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Abstract. In regression analyses for deriving scaling laws that occur in various scientific disci-
plines, usually standard regression methods have been applied, of which ordinary least squares
(OLS) is the most popular. However, concerns have been raised with respect to several assumptions
underlying OLS in its application to scaling laws. We here discuss a new regression method that
is robust in the presence of significant uncertainty on both the data and the regression model. The
method, which we call geodesic least squares regression (GLS), is based on minimization of the
Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority of the method
using synthetic data and we present an application to the scaling law for the power threshold for the
transition to the high confinement regime in magnetic confinement fusion devices.
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INTRODUCTION

Scaling laws are used in various branches of science, such as astronomy, biology and
geology, to characterize the underlying mechanisms at work in complex systems. In
nuclear fusion experiments based on magnetic confinement of a hot hydrogen plasma,
scaling laws are crucial for predicting the performance of future fusion reactors, which
will have a larger size, magnetic field, plasma density, etc., compared to present-day ex-
perimental devices. These scaling laws can be estimated from data sets spanning a sig-
nificant part of the parameter space. Ordinary least squares (OLS) regression combined
with frequentist theory is the statistical workhorse that is employed for this purpose in
the vast majority of cases. However, often there is considerable uncertainty in the ex-
perimental data, including predictor variables, and in the model equations (regression
model). As such, OLS regression is often unsuitable [1, 2], and many scientific fields
could benefit greatly from a unified regression methodology that is flexible and robust
and yet is relatively simple to implement. For these reasons we have developed a new
regression method, called geodesic least squares regression (GLS). We briefly introduce
the method is this paper, showing its good performance, and we present an application
to an important scaling law in magnetic confinement fusion.



GEODESIC LEAST SQUARES

The GLS regression method starts from the premise that the probability distribution
underlying experimental measurements is the fundamental object resulting from the
measurement. As such, GLS does not perform regression based on data points in a
Euclidean space, but rather operates on probability distributions lying on a probabilistic
manifold [3]. This introduces additional flexibility that renders the method robust in the
presence of large uncertainties, as will be demonstrated in the experiments.

The principles of GLS regression with a single scalar response (dependent) variable
were introduced in [4] and [5]. Briefly, the idea is to consider two different proposals for
the distribution of the dependent variable y, conditional on the predictor (independent)
variables. On the one hand, there is the distribution that one would expect if all as-
sumptions were correct regarding the deterministic component of the regression model
(regression function) and the stochastic component. We call this the modeled distribu-
tion. On the other hand, we try to capture the conditional distribution of y by not relying
on the model assumptions, but directly on the measurements of y. For this we will use
the term observed distribution, although in the context of the generalized linear model
it is also known as the saturated model. In another sense GLS is similar to the ideas be-
hind a range of parameter estimation methods that are collectively known in the statistics
community as minimum distance estimation [6], with the Hellinger distance as a popular
similarity measure [7], which was first applied to regression in [8]. The differences are
that we use a parametric rather than a nonparametric estimate of the observed distribu-
tion, we explicitly model all parameters of the modeled distribution and, finally, we use
the Rao geodesic distance (GD) as a similarity measure, based on the Fisher information
as a Riemannian metric [3, 9].

As a simple example that we will use also in the experiments, consider a linear relation
η = bξ between a predictor variable ξ and a response variable η , with b a constant. In
accordance with the discussion above, we explicitly wish to allow for the challenging
case of uncertainty on the predictor variable ξ . Therefore we assume that, in reality,
n samples of a stochastic (noisy) variable x are observed, together with n samples
of a stochastic response variable y. We take the simple case of normally distributed
(Gaussian) noise, with N (µ,σ2) denoting the normal probability distribution with
mean µ and standard deviation σ :

y = η + εy = bξ + εy, εy ∼N
(
0,σ2

y
)
, (1)

x = ξ + εx, εx ∼N
(
0,σ2

x
)
. (2)

The observations xi (i = 1, . . . ,n) are taken as mutually independent and so are the yi. σx
and σy are assumed to be known and the same for all measurements (homoscedasticity).
According to the regression model, conditionally on xi each measurement yi has a normal
distribution:

pmod(y|xi) = N
(

bxi,σ
2
mod

)
, where σmod ≡ σ

2
y +b2

σ
2
x , (3)

with the subscript ‘mod’ referring to the modeled distribution. In our simple example,
(3) follows from standard Gaussian error propagation rules. However, for nonlinear



regression laws the conditional distribution for y has to be obtained by marginalizing
the unknown true values ξi. Nevertheless, the Gaussian error propagation laws may be
used in the nonlinear case as well, to approximate the conditional distribution p(y|xi) by
a normal distribution, as will be shown in the experiments.

