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ABSTRACT 
 
The current development in medical chemistry requires extended research to explore new 

chemical space leading to innovative active molecules. The concept of privileged structures, proposed 

by Evans in which the biological activity of synthetic benzodiazepines as cholecystokinin antagonists 

is discussed, is a valuable starting point. The wide range of biological activities displayed by 

benzodiazepine derivatives make these scaffolds one of the most important scaffolds for drug 

discovery. However, the modified ring systems (especially the N-analogues replacing the phenyl ring 

by a pyridine ring) are only scarcely studied. Some heterocycle-fused diazepine derivatives, such as 

the pyridodiazepines, were only rarely synthetized, but show potentially new pharmacological 

activity.            

 This PhD research is part of an IWT-SBO project funded by the agency for Innovation by 

Science and Technology, Flanders (2010-2014). The aim of this PhD study focused on the 

development of synthetic methods in order to explore the chemical space for broad screening 

programs against different targets (kinases, autoimmunity and invasive cancer, viruses, …) as well as 

for testing in phenotypic assays. The desired new compounds were selected from rarely described 

libraries of scaffolds. One of this unexplored class are pyridoxazepines. The synthetic methods were 

designed and elaborated. The synthesis of those scaffolds is very demanding, which proves the 

unnoticeable presence in the scientific literature. Nevertheless, the synthesis of these heterocyclic 

structures was successful for pyrido[4,3-b][1,4]oxazepines and pyrido[2,3-b][1,4]oxazepines, the 

desired pyrido[3,4-b][1,4]oxazepines scaffold could not be obtained. The synthesis of the 

pyridoxazepine scaffold includes the formation of an ether bond between hydroxynitropyridines and 

selected alcohols via Mitsunobu reaction or chloronitropyridine and alcohols via nucleophilic aromatic 

substitution. Reduction of the nitro group and intramolecular cyclization leads to the desired bicyclic 

molecules. Also the synthesis of six-membered rings fused to pyridine was developed. This synthesis 

provides a method to obtain pyrido[2,3-d]pyrimidines with two identical or two different groups 

attached to nitrogen.  

The selected compounds were evaluated as potentially active agents against NPP1 (nucleotide 

pyrophosphatase phosphodiesterase 1) and of Gram-positive (Staphylococcus aureus and Bacillus 

subtilis) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains. Although, 

the selected molecules were not active or slightly active, the ADME properties for the library  

of pyrido[2,3-d]pyrimidines and their precursors were performed in collaboration with the group of 

Prof. Patrick Augustijns (KULeuven) in order to obtain information for fragment based drug design. 

The biopharmaceutical profiling of a selection of pyrido[2,3-d]pyrimidines and their precursors 

reveals a broad range of structure-dependent solubility, permeability and hepatic metabolism values.  

90% Of the investigated compounds showed acceptable drug-like properties. 
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1. Introduction and goals 
 

Natural products play an important role in drug discovery and chemical biology.[1] Every year,  

the number of approved drugs based on natural products, is growing.[2][3] The current development of 

biology requires extended research, leading the search for new natural products-like small molecules. 

In order to introduce a strategy for the construction of natural product-like libraries, it can be valuable 

to use the concept of privileged structures, proposed by Evans et al. in which he discussed  

the biological activities of synthetic benzodiazepines as cholecystokinin antagonists. This concept 

describes the selection of structural classes that bind to multiple, unrelated protein receptors as high 

affinity ligands.[3][4] The tendencies of privileged structures to exhibit binding affinity toward various 

receptors and enzymes has made them attractive scaffolds for drug discovery. The utility of this 

approach is evident by the numerous libraries which are designed and constructed on such scaffolds.[5] 

In this regard the benzazepine- or benzodiazepine-structure is a widely explored scaffold. 

The wide range of biological activities displayed by benzodiazepine derived compounds make 

benzodiazepine scaffolds, particularly the 1,4-benzodiazepine system, one of the most important 

structures for drug discovery. Benzodiazepines act by facilitating the binding of the inhibitory 

neurotransmitter GABA at various GABA receptors throughout the central nervous system.  

Changes in GABA transmission contribute to the etiology of several prominent neurological and 

mental disorders including epilepsy, anxiety, Angelman’s syndrome and schizophrenia.  

Therefore, modulation of their expression, cellular distribution, and function has profound 

consequences for neural excitability under both physiological and pathophysiological conditions.[6] 

Benzodiazepines were developed in response to the need for safe and effective anxiolytics. Classical 

1,4-benzodiazepines such as diazepam display a wide variety of behavioral effects, and they are 

clinically used as anticonvulsants, sedatives/hypnotics, anxiolytics,[7] muscle relaxants and 

preanesthetics. Benzodiazepines exert their action by interacting with several GABAA receptor 

subtypes with different pharmacological characteristics.[8][9] The majority of the pentametric GABAA 

receptors are believed to be composed of α, β, and γ subunits in the ratio of 2:2:1, respectively.  

The benzodiazepine binding site is located at the interface between α and γ subunits, and its 

pharmacology is thus influenced by both α and γ subunits. Most classical benzodiazepines bind to 

αβγ2 receptors containing α1, α2, α3, or α5 subunits with approximately the same affinity.  

The insensitivity of α4 and α6 subunit-containing receptors to benzodiazepines is based on the 

presence of an arginine instead of a histidine residue at a conserved position in the benzodiazepine 

binding site. Anxiolytic activity of benzodiazepines is mediated by the interaction with α2-containing 

αβγ2 receptors, especially in the amygdala and hippocampus, whereas some anxiolytic activity  

is probably mediated by α3-containing receptors. Muscle relaxant activity of benzodiazepines  

is mediated partially by each of the αβγ2 receptor subtypes containing α1, α2, α3, or α5 subunits.  

In addition, hippocampal extrasynaptic α5-containing receptors are involved in learning and memory 
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processes.[6][10] Several 1,4-benzodiazepine derivatives have also demonstrated activity as antitumor 

and anti-HIV agents. A lot of efforts have been made to discover new synthetic routes to access this 

type of skeleton. Although, the modified ring systems (specially the N-analogues replacing the phenyl 

ring by a pyridine ring) is only scarcely studied. Some of heterocycle-fused diazepine derivatives, 

such as the pyridodiazepines, were synthetized and show potentially new pharmacological activity.[6] 

Pyridodiazepine activity in the central nervous system control is comparable to that of the well- 

known benzo-condensed analogues.[7] The pyridodiazepine derivatives are as intermediates in the 

preparation of anti HIV-1 substances,[11][12] antihistamines agents,[9][11][12] D1 receptor subtype of 

dopamine[13], analogues of galantamine[14][15] or they are known as A3 adenosine receptor antagonists 

which is implicated in a variety of important physiopathological processes.[16] 

This PhD research focuses on the development of synthetic methods in order to explore  

the chemical space for broad screening programs against different targets (kinases, autoimmunity and 

invasive cancer, viruses, …) as well as for testing in phenotypic assays, in particular on the synthesis 

of bicyclic heteroarmatic structures as central scaffold. These compounds can be considered as lead 

compounds. To design the desired new molecules, several factors should be taken into consideration. 

The Lipinski rule of five can give some directions to predict whether a compound will be more 

permeable for membranes or can be easily absorbed by the body. In view of this rule, the designed 

compounds are relevant candidates. Since, the flat shape and aromaticity can cause low solubility and 

in fact lower permeability, which can be an issue in the ADME study, we focused on linking a non-

aromatic ring to an aromatic one which may overcome these problems. The described aromatic rings 

can be decorated in several ways. The structures of the desired new compounds were selected from 

very rarely described scaffolds as checked by a SciFinder search. As mentioned above, pyridine 

derivatives of benzodiazepines are not widely described in the scientific literature. From the 

knowledge of the rarely described/synthesized library of pyridine derivatives, three pyridoxazepines 

were selected (Figure 1).  

 

N

O

N

N

N

O

N O
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A B C 
 

Figure 1 A: pyrido[3,4-b][1,4]oxazepines, B: pyrido[4,3-b][1,4]oxazepines,  
C: pyrido[2,3-b][1,4]oxazepines. 

 

These scaffolds have been described, mainly in tricyclic systems, having a second aromatic ring fused 

to the seven-membered ring. In the scientific literature (no patents included, except for the synthesis of 

pyrido[2,3-b][1,4]oxazepines), only ten articles mention the synthesis of pyridoxazepines (four of the 

pyrido[3,4]oxazepines and six of the pyrido[2,3]oxazepines). That makes this unit an interesting target 

to further develop in synthetic organic chemistry.  
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This work will be divided in four parts. In the first part, we will focus on possible pathways for 

the synthesis of pyrido[3,4-b][1,4]oxazepines A, pyrido[4,3-b][1,4]oxazepines B,  

pyrido[2,3-b][1,4]oxazepines C, and on the exploration of the saturated seven-membered ring in 

pyrido[2,3-b][1,4]oxazepines. The general strategy for the synthesis of those compounds involves  

a fusion of an oxazepine ring to the preformed pyridine ring (Scheme 1).  
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Scheme 1 Retrosynthesis of pyrido[3,4-b][1,4]oxazepines A (X=CH, Y=N, Z=CH),  
pyrido[4,3-b][1,4]oxazepines B (X=N, Y=CH, Z=CH ) and pyrido[2,3-b][1,4]oxazepines C  

(X=CH, Y=CH, Z=N); R1=OH, Cl; R2= OH, Cl; R3= Me, Et. 
 

Because of the commercial availability of chloronitropyridines and hydroxynitropyridines, these 

compounds were chosen as starting materials for the synthesis of pyrido[4,3-b][1,4]oxazepines or 

pyrido[2,3-b][1,4]oxazepines. The most important part in this synthesis is the creation of the ether 

bond at C2 in the pyridine ring. Three options were considered. The ether bond can be created by 

aromatic nucleophilic substitution of chlorine in the chloropyridine (R1=Cl, R2=OH), by Mitsunobu 

reaction starting form hydroxypyridine and an alcohol (R1=OH, R2=OH) using TPP and DEAD/DIAD 

and in the third option the hydroxyl group in C2 of the pyridine ring can be alkylated (R1=OH, 

R2=Cl). In the next step the nitro group will be reduced to the corresponding amine using the common 

reducing agents (Pd/C, H2; Fe; Zn). The ring closure will be performed by creation of an amide bond 

using strong base to activate the amine group. Because 3-hydroxy-4-nitropyridine is not commercially 

available, the synthesis of pyrido[3,4-b][1,4]oxazepines starts from 3-hydroxypyridine or  

3-bromopyridine as a precursor of 3-substituted-4-nitropyridine.     

 Next, the synthesis of eight- or nine-membered rings fused to the pyridine ring, by atom 

transfer radical addition (ATRA), known as the Kharasch reaction will be discussed (Scheme 2).  

The nine- and ten-membered ring including an ester moiety F, can be generated by a metathesis 

reaction (Scheme 3).  
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Scheme 2 Retrosynthetic scheme for the formation of nine- or eight-membered rings  
by Kharasch reaction, R=Me, Bn; R1=Bn. 
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Scheme 3 Retrosynthetic scheme for the formation nine- and ten-membered ring  
generated in the metathesis reaction, R=Bn, Ts. 

 

In the study of the pyrido[2,3-d]pyrimidine, the synthesis of  pyrido[2,3-d]pyrimidines with two 

identical groups attached to nitrogens G and  pyrido[2,3-d]pyrimidines with two different groups 

attached to nitrogens H will be presented (Scheme 4). In the literature eight synthesis methods of 

pyrido[2,3-d]pyrimidine are described.  Most of those utilize expensive reagents, toxic chemicals, 

apply harsh reaction conditions or have a low yield of desired product. The investigated synthesis 

pathway starts from 2-chloropyridine-3-carboxylic acid. Through ester formation and reaction with 

alkyl/aromatic amines, the pyrido[2,3-d]pyrimidines G and H could be synthesized. 
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Scheme 4 Retrosynthetic scheme for the formation of pyrido[2,3-d]pyrimidine, R=CH2CHCH2; R
1=alkyl, 

aromatic; compound 14 and H: R1=cyclohexyl, t-octyl, R2=allyl, propyl, i-pentyl. 

 

Finally, the results of the biological investigations of pyrido[3,4-b][1,4]oxazepines, 

pyrido[4,3-b][1,4]oxazepines, pyrido[2,3-b][1,4]oxazepines and pyrido[2,3-d]pyrimidine  

as potentially active agents against NPP1 (nucleotide pyrophosphatase phosphodiesterase 1) and of 
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Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and 

Klebsiella pneumoniae) strains and  the ADME properties for the library of pyrido[2,3-d]pyrimidines 

and their precursors will be described in this thesis. 
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2. Literature overview 
 

In this chapter, a literature overview on the published synthesis of pyrido[2,3]oxazepines and 

pyrido[3,4]oxazepines will be presented. Furthermore, the synthesis of the pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-diones will be discussed. 

 

2.1.  Synthesis of pyrido[2,3]oxazepines 

 

Pyrido[2,3]oxazepines have 20 possible isomeric structures, up to now only six have been 

synthesized (Figure 1).  
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Figure 1 

 
 

2.1.1. Pyrido[2,3-b][1,4]oxazepines 

 

In the literature only two synthesis of pyrido[2,3-b][1,4]oxazepines are described. In 2004, 

Sher and Ellsworth[17] published a patent, in which they described the synthesis of  

pyrido[2,3-b][1,4]oxazepines. Starting from 2-chloro-3-nitropyridine and N-(tert-butoxycarbonyl)-L-

serine in N,N-dimethylformamide (DMF) the 2-tert-butoxycarbonylamino-3-(3-nitro-pyridin-2-

yloxy)propionic acid 1 was obtained in 75% yield. After reduction of the nitro group the 

corresponding amine was separated by preparative HPLC and the product 2 was obtained as  

a trifluoroacetic acid salt. For the ring closure, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC), 1-hydroxy-azabenzotriazole (HOAt) and diisopropylethylamine (DIPEA) in THF were used 

((iii), Scheme 1). The pyrido[2,3-b][1,4]oxazepines trifluoroacetic acid salt 3 was obtained in 31% 

yield. In order to remove the Boc group from the amine, 3 was stirred in a solution of hydrogen 

chloride in dioxane for 16 hours. 
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Scheme 1 Synthesis of pyrido[2,3-b][1,4]oxazepines described by Sher and Ellsworth.  

Reaction condition: (i) NaH, DMF, -20°C→0°C (1h)→-20°C (1h); (ii) Pd/C, H2, MeOH, rt (6h);  
(iii) EDC, HOAt, DIPEA, THF, rt (17h); (iv) HCl in dioxane, CH2Cl2, rt (16h). 

 

In 2012, Liu et al. described the synthesis of pyrido[2,3-b][1,4]oxazepines in the palladium-catalyzed 

tandem reaction of 2-hydroxy-3-aminopyridine, 1-(2-bromoethynyl)benzene and tert-butylisocyanide 

(Scheme 2).[18] 
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Scheme 2 Synthesis of pyrido[2,3-b][1,4]oxazepines presented by Liu et al.[18]  

The reaction conditions: Pd(PPh3)2Cl2, TPP, Cs2CO3, 1,4-dioxane, 80°C. 

 

The mechanism of this reaction is depicted in Scheme 3. Initially the nucleophilic addition of  

2-hydroxy-3-aminopyridine to 1-(2-bromoethynyl)benzene gave an intermediate 6, which after 

oxidative addition with a Pd(0) species generates a vinyl palladium species A. Subsequent migratory 

insertion of tert-butylisocyanide results in the formation of intermediate B, which in the presence of 

base eliminates hydrogen bromide to generate the eight-membered intermediate C. In the last step, 

reductive elimination affords 5, regenerating the Pd(0) catalyst.  
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Scheme 3 Proposed mechanism by Liu et al.[18] 

 
 

2.1.2. Pyrido[3,2-d][1,3]oxazepines 

 

The synthesis of pyrido[3,2-d][1,3]oxazepines was reported by Donati et al., the desired 

scaffold was obtained as one of the many end products of the reaction of  

2-methyloxazolo[5,4-b]pyridine with vinyl ethyl ether (Scheme 4).[19] After the reaction, they 

observed five different compounds 8-12 in the mixture, but after chromatographic separation the 

compounds 13-17 were detected. The reaction proceeded via attack of vinyl ethyl ether at the position 

7a in the oxazolopyridine, which causes the ring opening of the oxazole and the formation of 12.  

The separation on the silica gel promoted the rearrangement of 12 to the 2-hydroxyindole 17  

(Scheme 5). 
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Scheme 4 Complex mixture after photocycloaddition of vinyl ethyl ether to compound 7  
(detected compounds 8-12). The silica gel promoted rearrangement to compounds 13-17. 
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Scheme 5 Proposed mechanism of formation of compound 17 via ring opening and ring closing reactions. 

 
 

2.1.3. Pyrido[2,3-b][1,5]oxazepines 

 

Only two methods to synthesize pyrido[2,3-b][1,5]oxazepines have been published, via an 

intramolecular nucleophilic aromatic substitution or an intramolecular cyclization and ring opening.  

Natsugari et al. have synthesized pyrido[2,3-b][1,5]oxazepines, as tachykinin NK1-receptor 

antagonists (Scheme 6).[20] Commercially available acetophenones 19 were condensed with 

ethyl cyanoacetate, followed by reaction with N,N-dimethylformamide dimethyl acetal or 

N,N-dimethylacetamide dimethyl acetal to the enamines 21. The reaction of 21 with anhydrous HCl 

caused the formation of the pyridine ring 22, next the ester group was removed by hydrolysis 

affording the free acid 23. The acid chlorides of 23 were reacted with  

N-3,5-[bis(trifluoromethyl)benzyl]aminoethanol 26, which was prepared by the nucleophilic 

substitution of mesylated 3,5-bis(trifluoromethyl)benzyl alcohol 25 by 2-aminoethanol. Intramolecular 
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cyclization of 27 led to the formation of pyrido[2,3-b][1,5]oxazepine 28 existed in two stable 

atropisomers (28A and 28B).  
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Scheme 6 Synthesis of pyrido[2,3-b][1,5]oxazepines. Reaction conditions: (i) ethyl cyanoacetate, NH4OAc, 
AcOH, benzene, ∆, 10h; (ii) N,N-dimethylformamide dimethyl acetal or N,N-dimethylacetamide dimethyl 

acetal, rt; (iii) 4N HCl/EtOAc, rt, 30min; (iv) 4N NaOH/EtOH:1/1, ∆, 4h; (v) a) SOCl2, cat. DMF, THF, ∆, 4h, 
b) 26, rt, 2h; (vi) MsCl, Et3N, THF, rt, 30min; (vii) 2-aminoethanol, THF, rt, 1h; (viii) NaH, THF, ∆, 2h. 

 

Cale et al. have developed the synthesis of pyrido[2,3-b][1,5]oxazepines as a synthesis of new 

H1 histamine antagonists. They proposed three different synthesis pathways (Scheme 7).[21] Route A 

employs a cyclization to a seven-membered lactam by reaction of the chloropyridinecarboxylic acid 

with 1-amino-4-(dimethylamino)-2-butanol. The ring opening of3-benzyl-5-[2-(dimethylamino)ethyl]-

2-oxazolidinone 29 via hydrolysis and deprotection resulted in the free amine 31. The amide 

formation was achieved by coupling of a free amino group 31 with 2-chloropyridine-3-carboxylic acid 

by DCC, followed by the intramolecular cyclization via nucleophilic aromatic substitution of the 

chlorine atom leading to the desired pyrido[2,3-b][1,5]oxazepine 36. The synthesis of an analogue 

with a shorter chloroalkyl side chain is presented by route C. The ring opening of epichlorohydrin 37 

is carried out with dimethylamine. The bicyclic 36 was achieved through the amide formation and the 

ring closure by nucleophilic aromatic substitution. The route B started by nucleophilic aromatic 

substitution of the chlorine atom in 2-chloronicotinic acid by 1-methyl-3-pyrrolidinol 33. The sodium 

salt of the acid 34 was treated with hydrogen chloride gas to form the hydrochloride salt 35. The acid 

chloride was synthesized by the Appel reaction. The resulting rearrangement was effected by heat or 

by the addition of an organic base. The pyrrolidine nitrogen was involved in an intramolecular 

cyclization to the intermediate A, in which the pyrrolidine ring is opened by the attack of the chloride 

anion on the closest carbon connected to the ammonium nitrogen in an eight-memberd ring.  
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The obtained pyrido[2,3-b][1,5]oxazepines were converted to the thioamides by treatment with the 

phosphorus pentasulfide or Lawesson’s reagent. 
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Scheme 7 Synthesis of pyrido[2,3-b][1,5]oxazepines. Reaction conditions: (i) NaOH, EtOH/H2O, reflux, 3h; (ii) 
Pd(OH)2/C, H2 40 psi, 65°C, 4h; (iii) 1-hydroxybenzotriazole, DCC, CH2Cl2, rt, 72h; (iv) KH, THF, reflux, 4h; 

(v) NaH, DMSO, 60°C, 1h30min, N2; (vi) a) HClgas, b) TPP, CCl4, ∆, 4h, c) EtOH, rt, 1h; (vii) (CH3)2NH, rt, 2d; 
(viii) (CH3)2NH, 5°C, 2h; (ix) a) (CH3)2NH, MeOH, 5°C, 2h, b) CH3NH2, 5°C, 1h; (x) DCC, MeCN/H2O, rt, 

overnight; (xi) NaH, toluene, reflux, 20min. 

 

The optically pure isomers of some of the most potent compounds have also been synthesized 

(Scheme 8).[22] The synthesis started by the ring closure of R-malic acid 41 with methylamine.  

After reduction with red-Al and treatment with a tartrate salt, the enantiomerically pure R- or S-1-

methyl-3-pyrrolidinol 43 was obtained. The remainder of the synthesis, which is the same as discussed 

in route B, was accomplished while retaining the chirality of the starting compound in the end 

products. The synthesis presented in Scheme 8 for the R-isomer was also applied for the S-isomer.  
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Scheme 8 Synthesis of pyrido[2,3-b][1,5]oxazepines. Reaction conditions: (i) CH3NH2, ∆, 30min; (ii) red-Al, 
THF, ∆, 1h; (iii) a) 2-chloronicotinic acid, NaH, THF, ∆, 2h30, b) CH3SO3H, TPP, CCl4, CH2Cl2, ∆, 4h, c) Et3N, 

P2S5, CH3CN, ∆, 2h30. 
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The use of 2-(hydroxymethyl)-1-methylpyrrolidine and 1-methyl-3-piperidinol led to the tricyclic 

compound 48 (Scheme 9), by N-demethylation. The desired bicyclic compound 47 was not obtained 

or detected in the reaction mixture. 
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Scheme 9 Formation of tricyclic compound 48. Reaction conditions: (i) a) 2-
(hydroxymethyl)-1-methylpyrrolidine, NaH, DMF, 60°C, 1h30, b) SOCl2, ∆, 2h, c) Et3N, rt, o.n. 

 

The synthesis of the pyridoxazepinone described by Dow et al.[23] starts from the amide bond 

formation by 2,4-dichloro-3-pyridinecarbonyl chloride and amine 49. After removal of protecting 

group of an alcohol, and cyclization, the mixture of compounds 51 and 52 was obtained. The free 

amine group in 53 and 54 was introduced by condensation with 4-methoxybenzylamine followed by 

deprotection. Compound 51 was obtained in 55% yield, while compound 52 in 23% yield  

(Scheme 10). 
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Scheme 10 Synthesis of pyridoxazepinones 53 and 54. The reactions conditions: (i) Et3N, THF, 0°C; (ii) a) 

MeOH, HClaq, 25°C b) Cs2CO3, MeCN, reflux; (iii) a) 4-methoxybenzylamine, Et3N, DMA, sealed tube, 140°C, 
b) TFA, 50°C, c) LiOH, H2O, p-dioxane. 

 
 
 



RESULT AND DISCUSSION 
 

21 

2.1.4.  Pyrido[3,2-b][1,4]oxazepines 

 

Bonsignore et al. used 2-amino-3-hydroxypyridine and carbon suboxide to synthesize the 

pyrido[3,2-b][1,4]oxazepine 55 which exist in the corresponding tautomeric forms (Scheme 11).[24] 

This is the only published method for pyrido[3,2-b][1,4]oxazepines. 
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Scheme 11 Synthesis of pyrido[3,2-b][1,4]oxazepine 55.  
Reaction conditions: (i) C3O2, Et2O, -5°C (24h)→rt (48h) or C3O2, rt (6 days). 

 
 

2.1.5. Pyrido[2,3-e][1,4]oxazepines 

 

Only two methods to synthesize pyrido[2,3-e][1,4]oxazepines have been published, either via 

pyridyne formation or an intramolecular inverse electron-demand Diels Alder reaction. 

Saito et al. have synthesized the pyrido[2,3-e][1,4]oxazepines 58 using 1-methyl-2-oxazolidinone 

57 (Scheme 12), via a pyridyne intermediate.[25]  
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Scheme 12 Synthesis of pyrido[2,3-e][1,4]oxazepines 58. Reaction conditions: (i) CsF, rt, 1h. 

 

The pyrido[2,3-e][1,4]oxazepine 67 can be synthesized via an intramolecular inverse electron-demand 

Diels Alder reaction and subsequent nitrogen gas release (Scheme 13).[26] 
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Scheme 13 Synthesis of pyrido[2,3-e][1,4]oxazepine 67. Reaction conditions: (i) NaOAc.3H2O, H2O, ∆, 45min 

(crude); (ii) NaHCO3, 0°C, 12h; (iii) methyl iodide; (iv) 2-(prop-2-yn-1-yloxy)ethanamine, benzene, ∆, 4d;  
(v) Ph2O, 230°C, 1d. 

 

2.1.6. Pyrido[2,3-f][1,4]oxazepines 

 

Pyrido[2,3-f][1,4]oxazepines could be synthesized via a domino ring 

opening/carboxamidation reaction of acyclic N-tosyl aziridines with 2-iodo-3-pyridinol 68 under 

phase transfer catalysis, as reported by Alper et al. (Scheme 14) and is the only published synthesis 

for pyrido[2,3-f][1,4]oxazepines.[27]  
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Scheme 14 Synthesis of pyrido[2,3-f][1,4]oxazepine 69. Reaction conditions: (i) I2, Na2CO3, H2O, rt, 30h;  
(ii) N-tosyl aziridine, Pd(PPh3)2Cl2, TPP, K2CO3, TEBA, CO, 30 bar, THF, 130°C, 48h. 

 

The possible mechanism of this reaction is shown in Scheme 15. The base-catalyzed ring opening of 

the N-tosyl aziridines 70 with 2-iodo-3-pyridinol 68 under phase transfer catalysis (PTC) generated 

the amine 71. The oxidative addition of 71 to the in situ generated Pd0 species led to the formation of 

palladium complex A. The insertion of carbon monoxide into the aryl carbon-palladium bond of A 

afforded B, and the nucleophilic attack of the protected amine on an aroyl-palladium complex B give 

an eight-membered intermediate C. This intermediate underwent the reductive elimination to afford 

the pyrido[2,3-f][1,4]oxazepine 69 with regeneration of palladium(0). 
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Scheme 15 Proposed reaction mechanism for the synthesis of the pyrido[2,3-f][1,4]oxazepine 69. 

 

2.2.  Synthesis of pyrido[3,4]oxazepines 
 

The bicyclic pyridines which contain oxygen in the fused ring are not well-explored as compared 

to the bicyclic pyridines which contain nitrogen in the fused ring. From the possible 20 structures of 

pyrido[3,4]oxazepines, only 4 have been reported (Figure 2). 
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Figure 2 The structures of pyrido[3,4]oxazepine describes in the literature. 

 
 

2.2.1. Pyrido[4,3-e][1,4]oxazepines 

 

In 1927, Koenigs and Kantowitz obtained N-[2,6-dimethyl-pyridyl-4]-glucin-3-acid  

(4-[(carboxymethyl)amino]-2,6-dimethylnicotic acid cyclic anhydride) 73 in the reaction of 
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aminoacetonitrile 72 and chlorolutidinecarboxylic acid (Scheme 16).[28] Nearly fifty years later, 

Yurugi et al. used the ethyl ester of chlorolutidinecarboxylic acid and N-substituted ethanolamine 74 

to obtain the cyclized pyrido[4,3-e][1,4]oxazepine 75 (Scheme 17).[29] 
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Scheme 16 Formation of cyclic anhydride 73. Reaction conditions: (i) NaOH, EtOH, H2O, 150°C. 
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Scheme 17 Synthesis of pyrido-[4,3-e][1,4]oxazepine 75. 

 

Nishiwaki et al. introduced a new method for the synthesis of the pyrido[4,3-e][1,4]oxazepine 

79 (Scheme 18).[30] The method is based on the synthesis of the pyridine 78 from nitropyrimidinone 

76 with enaminone ester 77. The nitropyrimidinone 76 is known as an excellent substrate for ring 

transformations and behaves as a synthetic equivalent of activated diformylamine to give 

azaheterocyclic compounds upon treatment with dinucleophilic reagents. An intramolecular 

nucleophilic addition of the alcohol function of 78 across the ester moiety on the pyridine ring in the 

presence of sodium hydride provided the desired pyrido[4,3-e][1,4]oxazepine 79.  
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Scheme 18 Synthesis of bicyclic pyridine 79. Reaction conditions: (i) MeOH, ∆, 1d (80%);  
(ii) NaH, THF, ∆, 1d (quant.). 
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The potential mechanism for the synthesis of the pyridine 78R is illustrated in Scheme 19.  

The enamine ester 77R attacks the 6-position of the nitropyrimidinone 76 and forms intermediate 80. 

The tautomeric enamine 80B leads to an intramolecular cyclization to the bicyclic intermediate 81, 

from which the pyridine 78R can be obtained by the elimination of nitroacetamide 82. 
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Scheme 19 Potential mechanism of the formation pyridine 78R. 

 

The coupling reaction of the 1-methyl-2-oxazolidone with pyridynes proceed to the  

pyrido[4,3-e][1,4]oxazepine 84 in the presence of CsF at room temperature. The pyridynes with 

substituents in the positions 2 or 2 and 6 gave bicyclic pyridines in 51 and 52 % yield, respectively 

(Scheme 20).[25] 
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Scheme 20 Synthesis of pyrido-[4,3-e][1,4]-oxazepine 84. Reaction conditions: (i) CsF, rt, 1h. 

 

2.2.2. Pyrido[4,3-f][1,4]oxazepines 

 

The pyrido[4,3-f][1,4]oxazepine scaffold can be obtain by an intramolecular cyclization and 

ring opening (Scheme 21) or from pyridoxamine (Scheme 22). The first pyrido[4,3-f][1,4]oxazepine 

87 was synthesized by Cale et al. (Scheme 21).[21] The same synthesis route has also been used to 

obtain the pyrido[2,3-b][1,5]oxazepines 36 (Scheme 7) and the pyrido[3,4-f][1,4]oxazepines 95 

(Scheme 23). The starting salts 86, required for the rearrangement to 87 were prepared from the  
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3-chloro-4-pyridinecarbonitrile. The synthesis of the pyridine 87 was conducted in three steps. In the 

first step the cyanide 85 was converted to the corresponding salt using potassium hydroxide, then the 

same salt was suspended in chloroform and the hydrogen chloride gas was introduced to form  

a tertiary ammonium salt. In the last step a chlorinating reagent was added to afford compound 86. 

The best method to obtain the acid chloride involved triphenylphosphine (TPP) and carbon 

tetrachloride.  
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Scheme 21 Synthesis of pyrido[4,3-f][1,4]oxazepine 87. Reaction conditions: (i) NaH, 1-methyl-3-pyrrolidinol, 

DMSO, 60°C, 1h30, N2; (ii) a) KOH, t-BuOH, rt, 88h, b) HCl-gas, CHCl3, c) TPP, CCl4, ∆, 7h. 
 

In 1990, Ueda et al. reported the synthesis of the pyrido[4,3-f][1,4]oxazepine (Scheme 22).[31]  

The reaction of the pyridoxamine 88 with acryloyl chloride or crotonoyl chloride gave  

4-(N-alkenoylaminomethyl)-3-hydroxy-2-methyl-5-(hydroxymethyl)pyridine 89. The cyclization with 

phenylselenenyl chloride in acetonitrile in the presence of triflic acid and water, provides the 

pyrido[4,3-f][1,4]oxazepin-3-one 90. Deselenization of 90 was unsuccessful and led to the ring 

opening to 91. 
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Scheme 22 Synthesis of pyridine 91 through bicyclic pyridine 90.  
Reaction conditions: (i) acryloyl chloride, 30% NaOH, rt, 1h; (ii) PhSeCl, TfOH:H2O 1:5, MeCN, ∆, 40min;  

(iii) NiCl 2
.H2O, NaBH4, MeOH:THF 1:9, rt, 5min. 

 

2.2.3. Pyrido[3,4-f][1,4]oxazepines 

 

The method reported by Cale et al.[21] to synthesize the pyrido[2,3-b][1,5]oxazepines 36 

(Scheme 7) and the pyrido[4,3-f][1,4]oxazepines 87 (Scheme 21) can also be used for the synthesis of 

pyrido[3,4-f][1,4]oxazepine 95 (Scheme 23). 
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Scheme 23 Synthesis of pyrido[3,4-f][1,4]oxazepine 95. Reaction conditions: (i) NaH, 1-methyl-3-pyrrolidinol, 
DMSO, 60°C, 1h30, N2; (ii) a) HCl-gas, b) TPP, CCl4, ∆, 4h, c) EtOH, rt, 1h; (iii) CH3NH2, rt, 2d. 

 

2.2.4. Pyrido[3,4-e][1,4]oxazepines 

 

The only one reported synthesis of the pyrido[3,4-e][1,4]oxazepine is presented by Saito et al. 

(Scheme 24).[25] They prepared the desired pyridooxazepine 97 from 5-methoxy-4-triethylsilyl-3-

trifluoromethanesulfonyloxypyridine 96 and 1-methyl-2-oxazolidone 57. This is the same method that 

was used for the synthesis of the pyrido[2,3-e][1,4]oxazepines (Scheme 12) and the  

pyrido[4,3-e][1,4]oxazepines (Scheme 20). 
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Scheme 24 Reaction conditions: (i) CsF, rt, 1h. 

 

2.3. Synthesis of pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones  

 

Pyridines and pyrimidines have proven to be interesting subjects of research due to diverse 

pharmacological activities. They possess wide a range of pharmacological activities e.g. antibacterial 

(antibacterial agents of the nalidixic type), antitumor, antihypertensive, cardiotonic, bronchodilator, 

vasodilator, antialergic, antimalarial, analgestic, antifungal and CNS depressant properties.[32] 

Compounds containing those two rings, pyrido[2,3-d]pyriminides also exhibit a variety of promising 

pharmacological activities, such as: dihydrofolate reductase inhibition, diarrhea treatment, cyclin 

dependent kinase 4 inhibition and K562 cells apoptose inhibition. Compounds having pyrido[2,3-

d]pyrimidines as a central core unit have been identified as a new class of fibroblast growth factor 

receptor (FGFR3) tyrosine kinase inhibitors.[33] Some pyrido[2,3-d]pyrimidines were found as the 

main metabolites of flupyrsulfon in soil.[34] 
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Scheme 25 Possible pathways to obtain the pyrido[2,3-d]pyrimidine scaffold, R=H, CH3. 

 

Various methods are known for the synthesis of pyrido[2,3-d]pyrimidine-2,4(1H,3H )-diones  

(Scheme 25): starting from 6-aminouracil[35] or 6-amino-1,3-dimethyluracil as the most convenient 

starting material, via condensation with α,β-unsaturated carbonyl compounds,[36] the reaction with 

Mannich bases,[37] the reaction with nitriles,[38] the condensation reaction of 6-amino-1,3-

dimethyuracil with a dicarbonyl compound and an aldehyde in acidic conditions[39]. A three 

component condensation reaction between 6-amino-1,3-dimethyluracil, an aldehyde, and a nitrile 

(route a).[40] Cyclization to the desired pyrido[2,3-d]pyrimidine can be performed using palladium 

compound like PdCl2-CuCl-O2 complex[41] and PdCl2, Pd(OAc)2,
[42] Pd[43] or non-palladium 

compounds like TiCl4
[44]. Some different synthetic methods with uracil derivatives provide the 

pyrido[2,3-d]pyrimidine.[45] Reaction of pyrido[2,3-d]pyrimidine-2,4,7(1H,3H,8H)-trione with POCl3 

leads to the desired pyrido[2,3-d]pyrimidine (route g),[46] and starting from isoxazolo[3,4-d]pyrimidine 

in the reaction with cyanoolefins in the presence of triethylamine (Et3N) as a catalyst (route d),[47] 

arylidene derivatives of barbituric acids (route c),[48] pyrano[2,3-d]pyrimidine in reaction with 

ammonia (route h),[49] hydrolysis of pyridodipyrimidine (route b),[50] pyrimidotriazine with dienophiles 

(route e)[51] and pyridine-3-caboxylic acid derivatives (route f)[52]-[60].    

 Because of the performed investigations on the synthesis of the pyrido[2,3-d]pyrimidine 

scaffold in this thesis, the synthesis methods based on pyridine derivatives will be explored.  

 To synthesize pyrido[2,3-d]pyrimidine, 2-aminopyridine-3-carboxylic acid is the most popular 

starting material (Scheme 26). 2-Aminopyridine-3-carboxylic acid can react as a ester or free acid 

with isocyanates to provide the desired scaffold (route A, Scheme 26).[53] The mechanism of the 

reaction between 2-aminopyridine-3-carboxylic acid and isocyanate is presented in Scheme 27.  

The isocyanate is generated in situ from potassium cyanate and acetic acid. If substituted isocyanate 
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reacts with the ester of 2-aminopyridine-3-carboxylic acid, the alcohol is formed as a side product 

(route B, Scheme 27). 
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Scheme 26 The 2-aminopyridine-3-carboxylic acid as starting material for the synthesis  

of pyrido[2,3-d]pyrimidine. 

