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Abstract

Mobile monitoring is increasingly used as an additional tool to acquire air quality data at a high spatial resolution. However, given
the high temporal variability of urban air quality, a limited number of mobile measurements may only represent a snapshot and not
be representative. In this study, the impact of this temporal variability on the representativeness is investigated and a methodology
to map urban air quality using mobile monitoring is developed and evaluated.

A large set of black carbon (BC) measurements was collected in Antwerp, Belgium, using a bicycle equipped with a portable
BC monitor (micro-aethalometer). The campaign consisted of 256 and 96 runs along two fixed routes (2 and 5 km long). Large
gradients over short distances and differences up to a factor of 10 in mean BC concentrations aggregated at a resolution of 20 m
are observed. Mapping at such a high resolution is possible, but a lot of repeated measurements are required. After computing a
trimmed mean and applying background normalisation, depending on the location 24 to 94 repeated measurement runs (median
of 41) are required to map the BC concentrations at a 50 m resolution with an uncertainty of 25 %. When relaxing the uncertainty to
50 %, these numbers reduce to 5 to 11 (median of 8) runs. We conclude that mobile monitoring is a suitable approach for mapping
the urban air quality at a high spatial resolution, and can provide insight into the spatial variability that would not be possible with
stationary monitors. A careful set-up is needed with a sufficient number of repetitions in relation to the desired reliability and spatial
resolution. Specific data processing methods such as background normalisation and event detection have to be applied.
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1. Introduction

The urban environment shows a high variability in air pol-
lutant concentrations. The dynamics of primary emissions and
secondary formation induce important differences in pollution
levels in space and time. Especially for traffic-related air pollu-
tants such as NOx and fine particulate matter (PM), these dif-
ferences can occur on a small scale (Seinfeld and Pandis, 2012;
Kaur et al., 2007) and are important to take into account for
mapping the pollution levels and accurate exposure assessment
(Fruin et al., 2014). In contrast to traditional stationary moni-
toring stations, mobile platforms are able to acquire air quality
data at a high spatial resolution (Wallace et al., 2009; Zwack
et al., 2011b). But at the same time, due to the high tempo-
ral variability of the urban air quality and the mobile nature of
the measurements, the representativeness of the mobile mea-
surements is a major issue. These considerations are very rel-
evant given the increasing use of mobile air quality monitoring
as a solution to measure micro-scale variability at a high spatial
and temporal resolution. Kuhlbusch et al. (2014), for exam-
ple, mention mobile monitoring to collect highly spatially and
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temporally resolved data in their recommendations for future
European air quality monitoring.

The objective of this study is to develop and validate a
method to map urban air quality at high spatial resolution us-
ing mobile monitoring. Based on a large experimental dataset
of mobile air quality measurements, the impact of the high
spatio-temporal variability is investigated, leading to practical
considerations and proposed guidelines with regard to mobile
monitoring campaigns to map the urban air quality. This study
focuses on black carbon (BC), a constituent of fine particles
and a primary particle that is emitted from incomplete combus-
tion (EPA, 2011). BC is a good indicator of combustion-related
air pollution, and exposure to BC is recognized by the World
Health Organisation to be associated with cardiovascular mor-
tality (Janssen et al., 2012).

There is a rapidly growing literature on mobile air quality
measurements. A non-exhaustive overview of studies is given
below. Mobile measurements are performed with different plat-
forms, e.g. pedestrians (Zwack et al., 2011a), bicycles (Bergh-
mans et al., 2009; Boogaard et al., 2009; Peters et al., 2013; Sul-
livan and Pryor, 2014), trams (Hagemann et al., 2014; Hasen-
fratz et al., 2014) and cars (Westerdahl et al., 2005; Hu et al.,
2012; Hudda et al., 2014). Mobile measurements are used for a
range of different purposes, e.g. to assess personal exposure by
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equipping the study object with a portable monitor (Berghmans
et al., 2009; Boogaard et al., 2009; Dons et al., 2011; Spira-
Cohen et al., 2010), to assess the exposure in different modes
of transport (Kaur et al., 2005; Int Panis et al., 2010; Kingham
et al., 2013), to study spatial variation in air pollution (Weijers
et al., 2004; Zwack et al., 2011c; MacNaughton et al., 2014), to
investigate seasonal and regional variation (Bukowiecki et al.,
2003), to study spatio-temporal correlation with noise (Weber,
2009), or to develop and validate air quality models (Zwack
et al., 2011a; Merbitz et al., 2012). Other studies address the
potential of using mobile measurements to construct air pollu-
tion maps at a high spatial resolution (e.g. Hagler et al., 2010;
Choi et al., 2012; Hudda et al., 2014; Peters et al., 2014). Mo-
bile monitoring techniques also receive an increasing attention
for participatory sensing and crowd-sourcing methods. Already
in 2006, Burke et al. mentioned the theoretical potential of
participatory sensing to investigate the relationship between air
quality and public health. Volunteers can systematically collect
targeted data sets, or data are collected opportunistically during
(repeated) daily activities or trips. This potential is increasingly
acknowledged, e.g. by scientists of the US Environmental Pro-
tection Agency (Snyder et al., 2013). Some participatory or
community-based sensing projects designed new measurement
devices with low cost sensors for large-scale and mobile de-
ployment (see e.g. Dutta et al., 2009; Elen et al., 2012).

Some critical issues related to mobile monitoring of air qual-
ity have to be acknowledged. These issues arise from the com-
bination of the high temporal variability of air quality and the
mobile nature of the measurements. The spatial variation in
(local) concentrations in a city is mainly linked to differences
in traffic density, street topology (e.g. street canyons) and the
distance to sources. There is also a strong temporal variabil-
ity in pollutant concentrations. This variability and its cause
differ from pollutant to pollutant, but we can distinguish dif-
ferent levels of temporal variability relevant for the analysis in
this paper: day-to-day, within-day and micro-scale variability.
Day-to-day variability is mainly caused by the meteorological
conditions and urban background fluctuations. Within-day vari-
ability is additionally related to the traffic dynamics, with sig-
nificant peak concentrations at the morning and evening rush
hours. Finally, at a small temporal scale (i.e. of the order of
seconds), there are also large fluctuations in the measured pol-
lutant concentration due to emission events, typically the pass-
ing of a vehicle. Mobile measurements, which can be seen as
time-space series of data, result in only a short snapshot at a
certain location in time. Therefore, given the temporal variabil-
ity, the exact timing of the measurement does not necessarily
allow to generalize the measurements as a typical value for that
location.

When mobile monitoring is used to derive high resolution
maps that are representative in time, large amounts of data are
required to represent the range of possible meteorological and
traffic conditions (Padró-Martı́nez et al., 2012) and data aggre-
gation has to be performed. Peters et al. (2013) indicate the
need for repeated measurements to map local pollution patterns.
In the study of Peters et al. (2014) it is demonstrated that the
variability in urban BC and ultra-fine particles (UFP) concen-

trations can be mapped at a spatial resolution of 10 m. How-
ever, they used up to 256 repeated measurement runs, which
is not always practically feasible. Van Poppel et al. (2013)
applied background correction to reduce the number of repeti-
tions required to obtain representative results of the spatial vari-
ability of pollutants at different micro-environments in a city.
The results are also sensitive to the chosen data processing ap-
proaches, as stressed by Brantley et al. (2014), who explored
the influence of different techniques for local emission event
detection, background estimation and averaging.

