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Abstract

We extend the one-dimensional space-charge limited current theory to a two-
dimensional geometry where current flows in a thin layer between two coplanar
semi-infinite electrodes. It is shown that the surface charge density in the gap
between the electrodes is the finite Hilbert transform of the in-plane compo-
nent of the electric field. This enables us to derive analytical expressions for
the field and charge density for single carrier injection and for photo-carrier
extraction by solving a non-linear integral equation for the field. The analyt-
ical expressions have been verified by numerical calculations. For the in-plane
geometry, the one-dimensional Mott-Gurney equation J = 9

8

µ✏

V

2

L

3 is replaced
by a similar K = 2

⇡

µ✏

V

2

L

2 equation. For extraction of photo-generated carriers
the one-dimensional J ⇠ g

3/4

V

1/2 dependence is replaced by a K ⇠ g

2/3

V

2/3

dependence, where g is the generation rate of photo-carriers. We also extend
these results to take into account trapping. We show experimental evidence ob-
tained with an organic photoconductor confirming the predicted voltage, width
and generation dependencies.

1. Introduction

Space-charge limited currents have always played a pertinent role in electronic
devices, starting with the vacuum tube [1, 2], subsequently in solid-state elec-
tronic devices [3] and more recently in organic electronic devices [4, 5]. In a
vacuum tube the space-charge limited electron current is found based on energy
conservation and Poisson’s equation and leads to the Child-Langmuir equation
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with e and m the electron charge and mass, ✏
0

the dielectric constant of vacuum
and L the gap between the parallel electrodes and V the applied voltage. If only
a single type of carrier is injected in an insulator without traps, a similar theory
leads to the Mott-Gurney equation

J =
9

8
µ✏

V

2

L

3

(2)

where µ is the mobility of the carrier and ✏ the dielectric constant. If a photo-
conductor with non-injecting contacts shows a large asymmetry in the mobilities
of electrons and holes then a space-charge develops mainly near one electrode
when extracting the photo-carriers by applying a bias voltage. In the past one
has applied (2) to this space-charge region [6] but a more precise calculation
(mentioned later) yields a numerical factor 4 instead of 9/8

J ⇡ egW = 4µ✏
V

2

W

3

(3)

where g is the volume generation rate of photo-carriers and W the width of the
space-charge layer. The difference stems from the hole and electron currents
not being constant in the space-charge layer. Eliminating W from (3) yields

J ⇡ (4µ✏)1/4 (eg)3/4
p
V (4)

with a square root dependence on the voltage and a g

3/4 dependence on the
irradiance.
If W = L then the current saturates and this occurs for a voltage
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These are the simplest models known for space-charge limited currents but mod-
eling real devices usually becomes more complicated because e.g. both types
of carriers are injected, or because traps are present [3, 7, 8] or because the
mobility is field dependent [9] and/or carrier density dependent [10] and so on.
All formulas mentioned and possible extensions have been derived for a planar
one-dimensional structure. Langmuir [2] also considered cylindrical electrodes,
and noted that the V

3/2 dependence in (1) does not depend on the shape of
the electrodes, using a scaling argument. Only recently the Child-Langmuir
law was extended to electron emission over a finite patch on a planar cathode
[11, 12, 13].
Whereas the geometry of many practical devices is indeed one-dimensional, there
are exceptions, as just mentioned. Another example are photoconductors, which
often have an in-plane geometry with interdigitated electrodes. With inorganic
photoconductors usually no space-charge limitation occurs due to the relatively
high mobility-lifetime product [14], but with organic photoconductors [15, 16]
space-charge limited currents have been reported several times [17, 18, 19, 20].
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In this paper we extend the theory of space-charge limited currents to the geom-
etry of two semi-infinite coplanar electrodes, where the current flows in an in-
finitesimally thin channel between the electrodes, where it will be assumed that
the structure is embedded in a uniform dielectric medium. This is applicable
to the mentioned organic photoconductors that use finger electrodes, assuming
the width of the fingers is much larger than the gap width and the structure is
sealed between two glass plates. In this case the current flow is confined to the
channel and is still one-dimensional but the electric field in the channel and in
the dielectric medium is two-dimensional. Thin film transistors (TFTs) and in
particular OTFTs have a very similar geometry but due to the extra gate elec-
trode the field can be calculated approximately using the well-known gradual
channel approximation [21]. This holds also for the photoconductive structures
reported by Lombardo e.a. [22] and Ooi e.a. [23].
The rest of the paper is organized as follows. In section 2 we calculate the
electric field using a conformal transformation. In the next sections this result
is combined with the drift and continuity equations and the overall problem
is reduced to solving a non-linear integral equation for the electric field in the
gap. In section 3 we consider single carrier injection and in section 4 photo-
carrier extraction. The details of the calculations are given in the appendix. In
section 5 some experimental evidence is presented for the theory.

