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Abstract—This paper investigates the robustness of a
fractional-order controller against the load changes of a DC
motor. The gains and time constants of the DC motor are modified
by means of a change in the brake. Two different setups of a
DC motor, one with 25% brake and the other with 50% brake
are considered in the experimental evaluation. The closed-loop
performances of the fractional-order controller are compared
with integer-order controller using the same performance criteria
and the same tuning algorithm. Both controllers were designed
based on time domain specifications. The experimental results
show that the fractional-order controller outperforms the clas-
sical controller under nominal conditions as well as under gain
variations situation.

I. INTRODUCTION

Mechatronic systems are governed by many effects residing
in different engineering fields, covering problems form me-
chanical, electrical, pneumatic, thermal disciplines, compris-
ing various technological components. Thus, these types of
systems are usually characterized by significant nonlinearities
and tight performance specifications [1]. Due to these features,
the main challenge in the design and analysis of mechatronics
systems consists in an accurate modelling [2], [3]. Whenever
such a model is difficult to be obtained precisely, the controller
needs to be properly designed in order to compensate for
the modelling uncertainties and to preserve the closed-loop
performance at various operating points. Numerous control al-
gorithms have been proposed to deal with nonlinear dynamics
of the mechatronic systems. For linear mechatronic systems,
the proportional-integral-derivative (PID) controller is often
used owing to its simple structure and robustness [4]. Another
approach in dealing with mechatronic systems challenges is
the fractional-order (FO) control strategies. One of the most
common applications in all mechatronic domains is the control
of DC motors.

The control of DC motors has been the interest of many
researchers, due to the wide variety of applications that require
the use of different types of DC motors [5], [6], [7]. The
controllers designed for these DC motors range from simple
traditional PIDs to advanced control algorithms, among which
fractional-order control has been gaining more and more
popularity [8], [9], [10], [11].

Fractional calculus has been used relatively recently in
modeling and control applications [12]. The attractiveness of
the fractional-order PID controllers resides in their potential

to increase the closed-loop performance and robustness of
the closed-loop system, due to the extra tuning parameters
available, as compared to the conventional controller. With
fractional-order controllers, the order of differentiation and
integration may be used as supplementary tuning parameters
and thus more specifications can be fulfilled at the same time,
including the robustness to plant uncertainties, such as gain
and time constant changes [12], [13], [14].

In general, frequency domain tuning of the fractional-order
controllers is preferred using optimization routines to yield
the final solutions. The performance criteria are frequently
specified in terms of gain crossover frequency, phase crossover
frequency, phase margin, gain margin, and robustness to open-
loop gain variations [15], [16].

In this paper a fractional calculus based control strategy for
speed control of a DC motor with load changes is presented.
The relevance of the paper to the research field consists in the
simplicity of the approach, yet yielding a robust controller that
can meet the performance specifications for significant load
changes. The robustness of the fractional-order PI controller
and its performances are compared against an integer-order PI
controller. In order to evaluate the robustness of the controllers
a change in the motor loading unit is considered for the
conducted experiments. Due to the change in the brake unit,
the gain and time constant of the system are also modified.
The performances of both classical integer-order approach and
fractional-order approach are analyzed through simulations
and real-time experiments. The control design method and the
application are kept simple, yet effective to illustrate basic time
domain and frequency domain concepts. The experimental
results revealed better performances of the fractional approach
in comparison with the classical one.

The paper is structured as follows: Section II presents the
tuning procedure for a fractional-order PI controller. Section
III presents the description of a DC motor as well as a tuning
example for the control of the speed of a DC motor. Section IV
presents the simulation and real-time results of the conducted
experiments, while the last section includes the conclusions.

II. DESIGN OF A ROBUST FRACTIONAL-ORDER PI
CONTROLLER

Fractional calculus represents the generalization of the inte-
gration and differentiation to an arbitrary order. The Laplace



Fig. 1. General model of a DC motor

transform of the fractional-order operators are [12]:

L 〈Iαf(t)〉 = s−αF (s) (1)

for the fractional-order integral, while for the fractional-order
derivative, the equation is:

L 〈Dαf(t)〉 = sαF (s) (2)

with α ∈ (0, 1).
The transfer function of the FO-PI controller is given as:

HFO−PI(s) = kp(1 +
ki
sµ

) (3)

where kp and ki are parameters of the fractional-order PI
controller, while µ represents the fractional order.

