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ABSTRACT

The finite-difference time-domain (FDTD) method, solving the inhomogeneous, moving medium sound
propagation equations, also referred to as the Linearized Euler(ian) Equations (LEE), has become a
mature reference outdoor sound propagation model during the last two decades. It combines the ability
to account for complex wave-related effects like reflection, scattering and diffraction near or in between
arbitrary objects, and complex medium-related effects like convection, refraction and (turbulent)
scattering. In addition, it has the general advantages of a time-domain method. It is indicated that the
numerical discretisation scheme should be chosen depending on the flow speed of the background
medium. Perfectly matched layers, applicable to cases in presence of (non-)uniform flow, are state-of-
the-art perfectly absorbing boundary conditions that are key in outdoor sound propagation applications,
where only a small part of the unbounded atmosphere can be numerically described. Various ways to
include frequency-dependent outdoor soils are summarized, like time-domain impedance plane
boundary conditions and explicitly including the upper part of the soil in the simulation domain.
Approaches for long-distance sound propagation, including moving calculation frames and hybrid
modeling are discussed. This review deals with linear sound propagation only.

1.INTRODUCTION

During the last two decades, time-domain modelling has received a lot of interest as it was shown to
have great potential. One of the major advantages is that the response over a broad frequency range
can be obtained with a single simulation run only, on condition that a short acoustic pulse is excited at
the source position. Clearly, the spatial discretisation will limit the range of frequencies that can be
sufficiently resolved. As analysis of a system’s response is often more convenient in frequency domain, a
Fourier transform can still provide the necessary information in a post-processing step. Time-domain
models further allow including non-linear effects that appear near high amplitude sources. A time-
domain approach directly models the waveform; therefore, its distortion can be captured,
corresponding to a transfer of sound energy in between sound frequencies. The latter is less trivial in a
frequency-domain technique, focusing on a single frequency at a time. In time domain, moving sources
and related doppler-shifts, as well as transient behavior can be simulated directly. In addition, source
localization using time-reversal techniques clearly need a time-domain approach. While traditionally
sound propagation is treated in the frequency domain, time-domain approaches emerged in the last
two decades mainly due to the increased access to computing power.

Moving and inhomogeneous media may strongly effect sound propagation in the near field of realistic
sources, as well as in the far field. Near airplanes, e.g., sound is emitted in a flowing medium, and the



radiation pattern is strongly influenced by the shape of structures like wings or outlet ducts. Similarly,
engine noise exiting the outlet duct of a car results in a specific radiation pattern influenced by strong
temperature gradients at the interface between the jet and surroundings, in combination with high
outflow speeds. A model capable of taking into account both diffraction and scattering by arbitrary
shapes in combination with complex flow effects is required in such applications.

Such initial, near field propagation effects, after generation of sound, are relevant for engineering
radiation of sound at the source. But also in the far field, sound propagation is influenced considerably
by flow and medium inhomogenities, often referred to as atmospheric effects. Especially gradients in
the wind velocity and air temperature affect sound propagation in the atmospheric boundary layer over
large distances [1][2]. Downwind or under temperature inversion conditions, wave-guiding is observed,
strongly increasing sound pressure levels. Upwind, extended shadow regions are formed, where only
turbulent scattering or creeping sound waves could lead to some sound penetration from a specific
source [3]. Furthermore, atmospheric absorption processes are strongly influenced by relative humidity
and air temperature, and to a lesser extent, by atmospheric pressure [4].

A volume-discretisation time-domain technique is well suited to study propagation of broadband sound
in arbitrary moving media and temperature fields. This paper reviews specifically the finite-difference
time-domain method as an approach to model sound propagation in the atmospheric boundary layer.
Topics of concern are defining a suitable set of sound propagation equations and their numerical
discretisation; the treatment of infinitely and finitely absorbing boundary conditions; and approaches
for long-range sound propagation. Linear acoustics are considered.

2.GOVERNING SOUND PROPAGATION EQUATIONS

Starting equations for time-domain implementations of sound propagation in the atmosphere have
been scrutinized by Ostashev et al. [5]. Departing from the linearized equations of fluid dynamics,
simplifications can be made when the atmosphere is assumed to be an ideal gas, when the flow speed
vector vy is smaller than the speed of sound ¢, when spatial variations in ambient air pressure are
neglected, and when internal gravity waves are of no concern. This leads to the following closed set of
coupled partial differential equations in the particle velocity vector v and acoustic pressure p :
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In these equations t denotes time and p; is the mass density of air.