Therefore, suitable monitoring strategies and analysis meth-
ods have to be defined that take spatio-temporal representative-
ness into account. A monitoring campaign was set up to col-
lect an extensive dataset with high spatio-temporal resolution
along predefined routes in a period of 4 weeks. For more de-
tails about the measurements, see Peters et al. (2014), who used
the same dataset to describe the spatial and temporal variation
in detail. The large number of repeated measurement runs per-
formed in this study allows to address the following research
questions about obtaining a representative and consistent im-
age of the spatial variability of the urban air quality: (1) What
is the impact of events and the used spatial resolution? (2) How
representative is this image in time? (3) How many runs are
required to obtain this image of the spatial variation? (4) Can
we reduce the required number of runs by reducing the vari-
ability through filtering for events or by applying background
normalisation?

2. Material and methods

2.1. Mobile monitoring campaign
An extensive monitoring campaign1 using a mobile moni-

toring platform, the Aeroflex (Elen et al., 2013), was set up in
Antwerp (51°12’ N, 4°26’ E, medium-sized city of 480,000 in-
habitants, 985 inhabitants km2), Belgium, during 4 weeks in
February-March 2012. The Aeroflex is a bicycle equipped with
compact air quality measurement devices to monitor at a high
temporal resolution (up to one second). Each measurement is
automatically linked to its geographical location and time of
acquisition using GPS (GlobalSat BU-353) and internet time.
The instrumentation used was the micro-aethalometer (Mi-
croAeth Model AE51, Aethlabs) to monitor BC. This instru-
ment measures the concentration of optically absorbing aerosol
particles (equivalent black carbon (EBC, in µg m−3) using a
mass-specific absorption cross-section (MAC) of 12.47 m2g−1

at 880 nm (Petzold et al., 2013)) by the rate of change in light
attenuation of a particle spot on a filter through which air is
pumped. The filter ticket was changed at the start of each mea-
surement day, the inlet flow rate was set at 150 mL min−1 and
measurements were made at a temporal resolution of one sec-
ond. The response time is negligible. The optical measurement
of the filter is instantaneous and the lag in time due to pumping
of the air through the tube is less than a second for a flow rate of
150 mL min−1. Measuring BC with the micro-aethalometer at

1The dataset is available upon request.
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Figure 1: Overview of the bicycle routes in the city of Antwerp, Belgium: route
1 (red) and route 2 (blue). The green stars indicate the locations of the stationary
measurements.

one second time resolution is challenging due to the occurrence
of signal noise, especially at low concentrations. Therefore, a
noise reduction algorithm was used (Hagler et al., 2011) (see
Section 2.3).

A controlled monitoring set-up with fixed routes and time
slots was used to guarantee sufficient temporal and spatial cov-
erage to address the research questions. The mobile measure-
ments were made along two fixed routes (about 2 and 5 km
long, see Figure 1). The routes were designed before the start of
the monitoring campaign in order to include streets and places
with different configuration and traffic intensity. The starting
point of both routes was a reference air quality monitoring
station of the Flemish Environmental Agency (VMM, station
42R801) in the Plantin en Moretuslei (a busy arterial road).
Route 1 was an approximately 2 km long loop at the South-
ern side of the Plantin en Moretuslei, route 2 was a loop of
5 km at the Northern side of this road. The average duration
to complete one run was 10 and 26 min for route 1 and 2, re-
spectively. The major part of the routes was located in resi-
dential and commercial areas. Route 1 passed by a low-traffic
square (Dageraadplaats), whereas an urban green background
area (Stadspark) was crossed by route 2. An overview of the
most important streets of both routes is given in Table 1.

The campaign consisted of 256 runs along route 1 and 96
runs along route 2, spread over 11 days in a 4-week period be-
tween 2012-02-13 and 2012-03-08. The runs always occurred
between 7 am and 1 pm on weekdays, covering the morning
rush, and were performed with two equipped bikes, monitoring
the two routes simultaneously. This resulted in the collection of
92 hours of mobile measurements.

2.2. Complementary stationary measurements
Stationary measurements at 3 locations accompanied the mo-

bile campaign. BC was measured continuously during the 4
week period of the mobile campaign at the Stadspark (urban
green), Provinciestraat (street canyon) and Plantin en More-
tuslei (two times two lanes entrance road). See Figure 1
for the exact locations. These stationary BC measurements

were performed with micro-aethalometers with a flow rate of
50 mL min−1 and a 5 min measurement rate.

Furthermore, measurements from the VMM reference mon-
itoring station at the Plantin en Moretuslei were also available.
At this station, BC is measured with Multi-Angle Absorption
Photometry (MAAP, Petzold and Schonlinner, 2004; Petzold
et al., 2005) at 1 min resolution.

2.3. Data validation and quality control

Additional stationary measurements were made with all the
micro-aethalometers (from mobile and stationary monitoring)
at the VMM reference monitoring station at the Plantin en
Moretuslei (Figure 1) for data quality control. The individ-
ual micro-aethalometers were put together for in total 20 hours
to identify possible bias between instruments. The micro-
aethalometer measurements were compared between the differ-
ent instruments, and also to the measurements of the MAAP
instrument at the monitoring station. Noise reduction was re-
alised using the Optimized Noise-reduction Averaging algo-
rithm (ONA algorithm from Hagler et al., 2011), with an at-
tenuation threshold of 0.05. Rescaling parameters were derived
from the comparison of the individual micro-aethalometers
with the MAAP instrument from the monitoring station. Before
determining the rescaling parameters, filter loading effects were
accounted for by an additional correction algorithm according
to Virkkula et al. (2007):

BCcorrected = (1 + k · AT N)BCuncorrected (1)

where ATN is the attenuation. The parameter k was esti-
mated by fitting Eq. (1) using non-linear least squares, for
each micro-aethalometer independently. As the values did
not differ significantly, an average value for k of 0.009 for
all micro-aethalometers was used. For the fitting, the MAAP
data were used as BCcorrected, as this device is considered to
be less influenced by the loading effect compared with the
micro-aethalometer (Petzold et al., 2005). Based on 30 min
means, regressions between the corrected BC concentrations of
the micro-aethalometers and the MAAP with slopes between
0.83 and 1.13 (R2 of 0.97-0.98) were obtained. These slopes
were used together with Eq. (1) to correct the mobile micro-
aethalometer data. After the correction, the micro-aethalometer
data showed a mean absolute error of 0.3 µg m−3 compared to
the MAAP based on 30 min means (leading to a relative error
percentage of 7 % for the calibration period). When looking
at the agreement between the micro-aethalometers themselves
(comparing all others to one), the comparison results in an av-
erage error of 0.6 µg m−3 at 1 second resolution and 0.2 µg m−3

at 1 min resolution (15 % and 5 % error, respectively).
The spatio-temporal nature of mobile data requires several

data cleansing and processing operations involving the interpo-
lation and correction of GPS data. The GPS signal is sometimes
lost or inaccurate during the monitoring. Because the GPS data
were mostly missing for only short periods (2.1 s on average), a
linear interpolation was used to insert these data points. When
visualized on a map, GPS data were often slightly off track.
Therefore, the GPS data were projected on the streets based
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Table 1: Description of some street characteristics of a selection of streets along monitoring route 1 (R1) and route 2 (R2).