2. Two-dimensional electrostatic problem

The electrostatic problem to be solved consists of two semi-infinite coplanar
electrodes, with an applied potential difference V , and separated by a gap with
width L. In the plane between the electrodes an unknown surface charge density
⇢ [C/m2] is present and the structure is embedded in a uniform medium with
dielectric constant ✏. Since only one length parameter is involved we normalize
the width of the gap with L/2 and choose a coordinate system as shown in
figure 1, with the anode �1 < x < �1, the cathode +1 < x < +1 and the
thin conducting layer �1 < x < +1. Likewise the potential is normalized with
V and with these conventions the electric field and the surface charge density
are both normalized with 2V/L. The field is split into a contribution due to
the applied voltage without space-charge being present and the contribution of
the space-charge density ⇢(x) with no voltage difference applied between the
electrodes E(x) = E

a

(x) + E

⇢

(x). For the first problem the Laplace equation
must be solved in the whole 2D-plane except for two cuts along the electrodes
and this problem can be solved by transforming this region into the upper halve
plane using a complex Schwarz-Christoffel transformation [24, 25, 26]

w = z +
p
z

2 � 1 (6)

where z = x + jy and w = u + jv and with 0 < arg(z � 1) < 2⇡ and �⇡ <

arg(z + 1) < ⇡. In the transformed w�plane the complex potential is easily
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Figure 1: (top) Geometry used for solving the electrostatic problem. (bottom) The confor-
mally transformed geometry, with the anode �1 < u < 0 and the cathode 0 < u < +1. The
gap cOa is transformed into the semicircle c’O’a’.

found as W

a

(w) = �j

1

⇡

lnw and in the original z-plane the complex potential
is then given by

W

a
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The x-component of the (applied) electric field in the gap is obtained as

E
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To obtain E

⇢

(x) we consider a line charge q at an arbitrary position z

0
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0

and apply the same conformal transformation. In the w-plane the complex
potential can be found as that of a line charge q at w
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Using (6), taking the derivative and the negative real part, taking the limits
y, y

0

! 0 and applying superposition we obtain the 2nd contribution to the
x-component of the field as

E
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(x) = � 1
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1� x
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2
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where the integral and all subsequent similar integrals are Cauchy principal value
integrals. The integral transform on the rhs is the inverse of the finite Hilbert
transform [27] and we conclude that the charge density can be calculated as the
finite Hilbert transform of the electric field

⇢(x)

2✏
= H(E) =

1

⇡

ˆ
1

�1

E(x0)

x

0 � x

dx

0 (11)

Since H �
1/
p
1� x

2

�
= 0 (within the gap) we have replaced E

⇢

by the total field
E in (11). As an application of this relation we find the (normalized) charge
density required to obtain a uniform electric field

⇢(x)

2✏
=

1

2⇡
ln

1� x

1 + x

(12)

3. space-charge limited injection current

We consider the injection of one type of carriers, e.g. holes from an ideal reservoir
into an insulator without traps. Neglecting diffusion currents, the drift equation
is given by