This set of equations [6][7][8][5] has been commonly proposed to study in detail sound propagation in
the atmosphere where there is interest in the effect of a combination of wave phenomena as observed
in a motionless medium (like reflection, diffraction and scattering by arbitrary objects) and flow effects



like refraction, convection and (turbulent) scattering. These equations are often called linear(ized)
Euler(ian) equations (LEE).

Equations (1) and (2) only describe sound propagation. Consequently, sound generation terms are
absent in contrast to common aeroacoustic equations. The flow does not generate sound here (but, e.g.,
deforms the wavefronts) and the acoustics do not influence the (hon-acoustic) macro fluid flow.
Therefore, these equations were referred to as “sound propagation in background flow” in Ref. [7]. In
contrast to reference frequency-domain outdoor sound propagation techniques like the Parabolic
Equation (PE) method (see e.g. [1] for an overview) or the Fast Field Program (FFP) (see e.g. [1] for an
overview), arbitrary flow fields can be accounted for. Including an inhomogeneous medium does not
induce difficulties in a volume discretisation technique as will be discussed further in the text.

In the equations above, atmospheric absorption is not included. Although such terms can be relatively
easily added to Eq. (2) (e.g. as a general diffusion term as proposed in Ref. [6]), this is not optimal from
an efficiency point of view. A more efficient approach is performing appropriate filtering on the time-
domain signal afterwards, avoiding additional simulations for the wide range of air temperature and
relative humidity combinations that are commonly observed in the atmosphere.

3.NUMERICAL DISCRETISATION

In contrast to frequency domain techniques, both the temporal and spatial discretisation of the
governing sound propagation equations are of concern, strongly influencing numerical accuracy,
numerical efficiency and numerical stability. The specific choice could depend on the application of
interest and the magnitude of the background flow.

A primary choice is whether to only use pressures to discretise the sound propagation domain (called p-
FDTD), or using both particle velocity components and pressures (p-v FDTD) as depicted in Fig. 1. While
only using pressures strongly reduces the number of unknowns in the calculation grid, already in its
simplest form second order derivatives are necessary. Consequently, additional fields need to be stored
in memory to prevent mixing old and new fields during time-stepping, partly mitigating this memory-
related benefit. p-FDTD has a certain popularity in room acoustics and audio applications [9]{10][11],
where flow is of no concern. p-v FDTD is the obvious way to implement the coupled set of partial
differential equations Egs. (1) and (2). A single equation with only the acoustic pressure as unknown
cannot be derived, unless simplifications are made to the flow field.

In case of p-v FDTD, a choice between a staggered and collocated spatial discretisation has to be made
(see Fig. 1). In a staggered grid, the pressures and velocities do not appear at the same physical locations
in the grid, but are shifted in place. Typically, the pressures are located in the centre of each grid, while
the particle velocity components are located on the faces that border each computational cell. In a
collocated grid, pressures and all components of the velocities appear e.g. in the centre of each
computational cell.
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Figure 1: The different basic spatial and temporal discretisation setups in FDTD. Acoustic pressures are
indicated with dots, the components of the particle velocities with arrays. (SIP=staggered-in-place, CIP=
collocated-in-place, SIT=staggered-in-time, CIT=collocated-in-time).

3.1.Homogeneous still medium

In absence of flow, so when vy=0, such a staggered-in-place grid has remarkable properties. This specific
scheme originates from the so-called Yee cell [12], developed to solve the Maxwell equations with the
FDTD technique in electromagnetic applications. At a lowest possible order, it can be shown that the
error term from the Taylor expansion is reduced with a factor 4 relative to the collocated spatial
representation of velocities and pressures. It can be seen as if the discretisation is virtually halved by
taking the spatial gradients closer to the location where they are actually needed. The staggered-
temporal approach (where the pressures and velocities are not updated at the same discrete times, but
in a leap-frog manner) has similar benefits. A major advantage of such a staggered temporal grid is the
possibility for in-place-computation : the old values are replaced by the new ones in computer memory
during time-integration, which is highly efficient.