Street name Abbrev. Description Speed limit Configuration Traffic densitya Lengthb

(km/h) Nr lanes Biking lane (vehicles per day) (m)
R1 Plantin en Moretuslei PM Entrance road 70 2 yes 43,381 890

Kleinebeerstraat KB Residential 50 1 no 1,269 105
Lange Altaarstraat LA Residential 50 1 no 5,585 120
Wolfstraat WO Residential 30 1 no 5,680 145
Dageraadplaats DP Public square, / / no NA (∼0) 170

very low traffic
R2 Plantin en Moretuslei PM Entrance road 70 2 yes 43,381 995

Stadspark SP Urban green / / yes NA (∼0) 565
Quellinstraat QU Tertiary 50 1 no 9,590 315
F. Rooseveltplaats FR Square, bus stops 50 partly 21,422 70
Carnotstraat CA Entrance road 50 1 yes 22,963 430
Provinciestraat PR Tertiary (street canyon) 50 1 no 12,174 690
Bleekhofstraat BL Residential 30, 50 1 no 4081 490

a Modelled traffic density from the Traffic Centre Flanders based on traffic count data (includes both light and heavy traffic).
b Length of part of the street that is included in the route.

on shortest distance. Only the streets that are included in the
routes were used for this projection. Contextual information
about travel direction and street orientation were further used
to select the correct street to project the data upon.

The accuracy of the GPS location of the measurements is
related to the quality of the GPS signal (GPS accuracy and pro-
jection accuracy) and the synchronization of the measurement
device. The uncertainty of the GPS location is difficult to as-
sess, as we have no reference to compare with. The GPS device
(GlobalSat BU-353) specifies an accuracy of the horizontal po-
sition of 10 m. At certain locations in urban environments, this
can be larger due to reflection of signals by high buildings (ob-
served from plotting the geographical data). The accuracy of
the perpendicular projection on the streets could not be quanti-
fied exactly. The overall accuracy is probably around 10 m. The
synchronization of the micro-aethalometer was checked and ad-
justed to the GPS time every day and the deviation was never
more than 1 s. Given the average driving speed of 3.2 m s−1,
this will not have an important impact on the spatial accuracy.

2.4. Data analysis and processing methods
The term run is used to denote the completion of an entire

route once, and this is repeated at different days and/or differ-
ent times of one day. During each run, a dataset of point mea-
surements is collected. When the mobile platform passes by at
a certain location during a run, this is called a passage. In this
way, the monitoring campaign consists of a number of passages
at the different locations of a route.

The analyses in this study are performed at different spatial
scales by spatially aggregating the original data at different lev-
els. The spatial entities varied from the entire routes, the differ-
ent individual streets of a route, to segments of a certain length
within a street. The street segments were constructed at differ-
ent spatial resolutions (segment length varying from 5, 10, 20,
... to 100 m). The mobile data were spatially aggregated by al-
locating the measurements to one of the spatial entities based on
the projected GPS data. The measurements allocated to a spe-
cific spatial entity are then aggregated by computing the arith-

metic mean. For all analyses, this aggregation was performed
per passage. As such, for each individual run, an average BC
concentration was calculated for each spatial entity, resulting in
passage means.

For the highest spatial resolution, i.e. the segments (repre-
sented by their midpoints), concentration profiles were con-
structed to explore the spatial variability at this level. On these
figures, the mean concentration and standard error on the mean,
calculated for each segment based on the passage means, are
plotted.

Different methods are explored to reduce the impact of ex-
treme values on the spatially aggregated result. Firstly, two
other averaging statistics are used besides the arithmetic mean:
the median and the α-trimmed mean. The α-trimmed mean is
computed by removing the α largest and α smallest values and
computing the arithmetic mean of the remaining values. This is
a statistical measure of central tendency that is less influenced
by the effects of the tails of a distribution. As the air qual-
ity data in this study are positively skewed, this will result in
a biased estimator of the population mean. Indeed, this esti-
mator will systematically underestimate the population mean.
However, due to the reduced tail effects we believe this is an
appropriate statistic. In this paper, a trimmed mean resulting
from the removal of the lowest and highest value is adopted.
This corresponds to α = 0.5 % for samples of up to 200 runs.
Unless specified otherwise, trimming was always performed on
the passage means and for each spatial entity separately (the
passage mean itself is not calculated with trimming). Secondly,
an emission event filtering method is used: the running coeffi-
cient of variation (COV) method from Hagler et al. (2012). For
this method, a running 5 s standard deviation of the BC con-
centrations is calculated and divided by the mean concentration
of the entire sampling period. The 99th percentile of the calcu-
lated COV is used as a threshold and all data points with a COV
above this threshold are removed along with the data points 2 s
before and after (Brantley et al., 2014).

Background concentrations are obtained from the stationary

4



measurements at the centre of an urban green (the Stadspark)
without sources within a direct vicinity of 50 m. These mea-
surements can therefore be considered as urban background
concentrations (Hoek et al., 2002). These measurements are
available at 5 min resolution and are processed in two ways:
the hourly median value and the moving mean (using a Gaus-
sian window with standard deviation of 30 min). The mobile
measurement data are normalised with a background normali-
sation method based on these values to minimize the influence
of meteorological day-to-day variations in the urban air qual-
ity. This normalisation is performed through a combination of
the additive and multiplicative method as used in Dons et al.
(2012). The normalised values are calculated as:

BCnorm,i = BCi − BCbg,i + BCbg (additive) (2a)

BCnorm,i = BCi/BCbg,i · BCbg (multiplicative) (2b)

with BCi the original BC measurement at time i, BCbg,i the
background measurement at time i, and BCbg the mean back-
ground concentration for the full period. The additive method
is applied to high concentrations (measurement is greater than
the background value) and the multiplicative method to lower
concentrations (measurement is smaller than the background
value), see Dons et al. (2012) for more details.

Analyses were performed using R (R Core Team, 2014), pan-
das (PyData Development Team, 2014) and QGIS (QGIS De-
velopment Team, 2014).

2.5. Data experiment
A data experiment was conducted to investigate the repre-

sentativeness of the measurements, i.e. to address the research
question of how many mobile runs are required to obtain a rep-
resentative estimate of the air quality in a certain area. In this
study, a representative estimate means that the average BC con-
centration of a subsample of runs for a spatial entity is within
a certain percentage, the deviation (e.g. ±25 %), from the over-
all average value obtained from the entire mobile measurement
campaign for that spatial entity. In the absence of an integrated
average of continuous measurements at each location, this over-
all average is considered as a good approximation of the pollu-
tant concentration to be measured. The representativeness is
thus constrained by the space and time of the data collection,
which was biased towards daytime hours during one month of
the year in an urban environment, which is not necessarily rep-
resentative for other periods or locations.

The data experiment consisted of repeatedly taking subsam-
ples through the generation of random combinations of all runs.
Starting from the measurements of a single run and then cu-
mulatively adding measurements from randomly selected runs
(random selection with replacement), the average concentra-
tion was calculated for each combination of increasing size for
each spatial entity. This way, the average pollutant concentra-
tion could be evaluated in function of the increasing number of
runs included in the sample and compared with the overall aver-
age value to see after how many sampled runs the average con-
verged to the overall average. Convergence is obtained when
the average of the sampled runs deviates less than the deviation

percentage from the overall average, and does so consistently
when adding new runs. For one experiment, the procedure ex-
plained above is repeated a high number of times (1000 itera-
tions, where each iteration is one random combination of the
runs) to minimize the influence of random effects. This data
experiment is based on the work of Peters et al. (2013), but
differs from it in the application of a random selection with re-
placement instead of without replacement. When using random
selection without replacement (each run can only be selected
once), the average would converge exactly to the overall aver-
age when more runs are added and convergence would always
be obtained. To prevent this, random selection with replace-
ment is used. The data experiment was repeated for different
set-ups: at different levels of spatial aggregation, with the arith-
metic and trimmed mean, and with and without background
normalisation.