K

inj

= epµ

p

E = µ

p

⇢E (13)

where K

inj

is the constant surface current density, p the surface carrier density
and ⇢ the surface charge density. Using (11) (and taking into account the nor-
malization of the field) we obtain a non-linear integral equation for the electric
field

K

inj

=
2

⇡

✏µ

p

V

2

L

2

4E(x)

ˆ
1

�1

E(x0)

x

0 � x

dx

0 (14)

which must be solved with the boundary condition E(�1) = 0, since the anode is
an ideal reservoir, and with

´
1

�1

E(x)dx = 1. Apparently the unique normalized
electric field profile is found by solving

E(x)

ˆ
1

�1

E(x0)

x

0 � x

dx

0 =
↵

4
(15)

where K

inj

= 2

⇡

↵✏µ

p

V

2

L

2 . The detailed solution is given in the appendix. The
constant ↵ can be found by integrating this equation over the total width but
since the field is singular for x = 1, we multiply both sides with (1� x) before
integration ˆ

1

�1

(1� x)E(x)

ˆ
1

�1

E(x0)

x

0 � x

dx

0
�
dx =

↵

2

After reversing the order of integration one can remove the singularity and then
finds

↵ =

ˆ
1

�1

E(x)dx

�
2

= 1 (16)
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and the K(V )-characteristic becomes

K
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=
2
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p

V

2

L

2

(17)

Apart from the different width dependence, the factor 9/8 in the 1D-SCL current
(2) is replaced by the factor 2/⇡ in the 2D-SCL current.
To check the analytical solutions given in the appendix for the electric field
and for the charge density we compare (A.3)(A.4) and (A.7) with the results of
a numerical model, which uses (10) for calculating the electric field but takes
into account drift and diffusion [28] (see figure 2). Boundary conditions for the
numerical model were chosen to obtain conditions of single carrier injection: we
used a Poole-Frenkel field emission formula for both carriers and adapted the
barriers so that only holes are injected. Except for transition zones near the
electrodes, the numerical results match very well with the analytical formulas.
Note that the electric field has been multiplied with

p
1� x

2 to remove the sin-
gularities. Whereas the theoretical electric field has no singularity at the anode

(x = �1), but behaves as E(x) ⇡ (ln 2
1+x

�1)�1/2

2

p
2

, the numerically calculated
field diverges. However for calculating the field emission current the numerical
model averages the electric field over a width comparable with the thickness of
the electrodes, so that the emission current does not diverge. Near the anode

the charge density diverges according to ⇢(x)

2✏

⇡ (ln 2
1+x

�1)1/2

⇡

p
2

, which is a modest
singularity. Near the cathode the electric field has a singularity E(x) ⇡ 1

⇡

p
1�x

and the charge density behaves as a square root ⇢(x)

2✏

⇡
p
1�x

4

. Figure 3 shows
that for a sufficiently high voltage the numerically calculated current tends to
the analytical K(V ) characteristic (17).

4. space-charge limited photo generated current

Next we consider an asymmetric photoconductor with e.g. µ

n

⌧ µ

p

and with
non-injecting contacts so that a space-charge develops near the anode when
extracting the photo generated carriers. We neglect the much smaller space-
charge near the cathode and focus here on the anodic space-charge layer only.
Neglecting diffusion we rewrite the drift equations in terms of the average carrier
density c = (p+ n)/2 and the space-charge density ⇢ = e(p� n)

4eµcE = K

phot

� �K

s

(18)
2µ⇢E = K

s

� �K

phot

(19)

where µ = µ

n

µ

p

/(µ
n

+ µ

p

) ⇡ µ

n

, � = (µ
p

� µ

n

)/(µ
p

+ µ

n

) ⇡ 1, K

phot

=
e(K

p

� K

n

) is the total constant current density whereas K

s

= e(K
p

+ K

n

),
with K

p

> 0 and K

n

< 0 the flux densities of the carriers. These equations
must be augmented with the continuity equations dK

