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Abstract
The recent proposal to determine the (exact) correlation energy based on pairing matrix fluctu-

ations by van Aggelen et al. (arXiv:1306.4957) revived the interest in the simplest approximation

along this path: the particle-particle random phase approximation (pp-RPA). In this paper, we

present an analytical connection and numerical demonstrations of the equivalence of the corre-

lation energy from particle-particle random phase approximation (pp-RPA) and ladder-coupled-

cluster-doubles (ladder-CCD). These two theories reduce to identical algebraic matrix equations

and correlation energy expressions. The numerical examples illustrate that the correlation energy

missed by pp-RPA in comparison with coupled-cluster singles and doubles is largely canceled out

when considering reaction energies. This theoretical connection will be beneficial to design density

functionals with strong ties to coupled-cluster theories and to study molecular properties at the

pp-RPA level relying on well established coupled cluster techniques.
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I. INTRODUCTION

The random-phase approximation (RPA) was originally proposed in the 1950s by Pine

and Bohm[1, 2] to treat the homogeneous electron gas. Since then, the idea of RPA has

spawned the studies of excitation energies, linear-response functions and correlation energies

in solid state physics[3–6], nuclear physics[7–12], and quantum chemistry[13–16]. In the

recent decade, there has been a renaissance of interest in the RPA correlation energy in

quantum chemistry because of its good description of van der Waals interaction[16], the

correct dissociation limit of H2[17] and its perspective of the adiabatic connection in density-

functional theory (DFT)[16]. These features have motivated the development of efficient

implementations, leading to relatively low scaling algorithms (O(N4 logN) by Eshuis et

al.[18] and O(N4) by Ren et al.[19] with N the number of basis functions). Correlation

energy studies beyond RPA is an active field of research that achieves exciting results[20–

26].

Recently, van Aggelen et al.[27] established an adiabatic connection for the exchange-

correlation energy in terms of the dynamic paring matrix fluctuation, parallel to the adiabatic

connection fluctuation dissipation (ACFD) theorem in terms of the density fluctuation[5,

28]. Like the ACFD theorem, this adiabatic connection is in principle exact, but requires

the particle-particle propagator as a function of the interaction strength. The particle-

particle channel of random phase approximation (pp-RPA) is the first-order approximation

to the paring matrix fluctuation. The first applications of the pp-RPA correlation energies

to molecular systems provide promising results in describing systems with both fractional

charge and fractional spin.[27] The RPA usually applied in quantum chemistry describes

exclusively the particle-hole channel of correlations. To distinguish the two RPAs of different

channels, we will, hereafter, refer to the conventional particle-hole RPA as ph-RPA. In

nuclear physics, pp-RPA[7, 8, 29–37], also known as Brueckner’s theory[38–41], is also widely

discussed. In chemistry, however, the pp-RPA has only been used in computational study

of Auger spectroscopy which involves double ionization of molecules[42, 43]. After finishing

the development of Ref. [27] and this subsequent work, we became aware of an independent

development by Scuseria et al.[44] that follows the same line of thought.

In the diagrammatic language extensively used in many-body perturbation-theory

(MBPT), the ph-RPA correlation energy is the sum of all ring diagrams[7, 45]. Based on
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the same diagrammatic arguments, ph-RPA has been identified as a subset of the coupled-

cluster doubles (CCD) equations, i.e. accounting only for the ring summation terms[46].