3. Results

3.1. Occurrence and impact of events
Mobile air quality measurements as described in this study

show typical characteristics due to the high temporal resolu-
tion of the data collection and the varying spatial context. A
large variability is observed in the measurements at one second
resolution of one run (Figure 2a). Measurements with a low
variability (e.g. Stadspark) are followed by measurements with
a higher variability in other streets. In the regions with a high
variability, sharp peaks are seen due to the proximity to sources,
leading to large differences in BC levels within a couple of sec-
onds. Events, typically a closely passing car or bus, cycling in
the emission plume right behind a vehicle, idling vehicles or lo-
cal traffic congestion, are causing these high BC levels. These
events can occur systematically at certain places or can be more
accidental. We will refer to these last events as random events.
The occurrence of events leads to a distribution of the data as
shown in Figure 2b. A part of the BC range is cut off on this fig-
ure: around 0.5 % of the data at one second resolution fall out-
side the range of the figure (0-50 µg m−3). This highest 0.5 %
of the measurement data has a moderate impact on the overall
mean of all runs: discarding these values decreases the overall
mean with 7 %. However, the following two examples will il-
lustrate that extreme values can have a much larger impact at a
smaller spatial resolution or when having fewer repetitions.

The first example is the distribution of the mean BC con-
centration per passage at the street level in the Grotebeerstraat
(Figure 3). Some passages have a clearly higher mean than
most others, with a maximal value of 33.1 µg m−3. Such an
extreme value can have a big impact on the resulting average
street level concentration of the Grotebeerstraat. On all 256
runs, this influence is limited (a mean of 3.6 µg m−3 for all runs
vs. 3.5 µg m−3 without the extreme). However, in the case of a
much smaller sample size, e.g. 20 randomly selected runs, this
impact is very significant: 5.2 vs 3.5 µg m−3 with and without
the extreme, which is an increase of around 50 % due to a single
passage.

The second example is shown in Figure 4, which depicts the
concentration profile in the Provinciestraat at 20 m resolution.
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Figure 2: (a) Example run of mobile measurements at one second resolution for route 2 on 2012-02-13 and (b) the distribution of all mobile measurement data for
routes 1 and 2 combined.
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Figure 3: Distribution of the passage means for the Grotebeerstraat (route 1, a
total of 249 runs included).
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Figure 4: Concentration profile of the Provinciestraat: BC concentration levels
at 20 m resolution using different processing methods: mean, median, trimmed
mean and COV method.

The mean concentration profile is shown for all 96 runs (dashed
line), and there is a peak in the BC concentration at 225 and
at 580 m. Looking at the peak at 580 m, it appears that this
peak can largely be attributed to a single measurement run that
includes extreme measurements. Excluding this particular run
smooths the BC profile and lowers the average BC concentra-
tion at that place from 17.6 µg m−3 to 11.8 µg m−3 (a reduction
of 49 %). If the total number of runs is 20 instead of 96, the
impact is even larger: 43.3 vs. 12.1 µg m−3 for 20 randomly se-
lected runs with and without the extreme, which is an increase
of more than 250 % due to a single passage. The previous ex-
amples show that a single run can have a large impact on the
result, especially at a smaller spatial resolution or when having
less repetitions.

Next, different aggregation functions besides the arithmetic
mean are explored to decrease the impact of these extreme mea-
surements, while retaining the characteristic concentration pro-
file: median, trimmed mean and the rolling COV method (see
Section 2.4). The results of these methods can be seen in Fig-
ure 4 for the Provinciestraat. With all the different statistics,
the concentration profile no longer exhibits the peak at 580 m,
while following roughly the same spatial trend. However, the
median is much lower than the arithmetic mean. This large dif-
ference between the mean and the median is due to the high
positive skewness of the distribution. Both the trimmed mean
and the COV method result in only slightly lower values than
the profile based on the arithmetic mean. But the COV method
misses the peak at 220 m, while with the trimmed mean this
peak is still present. The application of the trimmed mean is
further examined in Sections 3.3 and 3.5.

3.2. Spatial variation: concentration profiles
Observations on the spatial variability within the urban en-

vironment based on this dataset of mobile measurements are
extensively reported in Peters et al. (2014). At the street level,
significant differences in mean levels were found (up to a factor
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of 2) for the aggregated data of all passage means per street.
A clear correspondence with traffic and street topology was
observed. Lowest concentrations were found at places with
low traffic intensities as Dageraadplaats and Stadspark. High-
est concentrations were found in the Plantin en Moretuslei and
Provinciestraat. The Plantin en Moretuslei has the highest traf-
fic intensities, while the Provinciestraat has lower traffic inten-
sities, but is a street canyon and has no separate biking lane.

Concentration profiles were constructed for certain sections
of the routes to study the spatial variability at a high spatial
resolution. The result for the 20 m resolution can be seen in
Figures 5 and 6. These figures indicate that large differences
in air quality exist within a single street. For example, in the
Plantin en Moretuslei (Figure 5a) there is a very large peak at
the tunnel (up to 19 µg m−3), and a second large peak at the in-
tersection with the Provinciestraat (up to 17 µg m−3), where the
values are two to three times higher than the BC concentrations
in the rest of the street (5 to 10 µg m−3). Also the intersection
of the Plantin en Moretuslei and the Montensstraat shows an
increased concentration, which is located near the VMM mon-
itoring station (Figure 5b). The locations with the lowest BC
concentrations are the Stadspark and Dageraadplaats (Figure 6,
2-3 µg m−3). BC concentrations also show a low variability at
these locations. Figure 6a shows a gradual increase throughout
the Korte Altaarstraat to Wolfstraat from one end to the other,
which is a part of route 1 from the Dageraadplaats to Plantin
en Moretuslei that exhibits increasing traffic and proximity to a
major traffic road. The Provinciestraat also shows a gentle gra-
dient between two parts of the street (Figure 4). In contrast, a
very steep gradient is observed between the Stadspark and the
Quinten Matsijslei (a 2-3 times increase over a distance of 50 m,
Figure 6b). In conclusion, large gradients over short distances
between different urban micro-environments can be observed
from the mobile data aggregated at resolution of 20 m . Small-
scale differences up to a factor of 10 are found (in comparison to
the factor 2 for street level averages). Urban greens and traffic-
free squares are clearly distinguished by low BC concentrations
from the surrounding streets.

3.3. Effect of spatial resolution on reproducibility
To investigate the reproducibility of the observed spatial vari-

ation in the concentration profiles and the influence of the spa-
tial resolution, we look at the consistency of the spatial pat-
terns between independent subsamples of different sizes. Two
random but non-overlapping subsamples of all runs are taken.
Based on each subsample a concentration profile is calculated
for the whole route as the average concentration for each seg-
ment using the arithmetic or trimmed mean. The correlation
between the two profiles is determined as the R2 of a linear
regression. This analysis is done for different resolutions (seg-
ment lengths between 5 and 100 m) and for different sample
sizes (10, 20, 50 and 100 runs), and for each of these com-
binations this is repeated 1000 times to obtain an average R2

(Figure 7). The average R2 increases with increasing sample
size; the concentration profiles are more similar when compar-
ing larger samples. The R2 also increases with increasing seg-
ment length, although this increase is large for small segments
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Figure 7: The R2 of the comparison of two random but non-overlapping sub-
samples in function of the spatial resolution and for different sizes of the sub-
samples. The line indicates the mean R2 of 1000 repetitions for each combina-
tion of resolution and sample size. Full lines: arithmetic mean, dashed lines:
trimmed mean.

up to 20 m but almost completely levels off for segments of 40
to 50 m and larger. Using a trimmed mean instead of the arith-
metic mean in the construction of the concentration profiles in-
creases the R2, and thus makes the profiles more reproducible.
This increase is most clear for higher resolutions and for smaller
sample sizes, while for a sample size of 100 runs it makes al-
most no difference.