p

dx

= dK

n

dx

= g � r, with
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Figure 2: Comparison between the normalized electric field (open circles, full line) and charge
density (plusses, broken line) for single carrier injection in an insulator at a voltage V = 100 V,
obtained with a numerical model (symbols) and with the analytical solutions given in the
appendix (lines). Both quantities are normalized with 2V/L and the electric field has been
multiplied with

p
1� x

2 to remove the singularities.
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g the (surface) generation rate and r the recombination rate. An approximate
solution can be obtained by assuming an abrupt space-charge layer transition.
Outside the space-charge layer g ⇡ r, the current densities are constant and
⇢ ⌧ c so that p ⇡ n and then the rhs of (19) is zero (K

s

= �K

phot

). In the
space-charge layer we neglect recombination and dK

s

dx

⇡ 2eg. Eq. (19) can then
be approximated by

2µ⇢E = 2eg

(
(x�W + L

2

) �L

2

< x < �L

2

+W

0 �L

2

+W < x <

L

2

where W is the space-charge layer width. Solving this equation for a one-
dimensional model with ⇢ = ✏

dE

dx

and neglecting the voltage drop over the bulk
results into (3). For our two-dimensional model, we insert (11), we normalize
the field and the geometry parameters and we take into account K

phot

= egW

and then this equation can be brought into a universal form

E(x)

ˆ
1

�1

E(x0)

x

0 � x

dx

0 =
�

8

(
(x� 2w + 1) �1 < x < 2w � 1

0 2w � 1 < x < 1
(20)

where w = W/L. This equation must be solved for � with the boundary condi-
tions E(2w� 1) = 0 and

´
1

�1

E(x)dx = 1. The K(V )-characteristic follows then
as

K

phot

=
2

⇡

�µ✏

V

2

W

L

3

(21)

The constant � can again be found by integrating (20) over the space-charge
layer width but after multiplying with (1 + x)

ˆ
1

�1

(1 + x)E(x)

ˆ
1

�1

E(x0)

x

0 � x

dx

0
�
dx = �1

6
�w

3 (22)

After reversing the order of integration the singularity can be removed and we
find that

�w

3 = 3

ˆ
1

�1

E(x)dx

�
2

= 3 (23)

and the K(V )-characteristic becomes

K

phot

=
6

⇡

µ✏

V

2

W

2

(24)

In figure 4 a comparison is shown between the normalized electric field and
the charge density calculated with (A.3)(A.4)(A.11) and (A.12) and with the
numerical model mentioned in section 3. We choose a relatively high hole
mobility µ

p

= 10�6m2

/Vs to limit the voltage drop outside the space-charge
layer, we avoid hole injection and choose a much lower electron mobility µ

n

=
10�10m2

/Vs ⌧ µ

p

, so that a space-charge develops near the anode, but we allow
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Figure 4: Comparison between the normalized electric field (open circles, full line) and charge
density (plusses, dashed line) for photo-carrier extraction at a voltage V = 10 V, obtained
with a numerical model (symbols) and with the analytical solutions given in the appendix
(lines). Both quantities are normalized with 2V/L and the electric field has been multiplied
with

p
1� x

2 to remove the singularities. From the numerical calculation we found w = 0.19

and this was used in the analytical formulas.
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electron injection to avoid a space-charge near the cathode. The space-charge
layer width w needed for the analytical formulas was obtained from the numer-
ical calculation as w = K/egL, where K is the current calculated numerically.
Except near the cathode (x = 1) there is almost a perfect match between both
calculations. Note that the global dependence (11) between electric field and
charge density results into a smaller but non-negligible charge density outside
the space-charge region. The following asymptotic dependencies can be derived
from the analytical formulas: near the anode (x = �1) the electric field diverges

as E(x) ⇡
p

3/2w

⇡

p
1+x

, whereas the charge density follows the inverse square root

dependence ⇢(x)

2✏

⇡ � 1

2

p
3/2w3

p
1 + x. Near the edge of the space-charge layer

(x = x

w

= 2w�1) the electric field drops to zero as E(x) ⇡
p
3

2⇡

x

w

�x

2w

2 |ln(x
w

� x)|
whereas the charge density behaves as ⇢(x)

