
easily be verified that each M ∈ ML corresponds to a maximal L-consistent set
Θ (which is just the set of all formulas valid in M). We briefly return to this
point in Section 4.3.

Let ¬∆ = {¬A | A ∈ ∆}. Where ∆ is finite and non-empty, let
∧
∆ (

∨
∆)

denote the classical conjunction (disjunction) of all the members of ∆. Where
∆ = {A}, let

∧
∆ =

∨
∆ = A.

Where Ω ⊆ Φ and M ∈ ML, let AbΩ(M) = {A ∈ Ω | M |=L A}. We will
use this notation i.a. to represent what is usually called the abnormal part of
a model, given a fixed set of abnormalities Ω ⊆ Φ. Note that, by (C¬), the
following holds:

Fact 1 (M ∈ ML(Γ) and AbΩ(M) ⊆ Ω′) iff M ∈ ML(Γ ∪ ¬(Ω− Ω′)).

We use CL to denote propositional classical logic with the set of proposi-
tional variables Σ = {p, q, r, . . .} and the connectives ¬,∨,∧,⊃,≡.
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2.2 Setting the Stage

Recall that every adaptive logic is defined from a triple: a monotonic core L
with a compact, supraclassical Tarskian consequence relation 
L ⊆ ℘(Φ)×Φ;
a set of abnormalities Ω ⊆ Φ, and a strategy. In the remainder of Section 2, we
assume a fixed L and Ω and define the semantic consequence relations 
L,Ω,m

and 
L,Ω,r . These correspond to the minimal abnormality strategy, resp. the
reliability strategy.

To illustrate certain definitions and properties in the remainder, we will
use the well-known inconsistency-adaptive logics CLuNr and CLuNm, which
are described e.g. in [7]. Before we define each strategy, let us explain the
basic motivation behind both logics (and inconsistency-ALs more generally) in
a nutshell.

In CLuNr and CLuNm, L is the paraconsistent logic CLuN — the name
stands for “CL with gluts for the Negation”. For the sake of space, we restrict
ourselves to the propositional fragment of these three systems. CLuN works on
the basis of a language Φ∼, which is built up from the propositional variables
p, q, . . ., a paraconsistent negation ∼ and the classical connectives ¬,∨,∧,⊃,≡.

Semantically, CLuN can be characterized as follows. As usual, every model
M is associated with a valuation function v : Φ∼ → {0, 1}. However, unlike
the case for CL, v is not only used to determine the validity of propositional
letters in M , but also of formulas of the form ∼A. This is done by means of the
following clause (where v is the specific valuation function associated with M):

(C∼) M |=CLuN ∼A iff (M 6|=CLuN A or v(∼A) = 1)

Here, the first disjunct on the right ensures that excluded middle is valid in
CLuN, whereas the second disjunct ensures that ∼-contradictions can be valid
in a model M .

CLuN is a fairly weak logic, in that it invalidates a number of intuitive
rules such as disjunctive syllogism (A,∼A ∨ B / B), contraposition (B ⊃ A /
∼A ⊃ ∼B), double negation introduction and elimination, and De Morgan’s
rules for ∼.5 The idea behind CLuNr and CLuNm is to strengthen CLuN,
by assuming ∼-inconsistencies to be false “as much as possible”. This is done
by taking as the set of abnormalities Ωc = {A ∧ ∼A | A ∈ Φ∼}. By assuming
these abnormalities to be false, unless they follow (by CLuN) from the premise
set, we allow for the local validity of classical inferences.

For instance, where Γ1 = {p,∼q,∼p∨r, q, s ⊃ q}, we may say that q behaves
inconsistently in view of Γ1, yet there is no reason to also accept an inconsistency
w.r.t. p. Hence, although we may apply disjunctive syllogism to p and ∼p ∨ r

in order to derive r, we cannot apply modus tollens to ∼q and s ⊃ q in order
to derive ∼s.

However, things are not always as cut and dry as the example Γ1 suggests.
Sometimes a premise set CLuN-entails a disjunction of abnormalities, but none

5As a result, inconsistencies are not “spread” in CLuN: A ∧ ∼A 6
CLuN B ∧ ∼B for
B 6= A, except when A 
CLuN B ∧ ∼B or ∼A 
CLuN B ∧ ∼B. This makes CLuN

particularly suitable to serve as the underlying logic of an inconsistency-AL, as argued in [5].
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of its disjuncts follow. Consider e.g. Γ2 = {∼p,∼∼p∨ t,∼t}. Note that, since ∨
and ∧ behave classically in CLuN, Γ2 
CLuN (∼∼p ∧∼p) ∨ (t ∧∼t), and that
neither of the disjuncts of this disjunction are CLuN-derivable from Γ2.

In cases like Γ2, the phrase “to interpret the premises as consistently as
possible” can be interpreted in various ways. The two adaptive strategies can
be seen as two prototypical specifications of this phrase. We will now define
the semantics of both, after which we illustrate it in terms of the CLuN-based
adaptive logics.

2.3 Minimal Abnormality

The minimal abnormality strategy selects from ML(Γ) those models that verify
a ⊂-minimal set of abnormalities. A formula is a consequence iff it holds in all
the selected models. Formally:

Definition 1 ML,Ω,m(Γ) = {M ∈ ML(Γ) | for no M ′ ∈ ML(Γ),AbΩ(M
′) ⊂

AbΩ(M)}.

Definition 2 Γ 
L,Ω,m A (A ∈ CnL,Ω,m(Γ)) iff M |= A for every M ∈
ML,Ω,m(Γ).

Example 1 Let Γ3 = {∼p,∼∼p ∨ t,∼t, q,∼q ∨ r,∼∼p ∨ s, t ∨ s}. Note that
for all M ∈ MCLuN(Γ3), either ∼p ∧ ∼∼p ∈ AbΩc

(M) or t ∧ ∼t ∈ AbΩc
(M).

It can be easily verified that all M ∈ MCLuN,Ωc,m(Γ3) are such that either
AbΩc

(M) = {∼p ∧ ∼∼p} or AbΩc
(M) = {t ∧ ∼t}. All these models falsify

q ∧ ∼q, which means that they verify r. As a consequence, Γ3 
CLuN,Ωc,m r.
Moreover, whenever M is a minimally abnormal model of Γ3, it falsifies either
t ∧ ∼t or ∼p ∧ ∼∼p. Hence, all M ∈ MCLuN,Ωc,m(Γ3) verify s. Equivalently,
Γ3 
CLuN,Ωc,m s.

From Definitions 1 and 2, we can derive the following:

Theorem 1 A ∈ CnL,Ω,m(Γ) iff for all M ∈ ML,Ω,m(Γ), A ∈ CnL(Γ ∪ ¬(Ω −
AbΩ(M))).

Proof. (⇒) Let M ∈ ML,Ω,m(Γ) be such that A 6∈ CnL(Γ ∪ ¬(Ω − AbΩ(M))).
Hence there is an M ′ ∈ ML(Γ ∪ ¬(Ω− AbΩ(M))) such that M ′ 6|=L A. By the
minimality of M , AbΩ(M

′) = AbΩ(M). Hence also M ′ ∈ ML,Ω,m(Γ), so that
A 6∈ CnL,Ω,m(Γ).

(⇐) Suppose A 6∈ CnL,Ω,m(Γ). Let M ∈ ML,Ω,m(Γ) be such that M 6|=L A.
Obviously, M ∈ ML(Γ ∪ ¬(Ω − AbΩ(M))) and hence A 6∈ CnL(Γ ∪ ¬(Ω −
AbΩ(M))).

The semantics of minimal abnormality can be equivalently rephrased as a
preferential semantics in the vein of [26]. That is, whereM,M ′ ∈ ML, letM ≺Ω

M ′ iff AbΩ(M) ⊂ AbΩ(M
′). It can easily be checked that min≺Ω

(ML(Γ)) =
ML,Ω,m(Γ).

The following was proven in [6] for a number of inconsistency-adaptive logics
(including CLuNm), and generalized to arbitrary logics L and sets Ω in [3]:
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Theorem 2 ([3], Theorem 4.3) If M ∈ ML(Γ), then there is an M ′ ∈
ML,Ω,m(Γ) with AbΩ(M

′) ⊆ AbΩ(M).

Equivalently, ≺Ω is smooth w.r.t. every set ML(Γ).
6 Hence, 
L,Ω,m falls

within the well-known class P of smooth preferential systems, as defined and
studied in the classical paper [18] (note though that unlike [18] we allow for
infinite premise sets). As a result, 
L,Ω,m satisfies a number of basic meta-
theoretic properties such as cumulativity, left and right absorption, etc. We
refer to [19] for definitions and an elaborate discussion of these properties.

In Section 3, we will sometimes rely on the fact that 
L,Ω,m preserves
consistency w.r.t. 
L . This follows immediately from Theorem 2:

Corollary 1 For all Γ ∪ {A} ⊆ Φ: if Γ 6
L A ∧ ¬A, then Γ 6
L,Ω,m A ∧ ¬A.

2.4 Reliability

The original idea behind the reliability strategy can be explained as follows.
When we reason defeasibly, we rely on the falsehood of certain formulas, viz.
the members of Ω. Hence, whenever Γ∪¬Ω 
L A, then we have reasons to infer
A from Γ. However, not every abnormality can be assumed false (if we want
to avoid triviality): sometimes we know that Γ 
 B for some B ∈ Ω, or more
generally, that Γ 


∨
Θ where Θ ⊆f Ω. So in order to obtain a sensible logic,

we need to distinguish between two types of abnormalities: those that can be
assumed false, and those that cannot, given the premises at hand.

This is done as follows. We call an abnormality A unreliable w.r.t. 〈L,Ω,Γ〉
if and only if it is a disjunct of some minimal (classical) disjunction of abnormal-
ities that follows from Γ (by L). In the other case, A is reliable w.r.t. 〈L,Ω,Γ〉.
Note that the minimality of the disjunction is required – otherwise every ab-
normality would be unreliable as soon as one of them is. Reliable abnormalities
correspond to what we called “safe” assumptions in the previous paragraph.

With this distinction at hand, we can now define a consequence relation for
the reliability strategy. Syntactically, we say that A follows from Γ iff Γ∪¬∆ 
L

A, where ∆ is the set of all reliable abnormalities. Semantically, this means
that reliability selects only those models of Γ that verify none of the reliable
abnormalities w.r.t. 〈L,Ω,Γ〉.

We now make this exact.

Definition 3 SL,Ω(Γ) is the set of all ∆ ⊆f Ω such that Γ 
L

∨
∆.

Smin

L,Ω(Γ) is the set of all ⊂-minimal elements of SL,Ω(Γ).
7

UL,Ω(Γ) =df

⋃
S
min

L,Ω(Γ).