3.4. Comparison of stationary and mobile measurements

Stationary and mobile measurements of BC are compared
at three locations (Provinciestraat, Stadspark and Plantin en
Moretuslei). For the Plantin en Moretuslei, only measurements
within a range of 100 m around the stationary monitor are used
because the intra-street variability is much higher than at the
other two locations. Stationary measurements are available as
5 min means for each location. Mobile measurements are aver-
aged per passage in the particular street (passage mean).

First, mobile measurements were compared directly with the
stationary measurements by matching each passage mean with
the nearest 5 min stationary measurement. The exact time pe-
riod of the measurements will not coincide using this method,
and the results also indicate that there is too much variation on
the individual passages to have a clear relationship between the
individual mobile passages and stationary measurements (R2 =

0.21, 0.40 and 0.14 for Provinciestraat, Stadspark and Plantin
en Moretuslei, respectively).

When the measurements are averaged per day using the arith-
metic mean, the relationship between the mobile and stationary
measurements becomes stronger for all locations (R2 = 0.58,
0.96 and 0.63, respectively, see Figure 8). For the three loca-
tions combined, this yields an R2 of 0.69. But when we remove
the one extreme value for the Provinciestraat as discussed in the
second example in Section 3.1, the R2 becomes 0.82. The av-
erages of the stationary measurements are calculated based on
only those measurements made during the same time frame in
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Figure 5: BC concentration profiles for the Plantin en Moretuslei (a) based on the measurements of route 2 and (b) of route 1 (at 20 m resolution, value is the mean of
passage means). Shaded area depicts two times the standard error on the mean. The annotations indicate (1) the tunnel, (2) the intersection with the Provinciestraat
and (3) the intersection with the Montensstraat and Wolfstraat.

0 100 200 300 400 500 600 700 800
Distance (m)

0

2

4

6

8

10

12

B
la

ck
 c

a
rb

o
n
 c

o
n
ce

n
tr

a
ti

o
n
 (

g
m

-3
)

GROTEBEERSTRAAT

KLEINEBEERSTRAAT

DAGERAADPLAATS

KORTE ALTAARSTRAAT

LANGE ALTAARSTRAAT

WOLFSTRAAT

(a)

0 200 400 600 800
Distance (m)

0

2

4

6

8

10

12

B
la

ck
 c

a
rb

o
n
 c

o
n
ce

n
tr

a
ti

o
n
 (

g
m

-3
)

VAN EYCKLEI

STADSPARK

QUINTEN MATSIJSLEI

(b)

Figure 6: BC concentration profiles for (a) the Dageraadplaats and (b) Stadspark (at 20 m resolution, value is the mean of passage means). Shaded area depicts two
times the standard error on the mean.
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Figure 8: Comparison between mobile and stationary BC measurements for the
three locations (for abbreviations, see Table 1): comparison of averages per day
of passage means and stationary measurements (during the mobile time frame,
i.e. 7 am to 1 pm). Grey dashed line: 1:1 line, red line: regression line.

which mobile measurements were conducted (7 am to 1 pm). In
this way, the influence of measuring during other time periods,
e.g. lower night-time concentrations, which are not measured in
the mobile campaign, on the mean value of the stationary mea-
surements is cancelled out. The best correlation in both cases
is found for the Stadspark, where there is less variation caused
by direct sources. The combined R2 of 0.82 indicates that the
variations in time (day-to-day variations) are also captured by
the mobile measurements, although the mobile measurements
result in higher concentrations (positive intercept).

The same measurements are used to create a boxplot as an
overall comparison for all days for the three locations (Fig-
ure 9). The street level averages from the mobile measurements
are systematically higher than the average of stationary mea-
surements in the same street, but this figure also indicates that
the relative spatial differences between the three locations are
comparable.

3.5. Number of repetitions based on a data experiment

A data experiment was performed as explained in the meth-
ods Section 2.5 in order to investigate how many mobile runs
are required to obtain a representative estimate of the air qual-
ity. Firstly, the entire route is taken as the spatial level; later on
the analysis is refined for smaller spatial resolutions. Figure 10
shows the result of one typical data experiment (based on all
data of route 1 with a total of 256 runs). The evolution of the
mean for all 1000 iterations is depicted on the left. For each
of these iterations, the number of runs required for convergence
was determined and plotted in a density plot (Figure 10, right),
using a deviation of 25 % in this example. This number is at
most 17 in 95% of the iterations. When narrowing the devia-
tion to 20 %, this number increases to 29 runs, and it drops to
12 runs when allowing a deviation of 30 %.

This data experiment is repeated for each street of route 1
separately. Due to different pollution dynamics, different re-
sults are expected in the different streets. The results are sum-
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Figure 9: Boxplot of the stationary and mobile measurements for the three
locations: comparison of the passage means (mobile data) and 5 min means
(stationary data) of all days. For the stationary measurements, only the mea-
surements during the mobile time frame (7 am to 1 pm, and also on the same
days as the mobile measurements were conducted) are used.

marised in Table 2 for some streets of route 1 for a deviation of
25 and 50 %. In general, the required number of repetitions for
the separate streets is higher than for the overall mean. This is
caused by the increasing variation between the runs when go-
ing to a higher spatial resolution because the sample becomes
smaller per spatial entity. The mean values at Dageraadplaats
and Plantin en Moretuslei converge more quickly. At the traffic-
free square of Dageraadplaats, there is less variation between
different runs, which explains the lower number of repetitions
required to obtain convergence. The Plantin en Moretuslei is a
busy street and a large variability is expected, but it is also the
longest street, levelling off this variability by a larger temporal
smoothing. On the other hand, the mean value at the Wolfs-
traat and Kleinebeerstraat converges slowly. These streets are
both shorter and the Wolfstraat ends at the crossing with a busy
street. This illustrates a shortcoming of using street sections
with varying length as the spatial aggregation level. Therefore,
the same analysis is performed with segments at 20 m and 50 m
resolution. There is a large variation in the number of repeti-
tions required for the different segments. In Table 2, this vari-
ation is expressed as the 10th, 50th and 90th percentile of the
required number of repetitions for the different segments. In
10 % of the segments convergence occurs after less than 33 rep-
etitions, while in 10 % of the segments this is only after more
than 141 runs at a spatial resolution of 50 m. In general the
required number of repetitions is only slightly lower at 50 m
resolution compared with the higher resolution of 20 m.

Next, a similar data experiment is carried out with a trimmed
mean instead of the arithmetic mean (Table 2). On the whole
dataset, this does not have a positive effect, but when looking at
specific streets, this can have an impact. For example, for the
Grotebeerstraat (street with an outlier), the required number of
repetitions decreases from 66 to 50 and for the Kleinebeerstraat
from 82 to 68 for a deviation of 25 %. Using a deviation of 50 %
the relative decreases in the required number of repetitions are
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Figure 10: Results of a typical data experiment for all data of route 1 (total of 256 runs). Left: evolution of the mean value in function of the included number of
runs for 1000 iterations. The overall mean and the deviation of 25 % around this mean is indicated by the horizontal red lines. The black lines indicate the 2.5 %
and 97.5 % percentiles of the mean value. Right: density plot of the required number of runs to obtain convergence for these iterations.

Table 2: Results of the data experiments: required number of repetitions using a deviation of 25 and 50 % at different levels of spatial aggregation: the entire route
(route 1), different streets (for abbreviations see Table 1) and 20 and 50 m segments (10th, 50th and 90th percentiles are given), and using different processing
methods: arithmetic mean (’standard’), trimmed mean (’trimmed’), with a background normalisation (’background’) and the combination of both (’both’). The
minimum for each spatial level and for 25 and 50 % is shown in italics.