The courant number governs both numerical stability and accuracy. Following its definition, it actually
demands that within one time step, a sound wave may travel at maximum one grid cell further. Detailed



analysis of the FDTD scheme in absence of flow shows that amplitude errors are absent at all Courant
numbers [13]. The phase error depends on the propagation direction and is therefore asymmetric.
There are no phase errors for sound propagation along the diagonal of square cells when the Courant
number is equal to one [13]. Exactly along a coordinate axis, the phase error is largest. A Courant
number of 1 is also most interesting along this propagation direction. Not only from the viewpoint of
accuracy, but also for numerical efficiency this is optimal : a minimum number of time steps are needed
for sound to reach a given distance.

Given this inherent phase error, a rather fine spatial discretisation is needed to reduce this numerical
dispersion and 10 computational cells per wavelength are usually advised in a lowest-order
discretisation. When accurate phase predictions are required for a specific application, an even finer
spatial discretisation should be chosen.

Higher-order schemes enhance phase accuracy at a given spatial discretisation. Higher order spatial
discretisation seems most optimal when applying so-called dispersion-relation preserving schemes [14],
where the Taylor coefficients are slightly adapted, depending on the specific scheme, to further reduce
dispersion errors. Although higher-order schemes are clearly interesting, time steps need to be reduced
to keep simulations stable; relaxing the need for a finer spatial discretisation should be weighed against
the increase in calculation time. Furthermore, this could lead to a much more complicated boundary
treatment than in compact schemes. This is a drawback, as FDTD is especially interesting in cases with
many objects and interfaces at close distance, including object with concave and convex parts and
including complicated object-induced gradients in the propagation medium.

Higher-order temporal discretisation approaches including more terms from the Taylor series expansion
to better approach the continuous derivatives is not interesting as for each increase in order, additional
pressure and velocity fields have to be kept in memory during time-stepping to avoid overwriting. This
strongly increases the computational cost which is often a bottleneck in FDTD applications. More
advanced low-storage techniques have been developed like the one proposed by Bogey and Bailly [15]
based on the Runge-Kutta approach, still explicitly solving these equations.

3.2.Inhomogeneous medium

Inhomogeneous mediums are rather easily modeled in a volume-discretisation technique. Each grid cell
can be assigned a different temperature, leading to a (local) variation in sound speed. Clearly, the
highest temperature will determine the time step, meaning that in other parts of the propagation
domain the phase error cannot be minimized anymore.

3.3.Moving medium

In case of moving media, staggered-in-place is still an appropriate choice for spatial derivatives. The
temporal discretisation needs more care as instability issues might appear. The (forward-difference)
staggered-in-time (SIT) approach, as used in a motionless medium, was shown to be both unstable and
inaccurate [16], albeit computationally fast. Although this method has been employed successfully in
specific applications involving flow [6][17], its use should be discouraged certainly in case of higher flow



speeds and long-distance sound propagation. The accuracy for this specific scheme was quantified in
Ref. [16], for sound propagation in a uniform (very) low-Mach number flow. In Ref. [5], a similar
comparison with an analytical solution at higher flow speeds further confirmed its inaccuracy.

The theoretically correct and numerically stable approach for temporal derivatives in flow is the
collocated-in-time (CIT) scheme [5][16], involving centered finite-differences. In contrast to the
staggered-in-time approach, pressures and velocities are now updated at the same discrete times.
Consequently, an additional particle velocity field and acoustic pressure field need to be kept in memory
to perform time stepping. As a result, the memory cost is doubled, while time steps are halved. The
increase in computational cost, relative to sound propagation in a still medium, is therefore large. This
discretisation scheme shows [5] to be capable of accurately solving Egs. (1) and (2), up to Mach numbers
equal to 1. Similarly as in absence of flow, there are no amplitude errors. The phase error is hardly
affected by the presence of flow [16].