Definition 4 ML,Ω,r(Γ) = {M ∈ ML(Γ) | AbΩ(M) ⊆ UL,Ω(Γ)}.

Definition 5 Γ 
L,Ω,r A (A ∈ CnL,Ω,r(Γ)) iff M |=L A for every M ∈ ML,Ω,r(Γ).

6≺ ⊆ X ×X is smooth w.r.t. X iff for all x ∈ X, either x is ≺-minimal in X, or there is
a ≺-minimal y in X such that y ≺ x.

7In the AL literature, Smin

L,Ω
(Γ) is usually denoted by Σ(Γ).
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Example 2 We consider again Γ3 from Example 1. It can be easily verified
that {∼p∧∼∼p, t∧∼t} is the only member of Smin

CLuN,Ωc
(Γ3), which implies that

UCLuN,Ωc
(Γ3) = {∼p ∧ ∼∼p, t ∧ ∼t}. Hence all models M ∈ MCLuN,Ωc,r(Γ3)

are such that AbΩc
(M) ⊆ {∼p ∧ ∼∼p, t ∧ ∼t}. It follows that all these models

falsify q ∧ ∼q, whence they verify r.
Let us now see whether also s follows from Γ3, if we use reliability. Note that

there are models M ∈ MCLuN,Ωc,r(Γ3) such that AbΩc
(M) = UCLuN,Ωc

(Γ3),
and hence both ∼p ∧ ∼∼p ∈ AbΩc

(M) and t ∧ ∼t ∈ AbΩc
(M). Among these,

there are moreover models M ′ such that M ′ 6|=CLuN s. Hence, Γ3 6
CLuN,Ωc,r s.

A different characterization of ML,Ω,r(Γ) can also be given, which builds on
the semantics of minimal abnormality. That is,

Theorem 3 For all Γ ⊆ Φ:8

1. If ML(Γ) 6= ∅, then UL,Ω(Γ) = {A ∈ Ω | A ∈ AbΩ(M) for an M ∈
ML,Ω,m(Γ)}.

2. ML,Ω,r(Γ) = {M ∈ ML(Γ) | AbΩ(M) ⊆
⋃

M ′∈ML,Ω,m(Γ)
AbΩ(M

′)}.

Proof. Ad 1. Suppose ML(Γ) 6= ∅. “⊆” Let A ∈ UL,Ω(Γ). Let ∆ ⊆f Ω be such
that Γ 
L A ∨

∨
∆, Γ 6
L

∨
∆. Assume that for no M ∈ ML,Ω,m(Γ), M |= A.

Hence, since Γ 
L A ∨
∨
∆, for all M ∈ ML,Ω,m(Γ): M |= B for a B ∈ ∆.

But then, by Theorem 2, for all M ′ ∈ ML(Γ), M |= B for a B ∈ ∆, and hence
Γ 
L

∨
∆— a contradiction.

“⊇” Let A ∈ AbΩ(M) and M ∈ ML,Ω,m(Γ). Hence for no M ′ ∈ ML(Γ):
AbΩ(M

′) ⊂ AbΩ(M). Hence Γ ∪ ¬(Ω − AbΩ(M)) ∪ {¬A} is L-trivial. By
compactness and the deduction theorem, Γ 
L A ∨

∨
∆ for a ∆ ⊆f (Ω −

AbΩ(M)). Assume now that A 6∈ UL,Ω(Γ). This means that Γ 
L

∨
∆. Then

Γ ∪ ¬∆ is L-trivial, and hence also Γ ∪ ¬(Ω − AbΩ(M)) is L-trivial. But this
contradicts the fact that M ∈ ML(Γ).

Ad 2. Immediate in view of item 1 and Definition 4.

By Definitions 4 and 5, we can show that the syntactic characterization
of reliability, as mentioned in the third paragraph of this section, corresponds
exactly to the semantic one:

Theorem 4 CnL,Ω,r(Γ) = CnL(Γ ∪ ¬(Ω− UL,Ω(Γ))).

Proof. Γ 
L,Ω,r A iff [by Definition 5] for all M ∈ ML,Ω,r(Γ), M |=L A iff [by
Definition 4] for all M ∈ ML(Γ) such that AbΩ(M) ⊆ UL,Ω(Γ), M |=L A iff [by
Fact 1] for all M ∈ ML(Γ ∪ ¬(Ω− UL,Ω(Γ))), M |=L A iff [by the definition of

L ], Γ ∪ ¬(Ω− UL,Ω(Γ)) 
L A.

In view of Theorem 4, whenever M is an L-model of CnL,Ω,r(Γ), then
AbΩ(M) ⊆ UL,Ω(Γ), and hence M ∈ ML,Ω,r(Γ). The converse also holds by
Definitions 4 and 5. So we have:

8This property is well-known, and can e.g. be derived from Lemma 5.3.2, Corollary C.1.1
and Corollary A.2 in [28]. We prove it independently for the sake of self-containedness.
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Corollary 2 ML,Ω,r(Γ) = ML(CnL,Ω,r(Γ)).

As Examples 1 and 2 show, minimal abnormality sometimes yields more
consequences than reliability. By Definition 1 and Theorem 3, we can derive
that minimal abnormality is always at least as strong as reliability:

Theorem 5 ([10], Theorem 11) ML,Ω,m(Γ) ⊆ ML,Ω,r(Γ) for all Γ. Hence,

L,Ω,r ⊆ 
L,Ω,m .

By Theorem 5 and Corollary 1, also 
L,Ω,r preserves consistency w.r.t.

L :

Corollary 3 For all Γ ∪ {A} ⊆ Φ: if Γ 6
L A ∧ ¬A, then Γ 6
L,Ω,r A ∧ ¬A.

We conclude this section with a lemma that will be crucial in the next
section. It states that an abnormality is reliable w.r.t. 〈L,Ω,Γ〉 iff its negation
follows adaptively from Γ, using either of the two strategies.

Lemma 1 Where x ∈ {r,m}, A ∈ Ω and ML(Γ) 6= ∅: A 6∈ UL,Ω(Γ) iff Γ 
L,Ω,x

¬A.

Proof. Note first that A 6∈ UL,Ω(Γ) iff [by Theorem 3]

(†) A ∈ Ω and there is no M ∈ ML,Ω,m(Γ) such that M |= A.

(x = m) By Definition 2 and (C¬), (†) iff Γ 
L,Ω,x ¬A.
(x = r) We have: (†) iff [by Theorem 3] A ∈ Ω and there is noM ∈ ML,Ω,r(Γ)

such that M |= A iff [by Definition 5 and (C¬)] Γ 
L,Ω,x ¬A.

3 Parameter 1: the Monotonic Core

Let a fixed set of abnormalities Ω and strategy x ∈ {r,m} be given, and consider
two compact, supraclassical Tarski-logics L and L′. In this section, we answer
the following question: When is it the case that 
L,Ω,x and 
L′,Ω,x coincide?
And when can it be shown that the former is a proper sub-relation of the other?

The answer consists in necessary and jointly sufficient conditions. These are
expressed as a function of 
L , 
L′ and Ω. Our main results are spelled
out in Section 3.1 – see corollaries 6 and 7. Some corollaries are discussed and
illustrated in Sections 3.2 and 3.3.9

To simplify notation, we will omit the subscript Ω throughout this section,
and only refer explicitly to the strategy and monotonic core of the ALs in
question. So we write 
L,x instead of 
L,Ω,x , UL(Γ) instead of UL,Ω(Γ), and
so on.

9It should be noted that, although we defined CnL,Ω,x(Γ) in terms of |=L and a selection
of models from ML(Γ) in the previous section, our proofs in the current section nowhere
assume any specific relation between the sets of models or the validity relation of L and L

′.
In other words, the conditions we arrive at are spelled out purely in terms of the semantic
consequence relations of L and L′ (and the way both deal with Ω), not in terms of the internal
structure of their semantics.
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In this section, we will also consider cases where L and L′ are based on
different languages L,L′, so that not necessarily Φ = Φ′. This way we can e.g.
also cover cases where L is a conservative extension of L′ (see Section 3.2). We
therefore need to speak about restrictions of L and L′ to a given sub-language
Lsub of L and L′. In the remainder, let Ψ be the set of all formulas of Lsub. It is
assumed throughout this section that Ψ is closed under the classical connectives
¬,∨,∧,⊃,≡ and that Ω ⊆ Ψ.

Notation 1 

Ψ
L

=df 
L ∩ (℘(Ψ)×Ψ)



Ψ
L,x =df 
L,x ∩ (℘(Ψ)×Ψ)

for all Γ ⊆ Ψ, CnΨL (Γ) =df CnL(Γ) ∩Ψ
for all Γ ⊆ Ψ, CnΨ

L,x(Γ) =df CnL,x(Γ) ∩Ψ

It can be easily verified that 

Ψ
L

is supra-classical, compact and has the three
Tarski-properties, on the supposition that these conditions hold for 
L .

3.1 Reliability-Conservativity

The necessary and sufficient conditions which will be considered below are
spelled out in terms of a specific property, which we call reliability-conservativity
of one logic w.r.t. another logic. The idea is that (the consequence relation of)
L′ is reliability-conservative w.r.t. L iff L′ does not render any more abnormali-
ties unreliable than does L, for any premise set Γ. However, we omit the border
case where Γ is L′-trivial — note that in this case, CnL,x(Γ) ⊆ CnL′,x(Γ) = Φ.
If we consider this property relative to a given Ψ, we obtain:

Definition 6 
L′ is reliability-conservative w.r.t. 〈 
L ,Ψ〉 iff for all Γ ⊆ Ψ
such that ML′(Γ) 6= ∅, UL′(Γ) ⊆ UL(Γ).

Theorem 6 Where Ω ⊆ Ψ: 

Ψ
L,x ⊆ 


Ψ
L′,x iff both of the following hold:

1. 

Ψ
L

⊆ 

Ψ
L′

2. 
L′ is reliability-conservative w.r.t. 〈 
L ,Ψ〉

Proof. (⇒) Ad 1. Suppose 

Ψ
L

6⊆ 

Ψ
L′ . Let Γ∪{A} ⊆ Ψ be such that (1) Γ 
L

A and (2) Γ 6
L′ A. By (2) and the supraclassicality of 
L′ , Γ ∪ {¬A} 6
L′ A.
By consistency preservation of 
L′,x w.r.t. 
L′ , Γ ∪ {¬A} 6
L′,x A. However,
by (1) and the monotonicity of L, Γ∪ {¬A} 
L A, and hence Γ∪ {¬A} 
L,x A.
Since Γ ∪ {A,¬A} ⊆ Ψ, 


Ψ
L,x 6⊆ 


Ψ
L′,x .