The observed distribution corresponding to each data point is next defined as the
normal distribution N (yi,σ

2
obs), with σobs to be estimated from the data. This extra

parameter gives the method added flexibility, since σobs is not a priori required to equal
σmod. As a result, GLS is less sensitive to incorrect model assumptions. Note that in
this example we have taken the observed distribution from the same model (Gaussian)
as the modeled distribution. Also, σmod is a fixed value for all measurements and so is
σobs. These assumptions can of course be relaxed, leading to a more general method.
However, for ease of computation we will continue working with these simplifications.

GLS now proceeds by minimizing the total GD between, on the one hand, the product
of modeled distributions and, on the other hand, the product of observed distributions:

b̂ = argmin
b∈R

GD

[
n

∏
i=1

pmod(y|xi),
n

∏
i=1

pobs(y|yi)

]
.

This can be simplified since the squared GD between products of distributions can be
written as the sum of squared GDs between the corresponding factors [10]. Hence,
the optimization procedure involves matching not only yi with bxi, but also σ2

obs with
σ2

y +b2σ2
x . Note that the parameter b also occurs in the variance of the modeled distri-

bution. In the present work the minimization was performed using a standard sequential
quadratic programming method implemented in Matlab.

The manifold of Gaussian distributions amounts to hyperbolic geometry and an ana-
lytic expression for the geodesic distance can be calculated. Indeed, for two univariate
normal distributions p1(x|µ1,σ

2
1 ) and p2(x|µ2,σ

2
2 ) the GD is given by [10]

GD(p1, p2) =
√

2ln
1+δ

1−δ
= 2
√

2tanh−1
δ , δ ≡

[
(µ1−µ2)

2 +2(σ1−σ2)
2

(µ1−µ2)2 +2(σ1 +σ2)2

]1/2

.

Various models exist to visualize hyperbolic geometry; see e.g. [11]. An intuitive model
is the two-dimensional surface called the pseudosphere (tractroid), depicted in Figure 1a
together with two example geodesics. It is only valid for σ > 1 and it is periodic in
µ . Every point on this surface corresponds to a Gaussian distribution. In Figure 1a
two geodesic curves are illustrated between some specific points (distributions) on the
manifold. With the standard deviation increasing in the upward direction, it can be
understood intuitively how a geodesic can minimize its length by making a ‘detour’
into regions of increased standard deviation and thus stronger curvature. Interestingly,
similar arguments enable a deeper insight into the operation of GLS regression, as will
be shown below.



(a) (b)

FIGURE 1. (a) The pseudosphere as a model for the univariate normal manifold. Meridians represent
lines of constant mean, while circles of latitude have a constant standard deviation. The distributions
p1(x|4,1.22), p2(x|16,1.52), p3(x|4,4.02) and p4(x|16,5.02) are indicated, together with the geodesics
between p1 and p2, and p3 and p4. (b) A portion of the pseudosphere together with the regression results
on synthetic data with an outlier, as described in the main text.

NUMERICAL SIMULATIONS

Effect of outliers

We first demonstrate the robustness of GLS in the presence of outliers, an advantage
that has also been noted in the classic literature of minimum distance estimation [7].
We concentrate on estimating the slope of a regression line with a single independent
variable. To this end, a data set was generated consisting of ten points labeled by
coordinates ξi and ηi (i = 1, . . . ,10), with the ξi chosen unevenly between 0 and 50
and ηi = 3ξi. Then, Gaussian noise was added to all coordinates according to (1) and
(2), with σy = 2.0 and σx = 0.5. Finally, an outlier was created by doubling the value of
y j, with j chosen uniformly among the indices 8, 9 and 10.

We next estimated b by means of GLS and compared the estimates with those obtained
by OLS, maximum likelihood estimation (MLE) using the model in Equation (3), total
least squares (TLS) [12], which is a typical errors-in-variables technique, and a robust
method (ROB) based on iteratively reweighted least squares (bisquare weighting) [13].
In all cases we assumed knowledge of the values of σx and σy. In order to get an
idea of the variability of the estimates, Monte Carlo sampling of the data-generating
distributions was performed and the estimation was carried out 100 times.



TABLE 1. Monte Carlo estimates of the mean and standard deviation for the slope parameter in
linear regression with errors on both variables and one outlier.