In a way to conciliate the accuracy and stability of the CIT scheme and the calculation efficiency of SIT,
the so-called prediction step staggered-in-time (PSIT) approach was proposed in Refs. [7] and [8] and
scrutinized in Ref. [16]. The staggered-in-time updating of acoustic pressures and particle velocity
components is retained, but an intermediate step is introduced, updating the fields deliberately
neglecting flow. These field are then subsequently used in the equations including the flow terms. This
approach allows keeping an explicit updating scheme. In contrast to the CIT scheme, only a single
additional field needs to be stored, whose memory allocation can be used both for the acoustic
pressures and the components of the particle velocities. The phase error is not affected relative to
sound propagation in a still medium, while the amplitude error is strongly reduced relative to the SIT
scheme [16]. For the rather low wind speeds as typically observed in the atmospheric surface layer, this
method shows to be sufficiently accurate (let say, for Mach numbers smaller than 0.1). This scheme
shows to be marginally unstable. However, with increasing flow speeds, stability and accuracy issues
appear as well with PSIT and the use of CIT is then advised.

3.4.Turbulent medium

Although detailed computational fluid dynamics (CFD) models like direct numerical simulation (DNS) or
large-eddy simulations (LES) could produce momentary turbulence fields (that are directly employable in
a finite-difference time-domain model, see e.g. Ref. [18]), the huge computational cost involved is still
an important barrier for their wide use. In addition, the desired spatial resolution in a finite-difference
time-domain technique is often too demanding.

A common approach to account for turbulent scattering is the so-called frozen turbulence approach [1].
The sound propagation medium is perturbed by local variations in the flow speed and temperature in
such a way that the statistics of the turbulent realizations are close to those of specific turbulence
models or correspond to experiments. Next, sound propagation is calculated through various
realizations, allowing to calculate statistics on e.g. the sound pressure. Such turbulent field realizations
can be constructed in various ways, like e.g. with the turbule or quasi-wavelet approach as proposed by
Goedecke et al. [19][20] or by projecting fluctuation spectra, with random phase, to the physical space



[21][22]. These approaches have been applied to homogeneous isotropic turbulence above a flat
ground. Examples of such realisations are shown in Fig. 2.

In Van Renterghem [7], the turbulent kinetic energy field (“k-field”), as calculated with a standard k-¢
turbulence closure CFD model, was used to adapt the local turbulence strength of such turbules. To
some extent, the inhomogeneous turbulence as observed in the urban environment near roof level is
accounted for. Heimann and Blumrich [23] used a somewhat related technique, and added the concept
of “transient turbulence” to avoid calculating through many realizations of a turbulent atmosphere.

It was argued in Ref. [21] that the FDTD method has high potential to account for turbulent scattering at
all angles and to include multiple scattering, in combination with wave phenomenons present in a non-
turbulent (moving and and inhomogeneous) atmosphere.
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Figure 2 : Three turbulent field realisations employing the turbule [20] theory for flow velocity turbulence
(homogeneous and isotropic turbulence; solenoidal eddies). A Kolmogorov spectrum is used, with
Cv?=0.035 m*?/s>. Eight length scales have been considered, with radii of the vortices ranging from 1.5 m
to 0.11 m. Turbulent kinetic energy fields are depicted (in m*/s’).

4.INFINITE BOUNDARY CONDITIONS



Two types of infinite boundary conditions are generally of concern, namely a perfectly reflecting and a
perfectly absorbing boundary condition. Full reflection is easily modeled in a staggered spatial grid since
on the faces bordering a grid cell, the normal particle velocity components are defined. Setting this
component to zero models a rigid boundary condition.

Implementing perfectly absorbing boundary (PAB) conditions is challenging in a full-wave numerical
technique. However, PABs are essential in outdoor sound propagation : the unbounded sound
propagation region (i.e. the atmosphere) has to be truncated to a finite simulation domain. An
impedance plane boundary condition, on which the same impedance as in the propagation medium is
imposed, is a sound approach from a theoretical point of view, but shows to have a too limited accuracy
in FDTD implementations. Numerical experiments show that for normally incident sound waves, typical
reductions in reflection are lower than 40 dB relative to the incident sound energy [7].