Ad 2. Suppose 
L′ is not reliability-conservative w.r.t. 〈 
L ,Ψ〉. Let
Γ ⊆ Ψ be such that ML′(Γ) 6= ∅ and UL′(Γ) 6⊆ UL(Γ). Let A ∈ UL′(Γ)−UL(Γ).
By Lemma 1, Γ 
L,x ¬A, but Γ 6
L′,x ¬A. Since Γ∪{¬A} ⊆ Ψ, 


Ψ
L,x 6⊆ 


Ψ
L′,x .

(⇐) Suppose (1.) and (2.) hold. Consider an arbitrary Γ ⊆ Ψ. If ML′(Γ) =
∅, it follows immediately that CnΨ

L,x(Γ) ⊆ CnΨ
L′,x(Γ) = Ψ. So suppose moreover

that ML′(Γ) 6= ∅.
(x = r) By suppositions (1.) and (2.) and the monotonicity of L′,
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CnΨL (Γ ∪ ¬(Ω− UL(Γ))) ⊆ CnΨL′(Γ ∪ ¬(Ω− UL′(Γ)))

The rest is immediate in view of Theorem 4.
(x = m) Assume that (†) A ∈ CnΨL,m(Γ) − CnΨL′,m(Γ). Let M ∈ ML′,m(Γ)

be such that M 6|=L′ A. Let Θ = Ab(M) and Θ′ = Ω − Θ. Hence, ML′(Γ ∪
¬Θ′) 6= ∅ and since 


Ψ
L

⊆ 

Ψ
L′ , also ML(Γ ∪ ¬Θ′) 6= ∅. By (†), there

is an M ′ ∈ ML,m(Γ ∪ ¬Θ′) such that Ab(M ′) ⊂ Θ. By the minimality of
M , for all B ∈ Θ − Ab(M ′), B ∈ UL′(Γ ∪ ¬Θ′ ∪ Ab(M ′)), and hence by (2.),
B ∈ UL(Γ ∪ ¬Θ′ ∪ Ab(M ′)). Fix an arbitrary B ∈ Θ − Ab(M ′). Since B ∈
UL(Γ ∪ ¬Θ′ ∪ Ab(M ′)), there is a Λ ∈ SL(Γ ∪ ¬Θ′ ∪ Ab(M ′)) such that B ∈ Λ.
Hence, (⋆) M ′ |=L

∨
Λ.

Let C ∈ Λ be arbitrary. Assume first that C ∈ Θ′. Then Γ∪¬Θ′∪Ab(M ′) 
L

¬C (by reflexivity), and hence Γ∪¬Θ′∪Ab(M ′) 
L

∨
(Λ−{C}). Second, assume

that C ∈ Ab(M ′). Then B 6= C and Γ ∪ ¬Θ′ ∪ Ab(M ′) 
L C. In both cases, it
follows that

∨
Λ is not a minimal disjunction that follows from Γ∪¬Θ′∪Ab(M ′)

— a contradiction.
It follows that for all C ∈ Λ, C ∈ Θ−Ab(M ′). But then M 6|=L

∨
Λ, which

contradicts (⋆).

From Theorem 6, we now derive the corollaries which answer the questions
posed at the start of Section 3. First of all, note that if 


Ψ
L

= 

Ψ
L′ and

Ω ⊆ Ψ, then Smin

L
(Γ) = Smin

L′ (Γ). Hence, UL(Γ) = UL′(Γ) for all Γ ⊆ Ψ. It
follows that 
L is reliability-conservative w.r.t. 〈 
L′ ,Ψ〉, and that 
L′ is
reliability-conservative w.r.t. 〈 
L ,Ψ〉. Combining this insight with Theorem
6, we obtain the following:

Corollary 4 

Ψ
L,x = 


Ψ
L′,x iff 


Ψ
L

= 

Ψ
L′ .

Corollary 5 

Ψ
L,x ⊂ 


Ψ
L′,x iff 


Ψ
L

⊂ 

Ψ
L′ and 
L′ is reliability-

conservative w.r.t. 〈 
L ,Ψ〉.

For the special case when Ψ = Φ = Φ′, we have:

Corollary 6 
L,x = 
L′,x iff 
L = 
L′ .

Corollary 7 
L,x ⊂ 
L′,x iff 
L ⊂ 
L′ and 
L′ is reliability-
conservative w.r.t. 〈 
L ,Ψ〉.

Corollary 7 may sound somewhat discouraging, at least in case one hopes to
find a simple recipe to strengthen a given AL by adding certain axioms or rules
to its underlying monotonic core. Indeed, in many concrete cases, strengthening
L results in a logic L′ which does not conserve reliability w.r.t. 〈L,Ω,Φ〉. So
although the resulting AL will allow for more undefeasible inferences, it will also
invalidate certain defeasible inferences because their underlying assumptions are
falsified by other L′-consequences of the premise set. This is illustrated by a
well-known example in Appendix A.

Nevertheless, there are cases in which the right hand side of Corollary 7 can
easily be shown to hold. We give some examples of these in Section 3.3 below.
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3.2 Conservative Extensions

From Corollary 4, we can infer that whenever L′ is a conservative extension of
L, then so is every AL based on L′ which uses the same set of abnormalities as
an AL based on L.

Definition 7 Where Φ1 ⊂ Φ2, 
1 ⊆ ℘(Φ1) × Φ1, and 
2 ⊆ ℘(Φ2) × Φ2: 
2

is a conservative extension of 
1 iff 

Φ1

2 = 
1.

Corollary 8 Where Ω ⊆ Φ ⊆ Φ′, 
L ⊆ ℘(Φ) × Φ and 
L′ ⊆ ℘(Φ′) × Φ′:

L′,x is a conservative extension of 
L,x iff 
L′ is a conservative extension
of 
L .

This result is important for various applications. For instance, suppose we
want to enrich the language of a given inconsistency-adaptive logic with a knowl-
edge operator �. In that case, we may consider using a conservative extension
of our monotonic core logic which gives meaning to �, while keeping the set of
abnormalities fixed. Corollary 8 tells us that the adaptive consequence set of
the new logic may be richer, but it will not differ with respect to that part of
the language that the new logic shares with the original logic.

3.3 Adding (disjunctions of) negations of abnormalities

As shown above, when two ALs use the same set of abnormalities, we can be
sure that one is at least as strong as the other if the former never renders
more abnormalities unreliable than the latter. As a corollary of this, we can
derive that whenever L′ can be obtained by adding to L the (non-defeasible)
assumption that certain abnormalities are false, then the AL based on L′ will
be at least as strong as the one based on L. Before we consider an example of
this fact, let us make it formally precise.

Definition 8 Where 
L ⊆ ℘(Φ) × Φ and where Γ ∪ ∆ ⊆ Φ: Γ 
L∗∆ A iff
Γ ∪∆ 
L A.

Lemma 2 If ∆ is an arbitrary set of formulas of the form A1 ∨ . . . ∨ An with
each Ai ∈ ¬Ω (i ≤ n), then 
L∗∆ is reliability-conservative w.r.t. 〈 
L ,Φ〉.

Proof. Suppose A ∈ UL∗∆(Γ) and ML∗∆(Γ) 6= ∅. By Theorem 3, there is an
M ∈ ML∗∆,m(Γ) such that M |=L A. Assume that M 6∈ ML,m(Γ). Hence
there is an M ′ ∈ ML(Γ) such that Ab(M ′) ⊂ Ab(M). So for all B ∈ ¬Ω such
that M |=L B, also M ′ |=L B. It follows that M ′ ∈ ML(Γ ∪ ∆), and hence
M ′ ∈ ML∗∆(Γ). But this contradicts the fact that M ∈ ML∗∆,m(Γ).

Corollary 9 If ∆ is an arbitrary set of formulas of the form A1∨ . . .∨An with
each Ai ∈

¬Ω (i ≤ n), then 
L,Ω,x ⊆ 
L∗∆,Ω,x .

Corollary 10 If ∆ ⊆ ¬Ω, then 
L,Ω,x ⊆ 
L∗∆,Ω,x .
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Note that whenever some A ∈ ∆ is not an L-theorem, then 
L ⊂ 
L∗∆ .
So by Lemma 2 and Corollary 7, we can infer that whenever ∆ ⊆ ¬Ω, and some
members of ∆ are not L-theorems, then 
L,Ω,x ⊂ 
L∗∆,Ω,x .

For an example, consider the system CLuNv from [2]. This logic is obtained
by adding to CLuN all axioms (A∧∼A) ⊃ B with A ∈ Φ∼−Σ. In other words,
CLuNv trivializes all inconsistencies w.r.t. complex formulae, but it does allow
for inconsistencies at the level of sentential letters. Semantically, this means that
we impose the following restriction on the valuation function v : Φ∼ → {0, 1}:

(Cv) For all A ∈ Φ∼ − Σ, v(∼A) = v(¬A)

It can easily be verified that 
CLuNv = 
CLuN∗Θ , where Θ = {¬(A ∧
∼A) | A ∈ Φ∼ − Σ}. In view of the preceding, 
CLuN,Ωc,x ⊂ 
CLuNv,Ωc,x .

10

So if we treat all ∼-inconsistencies as abnormal, but some as explosive, we are
guaranteed to get a stronger inconsistency-adaptive logic than in the case where
we allow for any type of ∼-inconsistency (in the monotonic core).

For a concrete example, consider again the premise set Γ3 = {∼p,∼∼p ∨
t, q,∼q ∨ r,∼t} from Example 1. Since ∼∼p 
CLuNv ¬∼p, Γ3 
CLuNv t ∧ ∼t.
Hence only t will behave inconsistently in view of Γ3, if we take CLuNv as the
underlying monotonic core.

Arguably, for some the road taken by CLuNv may appear rather extreme:
if inconsistencies are to be taken seriously, how can we assume that no complex
formula whatsoever behaves inconsistently? Note however that we merely used
CLuNv as an example. One may readily think of much weaker logics, which
still trivialize inconsistencies of a certain form, or with respect to certain (types
of) propositional variables, etc.

An analogous point can be made about other applications of ALs. Take for
instance the case of adaptive deontic logics (see e.g. [17, 27]). Many of these
offer specific ways to cope with deontic conflicts. Typically, their abnormali-
ties represent statements such as “A is obligatory according to some normative
system, but it is not a universal obligation”, “A is a prima facie obligation,
but not an actual obligation”, or “A and B are obligations, but A ∧B is not”.
Here again, we may consider stronger ALs, obtained by (i) restricting the set
of possibly abnormal A (and B) to a specific type of formulas, and (ii) adding
axioms which enforce that all other formulas cannot behave abnormally in this
sense.

Just as is the case with CLuNv, adding such negations of abnormalities
(or disjunctions thereof) to a monotonic L will result in a new AL which is (in
the interesting case) often stronger, but which also trivializes more premise sets
than the original AL we started with. In other words, much as is the case with
monotonic logics, we end up with a trade-off between inferential power on the
one hand, and avoiding triviality on the other.

