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We extend the one-dimensional space-charge limited current theory to a two-dimensional
geometry where current flows in a thin layer between two coplanar semi-infinite
electrodes. It is shown that the surface charge density in the gap between the electrodes
is the finite Hilbert transform of the in-plane component of the electric field. This enables
us to derive analytical expressions for the field and charge density for single carrier
injection and for photo-carrier extraction by solving a non-linear integral equation for
the field. The analytical expressions have been verified by numerical calculations. For the

in-plane geometry, the one-dimensional Mott–Gurney equation J ¼ 9
8 l�

V2

L3 is replaced by

a similar K ¼ 2
pl� V2

L2 equation. For extraction of photo-generated carriers the one-

dimensional J � g3=4V1=2 dependence is replaced by a K � g2=3V2=3 dependence, where g
is the generation rate of photo-carriers. We also extend these results to take into account
trapping. We show experimental evidence obtained with an organic photoconductor
confirming the predicted voltage, width and generation dependencies.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Space-charge limited currents have always played a
pertinent role in electronic devices, starting with the
vacuum tube [1,2], subsequently in solid-state electronic
devices [3] and more recently in organic electronic devices
[4,5]. In a vacuum tube the space-charge limited electron
current is found based on energy conservation and
Poisson’s equation and leads to the Child–Langmuir
equation

J ¼ 4
9

ffiffiffiffiffiffi
2e
m

r
�0

V3=2

L2 ð1Þ
with e and m the electron charge and mass, �0 the dielectric
constant of vacuum and L the gap between the parallel
electrodes and V the applied voltage. If only a single type
of carrier is injected in an insulator without traps, a similar
theory leads to the Mott–Gurney equation

J ¼ 9
8
l�V2

L3 ð2Þ

where l is the mobility of the carrier and � the dielectric
constant. If a photoconductor with non-injecting contacts
shows a large asymmetry in the mobilities of electrons
and holes then a space-charge develops mainly near one
electrode when extracting the photo-carriers by applying
a bias voltage. In the past one has applied (2) to this
space-charge region [6] but a more precise calculation
(mentioned later) yields a numerical factor 4 instead
of 9/8
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Fig. 1. (top) Geometry used for solving the electrostatic problem.
(bottom) The conformally transformed geometry, with the anode
�1 < u < 0 and the cathode 0 < u < þ1. The gap cOa is transformed
into the semicircle c’O’a’.
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J � egW ¼ 4l� V2

W3 ð3Þ

where g is the volume generation rate of photo-carriers
and W the width of the space-charge layer. The difference
stems from the hole and electron currents not being con-
stant in the space-charge layer. Eliminating W from (3)
yields

J � 4l�ð Þ1=4 egð Þ3=4
ffiffiffiffi
V
p

ð4Þ

with a square root dependence on the voltage and a g3=4

dependence on the irradiance.
If W ¼ L then the current saturates and this occurs for a

voltage

V sat ¼
1
2

ffiffiffiffiffiffi
eg
l�

r
L2 ð5Þ

These are the simplest models known for space-charge
limited currents but modeling real devices usually
becomes more complicated because e.g. both types of car-
riers are injected, or because traps are present [3,7,8] or
because the mobility is field dependent [9] and/or carrier
density dependent [10] and so on.

All formulas mentioned and possible extensions have
been derived for a planar one-dimensional structure. Lang-
muir [2] also considered cylindrical electrodes, and noted
that the V3=2 dependence in (1) does not depend on the
shape of the electrodes, using a scaling argument. Only
recently the Child–Langmuir law was extended to electron
emission over a finite patch on a planar cathode [11–13].

Whereas the geometry of many practical devices is
indeed one-dimensional, there are exceptions, as just men-
tioned. Another example are photoconductors, which often
have an in-plane geometry with interdigitated electrodes.
With inorganic photoconductors usually no space-charge
limitation occurs due to the relatively high mobility-life-
time product [14], but with organic photoconductors
[15,16] space-charge limited currents have been reported
several times [17–20].