 

The reaction of the potassium salt of 2-aminopyridine-3-carboxylic acid 102 with  

N-aryldithiocarbamate under reflux in the presence of mercury(II) oxide (HgO) in DMF, lead to the 

pyrido[2,3-d]pyrimidine after acidic hydrolysis of the 2-thioxo group.[54] As well the reaction of  

2-amino-nicotinamide 103 with a carbonyl donor species (oxalyl chloride,[55] triethyl orthoacetate,[56] 

1,1´-carbonyldiimidazole[57] are used to obtain the desired scaffold.  

 

A

K OCN + AcOH

NH C O

-AcO K

N

OH

O

NH2 N

OH

O

NH

NH2O

N N
H

NH

O

O

-H2O

 

B   

N

OR1

O

NH2

NR2 C O+
N

OR1

O

NH

NHO

N N
H

N

O

O
-R1OH

R2

R2

R1=H, Me
R2= H, CH2C6H4-OMe, C6H4-COOMe 

 
Scheme 27 Synthesis of the pyrido[2,3-d]pyrimidine through reaction of the free carboxylic acid (A)  

or the ester (B) with isocyanates. 
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In 1989, Monge et al. published the synthesis of pyrido[2,3-d]pyrimidine in three steps. The synthesis 

starts with the formation of methyl [(2-chloro-3-pyridinyl)carbonyl]-carbamimidothioate 104 from  

2-chloro-3-pyridinecarboxyl chloride and 2-methylisothiourea. The substituted isothiourea was used 

to avoid the substitution by sulfur at C2 (Scheme 28). The cyclization was performed by heating of 

104 in DMF. The compound 101 was obtained by heating compound 105 in acidic medium.[58]  
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Scheme 28 Formation of  pyrido[2,3-d]pyrimidine 101.  Reaction conditions: (i) 2-methylisothiourea, Et3N, 
pyridine, CHCl3, 0°C→rt, 15h; (ii) a) DMF, reflux, 15min, b) HCl in CHCl3, Et3N; (iii) HCl, reflux, 1h. 

 

The same method to obtain the pyrido[2,3-d]pyrimidine scaffold was used by Palop´s group.  

The 2-aminopyridine-3-carboxylic acid and urea were stirred at 210°C leading to the pyrido[2,3-

d]pyrimidin-2,4-diol 106 in 62% yield (Scheme 29).[59] 
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Scheme 29 Reaction conditions: (i) a) urea, 210°C, 15min, b) NaOHaq, heated. 
 

In 1968, Beckwith et al. described the synthesis of the pyrido[2,3-d]pyrimidine from  

2,3-pyridinedicarboxamide 107 in the reaction with lead tetraacetate (Pb(OAc)4) (Scheme 30).  

The reaction mechanism involves the formation of the isocyanate from the amide at C2 in the pyridine 

ring and the cyclization to pyridopyrimidine 101. The possible isomeric product was not detected.[60]  
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Scheme 30 Formation of the pyrido[2,3-d]pyrimidine 101.  
Reaction conditions: (i) DMF, Pb(OAc)4, 50-60°C, 20min. 
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3. Results and discussion 

 

3.1. Synthesis of pyrido[2,3-b][1,4]oxazepines 

 

3.1.1. Synthesis of 3,3-dimethyl-2,3-dihydropyrido[2,3-b][1,4]oxazepin-4(5H)one   

 

In 2008, Pauls et al. published the synthesis of the 3,3-dimethyl-2,3-dihydropyrido[3,2-

b][1,4]oxazepin-4(5)-one starting from 2-nitro-3-hydroxypyridine. In the Mitsunobu reaction,  

the 2-nitro-3-hydroxypyridine was coupled with methyl 2,2-dimethyl-3-hydroxypropionate to obtain 

methyl 2,2-dimethyl-3-(2-nitropyridin-3-yloxy)propionate 108. Then, the bicyclic 3,3-dimethyl-2,3-

dihydropyrido[3,2-b][1,4]oxazepin-4(5)-one 110 was formed through reduction of the nitro group  

by H2 and Pd/C and subsequent reaction of methyl 2,2-dimethyl-3-(2-aminopyridin-3-

yloxy)propionate 109 with sodium hydride (NaH) in DMSO (Scheme 31).[61]  
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Scheme 31 The synthetic route presented by Pauls et al.[61] Reaction condition: (i) methyl 2,2-dimethyl-3-
hydroxypropionate, TPP, DIAD, 1,4-dioxane, 0°C (5min) → rt (4h) → reflux (overnight), 61%; (ii) H2, Pd/C, 

MeOH, rt (overnight), 100%; (iii) NaH, DMSO, rt (overnight), 94%. 

 

To synthesize the pyrido[2,3-b][1,4]oxazepines, a similar synthetic route was followed.  

For the synthesis of methyl 2,2-dimethyl-3-(3-nitro-pyridin-2-yloxy)-propionate 111, 2-hydroxy-3-

nitropyridine and 2-chloro-3-nitropyridine was selected as starting materials. 
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Scheme 32 The synthesis of 3,3-dimethyl-2,3-dihydropyrido[2,3-b][1,4]oxazepin-4(5H)one 113. Reaction 
conditions: (i) methyl 2,2-dimethyl-3-hydroxypropionate, TPP, DIAD, 1,4-dioxane, 0°C (5min) → rt (4h) → 
reflux (o.n.), (ii) methyl 2,2-dimethyl-3-hydroxypropionate, KOH, K2CO3, TDA-1, toluene, rt (1h) or methyl 

2,2-dimethyl-3-hydroxypropionate, LiHMDS, DMF/THF, rt (19h); (iii) Fe, NH4Cl, MeOH/H2O, reflux (5h); (iv) 
NaH, DMSO, rt (18h). 
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Using the Mitsunobu reaction conditions, compound 111 was synthesized from 2-hydroxy-3-

nitropyridine and methyl 2,2-dimethyl-3-hydroxypropionate ((i), Scheme 32). Triphenylphosphine 

(TPP) and diisopropyl azodicarboxylate (DIAD) were the reagents of choice.[62]  2,2-Dimethyl-3-(3-

nitro-pyridin-2-yloxy)-propionate 111 was obtained in 40% yield after column chromatography. 

Because of the low yield of 111 after coupling under the Mitsunobu conditions, an alternative 

approach was followed, in which the 2-chloro-3-nitropyridine and methyl 2,2-dimethyl-3-

hydroxypropionate were coupled using tris(2-(2-methoxyethoxy)ethyl)amine (TDA-1)[63]  

or LiHMDS[64] ((ii), Scheme 32). Nucleophilic aromatic substitution of the chlorine atom in the 2-

chloro-3-nitropyridine by methyl 2,2-dimethyl-3-hydroxypropionate in the presence of KOH, K2CO3 

and TDA-1[65] gave pyridine 111 in 70% yield after column chromatography. When LiHMDS was 

applied as base, pyridine 111 was obtained in 50% yield after column chromatography. The 1H-NMR 

and 13C-NMR analyses of the products were compared to exclude the formation of N-product under 

the Mitsunobu reaction conditions. The products obtained by both methods showed the same shifts 

which proved the formation of O-alkylated product via Mitsunobu reaction.  

For the reduction of the nitro group, two methods were adopted. The reduction using 

tin(II)chloride (SnCl2) in ethanol under reflux for 26 hours, gave compound 112 in 80% yield.[66] 

Because of difficulties with the isolation of the product, a procedure using iron powder and 

ammonium chloride was applied ((iii), Scheme 32).[61] After 5 hours of reflux, the pure compound 112 

was isolated in 90% yield. For the final ring closure, NaH in DMSO at room temperature was used,[61] 

and 3,3-dimethyl-2,3-dihydropyrido[2,3-b][1,4]oxazepin-4(5H)one 113 was obtained in 90% yield as 

a white solid. 

 

3.1.2. Exploration of the ring 
 

After the successful synthesis of bicyclic scaffold 113, the following seven substrates were 

investigated (Figure 3).   
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Figure 3 The investigated substrates. 
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Ethyl (hydroxymethyl)carbamate 114 was synthesized from the corresponding urethane by base-

catalyzed condensation with formaldehyde[67] in 40% yield. Methyl 3-hydroxy-2-methylenepentanoate 

115 was synthesized by Baylis-Hillman reaction of propionaldehyde with methyl acrylate, catalyzed 

by 1,4-diazabicyclo[2.2.2]octane (DABCO) in 43% yield.[68] Ethyl 2-(hydroxymethyl)acrylate 116 

and ethyl 3-chloropropanoate 117 are commercially available. Dihydro-3-(1-hydroxyethyl)-2(3H)-

furanone 118 was synthesized as a mixture of isomers from the α-acetylbutyrolactone via reduction 

with sodium borohydride.[69] Methyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropionate 119 was 

synthesized by the esterification of 3-hydroxy-2-(hydroxymethyl)-2-methylpropionic acid with MeOH 

in the presence of a catalytic amount of H2SO4.
[70] Boc-protected serine 120a was obtained by the 

reaction of serine and di-t-butyl dicarbonate,[71] the methyl ester of Boc-protected serine 120b  

is commercially available. 

The strategy for the synthesis of compound 123 is shown in Scheme 33. Starting form  

2-hydroxy- or 2-chloro-3-nitropyridine and ethyl (hydroxymethyl)carbamate 114 under Mitsunobu 

reaction conditions or via nucleophilic aromatic substitution, product 121 could be obtained. After 

reduction of the nitro group and the cyclization, compound 123 can be synthetized.   
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Scheme 33 Retrosynthetic scheme for the formation of bicyclic compound 123. 
 

At first the Mitsunobu reaction conditions were chosen for the synthesis of 121. DIAD and TPP were 

used in 1,4-dioxane. After overnight reflux the desired product was isolated in 10% yield. The low 

yield is due to the difficult separation of the product and triphenylphosphine oxide (TPPO). As an 

alternative phosphorus compound, tributylphosphine (n-Bu3P) was selected. After reaction with  

n-Bu3P and diethyl azodicarboxylate (DEAD) in THF[72] or DME,[13] the product could be obtained in 

40-47% yield. However, NMR analysis (HMBC analysis) confirmed that the isolated compound is the 

N-substituted product 124 and not the O-substituted product 121.  
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Scheme 34 The synthesis of N-alkylated pyridinone 124. Reaction conditions: (i) ethyl 
(hydroxymethyl)carbamate 114, DIAD, TPP, 1,4-dioxane, reflux or DEAD, n-Bu3P, THF or DME, 40°C or rt. 

 



RESULT AND DISCUSSION 
 

34 

Due to the formation of N-substituted pyridinone 124 (Scheme 34), the 2-chloro-3-nitropyridine was 

used as the starting material to exclude the formation of the N-substituted product. Two different 

methods were investigated. After 1 hour stirring at room temperature of the mixture of 2-chloro-3-

nitropyridine and ethyl (hydroxymethyl)carbamate in the presence of KOH, K2CO3 and a catalytic 

amount of TDA-1,[65] only starting materials were detected by 1H-NMR. Also for the reaction with 

NaH in DMF at -20°C only starting materials were detected after 1 hour. The reason of non formation 

of the desired compound 121, could be a competition between of the formation of the anion of the 

hydroxyl group and the nitrogen of the carbamate.   

Because of the problems with formation of the O-alkylated product, a different substrate was 

selected to prepare structural derivatives, methyl 3-hydroxy-2-methylenepentanoate 115. A proposed 

pathway to the bicyclic compound is shown in Scheme 35. 
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Scheme 35 Retrosynthetic scheme for the formation of bicyclic compound 127. 

 

2-Hydroxy-3-nitropyridine and methyl 3-hydroxy-2-methylenepentanoate 115 were coupled under 

Mitsunobu reaction conditions. Two solvents were used, THF and 1,4-dioxane,[62] and DIAD and TPP 

were employed as the promoting agents to form the betaine. After reaction, a product was isolated in 

66% and 55% yield, respectively. The NMR analysis confirmed that the isolated compound is the  

N-substituted 2(1H)-pyridinone 128 (Scheme 36).   
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Scheme 36 The synthesis of N-alkylated pyridinone 128. Reaction conditions: (i) methyl 3-hydroxy-2-
methylenepentanoate, DIAD, TPP, THF/1,4-dioxane, rt/reflux. 

 

Due to the isolation of N-alkylated products in the reaction mixture, the equilibrium of  

2-hydroxy-3-nitropyridine with 3-nitro-2(1H)-pyridinone 129 (Scheme 37) is shifted to the right to the 

3-nitro-2(1H)-pyridinone.  
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Scheme 37 The equilibrium between 2-hydroxy-3-nitropyridine and 3-nitro-2(1H)-pyridinone. 

 

A good example to control the formation the O-alkylated product was reported by Hovinen.  

He performed the reaction between 2,6-di(pyridine-2-yl)pyridine-4(1H)-one with an alcohol under 

Mitsunobu conditions (DIAD and TPP). The steric hindrance at the C2 and C6 of the  

4(1H)-pyridinone causes the ether formation to be favorable instead of the N-alkylation (Scheme 

38).[74]  
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Scheme 38 O-alkylation of 2,6-di(pyridine-2-yl)pyridine-4(1H)-one under Mitsunobu conditions. 

 

It is not sure that the steric hindering group at C6 in 3-nitro-2(1H)-pyridinone will control the 

formation of the O-alkylated product. The steric hindrance of the alkylating agent can also have 

influence on the creation of the N-alkylated product. Comins and Jianhua used the Mitsunobu reaction 

as an alternative way for alkylation via silver salts.[73] In their investigations, THF or DME and  

α-benzylated alcohols were used at room temperature. O-alkylated products were obtained in high 

yields as a single product, no N-alkylated products were detected. In their case, steric hindrance and 

the solvent had a big influence for the direction of the alkylation. Ethyl (hydroxymethyl)carbamate 

114 is not sterically hindered and the 6 position in the pyridine ring is well accessible[75][82] which can 

decrease O-alkylation. N-Alkylation was favored even with DME as a solvent.[73] On the other hand 

methyl 3-hydroxy-2-methylenepentanoate 115 is more sterically demanding due to the ethyl group in 

α position to hydroxyl group and methylidene in β should lead to O-alkylation. The group of Charette 

proposed the mechanism of formation for γ-attack (Figure 4).[76][77]  
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Figure 4 
 

They performed several reactions under Mitsunobu conditions with various acids and solvents.  

In all reactions the major product was formed after attack of the nucleophile at the γ position. Using 
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stronger carboxylic acids the ratio of γ:α attack decreased. Increasing the steric bulk of the group in  

α position of the alcohol (change the ethyl group to i-propyl or t-butyl) not only suppressed the  

α-attack, but it also considerably slowed down the γ-attack process.[77]     

 The proposed mechanism of formation of compound 128 via the Mitsunobu reaction is 

presented in Scheme 39. DIAD and TPP create the betaine 130 which can deprotonate 3-nitro-2(1H)-

pyridinone 129. The positively charged phosphorous atom in adduct 130 is attacked by the lone pair 

of the hydroxyl group of 15 thereupon creating 131. After rearrangement, diisopropyl 

hydrazodicarboxylate 132 is removed and formed 133 is attacked by the pyridinone anion to produce 

128 after losing of triphenylphosphine oxide.  
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Scheme 39 The proposed mechanism for the synthesis of 128 via Mitsunobu reaction. 

 

A second proposed mechanism involves an aza-Michael reaction catalyzed by phosphine 

(Scheme 40). The TPP attacks at the β-position of the olefin, generating the reactive intermediate 134. 

The resulting anion 134 deprotonates the 3-nitro-2(1H)-pyridinone 129, and the addition to the  

β-position of another olefin creating anion 136. The formed 136 reacts with another 135 providing 

compound 137. During this reaction TPP and methyl 3-hydroxy-2-methylenepentanoate 115 are 

released. The methyl 2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-pent-2-enoate 128 is the result of  

the spontaneous elimination of H2O forming the double bond. 
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Scheme 40 The proposed mechanism for the synthesis of 128 via aza-Michael reaction catalyzed by 
triphenylphosphine. 

 

Another ester with a double bond was chosen to further explore the non-aromatic ring in 

pyrido[2,3-b][1,4]oxazepines. Ethyl 2-(hydroxylmethyl)acrylate 116 reacted with 2-hydroxy-3-

nitropyridine under Mitsunobu reaction conditions. Three different solvents were selected: DME,[73] 

1,4-dioxane[62] and THF. As a result only N-alkylated pyridinone 138 was isolated (Scheme 41).  

The O-alkylated product was not detected in the reaction mixture.  
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Scheme 41 The synthesis of N-alkylated pyridinone 138. Reactions conditions: (i) 116, TPP, DIAD, DME, rt 
(22h), 44% or 116, TPP, DIAD, dioxane, rt (4h)- reflux (17h), 85% or 116, TPP, DIAD, THF, rt (73h), 93%. 

 

Further, a different alkylating agent ethyl 3-chloropropanoate 117 was chosen.  

The strategy is shown in Scheme 42. 2-Hydroxy-3-nitropyridine reacted with 117 in the presence of 

Et3N in MeCN at room temperature for 48 hours.[78] The N-alkylated product 142 was isolated as 

yellow oil (Scheme 43). The O-alkylated pyridine 139 was not formed under that condition.  
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Scheme 42 Retrosynthetic scheme for the formation of bicyclic compound 141. 
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Scheme 43 The N-alkylation of 2-hydroxy-3-nitropyridine. Reaction conditions: (i) ethyl 3-chloro-propionate 
117, Et3N, MeCN, rt, 48h. 

 

In the literature, the aspect of tautomerism of 2-hydroxypyridine 143 with  

2-pyridinone 144 (Scheme 44) is known.[79]  
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Scheme 44 The tautomerism of 2-hydroxypyridine with 2-pyridinone. 

 

Since the positive charge prefers tetravalent nitrogen and negative charge prefers oxygen, the charge-

separated structure 144B, which is also associated with an aromatic sextet, makes a significant 

contribution to the overall structure of 2-pyridone. Polar solvents stabilize the polar tautomer. 

Substituents also influence the position of the equilibrium. Electron-donating substituents favor the 

pyridine 144 and electro-withdrawing substituents favor the hydroxypyridine 143. An electron-

withdrawing group adjacent to a ring nitrogen atom tends to decrease its basicity, and so a tautomer 

with a proton at that nitrogen atom is destabilized, and the equilibrium displaced towards the isomer. 

Substituents may also favor one tautomer by intramolecular hydrogen bonding. The tautomeric form 

129 of 2-hydroxy-3-nitropyridine is presented on Scheme 37.  

The tautomerism of 2-hydroxy-3-nitropyridine and N-alkylation was a research subject of 

many research groups.[73][80] O-alkylation can be favored using silver salts[81]. In 1967, Hopkins  

et. al.[82] published an article about the influence of cations and the alkylating agent on O-alkylation of 

2-pyridones (Scheme 45). According to this study the reaction with silver salts gave O-alkylated 

product as a major product or as the only product. During this investigation they found that silver salt 

alkylations were highly solvent sensitive and were observed in nonpolar solvents such as benzene, 

hexane and pentane. The procedure was applied for 3-nitro-2(1H)-pyridinone 129. The silver salt of  
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3-nitro-2(1H)-pyridinone was obtained by mixing 3-nitro-2(1H)-pyridinone 129 with silver(I) nitrate 

(AgNO3)
[83] in 89% yield or 3-nitro-2(1H)-pyridinone with silver(I) oxide (Ag2O). That prepared salt 

of 3-nitro-2(1H)-pyridinone was stirred at room temperature with ethyl 3-chloropropionate for 20-23 

hours. After removal of the precipitate by filtration and washing with MeCN, the solvent was 

removed, however the 1H-NMR analysis only showed ethyl 3-chloropropionate.   
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Scheme 45 The reaction of silver salt of 2-pyridones with alkylhalides.[79] 

 

The N-substituted pyridinones are very promising inhibitors for cysteine proteases[84] which 

mediate protein hydrolysis. The best characterized Plasmodium cysteine proteases are falcipains, 

which are papain enzymes. Falcipain-2 and falcipain -3 are major hemoglobinases of P. falciparum.[85] 

Structural and functional analysis of falcipains showed that they have unique domains including  

a refolding domain and a hemoglobin binding domain (Figure 5, Figure 6). Overall, the complex of 

falcipain-2 and falcipain-3 with small and macromolecular inhibitors provides structural insight to 

facilitate the design or modification of effective drug treatment against malaria.  

 

 
 

Figure 5 3D structure of falcipain-2-cystatin complex (falcipain-2 protease is green).[86] 
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Figure 6 Domains of falcipain-2. Prodomain is made up of cytoplasmic transmembrane, luminal and inhibitor 
domains. The mature domain has a refolding domain, hemoglobin (Hb) binding domain and catylytic triad 

residues (Cys, His, Asn).[86] 
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Figure 7 Structure of peptidomimetic template.[87] 

 

The key structural aspect of these inhibitors is a moiety containing the desired substituent at the P1 

position and the ester function, to allow subsequent chemical transformation  

(Figure 7).[87] 

The next four chains were selected as a potentially good reagents for formation of ether bond 

with 2-hydroxy-3-nitropyridine: dihydro-3-(1-hydroxyethyl)-2(3H)-furanone 118, methyl 3-hydroxy-

2-(hydroxymethyl)-2-methylpropanoate 119, 2-[(tert-butoxycarbonyl)amino]-3-hydroxypropionic acid 

120a and methyl 2-[(tert-butoxycarbonyl)amino]-3-hydroxypropionate 120b (Scheme 46).  
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Scheme 46 Unsuccessful formation of compounds 145-147. 
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The dihydro-3-(1-hydroxyethyl)-2(3H)-furanone 118 was synthesized from α-acetylbutyrolactone[69] 

as a mixture of isomers. Then, the Mitsunobu reaction conditions were applied. The dihydro-3-(1-

hydroxyethyl)-2(3H)-furanone 118 was treated with DIAD and TPP or tributylphosphine (n-Bu3P) in 

THF or 1,4-dioxane (Table 1). However, all attempts failed.   

 

Table 1: The conditions for reaction of 2-hydroxy-3-nitropyridine with dihydro-3-(1-hydroxyethyl)-
2(3H)-furanone 118. 
 

Entry Reagents Conditions and solvents Result 

1[62] 
2-hydroxy-3-nitropyridine (1eq),  

DIAD (1.1eq), TPP (1.1eq) 
rt (4h)→reflux (21h),  

1,4-dioxane 
NR 

2 
2-hydroxy-3-nitropyridine (1eq),  

DIAD (1.1eq), TPP (1.1eq) 
rt (98h), THF NR 

3[72] 
2-hydroxy-3-nitropyridine (1eq),  
DIAD (1.1eq), n-Bu3P (1.1eq) 

40°C (20h), THF NR 

 

Methyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate 119 was synthesized from  

3-hydroxy-2-(hydroxymethyl)-2-methylpropionic acid.[70] Table 2 present all reactions with methyl 3-

hydroxy-2-(hydroxymethyl)-2-methylpropanoate and 2-chloro-3-nitropyridine or  

2-hydroxy-3-nitropyridine. 

The reaction of 2-hydroxy-3-nitropyridine with methyl 2-[(tert-butoxycarbonyl)amino]-3-

hydroxypropionate 120b under Mitunobu reaction conditions (DIAD, TPP,  

1,4-dioxane) or 2-chloro-3-nitropyridine with 2-[(tert-butoxycarbonyl)amino]-3-hydroxypropionic 

acid 120a in dry DMF[93] failed.  
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Table 2: Reactions conditions for the potential synthesis of 146. 

 

Entry Reagents Conditions and solvents Result 

1[88] 
2-chloro-3-nitropyridine (1eq),  

LiHMDS (0.12eq) 
rt (21h), THF SM 

2[62] 
2-hydroxy-3-nitropyridine (1eq),  

DIAD (1.1eq), TPP (1.1eq) 
rt (4 h)→reflux (21h),  

1,4-dioxane, N2 
NR 

3[62] 
2-hydroxy-3-nitropyridine (1eq),  

DIAD (1.1eq), TPP (1.1eq) 

rt (25h), THF, N2 

NR 
reflux (25h),  

THF, N2 

4[89] 
2-hydroxy-3-nitropyridine (1eq),  

DEAD (1.4eq), DPPE (1eq) 
rt (21h), THF, N2 NR 

5[89] 
2-hydroxy-3-nitropyridine (1eq),  

DEAD (2eq), DPPE (1eq) 
rt (21h), toluene, N2 NR 

6[72] 
2-hydroxy-3-nitropyridine (1eq),  

DEAD (3eq), n-Bu3P (3eq) 
40°C (18h), THF, N2 NR 

7[72] 
2-hydroxy-3-nitropyridine (1eq),  

DIAD (3eq), n-Bu3P (3eq) 
40°C (23h), THF, N2 NR 

8[90] 
2-hydroxy-3-nitropyridine (1eq),  
ADDP (1.5eq), TPP-PS (1.5eq) 

rt (16h), THF, N2 NR 

9[91] 
2-hydroxy-3-nitropyridine (1eq),  
DEAD (1.2eq), TPP-PS (1.5eq) 

rt (17h), CH2Cl2, N2 NR 

10[91] 
2-hydroxy-3-nitropyridine (1eq),  
DEAD (1.2eq), TPP-PS (1.5eq),  

Et3N (1.4 eq) 
rt (19h), THF, N2 NR 

11[72] 
2-hydroxy-3-nitropyridine (1eq),  
ADDP (1.1eq), n-Bu3P (1.1eq) 

40°C (23h), THF, N2 NR 

12[92] 
2-hydroxy-3-nitropyridine 

(0.9eq),  
DCAD (1.1eq), n-Bu3P (1.1eq) 

rt (18h), THF, N2 NR 
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3.2. Synthesis of pyrido[4,3-b][1,4]oxazepines 

3.2.1. Synthesis of 3,3-dimethyl-2,3-dihydropyrido[4,3-b][1,4]oxazepin-4(5H)one  
 

The strategy to obtain pyrido[4,3-b][1,4]oxazepine 150 is presented in Scheme 47.  

To synthesize pyrido[4,3-b][1,4]oxazepine 150 the same synthetic route was used as for the 

pyrido[2,3-b][1,4]oxazepines. 4-Hydroxy-3-nitropyridine and 4-chloro-3-nitropyridine were selected 

as starting materials. 
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Scheme 47 The synthesis of 3,3-dimethyl-2,3-dihydropyrido[4,3-b][1,4]oxazepin-4(5H)one 150. Reaction 
conditions: (i) methyl 2,2-dimethyl-3-hydroxypropionate, TPP, DIAD,  

1,4-dioxane, 0°C (5min)→rt (4h)→reflux (o.n.); (ii) methyl 2,2-dimethyl-3-hydroxypropionate, KOH, K2CO3, 
TDA-1, toluene, rt (20h); (iii) Fe, NH4Cl, MeOH/H2O, reflux (5h); (iv) NaH, DMSO, rt (22h). 

 
For the synthesis of methyl 2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionate 148, two methods 

were selected. 4-Hydroxy-3-nitropyridine was coupled with methyl 2,2-dimethyl-3-

hydroxypropionate under Mitsunobu reaction conditions (DIAD, TPP) in 1,4-dioxane. After stirring at 

room temperature for 4 hours and then overnight at reflux, the product 148 was isolated by column 

chromatography in 44% yield as a yellow oil ((i), Scheme 47).  

The pyridine 148 was also obtained through nucleophilic substitution of chlorine atom in  

4-chloro-3-nitropyridine under TDA-1 ((ii), Scheme 47).[65] The resulting yield of methyl  

2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionate 148 was lower (21%) compared to the first 

conditions (44%). In the next step the nitro group was reduced to the amine. Several methods were 

applied (Table 3). The method with tin(II)chloride (SnCl2) in ethanol under reflux for 16 hours, gave 

compound 149 in 80% yield.[66]. Because of difficulties with the isolation of the product, the reaction 

with iron powder and ammonium chloride was applied.[61] After 5 hours of reflux compound 149 was 

isolated in 95% yield. This method was the most efficient one. The intermolecular cyclization of 

compound 149 was performed using sodium hydride (NaH) in DMSO at room temperature ((iv) 

Scheme 47), the bicyclic pyridine 150 was obtained in 90% yield as a white solid.[61] 
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Table 3: Methods for the reduction of nitro group of compound 148. 

 

Entry Substrates, solvents Conditions Product 149 

1[61] Fe (4eq), NH4Cl (1.5eq), MeOH/H2O (5:1) reflux (5h) 95% 

2[66] SnCl2 (5eq), EtOH reflux (16h) 80% 

3[94] Fe (5eq), AcOH (0.03eq), H2O (0.02eq), EtOH reflux (16h) 68% 

4[95] Pd/C (10 mol%), NaBH4 (2eq), H2O/THF rt (10-30min) 40% 

5[96] Zn (10eq), NH4Cl (10eq), MeOH/THF (1:1) rt (overnight) SM 

6[97] Na2S2O4 (4.1eq), K2CO3 (5eq), MeOH/H2O (6:1) rt (22h) SM 

7[98] sulfur (3eq), NaHCO3 (3eq), DMF 130°C (5.5h) SM 

 

In comparison, Mitsunobu reaction of 4-hydroxy-3-nitropyridine with methyl 2,2-dimethyl-3-

hydroxypropionate gave a comparable yield to the obtained methyl 2,2-dimethyl-3-(3-nitro-pyridin-2-

yloxy)-propionoate 111 under the same conditions. Although, the aromatic substitution of the chlorine 

atom in 4-chloro-3-nitropyridine gave a lower yield of the desired product than for 2-chloro-3-

nitropyridine under the same conditions. The yield of the amine after reduction of the nitro group was 

slighty higher for pyridine 149. The cyclization proceeded without difficulties with excellent yield for 

both pyridoxazepines. The presence of the two methyl groups are more sterically demanding than two 

hydrogens in α position in the chain. The repelling effect of two methyl groups reduces the internal 

angle and brings the two reactive units (anion created by deprotonation of amine group by NaH and 

methyl ester), closer together, which facilitates the cyclization (the Thorp-Ingold effect).  
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3.3. Synthesis of pyrido[3,4-b][1,4]oxazepines 
 
In the first attempt to synthesize pyrido[3,4-b][1,4]oxazepines, 4-aminopyridine was chosen 

as starting material.  
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Scheme 48 Synthesis of the N-(3,5-dibromo-pyridin-4-yl)-3-hydroxy-propionamide.  
The reaction conditions: (i) NBS, CCl4, rt, 48h, 70%; (ii) acryloyl chloride, Et3N, CH2Cl2, 0°C (2h) → rt (19h), 

50%; (iii) 1M NaOHaq, rt, 2h, 90%; (iv) MeOH, DBU, rt (9 days); (v) β-propiolactone, Et2AlCl, CH2Cl2, 
0°C→rt (2h), 72%. 

 
First, 4-aminopyridine was brominated with NBS to obtain 4-amino-3,5-dibromopyridine 151 

in 70% yield.[99] In the next reaction 4-amino-3,5-dibromopyridine was transformed in the diamide 

152 with acryloyl chloride in the presence of Et3N.[100] To remove one of acryoyl groups, compound 

152 was stirred at room temperature in a 1M aqueous solution of sodium hydroxide. To introduce the 

hydroxyl group onto double bond, the hydroalkoxylation was selected. Therefore, compound 153 was 

stirred in MeOH in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) for 9 days.[101] After 

this time, only starting material was isolated. To avoid this step, the reaction of 4-amino-3,5-

dibromopyridine with β-propiolactone was performed in the presence of diethylaluminum chloride 

(Et2AlCl), after 2 hours of stirring at room temperature N-(3,5-dibromo-pyridin-4-yl)-3-hydroxy-

propionamide 154 was obtained ((v), Scheme 48).[102] However, different attempts for the ring closure 

of 154, employing varying reaction conditions, did not lead to the desired bicyclic compound  

(Table 4). In all reaction mixtures only 4-amino-3,5-dibromopyridine was detected.  

 

Table 4: Ring closure procedures of N-(3,5-dibromo-pyridin-4-yl)-3-hydroxy-propionamide 154. 
 

Entry Substrates Conditions and  solvent Result 

1[103] 
154 (1eq), Pd(OAc)2 (0.02eq),  

Ligand* (0.03eq), Cs2CO3 (1.5eq) 
50°C (24h), toluene, N2 ** 

2[104] 154 (1eq), NaH (1.2eq) 80°C (2h), DMF ** 

3[104] 154 (1eq), KOt-Bu (1.2eq) reflux (2h), DMF ** 

4 154 (1eq), n-BuLi (1.2eq) rt (2h), THF, N2 ** 

5 154 (1eq), NaH (1.2eq) rt (18h), THF, N2 ** 

Ligand* rac-2-(di-tert-butylphosphino)-1,1′-binaphthyl;**4-amino-3,5-dibromopyridine 
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After all failed trials for the ring closure of 154 to the bicyclic compound,  

all investigations were focused on the synthesis of 4-amino-3-hydroxypyridine. Only four methods are 

known in literature for the synthesis of 4-amino-3-hydroxypyridine. In 1958, Boyland and Sims 

reported the oxidation of 4-aminopyridine to 4-aminopyridine-3-pyridyl hydrogen sulfate.  

After cleavage of the sulfate group, the target compound was obtained in 5% overall yield.[105] The 

second synthesis is based on the synthesis of 3-methoxypyridine.[106] The third method involves  

ortho-amination of 3-pyridyl N,N-diethylcarbamate with p-toluenesulfonyl azide (TsN3) followed by 

cleavage of the carbamate.[107] In 1983, Turner reported regioselective metalation  

of 4-(pivaloylamino)pyridine at C3 position.[108] Chu-Moyer and Berger used this relation for the 

synthesis of 4-amino-3-hydroxypyridine.[109] The 4-(pivaloylamino)pyridine was treated with an 

excess of butyllithium (n-BuLi) in THF at 0°C for 4 hours. After this time trimethyl borate (B(OMe)3) 

was used as electrophile, and was followed by oxidative workup. The 3-hydroxy-4-

(pivaloylamino)pyridine was obtained in 81%. To follow the described procedure, 4-

(pivaloylamino)pyridine 155 was synthesized from 4-aminopyridine and pivaloyl chloride  

in the presence of Et3N.[110] Chu-Moyer- Berger`s procedure was repeated but only starting material 

was isolated.  
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Scheme 49 Synthesis of 3-hydroxy-4-(pivaloylamino)pyridine according to Chu-Moyer- Berger`s procedure.  
Reaction conditions: (i) pivaloyl chloride, Et3N, CH2Cl2, 0

oC→ rt, 3h, 70%; (ii) a) n-BuLi, THF, -78°C → 0°C 
(4h), b) B(OMe)3, -78°C → 0°C (2h), c) AcOH, H2O2, rt, 3h. 

 

In order, to introduce a hydroxyl group in the 3- position, the 4-amino-3-iodopyridine 157 was 

synthesized.[111]  
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Scheme 50 Synthesis of 4-amino-3-hydroxypyridine. Reaction conditions: (i) KI, I2, Na2CO3, H2O, reflux, 2h, 
26%; (ii) CsOH (50 % aq), CuI, dibenzoylmethane (ligand), DMSO/H2O (1:1), 110oC, 24h[112]/ KOH, CuI, 8-

hydroxyquinoline, DMSO/H2O (1:1), 110oC, 48h[113]. 

 
To obtain 4-amino-3-hydroxypyridine 158, the conditions to direct the hydroxylation of aryl iodides 

catalyzed by CuI/ligand system with KOH or CsOH was applied (Scheme 50).  

This Ullmann-type coupling of aryl iodide with phenols is widely used for formation of ethers, amines 
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or thioethers.[114] The coupling reaction of 4-amino-3-iodopyridine with KOH or CuOH did not lead to 

the desired 4-amino-3-hydroxypyridine 158. Continuing studies on the direct hydroxylation  

of halopyridine, the Buchwald coupling conditions were used for reaction of 4-amino-3,5-

dibromopyridine 151 with KOH in the presence of tris(dibenzylideneacetone)dipalladium(0) (Pd2dba3) 

and 2-di-tert-butylphosphino-2′,4′,6′-triisopropylbiphenyl (t-Bu XPhos) as a ligand.[15] After 20 hours 

of stirring at 100°C only starting material was isolated.      

 To introduce the hydroxyl group into the pyridine ring another method was applied,  

Cu-catalyzed benzyloxylation. The pyridine 151 was heated at 110°C with benzyl alcohol in the 

presence of CuI and 1,10-phenantroline as ligand.[116] After 24 hours of stirring only 4-amino-3,5-

dibromopyridine was detected in the reaction mixture.       

 The reaction to introduce the hydroxyl group in the pyridine 153 was performed.  

To this purpose, pyridine 153 was reacted with KOH/CsOH catalyzed by CuI in the presence of ligand 

(Scheme 51). After 24 hours of stirring at 110oC, only starting material was isolated.  
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Scheme 51 The hydroxylation of 153 catalyzed by CuI in the presence of ligand. Reaction conditions: (i) CsOH 
(50 % aq), CuI, dibenzoylmethane (ligand), DMSO/H2O (1:1), 110oC, 24h[112]/ KOH, CuI, 1,10-phenantroline, 

DMSO/H2O (1:1), 110oC, 24h[117]. 

 

As another possibility to synthesize the 4-amino-3-hydroxypyridine, 3-hydroxypyridine was chosen as 

a starting material. In 1992, Shutske et al. published the synthesis of 4-amino-3-pyridinol  

N,N-diethylcarbamate 161 starting form N,N-diethylcarbamate of 3-hydroxypyridine (Scheme 52).[107]  
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Scheme 52 Synthesis of 4-amino-3-pyridinol N,N-diethylcarbamate 161.  
Reaction conditions: TMEDA, THF, a) s-BuLi, -78°C, 1h, b) TsN3, rt, c) TBAHS, NaBH4, H2O. 