10First, note that 
CLuN ⊂ 
CLuNv . Second, by Lemma 2, 
CLuNv is reliability-
conservative w.r.t. 〈 
CLuN ,Φ∼〉. The rest is immediate in view of Corollary 7.
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4 Parameter 2: the Set of Abnormalities

In this section, we hold the monotonic core L fixed, and ask which conditions
on the sets of abnormalities Ω and Ω′ warrant that 
L,Ω,x ⊆ 
L,Ω′,x . As
before, we consider this question for both x = r and x = m.

There are at least two reasons why this question is interesting. First, it sheds
new light on the concept of abnormality and its role in defeasible reasoning.
What does it mean that a given formula A is an abnormality? What happens
in case two abnormalities A and B are contradictory – do they cancel each other
out? Or if A and B are abnormalities, then what happens if we also treat A∧B,
resp. A ∨B as abnormalities? More generally, what kind of logic do we obtain
if we close Ω under a given (set of) connective(s)?

The second motivation for this section is pragmatic. For a given set Ω of
abnormalities, one may ask whether some of its members A are redundant,
in the sense that 
L,Ω,x = 
L,Ω−{A},x . If so, then one may ignore those
abnormalities altogether, when one checks whether something follows from a
premise set or not. We will give an example of such a case in Section 4.2 below.

The results presented in this section are significant, yet only partial. More
particularly, in contrast to the previous section, we were only able to spell out
conditions which are sufficient (but not necessary) for the identity or inclusion
of two adaptive consequence relations.11 We will therefore focus on concrete
examples, in order to motivate further research in this direction. Our results also
differ from those in the preceding section in another respect: it turns out that
the conditions under which the consequence relation is preserved are different
for the two strategies.

This section is organized as follows. In Section 4.1, we note some basic
insights concerning pairs of adaptive logics defined from the same monotonic
core but a different set of abnormalities. Next, we consider specific cases where
Ω′ is a superset of Ω, obtained by closing certain abnormalities under truth-
functional connectives (Section 4.2). This allows us to illustrate some basic
mechanisms, and the importance of this type of work for concrete applications.
We will gradually work towards more generic conditions, the deepest of which
are given in Section 4.3.

We assume a fixed logic L in this section, with 
L ⊆ ℘(Φ)× Φ for a given
set of formulas Φ which is closed under the classical connectives ¬,∨,∧,⊃,≡.
Recall that L is supposed to be a supra-classical, compact Tarski-logic. We
will skip the subscript L throughout this section, and thus write e.g. MΩ,x(Γ)
instead ofML,Ω,x(Γ). Sets of abnormalities are denoted by Ω,Ω′, . . ., and always
assumed to be subsets of Φ.

11Lemma 3 below does provide a necessary and sufficient condition for 
L,Ω,m ⊆ 
L,Ω′,m ,
but this condition seems to be little more than a clarification of what it means that, for all Γ,
ML,Ω′,m(Γ) ⊆ ML,Ω,m(Γ).
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4.1 Some Preliminary Insights

This section consists of some general observations concerning ALs that are based
on the same L and two different sets of abnormalities. Some of these will be
called upon in Section 4.3; others are noteworthy in their own right.

Lemma 3 
Ω,m ⊆ 
Ω′,m iff for all M,M ′ ∈ M: if AbΩ(M) ⊂ AbΩ(M
′),

then AbΩ′(M) ⊂ AbΩ′(M ′).

Proof. (⇒) Suppose M,M ′ ∈ M are such that (1) AbΩ(M) ⊂ AbΩ(M
′), yet (2)

AbΩ′(M) 6⊂ AbΩ′(M ′). Let A ∈ AbΩ(M
′) − AbΩ(M). Let Γ = {B ∨ C | M |=

B,M ′ |= C}. Note that each of the following holds for all M ′′ ∈ M(Γ):

(3) {D | M ′′ |= D} = {D | M |= D} or {D | M ′′ |= D} = {D | M ′ |= D} (from
the construction of Γ, relying on the classical behavior of ∨ and ¬)

(4) AbΩ(M
′′) = AbΩ(M) or AbΩ(M

′′) = AbΩ(M
′) (from (3))

(5) AbΩ′(M ′′) = AbΩ′(M) or AbΩ′(M ′′) = AbΩ′(M ′) (from (3))

By (1) and (4), all models M ′′ ∈ MΩ,m(Γ) are such that AbΩ(M
′′) =

AbΩ(M), whence they all falsify A. So Γ 
Ω,m ¬A.
Note that M ′ ∈ M(Γ). Moreover, by (2) and (5), there is no M ′′ ∈ M(Γ)

such that AbΩ′(M ′′) ⊂ AbΩ′(M ′). Hence M ′ ∈ MΩ′,m(Γ). Since M ′ |= A,
Γ 6
Ω′,m ¬A. (⇐) Trivial.

Corollary 11 
Ω,m = 
Ω′,m iff for all M,M ′ ∈ M: AbΩ(M) ⊂ AbΩ(M
′)

iff AbΩ′(M) ⊂ AbΩ′(M ′).

Theorem 7 If 
Ω,r ⊆ 
Ω′,r , then 
Ω,m ⊆ 
Ω′,m .

Proof. Suppose 
Ω,m 6⊆ 
Ω′,m . By Lemma 3, there are M,M ′ ∈ M such
that AbΩ(M) ⊂ AbΩ(M

′) and AbΩ′(M) 6⊂ AbΩ′(M ′). Let Γ be constructed in
the same way as in the proof of Lemma 3. Hence there is an A such that (1)
Γ 
Ω,m ¬A and (2) Γ 6
Ω′,m ¬A. By (1) and Lemma 1, A 6∈ UΩ(Γ) and hence
again by Lemma 1, Γ 
Ω,r ¬A. By (2) and Theorem 5, Γ 6
Ω′,r ¬A. Hence,

Ω,r 6⊆ 
Ω′,r

Corollary 12 If 
Ω,r = 
Ω′,r , then 
Ω,m = 
Ω′,m .

Corollary 12 shows that any sufficient condition for 
Ω,r = 
Ω′,r is also
sufficient for 
Ω,m = 
Ω′,m . The converse fails, in view of the examples we
will give in Section 4.2.

By the definitions of 
Ω,m and 
Ω,r , it is obvious that whenever Ω and
Ω′ give rise to the same selection of models for every premise set Γ, then they
also define the same adaptive consequence relation. In view of the preceding,
we can also show that the converse holds:

Theorem 8 
Ω,x ⊆ 
Ω′,x iff for all Γ ⊆ Φ, MΩ′,x(Γ) ⊆ MΩ,x(Γ).
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Proof. (⇐) Immediate in view of Definitions 5 (for x = r) and 2 (for x = m).
(⇒) (x = r) Suppose that 
Ω,r ⊆ 
Ω′,r . Let Γ ⊆ Φ. Hence CnΩ,r(Γ) ⊆
CnΩ′,r(Γ). The rest is immediate in view of Corollary 2 and the monotonicity of
L. (x = m) Suppose 
Ω,m ⊆ 
Ω′,m . Hence by Lemma 3, for all M,M ′ ∈ M,
if AbΩ(M) ⊂ AbΩ(M

′), then AbΩ′(M) ⊂ AbΩ′(M ′). By Definition 1, for all
Γ ⊆ Φ, MΩ′,m(Γ) ⊆ MΩ,m(Γ).

The following theorem shows that, whenever Ω ⊆ Ω′, then also the converse
of Theorem 7 holds. This will in turn simplify some proofs in the remainder.

Theorem 9 If 
Ω,m ⊆ 
Ω′,m and Ω ⊆ Ω′, then 
Ω,r ⊆ 
Ω′,r .

Proof. Suppose the antecedent holds. We prove that for all Γ ⊆ Φ, MΩ′,r(Γ) ⊆
MΩ,r(Γ); the rest is immediate in view of Theorem 8. The case whereMΩ,r(Γ) =
M(Γ) is trivial. So suppose that MΩ,r(Γ) 6= M(Γ) and consider an arbitrary
M ∈ M(Γ)−MΩ,r(Γ). Hence there is an A ∈ AbΩ(M) − UΩ(Γ). By Theorem
3, A is false in all M ′ ∈ MΩ,m(Γ). By the supposition and Theorem 8, A is
false in all M ′ ∈ MΩ′,m(Γ). Since A ∈ Ω′, A ∈ AbΩ′(M) − UΩ′(Γ), and hence
M 6∈ MΩ′,r(Γ).

Theorem 10 Where Ω ⊆ Φ and A ⊆ ℘(Φ): if, for all Ω′ ∈ A, 
Ω,x = 
Ω′,x ,
then 
Ω,x = 


⋃
A,x .

Proof. (x = m) Let A be an arbitrary set of sets Ω′ such that 
Ω,m = 
Ω′,m .
Let Λ =

⋃
A. Consider two models M,M ′ ∈ M. By Lemma 3, we have:

AbΩ(M) ⊂ AbΩ(M
′) iff for all Ω′ ∈ A, AbΩ′(M) ⊂ AbΩ′(M ′). It follows imme-

diately that if AbΩ(M) ⊂ AbΩ(M
′), then also AbΛ(M) ⊂ AbΛ(M

′).
Suppose now that AbΛ(M) ⊂ AbΛ(M

′). Hence there is an Ω′ ∈ A such that
AbΩ′(M) ⊂ AbΩ′(M ′). By Lemma 3, AbΩ(M) ⊂ AbΩ(M

′) as well. So we have
shown that for all M,M ′ ∈ M, AbΩ(M) ⊂ AbΩ(M

′) iff AbΛ(M) ⊂ AbΛ(M
′).

By Lemma 3, 
Ω,m = 
Λ,m .
(x = r) Let A be an arbitrary set of sets Ω′ such that 
Ω,r = 
Ω′,r . Let

again Λ =
⋃
A. By Corollary 12, for all Ω′ ∈ A, 
Ω,m = 
Ω′,m . By Theorem

10 for x = m, we can infer that (i) 
Ω,m = 
Λ,m and (ii) 
Ω,m = 
Λ∪Ω,m .
Hence, (iii) 
Λ,m = 
Λ∪Ω,m . By Theorem 9 and (ii), 
Ω,r = 
Λ∪Ω,r . By
Theorem 9 and (iii), 
Λ,r = 
Λ∪Ω,r . Hence, 
Ω,r = 
Λ,r .

Theorem 11 Where Ω′ = {A ∈ Ω | M({A}) 6= ∅}: 
Ω,x = 
Ω′,x .