Despite the well-known equivalence between the ph-RPA correlation energy and summation

of all ring diagrams and the direct ring-CCD, the mathematical connection between the

linear ph-RPA equation and the quadratic equation in direct ring-CCD has only recently

been presented by Scuseria et al.[47], while ideas can be traced back to work done forty

years before.[48] On the other hand, the pp-RPA correlation energy can be interpreted as

the sum of all ladder diagrams[7]. As the sum of all ladder diagrams, the pp-RPA has

also been referred to as the “ladder approximation” in the literature. Again, considering

the diagrams involved, Čížek identified the sum of all ladder diagrams as a subset of CCD,

which might be called ladder-CCD[46]. The pp-RPA wavefunction of an exponential form

is textbook knowledge[8] with the argument of Thouless theorem[9] under the quasi-boson

approximation. However, the authors are not aware of any explicit demonstration of the

equivalence of the linear form of the pp-RPA equation and the quadratic ladder-CCD equa-

tion . The purpose of this paper is, following Ref. [47], to establish this connection between

the two sets of seemingly distinct equations. The establishment of this connection might

shed light on the relationship between Green’s function based methods such as RPA and

the coupled-cluster theory, an insight from which both fields could benefit. Furthermore, it

is the authors’ hope that the insight gained from linking Green’s functions, coupled-cluster

and density functional theory provides new stimulus to develop novel density functional

approximations. Furthermore, the coupled-cluster connection opens up an direct way to ob-

tain molecular properties from a virtual orbital dependent density functional.In the coupled

cluster framework, the pp-RPA based excited states can straightforwardly be obtained via

equation-of-motion coupled-cluster[49–52] or, equivalently, linear-response coupled-cluster

theory[53, 54].

II. THE PP-RPA EQUATION AND ITS STABILITY

The pp-RPA equation can be derived from the two-particle Green’s function, the

equation-of-motion ansatz, or the linear-response time-dependent Hartree-Fock-Bogoliubov

approximation (TDHFB)[7, 8, 27, 33]. The resulting generalized eigenvalue equation is

very similar to the ph-RPA equation (see, for example, Ref. [7, 8, 16, 47] for the ph-RPA
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equation),  A B

B† C

 xn

yn

 = ωn

 I 0

0 −I

 xn

yn

 , (1)

where

Aab,cd = (εc + εd − 2ν)δacδbd + 〈ab||cd〉, (2)

Cij,kl = −(εk + εl − 2ν)δkiδjl + 〈ij||kl〉, (3)

and

Bab,ij = 〈ab||ij〉. (4)

We use indexes i, j, k, l . . . for occupied spin orbitals (holes), a, b, c, d . . . for unoccupied

spin orbitals (particles), and u, v, s, t . . . for general spin orbitals. Furthermore, m, n are

used to denote eigenvector and eigenvalue indexes. Additionally, εu is the molecular orbital

eigenvalue, and 〈uv||st〉 is the antisymmetrized two-electron integral

〈uv||st〉 = 〈uv|st〉 − 〈uv|ts〉, (5)

where

〈uv|st〉 =
∑
σ1σ2

ˆ
dr1dr2

φ∗u(r1σ1)φ
∗
v(r2σ2)φs(r1σ1)φt(r2σ2)

|r1 − r2|
. (6)

(this is not true; when deriving the pp-RPA with a HF reference, you assume by definition

a fixed electron number state, so the chemical potential is not stricly necessary; including

it just guarantees some nice properties, like pos-definiteness. The role of the chemical

potential is very similar in all derivations, EOM, TDHFB or GF.) . In practice, it is usually

approximated to be half of HOMO (highest occupied molecular orbital) and LUMO (lowest

unoccupied molecular orbital) eigenvalues[27]. We will later show that the exact choice of

the chemical potential is unimportant within a certain range as long as the pp-RPA equation

is stable.

The indexes of the matrix are either hole pairs or particle pairs. These indexes have only

i > j for hole pairs and a > b for particle pairs to eliminate the redundancy. The number

of particle (hole) pairs is

Npp(hh) =
1

2
Nvir(occ)(Nvir(occ) − 1), (7)

where Nvir(occ) is the number of virtual (occupied) orbitals. In general, Npp is much larger

than Nhh. The dimension of the upper left (lower right) identity matrix in Eq. (1) is the
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same dimension of A (C). For the rest of the paper, the dimensions of identity matrices

will be omitted as they are clear from the context. The difference of the dimensions of A

and C makes the solution of the pp-RPA equation quite different from that of the usual ph-

RPA equation or the linear-response time-dependent density-functional theory equation[55].