 

The N,N-diethylcarbamate of 3-hydroxypyridine 160 was allowed to react with s-BuLi in the presence 

of tetramethylethylenediamine (TMEDA) to achieve ortho-lithation. Then the lithiated pyridine was 

treated with tosyl azide and the product was directly reduced with NaBH4 in the presence of  

tetra-n-butylammonium hydrogen sulfate (TBAHS) to obtain 4-amino-3-pyridinol  

N,N-diethylcarbamate 161.[107] In order to follow the described procedure, the N,N-diethylcarbamate 
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of 3-hydroxypyridine 160 was synthesized by reaction of 3-hydroxypyridine with diethylcarbamoyl 

chloride in pyridine.[118] The procedure was repeated but after work-up, the crude mixture did not 

contain the desired product. Because of the unsuccesful amination of 160 with tosyl azide, a bromine 

atom was introduced on C4 of the pyridine ring as a good leaving group for nucleophilic substitution 

(Scheme 53). The N,N-diethylcarbamate of 3-hydroxypyridine 160 reacted with s-BuLi in the 

presence of TMEDA, then to the reaction mixture 1,2-dibromoethane was added. After 2 hours of 

stirring at -78°C, the desired bromo-derivative 162 was isolated in 20% yield after column 

chromatography.[119] The yield increased to 70% when the reaction was conducted without TMEDA.             
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Scheme 53 Synthetic pathway to compound 163. Reaction conditions: (i) s-BuLi, 1,2-dibromoethane,  
THF, -78°C, 2h, 70%; (ii) see Table 5; R= allyl, propyl, benzyl. 

 

To introduce the amine group at C4 in the pyridine 162, several conditions were tested  
(Table 5).  
 

Table 5: Reaction conditions of the amination of 4-bromo-3-O-pyridyl N,N-diethylcarbamate 162.  
 

Entry Substrates Conditions and  solvent Result 

1 propylamine  reflux (95h), propylamine ** 

2[107] propylamine (1.2eq), CuCl (0.2eq) 120°C (69h), NMP ** 

3 allylamine (1eq), K2CO3 (1.1eq) 

rt (18h), MeCN SM 

80°C (48h), MeCN SM 

4[120] 

benzylamine (1.3eq), Pd2dba3 (2 mol%),  
BINAP (6 mol%), Cs2CO3 (1.5eq) 

100°C (20h), toluene, N2 SM 

benzylamine (1.3eq), Pd2dba3 (2 mol%),  
Xantphos (6 mol%), Cs2CO3 (1.5eq) 

100°C (20h), toluene, N2 SM 

5[120] 

benzylamine (1.3eq), Pd(OAc)2 (2 mol%),  
BINAP (6 mol%), Cs2CO3 (1.5eq) 

100°C (15h), toluene, N2 SM 

benzylamine (1.3eq), Pd(OAc)2 (2 mol%),  
Xantphos (6 mol%), Cs2CO3 (1.5eq) 

100°C (15h), toluene, N2 SM 

6[121] 
benzylamine (1.5eq), Pd2dba3 (0.02eq),  

n-Bu3P (0.02eq), KOtBu (1.5eq) 
85°C (17h), toluene, N2 SM 

**conversion less than 10% 
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Stirring 4-bromo-3-O-pyridyl N,N-diethylcarbamate 162 and propylamine at reflux, even after long 

reaction time did not lead to the desired product 163, although the 1H-NMR analysis showed small 

signals for the product. The Pd-catalyzed coupling of 162 with benzylamine using different sources of 

palladium or different ligands, did not give positive results (Table 5, entry 4, 5 and 6). In the reaction 

mixtures, only starting materials were detected (1H-NMR or LC-MS analysis). The amination of  

4-bromo-3-hydroxypyridine 164[122] obtained in the reaction of 4-bromo-3-O-pyridyl  

N,N-diethylcarbamate 162 with sodium hydroxide, with propyl and benzylamine under different 

conditions is presented in Table 6. 
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Scheme 54 Synthesis of 4-amino-3-hydroxypyridine 165. Reaction conditions: (i) 2M NaOHaq, MeOH, reflux, 

40h, 90%;[122] (ii) see Table 6. 

 
Table 6: Conditions for amination of 4-bromo-3-hydroxypyridine 164. 
 

Entry Substrates  Conditions and solvent Result 

1 

propylamine (1.2eq) 

rt (112h), propylamine SM 

2 reflux (164h), propylamine SM 

3[120] 

benzylamine (1.3eq), Pd2dba3 (2 mol%),  
BINAP (6 mol%), Cs2CO3 (1.5eq) 

100°C (19h), toluene, N2 SM 

benzylamine (1.3eq), Pd2dba3 (2 mol%),  
Xantphos (6 mol%), Cs2CO3 (1.5eq) 

100°C (14h), toluene, N2 SM 

4[120] 

benzylamine (1.3eq), Pd(OAc)2 (2 mol%), 
BINAP (6 mol%), Cs2CO3 (1.5eq) 

100°C (14h), toluene, N2 SM 

benzylamine (1.3eq), Pd(OAc)2 (2 mol%), 
Xantphos (6 mol%), Cs2CO3 (1.5eq) 

100°C (14h), toluene, N2 SM 

7[121] 
benzylamine (1.5eq), Pd2dba3 (0.02eq),  

n-Bu3P (0.02eq), KOtBu (1.5eq) 
85°C (21h), toluene, N2 SM 

8[123] benzylamine (3eq), CuI (10 mol%) 85 °C (25h), MeCN, N2 SM 

 

All the attempts to obtain the desired 4-alkylamino- or arylamino- 3-hydroxypyridine from  

4-bromo-3-hydroxypyridine using Pd-coupling with appropriate amines failed. In the reaction 

mixtures only starting materials were detected (1H-NMR or LC-MS analysis).  

To continue the investigations, 2-chloro-3-hydroxypyridine was chosen as starting material.  

In the literature, nitration of 2-chloro-3-hydroxypyridine was reported in 2006 and 2007 by Jones  
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et al.[124] Nevertheless, the nitration of 3-hydroxypyridine was described in 1932 by Wulff.  

The nitration gave 3-hydroxy-2-nitropyridine in 50% yield.[125] In 1968, Selms repeated that procedure 

and obtained 74% yield of 3-hydroxy-2-nitropyridine and 1% of 3-hydroxy-6-nitropyridine. He also 

proved that substituents (group like methyl or chlorine atom) in the C2 gave 4- and 6-nitro derivatives 

(4:1 ratio).[126] To obtain 2-chloro-3-hydroxy-4-nitropyridine, the procedure of Jones et al. was 

repeated. The separation of the isomers by column chromatography failed, and the reaction with 

Et2AlCl was performed using the mixture of 4- and 6-nitropyridine (Scheme 55).[102] After work-up, 

only a mixture of 166 and 167 was isolated.     
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Scheme 55 Attempt to obtain pyridines 168 and 169. Reaction conditions: (i) H2SO4, HNO3,  

0oC (1h) → rt (1h); (ii) Et2AlCl, β-butyrolactone, CH2Cl2, 0
oC → rt (20 min) → 0oC → rt (2h). 

 

As a succeeding starting material, 3-bromopyridine was selected. Pyridine is an electron 

deficient molecule, and the reaction with electrophiles is difficult. To activate the pyridine, an electron 

rich substituent should be added and the nitrogen should be protected from acting with the 

electrophile.[127] Because of nucleophilicity of nitrogen, pyridine can be oxidized by H2O2 and AcOH. 

3-Bromopyridine N-oxide on the other hand can react freely with electrophilic species formed in the 

reaction between H2SO4 and HNO3 to obtain the 3-bromo-4-nitropyridine N-oxide 171  

(Scheme 56).[128]    
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Scheme 56 Synthesis of 3-bromo-3-nitropyridine N-oxide 171. Reaction conditions: (i) H2O2, AcOH, reflux (8h) 

→ rt (o.n.), quant.; (ii) H2SO4, HNO3, 90 °C, 5h, 46%. 

 

In literature, it is known that the N-oxide group reduces the electron density at the α- and  

γ-positions in the ring, which influences on the mobility of halogen substituents.[127],[129]-[132]  

The N-oxide group also activates the nitro group which can be easily replaced by various reagents,  

e. g. (a) in the reaction of 4-nitropyridine N-oxide with NaOH at 100°C leading to 4-hydroxypyridine 

N-oxide, (b) in the reaction with HBr at 120°C to 4-bromopyridine N-oxide, (c) in the reaction with 

Alkyl/Aromatic-ONa to 4-Alkyl/Aromatic-O-pyridine N-oxide.[127] To obtain the desired pyridine 

with an amino group at C4 and oxygen at C3, four alcohols were selected (Table 7). The methyl  

2,2-dimethyl-3-hydroxypropionate (A) as an alcohol used to the synthesize 3,3-dimethyl-2,3-

dihydropyrido[2,3-b][1,4]oxazepin-4(5H)one and 3,3-dimethyl-2,3-dihydropyrido[4,3-
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b][1,4]oxazepin-4(5H)one. Benzyl alcohol (C) and methanol (B), and 3-chloro-1-propanol (D) 

possessing also the chlorine atom for further modyfication. 
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Scheme 57 The synthesis of compound 172. Reaction conditions: see Table 7. 

 

The nucleophilic substitution of bromine at C3 was successful for 3-chloro-1-propanol (D) and benzyl 

alcohol (C). In the reaction with sodium methoxide (NaOMe) (Table 7, entry 5) only 3-bromo-4-

methoxypyridine N-oxide 173 was isolated (Scheme 58). This reaction was performed based on 

synthesis of 2-chloro-3-methoxy-4-nitropyridine N-oxide in the reaction of 2-chloro-3-fluoro-4-

nitropyridine N-oxide with 1 equivalent of NaOMe. The authors, Dehmlow and Schulz observed that 

the reaction with 2 equivalent of NaOMe leads to 2-chloro-3,4-dimethoxypyridine N-oxide.[134] 
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Scheme 58 Substitution of the nitro group in 3-bromo-4-nitropyridine N-oxide by a methoxy group. 

 

The yield of 3-(3-chloro-propoxy)-4-nitro-pyridin-1-ol N-oxide 172D after column chromatography 

was very low (Table 7, entry 9). All attempts to increase the yield did not give a positive effect. 
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Table 7: The nucleophilic substitution at C3 by methyl 2,2-dimethyl-3-hydroxypropionate (A), 
methanol (B), benzyl alcohol (C) or 3-chloro-propan-1-ol (D).  
 

Entry Substrates and solvent Conditions Result 

1 

A (1.1eq), K2CO3 (3eq), DMF rt (23h) SM 

A (1.1eq), K2CO3 (3eq), DMF 80 °C (5h) SM 

2[131] A (1.25eq), NaH (1.25eq), THF/DMF 
rt (15min)→ 50°C  
(4h)→ 40°C (14h) 

SM 

3[132] A (1.2eq),  NaOH (1eq), H2O/acetone reflux (16h) SM 

4[130] A (1.4eq), KOtBu (1eq), THF rt (27h) SM 

5[122] NaOMe (1eq), B rt (21h) 90 % 

6[131] 

C (1.25eq), NaH (1.25eq), THF/DMF 
rt (15min)→ 50°C  
(4h)→ 40°C (14h) 

SM 

C (1.1eq), NaH (1.2eq), THF 0°C (5min)-rt (22h) 25% 

7[132] C (1.2eq),  NaOH (1eq), H2O/Me2CO reflux (16h) SM 

8[133] 
C (1.5eq), K2CO3 (1eq), KOH (4eq),  

TDA-1 (cat.), toluene 
rt (3h) SM 

9 D (1.2eq), NaH (1.4eq), THF 0°C (15min)-rt (16h) 17% 

 

To reduce the nitro group and the N-oxide, the reaction of 3-(3-chloro-propoxy)-4-nitro-pyridine  

N-oxide 172D was performed with hydrogen in the presence of Pd/C in EtOH. After 18 hours of 

stirring at room temperature, two compounds 174 and 175 were detected (3:2 ratio in the crude 

reaction mixture) (Scheme 59). Unfortunately, the isolation failed. The compounds are highly 

insoluble in organic solvents. 
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Scheme 59 The hydrogenation of 3-(3-chloro-propoxy)-4-nitro-pyridine N-oxide in the presence of Pd/C. 
Reaction conditions: (i) H2, Pd/C, EtOH, rt (1atm), 18h. 

 

The dominance of N-oxide 174 in the mixture suggests that the nitro goup is reduced first followed by 

removal of the N-oxide. To direct the reaction only to the reduction of the nitro group, the 

deoxygenation of 172D was performed. In the literature, several methods to remove an N-oxide are 
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described. Those methods use a lot of different reagents, e.g. Pd complex,[135] phosphorous 

compounds,[136][130] systems of Lewis acids,[137] and rhenium complexes[138][139]. 172D Reacted with 

TPP (1eq) in the presence of trichlorooxobis(triphenylphosphine)rhenium(V) (Re(V) complex).[139] 

After 20 hours of stirring at room temperature 98% of 176 was isolated (Scheme 60). 
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Scheme 60 Synthesis of 3-(3-chloro-propoxy)-4-amino-pyridine 175 as a precursor  
to pyrido[3,4-b][1,4]oxazepines. Reaction conditions: (i) see Table 7, entry 9; (ii) Re(V) complex (cat.), TPP, 

benzene, rt, 20h, 98%;[139] (iii) H 2, Pd/C, EtOH, rt (1atm), 46h. 
 

For the reduction of the nitro group of pyridine 176, two methods were selected. First, 176 was 

reacted with Fe and NH4Cl[61] and after 25 hours of stirring at reflux, LC-MS analysis detected  

3-(3-chloro-propoxy)-pyridin-4-ylamine 175 and starting material. The isolation also failed. Less than 

10% of the mixture was isolated. In the second case, hydrogenation with palladium on carbon was 

used. 176 Was stirred at room temperature for 46 hours. The isolated mixture contained the desired 

product 175 and starting material. The separation of the desired compound 175 from the starting 

material turned out unsuccesfull. The 3-(3-chloropropoxy)-pyridin-4-ylamine 175 is insoluble in 

organic solvents, although the mixture of 176 and 175 can be separated from Pd/C.  

To synthetize methyl 2,2-dimethyl-3-(4-nitro-pyridin-3-yloxy)-propionate 178,  

the dioxygenation reaction on 3-bromo-4-nitropyridine N-oxide 171 with the Re(V) complex was 

performed.[139] The 3-bromo-4-nitropyridine 177 was obtained in 94% yield. The pyridine 177 and 

methyl 2,2-dimethyl-3-hydroxypropionate were stirred at room temperature with K2CO3 and KOH in 

the presence of TDA-1.[131] The desired product 178 was not detected in the reaction mixture,  

the isolated compound is the product of substitution of the nitro group, methyl 3-(3-bromo-pyridin-4-

yloxy)-2,2-dimethyl-propionate 179 in 54% yield (Scheme 61).  
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Scheme 61 Formation of methyl 3-(3-bromo-pyridin-4-yloxy)-2,2-dimethyl-propionate 179.  

Reaction conditions: (i) Re(V) complex (cat.), TPP, benzene, rt, overnight, 94%;[139];  
(ii) methyl 2,2-dimethyl-3-hydroxypropionate, K2CO3, KOH, TDA-1, toluene, rt, 3h, 54%.[131] 
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3.4. Synthesis of nine-membered ring pyrido annelated derivatives 

 

3.4.1. The Kharasch reaction 

 

The efficient synthesis of cyclic systems continues to be an important area of modern organic 

chemistry. Increasingly, common methodologies for the formation of cyclic systems are free radical 

cyclization protocols. The majority of such reactions are typically mediated by organotin[140]  

or organosilane reagents. In the first report on atom transfer radical addition (ATRA), halogenated 

derivatives were directly added to olefinic bonds in the presence of radical initiators or light.  

Today this reaction is known as the Kharasch addition. Early work in this area involved ATRA of 

CCl4 or CBr4 to simple olefins in the presence of a radical initiator such as 2,2´-azobis(2-

isobutyronitrile) (AIBN). Very high yields of monoadduct were obtained in the addition of CBr4 to  

α-olefins, but this significantly decreased for more reactive monomers. The main reason for this lower 

yield of the monoadduct was radical-radical coupling and repeated radical addition to the growing 

chain, affording oligomers (Scheme 62).  
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Scheme 62 The Kharasch addition of CBr4 to alkene in the presence of free-radical initiator AIBN. 
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Starting from 1960, several groups began to investigate the use of transition metal complexes 

to catalyze ATRA. The major idea behind this approach is that transition-metal complexes are more 

effective halogen transfer agents than alkyl halides, have an increased chemoselectivity for the 

monoadduct and an increased speed of chain transfer (ktr). A number of species were found to be 

particulary active in the ATRA processes,[141][144] including complexes of Cu, Fe, Ru[142][153][156] and Ni, 

as well as metal oxides and zero valent metals as Cu0 and Fe0. Based on chemo-, regio- and 

stereoselectivity observations, it is generally accepted that the mechanism of ATRA involves  

free-radical intermediates. The proposed mechanism in case of a copper complex is presented in 

Scheme 63.  
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Scheme 63 Proposed mechanism of copper catalyzed ATRA; L: complexing ligand, X-halide. 

 

The homolytic cleavage of an alkyl halide bond by a copper(I) complex generates the corresponding 

copper(II) complex and an organic radical (ka,1). The radical may terminate (kt) or add to an alkene 

(kadd) in an inter- or intramolecular fashion or it can abstract a halogen atom from the copper(II) 

complex and return to the original dormant alkyl halide species (kd,1). If the abstraction of a halogen 

atom occurs after the first addition to an alkene, the desired monoadduct will be formed (kd,2). This 

step regenerates the corresponding copper(I) complex and, therefore, completes the catalytic cycle. 

The key to increase the chemoselectivity of the monoadduct in copper-mediated ATRA lies in the 

radical generating step. Transition metal catalyzed (TMC) ATRA reactions can be conducted 

intramolecularly when the alkyl halide and alkene functionalities are part of the same molecule. 

Intramolecular TMC ATRA or atom transfer radical cyclization (ATRC) is a very attractive synthetic 

tool because it enables the synthesis of functionalized ring systems that can be used as starting 

materials for the preparation of complex organic molecules. Furthermore, the halide functionality  

in the resulting product can be very beneficial because they can be easily reduced, eliminated, 

displaced, converted to a Grigniard reagent, or if desired, serve as a further radical precursor.[143][144] 
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The first successful example of a copper mediated ATRC reaction included the synthesis  

of trichlorinated γ-lactones from readily accessible alkenyl trichloroacetates.[145][147] The reaction was 

highly selective, but required elevated temperatures (110-130°C) and large amounts of copper catalyst 

(20-30 mol% relative to the substrate). The cyclization of α-N-allylcarbamoyl radicals is a difficult 

process requiring high temperatures, primarily due to the high barrier to rotation around the amide 

bond. As indicated in Figure 8, only the anti conformer can cyclize and the N-protecting groups 

typically regulate syn-anti equilibrium.[146] Cyclization of γ-lactam precursors in the presence of only 

CuICl required elevated reaction temperatures (80-140°C).[147] 
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Figure 8 Syn-anti equilibrium in the cyclization of α-N-allylcarbamoyl radicals. 

 

The role of the complexing ligands is not only to increase the solubility of the copper complex 

in the reaction medium, but also to regulate the equilibrium constant for atom transfer (KATRA=ka,1/kd,1). 

The copper(I) chloride in conjunction with 2,2´-bipyridine was also found to efficiently catalyze 

ATRC of several α-chloroglycine derivatives with a 3-alkenyl substituent at nitrogen.[148]  

Copper(I) complexes with nitrogen-based ligands have been shown to be quite effective  

in catalyzing sequentially both ATRA and ATRC. In the case of ATRC followed by ATRA, substrates 

are typically chosen such that intermolecular addition reactions are slower than intramolecular 

ones.[149][157] The fine tuning of the transition metal complex is perhaps the most important aspect of 

the catalytic system because it regulates the dynamic equilibrium between dormant (alkyl halides) and 

propagating species (radicals). For copper catalyzed ATRA this is typically acheved utilizing 

bidentate, tridentate, tetradentate and multidentate nitrogen-based complexing ligands (Figure 9).  
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Figure 9 Nitrogen-based ligands. 

 

In literature, there are no precedents up to now for the Kharasch reaction with pyridine species 

as substrate. Pyridine derivatives have been used as ligand to coordinate the involved metal.[150][157]  

In this part, we wanted to investigate the influence of the pyridine ring on the formation of nine- or 

eight-membered rings attached to the pyridine ring. For this purpose, compound 184 was synthesized 

(Scheme 64). 
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Scheme 64 Synthesis of pyrido annelated nine- and eight-membered ring attached to the pyridine. Reaction 
conditions: (i) N,N-allylbenzylamine, NaH, THF, 0°C→rt (22h), 82%; (ii) Fe, NH4Cl, MeOH/H2O, reflux, 5h, 

80%; (iii) Me: n-BuLi, MeI, THF, -78°C (15min)→rt (2h), 69%; Bn: a) benzaldehyde, EtOH, reflux,  
b) NaBH3CN, AcOH, MeOH, rt, 17h, 70%; (iv) Me: trichloroacetyl chloride, CH2Cl2, 0°C→rt (20h), 80%;  

Bn: trichloroacetyl chloride, CH2Cl2, 0°C→rt (18h), 90%; (v) see Table 8 for Bn derivative and Table 9 for Me 

derivative. 

 

2-(N-Allyl- N-benzylamino)-3-nitropyridine 180 was synthesized by a nucleophilic substitution of the 

chlorine atom by N,N-allylbenzylamine[151] in 2-chloro-3-nitropyridine. Reduction of the nitro group 

was accomplished with iron powder in the presence of NH4Cl, and after 5 hours of reflux, the desired 



RESULT AND DISCUSSION 
 

58 

amine 181 was isolated. Two groups, methyl and benzyl, were selected to protect the amine 

functionality. Methylation was conducted by deprotonation with n-BuLi following by methyl iodide. 

Benzylated amine 183 was obtained by reductive amination. In a first step, the imine from 181 and 

benzaldehyde was obtained in ethanol. The reduction of imine 181 to the corresponding amine was 

conducted using sodium borohydride (NaBH4) and sodium cyanoborohydride (NaBH3CN). Only the 

reaction with NaBH3CN in the presence of acetic acid gave the desired secondary amine 183b.  

The obtained amines 183 were reacted with trichloroacetyl chloride in CH2Cl2 (Scheme 64). Next, the 

benzyl derivative of 183 was treated with different copper catalysts (CuCl/ CuO, CuCl, CuO) in the 

presence of ligand (TMEDA, PMDETA) or without ligand. Different solvents were used, CH2Cl2 and 

1,2-dichloroethane (DCE) for the benzylated amide (Table 8) and CH2Cl2, DCE and toluene for 

methylated amide. For the methyl derivative, CuCl was used in the presence of a ligand (PMDETA, 

2,2´bipyridine), the ruthenium catalyst[152] (RuCl2(PPh3)3,
[153][157] Grubbs catalyst[15] or 183a was 

refluxed only with copper(I) chloride (Table 9). However, cyclization to the eight- or nine-membered 

ring failed in all cases. Only stating material could be detected in the reaction mixtures (1H-NMR and 

LC-MS analysis). The failure of these cyclizations is most probably related to the liganding nature  

of the starting material, resulting in the formation of unreactive ruthenium[155] or copper complexes.  

 

Table 8: Kharasch reactions conditions to which compound 184 was subjected, R= benzyl. 
 

Entry Substrates Solvent Conditions Result 

1[156] TMEDA (0.8eq), CuCl (0.4eq) CH2Cl2 Ar, reflux (24h), N2 SM 

2[156] PMDETA (0.8eq), CuCl (0.4eq) CH2Cl2 Ar, reflux (24h), N2 SM 

3 CuCl (0.4eq) CH2Cl2 Ar, reflux (24h), N2 SM 

4 CuO (0.4eq) CH2Cl2 reflux (24h), N2 SM 

5 CuO (0.2eq), CuCl (0.2eq) CH2Cl2 reflux (24h), N2 SM 

6 CuCl (0.4eq) DCE reflux (24h), N2 SM 

7 CuO (0.8eq) DCE reflux (24h), N2 SM 

8 CuO (0.8eq), CuCl (0.8eq) DCE reflux (24h), N2 SM 
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Table 9: Kharasch reactions conditions to which compound 184 was subjected, R= methyl. 
 
 

Entry Substrates Solvent Conditions Result 

1 CuCl (0.8eq) CH2Cl2 reflux (20h), N2  SM 

2[156][153] PMDETA (0.8eq), CuCl (1.6eq) CH2Cl2 reflux (23h), N2 * 

3[157] RuCl2(PPh3)3 (10 mol%) toluene reflux (22h), N2  SM 

4 RuCl2(PPh3)3 (10 mol%) DCE 80°C (22h), N2 SM 

5 Grubbs 1st generation (5 mol%) toluene reflux (22h), N2 SM 

6[158] 

CuCl-bpy (0.3eq-0.3eq) DCE rt (71h), N2 SM 

CuCl-bpy (0.3eq-0.3eq) DCE 80°C (71h), N2 SM 

* mixture of compounds (LC-MS) 
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3.4.2. The Metathesis reaction 
 

Olefin metathesis is a process in which alkylidene groups on alkenes are exchanged.  

The first metathesis reported by Anderson and Merckling, was the polymerization of norbornene by 

titanium(II) species. Several classes of olefin metathesis including ring closing metathesis (RCM), 

ring opening metathesis (ROM), cross-metathesis (CM), enyne metathesis (EM),[159] acyclic diene 

metathesis (ADMET) and ring opening metathesis polymerization (ROMP) have all become widely 

used reliable routine methods (Scheme 65).[160]  
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Scheme 65 Types of metathesis reactions: RCM= ring-closing metathesis; ROM= ring-opening metathesis; 
ROMP= ring-opening metathesis polymerization; ADMET= acyclic diene metathesis polymerization;  

CM= cross-metathesis. 

 

The generally accepted catalytic cycle of transition metal catalyzed metathesis proposed by Herison 

and Chauvin, consists in a reversible sequence of [2+2] cycloadditions and cycloreversions, i.e. alkene 

coordination to the metallacarbene complex, cycloaddition, followed by cycloreversion to a new 

alkene and metallacarbene because of breaking of two different bonds. The newly formed 

metallacarbene complex, after coordination with a new olefin molecule, metallacyclobutene 

formation, and double bond reordering, gives the metathesis product and re-forms the ruthenium 

carbene initiator which restarts the cycle. As the product no longer participates in the catalytic cycle, 

the equilibrium is thus shifted towards formation of the metathesis product. At equilibrium the reverse 

and forward rates of all chemical reactions or all elementary steps are identical, and the reverse 

reaction procceds through the same series of elementary steps as the forward reaction  

(Scheme 66).[161][162][166] 
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Scheme 66 The mechanism of metathesis catalyzed by transition metal carbenes. 

 

If two olefins of similar reactivity are subjected to CM conditions, assuming full conversion,  

a maximum of 50% yield of the desired product will be obtained while 25% of each of the two 

homocoupling products will be formed. To achieve a synthetically efficient yield of 90%,  

10 equivalents of one coupling partner must be used.[162] The stereoselectivity of product formation 

further complicates CM. Although the thermodynamically favored trans olefins are usually the major 

products, a mixture of E, Z isomers can be obtained when the energy difference between them  

is small. Extensive research in this area has resulted in fruitful discoveries in more efficient catalysts 

and new applications. The generalization into synthetic organic chemistry has been driven primarily 

by the discovery of well-defined and functional group-tolerant catalysts independently by Schrock and 

Grubbs. In the present time there are two main types of catalyst in use (Figure 10).[163] These are the 

molybdenum-based complex A, developed by Schrock and the ruthenium-based complex[164] B and in 

particular C, developed by Grubbs. Complex A has the major disadvantage of being air- and moisture-

sensitive, whereas C is not significantly affected by air, moisture or the reaction impurities, tolerate 

substrates containing free alcohols, ketones, esters, amides, epoxides, acetals, silyl ethers  

and sulfides.[165] Titanium carbenes such as B, which are more commonly utilized in olefination 

reactions, find occasional use.  Hoveyda have reported the synthesis and some applications  

of ruthenium alkylidene E and G.[166]  
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Figure 10 Catalysts used for metathesis. 

 

Ring-closing metathesis of dienes has become one of the most important methods now in use 

for the assembly of cyclic organic compounds.[163][1678] First employed by Villemin[29] and by Tsuji[169], 

the importance of this reaction rose over the past years. RCM is used for construction of synthetically 

valuable building blocks such as heterocyclic rings containing phosphorous, sulfur, oxygen,  

or nitrogen, including aromatic heterocycles; spirocyclic, cyclophane, and polycyclic compounds;  

and compounds of biological and medical relevance such as peptidomimetics, carbohydrate 

derivatives, alkaloids, bioactive cyclic molecules, and polycyclic ethers, including macrocyclic  

aza-crown ethers and topologically interesting molecules.[170] 

To obtain nine-membered ring compounds 187 and 191 were synthesized  

(Scheme 67). As a protecting group benzyl and tosyl groups were chosen. The allyl 2-(N-allyl-N-

benzylamino)-3-pyridinecarboxylate 187 was synthesized from allyl 2-chloropyridine-3-carboxylate 

186 by a nucleophilic substitution reaction with N,N-allylbenzylamine.[151] The synthesis of tosyl 

derivative 191 started with the synthesis of  the allyl 2-aminopyridine-3-carboxylate 189 using  

the same reaction conditions as for the synthesis of ester 186. In the next step, the amino group of allyl  

2-amino-3-pyridinecarboxylate 189 was tosylated in the reaction with tosyl chloride in pyridine,[171] 

leading to the allyl 2-(N-tosylamino)-3-pyridinecarboxylate 190. The prepared sulfonamide 190 was 

alkylated by allyl bromide in the presence of potassium carbonate,[171] the desired tosyl derivative 191 

was isolated as a beige solid.  
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Scheme 67 Synthesis of nine-membered ring in metathesis of 187 and 191. R= Bn, Ts.  
Reaction conditions: (i) allyl alcohol, EDC, DMAP, CH2Cl2, rt, 16h, 78%; (ii) N,N-allylbenzylamine, MeCN, 
80°C, 73h, 49%; (iii) see Table 10; (iv) allyl alcohol, EDC, DMAP, CH2Cl2, rt, 13h, 42%; (v) TsCl, pyridine, 

60°C, 41h, 72%; (vi) allyl bromide, K2CO3, DMA, 90°C, 39h, 84%; (vii) see Table 13. 

 

Several ruthenium catalysts, solvents and reaction conditions were investigated for the benzyl 

derivative 187 (Table 10). The starting material, 187, was recovered in 75-90% yield after  

16-71 hours.  

 

Table 10: The metathesis condition reactions for benzyl derivative 187. 
 

Entry Catalyst Conditions and solvents Result 

1[172] Grubbs 1st generation (5 mol%) rt 24-71h), toluene, N2 SM 

2 Grubbs 1st generation (5 mol%) rt (19h), CH2Cl2, N2 SM 

3[173] [RuClH(CO)(PPh3)] (5 mol%) 65°C (16h), toluene, N2 SM 

4 [RuClH(CO)(PPh3)] (5 mol%) reflux (24h), CH2Cl2, N2 SM 

5 Hoveyda-Grubbs 2nd generation (10 mol%) rt (16h), toluene, N2 SM 

6[174] G2 (4 mol%) 45°C (24h), H2O SM 

7 G2 (12 mol%) 
reflux (16h),  

CH2Cl2 or toluene, N2 
SM 

 

To compete with or to prevent the coordination of the nitrogen atom of the pyridine ring to the 

ruthenium carbene intermediate, a Lewis acid was introduced in the reaction system.[175] Grubbs 2nd 

generation catalyst (5% mol) and various Lewis acids (20% mol) in toluene under inert atmosphere in 

80°C were evaluated (Table 11). 
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Table 11: The metathesis reaction of 187 in the presence of Grubbs 2nd generation catalyst in 
combination with a Lewis acid. 
 

Entry Catalyst: G2; LA Conditions and solvent Result 

1 G2 (5 mol%), Ti(Oi-Pr)4 (20 mol%) 80°C (15h), toluene, N2 SM 

2 G2 (5 mol%), LiCl (20 mol%) 80°C (15h), toluene, N2 SM 

3 G2 (5 mol%), ZnCl2 (20 mol%) 80°C (15h), toluene, N2 SM 

4 G2 (5 mol%), In(OTf)3 (20 mol%) 80°C (15h), toluene, N2 SM* 

5 G2 (5 mol%), Sc(OTf)3 (20 mol%) 80°C (15h), toluene, N2 SM* 

*new product detected by 1H-NMR and LC-MS analysis 

 

The presence of a Lewis acid such as titanium(IV) isopropoxide (Ti(Oi-Pr)4),  lithium chloride (LiCl) 

or zinc chloride (ZnCl2) did not improve the formation of the desired ring system. The 1H-NMR and 

LC-MS analysis of the reactions with indium(III) trifluoromethanesulfonate (In(OTf)3) and 

scandium(III) trifluoromethanesulfonate (Sc(OTf)3) showed the presence of a new compound  

(Table 11). The prolongation of the reaction time to 114 hours at reflux or 6 hours at reflux and 

continued at room temperature for 20 days, or additional equivalents of Lewis acid (20 mol%-0.5eq) 

did not have any influence on the yield of the new compound (Table 12). The separation by column 

chromatography failed completely. Because of problems with the separation, preparative HPLC was 

used. Due to the presence of a 0.1% aqueous solution of trifluoroacetic acid, the compound was 

isolated in its salt form. Since protonation can occure on the two N-atoms, on the 1H-NMR spectra the 

migration of proton can be visible. The 1H-NMR analysis confirms the presence of a new compound 

(Scheme 68) 2-(N-allyl-N-benzylamino)-nicotinic acid.  
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Scheme 68 Deallylation during the attempted metathesis reaction. 
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Table 12: Optimalization conditions for ring-closing metathesis of 187 in the presence of Grubbs 2nd 
generation catalyst and Sc(OTf)3 as a Lewis acid (LA). 
 

Entry Catalyst: G2; LA: Sc(OTf)3 Conditions and solvent Result 

1 G2 (10 mol%), LA (20 mol%) 
80°C (15h), toluene, N2 

* 

2 G2 (10 mol%), LA (40 mol%) * 

3 G2 (10 mol%), LA (20 mol%) 
80°C (37h), toluene, N2 

* 

4 G2 (10 mol%), LA (40 mol%) * 

5 G2 (10 mol%), LA (0.5eq) 80°C (13h), toluene, N2 * 

6 G2 (5 mol%), LA (20 mol%) 
reflux (16h), toluene, N2 * 

reflux (114h), toluene, N2 * 

7 G2 (5 mol%), LA (20 mol%) reflux (6h)- rt (476h), toluene, N2 * 

*conversion ~40% 

 
For the tosyl derivative 191, only three conditions were applied (Table 13). In all cases ring-closing 

metathesis failed. Only starting material was detected by 1H-NMR and LC-MS analysis. 

 
Table 13: The metathesis reaction conditions for the tosyl derivative 191. 
 

Entry Catalyst/ LA Conditions Result 

1 G2 (5 mol%) rt (20h), toluene, N2 SM 

2 G2 (5 mol%), Sc(OTf)3 (20 mol%) 
reflux (6h)- rt (476h), 

toluene, N2 
SM 

3 G2 (5 mol%), In(OTf)3 (20 mol%) 80°C (21h), toluene, N2 SM 

 

Because of difficulites with the ring-closing metathesis to the nine-membered ring for derivatives 187 

and 191, a new possibility was taken into consideration. The addition of one CH2 group to the chain in 

the tertiary amine should lead to a compound with a ten-membered ring 192 (Scheme 69).  
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Scheme 69 The desired product after ring-closing metathesis reaction of 193. 
 

To investigate this hypothesis, the 2-propen-1-yl 2-(N-(3-buten-1-yl)-N-tosylamino)-3-

pyridinecarboxylate 193 with a homo-allyl chain was synthesized (Scheme 70). Starting from pyridine 



RESULT AND DISCUSSION 
 

66 

190 using 4-bromo-1-butene as an alkylating reagent in the presence of K2CO3 in DMA or MeCN,[171] 

the desired 2-propen-1-yl 2-(N-(3-buten-1-yl)-N-tosylamino)-3-pyridinecarboxylate 193 was obtained.  
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Scheme 70 Synthesis of 2-propen-1-yl 2-(N-(3-buten-1-yl)-N-tosylamino)-3-pyridinecarboxylate 193. Reaction 

conditions: (i) 4-bromo-1-butene, K2CO3, DMA/MeCN, 90-80°C, 43-50 hrs, 84-67%. 

 

Compound 193 could form two possible products upon ring closing metathesis: the cis α,α´  

ten-membered ring or the trans α,α´ ten-membered ring. For the formation of ester 192, different 

reaction conditions were evaluated (Table 14). Only reaction with the Grubbs 2nd generation catalyst 

proceeded to the mixture of compounds 194 and 195 (Figure 11).  
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Figure 11 Products after ring-closing metathesis of compound 193. 

 

Table 14: Reaction conditions for ring-closing metathesis of 193. 

 

Entry Substrates Conditions Result 

1 G2 (10 mol%) 80°C (3h), toluene, N2 80% conversion 

2 G2 (10 mol%) 80°C (5h), toluene, N2 100% conversion 

3 G2 (10 mol%), Sc(OTf)3 (20 mol%) 80°C (3h), toluene, N2 60% conversion 

4 G2 (10 mol%), In(OTf)3 (20 mol%) 80°C (3h), toluene, N2 SM 

5 Grubbs 1st generation (10 mol%) 

80°C (3h), toluene, N2 SM 

rt (3h), toluene, N2 SM 

 

The LC-MS analysis showed three peaks, corresponding to the mass of 194/195. The isolation using 

column chromatography failed. Only impurities were separated. The isolation of the compounds was 
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performed by preparative HPLC, but only three out of the four detected compounds were separated. 