Proof. (x = m) Note that for all M ∈ M, AbΩ(M) = AbΩ′(M). The rest is
immediate in view of Corollary 11. (x = r) Let Γ ⊆ Φ be arbitrary. In view of
the case x = m and Theorem 3.2, UΩ(Γ) = UΩ′(Γ). Moreover, for all A ∈ Ω−Ω′,
¬A ∈ Cn(∅). The rest follows by Theorem 4.

4.2 Abnormalities and Truth-functional Connectives

In this section, we discuss some basic observations that concern cases where Ω
is a superset of Ω′, obtained by adding conjunctions, disjunctions or negations
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of abnormalities. This allows us to clarify how certain simple variations on Ω
result in a stronger, identical or weaker consequence relation. Our observations
also illustrate a point made at the start of this section, i.e. that with respect to
variations on the set of abnormalities, the two strategies behave differently. At
the end of this section, we generalize our observations to extensions by means of
arbitrary truth-functional operations. All theorems in this section are corollaries
of Theorem 21 and Fact 2, both of which can be found in Section 4.3.

Notation 2 Let ∆∧ denote the closure of ∆ under conjunction, i.e., the small-
est set Θ ⊇ ∆ which has the property: if A,B ∈ Θ, then A ∧B ∈ Θ. Similarly,
∆∨ denotes the closure of ∆ under ∨.

4.2.1 Conjunction

Suppose that A,B ∈ Ω. If we use the minimal abnormality strategy, this means
that we prefer models that falsify A over those that verify A; similar for B.
If we use the reliability strategy, it means that if A is not a disjunct of some
minimal disjunction of abnormalities that follows from Γ, we treat it as false;
similar for B. For both strategies, it seems therefore natural to also consider
A∧B as an abnormality. But what happens if we add A∧B to Ω, resulting in a
new set Ω′ of abnormalities? We consider this question for each of the strategies
separately.

Minimal Abnormality For minimal abnormality, adding conjunctions of ab-
normalities results in exactly the same consequence relation. Formally:

Theorem 12 If Ω ⊆ Ω′ ⊆ Ω∧, then 
Ω,m = 
Ω′,m .

A direct proof for Theorem 12 is given in [29]. Here, we will see that it
follows from more generic results concerning truth-functional connectives and
their interplay with abnormalities.

Theorem 12 implies that, where each of A,B,A ∧B are in the set of abnor-
malities, it is safe to ignore A∧B, when trying to determine the set of minimally
abnormal models of Γ. Conversely, it shows that adding conjunctions of abnor-
malities will not make any difference for the consequence relation of an adaptive
logic that uses minimal abnormality.

Reliability For the reliability strategy, the picture is rather different. Let us
start with the positive result:

Theorem 13 If Ω ⊆ Ω′ ⊆ Ω∧, then 
Ω,r ⊆ 
Ω′,r .

However, the antecedent of Theorem 13 does not imply that 
Ω,r = 
Ω′,r .
We illustrate this by means of a simple example.
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Example 3 We use again the adaptive logics based on CLuN as an illustra-
tion. Let Γ4 = {p, q,∼p∨∼q,∼p∨ r,∼q ∨ r}. Since both p∧∼p and q ∧∼q are
unreliable abnormalities in view of Γ4, Γ4 6
Ωc,r r.

Let Ω∧
c denote the closure of Ωc under conjunction. Then (p ∧ ∼p) ∧ (q ∧

∼q) ∈ Ω∧
c . Note that this abnormality is false in all M ∈ MΩc,m(Γ4), and

hence by Theorem 12, it is also false in all M ∈ MΩ∧

c ,m(Γ4). By Theorem 3,
(p ∧ ∼p) ∧ (q ∧ ∼q) is a reliable abnormality w.r.t. 〈CLuN,Ω∧

c ,Γ4〉. It follows
that all M ∈ MΩ∧

c ,r(Γ4) falsify this abnormality, whence they verify r.

As the example illustrates, when we add conjunctions of abnormalities to Ω,
the resulting logic is stronger than the one we started with. In particular, the
more conjunctions of abnormalities we add, the closer – so it seems – we get to

Ω,m . Hence we may ask whether in general, 
Ω,m = 
Ω∧,r . We refer the
interested reader to [29] for an in-depth discussion of this matter.12

4.2.2 Disjunction

Adding disjunctions of abnormalities leaves the consequence relation unaltered,
for both strategies:

Theorem 14 Where x ∈ {r,m}: if Ω ⊆ Ω′ ⊆ Ω∨, then 
Ω,x = 
Ω′,x .

Hence, at the level of the consequence relation, not much is to be gained
from closing Ω under disjunction, or from adding certain disjunctions in a more
piecemeal fashion. Moreover, Theorem 14 implies that if certain abnormalities
A in Ω are equivalent to disjunctions of other abnormalities B1, . . . , Bn, then
we may safely ignore those A when checking what follows from a given premise
set Γ.

A case in point are the logics LIr and LIm from [8, 11]. These are defined on
the basis of the fragment of first order predicate logic with only unary predicates
P,Q,R, . . . and without identity. Where x ranges over variables and A over
formulas, they use the following set of abnormalities:

ΩLI = {¬∀x(A(x)) | A(.) contains no quantifiers, free variables, or constants}

The intuition behind these logics is that, when we try to derive a general-
ization from certain data, we assume every generalization to be true unless the
premises prevent this.

Note that every member of ΩLI is equivalent to a formula in conjunctive
normal form: ¬∀x(

∧
1≤i≤n(P

i
1x∨. . .∨P

i
mi

x)). This formula is in turn equivalent

to ¬∀x(P 1
1 x∨. . .∨P

1
m1

x)∨. . .∨¬∀x(Pn
1 x∨. . .∨P

n
mn

x), which is itself a disjunction
of LI-abnormalities. So by Theorem 14, we may just restrict our attention to
the following, much smaller set of abnormalities:

Ω′
LI

= {¬∀x(P1x ∨ . . . ∨ Pnx) | n ∈ N}

12As shown there, for a specific class of premise sets Γ, CnΩ,m(Γ) = CnΩ∧,r(Γ). This class
can be characterized by a necessary and sufficient condition, which relates to the proof theory
of ALs. However, unless Ω is finite, one may often construct premise sets that do not obey
this condition.
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4.2.3 Negation

The third and last concrete connective which we consider is classical negation.
Here again, the behavior of the two strategies is essentially the same:

Theorem 15 Where x ∈ {r,m}: if Ω ⊆ Ω′ ⊆ Ω ∪ ¬Ω, then 
Ω′,x ⊆ 
Ω,x .

This result seems fairly intuitive: suppose that Ω2 is obtained from Ω1, by
removing certain A from Ω1 for which also ¬A ∈ Ω1. In that case, 
Ω2,x will
be a superrelation of 
Ω1,x . So if we make our notion of abnormality more
coherent in this specific sense, we end up with a logic that is at least as strong
as the one we had before. The following example shows that the set inclusion
in Theorem 15 is sometimes proper:

Example 4 Let Ω = {p} and Ω′ = {p,¬p}. Clearly, ∅ 
Ω,x ¬p, yet ∅ 6
Ω′,x ¬p
for both x = r and x = m.

In the limiting case where Ω′ = Ω ∪ ¬Ω, the resulting adaptive logic is
equivalent to L (for both strategies):

Theorem 16 Where x ∈ {r,m}: 
Ω∪¬Ω,x = 
 .

4.2.4 Arbitrary Truth-functional Operations

We now investigate truth-functional connectives more generally, for each of the
two strategies.

Notation 3 Where F is a set of connectives, we use ∆F to denote the closure
of ∆ under all members of F .

Minimal Abnormality In the preceding, we saw that adding conjunctions
or disjunctions of abnormalities makes no difference for minimal abnormality,
whereas adding negations of abnormalities results in a weaker logic. This raises
the question: is there any way we may obtain a stronger consequence relation

Ω′,m by adding certain truth-functions of abnormalities in Ω? The answer is
simply negative. That is, let T be the set of all truth-functional connectives.
We have:

Theorem 17 If Ω ⊆ Ω′ ⊆ ΩT , then 
Ω′,m ⊆ 
Ω,m .

As our example in Section 4.2.3 shows, the antecedent of Theorem 17 does not
warrant that 
Ω′,m = 
Ω,m . To obtain this property, we need to consider
a restricted type of connectives. That is, let a truth-functional connective of
arity k be positive iff it can be equivalently expressed by means of conjunction,
disjunction, and ⊥ alone. Let P ⊂ T be the set of all positive truth-functional
connectives. We have:

Theorem 18 If Ω ⊆ Ω′ ⊆ ΩP , then 
Ω,m = 
Ω′,m .
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Reliability For reliability, we can obviously not prove a counterpart of The-
orem 17, in view of the examples from Section 4.2.1. Nevertheless, we can
delineate a specific class of truth-functional connectives for which the reliability-
counterpart of Theorem 17 holds. That is, let a truth-functional connective •
of arity k be disjunctive iff for all A1, . . . , Ak, •(A1, . . . , Ak) is equivalent to
B1 ∨ . . . ∨ Bk, where each Bi ∈ {Ai,¬Ai,⊥}. Examples of disjunctive con-
nectives are the zero-ary falsum and verum constant, negation, implication,
disjunction, and the nand connective (not . . . or not . . .). Let D ⊂ T be the set
of all disjunctive connectives. We have:

Theorem 19 If Ω ⊆ Ω′ ⊆ ΩD, then 
Ω′,r ⊆ 
Ω,r .

The antecedent of Theorem 19 does not imply that 
Ω′,r = 
Ω,r ; this
follows from our observations concerning the addition of negations of abnormal-
ities in Section 4.2.3. It also seems that Theorem 19 cannot easily be extended
to (certain classes of) truth-functional connectives which are not disjunctive.
For instance, it does not hold for classical equivalence.13

Finally, one may ask whether certain extensions in terms of truth-functional
connectives will always result in a consequence relation that is at least as strong
as the original one, if we use the reliability strategy. As we saw, this holds for
conjunction and disjunction. The following theorem generalizes this property
to all positive connectives:

Theorem 20 If Ω ⊆ Ω′ ⊆ ΩP , then 
Ω,r ⊆ 
Ω′,r .

4.3 Most Generic Conditions

In this section, we briefly outline our deepest results, which have the preceding
theorems from Section 4 as corollaries. In contrast to the results from the
preceding sections, the conditions used here do not pose any restrictions on Ω′

in terms of truth-functional or other connectives; they merely concern a relation
between Ω and Ω′ in terms of 
 and the set of models M. An overview of
these conditions and their relation to those from preceding sections is given in
Figure 1.

Let in the remainder Γ 

∃
L
A (A ∈ Cn∃(Γ)) iff there is a B ∈ Γ such that

{B} 
 A. We will consider the following conditions on Ω, Ω′:

(C1) For all M ∈ M, Cn∃(AbΩ(M)) = Cn∃(AbΩ′(M)).