Therefore, so-called “zonal techniques” are needed; various approaches were reviewed by Hu [24]. The
perfectly matched layer (PML) theory, originally proposed by Berenger for electromagnetics FDTD
applications [25], is a highly accurate PAB and is state-of-the-art in acoustic FDTD applications [26]. The
basic idea is that a layer of cells is needed near the grid borders having a gradual increase of the
damping inside this layer. This ensures that there is sufficient acoustic energy loss when the sound
waves reach the borders of the computational domain, while the change in impedance near the
interface between the bulk grid and the absorbing layers is minimal. In absence of flow, a damping term
is introduced in both the equation updating the velocity and pressure over time. Imposing perfect
absorption at all angles of incidence and at all sound frequencies leads to surprisingly simple “matching”
conditions: the ratio of the damping coefficient in both equations is the mass density of the bulk
propagation medium. An essential step, in analogy to the original formulation by Berenger [25], is
splitting the acoustic pressure - although it is a scalar - in an orthogonal and parallel component relative
to the interface to introduce an additional degree of freedom. However, PMLs in unsplit physical
variables have been developed as well [27] as theoretical analysis showed that the split-set of equations
is not strongly well-posed [28].

With increasing number of cells to constitute the absorbing layer, the reflection at the interface
decreases. Based on the numerical experiment described in Ref. [7], a thickness of about 20 cells seems
most efficient, leading to a reduction in acoustic energy upon reflection of more than 100 dB.

PMLs have been developed for a moving medium as well [26][27][28][29][30]. However, in the
implementation proposed in Refs. [7] and [8], the matching conditions were shown not to depend on
the (uniform) flow speed. Still using uniform-flow PMLs in presence of (strong) flow gradients only leads
to a slightly worsened performance [7], meaning that the PMLs remain highly accurate. However,
dedicated approaches are possible [31].

5.FINITE-IMPEDANCE BOUNDARY CONDITIONS

Materials, from a historical point of view, have been acoustically characterized mainly in the frequency
domain. A frequency-independent impedance is easily implemented and accurate in a p-v FDTD grid.
However, most materials behave strongly different in function of sound frequency. Using a fixed



impedance and repeating calculations to obtain the response at various frequencies of interest is
therefore highly inefficient: One of the main assets of a time-domain technique, namely the possibility
to acquire a broadband response with a single simulation, would be lost then.

There are two main approaches, either using an impedance plane as a material boundary condition, or
including (a part of) the material in the simulation domain.

5.1.Impedance plane approach

In a brute force approach, direct convolution is a possibility, yielding the time-domain analogy of any
frequency-domain function. However, such an operation is unattractive as it is computationally highly
demanding. In theory, the full time history has to be kept in memory at each boundary point for
accurate representation of the interaction between the sound wave and the material.

Two types of impedance plane approaches have been considered in time-domain simulations. A first
option is considering a physical model. A second option is using specific functions, allowing a (relatively)
easy translation to the time-domain. Next, the parameters of such formulations (sometimes referred to
as “template functions”) are found by curve fitting to obtain a specific frequency-impedance behavior.
The physical sound propagation equations are not explicited in the latter. Therefore, only forms obeying
a number of conditions could lead to stable and accurate time-domain implementations: Causality
(meaning that only previous values are needed to perform time-updating), passivity (meaning that the
real part of the impedance is larger than or equal to zero for all sound frequencies), and reality (the
particle velocity and pressure in time-domain are real values; consequently, also the time-domain
representation of the frequency-impedance model must be real) are needed [32].

This section summarizes some impedance plane boundary conditions that were shown to be applicable
to model reflections from typical outdoor soils. The methods discussed are expected to have a wider
applicability, though.

5.1.1.Expansion around jw

An attractive model, with a clear physical meaning, is a mass-damper-spring system [13][33],
characterized by the following impedance equation :

1 .
Z(w)=a,—+a,+a jo (3)
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with j the imaginary unit and @ the pulsation, a_; is the spring constant, a, a material damping constant
and a; the mass; all these material parameters are expressed per unit area. Interestingly, each term can
be easily translated to the time domain : the 1/jw—term corresponds to a simple time integration,

demanding only a single additional variable to be kept in memory at each boundary point. The constant

term is solved by linear interpolation over time, while the mass term jw corresponds to a time-

derivative. However, the unbounded air propagation time step should be reduced with a factor v3/2

to ensure numerical stability [13]. It was shown in Ref. [34] that such a system obeys the necessary