The design of the FO-PI controller is usually based on
a phase margin and a gain crossover condition, to which a
third criteria may be added in order to uniquely determine
the three controller parameters. In order to tune the fractional-
order PI controller, the open-loop transfer function needs to
be computed as:

Hopen−loop(s) = HFO−PI(s)HP (s) (4)

where HP (s) is the process to be controlled. The tuning of
the FO-PI controller implies the computation of the three
parameters kp, ki and µ according to three performance
specifications imposed. The gain crossover frequency - ωcg
- implies that the modulus of the open-loop transfer function
obeys the following:

|Hopen−loop(jωgc)| = 1 (5)

while the phase margin - ϕm - specification sets a condition
upon the phase of the open-loop system at the gain crossover
frequency, mathematically written as:

∠Hopen−loop(jωgc) = −π + ϕm (6)

The performance specifications given above may be re-
written as:

|HFO−PI(jωgc)| =
1

|HP (jωgc)|
(7)

∠HFO−PI(jωgc) = −π + ϕm − ∠HP (jωgc) (8)

which can be further detailed as:∣∣∣kp [1 + kiω
−µ
gc

(
cos

πµ

2
− j sin πµ

2

)]∣∣∣ = 1

|Hp(jωgc)|
(9)

∠
[
1 + kiω

−µ
gc

(
cos πµ2 − j sin

πµ
2

)]
=

= −π + ϕm − ∠HP (jωgc)
(10)

Since the FO-PI controller has three independent param-
eters, these can be adequately tuned to meet three perfor-
mance specifications. Thus apart from imposing a certain
gain crossover frequency and a certain phase margin, which
naturally imply a certain settling time and overshoot, a third
condition may be added to the design problem. This third
condition can refer to high frequency noise rejection, good
output disturbance rejection, robustness to variations in the
gain of the plant, etc [17].

III. CASE STUDY: DC MOTOR SPEED CONTROL USING
FO-PI CONTROLLER

DC motors are amongst the most largely used components
both academic and industrial applications. An essential feature
of any position or speed control system is an electric motor
with some associated power supply and amplifier stage to
control power input to the motor in response to a lower level
control signal. In order to adequately tune the FO-PI controller
as indicated in section II, the transfer function of the studied
DC motor needs to be determined. A general model of the DC
motor is shown in Figure 1.

The applied voltage Va, which is the manipulated variable,
will control the position θ(t), which is the controlled variable.
For the speed control, the controlled variable is the angular
velocity ω(t) and the transfer function has the form in [18]:

PDC motor(s) =
ω(s)

Va(s)
=

Km

(Las+Ra)(Js+ b) +KbKm
(11)

However, for many DC motors the time constant of the
armature τa = La

Ra
is negligible and therefore the model can



be simplified to:

PDC motor(s) = Km
Ra(Js+b)+KbKm

=
Km

Rab+KbKm

τs+1 =

= KDC motor

τs+1
(12)

where τ = RaJ
Rab+KbKm

and KDC motor =
Km

Rab+KbKm
.

The transfer function from position θ(t) as output (con-
trolled variable) to armature voltage Va as input (manipulated
variable) will be:

PDC motor pos(s) =
θ(s)

Va(s)
=
KDC motor

s(τs+ 1)
(13)

The identification of the system was done based on a PRBS
(pseudo random binary signal) signal. To generate this PRBS
signal, the following command is used in Matlab:

• idinput(127, ’PRBS’, [0 1/1], [-1 1]).
By using the Prediction Error Method (PEM) for identification
[19], the system’s model is defined. The transfer function of
the DC motor voltage-speed, with 25% brake, was identified
to be:

PDC motor 1(s) =
−0.25

(1.45s+ 1)
(14)

A second transfer function for the DC motor speed, consider-
ing 50% brake, was identified as well:

PDC motor 2(s) =
−1

1.7s+ 1
(15)

The gains and time constants of the DC motor are modified
due to the change in the brake. The motor loading unit (brake
unit and inertia disc) consists of an eddy current brake and
an inertia disc which can be mounted on the armature shaft
extension. The brake has the approximate speed/torque at 1000
rpm as shown on Figure 2. For other speeds the torque is
proportional to the speed relative to the 1000 rpm. The inertia
moment of the inertia disc is about 0.001 Kg*m2.

Fig. 2. Approximate brake characteristics at 1000 rpm

If the inertia of the motor is increased the transient response
is slowed down and hence with additional inertia the maximum
acceleration and deceleration are reduced. The motor responds
fairly rapidly to the step input and its rise in speed follows an

exponential path when no discs are mounted on the output
shaft (Figure 3(a)). When the input falls to zero the decel-
eration is due almost entirely to brush friction and is linear.
If the inertia of the brake disc is added the response time is
increased (Figure 3(b)). Using the inertia disc, the response
time is greatly increased and the motor only just stop before
the step input is re-applied (Figure 3(c)). The added inertia
has little effect upon the response time, but the time for the
motor to stop is much reduced.