(C2) For all M ∈ M, Cn(AbΩ(M)) = Cn(AbΩ′(M))

(C3) Ω ⊆ Ω′ and for all M ∈ M, AbΩ′(M) ⊆ Cn(AbΩ(M))

(C4) Ω ⊆ Ω′ and for all M ∈ M, AbΩ′(M) ⊆ Cn(AbΩ(M) ∪ Ab¬Ω(M))

13To see why, let L = CL, Ω = {p, q} and Ω′ = {p, q, p ≡ q}. Then ∅ 
Ω,r ¬p∧¬q, whereas
∅ 6
Ω′,r ¬p∧¬q. However, where Γ = {p∨q}, we have Γ 6
Ω,r ¬p∨¬q, wheras Γ 
Ω′,r ¬p∨¬q.
So in this case, 
Ω,r and 
Ω′,r are incomparable.
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(C5) Ω ⊆ Ω′ and for all M ∈ M, AbΩ′(M) ⊆ Cn∃(AbΩ(M) ∪ Ab¬Ω(M))

Let us briefly comment on each of these conditions. Note first that, in view
of Remark 1 from Section 2, each of these conditions can also be stated in
terms of maximal L-consistent sets Θ ⊆ Φ. We refer to Appendix B where this
alternative formulation is spelled out.

(C1) should not be confused with the (stronger) condition that the members
of Ω and Ω′ are pairwise equivalent (i.e., for all A ∈ Ω, there is a B ∈ Ω′ such
that 
 A ≡ B and vice versa). Note for instance that (C1) holds when Ω′ = Ω∨.
The point is that, although Ω∨ contains certain formulas that are weaker than
any member of Ω, those additional abnormalities are redundant with respect to
the formulas that occur in Ω.

Since L is a Tarski-logic, (C3) implies (C2). Whenever Ω ⊆ Ω′, it can easily
be verified that (C3) and (C2) are equivalent. Both conditions state that, for
all models M , the logical content of AbΩ(M) equals that of AbΩ′(M). This
holds trivially in case Ω′ = Ω∧ or Ω′ = Ω∨. More generally, it holds whenever
Ω ⊆ Ω′ ⊆ ΩP .

This brings us to condition (C4), which can perhaps best be understood as
a generalization of Ω ⊆ Ω′ ⊆ ΩT . The idea is that for each model M , AbΩ′(M)
is uniquely determined by the set of all A ∈ Ω ∪ ¬Ω that are valid in M . Note
that (C4) does not imply (C2) even if Ω ⊆ Ω′.14 On the other hand, if Ω ⊆ Ω′,
then (C2) implies (C4).

(C5), finally, is still more stringent in that it requires that each member B

of AbΩ′(M) follows from a single C ∈ Ω∪¬Ω that is valid in M . This holds e.g.
when Ω ⊆ Ω′ ⊆ ΩD.

Fact 2 below summarizes the relation between the above conditions and
those from Section 4.2; in view of our remarks above, its verification can be
safely left to the reader.

Fact 2 Each of the following holds:

1. If Ω ⊆ Ω′ ⊆ ΩT , then (C4).
2. If Ω ⊆ Ω′ ⊆ ΩP , then (C3).
3. If Ω ⊆ Ω′ ⊆ ΩD, then (C5).
4. If Ω ⊆ Ω′ ⊆ Ω∨, then (C1).
5. If (C1), then (C2).
6. If (C3), then (C2).
7. If (C3), then (C4).
8. If (C5), then (C4).
9. If Ω ⊆ Ω′ and (C2), then (C3).
10. If Ω ⊆ Ω′ and (C2), then (C4).

Theorem 21 Each of the following holds:

1. If (C2), then 
Ω,m = 
Ω′,m .

14See e.g. Example 4, where L = CL, Ω = {p} and Ω′ = {p,¬p}. Consider a model M such
that M |= ¬p. Then Cn(AbΩ(M)) = Cn(∅) ⊂ Cn(AbΩ′ (M)) = Cn({¬p}).
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(C1) 
Ω,r = 
Ω′,r

(C2) 
Ω,m = 
Ω′,m

Ω ⊆ Ω′ ⊆ Ω∧ Ω ⊆ Ω′ ⊆ ΩP (C3) 
Ω,r ⊆ 
Ω′,r

Ω ⊆ Ω′ ⊆ Ω∨ Ω ⊆ Ω′ ⊆ ΩT (C4) 
Ω,m ⊇ 
Ω′,m

Ω ⊆ Ω′ ⊆ Ω¬ Ω ⊆ Ω′ ⊆ ΩD (C5) 
Ω,r ⊇ 
Ω′,r

Figure 1: Overview of the conditions from Section 4.

2. If (C1), then 
Ω,m = 
Ω′,m

3. If (C3), then 
Ω,m = 
Ω′,m .
4. If (C4), then 
Ω′,m ⊆ 
Ω,m .
5. If (C1), then 
Ω,r = 
Ω′,r .
6. If (C3), then 
Ω,r ⊆ 
Ω′,r .
7. If (C5), then 
Ω′,r ⊆ 
Ω,r .
8. If (C5), then 
Ω′,m ⊆ 
Ω,m .

Proof. Ad 1. Suppose (C2) holds. Let M,M ′ ∈ M be arbitrary. Suppose
AbΩ(M) ⊂ AbΩ(M

′). Note first that, by (C2) and the monotonicity of L,
AbΩ′(M) = Cn(AbΩ(M)) ∩ Ω′ ⊆ Cn(AbΩ(M

′)) ∩ Ω′ = AbΩ′(M). Hence, (a)
AbΩ′(M) ⊆ AbΩ′(M ′).

Assume now that AbΩ′(M) = AbΩ′(M ′). Then by (C2), AbΩ(M) = Cn(AbΩ′(M))∩
Ω = Cn(AbΩ′(M ′)) ∩ Ω = AbΩ(M

′), and hence AbΩ(M) = AbΩ(M
′). But this

contradicts the supposition. Hence (b) AbΩ′(M) 6= AbΩ′(M ′). By (a) and (b),
AbΩ′(M) ⊂ AbΩ′(M ′). Since (C2) is symmetric w.r.t. Ω and Ω′, we have shown
that for all M,M ′ ∈ M, AbΩ(M) ⊂ AbΩ(M

′) iff AbΩ′(M) ⊂ AbΩ′(M ′). The
rest follows by Lemma 3.

Ad 2 and 3. From item 1, relying on Facts 2.5-6.
Ad 4. Let M,M ′ ∈ M be such that (⋆) AbΩ′(M ′) ⊂ AbΩ′(M). By Lemma

3, it suffices to show that AbΩ(M
′) ⊂ AbΩ(M).

Consider an arbitrary A ∈ AbΩ(M
′). By (C4), A ∈ AbΩ′(M ′), and hence by

(⋆), A ∈ AbΩ′(M). Since A ∈ Ω, also A ∈ AbΩ(M). So (a) AbΩ(M
′) ⊆ AbΩ(M).

Let now B ∈ AbΩ′(M)−AbΩ′(M ′). By (C4), B ∈ Cn(AbΩ(M)∪Ab¬Ω(M)).
If AbΩ(M

′) = AbΩ(M), then Ab¬Ω(M) = Ab¬Ω(M
′), whenceB ∈ Cn(AbΩ(M

′)∪
Ab¬Ω(M

′)). It follows that M ′ |= B, and hence B ∈ AbΩ′(M ′) — a contradic-
tion. Hence (b) AbΩ(M

′) 6= AbΩ(M). By (a) and (b), AbΩ(M
′) ⊂ AbΩ(M).

Ad 5. Suppose (C1) holds and let Γ ⊆ Φ be arbitrary. Assume M ∈
MΩ,r(Γ) − MΩ′,r(Γ). Let A ∈ AbΩ′(M) − UΩ′(Γ). By (C1), there is a B ∈
AbΩ(M) such that {B} 
 A. Since M ∈ MΩ,r(Γ) and by Theorem 3, there is
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an M ′ ∈ MΩ,m(Γ) such that B ∈ AbΩ(M
′), and hence also M ′ |= A. By (C1),

item 2 and Theorem 8, M ′ ∈ MΩ′,m(Γ). But then, since A ∈ Ω′, A ∈ UΩ′ (Γ)
— a contradiction.

So we have shown that MΩ,r(Γ) ⊆ MΩ′,r(Γ) for all Γ ⊆ Φ. Since (C1) is
symmetric w.r.t. Ω and Ω′, alsoMΩ,r(Γ) ⊇ MΩ′,r(Γ) for all Γ ⊆ Φ. By Theorem
8, 
Ω,r = 
Ω′,r .

Ad 6. Let Γ ⊆ Φ. Suppose that M ∈ M(Γ)−MΩ,r(Γ). Let A ∈ AbΩ(M)−
UΩ(Γ). By (C3), A ∈ Ω′. By Theorem 3, for no M ′ ∈ MΩ,m(Γ), M

′ |= A. By
item 3 and (C3), there is no M ′ ∈ MΩ′,m(Γ) such that M ′ |= A. By Theorem
3, M 6∈ MΩ′,r(Γ). Hence, MΩ′,r(Γ) ⊆ MΩ,r(Γ) for all Γ ⊆ Φ. By Theorem 8,

Ω,r ⊆ 
Ω′,r .

Ad 7. Let Γ ⊆ Φ be arbitrary. Note that

(†) if B ∈ Ω and M |= B for every M ∈ MΩ,m(Γ), then Γ 
 B.

That is, suppose the antecedent of (†) holds. Let M ′ ∈ M(Γ) be arbitrary.
By Theorem 2, there is an M ′′ ∈ MΩ,m(Γ) with AbΩ(M

′′) ⊆ AbΩ(M
′). Since

M ′′ |= B, also M ′ |= B.
Suppose now that (C5) holds and that M ∈ M(Γ) − MΩ′,r(Γ). Let A ∈

AbΩ′(M) − UΩ′(Γ). By (C5), there is a B ∈ AbΩ(M) ∪ Ab¬Ω(M) such that
{B} 
 A. By Theorem 3, A is false in every model M ′ ∈ MΩ′,m(Γ), and hence
so is B. By item 4 and Fact 2.8, B is also false in every M ′ ∈ MΩ,m(Γ).

Case 1: B ∈ Ab¬Ω(M). Hence B = ¬C with C ∈ Ω. It follows that C is
true in every M ∈ MΩ,m(Γ). By (†), Γ 
 C. But this contradicts the fact that
M |= B and M ∈ M(Γ).

Case 2: B ∈ AbΩ(M). It follows that B ∈ Ω−UΩ(Γ), whence M 6∈ MΩ,r(Γ).
So altogether, we have shown that MΩ,r(Γ) ⊆ MΩ′,r(Γ) for all Γ ⊆ Φ.