The product was obtained as a mixture of isomers. Because of the use of 0.1% aqueous solution of 

trifluoroacetic acid, the compounds were isolated in their salt form. Unfortunatelly, the HPLC 

separation of the mixture allows only for NMR analysis and confirmation of mass (LC-MS and 

HRMS analysis). The yield of the separated compounds was not determined. The reaction with 

Grubbs 2nd generation catalyst was repeated with a higher dilution but the conversion of the reaction 

decreased to 70% leading to the same mixture of compounds. Changing the degree of dilution or using 

longer time reaction did not improve the result of this reaction.  
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3.5.  Synthesis of pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones 

 
The synthesis of pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones is based on the reaction of  

2-propen-1-yl 2-chloro-3-pyridinecarboxylate 186 with primary amines.[176a] Alkyl amines and one 

aromatic amine were evaluated. Starting from commercially available 2-chloropyridine-3-carboxylic 

acid, reaction with allyl alcohol and the coupling reagent 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC), in the presence of a catalytic amount of DMAP, afforded 

2-propen-1-yl 2-chloro-3-pyridinecarboxylate 186 in 78%.[176b] Compound 186 was further reacted 

with aliphatic/aromatic primary amines providing molecules 196 and 197 in good yields (Scheme 71, 

Table 15). Only for the reaction with 1-adamantylamine, acetonitrile (MeCN) was used as a solvent 

(Table 15, entry 9). Product 196 was obtained as the sole product in the reaction with sterically 

hindered amines like cyclopropylamine, t-butylamine, t-octylamine and 1-adamantylamine (Table 15, 

entries 5, 7, 8 and 9). Reaction with cyclohexylamine provided two products, 2-cyclohexylamino-

nicotic acid allyl ester 196f was obtained together with N-cyclohexyl-2-cyclohexylamino-

nicotinamide 197f (Table 15, entry 6). The main product 196 results from the nucleophilic aromatic 

substitution of chlorine, which is more favorable than the formation of amide 197.[177]   
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Scheme 71 Reaction of allyl 2-chloro-pyridinecarboxylate with amines.  
Reaction conditions: NH2R (solvent), reflux, see also Table 15. 

 
Table 15: Preparation of compounds 196 and 197. 
 

Entry NH 2R Time [h] 
Product 

 Yield(%) a  Yield(%) a 

1 allylamine 19 196a 36 197a 61 

2 propylamine 20 196b 29 197b 56 

3 butylamine 23 196c 23 197c 74 

4 i-pentylamine 17 196d 2 197d 68 

5 cyclopropylamine 68 196e 31 197e - 

6 cyclohexylamine 21 196f 68 197f 30 

7 t-butylamine 259 196g 63 197g - 

8 t-octylamine 27 196h 73 197h - 

9 1-adamantylamine 117 196i 51b 197i - 

10 benzylamine 21 196j 26 197j 56 
a column chromatography; b reaction in MeCN 
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Using 1,1’-carbonyldiimidazole (CDI) and NaH in a mixture of THF and 1-methylpyrrolidinone 

(NMP), ring closure could be carried out in 16-18 hours at room temperature (Scheme 72, Table 

16).[178] Under these conditions, N-cyclohexyl-2-(cyclohexylamino)-3-pyridinecarboxamide 197f 

(Table 16, entry 5) did not react at room temperature or under reflux. For this ring closing reaction, 

also triphosgene was evaluated.[179] After 30 hours of stirring at room temperature, the desired product 

198f was formed in the reaction mixture; however its isolation, using column chromatography or 

crystallization, was not successful.  
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Scheme 72 Ring closure reaction of compound 197. Reaction conditions: NaH (3eq), CDI (3eq), THF/NMP 
(2:3), rt, 16-18h. 

 

Table 16: Preparation of compound 198. 

 

Entry 197 Time [h] Product Yield(%) 

1 197a 18 198a 69% 

2 197b 18 198b 58% 

3 197c 16 198c 61% 

4 197d 18 198d 91% 

5 197f 16 198f -a 

6 197j 17 198j 60% 
a product was not isolated 

 

With the aim to prepare a series of pyrido[2,3-d]pyriminides with two different alkyl groups, 

compounds 196f and 196h were refluxed with a second amine (Scheme 73, Table 17). In the reaction 

of allyl 2-(cyclohexyl)-3-pyridinecaboxylate 196f with allylamine, the yield of amide 199a was low, 

even after prolonged reflux (Table 17, entry 1). The t-octyl derivative was obtained in higher yield 

(Table 17, entry 5-7). For i-pentyl derivatives, longer reaction times provided the same yield,  

as for the t-octyl derivative (Table 17, entries 3 and 6). For both derivatives, the reaction with 

cyclopropylamine and i-propylamine did not occur even after a prolonged period of reflux (4 days). 
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Scheme 73 Preparation of compound 199. 
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Table 17: Preparation of 199. 

 

Entry R NH 2R´ Time [h] Product Yield(%) a 

1 

cyclohexyl (196f) 

allylamine 189 199a 54% 

2 propylamine 42 199b 55% 

3 i-pentylamine 186 199c 85% 

4 cyclopropylamine 192 199d SM 

5 

t-octyl (196h) 

allylamine 43 199e 74% 

6 propylamine 113 199f 68% 

7 i-pentylamine 88 199g 85% 

8 cyclopropylamine 192 199h SM 
ayield after column chromatography 

 

Compounds 199, containing two different N-substituents can be easily transformed  

into pyrido[2,3-d]pyrimidines 200 using the same reaction conditions as for the ring closure of 198. 

Only for the allyl derivatives, the yields are low, i.e. 47% for the cyclohexyl derivative and 49% for 

the t-octyl derivative, respectively. All other amines gave excellent yields (Table 18, entries 2, 3, 5 

and 6). 
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Scheme 74 Ring closure reaction of compound 199. Reaction conditions: NaH (3eq), CDI (3eq), THF/NMP 
(2:3), rt, 15-18h. 

 

Table 18: Preparation of 200. 

 

Entry 199 Time [h] Product Yield(%) 

1 199a 15 200a 47% 

2 199b 16 200b 91% 

3 199c 19 200c 97% 

4 199e 19 200e 49% 

5 199f 19 200f 97% 

6 199g 19 200g 86% 

 

In an attempt to synthesize dipyrido[2,3-d]pyrimidine 201, compound 202 was prepeared.  
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Figure 12 Structure of desired dipyrido[2,3-d]pyrimidine. 

 

Starting from the 2-chloropyridine-3-carboxylic acid, 2-chloropyridinecarbonyl chloride was obtained 

quantitatively after 2 hours of reflux with excess of thionyl chloride. The remaining thionyl chloride 

was removed and ethylenediamine in CH2Cl2 was added, affording compound 202. The latter 

molecule was refluxed with an appropriate alkylamine for 32-68 hours and the obtained products were 

purified by column chromatography (Table 19). 
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Scheme 75 Synthesis of compound 203. Reaction conditions: (i) a) SOCl2, reflux, 2h,  
b) ethylenediamine, CH2Cl2, rt, 17h, 60%; (ii) NH2R (solvent), reflux, 32-68h. 

 
Table 19: Preparation of compound 203. 

 

Entry NH 2R Time [h] Product Yield(%) a 

1 allylamine 32 203a 54% 

2 propylamine 68 203b 62% 

3 i-pentylamine 59 203c 59% 
ayield after column chromatography 

 

Compound 203b was treated with NaH and CDI in a mixture of THF and NMP to obtain dipyrido[2,3-

d]pyrimidine 201b. Unfortunately, after 17 hours of stirring at room temperature, only starting 

material was detected. The ring closure was subsequently attempted with triphosgene and DIPEA in 

CH2Cl2 in room temperature for 1-5 hours. However, even using the better carbonyl donor, 

triphosgene, dipyrido[2,3-d]pyrimidine 201 could not be obtained. The LC-MS analysis showed 

masses corresponding to three compounds: the starting material, N-(2-aminoethyl)-2-

propylaminonicotinamide 204 and compound 205 (Scheme 76). Compound 205 was separated by 

preparative TLC in 9% yield and characterized. 
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Scheme 76 Unexpected formation of five-membered ring 205. Reaction conditions: (i) DIPEA (6eq), 
triphosgene (2.4eq), CH2Cl2, 0°C (15min)→rt (1h), 9%. 

 

To confirm the structure of the separated compound, the 1H-NMR analysis were compared with 

starting material 203b. The 1H-NMR of the compound 203b used as a starting material shows 

broadened signals from the amide at 6.94 ppm and a signal from the amino group at 7.52 ppm.  

On the 1H-NMR spectrum of 205, the broaded signal occurs at 7.55 ppm. The 13C-NMR analysis 

showed a new signal at 151.4 ppm. This signal does not respond to any tertiary (154.2, 110.2 and 

141.8 ppm) or quaternary (107.4 and 158.3 ppm) carbon from the pyridine ring (HSQC analysis).  

To determine the structure of 205, the HMBC analysis was recorded. The carbon at 151.4 ppm  

is coupled with protons at 4.00, which corresponds with the protons of the ethyl linker. The carbon at 

151.4 ppm is characteristic for the carbon from the carbonyl group of 2-imidazolidinone.[180]  

In conclusion, from the performed analyses the structure of the product is deduced to be 205  

(Figure 13).  
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Figure 13 

 

For the preparation of pyrido[2,3-d]pyrimidine with 2-hydroxyethyl in the 3 position, 2-chloro-N-(2-

hydroxyethyl)-nicotinamide was synthesized from 2-chloro-3-pyridinecarbonyl chloride and 

ethanolamine (Scheme 77).  
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Scheme 77 Synthesis of 2-chloro-N-(2-hydroxyethyl)-nicotinamide 207. Reaction conditions: (i) a) SOCl2, 
reflux, 2h, b) ethanolamine, CH2Cl2, rt, 17h, 207: 98%. 

 

LC-MS analysis showed the mass of compounds 206 and 207, while 1H-NMR analysis only showed 

signals from 207 and ethanolamine (used in excess). Compound 207 was separated by column 

chromatography in 98% yield, compound 206 was isolated in less than 1% yield. In the beginning,  

the 2-chloro-3-pyridinecarbonyl chloride is present in excess to the ethanolamine. In the first place, 

the amide bond is formed and then, because of excess of acid chloride and availability of free 

hydroxyl group, the ester bond. When in the reaction mixture ethanolamine is in excess, the free 

amino group of ethanolamine can attack the carbonyl moiety of the ester 206, and form another 

molecule 207.   

  In order to obtain nicotinamide 208, compound 207 was refluxed with the appropriate amines 

for 16-96 hours (Scheme 78, Table 20).  

 

N

N
H

O

Cl

OH

207
N

N
H

O

NHR

OH

208

i

 
 

Scheme 78 Synthesis of 2-alkylamino-N-(2-hydroxyethyl)-nicotinamide 208. Reaction conditions: NH2R 
(solvent), reflux/100°C (19-69h). 

Table 20: Synthesis of compounds 208. 
 

Entry NH 2R Conditions Product Yield(%)a 

1 allylamine reflux, 69h 208a 91% 

2 propylamine reflux, 26h 208b 91% 

3 i-pentylamine reflux, 16h 208c 98% 

4 benzylamine 100°C, 20h 208d 95% 

5 cyclohexylamine 100°C, 19h 208e 22% 
ayield after column chromatography 

 

As an alternative, 2-benzyl-N-(2-hydroxyethyl)-nicotinamide 208d was also synthesized from  

2-benzylamine-3-pyridinecarboxylic acid 209[181] and ethanolamine in the presence of (benzotriazol-1-

yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) and Et3N in THF at room 

temperature.[182] The 2-benzyl-N-(2-hydroxy-ethyl)-nicotinamide 208d was separated by column 

chromatography.  
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Scheme 79 Alternative synthesis of compound 208d. Reaction conditions: (i) BnNH2, 90°C, 10h, 40%, (ii) 
ethanolamine, BOP, Et3N, THF, rt, 21h, 80%. 

 

For the ring closure, two methods were selected. The 2-benzyl-N-(2-hydroxyethyl)-nicotinamide 208d 

was treated with CDI in THF[183] and was refluxed under a nitrogen atmosphere for 40 hours. After 

reaction, only 210 was present in the reaction mixture (LC-MS analysis). To cyclize compound 210 to 

the nine-membered molecule 211, two methods were chosen. In the first attempt 210 was treated with 

NaH in THF; the second trial involved reflux in the presence of K2CO3. Unfortunatelly, in both cases 

the poor nucleophilicity of the amine did not allow the cyclization ((ii), Scheme 80). When 208d was 

treated with NaH and CDI during 20 hours, only starting material and compound 212 was detected, 

after which 212 was isolated in 10% yield.   
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Scheme 80: Synthesis of bicyclic compound 213d. Reaction conditions: (i) CDI, THF, reflux, 40h;  
(ii) NaH, THF, rt, 21h or K2CO3, MeCN, reflux, 22h; (iii) triphosgene, DIPEA, CH2Cl2, rt, 4h;  

(iv) NaH, CDI, THF, rt, 20h. 

 

In a third method, 2-benzyl-N-(2-hydroxyethyl)-nicotinamide 208d was treated with triphosgene in 

the presence of DIPEA in CH2Cl2. After 4 hours the desired compound 213d was isolated in 20% 

yield. The ring closure using triphosgene was also performed for propyl derivative, and bicyclic 213b 

was obtained in 27% yield. 

To synthesize 3,4-dihydro-pyrido[3,2-f]-1,4-oxazepin-5(2H)-one 214, 2-chloro-N-(2-

hydroxyethyl)-nicotinamide 207 was treated with NaH in THF. After stirring at room temperature for 

22 hours, a white precipitate was filtered off and washed with THF. Surprisingly the 14-membered 

tricyclic molecule 215 was obtained in 33% yield (Scheme 81). The desired bicyclic compound 214 

was not detected in the reaction mixture. Dilution of the solution did not have any influence on the 
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formation of compound 214, in the reaction mixture compounds 206 and 207 were detected by  

LC-MS. After reaction with TDA-1 in toluene[130] at room temperature for 2-4 hours, only starting 

material was detected. 
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Scheme 81 Unexpected formation of the 14-membered ring.  
Reaction conditions: (i) NaH, THF, 0°C→rt, 22h. 

 

In 1988, Schultz et al.[184] reported the synthesis of 6,7:13,14-dibenzo-1,8,4,11-

dioxadiazacyclotetradecanone-5,12-dione 218 in the reaction of 2-fluoro-N-(2-

hydroxymethyl)benzamide 216 with NaH in DMF, the tricyclic compound was isolated in 62%.  

In the reaction mixture also bicyclic 6,7-benzo-1-oxo-4-azepin-5-one was detected (4% yield).  

They observed that the macrocycle was formed only when 2-fluoro-N-(2-hydroxymethyl)benzamide 

was treated with NaH in THF and that only secondary amides provide the macrocycle  

(Table 21, entry 1-3). Tertiary amides direct an intermolecular cyclization to bicyclic compounds 

(Table 21, entry 4-5). Low concentration of starting material resulted in the formation of 

benzoxazepinone.[184]  

 

N

O

F

OH

216 217
O

N

O

218

R1

R2

R3

R1

R2

R3
O

N
O

N

O

O

R1
R1

R2

R3

R3

R2

+

 

 
Scheme 82 Synthesis of 6,7:13,14-dibenzo-1,8,4,11-dioxadiazacyclotetradecanone-5,12-dione 218 as presented 

by Schultz et al.[184] 

 
Table 21: Synthesis of 6,7:13,14-dibenzo-1,8,4,11-dioxadiazacyclotetradecanone-5,12-dione 218. 
 

Entry Compound 216 Product (%) 

 R1 R2 R3 217 218 

1 H H H - 62 

2 H Me H 4.7 69 

3 H CHMe2 H 6.6 72 

4 Me H H 90 - 

5 Me Me Ph 60 - 
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Those results confirm our observation during reaction of 2-chloro-N-(2-hydroxyethyl)-nicotinamide 

207 with NaH. Although, the dilution of the reaction mixture did not induce the formation of bicyclic 

compound 110. As was mentioned before, tertiary amides direct an intermolecular cyclization  

to bicyclic compounds. To synthesize the 3,4-dihydro-4-benzyl-pyrido[3,2-f]-1,4-oxazepin-5(2H)-one 

221, the N-benzyl-2-chloro-N-(2-hydroxyethyl)-nicotinamide 219 was treated with NaH.  

The seven-membered bicyclic compound 221 was obtained in 98% yield (Scheme 83).  
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Scheme 83 Synthesis of the seven-membered ring 221; (i) a) SOCl2, reflux, 2h,  
b) 2-benzylaminoethanol, CH2Cl2, rt, 22h; (ii) NaH, THF, rt, 16h. 

 

To obtain the bicyclic 223, amine-3-pyridinecarboxylic acid 209 was coupled with  

2-chloroethanol using BOP and Et3N (Scheme 84).[182] The obtained 222 was allowed to react under 

different conditions to potentially form the 2,3-dihydro-pyrido[2,3-e][1,4]oxazepin-5(1H)-one 223 

(Table 14). The reaction of NaH to generate the anion of 222 (R=H) provided 2-aminopyridine-3-

carboxylic acid as a product. The application of a weaker base (K2CO3), (after 41 hours of stirring  

at 80°C) only led to starting material. The cyclization of the benzyl derivative under different 

conditions did not provide the desired seven-membered compound.  
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Scheme 84 Attempt to obtain bicyclic 223. Reaction conditions: (i) 2-chloroethanol, BOP, Et3N, THF, rt (19h), 

90-80%; (ii) see Table 22. 
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Table 22: Reaction conditions used for the potential ring closure of 222. 
 

Entry R Substrates and solvents Conditions Result 

1 

H 

NaH (2eq), THF 0°C (5min) → rt (22h) 
2-aminopyridine-
3-carboxylic acid 

2 MeCN 80°C (112h) SM 

3 K2CO3 (3eq), MeCN 80°C (41h) SM 

4 

Bn 

NaH (1.1eq), THF 0°C (5min) → rt (21h) SM 

5 MeCN 80°C (24h) SM 

6 K2CO3 (2.5eq), MeCN reflux (86h) SM 

7 n-BuLi (1.3eq), THF -78°C (5min) → rt (21h), N2 SM 

8 LDA (1.2eq), THF 0°C (5min) → rt (21h), N2 SM 
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4. The biological activity of the selected compounds  

 

4.1.  Inhibitory activity of the selected compounds at NPP1 

 

The screening tests for NPP1 inhibitory activity were performed in the laboratory headed by Professor 

Christa E. Müller (PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, 

University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany). 

 

The nucleoside pyrophosphatase/phosphodiesterases (NPPs) are widely distributed  

N-glycosylated enzymes that catalyze the hydrolysis of pyrophosphate and phosphodiester bonds of 

numerous nucleotides and nucleotide sugars.[185] Phosphodiesterases are classified as enzymes that 

hydrolyse diesters of phosphoric acid into phosphomonesters, and can be classified into two main 

groups; those that act on lipids or on nucleotides. Pyrophosphatases are acid anhydride hydrolases that 

catalyze the breakdown of diphosphate bonds and are biologically important in the cleavage  

of ATP.[186] Mammalian NPPs have been shown to be involved in a variety of cellular processes such 

as nucleotide signaling, cell differentiation, nucleotide recycling and control of the levels of 

nucleotides linked to glycosylation and sulfation reactions.[187] In humans the NPP family consist of 

five proteins of which NPP1 and NPP3 show similar structure and function and the genes encoding for 

these two proteins have been mapped onto the human chromosome 6q22-23.[188] The NPP1 protein  

is a membrane spanning homodimer and, when cleaved, the extracellular domain can function as  

a secreted circulating protein. ENPP1 is expressed in a wide range of tissues including cartilage, heart, 

kidney, parathyroid and skeletal muscle, and it is highly expressed in vascular smooth muscle cells 

(VSMCs), osteoblasts and chondrocytes.[187][189] It was reported to exist in bone (osteoblast) and 

cartilage (chondrocytes) and has a role in regulating mineralization processes (Figure 14). 

Extracellular pyrophosphate (PPi), the product of ATP hydrolysis by NPP1, is a likely source of 

inorganic phosphate to support hydroxyapatite formation when hydrolyzed by phosphatases and is 

also a potent inhibitor preventing apatite mineral deposition and growth.[190] Excessive amounts of 

NPP1 in the chondrocytes can lead to deposits of calcium pyrophosphate crystals in joints,  

the so-called calcium pyrophosphate dihydrate deposition disease, which can trigger inflammatory 

arthritis and joint pain. NPP1 downregulates insulin signaling by inhibiting the tyrosine kinase activity 

of insulin receptors, resulting in reduced insulin sensitivity.[191] NPP1 was found in human astrocytic 

brain tumors and was correlated with tumor gradation.[190]  
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Figure 14 The role of NPP1 in ATP hydrolysis and the downstream effects of bone mineralisation.[186] 

 

The primary function of NPP1 is the hydrolysis of ATP into AMP and PPi, though it is involved in 

further degradation of pyrophosphate bonds to generate ADP, adenosine and Pi. PPi is converted into 

Pi by tissue-non-specific alkaline phosphatase (TNAP) and the PPi is transported through the cell 

membrane by ankylosis protein (ANK) and type III sodium-dependent Pi co-transporter (PiT-1).  

The Pi is generated by phosphoethanolamine/phosphocholine phosphatase (PHOSPHO1) in the matrix 

vesicle by the hydrolysis of phosphoethanolamine (PEA) and phosphocholine (Pchol). PPi inhibits 

hydroxyapatite formation, while Pi promotes this process, thus the balance of these two mediators  

is important in regulating mineralization.[186]    

Studies suggested that quinazoline-4-piperidine-4-methylsulfamide is a NPP1 inhibitor 

lacking binding affinity for the human ether-à-go-go-related gene (hERG)[192] and that  

1,3,4-oxadiazole(thiadiazole)-2-(3H)-thiones are noncompetitive human NPP1 inhibitors. In 2014, 

Nadel et al. reported two new potent compounds to inhibit NPP1 (Figure 15, examples A and B).[190]  
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Figure 15 Dinucleotide and nucleotide analogues as potential NPP1 inhibitors: A adenosine 5′-Pα-thio-β,γ-
(dichloromethylene)triphosphate, B adenosine 5′ -α,β-methylene-γ-thiotriphosphate. 
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The selected compounds are showed in Table 23. Biochemical properties of NPP activity were 

determined by assessing nucleotide phosphodiesterase activity, using p-nitrophenyl 5'-thymidine 

monophosphate (p-Nph-5´-TMP) or ATP as a substrate. 

 

Table 23: Initial screening with p-Nph-5´-TMP and ATP for the selected compounds.  

Compound Structure p-Nph-5´-TMPa Inhibition (%) ATP a´ Inhibition (%) 
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Compound Structure p-Nph-5´-TMPa Inhibition (%) ATP a´ Inhibition (%) 
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Compound Structure p-Nph-5´-TMPa Inhibition (%) ATP a´ Inhibition (%) 
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Compound Structure p-Nph-5´-TMPa Inhibition (%) ATP a´ Inhibition (%) 
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Compound Structure p-Nph-5´-TMPa Inhibition (%) ATP a´ Inhibition (%) 
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Compound Structure 
p-Nph-5´-TMPa  
Inhibition (%) 

ATPa´ Inhibition (%) 
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Compound Structure 
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Compound Structure 
p-Nph-5´-TMPa  
Inhibition (%) 

ATPa´ Inhibition (%) 
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aInitial screening with the artificial substrate p-Nph-5´-TMP. The assay conditions were: 400µM p-nitrophenyl 
5’-TMP, 10µM inhibitor concentration, 20 ng of human recombinant NPP1, reaction buffer (1mM CaCl2, 
200µM ZnCl2, 50mM Tris, pH 9.0), spectrophotometric detection at 400nm and n=1. 
 

a´The assay conditions were: 400µM ATP as substrate, inhibitor concentration at 10µM, 1.8ng/µl of human 
recombinant NPP1 (Km = 43.2µM, own enzyme), reaction buffer (1mM CaCl2, 2mM MgCl2, 10mM CHES, pH 
9.0), detection at 260nm (n = 3). 

 

 

In the initial screening with artificial substrate (p-Nph-5´-TMP) only two compounds were exhibited 

an enzyme inhibition over 50% (compound 196h and 196i, 62% and 53% respectively). The screening 

with ATP for compounds 196h and 196i resulted with 26% and 27% inhibition respectively.  

The inhibition effect with ATP (over 25%) were detected also for compounds 199b (25%), 200f 

(30%) and 113 (25%). For investigations with the natural substrate, compounds should inhibit over 

70% in the initial screening. The negative values can suggest that the products of metabolic pathway 

acts upon the enzyme. 
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4.2.  Antimicrobial potency assay of the selcected compounds 

 

The antimicrobial activity test was performed in the Laboratory of Microbiology & BCCM/LMG 

Bacteria Collection (Faculty of Science, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, 

Belgium). 

 

The five compounds were submitted to antimicrobial activity test (Figure 16). The four strains 

were selected: Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus and Bacillus subtilis.  
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Figure 16 
 

Escherichia coli, is a member of the bacterial family of Enterobacteriaceae. Also is  

a prevalent commensal inhabitant of the gastrointestinal tracts of humans and warm-blooded animals, 

and one of the most important pathogens responsible for a broad spectrum of diseases. The special 

properties of the E. coli, such as ease of handling, availability of the complete genome sequence,  

and its ability to grow under both aerobic and anaerobic condition, makes it an important host 

organism in biotechnology.[193] Seven major pathotypes were classified for enteric E. coli, and three  

E. coli pathotypes for extraintestinal strains (ExPEC). Enteric E. coli cause diarrhea in children, 

hemorrhagic colitis, traveler´s diarrhea, the extraintestinal E. coli case neonatal meningitis and 

probable source of food-borne disease.[193][194] Klebsiella pneumoniae is the most common organism 

associated with Klebsiella pneumonia carbapenemases (KPCs) resistance determinants. KPCs are 

typically reside on transferable plasmids and can hydrolyze all penicillins, cephalosporins, aztreonam, 

and carbapenems. Infections caused by KCPs have very limited options for treatment and often 

require the use of polymyxins, which fell into disuse in the 1970s due to high rates of 

nephrotoxicity.[195] Staphylococcus aureus is a gram-positive spherical bacterium. It is often found as  

a commensal associated with skin, skin glands, and mucous membranes. Staphylococcus aureus is one 

of the main causes of hospital- and community-acquired infections which can result in serious 

consequences. It can be a cause of central venous catheter-associated bacteremia and ventilator-
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assisted pneumonia. It also causes serious deep-seated infections, such as endocarditis and 

osteomyelitis. Staphylococcus aureus is often responsible for toxin-mediated diseases, such as toxic 

shock syndrome, scalded skin syndrome and staphylococcal foodborne diseases (SFD). They are 

resistant to heat denaturation and proteases.[196] Bacillus subtilis is a Gram-positive, aerobic soil 

bacterium ubiquitous in the environment and commonly associate with variety of food products such 

as milk and dairy product, meat products, rice, pasta, and dried products such as spices. The favorable 

effect of Bacillus subtilis spores on the balance of the intestinal microflora is the rationale for its 

general use as a probiotic preparation in the treatment or prevention of intestinal disorders.  

The pathogenic potential is generally described as low or absent. Data of infections cases by Bacillus 

subtilis are incomplete due to discard these strains and also the cause-of -death statistics no data about 

infections are present.[197] Bacillus subtilis is considered as a GRAS organism (generally recognized as 

safe).[198] Recently Bacillus subtilis and other Bacillus have been linked to potential food poisoning 

issues. One of the main concerns associates with food is the low pH which is applied to prevent and 

control the growth of Clostridium botulinum can increases by Bacillus production of enzymes. One of 

the difficulties is the resistance for the pasteurization treatment. In other hand, the ability to produce 

enzymes have been used in a positive manner to produce the food (e.g. the Thai fermented soy 

products, the African fermented locus bean product).[199]  

 

The tested compounds did not display an antimicrobial effect against both Gram-negative test 

strains Escherichia coli and Klebsiella pneumoniae. Four tested compounds (198a, 200c, 113, 150) 

displayed a very weak growth inhibition of both Gram-positive test strains Staphylococcus aureus and 

Bacillus subtilis. The compound 196i did not demonstrate any effect against Gram-negative or Gram-

positive strains.  
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4.3.  The results of the ADME study of the selected compounds 

 

The ADME study were performed in Drug Delivery and Disposition headed by Professor Patrick 

Augustijns (Department of Pharmaceutical and Pahrmacological Science, KU Leuven, Campus 

Gasthuisberg-O&N II, Herestraat 49 – box 921, B-3000 Leuven, Belgium). 

 

The ADME study of the synthesized library (196i, 197a, 197d, 197f, 198a, 198b, 198d, 198j, 

199e, 200a) was published in Bioorg. Med. Chem. 2014, 22, 3947-3956. 

 

Due to the variety of pharmacological activities of the pyridopyrimidine scaffold 

(Introduction), the ADME (Absorption, Distribution, Metabolism, and Excretion) study was 

performed on selected examples of the synthesized library (Figure 17). Key physicochemical 

properties were determined using Marvin Sketch (Table 24). All compounds were considered  

drug-like according to the Lipinski’s rules concerning the molecular weight (MW), the amount of 

hydrogen bond donors (HBD) and acceptors (HBA) and the partition coefficient (LogP)[200]  

Moreover, polar surface areas were below 140 Å² which is recommended by Veber et al.[201] 
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Figure 17 Selected compounds for ADME study. 

 

With respect to the evaluation of the intestinal solubility and permeability, plain aqueous 

buffers are often used. However, plain aqueous buffers insufficiently represent the in vivo conditions, 

possibly resulting in too low solubilities to allow further experiments. Hence, biorelevant media are 

more promising, mimicking the in vivo environment more accurately due to the presence of mixed 

micelles of taurocholate and lecithin, i.e. a fasted simulated intestinal fluid (FaSSIF).[203][204] Recently, 

a good correlation was shown between solubility in FaSSIF and fasted state human intestinal fluid 

(FaHIF).[205] Table 24 and Figure 18 reveal a broad range in solubility values for this series, ranging 
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from 12.6 µM for compound 197f to 13.8 mM for compound 197a. To generally describe “solubility” 

the United States Pharmacopoeia (USP) uses different solubility expressions based on parts of solvent 

(in this case FaSSIF) required for one part of solute.[202] The selected compounds could be classified as 

practically insoluble (196i, 197f, 198j, 199e, 200a) to slightly soluble (197a). The use of aliphatic 

chains as substituent on the pyrido[2,3-d]pyrimidines scaffold (198a, 198b, 198d) resulted in a higher 

solubility compared with compound 198j containing benzyl groups. The presence of ring structures as 

substituent generates a higher lipophilicity of the compound leading to a lower aqueous solubility. 

Also for the 2-aminopyridine scaffold, the use of the 2 cyclohexyl substituents (197f) resulted in  

a lower solubility compared to compounds containing aliphatic chains on the same position (197a, 

197d, 199e). These observations suggest that aliphatic chains are preferred if solubility issues are 

encountered. 
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Figure 18 Solubility (µM) in fasted state human intestinal fluid (FaSSIF) of the selected pyrido[2,3-

d]pyrimidine-2,4(1H,3H)-diones and their precursors is presented as the mean + S.D. (n=3) 
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Table 24: Properties of pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones and their precursors. 
 

Compound MW HBd
a HBa

b cLogPc Log(LogP) PSAd FaSSIF Solubility  Classificationh Papp  Clint,hep,human 

  (g/mol)        (Å²) (µM)   (x 10-6) (cm/s) ml/min/kg.b.w. 

Drug-like e <500 ≤5 ≤10 ≤5  ≤140f 

196i 312.8 1 3 4.3 0.63 51.2 20.7 ± 5.3g PI 1.2 ± 0.5 84.3 ± 6.4 
197a 217.1 2 3 2.0 0.3 54.0 13801.7 ± 937.8 SS 46.8 ± 1.8 28.0 ± 3.5 
197d 277.2 2 3 3.8 0.58 54.0 509.2 ± 55.9 VSS 19.8 ± 1.3 26.7 ± 8.3 
197f 301.2 2 3 4.2 0.62 54.0 12.6 ± 2.4 PI 9.7 ± 2.0 152.0 ± 0.7 
198a 243.1 0 3 1.7 0.23 53.5 1054.9 ± 111.1 VSS 90.7 ± 15.0 0.0 ± 0.0 
198b 247.1 0 3 2.0 0.3 53.5 3265.2 ± 75.6 VSS 63.0 ± 6.2 3.6 ± 0.5 
198d 303.2 0 3 3.4 0.53 53.5 384.7 ± 55.2 VSS 13.9 ± 1.7 153.2 ± 19.8 
198j 343.1 0 3 3.7 0.57 53.5 53.7 ± 0.5 PI 30.5 ± 1.2 33.9 ± 5.0 
199e 289.2 2 3 3.9 0.59 54.0 207.8 ± 17.2 PI 14.7 ± 1.3 159.2 ± 9.1 

200a 285.1 0 3 2.7 0.43 53.5 43.1 ± 19.7 PI 32.0 ± 0.9 26.6 ± 6.3 
Abbreviations: MW, molecular weight, HBd, hydrogen bond donors, HBa, hydrogen bond acceptors, cLogP, computational partition coefficient, PSA, polar surface area, 
acid dissociation constant, FaSSIF, fasted state simulated intestinal fluid, Papp, apparent permeability, Clint,hep,human, human hepatic intrinsic clearance  
a,b,c,dCalculated with Marvin Sketch 
eLipinski’s rule of five [200] 
fVeber et al, 2007 [201]   
gStandard deviation (SD), n=3                                                                                                                                                                                                                               
hSolubility classification according to the United States Pharmacopoeia (USP, 2007): PI, practically insoluble, VSS, very slightly soluble, SS, slightly soluble [202]  

 

 



THE BIOLOGICAL ACTIVITY OF THE SELECTED COMPOUNDS 
 

93 

Similar as for the intestinal solubility, a broad range was observed for the intestinal permeability of the 

compounds using FaSSIF as apical medium (Table 24 and Figure 19). With exception of compound 

196i, the Papp values of the investigated compounds were significantly higher than that of  

a paracellular marker atenolol (5.3 x 10-6 cm/s) and lower than that of a transcellular marker 

indomethacin (93.3 x 10-6 cm/s). In literature, a Papp value of 10 x 10-6 cm/s has been reported to result 

in a fraction absorbed in humans of at least 90%.[206] Hence, for 9 out of 10 compounds the 

permeability was relatively high. 

The permeability of the selected compounds was also determined in the presence of 4µM of 

the P-glycoprotein (P-gp) inhibitor elacridar (GF120918) to explore whether P-gp has a modulatory 

effect on the absorption of the selected compounds.[207] None of the compounds showed a significant 

increase in Papp when elacridar was included in the medium; this is in contrast with the 3.2-fold 

increase which was observed for a known P-gp substrate indinavir.[208] Hence the intestinal absorption 

of these compounds is not expected to be modulated by P-gp-mediated efflux transport in the intestine. 

 

 

 
Figure 19 Absorption potential of the pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones and their precursors in fasted 
state simulated intestinal fluid (FaSSIF), estimated as the apparent permeability coefficient (Papp) of the Caco-2 
monolayer in presence and absence of 4µM P-glycoprotein (P-gp) inhibitor GF-120918 (data presented as the 

mean + S.D., n=3) 

 
It is important to note that solely the free concentration of the compounds is able to permeate 

across the epithelial membrane. Compounds with a high lipophilicity are readily incorporated 

in micelles present in FaSSIF and are therefore less available for absorption.[209] Figure 20 

clearly illustrates the significant correlation between Papp and Log(LogP) in FaSSIF. 
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Figure 20 Relationship between the intestinal permeability (Papp) of the pyrido[2,3-d]pyrimidine-2,4(1H,3H)-
diones and their precursors in silico predicted lipophilicity (Log(LogP)) 

 
The Clint of the pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones, determined in human liver microsomes 

(HLM), was clearly compound dependent, as depicted in Figure 21. Scaled values for intrinsic hepatic 

clearance in human (Clint,hep,human) varied between 0 and 159 ml/min/kg. For compound 198a,  

no metabolism was observed under the conditions used. A possible explanation is that the metabolism 

of this compound is not mediated by cytochrome P450 enzymes (CYP) and can therefore not be 

determined with liver microsomes as in vitro drug metabolism model. Verapamil was used as  

a positive control compound for hepatic metabolism as it is known to be an extensively metabolized 

compound.[210][211] Compounds 199e, 198d, 197f are more extensively metabolized compared to 

verapamil which could be useful when the metabolite shows biological activity. The metabolism of 

196i is comparable to verapamil. Five of the compounds are more stable than verapamil (198j, 197a, 

197d, 200a, 198b). Since the biological activity of these compounds still needs to be evaluated, 

compounds showing intermediate metabolism (196i, 198j, 197a, 197d and 200a) are the most 

promising. Parent concentrations remained stable in incubations performed in the absence of NADPH 

and glucose-6-phosphate, indicating chemical stability of the compounds under the incubation 

conditions used. 

 
Figure 21 Mean Clint values (±S.D. n=3) for selected pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones and their 

precursors determined in a pool of human liver microsomes (HLM) from 45 donors. 
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The biopharmaceutical profiling of a selection of pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones and 

their precursors reveals a broad range of structure-dependent solubility, permeability and hepatic 

metabolism values. Taking under consideration the results of permeability and hepatic metabolism,  

all compounds, except for 196i, show acceptable drug-like properties; the consequence of the hepatic 

metabolism study depends on the biological activity of the parent compound and its metabolites.  

The selected compounds show poor solubility in FaSSIF, which can be a limiting stage to further 

investigation. 
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5. Perspectives 

 

The new library of pyrido[2,3-b][1,4]oxazepines (vib) and pyrido[4,3-b][1,4]oxazepine (iva) 

can be synthesized using chloro derivatives (ia and ib) of pyridine. Because of the equilibrium 

between 2-hydroxy-3-nitropyridine and 3-nitro-2(1H)-pyridinone the reaction with other alcohols 

under Mitsunobu conditions or alkylation by chlorides could provide N-alkylated products.  