conditions of causality and passivity on condition that realistic physical values are used for the
coefficients. Putting such a system in series allows introducing more complex behavior of materials or
increases the degree of freedom in curve fitting [35]. In order to capture the typical steep descent in
impedance in the low frequency range for outdoor soils, Heutschi et al. [36] proposed to add a (1/j )’
term to approach e.g. the Delany and Bazley model [37], widely used to represent reflection on grass-
covered soil in outdoor sound propagation. However, the double integration needed to express this
additional term in the time-domain was found to lead to a positive feedback loop and instable results
[36]. The latter was solved, in a practical way, by slightly damping this term and did not induce a
significant loss in numerical accuracy for typical cases of sound propagation outdoors for source and
receiver at low heights. This is consistent with the analysis performed by Dragna [34], showing that the
Delany and Bazley model [37] is actually not suited as a time-domain boundary conditions since it is
theoretically not possible to simultaneously obey the 3 conditions of reality, causality and passivity.

5.1.2.Direct convolution

The following sum of terms can be efficiently implemented in time domain :

Z(0)=Y 2 @)
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as the inverse Fourier Transform is a sum of exponentially decreasing functions [38]. Consequently, this
allows calculating a direct convolution not entailing an excessive computational cost. Furthermore, each
term can be implemented in a recursive way, only needing a single additional variable per term
considered necessary to approach a particular frequency-impedance curve. This method was shown to
be applicable to the Miki model [39] to approach typical outdoor soils like grass-covered ground and
snow [40]; rigid backing was used for the latter. This direct convolution can be considered as a
generalization of the mass-spring-damper approach following analysis in Ref. [41].

5.1.3.Rational functions

Another possibility is describing a frequency dependent impedance by a rational function [42][43][44]:
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Ostashev et al. [43] used Pade-approximants for the Zwikker and Kosten [45] impedance boundary
condition and for the Attenborough 4-parameter model [46]. It was shown in Ref. [43] that when using
fractional derivatives, a causal time-domain boundary condition can be formulated. The fractional
derivatives can be efficiently calculated using exponentially decaying functions in a recursive approach.

The use of rational functions to approach frequency-dependent impedances is related to infinite
impulse response (IIR) filters, that are commonly designed in the z-domain. Such an approach is known



to be able to provide the required real coefficients. Design in the z-domain rapidly leads to discretised
FDTD equations. This methodology was shown to be accurate and efficient in typical room acoustics
applications [47].

5.2.Modeling sound propagation through (a layer of) soil

The aforementioned time-domain impedance plane boundary conditions assume locally reacting
materials. Non-locally reacting materials can be modeled by including (part of) the porous material
inside the simulation domain, in contrast to only modeling the interface between two media. In the first
option, sound propagation inside the material is explicitly resolved and the physical sound propagation
equations in the material should be known. Also when there is only interest in the reflected waves at
the interface, such an approach can be interesting.

5.2.1.Poro-rigid frame model

A popular model to account for soil reflections in finite-difference time-domain simulations is the one by
Zwikker and Kosten [45]. This rigid-porous medium model assumes that the constituting part of the
material, i.e. the frame, does not vibrate with the incident sound wave. This is a reasonable assumption
when the density of the material matrix and its stiffness are significantly higher than those in air. For
many outdoor soils, this condition is fulfilled. The model employs three material parameters namely the
flow resistivity o, the porosity ¢ and the so-called structure constant k;, which is linked to the tortuosity:
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The main reason for its popularity is its ease in implementation and the fact that additional numerical
constraints are limited compared to sound propagation in unbounded air. A general damping term is
introduced in the velocity equation (Eq. (6)), which is proportional to the flow resistivity of the soil, and

the (scalar) mass density p” and speed of sound ¢’ in the material are adapted based on the porosity and
structure constant, as illustrated by Egs. (6)-(9).

The implementation of Egs. (6)-(9) has been analyzed in detail. Some care is needed when using this
type of model in case of higher flow resistivities. To ensure accuracy, a finer grid than needed in bulk air
must be applied to accurately capture the rapid decrease in sound pressure near the soil interface. A



sudden grid refinement with a factor 4 is proposed in Ref. [17] near the interface air-ground. A gradual
grid refinement, reducing spurious reflections in the refinement area, was proposed in Ref. [7].