Hence, by Theorem 8, 
Ω,r ⊇ 
Ω′,r .
Ad 8. Immediate in view of item 7 and Theorem 7.

This theorem deserves some further comments. First of all, using the ex-
amples from Section 4.2, it can be easily verified that the set inclusion in the
consequent of items 4 and 6-8 is sometimes proper. For items 4, 7 and 8, this
follows by Example 4. For item 6, it follows by Example 3. The latter example
also illustrates why (C2) does not imply that 
Ω,r = 
Ω′,r .

Second, one may wonder whether the conditions (C1)-(C5) are not just suf-
ficient, but also necessary for their respective consequents. We answer this
question in the negative in Appendix B.

5 From Abnormalities To Expectations

In his [20, Chapter 2], David Makinson discusses so-called default assumption
consequence relations (henceforth DACRs). This is a restricted version of the
expectation-based inference relations studied in [16]. We restrict ourselves to
DACRs here, leaving the study of the more general format for a later occasion.
However, we generalize the account from [20], replacing classical logic with the
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compact supraclassical logic L that was used in the previous sections. Finally,
to avoid confusion with our informal use of the term “assumption” in preceding
sections, we shall use the term “expectations” to denote the specific type of
default knowledge used in the DACR framework.

DACRs Every DACR is defined on the basis of L and a set of formulas ∆ ⊆ Φ.
The members of ∆ are called expectations. The idea is that these expectations
are taken to be true whenever possible, and hence that we can treat them as
additional premises. However, if they are incompatible with our premise set Γ,
we need to reject some of our expectations.

It is well-known from the literature on belief revision and nonmonotonic logic
that in such cases, there are often several options – some expectations may be
in themselves compatible with the premises, but not jointly. In the DACR
framework this problem is tackled as follows: we consider the set Cmax

L,∆(Γ) of

all ⊂-maximal Θ ⊆ ∆, such that CnL(Γ ∪ Θ) 6= Φ.15 A formula A is a default
assumption consequence of Γ modulo the set of expectations ∆, Γ 
L,∆,d A, iff
for every Θ ∈ Cmax

L,∆(Γ), Γ∪Θ 
L A. We write CnL,∆,d(Γ) to denote the set of
all default assumption consequences of Γ.

For several reasons, DACRs take up a notorious place in the field of non-
monotonic logic and belief revision. First, they can be seen as a generalization
of the so-called Strong Rescher-Manor consequence relation from [25]. This
relation is restricted to the case where Γ = ∅ and L is propositional classical
logic. Second, DACRs are a specific, very well-behaved type of Poole default
systems, i.e. those for which the set of constraints is empty – see [19] for the
details. Third, they can be used to characterize the operation of so-called full
meet revision ⊕, putting ∆⊕A = CnL,∆,d({A}), where ∆ is the original belief
set and A is the incoming information – see [21] for a detailed study of this
correspondence.

DACRs and minimal abnormality Now, suppose we translate every ab-
normality A into an expectation ¬A, and every expectation A into an abnor-
mality ¬A. Then minimizing abnormalities – as specified in the AL framework,
using the minimal abnormality strategy – corresponds exactly to maximizing
the associated expectations – as specified in the DACR framework –, and vice
versa:16

Theorem 22 Each of the following holds:

1. {Ab¬Ω(M) | M ∈ ML,Ω,m(Γ)} = Cmax

L,¬Ω(Γ)
2. Cmax

L,∆(Γ) = {Ab∆(M) | M ∈ ML,¬∆,m(Γ)}
3. 
L,Ω,m = 
L,¬Ω,d

15In the cited literature, this condition is expressed by means of a bottom constant, but
this is obviously equivalent in the presence of a classical negation.

16Items 3 and 4 of Theorem 22 were proven in [30], for the syntactic characterization of
ALs. Here, we follow the semantic route. Items 1 and 2 are mainly auxiliary, and will become
important once we consider a reliability-variant of DACRs – see below.
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4. 
L,∆,d = 
L,¬∆,m

Proof. Ad 1. “⊆” Suppose Θ = Ab¬Ω(M) for an M ∈ ML,Ω,m(Γ). Since M is
a model of Γ, Γ ∪ Θ is L-satisfiable. Suppose now that Θ 6∈ Cmax

L,¬Ω(Γ). Hence
there is a Θ′ such that Θ ⊂ Θ′ ⊆ ¬Ω such that CnL(Γ∪Θ′) 6= Φ. Let M ′ be an
L-model of Γ ∪ Θ′. It follows that AbΩ(M

′) ⊂ AbΩ(M), which contradicts the
fact that M ∈ ML,Ω,m(Γ).

“⊇” Let Θ ∈ Cmax

L,¬Ω(Γ). Hence Γ ∪Θ is L-satisfiable. Let M ∈ ML(Γ ∪Θ).
Assume that M 6∈ ML,Ω,m(Γ). Hence there is an M ′ ∈ ML(Γ) such that
AbΩ(M

′) ⊂ AbΩ(M). Let Θ′ = ¬(Ω − AbΩ(M
′)). Note that Θ′ ⊃ Θ and that

Γ ∪Θ′ is L-satisfiable. But then Θ 6∈ Cmax

L,¬Ω(Γ) — a contradiction.
Ad 2. Analogous to item 1, safely left to the reader.
Ad 3. Γ 
L,¬Ω,d A iff [by the definition of 
L,¬Ω,d ] A ∈

⋂
Θ∈Cmax

L,¬Ω
(Γ) CnL(Γ∪

Θ) iff [by the definition of 
L ] for every Θ ∈ Cmax

L,¬Ω(Γ), for every M ∈
ML(Γ ∪ Θ), M |= A iff [by item 1] for every M ∈ ML,Ω,m(Γ), M |= A iff [by
Definition 2] Γ 
L,Ω,m A.

Ad 4. Similar to item 3, relying on item 2 instead of item 1.

Before we discuss some consequences of this correspondence, it should be
stressed that there is an important difference between the way ALs and DACRs
have been developed and presented in the literature. Whereas ALs are proposed
as formal logics and hence it is required that Ω is characterized in terms of one
or more logical forms, no such restriction is imposed on the ∆ of a DACR.
Hence, Theorem 22 applies only if we are willing to remove this restriction.17

This point also relates to a difference in the way both formats are usually
presented. On the one hand, in most work on ALs, the focus is on one specific
application which requires a certain L and set of abnormalities. This L usually
has significantly more expressive power than (propositional) classical logic, and
in many applications it will also have certain non-standard features (e.g. a para-
consistent negation, a non-normal modal operator, or a very weak conditional).
As a result, there is room for questions such as “which inference schemas should
we make defeasible in this context”, or “what types of formulas would constitute
an abnormality for this application.”

On the other hand, the DACR-format is usually only considered for the
case where L is propositional classical logic. Here, ∆ is treated as a variable,
and no specific set of expectations is thought of as privileged. Applications of
this proposal are relatively scarce, and the focus is rather on the metatheory
and extensions of this format, e.g. to include priorities or constraints – see [20,
Chapter 2] for a survey of this work.

As a further result of this difference, the standard format only arose relatively
late (around 2000), as a proposal to unify a wide range of very divergent systems.
In contrast, the DACR-format was there much earlier (see in particular [16]),

17Nevertheless, if we stick to this restriction, we can still characterize DACRs in terms of
ALs, by using a translation along the lines of [23]. This option would take us too far astray
for present concerns.
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and was presented as a direct link between the logic of belief revision [1] and
non-monotonic reasoning.

Putting these differences aside, it should be noted that Theorem 22 has
several interesting implications. Here, we just mention some of the most salient
ones.18

First, by Theorem 22, and relying on Corollaries 6 and 7 from Section 3, we
have:19

Corollary 13 
L,∆,d = 
L′,∆,d iff 
L = 
L′ .

Corollary 14 
L,∆,d ⊂ 
L′,∆,d iff 
L ⊂ 
L′ and L′ is reliability-
conservative w.r.t. 〈L, ¬∆,Φ〉.

Second, we can infer from Corollary 9 that whenever we add certain (dis-
junctions of) expectations as axioms to L, then the resulting DACR will always
be at least as strong as the one we started with:

Corollary 15 Where Θ ⊆ ∆∨: 
L,∆,d ⊆ 
L∗Θ,∆,d .

Let us now consider what happens if we change the set of expectations ∆, a
question which runs parallel to our investigations in Section 4. In view of Theo-
rem 22, we can easily translate each of the conditions from Section 4.3 (or their
syntactic counterparts in Appendix B) to the DACR-framework. It suffices to
replace each Ω and Ω′ by ¬∆, respectively ¬(∆′). From the conditions in terms
of truth-functional connectives from Section 4.2, we obtain the following:20

Corollary 16 Each of the following holds.

1. Where ∆ ⊆ ∆′ ⊆ ∆T : 
L,∆′,d ⊆ 
L,∆,d

2. Where ∆ ⊆ ∆′ ⊆ ∆P : 
L,∆′,d = 
L,∆,d

Some readers might think that Corollary 16.2 can be further strengthened,
so that 
L,∆,d = 
L,∆′,d whenever ∆ ⊆ ∆′ ⊆ CnL(∆). However, this fails in
view of a well-known result from the study of DACRs:

Theorem 23 ([20], Th. 2.7) If ∆′ = CnL(∆), then CnL,∆′,d(Γ) = CnL(Γ)
whenever Γ ∪∆ is L-trivial.

Theorem 23 implies that, if we take as our set of expectations the closure of
some ∆ under CnL, then the resulting DACR reduces to L for all the interesting
cases, i.e. whenever there are conflicts between the premise set and the set of
expectations. We refer to [20, Chapter 2] where this property of DACRs is
explained and discussed in detail.

18As argued in [30], Theorem 22 has several other interesting consequences. For instance,
complexity results for ALs – see e.g. [24] for a recent overview – can be translated into
complexity results for DACRs, and every DACR can be characterized in terms of an AL, and
hence we may use the adaptive proof theory to explicate the internal dynamics of a DACR.

19Note that, in the DACR-terminology, L′ is reliability-conservative w.r.t. 〈L,¬∆,Φ〉 means
that for all Γ ⊆ Φ such that CnL(Γ) 6= Φ, ∆−

⋃
Cmax

L′,∆
(Γ) ⊆ ∆−

⋃
Cmax

L,∆
(Γ).

20Item 2 of this corollary has been shown in [15], for the more restricted case where L = CL

and for finite languages.
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A reliability-variant of DACRs Naturally, one may ask whether it is pos-
sible to define a reliability-variant of the DACR-format, and what it looks like.
In fact, such a variant is already implicit in the way we introduced the reliability
strategy. Let us now turn this into an explicit definition.