If the alcohol will possess also a carbonyl group, after reduction of the nitro group, the condensation 

reaction can be performed followed by the ring closure to desired pyridoxazepine scaffold.  

The nitrogen atom can be alkylated and the pyridine ring could be brominated at C5 with NBS or Br2. 

This can open many possibilities to coupling reactions e.g. Heck reaction, Suzuki reaction, 

Sonogashira coupling and Buchwald-Hartwig coupling (Scheme 1). 
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Scheme 1 
 

The radical ring closure is more demanding. To prove the formation of the complex metal-

pyridine compound, the benzyl analogue x should be synthesized. The synthesis can start from 

condensation of 2-bromoaniline vii  and benzaldehyde to the imine, followed by reductive amination to 

the secondary amine viii . To introduce the N,N-allylbenzylamine,[151] into the 2 position,  

the Buchwald-Hartwig amination can be used.[212] To complete the synthesis of the starting material x, 

reaction with trichloroacetyl chloride should be performed (Scheme 2).   
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The presented synthesis of 2,3-dihydro-pyrido[2,3-e][1,4]oxazepin-5(1H)-one started by the 

formation of the ester bond, however the cyclization by alkylation failed. One of the uninvestigated 

ways includes the synthesis of an amine at C2 followed by transesterification (Scheme 3, route A). 

Using allyl 2-chloropyridine-3-carboxylate the amine group can be easily introduced into C2 of the 

pyridine ring by substitution of the chlorine atom with O-benzylated ethanolamine.[213]  

The debenzylation can be performed with hydrogen catalyzed by Pd/C. The ring closure to the bicyclic 

compound xv could be performed by transesterification, using NaH in THF.  
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Scheme 3 
 

The second option to the 2,3-dihydro-pyrido[2,3-e][1,4]oxazepin-5(1H)-one scaffold, starts by the 

formation of ester xvii  by the reaction of 2-chloropyridine-3-carboxylic acid and  

N,N-dibenzylethanolamine[214] in the presence of BOP. The double substituted amine prevents  

the formation of amide, thus the ester will be form as the only product. The debenzylation can be 

conducted with hydrogen in the presence of Pd/C, provide the free amine group which in the aromatic 

substitution of the chlorine atom at C2 leads to the desired cyclic compound (Scheme 3, route B). 
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6. Summary  

 

In conclusion, the synthesis of pyrido[2,3-b][1,4]oxazepines (ivb) and pyrido[4,3-

b][1,4]oxazepine (iva) was designed and successful accomplished (Scheme 1). The most challenging 

step of those syntheses turned out to be the coupling of the hydroxynitropyridine with methyl  

3-hydroxy-2,2-dimethylpropanoate. The 2,2-dimethyl-3-(3-nitro-pyridin-2-yloxy)-propionate (iib) and 

2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionate (iia) were isolated in low yields. Next steps did 

not give any trouble, the reduction of nitro group with Fe and NH4Cl gave the amino derivative in 

excellent yields. The ring closure reaction to pyridoxazepines proceeds in 90% yield for both 

pyridines.   
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To explore the seven-membered ring fused to the pyridine ring of pyrido[2,3-b][1,4]oxazepines, seven 

alcohols and a chloride derivative were selected. Due to the equilibrium between 2-hydroxy-3-

nitropyridine and 3-nitro-2(1H)-pyridinone, the N-substituted products were isolated only for three 

alcohols and the chloride (Scheme 2). The reactions with the other alcohols did not allow to synthesize 

neither O-alkylated nor N-alkylated products.  
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The desired pyrido[3,4-b][1,4]oxazepine scaffold xii  was not achieved. The cyclization of  

N-(3,5-dibromo-pyridin-4-yl)-3-hydroxy-propionamide xi using Buchwald coupling conditions 

followed by deprotonation lead to deamidation to x.  
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Scheme 3 

 

Despite the fact that for the synthesis of xii  a lot of methods were used, the starting material  

4-amino-3-hydroxypyridine was not synthesized (Scheme 4).  
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Scheme 4 

 

The most promising pathway which includes the nucleophilic substitution of bromine at C3 did not 

succeed, the isolation failed because of the poor solubility of 3-(3-chloropropoxy)-pyridin-4-ylamine 

xix in organic solvents.  
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The formation of the nine-membered ring of the N-[2-(N-allyl-N-methylamino)-pyridin-3-yl]-

N-benzyl-2,2,2-trichloro-acetamide (xxia) or the N-[2-(N-allyl-N-benzylamino)-pyridin-3-yl]-N-

benzyl-2,2,2-trichloro-acetamide (xxib) under the Kharasch reaction conditions could not be realized 

(Scheme 6). The synthesis of xxa and xxb is presented in Scheme 7. 
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Scheme 7 

 
The Kharasch reaction was conducted with CuCl with or without ligand (TMEDA/ PMDETA), CuO,  

a mixture of CuCl and CuO for the benzyl derivative and with CuCl, Ru(PPh3)3Cl2, Grubbs 1st 

generation and complex CuCl-bipyridine for the methyl derivative. Different solvents (CH2Cl2, DCE 

or toluene), under reflux, 80°C or room temperature were applied. For all investigated conditions,  

only starting materials were recovered.  
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To obtain a nine-membered ring fused to pyridine, the metathesis reaction of allyl 2-(N-allyl-

N-benzylamino)-3-pyridinecarboxylate (xxvia) and allyl 2-(N-allyl-N-tosylamino)-3-

pyridinecarboxylate (xxvib) was performed under different conditions (Scheme 8). The synthesis of 

compounds xxvi is presented in Scheme 9. The allyl 2-(N-allyl-N-benzylamino)-3-pyridinecarboxylate 

(xxvia) was reacted with different ruthenium complexes (Grubbs 1st and 2nd generation catalyst, 

[RuClH(CO)(PPh3)], Hoveyda-Grubbs 2nd generation) in toluene or CH2Cl2, at room temperature, 

reflux or 65°C. However, all the attempts led to the isolation of starting material.  
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Scheme 9 

 

The reaction of xxvia with Grubbs 2nd generation was also conducted in the presence of Lewis acids 

(Ti(Oi-Pr)4, LiCl, ZnCl2, In(OTf)3, Sc(OTf)3). Only in the presence of Sc(OTf)3 or In(OTf)3 a new 

product was detected. The new compound was isolated as the trifluoroacetic acid salt after separation 

on preparative HPLC. The 1H-NMR analysis confirms presence of the deallylated compound  

(Figure 1), 2-(N-allyl-N-benzylamino)-nicotinic acid or allyl 2-benzylaminopyridine-3-carboxylate. 
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Figure 1 
 

The ring closure of allyl 2-(N-allyl-N-tosylamino)-3-pyridinecarboxylate (xxvib) using Grubbs 2nd 

generation, and Grubbs 2nd generation catalyst with Lewis acid (In(OTf)3, Sc(OTf)3) did not proceed to 
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the bicyclic compound. Because of the deallylation and the isolation of starting material, the 2-propen-

1-yl 2-(N-(3-buten-1-yl)-N-tosylamino)-3-pyridinecarboxylate (xxxi) was synthetized as a precursor 

for a ten-membered ring fused to pyridine (Scheme 10). 
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Scheme 10 
 

xxxi Reacted with Grubbs 2nd generation catalyst at 80°C in toluene and after 5 h, a mixture of 

compounds was detected. The compounds were separated by preparative HPLC as a salt of 

trifluoroacetic acid (acid was added to the eluenting mixture). Unexpectedlly, under these conditions, 

the intramolecular cyclization products were formed (Figure 2). In the reaction mixture, the desired 

bicyclic ten-membered pyridine derivative was not detected.  
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Figure 2  
 

When more diluted conditions (0.86 mM) were applied, the conversion of the reaction decreased to 

80% and in the reaction mixture, only products of intermolecular cyclization were present.  

The new method for the pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (xxxviii  and xl)  

is presented in Scheme 11.  
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The ester xxxv, synthetized from 2-chloropyridine-3-carboxylic acid and allyl alcohol, in the reaction 

with alkyl/aromatic amines gave a mixture of products xxxvi and xxxvii , or only xxxvi for sterically 

hinder amines. The selective nucleophilic aromatic substitution with sterically hinder amines at C1  

(t-octylamine, t-butylamine, 1-adamantylamine) is more difficult and needs longer reaction times than 

with other amines (e. g. allylamine, butylamine, i-pentylamine). Amines giving sterically hinder at C2, 

allow the synthesis of N-alkyl 2-(alkylamino)-3-pyridinecarboxamides in good yields. The 

cyclopropylamine is an exception In the reaction with cyclopropylamine, only compound xxii  

(R1=cyclopropyl) was obtained. The synthesis of precursor xxxix to pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-diones with different groups attached to nitrogen, required longer reaction times and the 

yields are lower than in the case of two identical alkyl group. 

To the synthesis of dipyrido[2,3-d]pyrimidine, the N,N'-1,2-ethanediyl-bis[2-chloro-3-

pyridinecarboxamide] (xli ) was synthesized from 2-chloropyridine-3-carboxylic acid and 

ethylenediamine. The obtained compound xli  reacted with alkylamine to xlii  (Scheme 12).  
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Scheme 12 

 

The ring closure was only performed for the propyl derivative. For this reaction, two carbonyl donor 

reagents were selected, CDI and triphosgene. In the reaction with CDI, only starting material was 

detected after 17 hours of stirring at room temperature. The reaction of N,N'-1,2-ethanediyl-bis[2-

propylamino-3-pyridinecarboxamide] xliib  with triphosgene gave unexpectedly the compound xliii  

(Scheme 13). The desired dipyrido[2,3-d]pyrimidine was not detected in the reaction mixture. 
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Scheme 13 
 

In attempt to synthesize the 3-(alkyl/aromatic)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-dione, the 2-chloropyridine-3-carboxylic acid was transformed into the acid chloride,  
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then reacted with ethanolamine or 2-benzylaminoethanol to obtain the mixture of products xliv  and xlv 

(Scheme 14).  
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Scheme 14 
 

The 2-chloro-N-(2-hydroxyethyl)-nicotinamide xlva in reaction with alkyl/aromatic amines gave the 

2-alkyl/aromatic-N-(2-hydroxyethyl)-nicotinamide xlvi  in good yields. The ring closure to pyrido[2,3-

d]pyrimidine-2,4(1H,3H)-dione xlvii  (for the propyl and benzyl derivative), was performed with 

triphosgene as a carbonyl donor (Scheme 15). The xlvii  were obtained in low yields, 27%¨and 20% for 

propyl and benzyl respectively. 
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Scheme 15 
 

The ring closure reaction of unprotected amide xlva led to the intramolecular substitution and resulted 

into the tricyclic compound xlviii , whereas the reaction with the benzyl protected amide xlvb led to 

the intermolecular substitution and the formation of the seven-membered ring fused to pyridine xlix  

(Scheme 16).  
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Dutch translation of summary 

In deze doctoraatsthesis werd de synthese van pyrido[4,3-b][1,4]oxazepine (iva) en 

pyrido[2,3-b][1,4]oxazepines (ivb) ontwikkeld en succesvol uitgevoerd (Schema 1). In deze 

synthetische route bleek de grootste uitdaging de koppeling van het hydroxynitropyridine met methyl 

3-hydroxy-2,2-dimethylpropanoaat te zijn. Dit resulteerde in de synthese van 2,2-dimethyl-3-(3-nitro-

pyridin-2-yloxy)-propionaat (iib) en 2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionaat (iia),  

die beiden echter geïsoleerd werden in lage rendementen. Vervolgens werden beide derivaten 

onderworpen aan een reductie van de nitro-groep door middel van reactie met Fe en NH4Cl,  

wat resulteerde in de vorming van de overeenkomstige amino- derivaten in uitstekende rendementen. 

De daaropvolgende ringsluiting met vorming van de pyridoxazepines verliep voor beide derivaten in 

een rendement van 90%.   
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Schema 1 

  

Met het oog op de synthese van een ruime waaier aan pyrido[2,3-b][1,4]oxazepines, werden zeven 

alcoholen en een chloride derivaat geselecteerd voor reactie met het 2-hydroxy-3-nitropyridine 

startproduct. Omwille van het evenwicht tussen 2-hydroxy-3-nitropyridine en 3-nitro-2(1H)-pyridinon, 

werden er enkel N-gesubstitueerde producten bekomen na reactie met drie van de betreffende 

alcoholen en tevens bij reactie met het chloride (Schema 2). De reacties met de andere alcoholen 

resulteerden tevens niet in de vorming van de O-gealkyleerde noch de N-gealkyleerde producten. 
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Schema 2 

 

De synthese van de pyrido[3,4-b][1,4]oxazepine “scaffold” xii  werd tevens beoogd in deze 

doctoraatsthesis. De cyclizatie van het N-(3,5-dibroom-pyridin-4-yl)-3-hydroxy-propionamide xi via 

een Buchwald koppeling, gevolgd  door deprotonering, leidde echter tot een deamidatie reactie wat 

resulteerde in de synthese van verbinding x. 
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Schema 3 

  

Ondanks het feit dat er verschillende routes zijn uitgeprobeerd voor de synthese van het 4-amino-3-

hydroxypyridine startproduct, resulteerde geen enkele van deze pogingen in het gewenste resultaat. 

Bijgevolg kon de beoogde verbinding xii niet gesynthetiseerd worden (Schema 4). 
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Misschien wel één van de meest veelbelovende “pathway's” voor de synthese van deze 

“scaffold” ging uit van een nucleofiele substitutie van het Br-atoom in de C3-positie. De isolatie van 

deze verbinding mislukte echter door de slechte oplosbaarheid van het 3-(3-chloorpropoxy)-pyridin-4-

ylamine xix in organische solventen. 
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Schema 5 

 

De synthese van het N-[2-(N-allyl-N-methylamino)-pyridin-3-yl]-N-benzyl-2,2,2-

trichlooracetamide (xxia) of het N-[2-(N-allyl-N-benzylamino)-pyridin-3-yl]-N-benzyl-2,2,2-

trichlooracetamide (xxib) werd tevens vooropgesteld. Geen van deze macrocyclische verbindingen 

kon echter bekomen worden onder de gegeven Kharasch reactie condities (Schema 6). De synthese 

van de startproducten xxa en xxb is weergegeven in Schema 7. 
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Schema 7 

  

De Kharasch reactie werd uitgevoerd in aanwezigheid van de volgende katalysatoren: CuCl 

(met of zonder TMEDA/ PMDETA als ligand), CuO en een mengsel van CuCl en CuO voor het 

benzyl derivaat; en met CuCl, Ru(PPh3)3Cl2, de 1ste generatie Grubbs' katalysator en CuCl-bipyridine 

voor het methyl derivaat. Er werdt tevens een grote verscheidenheid aan reactie condities 

uitgeprobeerd met verschillende solventen (CH2Cl2, DCE en tolueen) en temperaturen (reflux, 80°C en 

kamertemperatuur). 

Met het oog op de synthese van een aan pyridine gefuseerde negenring, werd de metathese 

reactie van het allyl 2-(N-allyl-N-benzylamino)-3-pyridinecarboxylaat (xxvia) en het allyl 2-(N-allyl-

N-tosylamino)-3-pyridinecarboxylaat (xxvib) tevens onderzocht (Schema 8). The synthese van de 

startverbindingen xxvi is weergegeven in Schema 9. Het allyl 2-(N-allyl-N-benzylamino)-3-

pyridinecarboxylaat (xxvia) werd samengebracht met verschillende ruthenium reagentia (1ste en 2de 

generatie Grubbs' katalysatoren, [RuClH(CO)(PPh3)] of 2de generatie Hoveyda-Grubbs' katalysator) in 

tolueen of CH2Cl2 en bij verschillende temperaturen (kamer temperatuur, reflux of 65°C).  

Al deze pogingen leidden echter tot het opnieuw bekomen van de startproducten. 
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Schema 9 

  

De reactie van verbinding xxvia met de 2de generatie Grubbs' katalysator werd tevens 

uitgevoerd in de aanwezigheid van Lewis-zuren (Ti(Oi-Pr)4, LiCl, ZnCl2, In(OTf)3, Sc(OTf)3). Hierbij 

werd enkel bij reactie met Sc(OTf)3 en In(OTf)3 een nieuw product gedetecteerd. Na scheiding en 

isolatie op een preparative HPLC kolom, bleek deze nieuw component het overeenkomstige 

trifluorazijnzuur zout van de startverbinding te zijn.1H-NMR analyse bevestigde tevens  

de aanwezigheid van de gedeallyleerde verbinding (Figuur 1), het 2-(N-allyl-N-benzylamino)-

nicotinezuur of het allyl 2-benzylaminopyridine-3-carboxylaat. 

 

N
H

O

OH

N
Bn

F3CCOO

N

O

OH

N
Bn

F3CCOO
H

 

 

Figuur 1 

  

De metathese reactie van het allyl 2-(N-allyl-N-tosylamino)-3-pyridinecarboxylaat (xxvib) met 

de 2de generatie Grubbs' katalysator, al dan niet in de aanwezigheid van In(OTf)3 of Sc(OTf)3 als Lewis 

zuur, resulteerde tevens niet in de synthese van de gewenste bicyclische verbinding. Omwille van het 

optreden van een deallyleringsreactie en de isolatie van de startverbindingen, werd het 2-propeen-1-yl 

2-(N-(3-buteen-1-yl)-N-tosylamino)-3-pyridinecarboxylaat (xxxi) gaangemaakt als precursor voor de 

synthese van een aan pyridine gefuseerde tienring (Schema 10). 



SUMMARY 
 

110 

N

O

O

N
Ts

xxxi

N TsN

O
O

xxxii

N

O

O

NHTs

xxx

Br
K2CO3, DMA
90°C (43h)

84%  

 

Schema 10 

  

Verbinding xxxi werd gereageerd met de 2de generatie Grubbs' katalysator in tolueen bij 80°C 

en na 5 uur reactie werd er een mengsel van verschillende verbindingen gedetecteerd.  

Het reactiemengsel werd opgezuiverd via preparatieve HPLC en het overeenkomstige trifluorazijnzuur 

zout van de startverbinding werd bekomen (trifluorazijnzuur werd toegevoegd aan het elutie mengsel). 

Onverhoopt, werden onder deze reactie condities de intramoleculaire cyclizatie producten gevormd 

(Figuur 2). In het reactiemengsel werd de beoogde bicyclische tienring echter niet gedetecteerd. 
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Figuur 2 

  

Wanneer meer verdunde reactie condities (0.86mM) werden gebruikt, daalde de conversie van 

de reactie naar 80% en werden er enkel intermoleculaire cyclizatie producten gevormd. 

De nieuwe methode voor de synthese van de pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dionen 

(xxxviii  en xl) is weergegeven in Schema 11. 
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 Het ester xxxv, gesynthetiseerd door reactie van 2-chloorpyridine-3-carbonzuur en allyl 

alcohol, werd gereageerd met alkyl- en aryl aminen, wat resulteerde in een mengsel van de 

verbindingen xxxvi en xxxvii , of selectief in verbinding xxxvi voor meer sterisch gehinderde aminen. 

Deze selectieve nucleofiele aromatische substitutie op de C1-positie wordt bemoeilijkt met sterisch 

gehinderde aminen (t-octylamine, t-butylamine, 1-adamantylamine) en heeft dan ook langere reactie 

tijden dan bij reactie met andere aminen (bvb allylamine, butylamine, i-pentylamine). De resulterende 

aminen waarvan de C2-positie meer is afgeschermd door sterische hindering, leveren de 

overeenkomstige N-alkyl 2-(alkylamino)-3-pyridinecarboxamiden in goede rendementen. Hierbij is 

het cyclopropylamine echter een uitzondering, aangezien na reactie enkel verbinding xxii   

(R1= cyclopropyl) werd bekomen. De synthesis van pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dionen, 

uitgaande van  precursor xxxix, met twee verschillende groepen op het N-atoom, vereisten langere 

reactie tijden en resulteerden in lagere rendementen, in vergelijking met de aminen met twee identieke 

groepen op het N-atoom. 

Met het oog op synthese van het dipyrido[2,3-d]pyrimidine, werd het 2-chloorpyridine-3-

carbonzuur gereageerd met ethyleendiamine, wat resulteerde in de vorming van N,N'-1,2-ethaandiyl-

bis[2-chloor-3-pyridinecarboxamide] (xli ). De bekomen verbinding xli  onderging vervolgens reactie 

met een alkylamine, wat leidde tot de vorming van verbindingen  xlii  (Schema 12). 
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 De daaropvolgende ringsluiting werd enkel uitgevoerd op het bekomen propyl derivaat.  

Met het oog op deze reactie werden twee carbonyl doneerende reagentia geselecteerd, nl. CDI and 

trifosgeen. Bij reactie met CDI werd na 17 uur roeren bij kamer temperatuur enkel het start product 

gedetecteerd. De reaction van N,N'-1,2-ethaandiyl-bis[2-propylamino-3-pyridinecarboxamide] xliib  

met trifosgeen resulteerde echter onverwacht in de synthese van verbinding xliii  (Schema 13). Hierbij 

was het gewenste dipyrido[2,3-d]pyrimidine niet aanwezig in het reactiemengsel. 
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Met het oog op de synthese van de 3-(alkyl/aryl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-dionen, werd het 2-chloorpyridine-3-carbonzuur getransformeerd in het overeenkomstige 

zuurchloride en vervolgens gereageerd met ethanolamine of 2-benzylaminoethanol, wat resulteerde in 

een mengsel van de verbindingen xliv  en xlv (Schema 14). 
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Bij reactie van het 2-chloor-N-(2-hydroxyethyl)-nicotinamide xlva met alkyl- en aryl aminen 

werden de overeenkomstige 2-alkyl/aryl-N-(2-hydroxyethyl)-nicotinamiden xlvi  in goede rendementen 

bekomen. De daaropvolgende ringsluiting tot de pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dionen xlvii  

(voor de propyl en benzyl derivaten) werd uitgevoerd met trifosgeen als carbonyl donor (Schema 15). 

De resulterende verbindingen xlvii  werden echter bekomen in lage rendementen (20 - 27%). 
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De ringsluitingsreactie van het vrije amide xlva leidde tot een intramoleculaire substitutie die 

resulteerde in de vorming van de tricyclische verbinding xlviii . Wanneer het benzyl beschermde amide 

xlvb echter werd onderworpen aan een intramoleculaire substitutie,  resulteerde dit in de vorming van 

een aan pyridine gefuseerde zevenring xlix  (Schema 16). 
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7. Experimental part 

 

7.1. Reagents and equipment 

 
All the reagents were commercially available and used without further purification. Tetrahydrofuran 

(THF) was distilled from sodium, dichloromethane (CH2Cl2) was distilled from calcium hydride and 

immediately prior to use. TLC (thin-layer chromatography) was carried out on glass plates coated with 

silica gel (Merck, Kiesegel 60F254, precoated 0.25 mm). 1H (300 MHz/ 400 MHz) and 13C (75 MHz/ 

100.6 MHz) NMR spectra were recorded in CDCl3 and DMSO-d6 as solvent, with a Jeol Eclipse FT 

spectrometer or a Bruker Avance III Nanobay 400 MHz spectrometer at room temperature. Low-

resolution mass spectra were recorded using a direct inlet system with an Agilent 1100 series LC/MSD 

type SL with a UV detector and mass spectrometer with Electrospray Ionisation Geometry (ESI 70 

eV) using a quadrupole detector. IR spectra were recorded with a Perkin–Elmer Spectrum One FTIR 

spectrometer with an ATR (Attenuated Total Reflectance) accessory in neat form. Melting points were 

measured using Kofler bench, type WME Heizbank of Wagner & Munz. 

 

7.2. Procedures and spectra 

 

7.2.1. Synthesis of pyrido[2,3-b][1,4]oxazepines and pyrido[3,4-b][1,4]oxazepines scaffold 

 

7.2.1.1. Synthesis of methyl 2,2-dimethyl-3-(3-nitro-pyridin-2-yloxy)-propionate 111 and 

methyl 2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionate 148 

 
1 Procedure based on WO 2007067416 (2007) 

To a cold mixture of 2-hydroxy-3-nitropyridine/ 4-hydroxy-3-nitropyridine (1eq), TPP (1.2eq) and 

methyl 3-hydroxy-2,2-dimethylpropionate (1.1eq) in 1,4-dioxane under nitrogen atmosphere, DIAD 

(1.2eq) was added dropwise over 5 min. The ice-bath was removed and the reaction mixture was 

stirred at room temperature for 4h and then overnight at reflux. The solvent was evaporated.  

The residue was dissolved in EtOAc, washed with water, dried over MgSO4, filtrated and 

concentrated. The desired product was isolated by column chromatography, using EtOAc as eluent.  

 

2 Procedure based on WO 2006025717 (2006) 

To a suspension of 2-chloro-3-nitropyridine (1eq), methyl 3-hydroxy-2,2-dimethylpropionate (1.1eq), 

K2CO3 (1eq) and KOH (1eq) in dry toluene, TDA-1 (0.1eq) was added. The reaction mixture was 

stirred at room temperature for 1h then filtrate through celit pad, washed with toluene and methanol. 

The filtrate was concentrated to give 70% yield of methyl 2,2-dimethyl-3-(3-nitro-pyridin-2-yloxy)-

propionate as orange oil. 
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To a suspension of 4-chloro-3-nitropyridine (1eq), methyl 3-hydroxy-2,2-dimethylpropionate (1.1eq), 

K2CO3 (1eq) and KOH (1eq) in dry toluene, TDA-1 (0.1eq) was added. The reaction mixture was 

stirred at room temperature for 20h then filtrate through celit pad, washed with toluene and methanol. 

The filtrate was concentrated and the product was isolated by column chromatography using EtOAc as 

eluent in 21% yield of methyl 2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionate as yellow oil. 

 

3 Procedure based on WO 2010116270 (2010) 

To a methyl 3-hydroxy-2,2-dimethylpropionate (0.9eq) in dry THF, 1M LiHMDS in THF (1eq) was 

slowly added. After 5 min stirring at room temperature, a solution of 2-chloro-3-nitropyridine (1eq) in 

DMF was added. The reaction mixture was stirred at room temperature for 24h. After this time,  

the reaction mixture was quenched with saturated solution of NH4Cl and extracted with EtOAc (4x). 

The combined organic phases were washed with brine, dried over MgSO4, filtered and concentrated. 

The methyl 2,2-dimethyl-3-(3-nitro-pyridin-2-yloxy)-propionate was isolated by column 

chromatography using EtOAc as eluent in 50% yield.   

 
Methyl 2,2-dimethyl-3-(3-nitro-pyridin-2-yloxy)-pro pionate (111); 
40% yield; orange oil; IR: 1729 (C(O)O), 1602, 1570 (C=C), 1526 (N-O, 
NO2), 1436 (C-H), 1348 (N-O, NO2), 1305 (C-O-CH2), 1248, 1222 (C(O)O);  

1H NMR (CDCl3): 1.38 (s, 6H, 2xCH3), 3.73 (s, 3H, O-CH3), 4.19 (s, 2H, CH2), 7.05 (d, J= 6.05 Hz, 
1H, py), 8.63 (d, J= 5.50 Hz, 1H, py), 9.03 (s, 1H, py); 13C (CDCl3): δ22.33, 43.28, 52.46, 75.56, 
109.33, 136.41, 147.24, 154.86, 158.25, 175.72; MS: m/z (%)= 255 [M+ 1]+ (100), 256 (11);  
HRMS calcd. for C11H14N2O5 [M + 1]+ 255.0975; found 255.0983. 

 
Methyl 2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-pro pionate (148);  
44% yield; yellow oil; IR: 1716 (C(O)O), 1600, 1562 (C=C), 1521 (N-O, NO2), 
1474 (C-H), 1354 (N-O, NO2), 1310 (C-O-CH2), 1286, 1270, 1242 (C(O)O);  
1H NMR (CDCl3): 1.36 (s, 6H, 2xCH3), 3.71 (s, 3H, O-CH3), 4.50 (s, 2H, CH2), 
7.06 (dd, J= 12.66, 4.95 Hz, 1H, py), 8.28 (dd, J= 2.20, 9.91 Hz, 1H, py),  

8.38 (dd, J= 2.20, 7.15 Hz, 1H, py); 13C (CDCl3): δ 22.48, 43.07, 52.19, 73.45, 116.73, 135.13, 151.67, 
156.26, 176.26; MS: m/z (%)= 255 [M+ 1]+ (100), 256 (18); HRMS calcd. for C11H14N2O5 [M + 1]+ 
255.0975; found 255.0986. 
 

7.2.1.2. Synthesis of methyl 2,2-dimethyl-3-(3-amino-pyridin-2-yloxy)-propionate 112 and 

methyl 2,2-dimethyl-3-(3-amino-pyridin-4-yloxy)-propionate 149 

 

1 Procedure based on Bull. Korean Chem. Soc. 2008, 29, 2331-2336 

The mixture of methyl 2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionate (1eq) and SnCl2 (5eq) in 

ethanol was refluxed for 16h. The reaction mixture was cooled to room temperature and diluted with 

10% NaHCO3 and extracted with EtOAc (3x). The combined organic layers were dried over MgSO4, 

filtered and concentrated under vacuum. The desired product 149 in 80% yield. 
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2 Procedure based on WO 2005030213 (2005) 

The solution of methyl 2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionate (1eq) in acetic acid was 

heated at 80°C with iron powder (5eq) overnight. Excess of acetic acid was removed; the residue was 

taken up in 20%aq NaOH solution and chloroform. The mixture was filtered through celit pad.  

The aqueous phase was extracted with chloroform (3x). The combined organic phases were dried over 

MgSO4, filtered and concentrated under vacuum. The desired product 149 was obtained in 80% yield. 

 

3 Procedure based on Vogel´s Textbook of Practical Organic Chemistry, III Edition (Polish), WNT 

Warszawa, 2006, pp 859-860 

To a suspension of Pd/C in H2O was added NaBH4 (2eq) in H2O. This mixture was stirred for 2 min 

and then methyl 2,2-dimethyl-3-(3-nitro-pyridin-4-yloxy)-propionate (1eq) in THF/H2O was added. 

The reaction mixture was stirred at room temperature for 10 min. The reaction mixture was filtered 

and the filtrate was acidified with diluted HCl and then neutralized with diluted solution of NaOH in 

water to pH~7, extracted with Et2O (4x). The organic phases were combined and dried over MgSO4, 

filtrate and concentrated. The residue was washed with MeCN, organic phase was concentrated,  

gave the desired product 149 in 40% yield. 

 

4 Procedure based on WO 2008046216 (2008) 

The suspension of methyl 2,2-dimethyl-3-(3-nitro-pyridin-2-yloxy)-propionate/2,2-dimethyl-3-(3-

nitro-pyridin-4-yloxy)-propionate (1eq), iron powder (4eq) and NH4Cl (1.5eq) in the mixture of 

methanol and H2O (5:1) was refluxed for 5h. The reaction mixture was cooled to room temperature 

and then filtrated through celit pad. The cake was washed with methanol and acetonitrile. The filtrate 

was concentrated under vacuum. To the residue chloroform was added and solid was removed  

by filtration. The solvent was removed under vacuum, gave desired product in 90% (methyl 2,2-

dimethyl-3-(3-amino-pyridin-2-yloxy)-propionate) and 95% (methyl 2,2-dimethyl-3-(3-amino-

pyridin-4-yloxy)-propionate) yield. 

 
Methyl 2,2-dimethyl-3-(3-amino-pyridin-2-yloxy)-propionate (112);  
dark red oil; IR: 3371 (NH2), 1725 (C(O)O), 1614, 1594 (C=C), 1452 (C-H), 
1243, 1150, 1023 (C-H); 1H NMR (CDCl3): 1.33 (s, 6H, 2xCH3), 3.69 (s, 3H, 

O-CH3), 4.36 (s, 2H, CH2), 6.72 (dd, J= 7.44, 5.00 Hz, 1H, py), 6.87 (dd, J= 7.48, 1.36 Hz, 1H, py), 
7.54 (dd, J= 6.24, 3.68 Hz, 1H, py); 13C (CDCl3): δ 22.73, 43.20, 52.46, 72.38, 117.71, 120.69, 130.99, 
135.12, 152.46, 176.75; MS: m/z (%)= 225 [M+ 1]+ (100), 226 (12); HRMS calcd. for C11H16N2O3  
[M + 1]+ 225.1234; found 225.1233. 

 
Methyl 2,2-dimethyl-3-(3-amino-pyridin-4-yloxy)-propionate (149);  
light pink solid; mp. 184°C; IR: 3364, 3278 (NH2), 1729 (C(O)O), 1631, 1557, 
1508 (C=C), 1313 (=C-O-CH2), 1261 (C-NH2), 1149 (C(O)O)1286; 1H NMR 
(CDCl3): 1.38 (s, 6H, 2xCH3), 3.73 (s, 3H, O-CH3), 4.20 (s, 2H, CH2), 5.26 (2H, 
NH2), 7.00 (d, J= 6.05 Hz, 1H, py), 7.92 (d, J= 6.05 Hz, 1H, py), 8.48 (s, 1H, py); 
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13C (CDCl3): δ 22.42, 43.19, 52.62, 76.73, 106.99, 124.84, 130.61, 137.79, 156.11, 175.39; MS: m/z 
(%)= 225 [M+ 1]+ (100), 226 (13); HRMS calcd. for C11H16N2O3 [M + 1]+ 225.1234; found 225.1238. 
 

7.2.1.3.Synthesis of 3,3-dimethyl-2,3-dihydropyrido[2,3-b][1,4]oxazepin-4(5H)one 113 and 

3,3-dimethyl-2,3-dihydropyrido[4,3-b][1,4]oxazepin-4(5H)one 150 

 

Procedure based on WO 2008009122 (2008) 

To a suspension of NaH (1.2eq) in DMSO, methyl 2,2-dimethyl-3-(3-amino-pyridin-4-yloxy)-

propionate/methyl 2,2-dimethyl-3-(3-amino-pyridin-2-yloxy)-propionate (1eq) was added in one 

portion. The reaction mixture was stirred at room temperature for 22h. After this time H2O and Et2O 

were added. The water phase was extracted with Et2O (3x). The combined organic phases were 

washed with H2O and brine, dried over MgSO4, filtered and concentrated, gave the desired product.  

 
3,3-Dimethyl-2,3-dihydropyrido[2,3-b][1,4]oxazepin-4(5H)one (113);  
90% yield; white solid; mp. 222 °C; IR: 3209 (NH), 1660 (C(O)N), 1591 (C=C), 
1474, 1450, 1431, 1409 (C-H), 1362 (-NH-pyridine), 1281, 1258, 1241 (C-H);  
1H NMR (CDCl3): 1.36 (s, 6H, 2xCH3), 4.15 (s, 2H, CH2), 7.00 (dd, J= 7.71, 4.40 Hz, 

1H, py), 7.24 (dd, J= 7.98, 1.65 Hz, 1H, py), 7.99 (dd, J= 4.95, 1.65 Hz, 1H, py), 8.05 (br, NH);  
13C (CDCl3): δ 22.92, 44.09, 72.83, 119.23, 122.71, 128.84, 142.35, 153.75, 178.35;  
MS: m/z (%)= 193 [M+ 1]+ (100), 194 (12); HRMS calcd. for C10H12N2O2 [M + 1]+ 193.0972; found 
193.0974. 

 
3,3-Dimethyl-2,3-dihydropyrido[4,3-b][1,4]oxazepin-4(5H)one (150);  
90% yield; white solid; mp. 192 °C; IR: 3206 (NH), 1656 (C(O)N), 1582, 1496, 1413, 
1398 (C=C), 1362 (-NH-pyridine); 1H NMR (CDCl3): 1.32 (s, 6H, 2xCH3), 4.08 (s, 2H, 
CH2), 6.89 (d, J= 4.95 Hz, 1H, py), 8.13 (d, J= 5.50 Hz, 1H, py), 8.29 (s, 1H, py), 8.91 
(br, NH); 13C (CDCl3): δ 22.38, 44.67, 73.08, 114.94, 123.77, 142.81, 145.18, 153.17, 

178.87; MS: m/z (%)= 193 [M+ 1]+ (100), 194 (15); HRMS calcd. for C10H12N2O2 [M + 1]+ 193.0972; 
found 193.0975. 
 
7.2.2. Synthesis of N-alkylated pyridinone 

 

7.2.2.1. Synthesis of ethyl (3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-carbamate 124 

 

1 Procedure based on WO2007067416 (2007) 

A mixture of 2-hydroxy-3-nitropyridine (0.0029mol, 1eq), ethyl (hydroxymethyl)carbamate 

(0.0029mol, 1eq) and TPP (0.0031mol, 1.1eq) in 1,4-dioxane (75 ml) under nitrogen atmosphere was 

stirred at 0°C for 5 min, then DIAD (0.0031mol, 1.1eq) was added. The reaction mixture was stirred at 

room temperature for 4h and then at reflux overnight. The solvent was removed under vacuum and 

product was isolated by column chromatography using EtOAc as eluent in 10% yield (0.070g). 
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2 Procedure based on Tetrahedron 2000, 56, 9121-9128 

To a cold solution of 2-hydroxy-3-nitropyridine (0.0029mol, 1eq), ethyl (hydroxymethyl)carbamate 

(0.0029mol, 1eq) and n-Bu3P (0.0031mol, 1.1eq) in dry THF (75 ml) under nitrogen atmosphere, 

DEAD (0.0031mol, 1.1eq) was added. The reaction mixture was stirred at 40°C for 20h. The solvent 

was removed under vacuum and product was isolated by column chromatography using EtOAc as 

eluent in 40% yield (0.279g). 