2✏

⇡
p
3

2⇡

1

w

�
1� x

w

�x

2w

ln |x
w

� x|� which
is valid on both sides of the edge.
Similar as for the 1D-SCL photo generated current, the 2D-SCL photo generated
current (24) is greater than the 1D-SCL injection current (17), in this case 3⇥.
With K

phot

= egW we find in the usual way

W =

✓
6

⇡

µ✏

eg

◆
1/3

V

2/3 (25)

K

phot

=

✓
6

⇡

µ✏

◆
1/3

(eg)2/3 V 2/3 (26)

and compared with the 1D case we obtain a larger voltage dependence (V 2/3

instead of
p
V ) and a smaller dependence on the irradiance (g2/3 instead of

g

3/4).
The saturation voltage is obtained by taking the limit W ! L

V

sat

=

r
⇡

6

eg

µ✏

L

3/2 (27)

For V > V

sat

(22) is no longer valid since the field is now singular on both sides
of the gap. Multiplying (20) with (1� x

2) before integrating now yields
ˆ
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(1� x

2)E(x)

ˆ
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and after reversing the order of integration one finds
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E(x)dx
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�1

xE(x)dx = ��
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6

From (21) with K

sat

= egL we obtain �

sat

= 3
�
Vsat
V

�
2 with 0  �

sat

 3. The
full solution can again be found in the appendix.
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5. Experimental evidence

For the 2D-model to be obligatory, two conditions must be fulfilled. First of
all the geometry should be two-dimensional, with the thickness of the conduc-
tor being much smaller than it’s length, and secondly space charge should be
present. We considered already two classical cases: injection of a sufficient num-
ber of one type of carriers in an insulator or the extraction of photo-generated
carriers with non-injecting contacts. If on the contrary one type of carrier can
freely flow between the electrodes and the conductor thus behaves ohmically,
then the electric field will be uniform but only as long as the accompanying
space charge given by (12) is negligible compared with the carrier density. For a
conductor with gap length of 10 µm, an electrode thickness of 100 nm, ✏ = 3✏

0

and a voltage of 10 Volt, the critical density is of the order of 1015 m�2, which is
small for metallic conductors or semiconductors, but not unusual for an organic
conductor. So, even a very thin metallic sheet will behave one-dimensionally
and to find evidence for the proposed model we need to look at a relatively poor
conductor.
This work is the continuation of previous work we did on the development of a
transparent organic photoconductive sensor [18, 28], made with typically 80 µm
wide ITO electrodes, separated by a 20 µm gap and covered by a 40 nm thick
hole transporting material (m-MTDAB) and a 20 nm thick electron transporting
material (PTCBI) [18]. Excitons are generated in the PTCBI-layer, diffuse
towards the interface and dissociate into an electron in the PTCBI-layer and a
hole in the m-MTDAB-layer. The observed current-voltage characteristic under
illumination is linear for small voltages but switches to a much smaller slope at
some point (see the inset of figure 6 for typical curves). We showed that this is
due to a space-charge occurring near the cathode [19]. Using a numerical model
[28] we could reproduce the observed behavior using reasonable values for the
material parameters and assuming that most of the conduction occurs in the
PTCBI-layer, whereas most of the holes remain trapped in the m-MTDAB-layer
Contrary to the assumptions made in section 4, and as explained in [28], the
fabricated photoconductor has effectively an electron injecting cathode since the
active layers covering the cathode form a reverse biased heterojunction (above
the anode the heterojunction is forward biased and forms an effective sink for
electrons). This explains why there occurs a linear regime without space-charge
limitation for small voltages. However the electron current injected from the
cathode is limited by the maximal current of the reverse biased diode and when
this limit is reached the cathode becomes non-injecting and this causes the
sudden change of slope in the characteristics.
Due to the trapping of holes the ideal current-voltage characteristics derived in
sections 3 and 4 must be modified. It is well-known that for a 1D model and
assuming an exponential distribution of traps, the J ⇠ V