Numerical stability of the FDTD implementation of the Zwikker and Kosten model [45] was scrutinized in
Ref. [48]. With increasing product of flow resistivity and medium porosity, time steps should be slightly
decreased to obtain stability. Increasing the structure factor seems to stabilize simulations. The rigid-
porous medium seems to be less restrictive as for the time step in case of an already fine spatial grid in
unbounded air. However, smaller time steps are needed in case large spatial steps are used in
unbounded air.

The rather simple approach by Zwikker and Kosten does not capture all relevant physics of sound
interacting with outdoor soils, especially for propagation through soils at high frequencies and low flow
resistivities [49]. In its basic form, sound reflection is rather accurately modeled. Making the parameters
weakly frequency-dependent extends its range of applicability [49], however, departing from the rather
straightforward implementation as discussed above.

5.2.2.Poro-elastic frame models

Poro-elastic soil models have been implemented as well in the time-domain. The coupled movement of
the frame and air inside the porous medium then needs to be accounted for. Two approaches, inspired
by Biot’s theory [50][51], have been reported for time-domain modeling of outdoor sound propagation.
Dong et al. [52] only discretise the pore air particle velocity and frame velocity inside the porous
medium, while above the soil only acoustic pressures are used in representing the sound field. Ding et
al. [53] consistently follow the p-v FDTD approach in both the unbounded air and the poro-elastic
medium. This means that inside the soil, not only the pore air pressure and particle velocity, but also the
frame pressure and frame velocity are resolved.

Compared to a rigid-porous medium, additional medium parameters are the bulk modulus of the frame
and frame density. In Biot’s frequency domain approach, some medium parameters were assigned an
imaginary part, in order to model frame damping. An additional frame damping coefficient has been
used instead in Ref. [53], while Dong et al. [52] directly model friction in the air-filled pores. No
additional numerical stability issues have been reported in these references.

6.LONG DISTANCE SOUND PROPAGATION

A volume discretisation technique like FDTD, even when fully optimized, is not well suited to calculate
sound propagation up to large distances. In this section, some alternatives are discussed to tackle this
problem and summarized in Fig. 3.

6.1.Moving frame FDTD

On condition that a short, acoustic pulse is excited at the source position, the moving frame FDTD allows
performing calculations at minimum computational cost. Instead of updating the fields throughout the
full spatial grid, calculations are only made in a limited zone of the grid, centered around the
propagating pulse. This calculation frame then moves with the speed of sound in the desired direction. A



moving frame approach prevents updating acoustic variables in zones where hardly any acoustic energy
is present. The moving calculation frame should include the full vertical extent of the grid, however.

This method has been applied to sound propagation from a coherent line source over a rigid ground
plane in a refractive atmosphere [17], and was shown not to decrease numerical accuracy. A fixed
calculation frame has been used in the latter. When using programming languages allowing dynamic
memory allocation, even more efficient implementations are possible. In Ref. [54], multiple narrow
frames are allowed by threshold-based memory allocation, allowing to follow distinct reflections as well.
Clearly, if the sound propagation problem becomes too reverberant, no gain is observed anymore by the
use of a moving frame.

6.2.Hybrid modelling

Many noise control engineering cases need highly detailed modelling in a source zones, while at the
same time, sound propagation up to a large distance is required. Clearly, it is very hard to conciliate
these two aspects within a single numerical technique.

Various spatial domain decomposition methods have been proposed in the field of outdoor acoustics,
typically combing a full-wave technique near the source, with the parabolic equation method [55] or a
geometrical acoustics approach to reach far away receivers [56].

Especially the combination between FDTD and PE [57] is interesting as the effect of flow is accounted for
in both the source region and outside, while wave-related effects are preserved. A PE method assumes
one-way sound propagation in a limited angle around the source and the effective sound speed
approach [1]. These assumptions allow efficient yet accurate predictions of long-distance sound
propagation in the atmosphere. Although a combination between a full wave technique and geometrical
acoustics has its merits, an essential problem is that the latter relies on a high-frequency approach
outside the source region. Note that usually the low-frequency content of a source becomes dominant
after long distances propagation as high frequencies are easily absorbed in the atmosphere [4].