 

3 Procedure based on Tetrahedron Lett. 1994, 35, 2819-2822 

To the mixture of 2-hydroxy-3-nitropyridine (0.0007mol, 1eq), ethyl (hydroxymethyl)carbamate 

(0.0009mol, 1.25eq) and n-Bu3P (0.0011mol, 1.5eq) in 10 ml of DME under nitrogen atmosphere, 

DEAD (0.0011mol, 1.5eq) was added dropwise at room temperature. The reaction mixture was stirred 

at room temperature for 21h. To the mixture MeOH (1ml) and H2O (5ml) were added, and the mixture 

was extracted with CH2Cl2 (3x). The combined organic phases were washed with H2O and brine, dried 

over MgSO4, filtrated and concentrated. Desired product was separated by column chromatography 

using EtOAc as eluent, as an orange solid in 47% yield (0.079g).  

 

Ethyl (3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-carbamate (124);  

orange solid; mp. 128°C; IR: 3406 (NH), 1709 (C=O), 1680, 1596, 1502 (C=C), 1472, 

1378 (C-H aliphatic), 1311 (C(O)O), 1239 (C-N); 1H NMR (CDCl3): 1.24 (t, J= 7.12 Hz, 

3H, CH3), 4.12 (q, J= 7.12 Hz, 2H, CH2), 5.32 (d, J= 7.04 Hz, 2H, CH2),  

6.34 (dd, J= 14.28, 6.64 Hz, 1H, py), 6.35 (br, NH), 8.07 (d, J= 6.44 Hz, 1H, py), 8.38 (dd, J= 7.70, 

2.10 Hz, 1H, py), 8.91 (br, NH); 13C (CDCl3): δ 14.37, 57.51, 61.89, 103.27, 138.79, 139.75, 145.08, 

154.89, 156.75; MS: m/z (%)= 242 [M+ 1]+ (100), 243 (12); HRMS calcd. for C9H11N3NaO5 [M + 1]+ 

264.0591; found 264.0594. 

 
7.2.2.2. Synthesis of methyl 2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-pent-2-enoate 128 
 

1 Procedure based on WO 2007067416 (2007) 

A mixture of 2-hydroxy-3-nitropyridine (0.0014mol, 1eq), methyl 3-hydroxy-2-methylenepentanoate 

(0.0016mol, 1.1eq) and TPP (0.0017mol, 1.2eq) in 1,4-dioxane (50 ml) under nitrogen atmosphere 

was stirred at 0°C for 5 min. Then DIAD (0.0017mol, 1.2eq) was added and the reaction mixture was 

stirred at room temperature for 4h and then at reflux overnight. The solvent was removed under 

vacuum and the desired product was isolated by column chromatography using EtOAc as eluent.  

The methyl 2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-pent-2-enoate was obtained in 55% yield 

(0.234g) as yellow oil.  

 

N

NO2

O

NH

EtO O



EXPERIMENTAL PART 

119 

2 A mixture of 2-hydroxy-3-nitropyridine (0.0014mol, 1eq), methyl 3-hydroxy-2-

methylenepentanoate (0.0016mol, 1.1eq) and TPP (0.0017mol, 1.2eq) in THF (50 ml) under nitrogen 

atmosphere was stirred at 0°C for 5 min. Then DIAD (0.0017mol, 1.2eq) was added and the reaction 

mixture was stirred at room temperature for 47h. The solvent was removed under vacuum and the 

desired product was isolated by column chromatography using EtOAc as eluent. The methyl 2-(3-

nitro-2-oxo-2H-pyridin-1-ylmethyl)-pent-2-enoate was obtained in 66% yield (0.281g).  

 

Methyl 2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-pent-2-enoate (128); 

orange oil; IR: 1705 (C(O)), 1675 (C=C), 1537, 1518 (NO2), 1311 (C-N), 

1223 (C-N); 1H NMR (CDCl3): 1.14 (t, J= 7.52 Hz, 3H, CH3),  

2.63 (q, J= 7.57 Hz, 2H, CH2), 3.74 (s, 3H, O-CH3), 4.88 (s, 2H, CH2=), 6.26 

(dd, J= 7.64, 6.72 Hz, 1H, N-CH), 7.16 (t, J= 7.56 Hz, 1H, py),  

8.07 (dd, J= 6.70, 2.14 Hz, 1H, py), 8.29 (dd, J= 7.66, 2.14 Hz,  1H, py); 13C (CDCl3): δ 13.14, 21.95, 

22.75, 23.65, 46.72, 51.79, 52.12, 102.73, 123.84, 138.52, 138.73, 145.98, 153.71, 154.49, 167.15; 

MS: m/z (%)= 267 [M+ 1]+ (100), 268 (13); HRMS calcd. for C12H15N2O5 [M + 1]+ 267.0970; found 

267.0975. 

 

7.2.2.3. Synthesis of ethyl 2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-acrylate 138 
 

1 Procedure based on Tetrahedron Lett. 1994, 35, 2819-2822 

To the mixture of 2-hydroxy-3-nitropyridine (0.0029mol, 1eq), ethyl 2-(hydroxymethyl)acrylate 

(0.0035mol, 1.25eq) and TPP (0.0043mol, 1.5eq) in 10 ml of DME (80 ml) under nitrogen atmosphere 

DIAD (0.0043mol, 1.5eq) was added dropwise at room temperature. The reaction mixture was stirred 

at room temperature for 22h. The solvent was removed. Desired product was separated by column 

chromatography using first mixture of EtOAc and PE (1:3) and then EtOAc as eluent. The ethyl  

2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-acrylate was obtained in 44% (0.322g) yield as a yellow oil. 

 

2 Procedure based on WO 2007067416 (2007) 

A mixture of 2-hydroxy-3-nitropyridine (0.0029mol, 1eq), ethyl 2-(hydroxymethyl)acrylate 

(0.0031mol, 1.1eq) and TPP (0.0034mol, 1.2eq) in 1,4-dioxane (80 ml) under nitrogen atmosphere 

was stirred at 0°C for 5 min. Then DIAD (0.0034mol, 1.2eq) was added and the reaction mixture was 

stirred at room temperature for 4h and then at reflux for 17h. The solvent was removed under vacuum 

and the desired product was isolated by column chromatography using first mixture of EtOAc and PE 

(1:3) and then EtOAc as eluent. The ethyl 2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-acrylate was 

obtained in 85% yield (0.621g) as yellow oil.  
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3 A mixture of 2-hydroxy-3-nitropyridine (0.0029mol, 1eq), ethyl 2-(hydroxymethyl)acrylate 

(0.0031mol, 1.1eq) and TPP (0.0034mol, 1.2eq) in THF (80 ml) under nitrogen atmosphere was stirred 

at 0°C for 5 min. Then DIAD (0.0034mol, 1.2eq) was added and the reaction mixture was stirred at 

room temperature for 73h. The solvent was removed under vacuum and the desired product was 

isolated by column chromatography using first mixture of EtOAc and PE (1:3) and then EtOAc as 

eluent. The ethyl 2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-acrylate was obtained in 93% yield 

(0.680g).  

 

Ethyl 2-(3-nitro-2-oxo-2H-pyridin-1-ylmethyl)-acrylate (138);  

yellow oil; IR: 1708 (C(O)O), 1673 (C(O)), 1601 (C-C), 1535 (NO2), 1514 (C-C), 1344 

(NO2), 1297 (C(O)O); 1H NMR (CDCl3): 1.30 (t, J= 7.12 Hz, 3H, CH3), 4.22 (q, J= 7.12 

Hz, 2H, CH2-CH3), 4.86 (d, J= 0.76 Hz, 2H, N-CH2), 6.24 (d, J= 0.68 Hz, 1H, =CH2), 

6.30 (dd, J= 7.66, 6.70 Hz, 1H, py), 6.54 (d, J= 0.72 Hz, 1H, =CH2), 8.01 (dd, J= 6.68, 2.09 Hz, 1H, 

py), 8.33 (dd, J= 7.68, 2.12 Hz, 1H, py); 13C (CDCl3): δ 14.10, 51.22, 61.47, 102.97, 132.74, 133.08, 

138.75, 138.89, 145.61, 154.50, 165.72; MS: m/z (%)= 253 [M+ 1]+ (100), 254 (12); HRMS calcd. for 

C11H13N2O5 [M + 1]+ 253.0814; found 253.0815. 

 

7.2.2.4. Synthesis of ethyl 3-(3-nitro-2-oxo-2H-pyridin-1-yl)-propionate 142 
 

Procedure based on Tetrahedron 2009, 65, 7403-7407 

To the mixture of 2-hydroxy-3-nitropyridine (0.0014mol, 1eq) and Et3N (0.0071mol, 5eq) in MeCN 

(40 ml), ethyl 3-chloropropionate (0.0057mol, 4eq) was added and the reaction mixture was stirred at 

room temperature for 48h. The precipitate was removed by filtration and washed with MeCN, filtrate 

was concentrated under vacuum. The desired product was isolated by column chromatography using 

EtOAc as eluent in 95% yield (0.333g).  

 

Ethyl 3-(3-nitro-2-oxo-2H-pyridin-1-yl)-propionate (142);  

yellow oil; IR: 1722 (C(O)O), 1692 (C(O)), 1599 (C-C), 1533 (NO2), 1505 (C-C), 1343 

(NO2), 1302 (C-N); 1H NMR (CDCl3): 1.24 (t, J= 7.15 Hz, 3H, CH3), 2.93 (dd, J= 11.56, 

5.50 Hz, 2H, CH2) 4.13 (q, J= 7.15 Hz, 2H, CH2-CH3), 4.31 (dd, J= 11.56, 5.50 Hz, 2H, 

CH2), 6.29 (dd, J= 14.31, 6.60 Hz, 1H, py), 7.95 (dd, J= 8.81, 2.20 Hz, 1H, py), 8.34 (dd, J= 9.91, 

2.20 Hz, 1H, py); 13C (CDCl3): δ 14.18, 32.27, 47.79, 61.22, 103.08, 139.12, 146.16, 154.49, 171.47; 

MS: m/z (%)= 241 [M+ 1]+ (100), 242 (15); HRMS calcd. for C10H13N2O5 [M + 1]+ 241.0814;  

found 241.0829. 
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7.2.3. Synthesis of intermediates to the pyrido[3,4-b][1,4]oxazepines 

 

7.2.3.1. Synthesis of N-acryloyl-N-(3,5-dibromopyridin-4-yl)-acrylamide 152 

 

Procedure based on J. Pharm. Biomed. Anal. 2000, 53, 179-185 

To a cold solution of 4-amino-3,5-dibromopyridine (0.5g, 0.0019mol) in CH2Cl2 (70 ml) under 

nitrogen atmosphere, Et3N (0.856g, 0.0085mol) was added. Then a solution of acryloyl chloride 

(0.256g, 0.0028mol) in CH2Cl2 (10 ml) was added dropwise. The reaction mixture was stirred at room 

temperature for 19h. After this time saturated solution of NaHCO3aq was added to pH~8, the organic 

layer was separated and the water layer was extracted with CH2Cl2 (2x), the combined organic layers 

were washed with H2O, dried over MgSO4, filtered and concentrated. The residue was crystallized 

from the mixture hexane/EtOH (5:1). The N-acryloyl-N-(3,5-dibromo-pyridin-4-yl)-acrylamide was 

obtained in 50% yield (0.357g).  

 

 N-acryloyl-N-(3,5-dibromopyridin-4-yl)-acrylamide (152);  

mp. 119.7-121.8°C; IR: 1702 (C(O)N), 1690, 1399 (C=C), 1212 (C-O); 1H NMR 

(CDCl3): 5.92 (dd, J= 10.32, 0.88 Hz, 1H, =CH2), 6.33 (dd, J= 17.00, 10.32 Hz, 1H, 

=CH2), 6.52 (dd, J= 17.00, 1.00 Hz, 1H,-CH=CH2), 8.69 (s, 2H, py); 13C (CDCl3):  

δ 119.91, 129.37, 129.97, 142.08, 151.39, 162.43. MS: m/z (%)= 360 [M+ 1]+ (100), 358 (51), 359 (4), 

361 (11), 362 (45), 363 (6); HRMS calcd. for C11H9Br2N2O2 [M + 1]+ 358.9025; found 358.9011. 

 

7.2.3.2. Synthesis of N-(3,5-dibromopyridin-4-yl)-acrylamide 153 

 

To a flask charged with N-acryloyl-N-(3,5-dibromo-pyridin-4-yl)-acrylamide (0.2g, 0.0006mol),  

the 1M NaOHaq (30ml) was added. The reaction mixture was stirred at room temperature for 2h. The 

1M HCl was added to pH~8, and the product was extracted with CH2Cl2 (3x). The organic phases 

were combined, dried over MgSO4, filtered and concentrated. The pure product was obtained after 

crystallization from EtOAc in 90% yield (0.153g).  

 

 N-(3,5-dibromopyridin-4-yl)-acrylamide (153);  

mp. 164.5-166.4°C; IR: 3199 (NH), 1667 (C(O)N), 1495, 1399 (C=C), 1194 (C-N), 

986 (C-H); 1H NMR (CDCl3): 5.92 (dd, J= 10.32, 0.96 Hz, 1H, =CH2),  

6.33 (dd, J= 16.92, 10.29 Hz, 1H, =CH2), 6.52 (dd, J= 17.00, 1.00 Hz, 1H,-CH=CH2), 

8.69 (s, 2H, py); 13C (CDCl3): δ 119.90, 129.37, 129.98, 142.07, 151.39, 162.42. MS: m/z (%)= 306 

[M+ 1]+ (100), 304 (53), 307 (9), 308 (48); HRMS calcd. for C8H7Br2N2O [M + 1]+ 304.8920; found 

304.8909. 
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7.2.3.3. Synthesis of N-(3,5-dibromopyridin-4-yl)-3-hydroxy-propionamide 154 

 

Procedure based on WO 2005061457 (2005) 

To a cold solution of 4-amino-3,5-dibromopyridine (0.756g, 0.003mol) in CH2Cl2 (75 ml) under 

nitrogen atmosphere, Et2AlCl (1M in hexane) (0.36g, 0.003mol) was added and the mixture was 

stirred at room temperature for 20 min and then cooled to 0°C. The β-propiolactone  

(0.229g, 0.003mol) in CH2Cl2 was added dropwise, and the reaction mixture was stirred at room 

temperature for 2hrs. To the reaction mixture diluted HCl was added to pH~8 and the water phase was 

extracted with CH2Cl2 (3x), the combined organic phases was washed with water and dried over 

MgSO4, filtered and concentrated by evaporation. The N-(3,5-dibromo-pyridin-4-yl)-3-hydroxy-

propionamide was obtained as white solid after crystallization from EtOH, in 72% of yield (0.699g). 

 

 N-(3,5-dibromopyridin-4-yl)-3-hydroxy-propionamide (154);  

mp. 80.9-82.4°C; IR: 3426 (NH), 1729 (C(O)N), 1620, 1565, 1484 (C=C), 1260 

(C-O); 1H NMR (CDCl3): 3.55 (t, J= 5.76 Hz, 2H, CH2), 4.28 (t, J= 5.76 Hz, 2H, 

CH2), 5.07 (br, NH), 8.31 (s, 2H, py); 13C (CDCl3): δ 39.17, 58.52, 106.06, 

147.70, 149.83. MS: m/z (%)= 252 [M+ 1]+ (100), 250 (53), 253 (7), 254 (49). HRMS calcd. for 

C5H5Br2N2 [M + 1]+ 250.88140; found 250.881. 

 

7.2.3.4. Synthesis of 3-bromo-4-methoxypyridine N-oxide 173 

 

The 3-bromo-4-nitropyridine N-oxide (0.2g, 0.0009mol) was dissolved in MeOH (5ml) and MeONa 

(0.0493g, 0.0009mol) was added. The reaction mixture was stirred at room temperature for 21h.  

The solvent was removed and H2O and EtOAc was added, the organic layer was separated and the 

water layer was extracted with EtOAc (2x). The combined organic layers were dried over MgSO4, 

filtered and concentrated. The 3-bromo-4-methoxypyridine N-oxide was isolated as white solid in 90% 

(0.167g). 

 

3-Bromo-4-methoxypyridine N-oxide (173); 

mp. 146.6°C; IR: 1643, 1613, 1485 (C=C), 1299 (N-O, N-oxide); 1H NMR (CDCl3): 3.96 

(s, 3H, OCH3), 6.78 (d, J= 7.24 Hz, 1H, py), 8.13 (dd, J= 7.23, 2.23 Hz, 1H, py),  

8.36 (d, J= 2.18 Hz, 1H, py); 13C (CDCl3): δ 56.98, 107.83, 109.97, 138.82, 141.98, 

154.84; MS: m/z (%)= 204 [M+ 1]+ (100), 205 (7), 206 (95), 207 (6); HRMS calcd. for C6H7BrNO2 

[M + 1]+ 203.96547; found 203.9655.(Roczniki Chemii 1962, 36, 1465-1475, Talik, T.) 
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7.2.3.5. Synthesis of 3-(3-chloropropoxy)-4-nitro-pyridine N-oxide 172D 

 

To a cold solution of 3-chloro-1-propanol (0.104g, 0.0011mol) in dry THF (30 ml) under nitrogen 

atmosphere, NaH (0.051g in oil, 1.2eq) was added. The mixture was stirred at 0°C for 15min.  

The 3-bromo-4-nitropyridine N-oxide (0.2g, 0.0009mol) in one portion and the reaction mixture was 

stirred at room temperature for 16h. After this time H2O (few drops to hydrolyzed excess of NaH) was 

added and the solvents were removed by evaporation. The pure product was isolated by column 

chromatography using EtOAc as eluent, in 17% (0.036g) yield.  

 

3-(3-Chloropropoxy)-4-nitro-pyridine N-oxide (172D);  

mp. 105°C; IR: 1601, 1565, 1508 (C=C), 1322 (N-O, N-oxide), 1231 (C-O);  
1H NMR (CDCl3): 2.34 (pentet, J= 5.72 Hz, 2H, CH2-CH2-CH2),  

3.82 (t, J= 6.02 Hz, 2H, CH2-CH2-Cl), 4.30 (t, J= 5.64 Hz, 2H, CH2-CH2-O), 

7.88 (dd, J= 7.10, 1.74 Hz, 1H, py), 7.93 (d, J= 7.08 Hz, 1H, py), 8.12 (d, J= 1.68 Hz, 1H, py);  
13C (CDCl3): δ 31.45, 40.58, 67.13, 122.21, 128.36, 132.43, 134.07, 150.88. MS: m/z (%)= 233  

[M+ 1]+ (100), 234 (11), 235 (30); HRMS calcd. for C8H10ClN2O4 [M + 1]+ 233.0324; found 

233.0320. 

 
7.2.3.6. Synthesis of 3-(3-chloropropoxy)-4-nitro-pyridine 176 and 3-bromo-4-nitropyridine 

177 

 

General procedure; modifiied procedure from Org. Lett. 2000, 2, 3525  

The pyridine N-oxide (1eq) was dissolved in benzene, TPP (1eq) was added and the mixture was 

stirred at room temperature for 5 min. To the mixture, trichlorooxobis(triphenylphosphine)rhenium(V) 

(6 mol%) was added and the final reaction mixture was stirred on the air overnight. The benzene was 

removed and the product was isolated by column chromatography.  

 

3-(3-Chloro-propoxy)-4-nitro-pyridine (176);  

98%; yellow oil; IR: 1598 (C=C), 1527 (N-O, NO2), 1258 (C-O), 728 (C-Cl);  
1H NMR (CDCl3): 2.32 (pentet, J= 5.89 Hz, 2H, CH2-CH2-CH2), 3.79 (t, J= 6.05 

Hz, 2H, CH2-CH2-Cl), 4.43 (t, J= 5.71 Hz, 2H, CH2-CH2-O), 7.65 (d, J= 5.37 Hz, 1H, py),  

8.44 (d, J= 5.07 Hz, 1H, py), 8.64 (s, 1H, py); 13C (CDCl3): δ 31.85, 40.81, 66.61, 117.45, 138.64, 

143.09, 144.27, 146.35. MS: m/z (%)= 217 [M+ 1]+ (100), 218 (11), 219 (34); HRMS calcd. for 

C8H10ClN2O3 [M + 1]+ 217.0374; found 217.0367. 
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3-Bromo-4-nitropyridine (177);  

94%; yellow solid, mp. 49°C; IR: 1530 (C=C), 1351 (N-O, NO2); 
1H NMR (CDCl3):  

7.69 (d, J= 5.20 Hz, 1H, py), 8.76 (dd, J= 5.22, 0.99 Hz, 1H, py), 8.99 (d, J= 1.52 Hz, 1H, 

py); 13C (CDCl3): δ 111.32, 118.26, 150.09, 154.69, 155.13. 

 
7.2.3.7. Synthesis of methyl 3-(3-bromo-pyridin-4-yloxy)-2,2-dimethyl-propionate 179 

 

The mixture of 3-bromo-4-nitropyridine (0.05g, 0.00025mol), methyl 3-hydroxy-2,2-

dimethylpropionate (0.036g, 0.00027mol), K2CO3 (0.034g, 0.00025mol) and KOH  

(0.014g, 0.00025mol) in dry toluene (25 ml) was stirred at room temperature, then TDA-1 (3 drops) 

was added. The reaction mixture was stirred at room temperature for 3h. After this time, precipitate 

was filtered off and washed with MeOH. The filtrate was concentrate and the product was separated 

by preparative TLC, using EtOAc/PE (1:2) as eluent. The product was obtained as colorless oil in 54% 

(0.068g). 

 

 Methyl 3-(3-bromo-pyridin-4-yloxy)-2,2-dimethyl-propionate (179);  

IR: 1728 (C(O)O), 1576, 1459 (C=C), 1301 (C-O), 1147, 1024 (C-H); 1H NMR 

(CDCl3): 1.38 (s, 6H, 2xCH3), 3.72 (s, 3H, CH3), 4.09 (s, 2H, CH2), 6.80 (d, J= 5.60 

Hz, 1H, py), 8.38 (d, J= 5.66 Hz, 1H, py), 8.57 (s, 1H, py); 13C (CDCl3): δ 22.33, 

52.25, 74.75, 108.25, 110.54, 149.98, 152.44, 161.01, 175.86; MS: m/z (%)= 288 [M+ 1]+ (100), 289 

(13), 290 (98), 291 (12); HRMS calcd. for C11H15BrNO3 [M + 1]+ 288.0230; found 288.0240. 

 
7.2.4. Synthesis of the intermediates to the Kharasch reaction 

 

7.2.4.1. Synthesis of 2-(N-allyl-N-benzylamino)-3-nitropyridine 180 

 

1 Procedure based on WO 2006025717 (2006) 

To a suspension of 2-chloro-3-nitropyridine (1eq), N-allyl-N-benzylamine (1.1eq), K2CO3 (1eq) and 

KOH (1eq) in dry toluene, TDA-1 (0.1eq) was added. The reaction mixture was stirred at room 

temperature for 2h. Then filtrate through celit pad, and the cake was washed with EtOAc and MeCN. 

The filtrate was concentrated; crud product was purified by column chromatography using mixture of 

PE/EtOAc (9:1) as eluent. The desired product was obtained in 12% yield as yellow oil. 

 

2 To a cold solution of N-allyl-N-benzylamine (1.1eq) in dry THF under nitrogen atmosphere, NaH 

(1.2eq) was added in one portion. The mixture was stirred at 0°C for 15min, the 2-chloro-3-

nitropyridine (1eq) was added, the ice-bath was removed and the reaction mixture was stirred at reflux 
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for 22h. The solvent was evaporated and the product purified by column chromatography using 

mixture PE/EtOAc (9:1) as eluent, as yellow oil in 62% yield. 

 

3 To a cold solution of N-allyl-N-benzylamine (1.1eq) in dry THF under nitrogen atmosphere,  

NaH (1.2eq) was added in one portion. The mixture was stirred at 0°C for 15min, the 2-chloro-3-

nitropyridine (1eq) was added, the ice-bath was removed and the reaction mixture was stirred for 22h 

at room temperature. The solvent was evaporated and the product purified by column chromatography 

using mixture PE/EtOAc (9:1) as eluent in 82% yield. 

 

2-(N-allyl-N-benzylamino)-3-nitropyridine (180);  

yellow oil; IR: 1592 (C=C), 1555 (NO2), 1506, 1494 (C=C), 1333 (-N=), 1231  

(C-N); 1H NMR (CDCl3): 3.94 (t, J= 1.28 Hz, 1H, -CH2-CH), 3.96 (t, J= 1.28 Hz, 

1H, -CH2-CH), 4.74 (s, 2H, CH2-benzyl), 5.17 (qdt, J= 2.97, 1.37, 2.67, 1.32 Hz, 2H, =CH2),  

5.80 (qt, J= 6.15, 6.15, 6.15, 6.15 Hz, 1H, -CH=), 6.74 (dd, J= 4.48, 8.00 Hz, 1H, py), 7.21-7.32  

(m, 5H, Bn), 8.09 (dd, J= 1.76, 8.68 Hz, 1H, py), 8.33 (dd, J= 1.76, 5.07 Hz, 1H, py);  
13C (CDCl3): δ 52.79, 52.97, 113.23, 119.16, 127.33, 127.89, 128.51, 132.94, 133.19, 135.39, 137.13, 

151.55, 152.51; MS: m/z (%)= 270 [M+ 1]+ (100), 271 (18); HRMS calcd. for C15H16N3O2 [M + 1]+ 

270.1237; found 270.1248. 

 
7.2.4.2. Synthesis of 2-(N-allyl-N-benzylamino)-3-aminopyridine 181 

 

Procedure based on WO 2008046216 (2008) 

The suspension of 2-(N-allyl-N-benzylamino)-3-nitropyridine (1eq), iron powder (4eq) and NH4Cl 

(1.5eq) in the mixture of methanol and H2O (5:1) was refluxed for 5h. The reaction mixture was 

cooled to room temperature, filtrated through celit pad. The cake was washed with MeOH and MeCN 

and the filtrate was concentrated under vacuum. To the residue chloroform was added and solid was 

removed by filtration. The solvent was removed under vacuum; desired product was isolated by 

column chromatography using mixture of PE/EtOAc (5:2) as eluent in 80% yield. 

 

2-(N-allyl-N-benzylamino)-3-aminopyridine (181);  

dark red oil; IR: 3430, 3310 (NH2), 1601, 1584, 1451 (C=C), 1214 (C-N);  
1H NMR (CDCl3): 3.69 (d, J= 6.04 Hz, 2H, -CH2-CH=), 3.88 (br, NH2), 4.32 (s, 2H, 

CH2-benzyl), 5.15 (qdt, J= 2.95, 3.22, 1.52, 1.52 Hz, 2H, =CH2), 5.86 (qt, J= 6.09 Hz, 1H, -CH=), 

6.81 (dd, J= 12.48, 4.76 Hz, 1H, py), 6.92 (dd, J= 9.36, 1.64 Hz, 1H, py), 7.17-7.31 (m, 5H, Bn), 7.78 

(dd, J= 6.40, 1.64 Hz, 1H, py); 13C (CDCl3): δ 53.02, 53.91, 117.30, 119.69, 121.72, 126.79, 128.21, 

128.45, 135.13, 136.38, 137.41, 139.19, 150.29; MS: m/z (%)= 240 [M+ 1]+ (100), 241 (15); HRMS 

calcd. for C15H18N3 [M + 1]+ 240.1495; found 240.1498. 
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7.2.4.3. Synthesis of 2-(N-allyl-N-benzylamino)-3-(N-methylamino)-pyridine 182a  

 

The solution of 2-(N-allyl-N-benzylamino)-3-aminopyridine (1eq) in dry THF under nitrogen 

atmosphere at -78°C, n-BuLi (1.3eq, 2.5M in hexanes) was added dropwise and the mixture was 

stirred at -78°C for 15 min. The methyl iodide was added and the reaction mixture was stirred at room 

temperature for 2h. The solvent was removed and the desired product was isolated by column 

chromatography using mixture PE/EtOAc (8/1) as eluent. The product was obtained in 69% yield. 

 

2-(N-allyl-N-benzylamino)-3-(N-methylamino)-pyridine (182a);  

light pink oil; IR: 3387 (NH), 1580, 1482, 1403 (C=C), 1223 (C-N);  
1H NMR (CDCl3): 2.81 (d, J= 5.32 Hz, 3H, CH3), 3.63 (t, J= 1.28 Hz, 1H, -CH2-

CH=), 3.65 (t, J= 1.28 Hz, 1H, -CH2-CH=), 4.27 (s, 2H, CH2-benzyl), 4.48 (br, NH2),   

5.12 (ddt, J= 3.06, 1.66 Hz, 1H, =CH2), 5.10-5.12 (m, 1H, =CH2), 5.79 (qt, J= 6.12, 6.20, 6.20, 6.12 

Hz, 1H, -CH=), 6.79 (dd, J= 9.40, 1.52 Hz, 1H, py), 6.91 (dd, J= 4.80, 12.64 Hz, 1H, py), 7.17-7.28 

(m, 5H, Bn), 7.72 (dd, J= 1.56, 6.36 Hz, 1H, py); 13C (CDCl3): δ 30.32, 53.18, 54.29, 115.65, 117.29, 

120.11, 126.80, 128.18, 128.56, 135.02, 135.15, 139.13, 139.43, 150.10; MS: m/z (%)= 254 [M+ 1]+ 

(100), 255 (18); HRMS calcd. for C16H20N3 [M + 1]+ 254.1652; found 254.1661. 

 

7.2.4.4. Synthesis of 2-(N-allyl-N-benzylamino)-3-(N-benzylamino)-pyridine 182b 

 

The mixture of 2-(N-allyl-N-benzylamino)-3-aminopyridine (1eq) and benzaldehyde (1eq) in EtOH 

was refluxed till the condensation was complete (3h), the reaction was monitored by TLC. The solvent 

was removed and the product was used to next step without purification. To the mixture of 2-(N-allyl-

N-benzylamino)-(N-phenylmethylene-3-amino)-pyridine (1eq) and acetic acid (1eq) in MeOH, 

NaBH3CN (2eq) was added. The reaction mixture was stirred at room temperature for 17h.  

The solvent was removed under vacuum; crud product was purified by column chromatography using 

mixture of PE/EtOAc (5:5) as eluent, in 70% yield. 

 

2-(N-allyl-N-benzylamino)-3-(N-benzylamino)-pyridine (182b); 

yellow/light brown oil; IR: 3380 (NH), 1577, 1477, 1452 (C=C), 1218 (C-N);  
1H NMR (CDCl3): 3.68 (d, J= 6.04 Hz, 2H, -CH2-CH=), 4.29 (s, 2H, CH2-benzyl 

connected to N in C2), 4.31 (d, J= 6.96 Hz, 2H, NH-CH2-benzyl), 5.00 (br, NH),  

5.07-5.20 (m, 2H, = CH2), 5.80-5.92 (m, 1H, -CH=), 6.74 (d, J= 7.76 Hz, 1H, py), 6.83 (dd, J= 4.92, 

12.56 Hz, 1H, py), 7.17-7.34 (m, 10H, 2xBn), 7.73 (dd, J= 2.30, 6.84 Hz, 1H, py);  
13C (CDCl3): δ 40.71, 53.79, 54.58, 116.61, 117.41, 120.19, 126.84, 127.09, 127.22, 128.19, 128.64, 

128.68, 135.19, 135.47, 138.31, 138.96, 139.10, 150.09; MS: m/z (%)= 330 [M+ 1]+ (100), 331 (25); 

HRMS calcd. for C22H24N3 [M + 1]+ 330.1965; found 330.1968. 
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7.2.4.5. Synthesis of N-[2-(N-allyl-N-benzylamino)-pyridin-3-yl]-N-methyl-2,2,2-

trichloroacetamide 183a  

 

Procedure based on J. Am. Chem. Soc. 2010, 132, 16631-16636 

To a solution of 2-(N-allyl-N-benzylamino)-3-(N-methylamino)-pyridine (1eq) in CH2Cl2 at 0°C, 

trichloroacetyl chloride (2.2eq) was added dropwise. The ice-bath was removed and the reaction 

mixture was stirred at room temperature for 20h. H2O was added and the reaction mixture was basified 

with saturated solution of NaHCO3 to pH~7, and extracted with CH2Cl2 (3x), dried over MgSO4, 

filtered and concentrated. The product was obtained in 80% yield after column chromatography 

(PE/EtOAc 1:2).  

 

N-[2-(N-allyl-N-benzylamino)-pyridin-3-yl]-N-methyl-2,2,2- 

trichloroacetamide (183a); brown oil; IR: 1680 (N-C(O)), 1586 (C=C), 1449  

(C-H), 1111 (=C-H); 1H NMR (CDCl3): 3.51 (s, 3H, CH3), 3.97 (s, 2H, CH2-Bn), 

4.54 (br, 1H, =CH2), 4.71 (br, 1H, =CH2), 5.16 (tt, J= 1.8 Hz, 2H, -CH2-CH=), 5.83-

5.95 (m, 1H, -CH=), 6.88 (t, J= 5.48 Hz, 1H, py), 7.20-7.34 (m, 5H, Bn), 7.43 (dt, J= 1.96 Hz, 1H, 

py), 8.27 (dt, J= 2.00 Hz, 1H, py); 13C (CDCl3): δ 40.54, 52.17, 52.67, 116.41, 117.62, 126.88, 128.22, 

128.24, 128.46, 134.41, 137.86, 138.47, 147.25, 160.69; MS: m/z (%)= 400 [M+ 1]+ (100), 398 (99), 

402 (33), 399 (21), 401 (20), 403 (6); HRMS calcd. for C18H19Cl3N3O [M + 1]+ 398.0588; found 

398.0606. 

 

7.2.4.6. Synthesis of N-[2-(N-allyl-N-benzylamino)-pyridin-3-yl]-N-benzyl-2,2,2-

trichloroacetamide 183b 

 

Procedure based on J. Am. Chem. Soc. 2010, 132, 16631-16636 

To a solution of 2-(N-allyl-N-benzylamino)-3-(N-benzylamino)-pyridine (1eq) in CH2Cl2 at 0°C, 

trichloroacetyl chloride (2.2eq) was added dropwise. The ice-bath was removed and the reaction 

mixture was stirred at room temperature for 18h. H2O was added and the reaction mixture was basified 

with saturated solution of NaHCO3 to pH~7, and extracted with CH2Cl2 (3x), dried over MgSO4, 

filtered and concentrated. The product was obtained in 90% yield after column chromatography 

(PE/EtOAc 3:1). 
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N-[2-(N-allyl-N-benzylamino)-pyridin-3-yl]-N-benzyl-2,2,2- trichloroacetamide 

(183b); brown oil; IR: 1714 (C(O)N), 1677, 1584, 1452 (C=C), 1231 (C-N);  
1H NMR (CDCl3): 4.53 (d, J= 15.55 Hz, 1H, CH2-Bn), 4.86 (d, J= 15.55 Hz, 1H, -

CH2-Bn), 5.20 (dt, J= 2.40 Hz, 1H, -CH2-CH=), 5.17 (qt, J= 3.00 Hz, 1H, -CH2-

CH=), 5.60 (d, J= 13.96 Hz, 2H, -CH2-Bn), 5.90 (qt, J= 6.20 Hz, 1H, -CH=), 6.56 (dd, J= 7.68, 4.72 

Hz, 2H, -CH2-CH=), 6.95-7.03 (m, 3H, 2x1H from py and 1H from Bn), 7.14 (m, 10H, 2xBn),  

8.75 (dd, J= 4.68, 1.72 Hz, 1H, py); 13C (CDCl3): δ 52.37, 53.73, 117.98, 127.03, 127.99, 128.32, 

128.34, 128.56, 129.27, 134.46, 135.14, 138.54, 140.45, 147.30, 160.83; MS: m/z (%)= 474 [M+ 1]+ 

(100), 476 (95), 478 (31), 475 (27), 477 (26), 479 (6); HRMS calcd. for C24H23Cl3N3O [M + 1]+ 

474.0901; found 474.0910. 

 
7.2.5. The metathesis reaction 

7.2.5.1. Synthesis of the metathesis intermediates 

 

7.2.5.1.1. Synthesis of 2-propen-1-yl 2-chloro-3-pyridinecarboxylate 186 

 

To a cold solution of 2-chloropyridine-3-carboxylic acid (0.5g, 0.003mol) and allyl alcohol  

(0.184g, 0.003mol) in 40 ml of dry CH2Cl2, EDC (0.67g, 0.0035mol) and DMAP (0.04g, 0.0003mol)  

were added. The reaction mixture was stirred at room temperature for 16h. Then, H2O was added and 

the organic layer was washed with NaHCO3 aqueous saturated solution and a saturated solution of 

NaCl. The organic layer was dried over MgSO4, filtered and concentrated under vacuum. The product 

was purified by column chromatography, using EtOAc as eluent, to obtain 0.49g (78%) of 2-propen-1-

yl 2-chloro-3-pyridinecarboxylate as colorless liquid.  

 

2-Propen-1-yl 2-chloro-3-pyridinecarboxylate (186);  

IR: 1733 (C(O)O), 1578, 1560 (C=C), 1402 (C=CH2), 1297, 1287, 1269, 1242 

(C(O)O), 1063, 1051 (C=CH2); 
1H NMR (300 MHz, CDCl3): 4.86 (dt, J= 5.80, 

1.36 Hz, 2H, CH2), 5.32 (dt, J= 10.45, 2.44, 1.2 Hz, 1H, =CH2), 5.44 (qt, J= 17.18, 2.91, 1.47 Hz, 1H, 

CH2), 6.04 (qt, J= 17.18, 10.45, 5.8 Hz, CH), 7.35 (dd, J= 7.71, 4.95 Hz, 1H, py), 8.2 (dd, J= 7.71, 2.2 

Hz, 1H, py), 8.53 (dd, J= 4.4, 1.65 Hz, 1H, py); 13C (CDCl3): δ 66.65, 119.29, 122.19, 126.85, 131.41, 

140.41, 150.12, 152.02, 154.78, 164.18; MS: m/z (%)= 198 [M+ 1]+ (100), 199 (12), 200 (20);  

HRMS calcd. for C9H8ClNO2 [M + 1]+ 198.0316; found 198.0319. Literature: M. H. Sherlock, 

CH 534129 A 19730413 
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7.2.5.1.2. Synthesis of allyl 2-(N-allyl-N-benzylamino)-3-pyridinecarboxylate 187 

 

The mixture of allyl 2-chloro-3-pyridinecarboxylate (1eq) and N-allyl-N-benzylamine in MeCN was 

heated at 80°C for 73h. The precipitate was removed by filtration and washed with MeCN. The filtrate 

was concentrated and the desired product was purified by column chromatography using EtOAc as 

eluent in 49% yield as orange oil.  