Nevertheless, Eq. 1 shares many conceptually similar properties to the ph-RPA equation as

discussed in Ref. [10].

For simplicity, we use a compact matrix notation

Mzn = ωnWzn, (8)

to denote Eq. (1), where M is the Hermitian matrix on the left hand side

M =

 A B

B† C

 , (9)

W is the non-positive definite metric

W =

 I 0

0 −I

 , (10)

and zn is the full eigenvector

zn =

 xn

yn

 , (11)

with its eigenvalue ωn. Due to the non-positive definite metric W, Eq. (1) is not guaranteed

to have all real eigenvalues. We call z†nWzn the signature of an eigenvector zn. The signature

can be positive, zero, or negative. The zero signature coincides with an imaginary eigenvalue

(see Subsection A1 in Appendix), while positive and negative signatures are associated

with real eigenvalues. We categorize the eigenvectors according to their signature, where

eigenvectors with positive signatures are called N + 2 excitations and eigenvectors with

negative signatures are called N−2 excitations. For a diagonalizable pp-RPA equation with

all real eigenvalues, according to Subsection A2 in Appendix, the orthonormalization of the

eigenvectors can be written as,

Z†WZ = W, (12)

with all N+2 eigenvectors to the left of all N−2 eigenvectors in Z. This special arrangement

will be kept all through the paper.
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When all the eigenvalues of a diagonalizable pp-RPA equation are real, the pp-RPA

equation is defined to be stable if all the N + 2 excitation eigenvalues are positive and N −2

excitation eigenvalues are negative, i.e. minn ω
N+2
n > 0 > maxm ω

N−2
m . With the eigenvector

arrangement according to signatures, the stability condition can be expressed in a concise

equation,

sign(ω) = W, (13)

where sign(ω) is the sign function[56] of the eigenvalue matrix ω, which gives [sign(ω)]nm =

δnmsign(ωn) since ω is diagonal. Note that Eq. (12) is a necessary but not sufficient condition

for the stability of Eq. (13).

These eigenvalues are interpreted as the double ionization and double electron attachment

energies in a molecular system, i.e.

ωN+2
n = EN+2

n − EN
0 − 2ν, (14)

are the N + 2 excitation energies, and

ωN−2n = EN
0 − EN−2

n − 2ν, (15)

the N − 2 excitation energies. With the eigenvalue interpretation of Eqs. (14)-(15), an

unstable pp-RPA equation violates the energetic convexity condition[57]. It has not been

proved that such stability is intrinsic for a self-consistent solution of a Hartree-Fock or

Kohn-Sham/generalized Kohn-Sham molecular system, but in practice unstable solutions

have never been encountered for molecular systems so far in Ref.[27] and in present work.

The stability condition of the pp-RPA equation is equivalent to the positive definiteness of

the matrix M. See Subsection A3 in Appendix for further details. The positive definiteness

as the stability criterion has been used in Ref. [7].

With the whole spectrum of a stable pp-RPA equation, the pp-RPA correlation energy

can be expressed in several equivalent ways[27] (you should refer to the literature here and

to our paper, which has derivations in the appendix, because you give no derivations. I don’t

like to point out mistakes in other people’s documents, and I would just refer to our paper

without mentioning the mistake in Blaizot and Ripka, but that’s my personal opinion).[77]

Epp-RPA
c =

∑
m

ωN+2
m − TrA = −

∑
n

ωN−2n − TrC =
1

2

∑
n

|ωn| −
1

2
TrM. (16)
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The precise value of ν is irrelevant for the correlation energy since it cancels out in the

expression, Eq. 16, as long as

min
m

(EN+2
m − EN

0 ) > 2ν > max
n

(EN
0 − EN−2

n ),

such that the N + 2 eigenvalues are positive and the N − 2 eigenvalues are negative. A

proper chemical potential also categorizes M to be positive definite, an equivalent condition

of the stability (see Subsection A3 in Appendix for details).