2

/L

3 dependence for
the (dark) injection current must be replaced by a dependence J ⇠ V

r+1

/L

2r+1,
where r = T

t

/T

0

, with T

t

a temperature describing the trap distribution and
T

0

the ambient temperature. This behavior can be explained on the basis of a
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Figure 5: Dark current-voltage characteristics for 4 samples (20 nm m-MTDAB + 10 nm
PTCBI) with nominal gap widths in the range 6-20 µm. The inset shows the current for
V = 98 Volt as a function of the gap width, which was obtained by measuring it on a single
location of the finger pattern. The total length of the electrode fingers is about 1 meter.

model with a small fraction of mobile carriers with fixed mobility whose den-
sity depends on the trapped density according to p ⇠ p

r

t

[8], or considering
carriers with a density dependent mobility µ ⇠ p

r�1[29, 10]. The dependence
can easily be found using a scaling argument as was done by Langmuir [2].
A similar scaling argument can be applied to the equations (12) and (13) of
the 2D model. Assuming uniformity in the direction perpendicular to the film
and using e.g. the density dependent mobility model, one finds a dependence
K ⇠ V

r+1

/L

r+1

/D

r�1, with D the thickness of the film. Measurements for rel-
atively thin devices with gap widths in the range 6-20 µm are shown in figure 5.
These measurements resemble those obtained for conventional planar samples,
see e.g. [30]. For small voltages the current-voltage relation is linear and for
high voltages the currents tend to the same power law K ⇠ V

5.5, with r ⇡ 4.5.
However, as shown in the inset, the dependence on the gap width L is much
smaller than for the 1D conventional device, with a dependence K ⇠ L

�4, which
is much more in line with the 2D model. The discrepancy between the observed
L

�4 dependence and the expected L

�5.5 dependence could be due to the error
on the measured gap widths, which have been obtained by measurements on a
single location along the meter long finger pattern.

13



The effect of trapping on the SCL photo current can be found as before. For
the 1D model (4) is replaced by the more general dependence J ⇠ p

V g

2r+1
2r+2

and for the 2D model (26) is replaced by K

phot

⇠ (gV )
r+1
r+2 . For r = 1 we

recover the dependencies without traps. With increasing r the contrast in the
voltage dependence increases whereas the contrast in the generation dependence
decreases and in both cases tends to a linear dependence. Using r = 4.5 the
2D-model predicts a V

0.85 dependence whereas the 1D-model yields a square
root dependence independent on the presence of traps. The inset of figure 6
shows typical I(V )-characteristics for a range of illuminances and in the dark.
For high applied voltages, injection of holes from the anode becomes visible.
To compensate for this effect we subtract the dark current from the measured
characteristics (shown in broken lines). To compensate for the voltage drop
over the neutral region we calculate the voltage over the SCL as V

SC

= V �
I/G, where G is the conductance of the initial linear part of the characteristic
(also indicated in the inset). Finally we compensate the current injected from
the cathode by subtracting a constant I

0

, I
SC

= I � I

0

. We then obtain the
best straight line approximation in a log-log diagram and exclude the low- and
high-voltage regions (the intervals used are indicated by a thick line in the
inset). For each curve the value of I

0

was chosen which maximizes the R

2-
value, and these limiting currents are indicated in the inset by the dots. For
the highest luminance considered the exponent found (V 0.85

, R

2 = 0.99951) fits
the 2D-model exactly. For lower luminances the exponent increases, which is
probably due to the effect of the injected hole current, which clearly has not
been compensated completely.
Although the difference in the predicted dependence on the generation level
is small (with r = 4.5 the 1D model predicts a g