 

 Allyl 2-(N-allyl-N-benzylamino)-3-pyridinecarboxylate (187);  

IR: 1710 (C(O)O), 1582, 1554, 1471, 1442, 1414 (C=C), 1220, 1118 (C-N);  
1H NMR (CDCl3): 3.94 (d, J= 6.00 Hz, 2H, =CH-CH2-N), 4.69 (s, 2H, CH2-Bn), 

4.71 (dt, J= 5.85, 1.17 Hz, 2H, O-CH2-CH=), 5.08-5.15 (m, 2H, CH2=CH-CH2-N),  

5.27 (ddt, J= 10.40, 2.40, 1.16 Hz, 1H, CH2=CH-CH2-O), 5.37 (ddt, J= 17.17, 1.43, 2.89 Hz, 1H, 

CH2=CH-CH2-O), 5.84 (qt, J= 16.77, 10.70, 5.99 Hz, 1H, N-CH2-CH=), 5.97 (qt, J= 17.21, 10.40, 

5.83 Hz, 1H, O-CH2-CH=), 6.70 (dd, J= 7.71, 4.68 Hz, 1H, py), 7.15-7.31 (m, 5H, Bn),  

7.94 (dd, J= 1.94, 7.58 Hz, 1H, py), 8.26 (dd, J= 1.98, 4.66 Hz, 1H, py); 13C (CDCl3): δ 52.70, 53.13, 

65.74, 113.27, 113.37, 117.83, 118.85, 126.87, 127.83, 128.29, 132.03, 134.24, 138.29, 140.41, 

150.32, 158.57, 167.29; MS: m/z (%)= 309 [M+ 1]+ (100), 310 (21); HRMS calcd. for C9H21N2O2  

[M + 1]+ 309.1592; found 309.1610. 

 
7.2.5.1.3. Synthesis of 2-propen-1-yl 2-amino-3-pyridinecarboxylate 189 

 

To a cold solution of 2-aminopyridine-3-carboxylic acid (1eq) and allyl alcohol (1eq) in dry CH2Cl2, 

EDC (1.1eq) and DMAP (0.1eq) were added. The reaction mixture was stirred at room temperature for 

13h. The solvent was removed under vacuum. The product was purified by column chromatography, 

using EtOAc as eluent, to obtain white solid in 42% yield.  

 

2-Propen-1-yl 2-amino-3-pyridinecarboxylate (189);  

mp. 49°C; IR: 3429 (NH2), 1683 (C(O)O), 1622, 1579, 1565 (C=C), 1450 (C-H), 

1238, 1104, 1085 (C-N); 1H NMR (300 MHz, CDCl3): 4.79 (dt, J= 5.67, 1.41 Hz, 

2H, CH2-CH), 5.28 (ddt, J= 10.44, 2.56, 1.28 Hz, 1H, CH=CH2), 5.39 (ddt, J= 17.21, 3.01, 1.51 Hz, 

1H, CH=CH2), 6.02 (qt, J= 17.20, 10.47, 5.67 Hz, 1H, CH2-CH=CH2), 6.35 (br, NH2),  

6.61 (dd, J= 7.80, 4.76 Hz, 1H, py), 8.15 (dd, J= 7.80, 1.96 Hz, 1H, py), 8.21 (dd, J= 4.76, 1.96 Hz, 

1H, py); 13C (CDCl3): δ 65.32, 106.26, 112.69, 118.31, 132.14, 139.97, 153.73, 159.57, 166.59; MS: 

m/z (%)= 179 [M+ 1]+ (100), 180 (10); HRMS calcd. for C9H11N2O2 [M + 1]+ 179.0815; found 

179.0815. 
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7.2.5.1.4. Synthesis of 2-propen-1-yl 2-(N-tosylamino)-3-pyridinecarboxylate 190 

 

The mixture of 2-propen-1-yl 2-amino-3-pyridinecarboxylate (0.3g, 0.0017mol) and p-toluenesulfonyl 

chloride (0.483g, 0.0025mol) in pyridine (30 ml) was stirred at 60°C for 41h. The reaction mixture 

was cooled to room temperature and H2O was added. The precipitate was filtered off and washed with 

H2O, dried over vacuum pomp gave 0.41g (72% yield) of desired product as white solid. 

Crystallization form MeOH.  

 

2-Propen-1-yl 2-(N-tosylamino)-3-pyridinecarboxylate (190);  

mp. 126°C; IR: 3217 (NH), 1687 (C(O)O), 1591, 1579, 1462, 1450 (C=C),  

1291 (C(O)O), 1146 (C-N); 1H NMR (CDCl3): 2.39 (s, 3H, CH3),  

4.83 (dt, J= 5.84, 1.32 Hz, 1H, -CH2-CH=), 5.34 (ddt, J= 10.37, 2.33, 1.17 Hz, 1H, =CH2),  

5.41 (ddt, J= 17.26, 2.83, 1.45 Hz, 1H, =CH2), 6.01 (qt, J= 17.17, 10.40, 5.89 Hz, 2H, -CH=CH2),  

6.79 (dd, J= 7.86, 4.82 Hz, 1H, py), 7.26 (d, J= 8.36 Hz, 2H, Ts), 8.05 (d, J= 8.36 Hz, 2H, Ts),  

8.21 (dd, J= 7.88, 1.92 Hz, 1H, py), 8.37 (dd, J= 4.84, 1.92 Hz, 1H, py); 13C (CDCl3): δ 21.59, 66.48, 

109.47, 117.36, 119.49, 128.63, 129.13, 131.23, 137.20, 139.79, 143.87, 152.21, 152.87, 166.19;  

MS: m/z (%)= 333 [M+ 1]+ (100), 334 (19), 335 (7); HRMS calcd. for C16H17N2O4S [M + 1]+ 

333.0904; found 333.0912. 

 
7.2.5.1.5. Synthesis of 2-propen-1-yl 2-(N-allyl-N-tosylamino)-3-pyridinecarboxylate 191 

 

The mixture of 2-propen-1-yl 2-(N-tosylamino)-3-pyridinecarboxylate (0.15g, 0.0005mol), allyl 

bromide (0.071g, 0.0006mol) and K2CO3 (0.249g, 0.0018mol) in DMA (15 ml) was heated at 90°C for 

39h. The reaction mixture was cooled down and water/ice was added. The precipitate was filtered off 

and washed with H2O, dried over vacuum pomp gave 0.14g (84% yield) of desired product as beige 

solid.  

 

2-Propen-1-yl 2-(N-allyl-N-tosylamino)-3-pyridinecarboxylate (191);  

mp. 128°C; IR: 1714 (C(O)O), 1447, 1425, 1343, 1304 (C=C), 1161 (C-N);  
1H NMR (CDCl3): 2.40 (s, 3H, CH3), 4.30 (dt, J= 6.28, 1.32 Hz, 2H, N-CH2-

CH=), 4.91 (dt, J= 6.00, 1.28 Hz, 2H, O-CH2-CH=), 4.99 (ddt, J= 10.24, 2.68, 1.32 Hz, 1H, CH2=CH-

), 5.16 (ddt, J= 17.13, 2.99, 1.51 Hz, 1H, CH2=CH-), 5.33 (ddt, J= 10.38, 2.44, 1.16 Hz, 1H, CH2=CH-

), 5.46 (ddt, J= 17.17, 2.97, 1.49 Hz, 1H, CH2=CH-), 5.87 (qt, J= 17.18, 10.20, 6.26 Hz, 1H, CH2=CH-

), 6.14 (qt, J= 17.22, 10.40, 5.98 Hz, 1H, CH2=CH-),  7.23 (d, J= 8.00 Hz, 2H, Ts), 7.29 (dd, J= 7.72, 

4.72 Hz, 1H, py), 7.44 (d, J= 8.32 Hz, 2H, Ts), 8.24 (dd, J= 7.81, 2.05 Hz, 1H, py), 8.45 (dd, J= 4.76, 

1.97 Hz, 1H, py); 13C (CDCl3): δ 21.58, 51.39, 66.62, 118.73, 118.96, 122.25, 127.76, 128.25, 129.52, 
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132.07, 132.73, 135.38, 139.79, 143.65, 150.50, 150.75, 165.74; MS: m/z (%)= 373 [M+ 1]+ (100), 

374 (23), 375 (11); HRMS calcd. for C19H21N2O4S [M + 1]+ 373.1217; found 373.1220. 

 

7.2.5.1.6. Synthesis of 2-propen-1-yl 2-(N-(3-buten-1-yl)-N-tosylamino)-3-

pyridinecarboxylate 193 

 

1 The mixture of 2-propen-1-yl 2-(N-tosylamino)-3-pyridinecarboxylate (0.10g, 0.0003mol), 4-bromo-

1-butene (0.053g, 0.0004mol) and K2CO3 (0.166g, 0.0012mol) in DMA (5 ml) was heated at 90 °C for 

24h. After this time K2CO3 (0.128g, 0.0009mol) and 4-bromo-1-butene (0.053g, 0.0004mol) were 

added and the mixture was stirred at 90°C for another 19h. The reaction mixture was cooled down and 

water/ice was added. The precipitate was filtered off and washed with H2O, dried over vacuum pomp 

and crystallized from PE gave 0.099g (84% yield) of desired product as beige solid.  

 

2 The mixture of 2-propen-1-yl 2-(N-tosylamino)-3-pyridinecarboxylate (0.10g, 0.0003mol), 4-bromo-

1-butene (0.053g, 0.0004mol) and K2CO3 (0.166g, 0.0012mol) in MeCN (5 ml) was heated at 80 °C 

for 30h. After this time K2CO3 (0.128g, 0.0009mol) and 4-bromo-1-butene (0.053g, 0.0004mol) were 

added and the mixture was stirred at 80°C for another 20h. The reaction mixture was cooled to room 

temperature and solvent was removed. The desired product was separated by column chromatography 

using mixture of EtOAc and PE (1:1) as eluent. The desired product was isolated in 67% yield 

(0.078g) as beige solid. Crystallization was performed from PE.    

 

2-Propen-1-yl 2-(N-(3-buten-1-yl)-N-tosylamino)-3-pyridinecarboxylate 

(193); mp. 122°C; IR: 1713 (C(O)O), 1424 (C=C), 1343 (C-N), 1158 (C-O);  
1H NMR (CDCl3): 2.32 (dt, J= 6.64, 6.80 Hz, 2H, CH2-CH2-CH=),  

2.39 (s, 3H, CH3), 3.73 (t, J= 7.62 Hz, 2H, N-CH2), 4.92-5.01 (m, 4H, O-CH2, CH2=CH-CH2-CH2-N), 

5.33 (ddt, J= 10.36, 2.38, 1.10 Hz, 1H, CH2=CH-CH2-O), 5.45 (ddt, J= 17.21, 3.01, 1.50 Hz, 1H, 

CH2=CH-CH2-O), 5.76 (qt, J= 17.09, 10.31, 6.76 Hz, 1H, CH2=CH-CH2-O), 6.15 (qt, J= 17.24, 10.32, 

6.02 Hz, 1H, CH2=CH-CH2-CH2), 7.22 (d, J= 8.00 Hz, 2H, Ts), 7.32 (dd, J= 7.76, 4.93 Hz, 1H, py), 

7.41 (d, J= 8.29 Hz, 2H, Ts), 8.26 (dd, J= 7.72, 7.20 Hz, 1H, py), 8.46 (dd, J= 4.74, 1.98 Hz, 1H, py); 
13C (CDCl3): δ 21.56, 32.88, 48.25, 66.67, 116.55, 119.05, 122.20, 127.68, 128.36, 129.49, 132.14, 

134.96, 135.34, 139.84, 143.57, 150.57, 150.84, 165.79; MS: m/z (%)= 387 [M+ 1]+ (100), 388 (24), 

379 (7); HRMS calcd. for C20H23N2O4S [M + 1]+ 387.1373; found 387.1377. 
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7.2.5.2. Synthesis of 2-(N-allyl-N-benzylamino)-nicotinic acid salt of trifluoroacetic acid  

 

To the solution of allyl 2-(N-allyl-N-benzylamino)-3-pyridinecarboxylate (0.054g, 0.0002mol) in 

toluene (30 ml) at room temperature under nitrogen atmosphere, Sc(OTf)3 (18mg, 20 mol%) was 

added. The mixture was stirred at room temperature for 5 min and then 10 min at 80°C. Grubbs 2nd 

generation catalyst (8.5mg, 5 mol%) was added. The reaction mixture was stirred at 80°C for 15 hours. 

Toluene was removed and the new compound was separated by preparative HPLC using mixture of 

MeCN/0.1% CF3COOH in H2O. 

 

 2-(N-allyl-N-benzylamino)-nicotinic acid salt of 

trifluoroacetic acid;  

1H NMR (CDCl3): 4.83 (dt, J= 5.78, 1.34 Hz, 4H, CH2-

CH=, CH2-Bn), 5.36 (ddt, J= 10.39, 2.31, 1.13 Hz, 1H, =CH2), 5.43 (ddt, J= 17.17, 2.76, 1.44 Hz, 1H, 

=CH2), 6.02 (qt, J= 17.16, 10.42, 5.87 Hz, 1H, -CH=), 6.69 (br, 1H), 6.79 (t, J= 6.68 Hz, 1H, py), 

7.30-7.37 (m, 2H, py), 7.39 (d, J= 4.29 Hz, 3H, Bn), 8.47 (d, J= 6.97 Hz, 2H, Bn), 9.01 (br, 1H);  
13C (CDCl3): δ 46.37, 66.52, 109.59, 111.39, 119.68, 127.85, 128.11, 129.00, 131.08, 136.19, 144.22, 

147.11, 154.35, 165.49; MS: m/z (%)= 269 [M+ 1]+ (100), 270 (18); HRMS calcd. for C16H17N2O2  

[M + 1]+ 269.1285; found 269.1289. 

 
7.2.5.3. Synthesis of twenty-membered ring fused to pyridine  

 

The 2-propen-1-yl 2-(N-(3-buten-1-yl)-N-tosylamino)-3-pyridinecarboxylate (0.05g, 0.0001mol) was 

dissolved in dry toluene (30 ml) and the solution was flushed with nitrogen (3x), the Grubbs 2nd 

generation catalyst (0.011g, 0.000013mol) was added. The reaction mixture was stirred at 80°C for 3h. 

The solvent was removed under vacuum and the products were separated by preparative HPLC using 

mixture of MeCN/0.1% CF3COOH in H2O. Three compounds were isolated as the salt of CF3COOH.  

 

1st fr ; 1H NMR (CDCl3): 2.22-2.31 (m, 2xCH2), 2.39 (s, 2xCH3), 3.75-3.84 (m, CH2), 4.68 (d, J= 6.44 

Hz, CH2), 4.79-4.85 (m, CH2), 4.82 (m, CH2), 5.66-5.78 (m, 2xCH), 5.85-5.94 (m, CH),  

5.94-6.04 (m, CH), 7.19-7.40 (m, 16xCH from 2xTs), 8.21 (dd, J= 4.16, 1.96 Hz, 2x2H from py),  

8.23 (dd, J= 4.10, 1.98 Hz, 2x2H from py), 8.24 (d, J= 1.96 Hz, 2x2H from py), 8.25 (dd, J= 7.70, 

1.98 Hz, 2H, 2x1H from py), 8.43-8.46 (m, 2x1H from py), 8.47 (dd, J= 4.72, 1.96 Hz, 2H, 2x1H from 

py); 13C (CDCl3): δ 21.56 (2), 26.53 (1), 30.58, 30.76, 30.94, 47.66 (1), 47.79 (2), 61.97 (2), 65.62 (2), 

65.98 (1), 121.96 (2), 122.07 (1), 125.29 (2), 125.49 (1), 127.64 (1), 127.70 (1), 127.75 (2), 129.50 

(1), 129.54 (2), 132.66 (1), 135.04 (1), 135.22 (2), 140.35 (2), 140.42 (1), 140.48 (1), 143.65 (1), 

143.69 (2), 150.43 (2), 150.49 (1), 150.53 (2), 166.39 (C=O), 166.51 (C=O); MS: m/z (%)= 717  
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[M+ 1]+ (100), 718 (48), 719 (26), 720 (7); HRMS calcd. for C36H37N4O8S2 [M + 1]+ 717.2047; found 

717.2039. 

(1)major compound; (2)minor compound 

 

2nd fr ; 1H NMR (CDCl3): 2.18 (s, 4H, 2xCH2), 2.38 (s, 6H, 2xCH3), 3.57 (t, J= 7.10 Hz, 4H, 2xCH2), 

5.01 (d, J= 2.72 Hz, 2H, 2xCH2), 5.37-5.41 (m, 2H, 2xCH), 6.18-6.22 (m, 2H, 2xCH), 7.21 (d, J= 8.40 

Hz, 4H, 2x2H from Ts), 7.35 (dd, J= 7.76, 4.88 Hz, 2H, 2x1H from py), 7.36 (d, J= 8.28 Hz, 4H, 

2x2H from Ts), 8.36 (dd, J= 7.74, 1.94 Hz, 2H, 2x1H from py), 8.47 (dd, J= 4.76, 1.96 Hz, 2H, 2x1H 

from py); 13C (CDCl3): δ 21.52, 31.51, 48.67, 65.32, 122.31, 127.62, 128.23, 128.61, 129.22, 129.54, 

135.01, 140.93, 143.73, 150.38, 150.44, 165.92; MS: m/z (%)= 717 [M+ 1]+ (100), 718 (51), 719 (24), 

720 (7); HRMS calcd. for C36H37N4O8S2 [M + 1]+ 717.2047; found 717.2040. 

 

3rd fr ; 1H NMR (CDCl3): 2.26 (s, 4H, 2xCH2), 2.38 (s, 6H, 2xCH3), 3.65 (t, J= 8.32 Hz, 4H, 2xCH2), 

5.02 (s, 4H, 2xCH2), 5.23 (t, J= 4.62 Hz, 2H, 2x-CH=), 6.21-6.24 (m, 2H, 2x-CH=), 7.21 (d, J= 8.08 

Hz, 4H, 2x2H from Ts), 7.35 (d, J= 8.24 Hz, 4H, 2x2H from Ts), 7.36 (dd, J= 7.76, 4.60 Hz, 2H, 

2x1H from py), 8.34 (dd, J= 7.75, 1.99 Hz, 2H, 2x1H from py), 8.48 (dd, J= 4.76, 1.96 Hz, 2H, 2x1H 

from py); 13C (CDCl3): δ 21.53, 27.19, 48.26, 65.28, 122.50, 127.41, 127.47, 128.53, 128.73, 129.56, 

135.35, 140.80, 143.63, 150.44, 150.66, 166.26; MS: m/z (%)= 717 [M+ 1]+ (100), 718 (40), 719 (16), 

720 (5); HRMS calcd. for C36H37N4O8S2 [M + 1]+ 717.2047; found 717.2033. 

 

7.2.6. Synthesis of pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones 

 

7.2.6.1. Synthesis of compounds 196 and 197 

 

General procedure  

The mixture of 2-propen-1-yl 2-chloro-3-pyridinecarboxylate (0.5g, 0.003mol) in amine (~5 ml) as 

solvent was refluxed. The reaction mixture was cooled to room temperature, precipitate was filtered 

off and washed with EtOAc. Solvent was removed under vacuum and product was purified by column 

chromatography. The synthesis of compound 196i was carried out in acetonitrile (20ml) as solvent.   

  

 Allyl 2-(allylamino)nicotinate  (196a);  

eluent: EtOAc/PE (1/4); 0.199g, 36% yield; light yellow liquid; IR: 3372 (NH), 

1658 (C(O)O), 1591, 1579 (C=C), 1508 (C=C), 1241 (C-N), 1126 (C-O).  
1H NMR (300 MHz, CDCl3): 4.18 (t, J= 5.50 Hz, 2H, CH2), 4.78 (d, J= 5.50 Hz, 2H, CH2), 5.10-5.46 

(m, 4H, 2xCH2), 5.93-6.11 (m, 2H, 2xCH), 6.54 (dd, J= 12.66, 4.95 Hz, 1H, py), 8.07 (s, 1H, NH), 

8.16 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.29 (dd, J= 6.05, 1.65 Hz, 1H, py); 13C (CDCl3): δ 66.7 (CH2), 

N

O

O

N
H



EXPERIMENTAL PART 

134 

119.3 (=CH2), 122.2 (C5), 126.9 (C3), 131.4 (-CH=), 140.4 (C4), 150.1 (C2), 152.0 C6), 164.2 (C=O); 

MS: m/z (%)= 219 [M+ 1]+ (100), 220 (12); HRMS calcd. for C12H15N2O2 [M + 1]+ 219.1128;  

found 219.1135. 

 

 N-allyl 2-allylamino-3-pyridinecarboxamide (197a);  

eluent: EtOAc/PE (1/4); 0.336g, 61% yield; orange liquid; IR: 3327 (NH), 1626 

(C(O)NH), 1577 (NH), 1504 (C=C), 1257 (C-N). 1H NMR (300 MHz, CDCl3): 

4.03 (t, J= 5.50 Hz, 2H, CH2), 4.13 (t, J= 5.50 Hz, 2H, CH2), 5.06-5.33 (m, 4H, 2xCH2),  

5.84-6.08 (m, 2H, 2xCH), 6.23 (s, 1H, C(O)NH), 6.48 (dd, J= 12.66, 4.95 Hz, 1H, py),  

7.59 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.20 (dd, J= 6.05, 1.10 Hz, 1H, py), 8.20 (s, 1H, NH); 13C NMR 

(CDCl3): δ 42.3, 43.3, 109.9, 110.6, 115.4, 116.9, 134.0, 135.2, 135.3, 151.9, 157.9, 168.3;  

MS: m/z (%)= 218 [M+ 1]+ (100), 219 (20); HRMS calcd. for C12H16N3O [M + 1]+ 218.1288; found 

218.1297. 

 

 Allyl 2-(n-propylamino)-3-pyridinecarboxylate (196b);  

eluent: EtOAc/PE (1/4); 0.162g, 29% yield; yellow liquid; IR: 3373 (NH), 1685 

(C(O)O), 1593, 1580 (C=C), 1513 (C=C), 1242 (C-N), 1121 (C-O). 1H NMR (300 

MHz, CDCl3): 1.01 (t, J= 7.15 Hz, 3H, CH3), 1.67 (q, J= 7.15 Hz, 2H, CH2), 3.47 (q, J= 6.2 Hz, 2H, 

CH2), 4.77 (d, J= 5.50 Hz, 2H, CH2), 5.29 (dd, J= 11.56, 1.10 Hz, 1H, CH2), 5.39 (dd, J= 17.06, 1.1 

Hz, 1H, CH2), 6.00 (dq, J= 5.5, 5.5 Hz, 1H, CH), 6.50 (dd, J= 13.21, 4.95 Hz, 1H, py),  

7.97 (s, 1H, NH), 8.14 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.29 (dd, J= 6.60, 1.65 Hz, 1H, py);  
13C NMR (CDCl3): δ 11.8, 22.8, 42.9, 65.3, 105.5, 110.7, 118.3, 132.3, 140.1, 153.9, 158.9, 167.3; 

MS: m/z (%)= 221 [M+ 1]+ (100), 222 (14); HRMS calcd. for C12H17N2O2 [M + 1]+ 221.1285;  

found 221.1293. 

 

 N-(n-propyl) 2-(n-propylamino)-3-pyridinecarboxamide (197b);  

eluent: EtOAc/PE (1/4); 0.314g, 56% yield; yellow liquid; IR: 3325 (NH), 1625 

(C(O)NH), 1577 (NH), 1509 (C-H), 1459 (C-H), 1257 (C-N). 1H NMR (300 

MHz, CDCl3): 0.98 (t, J= 7.15 Hz, 3H, CH3), 1.00 (t, J= 7.15 Hz, 3H, CH3),  

6.07 (s, 1H, C(O)NH), 6.45 (dd, J= 12.11, 4.95 Hz, 1H, py), 7.52 (dd, J= 8.81, 1.1 

Hz, 1H, py), 8.08 (s, 1H, NH), 8.21 (dd, J= 6.6, 1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 11.5, 11.8, 

22.7, 22.9, 41.6, 42.9, 110.1, 135.1, 151.7, 158.1, 168.6; MS: m/z (%)= 222 [M+ 1]+ (100), 223 (14); 

HRMS calcd. for C12H20N3O [M + 1]+ 222.1601; found 222.1609. 
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 Allyl 2-(n-butylamino)-3-pyridinecaboxylate (196c);  

eluent: EtOAc/PE (1/4); 0.136g, 23% yield; yellow liquid; IR: 3373 (NH), 2957, 

2929, 2871 (C=C-H), 1685 (C(O)O), 1593, 1580 (C=C), 1513 (C-H), 1241 (C-H), 

1121 (C-N). 1H NMR (300 MHz, CDCl3): 0.96 (t, J= 7.15 Hz, 3H, CH3), 1.38-1.52 (m, 2H, CH2), 

1.59-1.71 (m, 2H, CH2), 3.51 (dt, J= 12.38, 6.88 Hz, 2H, CH2), 4.77 (d, J= 5.50 Hz, 2H, CH2), 5.29 

(dd, J= 11.56, 1.10 Hz, 1H, CH2), 5.39 (dd, J= 18.71, 1.65 Hz, 1H, CH2), 5.94-6.10 (m, 1H, CH), 6.50 

(dd, J= 12.66, 4.95 Hz, 1H, py), 7.94 (s, 1H, NH), 8.14 (dd, J= 9.36, 1.65 Hz, 1H, py),  

8.29 (dd, J= 6.60, 1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 13.9, 20.4, 31.7, 40.8, 65.3, 105.3, 110.7, 

118.3, 132.3, 140.1, 153.9, 158.9, 167.3; MS: m/z (%)= 235 [M+ 1]+ (100), 236 (14); HRMS calcd. 

for C13H19N2O2 [M + 1]+ 235.1441; found 235.1439. 

 

 N-(n-butyl) 2-(n-butylamino)-3-pyridinecarboxamide (197c);  

eluent: EtOAc/PE (1/4); 0.468g, 74% yield; orange liquid; IR: 3324 (NH), 

2957, 2929, 2871 (C=C-H), 1624 (C(O)NH), 1577 (C-C), 1510 (C-H), 1258 

(C-N). 1H NMR (300 MHz, CDCl3): 0.95 (dt, J= 7.15, 7.15 Hz, 6H, 2xCH3), 

1.29-1.49 (m, 4H, 2xCH2),  1.59 (tt, J= 7.15 Hz, 4H, 2xCH2), 3.40 (qt, J= 7.15 

Hz, 4H, 2xCH2), 6.13 (br, C(O)NH), 6.44 (dd, J= 12.66, 4.95 Hz,12H, py), 7.51 (dd, J= 9.36, 1.65 Hz, 

1H, py), 8.05 (br, NH), 8.20 (dd, J= 6.05, 1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 13.8, 14.01, 31.6, 

31.7, 39.6, 40.8, 110.0, 134.9, 151.8, 151.1, 168.3; MS: m/z (%)= 250 [M+ 1]+ (100), 251 (17);  

HRMS calcd. for C14H24N3O [M + 1]+ 250.1914; found 250.1924. 

 

 Allyl 2-( i-pentyloamino)-3-pyridinecaboxylate (196d);  

eluent: EtOAc/PE (1/5); 0.13g, 2% yield; yellow liquid; IR: 3372 (NH), 2954, 

2927, 2870 (=C-H), 1686 (C(O)O), 1593, 1581 (C=C), 1513 (C-H), 1242 (C-N), 

1124 (C-O). 1H NMR (400 MHz, CDCl3): 0.95 (s, 3H, CH3), 0.97 (s, 3H, CH3), 

1.56 (q, J= 7.26 Hz, 2H, CH2), 1.69-1.79 (m, 1H, CH), 3.52 (dt, J= 7.29, 5.19 Hz, 

2H, CH2), 4.77 (d, J= 5.60 Hz, 2H, CH2), 5.28 (ddt, J= 10.42, 2.64, 1.3 Hz, 1H, =CH2),  

5.39 (ddt, J= 17.19, 2.92, 1.42 Hz, 1H, =CH2), 6.01 (qt, J= 17.17, 10.48, 5.61 Hz, 1H, -CH=), 6.49 

(dd, J= 12.48, 4.76 Hz, 1H, py), 7.89 (s, 1H, NH), 8.14 (dd, J= 9.72, 2.00 Hz, 1H, py),  

8.29 (dd, J= 6.72, 1.96 Hz, 1H, py); 13C NMR (CDCl3): δ 22.6, 25.4, 38.5, 39.2, 65.2, 105.5, 110.6, 

118.2, 132.1, 139.9, 153.7, 158.8, 167.3; MS: m/z (%)= 249 [M+ 1]+ (100), 250 (18); HRMS calcd. 

for C14H21N2O2 [M + 1]+ 249.1598; found 249.1608. 
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 N-(i-pentyl) 2-(i-pentylamino)-3-pyridinecarboxamide (197d); eluent: 

EtOAc/PE (1/5); 0.478g, 68% yield; yellow liquid; IR: 3327 (NH), 2954, 2928, 

2869 (=C-H), 1624 (C(O)NH), 1577 (NH), 1510 (C-H), 1257 (C-N).  
1H NMR (300 MHz, CDCl3): 0.94 (dd, J= 3.30, 0.55 Hz, 6H, 2xCH3), 0.96 (dd, 

J= 3.30, 0.55 Hz, 6H, 2xCH3), 1.52 (dt, J= 7.71, 7.71 Hz, 4H, 2xCH2), 1.61-

1.78 (m, 2H, 2xCH), 3.43 (dt, J= 7.15, 7.15 Hz, 4H, 2xCH2), 6.02 (br, C(O)NH), 6.45 (dd, J= 12.66, 

4.95 Hz, 1H, py), 7.50 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.01 (s, 1H, NH), 8.21 (dd, J= 6.60, 1.65 Hz, 

1H, py); 13C NMR (CDCl3): δ 22.6, 22.7, 38.2, 38.5, 39.4, 110.0, 134.9, 151.9, 158.1, 168.2;  

MS: m/z (%)= 278 [M+ 1]+ (100), 279 (19); HRMS calcd. for C16H28N3O [M + 1]+ 278.2227; found 

278.2237. 

 

 Allyl 2-cyclopropylamino-3-pyridinecaboxylate (196e);  

eluent: EtOAc/PE (1/8); 0.172g, 31% yield; yellow liquid; IR: 3370 (NH), 1686 

(C(O)O), 1579 (C=C), 1500 (C-H), 1251, 1230 (C-N), 1128 (C-O). 1H NMR (300 

MHz, CDCl3): 0.52- 0.62 (m, 2H), 0.86 (dt, J= 12.11, 6.05 Hz, 2H, CH2),  

2.86-2.95 (m, 1H, CH), 4.76 (d, J= 4.95 Hz, 2H, CH2), 5.29 (d, J= 10.46 Hz, 1H, =CH2),  

5.39 (d, J= 17.06 Hz, 1H, =CH2), 5.93-6.09 (m, 1H, =CH-), 6.58 (dd, J= 12.11, 4.40 Hz, 1H, py), 8.05 

(s, 1H, NH), 8.15 (d, J= 7.71 Hz, 1H, py), 8.39 (d, J= 4.40 Hz, 1H, py); 13C NMR (CDCl3): δ 7.2, 

23.8, 65.4, 106.1, 111.5, 118.4, 132.2, 139.9, 154.0, 159.8; MS: m/z (%)= 219 [M+ 1]+ (100), 220 

(14); HRMS calcd. for C12H15N2O2 [M + 1]+ 219.1128; found 219.1135. 

 

 Allyl 2-cyclohexylamino-3-pyridinecaboxylate (196f);  

eluent: EtOAc/PE (1/6); 0.448g, 68% yield; colorless liquid; IR: 3359 (NH), 1685 

(C(O)O), 1592, 1578 (C=C), 1507 (C-H), 1241 (C-N), 1106 (C-O). 1H NMR (300 

MHz, CDCl3): 1.10-2.13 (m, 10H, cyclohexyl), 4.01-4.16 (m, 1H, CH),  

4.77 (d, J= 5.50 Hz, 2H, =CH2), 5.29 (dd, J= 11.56, 1.10 Hz, 1H, =CH2),  

5.39 (dd, J= 18.71, 1.62 Hz, 1H, CH2), 5.94-6.10 (m, 1H, -CH=), 6.47 (dd, J= 12.66, 4.95 Hz, 1H, py), 

7.96 (d, J= 6.60, NH), 8.14 (dd, J= 9.91, 2.20 Hz, 1H, py), 8.27 (dd, J= 6.60, 1.65 Hz, 1H, py);  
13C NMR (CDCl3): δ 24.9, 25.9, 48.8, 65.2, 105.3, 110.5, 118.3, 132.3, 140.2, 153.9, 158.2, 167.4; 

MS: m/z (%)= 261 [M+ 1]+ (100), 262 (15); HRMS calcd. for C15H21N2O2 [M + 1]+ 261.1598;  

found 261.1607. 
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 N-cyclohexyl 2-cyclohexylamino-3-pyridinecarboxamide (197f); eluent: 

EtOAc/PE (1/6); 0.229g, 30% yield; white solid; mp. 168°C; IR: 3355, 3260 

(NH), 2924, 2851 (=C-H), 1617 (C(O)O), 1576, 1552 (C=C), 1503 (C-H), 1258 

(C-N). 1H NMR (300 MHz, CDCl3): 1.10-2.10 (m, 20H, cyclohexyl),  

3.88 (tt, J= 3.30 Hz, 1H, CH), 4.02 (tt, J= 4.40 Hz, 1H, CH), 5.96 (br, C(O)NH), 

6.40 (dd, J= 12.11, 4.95 Hz, 1H, py), 7.51(dd, J= 9.36, 1.65 Hz, 1H, py), 8.11 (d, J= 7.15 Hz, 1H, 

NH), 8.18 (dd, J= 5.50, 1.10 Hz, 1H, py); 13C NMR (CDCl3): δ 24.9, 25.0, 25.6, 26.0, 33.2, 33.3, 48.6, 

48.8, 109.8, 135.1, 151.8, 157.5, 167.7; MS: m/z (%)= 302 [M+ 1]+ (100), 303 (20); HRMS calcd. for 

C18H28N3O [M + 1]+ 302.2227; found 302.2227. 

 

 Allyl 2-( t-butylamino)-3-pyridinecaboxylate (196g);  

eluent: EtOAc/PE (1/7); 0.374g, 63% yield; yellow liquid; IR: 3352 (NH), 1686 

(C(O)O), 1591, 1528 (C=C), 1514 (C-H), 1243 (C-N), 1127 (C-O).  
1H NMR (400 MHz, CDCl3): 1.50 (s, 9H, 3xCH3), 4.76 (dt, J= 1.57, 1.35 Hz, 1H, 

CH2), 4.74 (dt, J= 1.57, 1.35 Hz, 1H, CH2), 5.28 (ddt, J= 10.39, 2.64, 1.33 Hz, 1H, =CH2),   

5.38 (ddt, J= 17.25, 3.08, 1.56 1H, =CH2), 6.01 (qt, J= 17.19, 10.43, 5.57 Hz, 1H, -CH=),  

6.46 (dd, J= 12.48, 4.68 Hz, 1H, py), 8.05 (s, 1H, NH), 8.12 (dd, J= 7.80, 2.08, 1H, py),  

8.25 (dd, J= 4.66, 2.06, 1H, py); 13C NMR (CDCl3): δ 29.2, 51.4, 65.1, 105.5, 110.2, 118.2, 132.3, 

139.8, 153.2, 158.7, 167.5; MS: m/z (%)= 235 [M+ 1]+ (100), 236 (14); HRMS calcd. for C13H19N2O2 

[M + 1]+ 235.1441; found 235.1447. 

 

 Allyl 2-( t-octylamino)-3-pyridinecaboxylate (196h);  

eluent: EtOAc/PE (1/10); 0.537g, 73% yield; orange liquid; IR: 3353 (NH), 1686 

(C(O)O), 1592 (C=C), 1515 (C-H), 1243 (C-N), 1126 (C-O). 1H NMR (300 MHz, 

CDCl3): 0.95 (s, 9H, 3xCH3), 1.54 (s, 6H, 2xCH3), 1.97 (s, 2H, CH2),  

4.75 (d, J= 5.50 Hz, 2H, CH2), 5.24-5.44 (m, 2H, CH2), 5.94-6.09 (m, 1H, -CH=), 

6.43 (dd, J= 12.11, 4.40 Hz, 1H, py), 8.06 (s, 1H, NH), 8.12 (dd, J= 9.91, 2.20, 1H, py),  

8.24 (dd, J= 6.05, 1.65, 1H, py); 13C NMR (CDCl3): δ 30.1, 31.6, 31.8, 50.7, 55.3, 65.2, 105.4, 110.1, 

118.2, 132.3, 139.9, 153.2, 158.7, 167.5; MS: m/z (%)= 291 [M+ 1]+ (100), 292 (20); HRMS calcd. 

for C17H27N2O2 [M + 1]+ 291.2067; found 291.2077. 

