Investigating AOB and NOB kinetic parameters for oxygen under moderate climate wastewater conditions

Dries Seuntjens¹, Chaïm De Mulder¹, Haydée De Clippeleir^{2,3}, Sudhir Murthy², Hongkeun Park³, Kartik Chandran³, Ingmar Nopens⁴, Siegfried E. Vlaeminck¹

¹ LabMET Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium

² DC Water Authority, 5000 Overlook Ave. SW, Washington DC 20032, USA

³ Columbia University Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027

⁴ BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

To date, almost all reported kinetic parameters of ammonia and nitrite oxidizing bacteria (AOB and NOB) for oxygen are measured at temperatures higher than 20°C. The oxygen competition between these two groups of organisms at lower temperatures is however of great interest for the realization of a nitrite shunt in municipal wastewater treatment. This study investigated the temperature dependency of AOB and NOB oxygen Monod kinetics, i.e. R_max and K_O₂. Nitrifying sludge originating from a sewage treatment plant (Breda, NL) was sampled over the temperature range of 10.5-17.2°C. The sludge contained AOB Nitrosomonas_as detected by Illumina, and NOB genera Nitrospira and *Nitrobacter*, as revealed by qPCR. The Arrhenius temperature relationship, with R max_T = R max_{Tref}* θ^{T} (T-Tref), was fitted to the Rmax data (Tref=13.9°C). The results yielded θ values that were in line with literature values: θ =1.11 (R²=0.81), for AOB and θ =1.06 (R²=0.53) for NOB. Surprisingly, AOB R max rates were higher than NOB R max rates over the whole temperature interval, which is in contrast to typical activated sludge. For K O₂ values, no good temperature relationships were found. In contrast to textbook knowledge, the results showed a higher K_{0_2} for AOB (0.55-2.43 mg O_2/L) compared to NOB (0.12-0.84 mg O_2/L). Overall, the obtained biokinetic parameters provide further insight for a better process modeling and control towards achieving energy-neutral wastewater treatment.