The hybrid method between FDTD and PE has been analysed in detail in Ref. [57]. The Green’s Function
Parabolic Equation (GFPE) [1] has been used, given its high efficiency (e.g. the possibility for stepping at
various wavelenghts in the propagation direction) and the possibility to a capture most relevant outdoor
sound propagation aspects (like range-dependent arbitrary sound speed profiles, range-dependent
ground impedance, accounting for terrain undulations [1][58][59], turbulent scattering, etc.). A one-way
coupling was proposed, where FDTD constitutes a vertical array of pressures at a frequency of interest
at close distance from the source region, forming the starting function for GFPE. This vertical array is
then subsequently propagated up to the receiver distance as in a standard GFPE calculation. Accuracy is
hardly affected by this coupling. The mismatch in grid height between FDTD and PE is solved in Ref. [57]
by employing the decrease of sound pressure in the PML towards the top of the FDTD grid, forming the
basis for the extrapolation of the pressure towards the top of the PE grid, which is typically much higher.
The gain in computational efficiency is huge, relative to applying FDTD to the full sound propagation
region, if even possible [57].



PML:

WL
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W
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Figure 3 : Schematic representation of long-distance sound propagation approaches based on finite-
difference time-domain modeling, employing (a) moving frame FDTD (fixed-width calculation frame), (b)
dynamic moving frame FDTD, and (c) a hybrid FDTD-PE method.

6.3.Undulating terrain

Long-distance sound propagation typically involves ground undulations that might significantly affect
sound propagation. Transformation from the traditional structured Cartesian grid to a curvilinear



coordinate system, following the terrain undulations, is a popular and efficient technique [54][60][61].
This method allows time-domain impedance plane boundary conditions to be applied to the uneven
terrain, while the same numerical approaches as in a rectangular coordinate system can still be used.

7.CONCLUSIONS AND DISCUSSION

The finite-difference time-domain method has become a mature reference sound propagation model
over the last two decades. It has the advantages of a time-domain method namely the possibility to
obtain a broadband frequency response with a single simulation, the possibility to include non-linear
effects and the treatment of moving and realistic sources. In an arbitrary moving medium, finite-
difference time-domain implementations are needed that resolve both the particle velocity and the
acoustic pressure.

The numerical discretisation scheme strongly influences numerical stability, numerical accuracy, and
numerical efficiency. Since FDTD calculations are typically computationally highly demanding, well-
though choices should be made. Analysis shows that staggered spatial grids are interesting both in
presence and absence of flow. In flow, however, collocated temporal grids are accurate and stable up to
Mach numbers of 1 when solving the LEE, but lead to a strong increase in computational cost. The
prediction-step staggered-in-time (PSIT) approach shows to be a compromise between accuracy,
stability and computational efficiency at low Mach number flows.

Perfectly matched layers efficiently model perfectly absorbing boundaries when truncating the
atmosphere to a finite calculation domain. The presence of flow does not deteriorate its behavior.

The treatment of finite absorbing boundaries has long been considered an important drawback of time-
domain approaches. However, various techniques have been proposed to model impedance plane
boundary conditions as well as explicitly modeling sound propagation inside a porous medium.

Long-distance sound propagation is either possible with fixed or dynamic moving calculation frames or
by hybrid modeling. A coupled FDTD-PE method is especially interesting as it allows including moving
and inhomogeneous medium effects in both the source region and during propagation towards
receivers far away. Curvilinear coordinate transformations allow the inclusion of undulating terrains that
might especially be relevant in case of long-distance sound propagation.

An interesting numerical technique closely related to the finite-difference time-domain technique is the
pseudo-spectral time-domain method [62]. Essentially, spatial derivatives are solved in the
wavenumber-domain, needing a multiplication only. The efficiency of this method relies heavily on the
availability of efficient forward (and backward) Fourier transforms. In addition, phase errors are absent
on condition that the Nyquist sampling criterion is obeyed, leading to the need of only 2 cells per
wavelength in theory. This method corresponds to a spatial stencil equal to the full extent of the
simulation domain along a particular coordinate axis and can therefore be considered as a high order
finite-difference approach. This method has been applied to Egs. (1) and (2) by Hornikx et al. [63] for
applications in outdoor sound propagation. Although its large potential, approaches to implement
frequency-dependent boundary conditions are lacking. Up till now, only frequency-independent



impedances have been implemented, either by modeling a second medium with a different density [63],
or with a constant and real impedance plane [64].
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