III. PROOF OF THE EQUIVALENCE OF PP-RPA AND LADDER-CCD

The CCD ansatz, the simplest method in the coupled cluster family, expresses the wave-

function as

|CCD〉 = eT̂2|Φ0〉, (17)

where |Φ0〉 is a single Slater determinant, and T̂2 is the two-body cluster operator

T̂2 =
1

2!

∑
ijab

tabij â
†îb̂†ĵ =

i>j,a>b∑
ijab

tabij â
†îb̂†ĵ, (18)

where â†, î are the creation and annihilation operators for spin orbital a and i, respectively

and tabij the double excitation amplitudes, having the symmetry

tabij = −tabji = −tbaij = tbaji . (19)

The correlation energy is expressed in terms of the amplitudes through the energy equa-

tion

ECCD
c =

i>j,a>b∑
ijab

〈ij||ab〉tabij , (20)

while the amplitudes tabij are solved for by the CCD amplitude equation,

(εi + εj − εa − εb)tabij = 〈ab||ij〉+
1

2

∑
cd

〈ab||cd〉tcdij +
1

2

∑
kl

〈ij||kl〉tabkl

−
∑
kc

(〈bk||cj〉tacik − 〈bk||ci〉tacjk − 〈ak||cj〉tbcik + 〈ak||ci〉tbcjk)

+
∑
klcd

〈kl||cd〉[1
4
tcdij t

ab
kl −

1

2
(tacij t

bd
kl + tbdij t

ac
kl )−

1

2
(tabik t

cd
jl + tcdikt

ab
jl ) + (tacik t

bd
jl + tbdikt

ac
jl )].

(21)
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Refer to Ref. [52] for details of the CCD equations.

By allowing only particle-hole summations in Eq. (21), Scuseria et al.[47] have shown

that the amplitude equation reduces to the ph-RPA equation with exchange, i.e., the time-

dependent Hartree-Fock (TDHF) equation. Further eliminating the exchange term in the

two-electron integral yields the conventional direct ph-RPA. Similarly, if we allow only sum-

mations of particle pairs and hole pairs, Eq. (21) becomes∑
kl

(εk + εl)t
ab
klδkiδjl −

∑
cd

(εc + εd)t
cd
ij δacδbd

=〈ab||ij〉+
1

2

∑
cd

〈ab||cd〉tcdij +
1

2

∑
kl

〈ij||kl〉tabkl +
1

4

∑
kl,cd

tabkl 〈kl||cd〉tcdij . (22)

We refer to this restricted CCD as ladder-CCD, due to their inclusion of only ladder dia-

grams in the correlation energy. By utilizing the antisymmetry of the two-electron integrals

〈uv||st〉 = −〈uv||ts〉, Eq. (22) can be rearranged as

c>d∑
cd

Aab,cdt
cd
ij +

k>l∑
kl

Cij,klt
ab
kl +Bab,ij +

k>l,c>d∑
kl,cd

tabklB
∗
cd,klt

cd
ij = 0, (23)

with A, B, and C defined in Eqs. (2)-(4). Denoting the amplitude as a matrix Tab,ij = tabij ,

Eq. (23) results in an algebraic matrix equation

AT + TC + B + TB†T = 0. (24)

Now, we will show that the pp-RPA equation of Eq. (1) is equivalent to the ladder-CCD

amplitude equation under the assumption that the pp-RPA equation is stable.

The pp-RPA equation for only the N + 2 excitations reads, A B

B† C

 X

Y

 =

 I 0

0 −I

 X

Y

ωN+2, (25)

where dimX = Np × Np, dimY = Nh × Np, and dimωN+2 = Np × Np. Multiplying X−1

from the right on Eq. (25) gives A B

B† C

 I

T̃†

 =

 I 0

0 −I

 I

T̃†

R, (26)

where

T̃ = (YX−1)†, (27)
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and

R = XωN+2X−1. (28)

The invertibility of X is guaranteed by a stable pp-RPA equation. See Subsection A4 in

Appendix for the detailed proof. Multiplying [T̃† 1] from the left to Eq. (26) results in

T̃†A + T̃†BT̃† + B† + CT̃† = 0. (29)

Comparing Eq. (24) and Eq. (29), we infer that T = T̃.