Fig. 3. The variation in the DC motor characteristic when (a) no disc is
mounted on the shaft; (b) brake disc is mounted; (c) inertia disc is mounted

To design the FO-PI controller, the PDC motor 1(s) trans-
fer function was considered as being the nominal one. The
PDC motor 2(s) transfer function is considered as a uncer-
tainty. While the time constant does not change significantly,
the gain of the DC motor transfer function changes substan-
tially. Hence, apart from setting a certain settling time and
overshoot by imposing the gain crossover frequency and phase
margin, a robust controller especially to gain variations needs
to be computed. As a consequence, to the previously defined
two performance specifications, a third condition is appended,
that refers to the robustness against gain uncertainties:

d (∠Hopen−loop(jω))

dω

∣∣∣∣
ω=ωgc

= 0 (16)

also written as:
d(∠[1+kiω−µ

gc (cos
πµ
2 −j sin πµ

2 )])
dωgc

=

= −d(∠PDC motor 1(jωgc))
dωgc

(17)

The condition in (16) imposes a flat phase around the gain
crossover frequency. For open-loop gain changes, the gain
crossover frequency varies around the nominal value. However
a flat phase around that value, will ensure a constant phase
margin, equal to the one imposed in the design specifications,
despite the variations in the gain crossover frequency, thus
assures the robustness against gain modeling errors or uncer-
tainties.

The performance specifications regarding the gain crossover
frequency and phase margin are: ωcg = 1.5 and ϕm = 60◦.
Such performance specifications allow for a 2 second settling
time and a 5% overshoot. Using graphical methods, two curves
for the ki parameter as a function of the fractional order µ are
plotted as indicated in Figure 4. The intersection of the two
curves yields the solution for ki and µ as resulting from (10)
and (17). The final values, ki = 2.28 and µ = 0.89, are then



used to compute the value for the third parameter kp using
(9): kp = 1.37. Thus, the FO-PI controller was obtained as:

HFO PI(s) = 1.37 +
2.28

s0.89
(18)

Fig. 4. Graphical selection of the fractional order PI parameters ki and µ

To test the controller, prior to the actual implementation,
a Simulink benchmark was created in which the previously
determined FO-PI controller was implemented in its discrete
form. To obtain the discrete approximation of the FO-PI con-
troller the 9th order Tustin recursive method with a sampling
period of 0.2 seconds was chosen.

IV. RESULTS AND DISCUSSION

In this section, a part of the simulation and experimental
results that were conducted in order to validate the fractional
order controllers are presented.

Hence, a discrete time version of the controllers need to
be developed for the final implementation. The equivalent
discrete-time formulation (for sampling time 0.2s) of the
identified model for DC motor voltage-speed with 25% brake
is given by:

PDC motor 1(z) =
0.032

z − 0.87
(19)

A. Simulation Results

Before to implement and evaluate the performance of the
controllers on the real-time setup, a Simulink model has been
designed to test and validate the controllers. The simulation re-
sults for fractional-order feedback loop by using the Simulink
model are depicted in Figures 5, 6, 7. The fractional-order PI
controller is compared with the integer-order PI controller. The
integer-order PI controller has been designed using the same
performance specifications and the same tuning algorithm as
for the fractional controller. Hence, µ = 1 and the tuning
parameters are: kp = 1.23 and ki = 2.41. As observed
from the simulation results, the fractional-order controller
outperforms the classical controller.

Figure 5 shows the simulation results considering the nom-
inal case, when the DC motor transfer function is represented

by PDC motor 1(s), as well as the uncertain case, when the
DC motor transfer function is given by PDC motor 2(s). The
results concerning the nominal case, the DC motor with 25%
brake, show that there is a 4.5% overshoot, while the settling
time is 2 seconds, as expected from the required performance
criteria. The comparison of these results with those obtained
when considering a 17.25% change in the DC motor time
constant and 300% change in the DC motor gain demonstrate
the robustness of the designed controller. In the uncertain case,
when the DC motor works with a 50% brake, the overshoot is
18.5%, while the settling time is 0.4 seconds. Hence, we can
conclude that the controller is very robust given the dramatic
changes in the gain. .