25 % 50 %
standard trimmed background both standard trimmed background both

Route 17 18 11 12 4 5 3 4
Street level

PM 18 20 13 14 5 6 3 4
DP 18 19 14 14 5 5 4 4
WO 63 61 60 57 16 11 15 9
KB 82 68 75 61 21 10 20 9
GB 66 50 62 42 18 8 18 7
KA 44 34 40 25 12 7 12 5

20 m segments
10 % 31 30 26 24 8 6 7 5
50 % 59 54 52 48 15 10 13 8
90 % 164 112 156 108 44 13 43 12

50m segments
10 % 33 31 29 24 8 7 6 5
50 % 57 52 50 42 14 10 13 8
90 % 141 102 141 94 39 13 40 11
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larger. In some cases, however, there is no or even a negative
effect. For the Plantin en Moretuslei and Dageraadplaats, the
required number of runs increases.

A third experiment is carried out to investigate the use
of background normalisation. Background normalisation de-
creases the variability between runs by accounting for temporal
variations in the background concentration, and consequently
also the required number of repetitions. The background nor-
malisation clearly decreases the required number of repetitions
for all streets compared with the basic experiment, up to 30 %
for Dageraadplaats and Plantin en Moretuslei. The background
normalisation was performed with both types of background
concentrations (hourly median and moving mean), but no sig-
nificant difference was noticed in the resulting required num-
ber of repetitions. Therefore, only the results obtained with the
hourly median background concentration are shown in Table 2.

The lowest values for the required number of repetitions are
found when combining the use of the trimmed mean and per-
forming the background normalisation. Using this combination
reduces the required number of repetitions with 25-33 % (35 -
70 % for 50 % deviation) compared with the initial data exper-
iment. This leads to a number of 24 to 94 repeated measure-
ments runs (10th and 90th percentiles, median of 41) for the
different 50 m segments with a deviation of 25 %. When re-
laxing the deviation to 50 %, these numbers reduce to 5 to 11
(median of 8) runs.

4. Discussion

4.1. Mobile monitoring to assess spatial variation

The BC concentrations in the urban environment show a high
variability due to differences in, amongst other, traffic intensity,
street topology and proximity of other sources. The results of
this case study confirm this variability, showing large variations
even over short distances within a single street (see concentra-
tion profiles in Figures 5-6). The measured average concentra-
tions at 20 m resolution range from 2-3 µg m−3 in the Stadspark
to values of 19 µg m−3 at the tunnel in Plantin en Moretuslei,
while an average concentration of around 6 µg m−3 is measured
at the monitoring station.

It is clear that stationary monitors are not very well suited to
study this level of variability, and that the result can vary greatly
depending on where in the street the monitor is placed. This
strongly confirms that stationary monitoring stations are not al-
ways representative for the population exposure (Kaur et al.,
2007). Mobile monitoring, on the other hand, is a suitable mon-
itoring approach for mapping the air quality at a high spatial res-
olution, as shown with the results above. It can provide insight
into the spatial variability that would not be possible with sta-
tionary monitors. Previous case studies already showed the po-
tential of repeated mobile measurements for the assessment of
spatial variability of pollutants at different micro-environments
in a city at street level (Van Poppel et al., 2013; Peters et al.,
2013) and within street-level (Zwack et al., 2011b; Peters et al.,
2014).

4.2. Influence of events on spatial concentration patterns

The concentration profiles discussed in the previous section
show a large variability of the BC concentrations in space, but
from the time series on Figure 2a it is clear that there is an even
larger variation in time when looking at the one second reso-
lution measurements. With mobile monitoring, measurements
at different locations at different times are obtained. As a con-
sequence of this moving monitor, the short-term variability in
time can cause an apparent variation in space. However, this
variation should not necessarily be attributed to that specific lo-
cation. The magnitude of this impact and possible solutions to
deal with it is investigated.

The results in Section 3.1 clearly show a potentially large
influence of extreme events on the average measured BC con-
centration both at the street level as for segments, and thus on
the resulting spatial pattern. This impact is relatively small for
all 256 or 96 runs (for route 1 and 2, respectively), but for sam-
ples of more realistic size it is much more prominent. For the
examples illustrated in Section 3.1 and with a sample size of 20
runs, the influence of one run with an extreme event can go up
to 50 to 250 % for a street and 20 m segment, respectively.

To minimize the influence of the short-term temporal varia-
tion, data are smoothed, i.e. several one second measurements
are averaged over time. In this paper, a spatial smoothing is
applied by using passage means at different spatial levels. But
even at the street level, events can still have a large impact.
The initial spatial smoothing is thus not sufficient to deal with
all of the short-term temporal variation at this spatial resolu-
tion. Therefore, in a second step, filtering methods or alterna-
tive statistics for the average are applied.

Before looking into the processing and possible removal of
peaks, it is important to ask the question whether they are rele-
vant to the aim of the measurements. Depending on the appli-
cation, it can be sensible or not to remove some of the extreme
events. For example, in the study of Hagler et al. (2012), an
event detection algorithm is used to remove these extreme val-
ues from the dataset. In their study, the purpose was to measure
the concentration profile in a near-road environment to investi-
gate the influence of a highway. Therefore, a passing car could
distort the result heavily as they are less interested in the local
emissions of that car. Hudda et al. (2014) and Choi et al. (2012)
used a rolling percentile to obtain a baseline concentration to
discard the local peaks, as they wanted to map the larger scale
variations due to the impact of an airport and a highway, re-
spectively. However, in an urban environment with busy traffic,
peak concentrations are an integral part of the air quality that
people are typically exposed to. If the goal of the measurement
campaign is to map the local concentrations to which cyclists
are exposed, it is important to include the peak concentrations.
On the other hand, as we have seen, the rare occurrence of large
peaks can also distort the concentration profile to a large degree.

To deal with these events and to reduce their impact, we
looked at filtering methods and alternative statistics for the
arithmetic mean. The median can be used as a more representa-
tive central tendency measure as opposed to the mean since air
quality measurements are not normally distributed and skewed,
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and so the median tends to be more robust to bias caused by
emission events (Peters et al., 2013; Brantley et al., 2014).
However, the results show that the median also leads to much
lower BC concentrations than the average concentration. Being
interested in the average concentration, the median will not be
used further in this paper. A trimmed mean, with trimming per-
formed for each spatial entity separately, was used instead of the
median. The trimmed mean appears to be less sensitive to peaks
than the arithmetic mean, but without the large underestimation
of the average concentration compared to the median. The COV
method as used in Hagler et al. (2012) and Brantley et al. (2014)
to detect events also shows good results. However, this method
has the risk that it can mask hotspots where peaks occur sys-
tematically. This is also reflected in the results, where the peak
at 225 m is masked when using the COV method. Recurring
peaks at the same place should not be removed but accounted
for because they are relevant. Therefore the COV method is not
appropriate for the goal in this study and is not used further,
although in cases such as Hagler et al. (2012) where the goal is
not to measure the sources in direct vicinity, this can certainly
be a valuable method. The trimmed mean does not have this is-
sue: when a peak systematically occurs at a certain location, the
trimmed mean will only remove part of it and the peak will still
be present in the concentration profile. When having smaller
sample sizes, the risk of removing an extreme event that was
not random but systematic becomes larger.

The results discussed above show that the arithmetic mean
can potentially exhibit a large bias due to the occurrence of ex-
treme events. The trimmed mean can be used to counter this,
but it is delicate to draw a line between the detrimental im-
pact of an event and typical peak exposure at a location. The
trimmed mean seems to hold a good trade-off between these
two: it still measures systematically occurring peaks leading to
a typical concentration profile, but reduces the detrimental im-
pact of random events on the result. But most important is to
be aware of this issue when performing and analysing this kind
of measurement campaigns, and taking appropriate actions such
as looking at different statistics and investigating locations were
large differences between those statistics appear, in more detail.
The application of the trimmed mean will further be validated
in the following sections on spatial resolution and number of
repetitions.