The particle-particle block of Eq. (26) gives

A + BT† = R. (30)

Then, the ladder-CCD correlation energy of Eq. (20) can be expressed as

Eladder−CCD
c = Tr(B†T) = [Tr(R−A)]∗ =

∑
m

ωN+2
m − TrA, (31)

which is identical to the pp-RPA correlation energy in Eq. (16). From Eqs. (22)-(24), it is

also clear that the chemical potential has no contribution because they cancel each other in

the CCD equations through AT + TC.

Alternatively, one can also derive the equivalence using the N − 2 excitation eigenvectors

with similar techniques. The resulting amplitude will be the same, while the correlation

energy expression will be the second equation in Eq. (16). An alternative proof of equivalence

can also be formulated using a Schur decomposition in analogy to Appendix 5 in Ref. [47].

In conclusion, the correlation energy from pp-RPA is equivalent to that of ladder-CCD,

assuming that the pp-RPA equation is stable. The exponential wavefunction of Eq. (17)

with exponent of Eq. (27) has been proposed in Ref. [8], together with a similar form for

ph-RPA, however without exploring their connection to the form of truncated CCD.

IV. NUMERICAL DEMONSTRATIONS

All coupled cluster and second-order Møller–Plesset perturbation theory (MP2) compu-

tations reported herein are performed in a locally modified version of CFOUR[58], while

pp-RPA is performed with QM4D[59].

Concerning the algorithm, truncating the CCD equations to include only the ladder

diagrams (Eq. (22)) can be seen as a small modification of the CCD equations or a small

9



extension of the linearized CCD, also known as CEPA(0) or D-MBPT(∞)[52], amplitude

equations. Note that the computationally most expensive term of coupled-cluster singles

and doubles (CCSD), scaling as N2
occN

4
vir, is the major part of the term quadratic in the

amplitudes of Eq. (22). In terms of efficiency, the matrix multiplications necessary for

solving the non-linear system of equations in standard coupled cluster algorithms are traded

against the diagonalization in the pp-RPA algorithm, which, at the non-optimized stage

of the code,[59] is significantly slower than solving the non-linear equations. However, the

diagonalization has the indisputable advantage that the solution is unique, whereas the non-

linear coupled cluster equations have multiple minima (most of them lacking any physical

meaning), without an a priori guarantee or check that the “correct” solution is found.[52]

All computations are carried out in the unrestricted Hartree-Fock (UHF) framework, but

without breaking space symmetry. The correlation consistent basis sets of Dunning and

coworkers[60, 61] have been applied with cartesian d- and f- atomic-orbitals. The ladder-

CCD amplitudes are found to converge essentially as fast (or with a couple of iterations less)

than the corresponding CCSD equations.

All total energies of ladder-CCD and pp-RPA (see Table I) agree exceedingly well, the

largest difference being 10−5 Hartree, which is on the same order of magnitude as the dif-

ference in nuclear repulsion energy between the two programs and can have its origin in,

e.g., integral screening (SCF and CC iteration convergence has been checked carefully). In

terms of correlation energy, ladder-CCD captures between 43% (Be) to 80% (Ne) of CCSD,

while the full CCD energy recovers about 99%. Note that MP2 has min and max values of

70% and 99% for the same systems. Furthermore, changing to a DFT reference leads to an

increased (in absolute terms) correlation energy, with min/max values reaching 51(54)% and

92 (95)% for B3LYP[62, 63] (PBE[64]) orbitals. It is important to point out that the present

pp-RPA@DFT is not equivalent to ladder-CCD with a DFT reference when following the

usual practice in the coupled cluster community[65, 66]. For pp-RPA@DFT, the molecular

orbital energies are the eigenvalues of the Kohn-Sham Hamiltonian. However, the use of

DFT orbitals in coupled cluster computations is considered as a “non-HF” reference wave

function, for which the one-particle Hamiltonian is not diagonal and the corresponding terms

are accounted for, yielding results that are much closer to HF based computations.[67, 68]
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Table I: Total energies of various methods. Geometries are taken from the G3 set[69, 70].