In this paper we extend the theory of space-charge
limited currents to the geometry of two semi-infinite
coplanar electrodes, where the current flows in an
infinitesimally thin channel between the electrodes, where
it will be assumed that the structure is embedded in a
uniform dielectric medium. This is applicable to the men-
tioned organic photoconductors that use finger electrodes,
assuming the width of the fingers is much larger than the
gap width and the structure is sealed between two glass
plates. In this case the current flow is confined to the chan-
nel and is still one-dimensional but the electric field in the
channel and in the dielectric medium is two-dimensional.
Thin film transistors (TFTs) and in particular OTFTs have
a very similar geometry but due to the extra gate electrode
the field can be calculated approximately using the well-
known gradual channel approximation [21]. This holds
also for the photoconductive structures reported by
Lombardo et al. [22] and Ooi et al. [23].

The rest of the paper is organized as follows. In Section 2
we calculate the electric field using a conformal transfor-
mation. In the next sections this result is combined with
the drift and continuity equations and the overall problem
is reduced to solving a non-linear integral equation for the
electric field in the gap. In Section 3 we consider single
carrier injection and in Section 4 photo-carrier extraction.
The details of the calculations are given in Appendix A. In
Section 5 some experimental evidence is presented for
the theory.
2. Two-dimensional electrostatic problem

The electrostatic problem to be solved consists of two
semi-infinite coplanar electrodes, with an applied poten-
tial difference V, and separated by a gap with width L. In
the plane between the electrodes an unknown surface
charge density q [C/m2] is present and the structure is
embedded in a uniform medium with dielectric constant
�. Since only one length parameter is involved we normal-
ize the width of the gap with L=2 and choose a coordinate
system as shown in Fig. 1, with the anode �1 < x < �1,
the cathode þ1 < x < þ1 and the thin conducting layer
�1 < x < þ1. Likewise the potential is normalized with V
and with these conventions the electric field and the sur-
face charge density are both normalized with 2V=L. The
field is split into a contribution due to the applied voltage
without space-charge being present and the contribution
of the space-charge density qðxÞ with no voltage difference
applied between the electrodes EðxÞ ¼ EaðxÞ þ EqðxÞ. For the
first problem the Laplace equation must be solved in the
whole 2D-plane except for two cuts along the electrodes
and this problem can be solved by transforming this region
into the upper halve plane using a complex Schwarz-
Christoffel transformation [24–26]

w ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1
p

ð6Þ

where z ¼ xþ jy and w ¼ uþ jv and with 0 < argðz� 1Þ <
2p and �p < argðzþ 1Þ < p. In the transformed w-plane
the complex potential is easily found as WaðwÞ ¼ �j 1

p ln w
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and in the original z-plane the complex potential is then
given by

WaðzÞ ¼ �j
1
p

ln zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1
p� �

ð7Þ

The x-component of the (applied) electric field in the gap is
obtained as

EaðxÞ ¼ �R
dWa

dz

� �
¼ 1

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ð8Þ

To obtain EqðxÞ we consider a line charge q at an arbitrary
position z0 ¼ x0 þ jy0 and apply the same conformal trans-
formation. In the w-plane the complex potential can be
found as that of a line charge q at w0 ¼ u0 þ jv0 and an
image-charge �q at the position w�0 ¼ u0 � jv0

WqðwÞ ¼ �
q

2p�
ln

w�w0

w�w�0
ð9Þ

Using (6), taking the derivative and the negative real part,
taking the limits y; y0 ! 0 and applying superposition we
obtain the 2nd contribution to the x-component of the field
as

EqðxÞ ¼ �
1

2p�

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x02

1� x2

r
qðx0Þ
x0 � x

dx0 ð10Þ

where the integral and all subsequent similar integrals are
Cauchy principal value integrals. The integral transform on
the rhs is the inverse of the finite Hilbert transform [27]
and we conclude that the charge density can be calculated
as the finite Hilbert transform of the electric field

qðxÞ
2�
¼ HðEÞ ¼ 1

p

Z 1

�1

Eðx0Þ
x0 � x

dx0 ð11Þ

SinceH 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p� �

¼ 0 (within the gap) we have replaced
Eq by the total field E in (11). As an application of this rela-
tion we find the (normalized) charge density required to
obtain a uniform electric field

qðxÞ
2�
¼ 1

2p
ln

1� x
1þ x

ð12Þ
Fig. 2. Comparison between the normalized electric field (open circles,
full line) and charge density (plusses, broken line) for single carrier
injection in an insulator at a voltage V ¼ 100 V, obtained with a numerical
model (symbols) and with the analytical solutions given in Appendix A
(lines). Both quantities are normalized with 2V=L and the electric field has
been multiplied with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

to remove the singularities.
3. Space-charge limited injection current

We consider the injection of one type of carriers, e.g.
holes from an ideal reservoir into an insulator without
traps. Neglecting diffusion currents, the drift equation is
given by