First, we call an expectation A ∈ ∆ safe w.r.t. 〈L,∆,Γ〉 iff A is a member
of every Θ ∈ Cmax

L,∆(Γ). Equivalently, iff A ∈
⋂
Cmax

L,∆(Γ). Second, we define a
safe assumption consequence relation from L and ∆ as follows: Γ 
L,∆,s A iff A

follows from Γ together with all the assumptions that are safe w.r.t. 〈L,∆,Γ〉.
In view of Theorems 3 and 22.1, A ∈ Ω is a reliable abnormality w.r.t.

〈L,Ω,Γ〉 iff the assumption ¬A is a member of every Θ ∈ Cmax

L,¬Ω(Γ). Conversely,
A is a safe assumption w.r.t. 〈L,∆,Γ〉 iff ¬A is a reliable abnormality w.r.t.
〈L, ¬∆,Γ〉. Putting this together with Theorem 4, we have:

Corollary 17 Each of the following holds:

1. 
L,∆,s = 
L,¬∆,r

2. 
L,Ω,r = 
L,¬Ω,s

Again, for this variant we obtain various interesting corollaries, on the basis
of the core results from this paper and the simple translation from abnormalities
to expectations and back. First, Corollaries 13-15 also apply when we replace the
subcript d with s everywhere. Second, we can translate the results from Section
4 to the setting with default expectations. This requires some preparation.

Call a truth-functional connective • conjunctive iff for allA1, . . . , Ak, •(A1, . . . , Ak)
is equivalent to B1 ∧ . . . ∧Bk, where each Bi ∈ {Ai,¬Ai,⊤,⊥}. Let C ⊂ T be
the set of all conjunctive connectives. We have:

Theorem 24 Each of the following holds:

1. Where ∆ ⊆ ∆′ ⊆ ∆C, 
L,∆′,s ⊆ 
L,∆,s .
2. Where ∆ ⊆ ∆′ ⊆ ∆P , 
L,∆,s ⊆ 
L,∆′,s .

6 Conclusion

In this paper, we have investigated the standard format of ALs as a parametric
framework for nonmonotonic logics. In particular, we considered pairs of ALs,
asking under which conditions one of them is stronger than the other and when
they are equivalent. Our main results can be summarized as follows:

(i) If both ALs use the same set of abnormalities, then (a) they are equivalent
iff their underlying monotonic cores are equivalent, and (b) one is stronger
than the other iff the monotonic core of the former is stronger than and
reliability-conservative (see Definition 6) w.r.t. the monotonic core of the
latter.

(ii) If both ALs use the same underlying logic, then there are various generic
conditions on their sets of abnormalities which warrant that they are
equivalent, or that one is at least as strong as the other. These condi-
tions are different for the two strategies.
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The properties in (i) and (ii) were shown for all ALs in standard format. More-
over, they were shown to be easily translatable to the framework of DACRs,
letting expectations play the role of negated abnormalities and vice versa.

Future work in this area may take on several forms. First, there is the obvious
question whether one may spell out conditions that subsume those mentioned in
(ii) and are not just sufficient but also necessary. Second, one may consider more
complex comparisons of two ALs, where they use both a different underlying
monotonic core and a different set of abnormalities. Third, one may try to
generalize these results to more generic frameworks which have the standard
format as a special case; examples are the format from [24] which does not
assume supraclassicality of L, the format of lexicographic ALs from [31] in which
abnormalities can have various priority degrees, and the format of [28, Chapter
5] which generalizes the notion of a strategy using so-called threshold functions.
Our current results will be useful for all three types of investigation.
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A Appendix to Section 3

In this appendix we give a concrete example of two logics L and L
′ (based on the

same underlying language) and a set of abnormalities Ω, where 
L ⊆ 
L′ , but L
′

is not reliability-conservative w.r.t. L and Ω. We show that as a result, also 
L,Ω,x

6⊆ 
L′,Ω,x , for none of the two strategies.
For L, we use again the logic CLuN which was introduced before. For L

′, we
use the logic CLuNs from [13], which is a monotonic (proper) extension of CLuN.
Semantically, it can be characterized by the following additional restrictions on the
valuation functions v : Φ∼ → {1, 0} of CLuN:

(S1) v(∼∼A) = v(A)
(S2) v(∼(A ⊃ B)) = v(A ∧ ∼B)
(S3) v(∼(A ∧B)) = v(∼A ∨ ∼B)
(S4) v(∼(A ∨B)) = v(∼A ∧ ∼B)
(S5) v(∼(A ≡ B)) = v(∼((A ⊃ B) ∧ (B ⊃ A)))
(S6) v(∼¬A) = v(A)

This means that in CLuNs, we can analyse (paraconsistent) negations of complex
formulas (e.g. ∼(p ∨ q) 
CLuNs ∼p) and derive negations of complex formulas from
simpler formulas (e.g. p,∼q 
CLuNs ∼(p ⊃ q)).

Consider now again Γ3 = {∼p,∼∼p∨ t, q,∼q ∨ r,∼t,∼∼p∨ s, t∨ s} from Example
1. Recall that according to CLuN, q ∧ ∼q is not unreliable w.r.t. Γ3. However, the
following minimal disjunction of abnormalities is CLuNs-derivable from Γ3:

(q ∧ ∼q) ∨ ((∼p ∧ r) ∧ ∼(∼p ∧ r)) ∨ (t ∧ ∼t)

As a result, q ∧ ∼q is an unreliable abnormality w.r.t. 〈CLuNs,Ωc,Γ3〉. So CLuNs

does not conserve reliability w.r.t. 〈CLuN,Ωc,Φ∼〉. Since there are models M ∈
MCLuNs,Ωc,m(Γ3) which verify q ∧ ∼q and falsify r, Γ3 6
CLuNs,Ωc,m r. By Theorem
5, also Γ3 6
CLuNs,Ωc,r r.

As a matter of fact, the ALs based on CLuNs and Ωc are not the standard
CLuNs-based adaptive logics that appear in the literature. That is, it is shown in
[12, Chapter 7, Section 3] that whenever Γ is ∼-inconsistent but not ¬-inconsistent,
CnCLuNs,Ωc,r(Γ) = CnCLuNs,Ωc,m(Γ) = CnCLuNs(Γ). So the ALs defined from CLuNs

and Ωc reduce to their monotonic core in all interesting cases. This shortcoming can
be solved by using a different, restricted set of abnormalities, i.e. one that contains
only inconsistencies w.r.t. propositional variables – see [12, Chapter 7, Section 3] for
the details.
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B Appendix to Section 4

Alternative formulation of the conditions Let in the remainder ML denote
the set of all sets Θ such that (i) CnL(Θ) ⊂ Φ and (ii) there is no Θ′ with Θ ⊂ Θ′ ⊆ Φ
such that CnL(Θ′) ⊂ Φ. In view of Remark 1, the conditions (C1)-(C5) can be
rephrased as follows:

(C1’) For all Θ ∈ ML, Cn∃

L(Θ ∩ Ω) = Cn∃

L(Θ ∩ Ω′).

(C2’) For all Θ ∈ ML, CnL(Θ ∩ Ω) = CnL(Θ ∩ Ω′)

(C3’) Ω ⊆ Ω′ and for all Θ ∈ ML, Θ ∩ Ω′ ⊆ CnL(Θ ∩ Ω)

(C4’) Ω ⊆ Ω′ and for all Θ ∈ ML, Θ ∩ Ω′ ⊆ CnL(Θ ∩ (Ω ∪ ¬Ω))

(C5’) Ω ⊆ Ω′ and for all Θ ∈ ML, Θ ∩ Ω′ ⊆ Cn∃

L(Θ ∩ (Ω ∪ ¬Ω))

Counterexample to the necessity of the conditions In the remainder, we
show that none of the conditions (C1)-(C5) are necessary for the identity of 
L,Ω,x

and 
L,Ω′,x , where either x = r or x = m. In other words, we will give two (very
simple) sets Ω and Ω′ which do not satisfy any of these conditions, but for which
nevertheless 
L,Ω,r = 
L,Ω′,r and 
L,Ω,m = 
L,Ω′,m . Our example uses two very
simple sets of abnormalities and is based on propositional classical logic. As in Section
4, we skip CL from our usual notations.

Let Ω = {p} and Ω′ = {p, p ∧ q, p ∧ ¬q}. It can be easily verified that none of the
conditions (C1)-(C5) are satisfied for this example. That is, consider an M ∈ M such
that M |= p ∧ q. Then (C2) fails since Cn(AbΩ(M)) = Cn({p}) ⊂ Cn(AbΩ′(M)) =
Cn({p, p∧q}). By Facts 2.5 and 2.6, also (C1) and (C3) fail. For similar reasons, (C4)
fails, and hence by Fact 2.8 also (C5) fails.

We now show that Ω and Ω′ yield exactly the same consequence relation, for both
strategies.

Note first that (1) for all M ∈ M, AbΩ(M) = ∅ or AbΩ′(M) = {p}. Also, (2) for all
M ∈ M, AbΩ′(M) = ∅ or AbΩ′(M) = {p, p∧ q} or AbΩ′(M) = {p, p∧¬q}. From this,
we can derive that, for all M,M ′ ∈ M: AbΩ(M) ⊂ AbΩ(M ′) iff [by (1)] AbΩ(M) = ∅
and AbΩ(M ′) = {p} iff [by CL-properties] AbΩ′(M) = ∅ and (AbΩ′(M ′) = {p, p ∧ q}
or AbΩ′(M ′) = {p, p ∧ ¬q}) iff [by (2)] AbΩ′(M) ⊂ AbΩ′(M ′). So by Lemma 3, we
immediately have:


Ω,m = 
Ω′,m (1)

Since Ω ⊆ Ω′, we can derive by Theorem 9 that 
Ω,r ⊆ 
Ω′,r .
Assume now that, for some Γ ⊆ Φ and M ∈ M, M ∈ MΩ,r(Γ)−MΩ′,r(Γ). Hence

by Theorem 5, also M 6∈ MΩ′,m(Γ). So let M ′ ∈ M(Γ) be such that AbΩ′(M ′) ⊂
AbΩ′(M). Note that it is not possible that AbΩ′(M ′) = {p, p∧ q} or that AbΩ′(M ′) =
{p, p ∧ ¬q}. Thus, AbΩ′(M ′) = AbΩ(M ′) = ∅ and AbΩ(M) = {p}. It follows that
SΩ(Γ) = ∅ and hence also UΩ(Γ) = ∅. But then, since AbΩ(M) 6= ∅, M 6∈ MΩ,r(Γ) —
again a contradiction.

So we have shown that for all Γ ⊆ Φ, MΩ,r(Γ) ⊆ MΩ′,r(Γ), and hence by Theorem
8, 
Ω,r ⊇ 
Ω′,r .
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