The basis set is cc-pVTZ, except for benzene where cc-pVDZ is applied. All energies are in

Hartree.

HF pp-RPA@HF ladder-CCD pp-RPA@PBE pp-RPA@B3LYP MP2 CCD CCSD

He -2.861154 -2.885608 -2.885608 -2.889343 -2.888504 -2.894441 -2.900328 -2.900351

Li -7.432706 -7.443903 -7.443903 -7.444664 -7.444450 -7.446781 -7.449184 -7.449243

Be -14.572875 -14.598923 -14.598923 -14.605231 -14.603533 -14.614751 -14.632242 -14.632817

B -24.532104 -24.566435 -24.566436 -24.575674 -24.573063 -24.584950 -24.604746 -24.605490

C -37.691663 -37.746778 -37.746778 -37.760145 -37.756583 -37.769564 -37.789208 -37.789809

N -54.400883 -54.482916 -54.482916 -54.500883 -54.496235 -54.509992 -54.525553 -54.525893

O -74.811910 -74.933839 -74.933839 -74.959853 -74.953384 -74.969918 -74.985506 -74.986128

F -99.405657 -99.576884 -99.576884 -99.611587 -99.603292 -99.622736 -99.633484 -99.634177

Ne -128.532010 -128.760771 -128.760771 -128.804849 -128.794546 -128.816523 -128.817814 -128.818536

CH4 -40.213408 -40.372051 -40.372054 -40.411910 -40.402169 -40.432266 -40.452031 -40.452991

H2O -76.056687 -76.266046 -76.266049 -76.318304 -76.305731 -76.336459 -76.340863 -76.342084

NH3 -56.217964 -56.404439 -56.404440 -56.452289 -56.440556 -56.471921 -56.483441 -56.484474

CH2O -113.910280 -114.227562 -114.227552 -114.313824 -114.293495 -114.341669 -114.347547 -114.351726

C6H6 -230.722701 -231.315273 -231.315273 -231.508132 -231.460711 -231.540504 -231.571751 -231.577366

As a graphical illustration, Figure 1a shows the case of a dissociating cationic dimer

(Ne+2 ), a typical probe for (de)localization error. We are using a spatial symmetry (D∞h)

preserving unrestricted HF reference wave function for Ne+2 . Again, the total energies

of ladder-CCD and pp-RPA are identical to numerical precision (considering the two very

different algorithms and programs), but not in very good agreement with CCSD. To further

investigate the (de)localization error[71], Figure 1b shows the binding energy with respect

to the separated fragments. The binding energy of ladder-CCD is in fairly good agreement

with CCSD and only a small “bump” is observed somewhere between 3 and 4 Å, revealing

that the missing absolute correlation energies in ladder-CCD compared to CCSD are almost

irrelevant for the binding energy. The localization error of HF is over-corrected by MP2, but

increasing the correlation treatment to the coupled cluster level improves the dissociation
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Table II: Atomization energies (in kcal mol-1) of various methods. Geometries are taken

from the G3 set[69, 70]. Experimental atomization energies are taken from Ref. [73–76].

The basis set is cc-pVTZ. The mean absolute deviation (MAD) is with respect to

experimental data.

HF pp-RPA@HF ladder-CCD pp-RPA@PBE pp-RPA@B3LYP MP2 CCD CCSD Exp.