K inj ¼ eplpE ¼ lpqE ð13Þ

where K inj is the constant surface current density, p the
surface carrier density and q the surface charge density.
Using (11) (and taking into account the normalization of
the field) we obtain a non-linear integral equation for the
electric field

K inj ¼
2
p
�lp

V2

L2 4EðxÞ
Z 1

�1

Eðx0Þ
x0 � x

dx0 ð14Þ

which must be solved with the boundary condition
Eð�1Þ ¼ 0, since the anode is an ideal reservoir, and with
R 1
�1 EðxÞdx ¼ 1. Apparently the unique normalized electric

field profile is found by solving

EðxÞ
Z 1

�1

Eðx0Þ
x0 � x

dx0 ¼ a
4

ð15Þ

where K inj ¼ 2
p a�lp

V2

L2 . The detailed solution is given in
Appendix A. The constant a can be found by integrating
this equation over the total width but since the field is sin-
gular for x ¼ 1, we multiply both sides with ð1� xÞ before
integrationZ 1

�1
ð1� xÞEðxÞ

Z 1

�1

Eðx0Þ
x0 � x

dx0
� �

dx ¼ a
2

After reversing the order of integration one can remove the
singularity and then finds

a ¼
Z 1

�1
EðxÞdx

� �2

¼ 1 ð16Þ

and the KðVÞ-characteristic becomes

K inj ¼
2
p �lp

V2

L2 ð17Þ

Apart from the different width dependence, the factor 9=8
in the 1D-SCL current (2) is replaced by the factor 2=p in
the 2D-SCL current.

To check the analytical solutions given in Appendix A
for the electric field and for the charge density we compare
(A.3)(A.4) and (A.7) with the results of a numerical model,
which uses (10) for calculating the electric field but takes
into account drift and diffusion [28] (see Fig. 2). Boundary
conditions for the numerical model were chosen to obtain
conditions of single carrier injection: we used a Poole–
Frenkel field emission formula for both carriers and
adapted the barriers so that only holes are injected. Except
for transition zones near the electrodes, the numerical
results match very well with the analytical formulas. Note
that the electric field has been multiplied with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

to
remove the singularities. Whereas the theoretical electric
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field has no singularity at the anode (x ¼ �1), but behaves

as EðxÞ � ln 2
1þx�1ð Þ�1=2

2
ffiffi
2
p , the numerically calculated field

diverges. However for calculating the field emission cur-
rent the numerical model averages the electric field over
a width comparable with the thickness of the electrodes,
so that the emission current does not diverge. Near the
anode the charge density diverges according to

qðxÞ
2� �

ln 2
1þx�1ð Þ1=2

p
ffiffi
2
p , which is a modest singularity. Near the

cathode the electric field has a singularity EðxÞ � 1
p
ffiffiffiffiffiffi
1�x
p

and the charge density behaves as a square root
qðxÞ
2� �

ffiffiffiffiffiffi
1�x
p

4 . Fig. 3 shows that for a sufficiently high voltage
the numerically calculated current tends to the analytical
KðVÞ characteristic (17).

4. Space-charge limited photo generated current

Next we consider an asymmetric photoconductor with
e.g. ln � lp and with non-injecting contacts so that a
space-charge develops near the anode when extracting
the photo generated carriers. We neglect the much smaller
space-charge near the cathode and focus here on the ano-
dic space-charge layer only. Neglecting diffusion we
rewrite the drift equations in terms of the average carrier
density c ¼ ðpþ nÞ=2 and the space-charge density
q ¼ eðp� nÞ

4elcE ¼ Kphot � cKs ð18Þ
2lqE ¼ Ks � cKphot ð19Þ

where l¼lnlp=ðlnþlpÞ �ln;c¼ ðlp�lnÞ=ðlpþlnÞ � 1,
Kphot ¼ eðKp � KnÞ is the total constant current density
whereas Ks ¼ eðKp þ KnÞ, with Kp > 0 and Kn < 0 the flux
densities of the carriers. These equations must be aug-