Original GLS OLS MLE TLS ROB

b = 3.00 3.031 ±±± 0.035 3.528 ± 0.038 3.696 ± 0.049 4.61 ± 0.11 2.992 ± 0.041

The results are given in Table 1, mentioning the sample average and standard deviation
of b over the 100 runs for each of the methods. GLS is seen to perform similar to the
robust method. The average σobs was 5.43 with a standard deviation of 0.24. On the
other hand, the modeled value of the standard deviation in the conditional distribution
for yi was

√
σ2

y +9σ2
x = 2.5. Hence, GLS succeeds in ignoring the outlier by increasing

the estimated variability of the data. As mentioned before, this can be understood in
terms of the pseudosphere as a geometrical model for the normal distribution. To see
this, we refer to Figure 1b, where several sets of points (distributions) were drawn
on a portion of the surface of the pseudosphere for one particular data set generated
as described above. First, the modeled distributions were plotted with mean b̂xi and
standard deviation σmod = 2.5, using the average estimate b̂ = 3.03 obtained by GLS. In
this particular data set the index of the outlier was j = 10, so the point b̂x10 is indicated
individually. Then come the observed distributions with mean yi and standard deviation
σobs = 5.43 > σmod. The outlier in y10 can clearly be observed. Finally, the yi were
plotted again (labeled ỹ), but this time at the lower standard deviation σmod, which would
have been expected according to the model. Again, the outlier (labeled ỹ10) can be seen,
but now it becomes clear why GLS can compensate for the outlier by increasing its
estimate of σobs w.r.t. σmod. Indeed, the result is that the geodesic between the points
(b̂x10,σmod) and (y10,σobs) (labeled Geo1) is actually shorter than the geodesic between
(b̂x10,σmod) and (y10,σmod) (labeled Geo2): when calculating the GD one finds 2.4 for
the former geodesic and 2.8 for the latter.

Effect of logarithmic transformation

We next tested the effect of a logarithmic transformation, which is often used to
transform a power-law regression model into a linear form. However, the logarithm
alters the data distribution, which may lead to misguided inferences from OLS [1, 2].
Therefore the flexibility offered by GLS is expected to be beneficial in this case, as it
allows the observed distribution to deviate from the modeled distribution. To this end, we
performed a regression experiment with a power law deterministic model and additive
Gaussian noise on all variables. In accordance with the typical situation of fitting fusion
scaling laws to multimachine data, the noise standard deviation was taken proportional
to the simulated measurements, corresponding to a given set of relative error bars. As a
result, in the logarithmic space the distributions were only approximately Gaussian, with
the standard deviation given by the constant relative error on the original measurement
(homoscedasticity). Ten points were chosen with independent coordinates ξi unevenly



TABLE 2. Monte Carlo estimates of the mean and standard deviation for the parameters in a log-
linear regression experiment with proportional additive noise on both variables.

Parameter Original GLS OLS MLE TLS ROB

b0 0.80 0.94 ±±± 0.47 2.2 ± 2.3 1.75 ± 0.58 0.99 ± 0.70 2.72 ± 0.77
b1 1.40 1.39 ±±± 0.11 1.19 ± 0.16 1.21 ± 0.10 1.41 ± 0.14 1.17 ± 0.11

spread between 0 and 60. A power law was proposed to relate the unobserved ξi and ηi:

ηi = b0ξ
b1
i , i = 1, . . . ,10.

Then, Gaussian noise was added to both coordinates, corresponding to a substantial
relative error of 40%. We finally took the natural logarithm of all observed values xi
and yi, enabling application of the same linear regression methods that were used in the
previous experiment. In this particular experiment we chose b0 = 0.8 and b1 = 1.4, but
we found that other values yield similar conclusions. Again, 100 data replications were
generated, allowing calculation of Monte Carlo averages.

The averages and standard deviations over all 100 runs are given in Table 2. Again,
the results show that GLS is robust against the flawed model assumptions, performing
similar to TLS.

POWER THRESHOLD SCALING

One of the most important scaling relations in fusion science concerns the threshold Pthr
for the heating power that is required for the plasma to make the transition to a desired
regime of high energy confinement (H-mode) in the next-step fusion device ITER [14].
To a good approximation this power threshold depends on the electron density in the
plasma n̄e (in 1020 m−3), the main magnetic field Bt (in T) and the total surface area S of
the confined plasma (in m2). This is usually expressed by means of the following scaling
relation:

Pthr = b0 n̄b1
e Bb2

t Sb3. (4)

To estimate the coefficients in this relation, we employed data from seven fusion devices,
yielding 645 measurements of power, density, magnetic field and surface area (subset
IAEA02 [14]).