CH4 327.9 392.8 392.8 410.7 406.4 416.3 416.4 416.6 419.2

H2O 153.8 208.7 208.7 225.8 221.7 230.3 223.2 223.6 232.2

NH3 199.3 264.9 264.9 284.5 279.8 290.2 287.7 288.1 297.5

CH2O 255.5 343.5 343.5 373.5 366.8 378.1 359.7 361.6 373.6

MAD 96.5 28.2 28.2 7.0 12.0 4.2 8.9 8.2 –

limit further, leading to the previously reported[27] negligible fractional charge error. Note

that the ground state of Ne+2 is indeed 2Σg, as compared to F+
2 the ground state of which

is 2Πg[72]. The influence of references with different symmetries (and therefore possibly

spin-contamination) will be investigated in further studies.

Similarly to the binding energy of Ne+2 , the atomization energies (Table II) illustrate that

the correlation energy missing in ladder-CCD largely cancels out when computing reaction

energies. For the four molecules considered, ladder-CCD provides 77% on of the correc-

tion between the HF and CCSD atomization energies on average. This is to be compared

with MP2 which recovers on average 107%. However, the mean absolute deviation for pp-

RPA@PBE compared to the experimental values is substantially better, having the same

level of accuracy of CCSD. In summary, the numerical analysis shows that ladder-CCD and

pp-RPA are equivalent and that pp-RPA covers a substantial amount of correlation energy

that is relevant for atomization energies of typical small molecules in Table II. An effi-

cient pp-RPA implementation has, therefore, the potential to become a valuable electronic

structure theory.
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Figure 1: The potential energy surface (a) and the binding curve (b) of Ne+2 of various

methods with basis set aug-cc-pVTZ. The total energies of pp-RPA are substantially

overestimated (a), since the correlation energy of the ladder diagrams is not very well

balanced (MP2 total energies are, on the scale of the figure, indistinguishable from CCD,

and pp-RPA is correct through second order[27]). However, the binding energy (b) reveals

that the missing correlation energy cancels almost perfectly out, yielding a pp-RPA

binding energy curve very close to CCD, while MP2 deviates from CCSD in the other

direction (overbinding).

13



V. CONCLUSIONS

The connection between the linear pp-RPA equation and the quadratic ladder-CCD equa-

tion has been established and numerically verified. The numerical assessment suggests that

pp-RPA is fairly accurate for some reaction energies, despite its incomplete diagram sum-

mation. This mathematical connection is helpful in understanding the relationship between

Green’s function based and the coupled-cluster methods. The ladder-CCD perspective of

the pp-RPA makes the study of its ground and excited state properties straightforward.
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Appendix A: Mathematical analysis of the pp-RPA equation

The appendix discusses many mathematical properties of the pp-RPA equation. These

properties are conceptually very similar to those of ph-RPA equation as shown in Ref. [10].

1. The zero signature of an eigenvector with an imaginary eigenvalue

For an eigenvalue ωn and eigenvector zn, we have

Mzn = ωnWzn. (A1)

The Hermitian conjugate of Eq. (A1) becomes

z†nM = ω∗nz
†
nW. (A2)

Multiplying z†n to the left of Eq. (A1) and zn to the right of Eq. (A2), we have

z†nMzn = ωnz
†
nWzn = ω∗nz

†
nWzn.

Therefore

(ωn − ω∗n)(z†nWzn) = 0. (A3)

For an imaginary eigenvalue ωn 6= ω∗n, the signature z†nWzn = 0.