mented with the continuity equations dKp

dx ¼
dKn
dx ¼ g � r,

with g the (surface) generation rate and r the recombina-
tion rate. An approximate solution can be obtained by
assuming an abrupt space-charge layer transition. Outside
the space-charge layer g � r, the current densities are con-
stant and q� c so that p � n and then the rhs of (19) is
zero (Ks ¼ cKphot). In the space-charge layer we neglect
Fig. 3. Ratio of the numerically calculated current density KðVÞ over the
analytical results K injðVÞ and KphotðVÞ given by (17) and (24).
recombination and dKs
dx � 2eg. Eq. (19) can then be approx-

imated by

2lqE ¼ 2eg
ðx�W þ L

2Þ � L
2 < x < � L

2þW

0 � L
2þW < x < L

2

(

where W is the space-charge layer width. Solving this
equation for a one-dimensional model with q ¼ � dE

dx and
neglecting the voltage drop over the bulk results into (3).
For our two-dimensional model, we insert (11), we
normalize the field and the geometry parameters and we
take into account Kphot ¼ egW and then this equation can
be brought into a universal form

EðxÞ
Z 1

�1

Eðx0Þ
x0 � x

dx0 ¼ b
8
ðx� 2wþ 1Þ �1 < x < 2w� 1
0 2w� 1 < x < 1

	
ð20Þ

where w ¼W=L. This equation must be solved for b with
the boundary conditions Eð2w� 1Þ ¼ 0 and

R 1
�1 EðxÞdx ¼ 1.

The KðVÞ-characteristic follows then as

Kphot ¼
2
p

bl�V2W

L3 ð21Þ

The constant b can again be found by integrating (20) over
the space-charge layer width but after multiplying with
ð1þ xÞZ 1

�1
ð1þ xÞEðxÞ

Z 1

�1

Eðx0Þ
x0 � x

dx0
� �

dx ¼ �1
6

bw3 ð22Þ

After reversing the order of integration the singularity can
be removed and we find that

bw3 ¼ 3
Z 1

�1
EðxÞdx

� �2

¼ 3 ð23Þ

and the KðVÞ-characteristic becomes

Kphot ¼
6
p

l� V2

W2 ð24Þ

In Fig. 4 a comparison is shown between the normalized
electric field and the charge density calculated with
(A. 3)(A. 4)(A. 11) and (A. 12) and with the numerical model
mentioned in Section 3. We choose a relatively high hole
mobility lp ¼ 10�6 m2=Vs to limit the voltage drop outside
the space-charge layer, we avoid hole injection and choose
a much lower electron mobility ln ¼ 10�10 m2=Vs� lp, so
that a space-charge develops near the anode, but we
allow electron injection to avoid a space-charge near the
cathode. The space-charge layer width w needed for
the analytical formulas was obtained from the numerical
calculation as w ¼ K=egL, where K is the current calculated
numerically. Except near the cathode (x ¼ 1) there is almost
a perfect match between both calculations. Note that the
global dependence (11) between electric field and charge
density results into a smaller but non-negligible charge
density outside the space-charge region. The following
asymptotic dependencies can be derived from the analyti-
cal formulas: near the anode (x ¼ �1) the electric field

diverges as EðxÞ �
ffiffiffiffiffiffiffiffi
3=2w
p
p
ffiffiffiffiffiffi
1þx
p , whereas the charge density



Fig. 4. Comparison between the normalized electric field (open circles,
full line) and charge density (plusses, dashed line) for photo-carrier
extraction at a voltage V ¼ 10 V, obtained with a numerical model
(symbols) and with the analytical solutions given in Appendix A (lines).
Both quantities are normalized with 2V=L and the electric field has been
multiplied with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

to remove the singularities. From the numerical
calculation we found w ¼ 0:19 and this was used in the analytical
formulas.
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follows the inverse square root dependence qðxÞ
2� �

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2w3

p ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

. Near the edge of the space-charge layer
(x ¼ xw ¼ 2w� 1) the electric field drops to zero as

EðxÞ �
ffiffi
3
p

2p
xw�x
2w2 lnðxw � xÞj j whereas the charge density

behaves as qðxÞ
2� �

ffiffi
3
p

2p
1
w 1� xw�x

2w ln xw � xj j

 �

which is valid on
both sides of the edge.

Similar as for the 1D-SCL photo generated current, the
2D-SCL photo generated current (24) is greater than the
1D-SCL injection current (17), in this case 3�. With
Kphot ¼ egW we find in the usual way

W ¼ 6
p

l�
eg

� �1=3

V2=3 ð25Þ

Kphot ¼
6
p

l�
� �1=3

egð Þ2=3V2=3 ð26Þ

and compared with the 1D case we obtain a larger voltage
dependence (V2=3 instead of

ffiffiffiffi
V
p

) and a smaller dependence
on the irradiance (g2=3 instead of g3=4).