Linear scaling

We first followed the standard practice of transforming to the logarithmic scale to
estimate the coefficients bi (i = 0, . . . ,3) via linear regression. In the GLS method we
introduced additional parameters, approximately describing the relative errors for the
power threshold (one for each device), similar to the parameter σobs in the example
above. The estimation results using OLS and GLS are shown in Table 3, with the relative
errors on Pthr varying between 21% and 48%, as estimated by GLS through the σobs
parameters. The estimates of the coefficients by GLS are rather different from those



TABLE 3. Estimates of regression coefficients bi and predictions for ITER (with 1σ and
95% confidence intervals (CI) in case of OLS) in log-linear scaling for the H-mode threshold
power.

Method b0 b1 b2 b3 P̂thr,0.5 CI CI P̂thr,1.0 CI CI
(MW) 1σ 95% (MW) 1σ 95%

OLS 0.059 0.73 0.71 0.92 48 +3.7 +7.6 80 +7.4 +15
−3.5 −6.6 −6.8 −12

GLS 0.065 0.93 0.64 1.02 62 – – 117 – –

obtained by OLS, particularly in the density dependence. The predictions for ITER are
also shown, for two typical densities (0.5 and 1.0× 1020 m−3). Whereas confidence
intervals for the predictions can be readily obtained via OLS in the standard way, in the
case of GLS confidence intervals should be estimated from the residuals using suitable
approximations or by means of bootstrapping methods. This will be addressed in future
developments, but note from Table 3 that the predictions by GLS do fall out of the 1σ

and 95% confidence intervals provided by OLS.

Nonlinear scaling

Finally, we show the results of nonlinear regression in the original data space, i.e.
without logarithmic transformation. Whereas this prevents an analytic solution using
OLS, the advantage is that the distribution of the data is left undistorted [1, 2], while the
implementation of both OLS and GLS is not significantly more complex. Indeed, the
distribution of the right-hand side in (4) can be approximated by a Gaussian with mean
µmod = b0 n̄b1

e Bb2
t Sb3 and standard deviation σmod, given by

σ
2
mod = σ

2
Pthr

+µ
2
mod

[
b2

1

(
σn̄e

n̄e

)2

+b2
2

(
σBt

Bt

)2

+b2
3

(
σS

S

)2
]
.

Hence, the error bars depend on the measurements (heteroscedasticity). Nevertheless,
we introduced an approximation assuming constant error bars for all measurements
from a single machine. This assumption may be relaxed in the future. The results of
the scaling and predictions are given in Table 4. It is interesting to note that, in contrast
with OLS, the results for GLS are similar to those derived on the logarithmic scale
(Table 3), indicating that, indeed, GLS is less susceptible to flawed model assumptions.
Furthermore, the results for OLS and GLS are now in the same range, with slightly lower
predictions by OLS. Nevertheless, both methods suggest higher power thresholds than
those obtained in earlier studies in the same database (P̂thr,0.5 = 44 MW [14]).

CONCLUSION

Regression and scaling laws represent crucial tools in science in general and in the anal-
ysis of complex physical systems in particular. We have presented geodesic least squares



TABLE 4. Fits and predictions for nonlinear scaling.

Method b0 b1 b2 b3 P̂thr,0.5 CI CI P̂thr,1.0 CI CI
(MW) 1σ 95% (MW) 1σ 95%

OLS 0.051 0.85 0.70 1.00 62 ±5 ±10 111 ±12 ±23
GLS 0.048 0.96 0.59 1.05 64 – – 124 – –

regression as a method that is able to handle large uncertainties on the deterministic and
stochastic components of the regression model. Operating on a manifold of probability
distributions, the results can be easily visualized in the case of the univariate Gaussian
distribution. However, GLS is sufficiently general to allow tackling much more general
regression problems within the same framework. We have shown the robustness of the
method in some specific examples on synthetic data. Next, we have addressed the scaling
of the power threshold in magnetically confined fusion plasmas, yielding significantly
higher estimates of the threshold for ITER.

In future work we intend to develop a Bayesian estimation method for the regression
parameters, by describing the distribution of the data probability distributions directly
on the probabilistic manifold. This will allow to provide reliable uncertainty estimates
on the parameters.
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