Fig. 5. Simulations results considering FO-PI controller with 25% brake
(nominal case) and 50% brake (uncertain case)

Next, the results with the FO-PI controller are compared
with an integer-order PI controller. As observed from the sim-
ulation results given in Figure 6 where only the nominal case is
considered, the fractional-order controller slightly outperforms
the classical controller. To design the PI controller, the ki
parameter can be determined using either one of the conditions
specified in (10) or (17). In order to make the integer-order
PI controller more robust, (17) was used to compute the
final value for parameter ki. Thus the phase margin is no
longer a tuning criteria and (8) is no longer valid. The tuning
of the PI controller using (17) was selected since for the
FO-PI controller a value µ = 0.89 for the fractional order
was obtained as being the optimum value that meets both
performance specifications (10) and (17). Since µ = 0.89 is
close to unity, it is expected that the phase margin for µ = 1
does not decrease drastically as compared to the imposed
value of 60◦. For the integer-order PI controller, µ = 1
would then ensure a high enough phase margin, thus making
it more convenient to determine the ki parameter based on
the robustness condition. Figure 6 shows that under nominal
conditions, the overshoot is increased, while the corresponding
phase margin is in fact less than the one imposed for the design
of the FO-PI controller.

To test the robustness of the integer-order PI controller, the
uncertain case is considered, with the DC motor working under
50% brake. The simulation results are given in Figure 7. The



Fig. 6. Comparative simulation results for DC motor speed control with 25%
brake using integer-order and fractional-order PI controllers

results considering a 50% brake show that the FO-PI controller
achieves better closed-loop performance even in the case of
gain variations as compared to the integer-order PI controller.

Fig. 7. Comparative simulation results for DC motor speed control with 50%
brake using integer-order and fractional-order PI controllers

Table 1 presents the values obtained for the overshoot and
settling time considering both FO-PI and PI controllers, under
nominal as well as uncertain situations. It is clear from this
table that the FO-PI controller achieves far better performance
results than the PI controller both under nominal conditions,
but especially under gain variations.

TABLE I
CLOSED-LOOP PERFORMANCE RESULTS OBTAINED WITH THE DESIGNED

FO-PI AND PI CONTROLLERS

Controller Overshoot Settling time
25% brake 50% brake 25% brake 50% brake

FO-PI 4.5% 18.5% 2 sec 0.4 sec
PI 12% 31.5% 2 sec 2 sec

To validate the results obtained in Simulink, real experi-
ments were conducted using both controllers under 25% brake,
as well as 50% brake.

B. Experimental Results

The performance of the PI controllers has also been eval-
uated in the real-time application using the set-up depicted
in Figure 8. After the system reaches steady state, different
changes in setpoint were applied. Again, the experimental
results from Figures 9 and 10 show that the fractional-order
controller outperforms the integer-order PI controller. If for the
setpoint tracking the superiority of the fractional controller is
slightly visible, in case of control effort the fractional-order
PI is clearly superior to the classical controller. A comparison
of the closed-loop performance of the fractional-order PI
controller when considering the DC motor with 25% brake
and 50% brake, respectively, is illustrated in Figure 11.

Fig. 8. The real set-up configuration for the DC motor

Fig. 9. Comparative real-time results for DC motor speed control with 25%
brake using fractional-order and integer-order PI controllers

The simulation and experimental results reveal that
fractional-order controller obtain better performances when
dealing with this type of process in comparison with classical



Fig. 10. Comparative real-time results for DC motor speed control with 50%
brake using fractional-order and integer-order PI controllers

Fig. 11. Comparative real-time results for DC motor speed control with 25%
and 50% brake using fractional-order PI controller

PI controller. An important issue of the real-time processes is
to have a faster convergence of the system with less control
effort. Analyzing the experimental results it can be notice that
the fractional-order controller is robust to the load changes
of the DC motor and obtain good performances without great
control effort.

V. CONCLUSION

In this paper, an illustrative example of a fractional-order
controller for speed control of a DC motor with load changes is
presented. The robustness of the fractional-order controller has
been evaluated by changing the gains and time constant of the
DC motor due to the change in the brake unit. The experimen-
tal results are performed using a fractional-order PI controller
and the output performances are compared with integer-order
PI controller. Both controllers were designed using the same

tuning algorithm. Due the flexibility of the fractional order
parameters, the system can fulfill more specifications and
thus becomes more robust to changes in the dynamics. The
experimental results show that the fractional-order controller
outperforms the classical integer-order controller. On the other
side the design of a fractional-order controller implies com-
putational complexity and also the implementation itself may
require additional effort.
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