The saturation voltage is obtained by taking the limit
W ! L

V sat ¼
ffiffiffiffiffiffiffiffiffiffiffi
p
6

eg
l�

r
L3=2 ð27Þ

For V > V sat (22) is no longer valid since the field is now
singular on both sides of the gap. Multiplying (20) with
ð1� x2Þ before integrating now yieldsZ 1

�1
ð1� x2ÞEðxÞ

Z 1

�1

Eðx0Þ
x0 � x

dx0
� �

dx ¼ � bsat

6

and after reversing the order of integration one findsZ 1

�1
EðxÞdx

� � Z 1

�1
xEðxÞdx

� �
¼
Z 1

�1
xEðxÞdx ¼ � bsat

6

From (21) with Ksat ¼ egL we obtain bsat ¼ 3 Vsat
V


 �2
with

0 6 bsat � 3. The full solution can again be found in
Appendix A.
5. Experimental evidence

For the 2D-model to be obligatory, two conditions must
be fulfilled. First of all the geometry should be two-
dimensional, with the thickness of the conductor being
much smaller than it’s length, and secondly space charge
should be present. We considered already two classical
cases: injection of a sufficient number of one type of carri-
ers in an insulator or the extraction of photo-generated
carriers with non-injecting contacts. If on the contrary
one type of carrier can freely flow between the electrodes
and the conductor thus behaves ohmically, then the elec-
tric field will be uniform but only as long as the accompa-
nying space charge given by (12) is negligible compared
with the carrier density. For a conductor with gap length
of 10 lm, an electrode thickness of 100 nm, � ¼ 3�0 and a
voltage of 10 V, the critical density is of the order of
1015 m�2, which is small for metallic conductors or
semiconductors, but not unusual for an organic conductor.
So, even a very thin metallic sheet will behave one-
dimensionally and to find evidence for the proposed model
we need to look at a relatively poor conductor.

This work is the continuation of previous work we did
on the development of a transparent organic photoconduc-
tive sensor [18,28], made with typically 80 lm wide ITO
electrodes, separated by a 20 lm gap and covered by a
40 nm thick hole transporting material (m-MTDAB) and a
20 nm thick electron transporting material (PTCBI) [18].
Excitons are generated in the PTCBI-layer, diffuse towards
the interface and dissociate into an electron in the PTCBI-
layer and a hole in the m-MTDAB-layer. The observed cur-
rent–voltage characteristic under illumination is linear for
small voltages but switches to a much smaller slope at
some point (see the inset of Fig. 6 for typical curves). We
showed that this is due to a space-charge occurring near
the cathode [19]. Using a numerical model [28] we could
reproduce the observed behavior using reasonable values
for the material parameters and assuming that most of
the conduction occurs in the PTCBI-layer, whereas most
of the holes remain trapped in the m-MTDAB-layer.

Contrary to the assumptions made in Section 4, and as
explained in [28], the fabricated photoconductor has effec-
tively an electron injecting cathode since the active layers
covering the cathode form a reverse biased heterojunction
(above the anode the heterojunction is forward biased and
forms an effective sink for electrons). This explains why
there occurs a linear regime without space-charge limita-
tion for small voltages. However the electron current
injected from the cathode is limited by the maximal cur-
rent of the reverse biased diode and when this limit is
reached the cathode becomes non-injecting and this
causes the sudden change of slope in the characteristics.

Due to the trapping of holes the ideal current–voltage
characteristics derived in Sections 3 and 4 must be modi-
fied. It is well-known that for a 1D model and assuming
an exponential distribution of traps, the J � V2=L3 depen-
dence for the (dark) injection current must be replaced
by a dependence J � Vrþ1=L2rþ1, where r ¼ Tt=T0, with Tt a
temperature describing the trap distribution and T0 the
ambient temperature. This behavior can be explained on