2. The orthonormalization of eigenvectors with all real eigenvalues

Using the same approach in Subsection A1 in Appendix but with two different eigenvalues

and eigenvectors, we have

z†nMzm = ωmz
†
nWzm = ω∗nz

†
nWzm,

and

(ωm − ω∗n)(z†nWzm) = 0. (A4)

Therefore, when two real eigenvalues are different (ωm 6= ω∗n), the two eigenvectors are

orthogonal under the metric W (z†nWzm = 0). Since linear combination of eigenvectors

of a degenerate eigenvalue stays in the same eigenspace, we can choose the eigenvectors

of a degenerate eigenvalue to orthogonal to each other within the eigenspace. When all

19



eigenvalues are real, eigenvectors can, therefore, be chosen to be orthogonalized under the

metric W. For a diagonalizable pp-RPA equation with all real eigenvalues, z†nWzn should

not be zero, otherwise we have z†nWZ = 0, which indicates the eigenvector matrix is rank-

deficit, which contradicts with the diagonalizability assumption. Therefore, the signatures of

eigenvectors are all nonzero for a diagonalizable pp-RPA equation with all real eigenvalues.

The resulting orthonormalization can be written as

Z†WZ = Λ, (A5)

where Λ is a diagonal matrix with only ±1 diagonal elements. According to Sylvester’s law

of inertia[? ], W and Λ share the same number of +1’s and −1’s. In another word, there

are Npp N + 2 excitations and Nhh N − 2 excitations, according to the definition of N ± 2

excitations in Sec. III. We can further arrange the eigenvectors such that eigenvectors with

positive signatures stay in the left of Z, then finally we reach the normalization condition

Z†WZ = W. (A6)

3. The equivalence between stability and positive definiteness of M

First we show that the stability condition of Eq. (13) leads to the positive definiteness

of M.

From the stability of the pp-RPA equation (Eq. (13)) and the normalization (Eq. (12)),

we have

c†Mc =
∑
mn

(zmcm)†M(zncn)

=
∑
mn

c∗mz
†
mωnWzncn

=
∑
n

c∗mδmnWmnωncn

=
∑
mn

c∗m|ωm|δmncn

=
∑
m

|cm|2|ωm| > 0,

with an arbitrary nonzero column vector c. Thus, M is positive definite for a pp-RPA

equation.
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Next, we show that the reverse is also true.

Given that M is positive definite, the pp-RPA equation in the compact form reads

Mzn = ωnWzn. (A7)

Since M is positive definite, Eq. (8) could be rewritten as

L†zn = ωnL
−1W

(
L−1

)†
L†zn,

where M = LL† is the Cholesky decomposition. With z̃n = L†zn and W̃ = L−1W (L−1)
†
,

then the eigenvalue problem

W̃z̃n = ω̃nz̃n (A8)

is diagonalizable with all real eigenvalues, since W̃† = W̃ by definition. Additionally,

all eigenvalues of W̃, ω̃n’s, will be nonzero, since zero eigenvalue indicates det(W̃) = 0

which contradicts the definition of W̃. With orthonormalization of the eigenvectors z̃†nz̃m =

δnm|ω̃n|−1, Eq. (8) can be diagonalized with real eigenvalues

ωn = ω̃−1n , (A9)

and eigenvector orthonormalization with the eigenvalue sign constraints (the eigenvectors

are arranged in the same way as in Subsection A2 in Appendix),

z†nWzm = δmnsign(ωm) = Wnm. (A10)

Eq. (A10) guarantees that the minn ω
N+2
n > 0 > maxm ω

N−2
m . Therefore, by definition,

this pp-RPA equation is stable since all the eigenvalues are real and the N + 2 and N − 2

excitation spectra are nicely separated.

In summary, the stability condition of an pp-RPA equation is equivalent to the positive

definiteness of M.

4. The invertibility of X for a stable pp-RPA equation

We now prove the invertibility of X in Sec. IV. According to Subsection A2 in Appendix,

the eigenvalues of a stable pp-RPA equation are orthonormalized according to

Z†WZ = W. (A11)
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For only N + 2 excitation vectors,

Z†N+2WZN+2 = I, (A12)

where

ZN+2 =

 X

Y

 ,
with X and Y the particle-particle and hole-hole block of the N + 2 excitation eigenvector

matrices. Expanding Eq. (A12), we have

X†X−Y†Y = I. (A13)

Therefore, X†X = I + Y†Y is positive definite, and X is invertible, otherwise X†X will not

be positive definite.
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