4.3. Spatial resolution
This paper deals with mapping the air quality at different lev-

els of spatial data aggregation (route, streets, segments). But
which resolution is relevant and achievable? The entire route
can represent the mean exposure of a cyclist on that trajectory,
or an estimation of the average concentration in a neighbour-
hood. The street level gives more detail. This level can be a
somewhat artificial delineation, as there are streets with differ-
ent length and large variations within a single street exist (e.g.
the Plantin en Moretuslei, Figure 5), but can be easy to com-
municate. The segments of certain length provide a more sys-
tematic and higher spatial resolution. From Figures 5 and 6 it
is clear that the urban air quality (BC levels) can exhibit large
variations over short distances. Differences up to an order of 3

over distances of around 50 m are seen. To be able to map the
urban air quality and identify hotspots, higher resolutions up to
20 - 50 m are useful. Dependent on the application, such a high
resolution can be relevant.

Apart from the relevance to measure air quality at such a high
resolution, it is also important to see whether it is achievable
with this type of monitoring. The spatial accuracy of the GPS
is estimated at 10 m, so a resolution below 10 m is not feasible.
The large influence of extreme events on the concentration pro-
file has been discussed before. The question can be raised if it
is not the case that a large part of the spatial variation in the pro-
file is caused by such random events. The analysis in Section
3.3 (Figure 7), however, indicates that mapping the air quality
at a resolution of 40-50 m leads to consistent profiles and is re-
producible. Using higher spatial resolutions up to 20 m is also
possible with a small increase in the uncertainty. Of course, this
depends on the sample size as the concentration profile will be
more accurate or a higher spatial resolution can be used with
more repeated runs. Enlarging the grid size from 50 to 100 m
does not improve the reproducibility of the profile significantly.
When using larger segments, data are smoothed over a longer
time period and a reduced variability from events is expected.
But at the same time, this will also potentially combine street
sections that can be very different, and as such increase the het-
erogeneity within a single segment. For smaller sample sizes,
it is more important to deal with events (in this case using the
trimmed mean).

4.4. Temporal representativeness

For a particular location, mobile monitoring gives only a very
sparse coverage in time compared with a continuously measur-
ing stationary monitor. This raises the question whether a lim-
ited mobile dataset, sparse in time, can be used to estimate the
average concentration for the full time period during which the
mobile measurements are carried out (in this case 7 am - 1 pm
during 4 weeks). To validate the mobile measurements, they are
compared with stationary measurements. Because the measure-
ments are not performed at exactly the same place and with the
same time resolution, and only three locations are available, the
strength of the comparison is limited. But when it is assumed
that the stationary monitor is representative for the neighbour-
ing, relatively homogeneous street section, comparing the mo-
bile and stationary measurements can give a valuable indication
of the representativeness in time of the mobile measurements.

The results of this comparison indicate that with a limited
set of mobile measurements it is possible to find indicative re-
sults similar to stationary measurements. The comparison of
the average values per day for the same time period (Figure 8)
shows that the variations in time (day-to-day variations) are
also captured by the mobile measurements. From Figure 9
it can be concluded that the mobile measurements are able to
map similar spatial differences as a stationary monitor at each
location, although the mobile measurements are consistently
slightly higher than the stationary measurements. This can be
explained by the shorter distance to the traffic compared with
the stationary monitoring locations.
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Despite the limited temporal resolution at one point in space,
it can be concluded that mobile measurements are able to assess
the air quality at a fixed location as could be performed with a
stationary monitor. The comparison is performed for three lo-
cations, but it is assumed this conclusion can be extrapolated
to other locations where mobile measurements were done. Mo-
bile measurements give a representative image of the local con-
centrations (with certain spatial aggregation level, see previous
section), and in this way mobile monitoring can provide for a
spatial coverage that is not possible with stationary monitors.

The analysis here is limited to the time period (hours and
days) of the mobile measurement campaign, but the question on
representativeness could be broadened to longer periods. This
could possibly be done with a background normalisation to ad-
just the measurements for temporal variation, as is also done for
short-time stationary measurement campaigns (e.g. Hoek et al.,
2002; Eeftens et al., 2012). However, this falls outside the scope
of this paper.

4.5. Number of repetitions

The case study presented in this paper, consisting of 256 runs
of a specific route, is a very extensive monitoring campaign. In
the previous section, the analysis was based on all 256 or 96
runs (for route 1 and 2, respectively). Here, we will discuss
whether it is possible to obtain this representative image of the
local concentrations with a smaller number of runs. The overall
mean of all runs is used as a good estimate of the ‘true’ average
concentration at that place.

The results of the data experiment summarised in Table 2 in-
dicate clearly that it is indeed possible to achieve similar results
with less repetitions. The required number of repetitions de-
pends on the desired confidence of the result. When decreasing
the deviation from the overall mean from 50 % to 25 %, the re-
quired number of repetitions increases with a factor of 3 to 9
depending on the location. The required number of repetitions
does also strongly depend on the location, as the variation of
the measurements at each location is different.

Using the trimmed mean decreases the number of runs up
to 33 % for certain locations (for a deviation of 25 %). So
by excluding part of the extreme measurements, the trimmed
mean converges more rapidly to the overall mean based on all
measurements (computed without trimming) compared with the
arithmetic mean. As such, we get in general a better estima-
tion of the average BC concentration with the trimmed mean.
However, for other streets, it leads to a slight increase in the
required number of repetitions. This is due to the fact that us-
ing the trimmed mean introduces a systematic bias from the
‘real’ mean, and for locations with a limited number of extreme
values this will lead to an increase of the required number of
repetitions. But in general, it has a positive effect and the com-
bination of the trimmed mean and a background normalisation
does lead to a decrease in the required number of repetitions for
all locations. So the trimmed mean and background normali-
sation are valuable approaches to reduce the required number
of repetitions or improve the reliability for a given number of
repetitions. The results indicate that it does not matter which

of both types of background concentration values is used. In-
cluding temporal variation in the background concentration at
below-hourly scale by using a smoothed moving mean did not
further reduce the required number of repetitions compared to
using hourly medians in the background normalisation.

The numbers of 25 and 50 % used for the deviation give an
indication of the uncertainty of the resulting average concen-
tration. They denote that, if a mobile campaign is conducted,
the resulting concentration will be within 25 or 50 % from the
‘true’ average. The European directive on ambient air quality
(2008/50/EC) uses these numbers of 25 and 50 % as the data
quality objectives for particulate matter for fixed and indicative
measurements, respectively. However, note that this deviation
only includes the uncertainty coming from the variability in the
measurand noticed by repeated measurements, and does not in-
clude other sources that contribute to the data quality (e.g. the
uncertainty on the instrument).

A comparable analysis with this data experiment was per-
formed in Peters et al. (2013) and Van Poppel et al. (2013).
They concluded that a limited set of mobile measurements (20
to 24 runs) makes it possible to map the air quality, and for
some streets this number could even be reduced to less than
10 (Peters et al., 2013). They used the median as the central
tendency measure and a deviation of 15 %. Van Poppel et al.
(2013) showed that the use of background normalisation leads
to a faster convergence towards a representative concentration
and reduces the number of runs required to obtain representa-
tive results significantly, which is in line with the results in this
paper. In those papers, a more limited number of repetitions to
perform the data experiment was used. While their conclusions
on the variation between streets and background normalisation
are still valid and are confirmed here, the results in this pa-
per contradict their conclusion on absolute numbers of required
repetitions. This is likely due to the limited number of runs
in their initial dataset and the different sampling method in the
data experiment (sampling without replacement instead of with
replacement). Xu et al. (2007) also uses a similar approach but
to develop another sampling strategy, namely repeated short-
term stationary measurements with a mobile laboratory.