P. De Visschere et al. / Organic Electronics 16 (2015) 212–220 217
the basis of a model with a small fraction of mobile carriers
with fixed mobility whose density depends on the trapped
density according to p � pr

t [8], or considering carriers with
a density dependent mobility l � pr�1 [29,10]. The depen-
dence can easily be found using a scaling argument as
was done by Langmuir [2]. A similar scaling argument
can be applied to the Eqs. (12) and (13) of the 2D model.
Assuming uniformity in the direction perpendicular to
the film and using e.g. the density dependent mobility
model, one finds a dependence K � Vrþ1=Lrþ1=Dr�1, with D
the thickness of the film. Measurements for relatively thin
devices with gap widths in the range 6–20 lm are shown
in Fig. 5. These measurements resemble those obtained
for conventional planar samples, see e.g. [30]. For small
voltages the current–voltage relation is linear and for high
voltages the currents tend to the same power law K � V5:5,
with r � 4:5. However, as shown in the inset, the depen-
dence on the gap width L is much smaller than for the
1D conventional device, with a dependence K � L�4, which
is much more in line with the 2D model. The discrepancy
between the observed L�4 dependence and the expected
L�5:5 dependence could be due to the error on the mea-
sured gap widths, which have been obtained by measure-
ments on a single location along the meter long finger
pattern.

The effect of trapping on the SCL photo current can be
found as before. For the 1D model (4) is replaced by the

more general dependence J �
ffiffiffiffi
V
p

g
2rþ1
2rþ2 and for the 2D model

(26) is replaced by Kphot � gVð Þ
rþ1
rþ2. For r ¼ 1 we recover the

dependencies without traps. With increasing r the contrast
in the voltage dependence increases whereas the contrast
in the generation dependence decreases and in both cases
tends to a linear dependence. Using r ¼ 4:5 the 2D-model
predicts a V0:85 dependence whereas the 1D-model yields
a square root dependence independent on the presence
of traps. The inset of Fig. 6 shows typical IðVÞ-characteris-
tics for a range of illuminances and in the dark. For high
Fig. 5. Dark current–voltage characteristics for 4 samples (20 nm m-MTDAB +
shows the current for V ¼ 98 V as a function of the gap width, which was obtaine
of the electrode fingers is about 1 m.
applied voltages, injection of holes from the anode
becomes visible. To compensate for this effect we subtract
the dark current from the measured characteristics (shown
in broken lines). To compensate for the voltage drop over
the neutral region we calculate the voltage over the SCL
as VSC ¼ V � I=G, where G is the conductance of the initial
linear part of the characteristic (also indicated in the inset).
Finally we compensate the current injected from the cath-
ode by subtracting a constant I0; ISC ¼ I � I0. We then
obtain the best straight line approximation in a log–log
diagram and exclude the low- and high-voltage regions
(the intervals used are indicated by a thick line in the
inset). For each curve the value of I0 was chosen which
maximizes the R2-value, and these limiting currents
are indicated in the inset by the dots. For the highest
luminance considered the exponent found (V0:85;

R2 ¼ 0:99951) fits the 2D-model exactly. For lower lumi-
nances the exponent increases, which is probably due to
the effect of the injected hole current, which clearly has
not been compensated completely.

Although the difference in the predicted dependence on
the generation level is small (with r ¼ 4:5 the 1D model
predicts a g0:91 dependence and the 2D model a slightly
lower g0:85 dependence), it remains useful to check also
this dependence. Data pertaining to the linear regime has
been published in [28] and is reproduced in Fig. 7, aug-
mented with data for the SCL-regime. Data is shown as a
function of the irradiance (either a 639.6 nm laser irradi-
ance or a display backlight luminance converted to an
equivalent laser irradiance). The points marked with trian-
gles and squares have been measured for a bias voltage of
0.5 V, which is within the linear regime, whereas the
points marked with diamonds show the slope dI=dV for a
bias voltage of 10 V, which is in the SCL regime. For the lin-
ear regime the triangles show the current IðVÞ, and the
squares show the slope of the current �dI=dt just after
switching off the irradiance, but with the bias voltage still
applied. This quantity enables us to judge the dependence
10 nm PTCBI) with nominal gap widths in the range 6–20 lm. The inset
d by measuring it on a single location of the finger pattern. The total length



Fig. 6. Calculated ISCðVSCÞ-characteristics of the space charge layer of a sample (20 nm m-MTDAB + 10 nm PTCBI) with gap width 20 lm and a total
electrode length of 2.38 m on a log–log scale. The inset shows the measured IðVÞ-characteristics on a linear scale. Characteristics are shown for 181, 104, 29
and 0 cd/m2. The thick lines indicate the intervals over which the power law approximations in the main figure have been obtained.