0.91 dependence and the 2D
model a slightly lower g

0.85 dependence), it remains useful to check also this
dependence. Data pertaining to the linear regime has been published in [28]
and is reproduced in figure 7, augmented with data for the SCL-regime. Data
is shown as a function of the irradiance (either a 639.6 nm laser irradiance or
a display backlight luminance converted to an equivalent laser irradiance). The
points marked with triangles and squares have been measured for a bias voltage
of 0.5 V, which is within the linear regime, whereas the points marked with
diamonds show the slope dI/dV for a bias voltage of 10 V, which is in the
SCL regime. For the linear regime the triangles show the current I(V ), and
the squares show the slope of the current �dI/dt just after switching off the
irradiance, but with the bias voltage still applied. This quantity enables us
to judge the dependence of the generation rate on the irradiance [28]. In the
linear regime the generation rate of electron/hole pairs is in equilibrium with
the recombination rate and depending on the recombination mechanism this
determines the values of the electron and hole densities. For the high irradiance
range we interpret the data as evidence for bimolecular recombination and a
sublinear dependence of the generation rate on the irradiance [28] g ⇠ �0.78,
which could be due to exciton quenching by electrons [31].
In the SCL regime the current increase dI/dV is due to the increase of the
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Figure 6: Calculated I

SC

(V

SC

)-characteristics of the space charge layer of a sample (20 nm
m-MTDAB + 10 nm PTCBI) with gap width 20 µm and a total electrode length of 2.38 m
on a log-log scale. The inset shows the measured I(V )-characteristics on a linear scale. Char-
acteristics are shown for 181, 104, 29 and 0 cd/m2. The thick lines indicate the intervals over
which the power law approximations in the main figure have been obtained.
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current egW collected from the space-charge region and the recombination
mechanism has no influence.. From the measurements we find a dependence
dI/dV ⇠ �0.61�0.64, which can be interpreted as dI/dV ⇠ g

0.78�0.82 using
again g ⇠ �0.78. This is close to the expected values and confirms that the
sublinear dependence of the generation rate on the irradiance could indeed be
due to exciton quenching by electrons and not by the electric field.

6. Conclusions

Although the current flow in a thin film placed in the gap between two co-planar
electrodes is one-dimensional, the electric field in the film must be calculated
with a two-dimensional model, at least when space charge effects become impor-
tant. It was shown that the field can be obtained efficiently using a conformal
transformation. By inverting the resulting relation, we found that the space-
charge distribution in the film is equal to the finite Hilbert transform of the
in-plane component of the electric field. This enabled us to derive analytical
expressions for the electric field and the charge density for several space-charge
limited current problems and these expressions were shown to agree very well
with numerical calculations.
It was shown that for single carrier injection the one-dimensional Mott-Guerny
equation J = 9

8

µ✏

V

2

L

3 must be replaced by K = 2

⇡

µ✏

V

2

L

2 for the two-dimensional
in-plane layout. Apart from the quadratic dependence on the gap width L,
the factor 9/8 is replaced by a factor 2/⇡. Although this seems not to have
been noticed in the past, for space-charge limited photo-carrier extraction the
one-dimensional Mott-Guerny equation is actually given by J = 4µ✏ V

2

W

3 , where
W is the space charge layer width and the characteristic factor 9/8 has been
replaced by a factor 4. For the corresponding two-dimensional layout this is
replaced by K = 6

⇡

µ✏

V

2

W

2 . As a result the well-known square root dependence of
the space-charge limited current on the applied voltage in the one-dimensional
lay-out is replaced by a V