The results of the data experiments are limited to the con-
straints of the available dataset. Firstly, the analysis is con-
strained by the space and time of the data collection, which was
biased in this study towards daytime hours during one month
of the year in an urban environment, and hence is not neces-
sarily representative for other periods or locations. The data
collection mainly focused on the time of the day when the ma-
jority of the people are exposed to outdoor pollution, and did
not include night-time. The measurements were equally spread
over 11 days including a wide range of background concentra-
tions (meteorological conditions). Secondly, one of the disad-
vantages of the approach of the data experiment is the depen-
dence on the size of the dataset. The dataset has to be large
enough to be able to draw justified conclusions. But given that
the results for the required number of runs shown in Table 2 are
well below the total number of 256 runs, we conclude that the
number in this case study is enough. Lastly, in absence of con-
tinuous measurements, the overall mean of the dataset is used as
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an approximation of the pollutant concentration to be measured
to determine convergence, as the ‘real’ concentration we want
to measure is not known. The large number of measurements
and the preceding analyses in Section 4.4 on the comparison of
stationary and mobile measurements indicate that this approach
is justified and solid conclusions can be drawn.

5. Practical considerations and guidelines for mapping the
urban air quality using mobile monitoring

In this paper, the use of mobile monitoring to map the local
urban air quality at high resolution has been evaluated. Local
air quality refers to the average air quality people are exposed
to in urban environments and is not limited to urban baseline
concentrations, but also includes very localized effects, which
are measured in this paper at a resolution of 20 to 50 m (below
100 m). Such high-resolution mapping of the local air quality
can be used to detect local hotspots, to derive activity-based
exposure to air pollution, or to validate high-resolution models,
amongst other applications.

Mobile monitoring is often presented as an additional moni-
toring tool to increase the spatial resolution of air quality maps.
However, as discussed in this study, a limited number of mobile
measurements may only represent snapshots of the air quality
and is not necessarily representative. Therefore a careful set-
up of the mobile monitoring campaign is needed, and the pro-
cessing and interpretation of the mobile data deserve increased
attention.

• The use of the arithmetic mean to aggregate mobile data
potentially exhibits a bias due to the occurrence of events,
certainly when dealing with a smaller sample size. Appro-
priate actions to investigate this bias are to assess the pos-
sible impact of events on the results in relation to the goal
of the campaign and to investigate the results from differ-
ent statistics (arithmetic mean, median, trimmed mean).

• The trimmed mean resulting from the removal of the low-
est and highest measurement is proposed as an integrated
outlier detection method to reduce the detrimental impact
of random events on the calculated averages. This ap-
proach does not over-correct for systematically occurring
peaks that can be typical at certain locations or streets and
is a better estimator for the average concentration than the
arithmetic mean.

• Mobile data are sparse in time when a limited number of
monitoring platforms is used to cover a large area. There-
fore, temporal aggregation is needed. Further, to account
for the temporal variation in the background concentra-
tions, a background normalisation should be used. Back-
ground normalization reduces the variability between dif-
ferent runs and leads to a more reliable mapping of the air
quality at lower monitoring efforts.

• Spatial aggregation is applied to smooth the data at differ-
ent spatial levels (routes, streets, segments). We showed
that mapping of the air quality at a spatial resolution up to

50 m is feasible for BC. A higher spatial resolution of 20
m could be obtained with a slightly increased uncertainty
depending on the sample size.

• To generate high-resolution maps over larger areas (sev-
eral km2), large quantities of data are required to include
the range of possible meteorological conditions and the
range of local air quality conditions (depending on local
sources, e.g. traffic intensity), and to counter occasional
and exceptional events. It is important to assess whether
enough repetitions are made in relation to the goals of the
monitoring campaign.

• The data requirements can be reached by performing re-
peated monitoring runs. The exact requirements depend
on the mapping resolution in space and time and the qual-
ity constraints of the results, but can be decreased by us-
ing a trimmed mean for averaging and by performing a
background normalisation. When targeting an uncertainty
of 50 %, 10 repeated measurement runs will satisfy to es-
timate the average concentration at almost all locations.
When performing 40 repeated measurement runs, the av-
erage concentration could be estimated at half of the loca-
tions with an uncertainty of 25 % or below.

There are also some important limitations to the approach of
mobile monitoring. Firstly, mobile data are representative for
the time period in which they were collected, which is typically
a confined time frame. A possibility is to use background nor-
malization to extrapolate the results to other periods assuming
that the local contributions are similar in time and that the main
temporal variation is caused by background effects that are nor-
malized. Secondly, it should also be stressed that the represen-
tativeness of the result depends on the type of mobile platform.
In this study a bicycle was used as monitoring platform and
hence the results are representative for the exposure of cyclists,
but not necessarily for other transport modes such as pedestri-
ans and car drivers, or residents. Thirdly, measurements of BC
are used in this study. Pollutants such as BC, UFP and NOx
are strongly traffic-related and will therefore show a high vari-
ability in urban environments. Other types of pollutants such as
PM2.5 or PM10 have less small-scale dynamics and the guide-
lines will differ for these other pollutants. Lastly, despite of
strategies to reduce the required number of repetitions, a large
number of repeated measurement runs is still required. In the
current set-up of this study, it required dedicated man-power
to carry out the measurements, which can be very time con-
suming. Alternative approaches exist to reduce this workload
taking advantage of existing infrastructure or using the normal
daily routines. Monitors can be attached at e.g. trams, as is
done in studies in Zurich, Switzerland (Hasenfratz et al., 2014)
and Karlsruhe, Germany (Hagemann et al., 2014). Another ap-
proach is to rely on participatory or community-based sensing,
possibly with low-cost sensors, to collect a larger amount of
data (Snyder et al., 2013).
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6. Conclusion

Mobile monitoring is a suitable monitoring approach for
mapping the urban air quality at a high spatial resolution. Map-
ping at a spatial resolution up to 20 m is relevant as large gra-
dients over short distances are observed and differences up to
a factor of 10 in BC concentrations are measured at this res-
olution. As we have shown in this paper, mapping at such a
high resolution is also possible, but a lot of repeated measure-
ments are required. This can, however, be reduced by dealing
with extreme events using the trimmed mean and by perform-
ing a background normalisation. Based on a targeted measure-
ment campaign with 256 runs and after computing a trimmed
mean and applying background normalisation, we found that
in this case study 24 to 94 repeated measurement runs (median
of 41) for the different locations are required to map the BC
concentrations at 50 m resolution with an uncertainty of 25 %.
When relaxing the uncertainty to 50 %, these numbers reduce to
5 to 11 (median of 8) runs. Given the increasing use of mobile
air quality monitoring and its potential for participatory sensing
and crowd-sourcing projects, the representativeness of the data
that are collected in this way is a key issue. Methods and guide-
lines to collect and process these data in a proper way have to be
drafted. The considerations and guidelines raised in this study
are very relevant in that context. A careful set-up is needed with
a sufficient number of repetitions in relation to the desired reli-
ability and spatial resolution, dependent on the aim of the cam-
paign. Specific data processing methods such as background
normalisation and event detection are applied. Given this care-
ful set-up and processing, mobile monitoring can provide in-
sight into the spatial variability that would not be possible with
stationary monitors.
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