Fig. 7. Measurement data for a bilayer in-plane photoconductive sensor as a function of the irradiance. Illumination was either by a 639.6 nm laser (open
symbols) or by a display backlight (closed symbols). In the latter case the luminance was converted to an irradiance according to 2.7/373 W/cd. The
triangles show the current in the linear regime, for V ¼ 0:5 V. The squares show the slope of the current decay when switching off the illumination, again for
V ¼ 0:5 V. The diamonds show the slope of the IðVÞ characteristic in the space-charge limited regime, for V ¼ 10 V.
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of the generation rate on the irradiance [28]. In the linear
regime the generation rate of electron/hole pairs is in equi-
librium with the recombination rate and depending on the
recombination mechanism this determines the values of
the electron and hole densities. For the high irradiance
range we interpret the data as evidence for bimolecular
recombination and a sublinear dependence of the genera-
tion rate on the irradiance [28] g � U0:78, which could be
due to exciton quenching by electrons [31].

In the SCL regime the current increase dI=dV is due to
the increase of the current egW collected from the
space-charge region and the recombination mechanism
has no influence. From the measurements we find a
dependence dI=dV � U0:61�0:64, which can be interpreted
as dI=dV � g0:78�0:82 using again g � U0:78. This is close to
the expected values and confirms that the sublinear
dependence of the generation rate on the irradiance could
indeed be due to exciton quenching by electrons and not
by the electric field.

6. Conclusions

Although the current flow in a thin film placed in the gap
between two co-planar electrodes is one-dimensional, the
electric field in the film must be calculated with a two-
dimensional model, at least when space charge effects
become important. It was shown that the field can be
obtained efficiently using a conformal transformation. By
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inverting the resulting relation, we found that the space-
charge distribution in the film is equal to the finite Hilbert
transform of the in-plane component of the electric field.
This enabled us to derive analytical expressions for the
electric field and the charge density for several space-
charge limited current problems and these expressions
were shown to agree very well with numerical calculations.

It was shown that for single carrier injection the one-

dimensional Mott-Guerny equation J ¼ 9
8 l�

V2

L3 must be

replaced by K ¼ 2
p l� V2

L2 for the two-dimensional in-plane
layout. Apart from the quadratic dependence on the gap
width L, the factor 9=8 is replaced by a factor 2=p. Although
this seems not to have been noticed in the past, for space-
charge limited photo-carrier extraction the one-dimen-
sional Mott-Guerny equation is actually given by

J ¼ 4l� V2

W3, where W is the space charge layer width and
the characteristic factor 9=8 has been replaced by a factor
4. For the corresponding two-dimensional layout this is

replaced by K ¼ 6
p l� V2

W2. As a result the well-known square
root dependence of the space-charge limited current on
the applied voltage in the one-dimensional lay-out is
replaced by a V1=3 dependence for the two-dimensional
in-plane layout. Similarly the g3=4 dependence on the gen-
eration rate of photo-carriers is replaced by a g2=3 depen-
dence.Using a scaling argument we derived the voltage
and generation dependencies of these currents if trapping
is taken into account. The presence of traps increases the
contrast between the 1D and 2D models for the voltage
dependence but decreases the contrast for the generation
dependence. Using measurements of the current–voltage
characteristics of a photoconductive sensor with interdigi-
tated electrodes and with an organic bilayer as photo-
sensitive material, we showed that the dark injection
current and the voltage dependence of the space-charge
limited photo current do fit much better with the 2D
model than with the 1D model, whereas the generation
dependence fits with both, and cannot be used to discrim-
inate between the two models.
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Appendix A. Solution of the non-linear integral
equation

The equation obtained in the main text for the electric
field (15) or (20) has the general form

k/ðxÞ þ /ðxÞ
Z 1

�1

/ðx0Þ
x0 � x

dx0 ¼ f ðxÞ ðA:1Þ

where the constant k and the function f ðxÞ are known. For
the examples considered k ¼ 0. k – 0 is obtained e.g. for
single carrier injection in a medium with a background
carrier density being present. In that case we can observe
the transition from ohmic conduction to space-charge lim-
ited conduction. A detailed solution of this equation has
been published by Peters [32]. To obtain the solution one
introduces the following function defined in the complex
z-plane