1/3 dependence for the two-dimensional in-plane lay-
out. Similarly the g

3/4 dependence on the generation rate of photo-carriers is
replaced by a g

2/3 dependence.Using a scaling argument we derived the voltage
and generation dependencies of these currents if trapping is taken into account.
The presence of traps increases the contrast between the 1D and 2D models
for the voltage dependence but decreases the contrast for the generation de-
pendence. Using measurements of the current-voltage characteristics of a pho-
toconductive sensor with interdigitated electrodes and with an organic bilayer
as photo-sensitive material, we showed that the dark injection current and the
voltage dependence of the space-charge limited photo current do fit much better
with the 2D model than with the 1D model, whereas the generation dependence
fits with both, and cannot be used to discriminate between the two models.
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Figure 7: Measurement data for a bilayer in-plane photoconductive sensor as a function of
the irradiance. Illumination was either by a 639.6 nm laser (open symbols) or by a display
backlight (closed symbols). In the latter case the luminance was converted to an irradiance
according to 2.7/373 W/cd. The triangles show the current in the linear regime, for V = 0.5 V.
The squares show the slope of the current decay when switching off the illumination, again
for V = 0.5 V. The diamonds show the slope of the I(V ) characteristic in the space-charge
limited regime, for V = 10 V.
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AppendixA. Solution of the non-linear integral equation

The equation obtained in the main text for the electric field (15) or (20) has the
general form

��(x) + �(x)

ˆ
1

�1

�(x0)

x

0 � x

dx

0 = f(x) (A.1)

where the constant � and the function f(x) are known. For the examples con-
sidered � = 0. � 6= 0 is obtained e.g. for single carrier injection in a medium
with a background carrier density being present. In that case we can observe
the transition from ohmic conduction to space-charge limited conduction. A de-
tailed solution of this equation has been published by Peters [32]. To obtain the
solution one introduces the following function defined in the complex z-plane

S(z) = �+

ˆ
1

�1

�(t)

t� z

dt =


2

1� z

2

ˆ
1

�1

(1� t

2)f(t)

t� z

dt+
2�(k

1

+ k

0

z)� k

2

0

1� z

2

+ �

2

�
1/2

(A.2)
where k

0

=
´
1

�1

�(x)dx and k

1

=
´
1

�1

x�(x)dx are the first two moments of
the unknown function. Peters shows that for (A.1) to have a solution, these
constants should be chosen so that S(z) is analytic in the complex plane outside
the cut (�1, 1). Usually this condition is not sufficient to fix k

0

and k

1

and
additional boundary conditions are needed, as illustrated in the main text. The
electric field and the charge density for �1  x  1 can then be found by taking
the limit z ! x± j0

�(x) =
1

⇡

= [S(x+ j0)] (A.3)

1

⇡

ˆ
1

�1

�(t)

t� x

dt =
1

⇡

< [S(x+ j0)]� �

⇡

(A.4)

where

S(x+j0) =
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(A.5)
For single carrier injection into an insulator the electric field follows by solving
(15) and thus � = 0 and f(x) = ↵/4. One obtains

S

inj

(x+ j0) =
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1 + x

� k

2

0

+ ↵x

1� x

2

+ j

⇡

2
↵

�
1/2

(A.6)

Since we did prescribe the potential, k
0

= 1 and ↵ is the new unknown in this
case. By exploiting the boundary condition E(�1) = 0 we found (16), thus
↵ = 1. This can also be seen from (A.6) where the choice ↵ = 1 removes the
singularity for x = �1 and we obtain
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22



For photo-carrier extraction (20) must be solved with again � = 0 but with a
linear dependence for f(x)

f(x) =
�

8

(
(x� x

w

) �1 < x < x

w

0 x

w

< x < 1
(A.8)

where x
w

= 2w�1 is the position of the edge of the space-charge layer. Inserting
this into (A.5), with k

0

= 1 one obtains after some calculations (and for �1 <

x < x

w

)
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Outside the space-charge layer we obtain similarly
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If w < 1, then there is no singularity for x = x

w

and � has been obtained in
(23) (�w3 = 3) by removing the remaining singularity for x = �1. Note that
(i) since S

2

phot

(x
w

) = �w/4 > 0, E(x
w

) = 0; and (ii) although E(x) = 0 for
x

w

 x < 1, ⇢(x) 6= 0 and the choice �w

3 = 3 avoids a singularity in ⇢(x) for
x = 1. The final expressions are then
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If saturation occurs (w = 1) we obtain
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Singularities occur on both sides and different values for �

sat

in the range 3 �
�

sat

> 0 correspond with different voltages V

sat

 V < 1.
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