SðzÞ¼ kþ
Z 1

�1

/ðtÞ
t�z

dt

¼ 2
1�z2

Z 1

�1

ð1� t2Þf ðtÞ
t�z

dtþ2kðk1þk0zÞ�k2
0

1�z2 þk2

" #1=2

ðA:2Þ
where k0 ¼

R 1
�1 /ðxÞdx and k1 ¼

R 1
�1 x/ðxÞdx are the first two

moments of the unknown function. Peters shows that for
(A.1) to have a solution, these constants should be chosen
so that SðzÞ is analytic in the complex plane outside the cut
�1;1ð Þ. Usually this condition is not sufficient to fix k0 and

k1 and additional boundary conditions are needed, as illus-
trated in the main text. The electric field and the charge
density for �1 6 x � 1 can then be found by taking the
limit z! x	 j0

/ðxÞ ¼ 1
p

I Sðxþ j0Þ½ 
 ðA:3Þ

1
p

Z 1

�1

/ðtÞ
t � x

dt ¼ 1
p

R Sðxþ j0Þ½ 
 � k
p

ðA:4Þ

where

Sðxþ j0Þ ¼ 2
1� x2

Z 1

�1

ð1� t2Þf ðtÞ
t � x

dt þ 2kðk1 þ k0xÞ � k2
0

1� x2

"

þ k2 þ 2jpf ðxÞ
#1=2

ðA:5Þ

For single carrier injection into an insulator the electric
field follows by solving (15) and thus k ¼ 0 and
f ðxÞ ¼ a=4. One obtains

Sinjðxþ j0Þ ¼ a
2

ln
1� x
1þ x

� k2
0 þ ax

1� x2 þ j
p
2

a

" #1=2

ðA:6Þ

Since we did prescribe the potential, k0 ¼ 1 and a is the
new unknown in this case. By exploiting the boundary
condition Eð�1Þ ¼ 0 we found (16), thus a ¼ 1. This can
also be seen from (A.6) where the choice a ¼ 1 removes
the singularity for x ¼ �1 and we obtain

Sinjðxþ j0Þ ¼ 1
2

ln
1� x
1þ x

� 1
1� x

þ j
p
2

� �1=2

ðA:7Þ

For photo-carrier extraction (20) must be solved with
again k ¼ 0 but with a linear dependence for f ðxÞ

f ðxÞ ¼ b
8
ðx� xwÞ �1 < x < xw

0 xw < x < 1

	
ðA:8Þ

where xw ¼ 2w� 1 is the position of the edge of the space-
charge layer. Inserting this into (A.5), with k0 ¼ 1 one
obtains after some calculations (and for �1 < x < xw)

S2
photðxþ j0Þ ¼ b

4
ðx� xwÞ ln

xw � x
1þ x

þ b
4

w
1� xw þ 2x

1þ x

þ
b
3 w3 � 1
1� x2 � j

p
4

bðxw � xÞ x < xw ðA:9Þ
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Outside the space-charge layer we obtain similarly

S2
photðxþ j0Þ ¼ b

4
ðx� xwÞ ln

x� xw

xþ 1
þ b

4
w

2x� xw þ 1
xþ 1

þ
b
3 w3 � 1
1� x2 x > xw ðA:10Þ

If w < 1, then there is no singularity for x ¼ xw and b has
been obtained in (23) (bw3 ¼ 3) by removing the
remaining singularity for x ¼ �1. Note that (i) since
S2

photðxwÞ ¼ bw=4 > 0, EðxwÞ ¼ 0; and (ii) although EðxÞ ¼ 0
for xw 6 x < 1;qðxÞ– 0 and the choice bw3 ¼ 3 avoids a
singularity in qðxÞ for x ¼ 1. The final expressions are then

Sphotðxþ j0Þ¼
ffiffiffiffiffiffiffiffiffi

3
4w3

r
ðx�xwÞln

xw�x
1þx

�

þw
1�xwþ2x

1þx
� jpðxw�xÞ

�1=2

x<xw ðA:11Þ

Sphotðxþ j0Þ¼
ffiffiffiffiffiffiffiffiffi

3
4w3

r
ðx�xwÞln

x�xw

xþ1
þw

2x�xwþ1
xþ1

� �1=2

x>xw ðA:12Þ

If saturation occurs (w ¼ 1) we obtain

S2
photðxþ j0Þ ¼ bsat

4
ðx� 1Þ ln 1� x

1þ x
þ bsat

4
2x

1þ x

þ
bsat

3 � 1
1� x2 � j

p
4

bsatð1� xÞ ðA:13Þ

Singularities occur on both sides and different values for
bsat in the range 3 P bsat > 0 correspond with different
voltages V sat 6 V <1.
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