 

 Allyl 2-(1-adamantylamino)-3-pyridinecaboxylate (196i);  

eluent: EtOAc/PE (1/7); 0.404g, 51% yield; white solid; mp. 94°C; IR: 3338 

(NH), 2905, 2848 (=C-H), 1686 (C(O)O), 1588 (C=C), 1511 (C-H), 1252 (C-N), 

1130 (C-O). 1H NMR (300 MHz, CDCl3): 1.63-1.79 (m, 6H, 3xCH2),  

2.1 (s, 3H, 3xCH), 2.19 (s, 6H, 3xCH2), 4.75 (d, J= 5.50 Hz, 2H, CH2), 5.27 (dd, 

J= 11.56, 1.10 Hz, 1H, =CH2), 5.38 (dd, J= 18.16, 1.10 Hz, 1H, =CH2), 5.93-6.07 (m, 1H, -CH=),  
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6.44 (dd, J= 12.66, 4.95 Hz, 1H, py), 7.97 (s, 1H, NH), 8.11 (dd, J= 9.36, 1.65 Hz, 1H, py),  

8.21 (d, J= 6.60, 2.20 Hz, 1H, py), 8.39 (d, J= 4.40 Hz, 1H, py); 13C NMR (CDCl3): δ 29.8, 36.8, 41.9, 

52.2, 65.2, 105.4, 110.3, 118.2, 132.4, 139.9, 153.2, 158.9, 167.6; MS: m/z (%)= 313 [M+ 1]+ (100), 

314 (24); HRMS calcd. for C19H25N2O2 [M + 1]+ 313.1911; found 313.1914. 

 

 Allyl 2-benzylamino-3-pyridinecaboxylate (196j);  

eluent: EtOAc/ PE (1/3); 0.177g, 26% yield; colorless liquid; IR: 3371 (NH), 

3085, 3063, 3028, 2926, 2875 (=C-H), 1685 (C(O)O), 1592, 1578 (C=C), 1509 

(C-H), 1242 (C-N), 1131 (C-O). 1H NMR (300 MHz, CDCl3): 4.76 (d, J= 5.50, 4H, CH2 and CH2-Bn), 

5.23-5.45 (m, 2H, =CH2), 5.92-6.08 (m, 1H, -CH=), 6.56 (dd, J= 12.66, 4.95 Hz, 1H, py), 7.21-7.43 

(m, 6H, Bn), 8.17 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.30 (dd, J= 6.60, 1.65 Hz, 1H, py), 8.29 (s, NH); 
13C NMR (CDCl3): δ 44.9, 65.4, 105.7, 111.4, 118.4, 127.1, 127.6, 127.6, 128.6, 132.2, 139.5, 140.1, 

153.9, 167.3; MS: m/z (%)= 269 [M+ 1]+ (100), 270 (18); HRMS calcd. for C16H17N2O2 [M + 1]+ 

269.1285; found 269.1296. 

 

 N-benzyl 2-benzylamino-3-pyridinecarboxamide (197j);  

eluent: EtOAc/PE (1/3); 0.451g, 56% yield; white solid; mp. 98°C; IR: 3398, 3297 

(NH), 3083, 3058, 3027, 2924, 2852, (=C-H), 1614 (C(O)N), 1573 (N-H), 1519, 

1504 (C=C), 1260 (C-N). 1H NMR (300 MHz, CDCl3): 4.53 (d, J= 5.50 Hz, 2H, CH2),  

4.70 (d, J= 5.50 Hz, 2H, CH2), 6.45 (dd, J= 12.66, 4.95 Hz, 1H, py), 6.49 (br, C(O)NH),  

7.20-7.40 (m, 10H, 2xBn), 7.54 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.20 (d, J= 4.95 Hz, 1H, py),  

8.50 (br, NH); 13C NMR (CDCl3): δ 43.9, 44.9, 109.8, 110.8, 127.0, 127.6, 127.8, 127.9, 128.6, 128.9, 

135.3, 138.0, 139.7, 152.1, 157.9, 168.3; MS: m/z (%)= 318 [M+ 1]+ (100), 319 (20); HRMS calcd. 

for C20H20N3O [M + 1]+ 318.1601; found 318.1608. 

 
7.2.6.2. Synthesis of compounds 199 

 

General procedure  

The mixture of allyl 2-(alkylamino)-3-pyridinecaboxylate (0.5g, 0.003mol) in amine (~5 ml) as 

solvent was refluxed. The reaction mixture was cooled to room temperature, precipitate was filtered 

off and washed with EtOAc. Solvent was removed under vacuum and product was purified by column 

chromatography.  
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 N-allyl 2-cyclohexylamino-3-pyridinecarboxamide (199a);  

eluent: EtOAc/PE (1/8); 0.269g, 54% yield; white solid; mp. 96°C; IR: 3357 

(NH), 3285 (NH), 1620 (C(O)N), 1573, 1551 (C=C), 1503 (C-H), 1252 (C-N).  
1H NMR (300 MHz, CDCl3): 1.19-1.49 (m, 4H, cyclohexyl), 1.53-1.80 (m, 2H), 

1.92-2.07 (m, 2H), 4.03 (t, J= 5.50 Hz, 3H, CH2 from CH2-CH= and CH-cychex), 

5.15-5.31 (m, 2H, =CH2), 5.85-6.00 (m, 1H, -CH=), 6.11 (br, C(O)NH), 6.43 (dd, J= 12.11, 4.95 Hz, 

1H, py), 7.55 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.12 (d, J= 6.05, NH), 8.20 (d, J= 3.30 Hz, 1H, py);  
13C NMR (CDCl3): δ 24.9, 26.0, 33.2, 42.2, 48.8, 109.2, 109.9, 116.9, 134.1, 135.2, 152.2, 157.5, 

168.4; MS: m/z (%)= 260 [M+ 1]+ (100), 261 (18); HRMS calcd. for C15H22N3O [M + 1]+ 260.1757; 

found 260.1761. 

 

 N-(n-propyl) 2-cyclohexylamino-3-pyridinecarboxamide (199b);  

eluent: EtOAc/PE (1/6); 0.276g, 55% yield; white solid; mp. 119°C; IR: 3360 

(NH), 3300 (NH), 2923, 2852 (C=C-H), 1620 (C(O)N), 1573 (C=C), 1500 (C-H), 

1252 (C-N). 1H NMR (300 MHz, CDCl3): 0.97 (t, J= 7.71 Hz, 3H, CH3),  

1.18-1.50 (m, 4H, cyclohexyl), 1.60 (dq, J= 14.31, 7.15 Hz, 2H, CH2), 1.68-1.80 

(m, 2H, cyclohexyl), 1.95-2.08 (m, 2H, cyclohexyl), 3.35 (dd, J= 19.81, 6.60 Hz, 2H, CH2),  

4.00 (tt, J= 3.85 Hz, 1H, CH from cyclohexyl), 6.13 (br, C(O)NH), 6.41 (dd, J= 12.66, 4.95 Hz, 1H, 

py), 7.52 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.09 (d, J= 6.60 Hz, 1H, NH), 8.18 (dd, J= 6.60, 1.65 Hz, 1H, 

py); 13C NMR (CDCl3): δ 11.5, 22.9, 24.9, 26.0, 33.2, 41.6, 48.8, 109.8, 109.8, 135.1, 151.9, 157.5, 

168.6; MS: m/z (%)= 262 [M+ 1]+ (100), 263 (18); HRMS calcd. for C15H24N3O [M + 1]+ 262.1914; 

found 262.1918. 

 

 N-(i-pentyl) 2-cyclohexylamino-3-pyridinecarboxamide (199c); eluent: 

EtOAc/PE (1/7); 0.472g, 85% yield; orange oil; IR: 3320 (NH), 2954, 2928, 

2854 (C=C-H), 1626 (C(O)N), 1576 (C=C), 1507 (C-H), 1257 (C-N).  
1H NMR (400 MHz, CDCl3): 0.95 (d, J= 6.65 Hz, 6H, 2xCH3 i-pentyl),  

1.24-1.35 (m, 4H, 2xCH2, cyclohexyl), 1.38-1.46 (m, 2H), 1.46-1.52 (m, 2H, 

CH2 i-pentyl), 1.57-1.65 (m, 1H, i-pentyl), 1.70-1.78 (m, 2H, cyclohexyl), 3.41 (dt, J= 5.95 Hz, 2H, i-

pentyl), 3.98-4.06 (m, 1H cyclohexyl), 5.93 (br, C(O)NH), 6.41 (dd, J= 12.40, 4.80 Hz, 1H, py),  

7.49 (dd, J= 9.40, 1.80 Hz, 1H, py), 8.08 (br, NH), 8.19 (dd, J= 6.55, 1.75 Hz, 1H, py); 13C NMR 

(CDCl3): δ ; MS: m/z (%)= 290 [M+ 1]+ (100), 291 (20); HRMS calcd. for C17H28N3O [M + 1]+ 

290.2227; found 290.2238. 
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 N-allyl 2-(t-octylamino)-3-pyridinecarboxamide (199e);  

eluent: EtOAc/PE (1/8); 0.369g, 74% yield; white solid; mp. 65°C; IR: 3314 

(NH), 3270 (NH), 2949, 2903, 2860 (C=C-H), 1620 (C(O)N), 1577 (C=C), 1513 

(C-H), 1261 (C-N). 1H NMR (300 MHz, CDCl3): 0.95 (s, 9H, 3xCH3),  

1.52 (s, 6H, 2xCH3), 1.95 (s, 2H, CH2), 4.02 (t, J= 5.5 Hz, 2H, CH2), 5.13-5.30 

(m, 2H, =CH2), 5.84-5.96 (m, 1H, -CH=), 5.98 (s, 1H, C(O)NH), 6.39 (dd, J= 12.66, 4.95 Hz, 1H, py), 

7.51 (dd, J= 10.46, 2.20 Hz, 1H, py), 8.18 (dd, J= 6.60, 2.20 Hz, 1H, py); 13C NMR (CDCl3): δ 30.1, 

31.6, 31.8, 42.2, 50.6, 55.0, 109.4, 116.8, 134.1, 134.8, 151.4, 157.9, 168.7; MS: m/z (%)= 290  

[M+ 1]+ (100), 291 (20); HRMS calcd. for C17H28N3O [M + 1]+ 290.2227; found 290.2228. 

 

 N-(n-propyl) 2-(t-octylamino)-3-pyridinecarboxamide (199f);  

eluent: EtOAc/PE (1/7); 0.341g, 68% yield; white solid; mp. 73°C; IR: 3348 

(NH), 3276 (NH), 2954, 2871 (C=C-H), 1622 (C(O)N), 1581, 1553 (C=C), 1512 

(C-H), 1263 (C-N). 1H NMR (300 MHz, CDCl3): 0.95 (s, 9H, 3xCH3),  

1.52 (s, 6H, 2xCH3), 0.96 (t, J= 8.26 Hz, 3H, CH3), 1.60 (dq, J= 7.15, 7.15 Hz, 

2H, CH2), 1.95 (s, 2H, CH2), 3.33 (dd, J= 19.81, 6.60 Hz, 2H, CH2), 6.09 (s, 1H, C(O)NH), 6.36 (dd, 

J= 12.11, 4.40 Hz, 1H, py), 7.48 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.10 (s, 1H, NH), 8.15 (dd, J= 6.05, 

1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 11.5, 22.9, 30.1, 31.6, 31.8, 41.6, 50.6, 54.9, 109.4, 110.1, 

134.8, 151.1, 157.9, 168.9; MS: m/z (%)= 292 [M+ 1]+ (100), 293 (20); HRMS calcd. for C17H30N3O 

[M + 1]+ 292.2383; found 292.2388. 

 

 N-(i-pentyl) 2-(t-octylamino)-3-pyridinecarboxamide (199g);  

eluent: EtOAc/PE (1/10); 0.482g, 85% yield; yellow solid; mp. 68°C; IR: 3286 

(NH), 2955, 2870 (C=C-H), 1620 (C(O)N), 1578 (C=C), 1515 (C-H), 1264, 

1223 (C-N). 1H NMR (300 MHz, CDCl3): 0.95 (s, 9H, 3xCH3),  

1.52 (s, 6H, 2xCH3), 1.41-1.58 (m, 2H), 1.59-1.73 (m, 1H), 1.95 (s, 2H), 3.38 

(dt, J= 6.05, 6.05 Hz, 2H, CH2), 6.09 (br, C(O)NH), 6.35 (dd, J= 12.11, 4.95 Hz, 1H, py),  

7.48 (dd, J= 7.71 Hz, 1H, py), 8.13 (d, J= 6.60 Hz, 1H, py), 8.15 (br, NH); 13C NMR (CDCl3): δ14.3, 

22.6, 26.0, 30.1, 31.6, 31.8, 38.2, 38.5, 50.6, 54.9, 109.4, 110.1, 134.8, 151.1, 157.9, 168.9; MS: m/z 

(%)= 320 [M+ 1]+ (100), 321 (24); HRMS calcd. for C19H34N3O [M + 1]+ 320.2696; found 320.2703. 

 
7.2.6.3. General method for the synthesis of pyrido[2,3-d]pyrimidines  

 

To a solution of N-alkyl-2-(alkylamino)-3-pyridinecarboxamide in a mixture of dry THF and NMP 

(2:3 ratio), NaH (3eq) and CDI (3eq) were added. The reaction mixture was stirred at room 

temperature for 15-19h. After this time, solid was filtered off and washed with THF, filtrate was 

concentrated under vacuum. The desired product was isolated by column chromatography. 
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1,3-Diallyl-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (198a);  

eluent: EtOAc/PE (1/3); 69% yield; white solid; mp. 91°C; IR: 2986, 2923, 2853 

(C=C-H), 1708 (NC(O)N), 1657 (C(O)N), 1595 (C=C), 1482, 1462, (C=C).  
1H NMR (300 MHz, CDCl3): 4.70 (d, J= 5.5 Hz, 2H, CH2), 4.99 (d, J= 5.50 Hz, 

2H, CH2), 5.17-5.37 (m, 4H, 2xCH2), 5.876.09 (m, 2H, 2x-CH=),  

7.22 (dd, J= 12.11, 4.40 Hz, 1H, py), 8.47 (dd, J= 8.81, 1.10 Hz, 1H, py), 8.67 (dd, J= 5.50, 1.10 Hz, 

1H, py); 13C NMR (CDCl3): δ 43.9, 44.5, 110.9, 117.8, 118.3, 119.1, 131.6, 132.0, 137.9, 150.5, 150.6, 

154.3, 160.9; MS: m/z (%)= 244 [M+ 1]+ (100), 245 (13); HRMS calcd. for C13H14N3O2 [M + 1]+ 

244.1081; found 244.1084. 

 

1,3-Dipropyl-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (198b);  

eluent: EtOAc/PE (1/4); 58% yield; yellow liquid; IR: 1709 (NC(O)N), 1659 

(C(O)N), 1597 (C=C), 1484, 1461, 1346 (C-H). 1H NMR (300 MHz, CDCl3): 

0.98 (t, J= 7.15 Hz, 3H, CH3), 1.00 (t, J= 7.15 Hz, 3H, CH3), 1.68-1.83 (m, 4H, 

2xCH2), 4.05 (dd, J= 15.41, 7.71 Hz, 2H, CH2), 4.31 (dd, J= 15.41, 7.71 Hz, 2H, 

CH2), 7.19 (dd, J= 12.11, 4.40 Hz, 1H, py), 8.46 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.65 (dd, J= 6.60, 

1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 11.3, 11.4, 21.1, 21.2, 43.4, 44.1, 110.9, 118.7, 137.7, 150.8, 

154.1, 161.4; MS: m/z (%)= 248 [M+ 1]+ (100), 249 (17); HRMS calcd. for C13H18N3O2 [M + 1]+ 

248.1394; found 248.1405. 

 

1,3-Dibutyl-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (198c);  

eluent: EtOAc/PE (1/3); 61% yield; yellow liquid; IR: 2958, 2930, 2871  

(=C-H), 1710 ((NC(O)N), 1663 (C(O)N), 1598 (C=C), 1484, 1462, 1431, 1405, 

1348 (C-H). 1H NMR (300 MHz, CDCl3): 0.98 (dt, J= 3.85 Hz, 6H, 2xCH3), 

1.42 (qt, J= 7.15 Hz, 4H, 2xCH2), 1.63-1.76 (m, 4H, 2xCH2),  

4.08 (t, J= 7.71 Hz, 2H, CH2), 4.35 (t, J= 7.71 Hz, 2H, CH2), 7.19 (dd, J= 12.11, 4.40 Hz, 1H, py), 

8.45 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.65 (dd, J= 6.60, 1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 13.8, 

13.9, 20.2, 20.3, 29.9, 30.1, 41.8, 42.5, 110.9, 118.7, 137.6, 150.8, 150.9, 154.0, 161.3;  

MS: m/z (%)= 276 [M+ 1]+ (100), 277 (18); HRMS calcd. for C15H22N3O2 [M + 1]+ 276.1707; found 

276.1716. 

 

1,3-Di(i-pentyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (198d);  

eluent: EtOAc/PE (1/5); 91% yield; white solid; mp. 48°C; IR: 2954, 2928, 

2881, 2867 (=C-H), 1702 (NC(O)N), 1656 (C(O)N), 1592 (C=C), 1483, 1466, 

1460, 1351 (C-H). 1H NMR (300 MHz, CDCl3): 0.99 (t, J= 5.50 Hz, 12H, 

4xCH3), 1.52-1.66 (m, 4H, 2xCH2), 1.66-1.77 (m, 4H, 2xCH2), 4.07 (d, J= 6.60 

Hz, 1H, CH), 4.10 (d, J= 6.60 Hz,14H, CH), 4.19 (dd, J= 12.66, 4.95 Hz, 1H, py), 8.45 (dd, J= 9.36, 
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1.65 Hz, 1H, py), 8.65 (dd, J= 6.05, 1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 22.5, 22.6, 26.3, 26.4, 

36.5, 36.5, 40.6, 40.9, 110.9, 118.6, 137.5, 150.7, 150.8, 154.0, 161.2; MS: m/z (%)= 304 [M+ 1]+ 

(100), 305 (18); HRMS calcd. for C17H25N3O2 [M + 1]+ 304.2020; found 304.2022. 

 

1,3-Dibenzyl-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (198j);  

eluent: EtOAc/PE (1/3); 60% yield; white solid; mp. 120°C; IR: 3088, 3065, 3028 

(=C-H), 1711 (NC(O)N), 1658 (C(O)NH), 1592 (C=C), 1484, 1465, 1450 (C-H).  
1H NMR (300 MHz, CDCl3): 5.25 (s, 2H, CH2), 5.54 (s, 2H, CH2), 7.14 (dd, J= 12.66, 4.95 Hz, 1H, 

py), 7.18-7.33 (m, 5H, Bn), 7.43-7.55 (m, 5H, Bn), 8.43 (dd, J= 9.36, 1.65 Hz, 1H, py),  

8.61 (dd, J= 6.05, 1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 45.2, 45.5, 110.9, 119.2, 127.7, 127.8, 

128.5, 128.6, 128.7, 129.2, 136.7, 137.0, 137.9, 150.8, 151.3, 154.2, 161.3;  

MS: m/z (%)= 344 [M+ 1]+ (100), 345 (23); HRMS calcd. for C21H18N3O2 [M + 1]+ 344.1394; found 

344.1397. 

 

3-Allyl-1-cyclohexyl-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (200a); 

eluent: EtOAc/PE (1/8); 47% yield; white solid; mp. 141°C; IR: 2925, 2852 

(C=C-H), 1709 (NC(O)N), 1658 (C(O)N), 1589 (C=C), 1485, 1447, 1408 (C-H). 
1H NMR (300 MHz, CDCl3): 1.16-2.00 (m, 8H, cyclohexyl), 2.59 (dt, J= 11.56 

Hz, 2H, cychexyl), 4.68 (d, J= 4.95 Hz, 2H, CH2 from -CH2-CH=),  

5.17-5.33 (m, 2H, =CH2), 5.39 (br, CH-cyclohexyl), 5.86-6.03 (m, 1H, -CH=), 7.19 (dd, J= 12.11, 

4.95 Hz, 1H, py), 8.46 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.65 (dd, J= 6.05, 1.65);  
13C NMR (CDCl3): δ 25.4, 26.6, 29.0, 29.8, 43.8, 55.4, 111.1, 118.1, 118.7, 131.8, 137.9, 151.2, 153.6, 

161.2; MS: m/z (%)= 286 [M+ 1]+ (100), 287 (16); HRMS calcd. for C10H10N3O2 [M + 1]+ 204.0768; 

found 204.0773. Literature: K. Noda, A. Nakagawa, T. Motomura, S. Yamasaki, 

DE 2334266 A1 19740131 

 

3-Propyl-1-cyclohexyl-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (200b); 

eluent: EtOAc/PE (1/6); 91% yield; white solid; mp. 133°C; IR: 2925, 2852 

(C=C-H), 1709 (NC(O)N), 1656 (C(O)N), 1589 (C=C), 1448 (C-H).  
1H NMR (300 MHz, CDCl3): 0.98 (t, J= 7.15 Hz, 3H, CH3), 1.22-1.55 (m, 4H, 

cyclohexyl), 1.60-1.79 (m, 2H, CH2), 1.81-1.97 (m, 2H, cyclohexyl),  

2.59 (dt, J= 11.56 Hz, 2H, CH-cyclohexyl), 4.02 (t, J= 7.15 Hz, 2H, CH2), 7.17 (dd, J= 12.11, 4.40 

Hz, 1H, py), 8.46 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.64 (dd, J= 6.04, 1.65 Hz, 1H, py);  
13C NMR (CDCl3): δ 11.7, 21.2, 25.5, 26.6, 28.9; 30.4, 43.4, 111.2, 118.6, 137.8, 151.2, 153.4, 161.5; 

MS: m/z (%)= 288 [M+ 1]+ (100), 289 (18); HRMS calcd. for C16H22N3O2 [M + 1]+ 288.1707; found 

288.1713. Literature: K. Noda, A. Nakagawa, T. Motomura, S. Yamasaki, DE 2334266 A1 19740131. 
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3-(i-Pentyl)-1-cyclohexyl-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (200c); 

eluent: EtOAc/PE (1/7); 97% yield; white solid; mp. 118°C;  IR: 2922, 254 

(C=C-H), 1708 (NC(O)N), 1656 (C(O)N), 1588 (C=C), 1484, 1449, 1411, 

1381 (C-H). 1H NMR (300 MHz, CDCl3): 0.98 (s, 3H, CH3), 0.99 (s, 3H, CH3), 

1.26-1.38 (m, 1H, CH-cyclohexyl), 1.39-1.52 (m, 2H, CH2-cyclohexyl),  

1.57 (dt, J= 7.89 Hz, 2H, CH2 i-pentyl), 1.65-1.75 (m, 4H, 2xCH2- cyclohexyl), 1.84-1.94 (m, 2H, 

CH2-cyclohexyl),  4.07 (dt, J= 5.20, 5.20 Hz, 2H, CH2 i-pentyl), 7.18 (dd, J= 12.44, 4.72 Hz, 1H, py), 

8.45 (dd, J= 9.72, 2.00 Hz, 1H, py), 8.64 (dd, J= 6.72, 2.00 Hz, 1H, py); 13C NMR (CDCl3): δ 22.5, 

24.9, 25.9, 26.0, 33.1, 38.2, 38.4, 48.7, 109.7, 109.8, 135.0, 151.8, 157.4, 168.5; MS: m/z (%)= 316 

[M+ 1]+ (100), 317 (23); HRMS calcd. for C18H26N3O2 [M + 1]+ 316.2020; found 316.2028. 

 

3-Allyl-1-( t-octyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (200e);  

eluent: EtOAc/PE (1/8); 49% yield; yellow liquid; IR: 2986, 2950, 2868 (C=C-H), 

1715 (NC(O)N), 1668 (C(O)N), 1598, 1579 (C=C), 1435 (C-H). 1H NMR (300 

MHz, CDCl3): 0.98 (s, 9H, 3xCH3), 1.87 (s, 6H, 2xCH3), 2.40 (s, 2H, CH2), 4.63 

(d, J= 5.50 Hz, 2H, CH2), 5.15-5.31 (m, 2H, =CH2), 5.86-6.01 (m, 1H, -CH=), 

7.15 (dd, J= 12.38, 4.95 Hz, 1H, py), 8.39 (dd, J= 9.36, 1.65 Hz, 1H, py), 8.61 (dd, J= 6.05, 1.65 Hz, 

1H, py); 13C NMR (CDCl3): δ 31.4, 31.9, 32.1, 43.9, 51.3, 68.1, 112.6, 117.5, 118.4, 132.0, 137.0, 

151.4, 151.6, 152.7, 161.6; MS: m/z (%)= 204 [M+ 1]+ (100), 205 (13); HRMS calcd. for C10H10N3O2 

[M + 1]+ 204.0768; found 20774. 

 

3-Propyl-1-(t-octyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (200f);  

eluent: EtOAc/PE (1/10); 97% yield; light yellow liquid; IR: 2956, 2874  

(C=C-H), 1715 (NC(O)N), 1667 (C(O)N), 1598, 1580 (C=C), 1430 (C-H).  
1H NMR (300 MHz, CDCl3): 0.97 (t, J= 8.26, 3H, CH3), 0.98 (s, 9H, 3xCH3), 

1.69 (qd, J= 7.71, 7.71 Hz, 2H, CH2), 87 (s, 6H, 2xCH3), 2.40 (s, 2H, CH2),  

3.98 (t, J= 7.71Hz, 2H, CH2), 7.14 (dd, J= 12.66, 4.95 Hz, 1H, py), 8.37 (dd, J= 9.36, 1.65 Hz, 1H, 

py), 8.59 (dd, J= 6.60, 2.20 Hz, 1H, py); 13C NMR (CDCl3): δ 11.4, 21.3, 31.4, 31.9, 32.1, 45.5, 51.3, 

67.9, 76.7, 77.1, 77.5, 112.8, 118.4, 136.9, 151.5, 151.8, 152.7, 161.9; MS: m/z (%)= 206 [M+ 1]+ 

(100); HRMS calcd. for C10H12N3O2 [M + 1]+ 206.0924; found 206.0924. 

 

3-(i-Pentyl)-1-(t-octyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (200g); 

eluent: EtOAc/PE (1/7); 86% yield; yellow liquid; IR: 2922, 2854 (C=C-H), 

1708 (NC(O)N), 1656 (C(O)N), 1588 (C=C), 1449 (C-H). 1H NMR (400 MHz, 

CDCl3): 0.97 (s, 3H), 0.98 (s, 9H, 3xCH3), 0.99 (s, 3H), 1.50-1.55 (m, 1H), 

1.60-1.72 (m, 1H), 1.87 (s, 6H), 2.40 (s, 2H), 4.03 (dt, J= 4.98, 7.80 Hz, 2H, 

CH2), 7.14 (dd, J= 12.36, 4.68 Hz, 1H, py), 8.37 (dd, J= 9.76, 2.04 Hz, 1H, py), 8.59 (dd, J= 6.68, 
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2.04 Hz, 1H, py); 13C NMR (CDCl3): δ 22.5, 26.4, 31.3, 31.8, 32.0, 36.6, 40.7, 51.2, 67.8, 112.7, 

118.3, 136.8, 151.4, 151.6, 152.6, 161.7; MS: m/z (%)= 234 [M+ 1]+ (100), 235 (6); HRMS calcd. for 

C12H15N3O2 [M + 1]+ 234.1237; found 234.1237. 

 
7.2.6.4. Synthesis of dipyrido[2,3-d]pyrimidines 

 

7.2.6.4.1. Synthesis of N,N'-1,2-ethanediyl-bis[2-chloro-3-pyridinecarboxamide] 202 

 

The 2-chloro-3-pyridinecarboxylic acid (1.6g, 0.0102mol) in thionyl chloride (25 ml) was stirred at 

reflux for 2h. The excess of thionyl chloride was removed under vacuum and the residue dried on 

vacuum pomp for 3h. The 2-chloro-3-pyridinecarbonyl chloride (1g, 0.0057mol) was placed in the 

flask, and then the flask in the ice-bath. To the stirred 2-chloro-3-pyridinecarbonyl chloride, 

ethylenediamine (0.17g, 0.0028mol) in CH2Cl2 (10 ml) was added dropwise. The mixture was stirred 

at room temperature for 17h. The white precipitate was filtered off, washed with CH2Cl2 and dried. 

The N,N'-1,2-ethanediyl-bis[2-chloro-3-pyridinecarboxamide] was obtained as white solid in 60% 

yield.  

 

 N,N'-1,2-ethanediyl-bis[2-chloro-3-pyridinecarboxamide] (202); 

mp. 232°C; IR: 3216 (NH), 1652 (C(O)N), 1542, 1404 (C=C);  
1H NMR (300 MHz, DMSO-d6): 3.43 (dd, J= 2.80 Hz, 4H, 2xCH2), 

7.51 (dd, J= 7.52, 4.84  Hz, 1H, py), 7.94 (dd, J= 7.52, 1.92 Hz, 1H, py), 8.47 (dd, J= 4.82, 1.94 Hz, 

1H, py), 8.72 (br, NH, 2H); 13C (DMSO-d6): δ 36.96, 123.49, 133.56, 138.62, 146.99, 150.71, 165.73; 

MS: m/z (%)= 339 [M+ 1]+ (100), 340 (16), 341 (65), 342 (12); HRMS calcd. for C14H13Cl2N4O2  

[M + 1]+ 339.0405; found 339.0405. 

 
7.2.6.4.2. Synthesis of N,N'-1,2-ethanediyl-bis[2-alkylamino-3-pyridinecarboxamide] 202 

 

General procedure  

The N,N'-1,2-ethanediyl-bis[2-chloro-3-pyridinecarboxamide] (0.2g, 0.0006mol) in alkylamine (5 ml) 

was stirred at reflux for 32-68h. The solvent was removed and product isolated by column 

chgromatography. 
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 N,N'-1,2-ethanediyl-bis[2-allylamino-3-pyridinecarboxamide] 

(203a); eluent: EtOAc; 0.122g, 54%; light yellow solid; mp. 136°C;  

IR: 3413, 3308 (NH), 1618 (C(O)NH), 1578, 1537, 1508 (C=C), 1256 

(C-N). 1H NMR (300 MHz, CDCl3): 3.66 (dt, J= 2.50 Hz, 4H, 2xCH2), 

4.13 (tt, J= 5.36, 1.68 Hz, 4H, 2xCH2-CH), 5.12 (ddt, J= 10.30, 3.08, 

1.54 Hz, 2H, 2x =CH2), 5.25 (ddt, J= 17.19, 3.33, 1.75 Hz, 2H, 2x 

=CH2), 5.99 (qt, J= 17.19, 10.34, 5.19 Hz, 2H, 2x-CH=), 6.49 (dd, J= 7.68, 4.84 Hz, 2H, 2xpy),  

7.00 (br, C(O)NH), 7.61 (dd, J= 7.74; 1.78 Hz, 2H, 2xpy), 8.23 (dd, J= 4.80, 1.76 Hz, 2H, 2xpy),  

8.26 (br, NH-CH2CH=CH2); 
13C (CDCl3): δ 40.84, 43.23, 109.11, 110.81, 115.33, 135.21, 135.55, 

152.21, 157.79, 169.76; MS: m/z (%)= 381 [M+ 1]+ (100), 382 (25); HRMS calcd. for C20H25N6O2  

[M + 1]+ 381.2028; found 381.2041. 

 

 N,N'-1,2-ethanediyl-bis[2-propylamino-3-pyridinecarboxamide] 

(203b); eluent: EtOAc; 0.141g, 62%; light yellow solid; mp. 135°C;  

IR: 3243 (NH), 1635 (C(O)NH), 1574, 1538, 1508 (C=C), 1258, 1159 

(C-N). 1H NMR (300 MHz, CDCl3): 0.99 (t, J= 7.40 Hz, 6H, 2xCH3), 

1.61 (m, 4H, 2xCH2, -CH2-CH3), 3.42 (dt, J= 7.00 Hz, 4H, 2x-CH2-

CH2), 3.63 (dd, J= 2.84, 2.24  Hz, 4H, 2xCH2), 6.43 (dd, J= 7.68, 4.80 

Hz, 2H, py), 6.94 (br, C(O)-NH), 7.57 (dd, J= 7.70, 1.82 Hz, 2H, py), 8.12 (br, NH-prop),  

8.21 (dd, J= 4.80, 1.18 Hz, 2H, py); 13C (CDCl3): δ 11.59, 22.71, 40.84, 42.79, 108.92, 110.0976, 

135.18, 152.26, 158.31, 169.76; MS: m/z (%)= 385 [M+ 1]+ (100), 386 (24); HRMS calcd. for 

C20H29N6O2 [M + 1]+ 385.2341; found 385.2349. 

 

 N,N'-1,2-ethanediyl-bis[2-i-pentylamino-3-pyridinecarboxamide] 

(203c); eluent: EtOAc; 0.154g, 59%; light yellow solid; mp. 150°C;  

IR: 3353 (NH), 1624 (C(O)NH), 1569, 1510 (C=C), 1260 (C-N).  
1H NMR (300 MHz, CDCl3): 0.94 (s, 6H, 2xCH3), 0.96 (s, 6H, 2xCH3), 

1.53 (dt, J= 14.68 Hz, 4H, 2xCH2), 1.68-1.78 (m, 2H, 2xCH), 3.46 (dt, 

J= 7.34 Hz, 4H, 2xCH2), 3.64 (dt, J= 2.46 Hz, 4H, 2xCH2),   

6.46 (dd, J= 7.73, 4.80 Hz, 2H, 2xpy), 6.99 (br, C(O)NH),  

7.59 (dd, J= 7.73, 1.76 Hz, 2H, 2xpy), 8.09 (br, NH-i-pentyl), 8.23 (dd, J= 4.82, 1.78 Hz, 2H, 2xpy); 
13C (CDCl3): δ 22.65, 26.04, 38.46, 39.30, 40.95, 108.77, 110.15, 135.30, 152.38, 158.14, 169.78; MS: 

m/z (%)= 441 [M+ 1]+ (100), 442 (29); HRMS calcd. for C24H37N6O2 [M + 1]+ 441.2967; found 

441.2964. 
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7.2.6.4.3. Synthesis of 1,3-bis-(2-propylaminopyridine-3-carbonyl)-imidazolidin-2-one 205 

 
To the cold solution of N,N'-1,2-ethanediyl-bis[2-propylamino-3-pyridinecarboxamide (0.2g, 

0.0005mol) in dry CH2Cl2 (30 ml), DIPEA (0.403g, 0.003mol) was added and the mixture was stirred 

at 0°C for 15min. The solution of triphosgene (0.371g, 0.0012mol) in CH2Cl2 (5 ml) was added 

dropwise. The reaction mixture was stirred at room temperature for 1h. The mixture of CH2Cl2 and 

H2O was added and the organic phase was separated. The water phase was extracted with CH2Cl2 (2x). 

The combined organic phases were washed with saturated solution of NaCl, dried over MgSO4, 

filtered and concentrated. The compound was separated by preparative TLC using EtOAC/PE (1:1) as 

eluent.  

 

 1,3-Bis-(2-propylaminopyridine-3-carbonyl)-imidazolidin-2-one (205); 

eluent: EtOAc/PE (1:1); 0.02g, 9%; light yellow oil; IR: 3354 (NH), 1743 

(NC(O)N), 1649 (C(O)NH), 1595, 1578, 1460 (C=C), 1220 (C-N).  
1H NMR (300 MHz, CDCl3): 1.01 (t, J= 7.42 Hz, 6H, 2xCH3), 1.62-1.72 

(m, 4H, 2xCH2), 3.45 (dt, J= 7.07 Hz, 4H, 2x-CH2-CH2-), 4.00 (s, 4H, 

2xCH2), 6.45 (dd, J= 7.82, 4.74 Hz, 2H, 2x1H from py), 7.52 (t, J= 5.22 Hz, 2H, 2xNH),  

7.64 (dd, J= 7.84, 1.92 Hz, 2H, 2x1H from py), 8.24 (dd, J= 4.72, 1.92 Hz, 2H, 2x1H from py);  
13C (CDCl3): δ 11.66, 22.69, 40.67, 42.95, 107.39, 110.19, 141.87, 151.40, 154.18, 158.27, 170.45; 

MS: m/z (%)= 411 [M+ 1]+ (100), 412 (24); HRMS calcd. for C21H27Br2N6O3 [M + 1]+ 411.21392; 

found 411.2127. 

 
7.2.6.5. Synthesis of 3-(alkyl/aromatic)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-dione 

 

7.2.6.5.1. Synthesis of 2-chloro-N-(2-hydroxyethyl)-nicotinamide 207 and 2-chloronicotinic 

acid 2-[(2-chloropyridine-3-carbonyl)-amino]-ethyl ester 206 

 

The 2-chloro-3-pyridinecarboxylic acid (1.6g, 0.0102mol) in thionyl chloride (25 ml) was stirred at 

reflux for 2h. The excess of thionyl chloride was removed under vacuum and dried on vacuum pomp 

for 3h. The 2-chloro-3-pyridinecarbonyl chloride (1g, 0.0057mol) was placed in the flask, and then the 

flask in the ice-bath. To the stirred 2-chloro-3-pyridinecarbonyl chloride, ethanolamine (0.87g, 

0.0.014mol) in CH2Cl2 (10 ml) was added dropwise. The mixture was stirred at room temperature for 

17h. The solvent was removed and product isolated by column chromatography using EtOAc as 

eluent.  
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2-Chloro-N-(2-hydroxyethyl)-nicotinamide (207);  

98% (1.11g); white solid; mp. 89°C; IR: 3299, 3251 (NH), 1646 (C(O)NH), 

1584, 1544, 1403 (C=C), 1058 (C-N); 1H NMR (300 MHz, CDCl3): 3.66 (dt, J= 

10.28, 10.40 Hz, 2H, CH2-OH), 3.86 (dt, J= 9.76, 9.88 Hz, 2H, NH-CH2), 7.00 (br, C(O)NH), 7.35 

(dd, J= 7.64, 4.76 Hz, 1H, py), 8.09 (dd, J= 7.64, 1.84 Hz, 1H, py), 8.46 (dd, J= 4.76, 1.96 Hz, 1H, 

py); 13C (CDCl3): δ 42.79, 61.72, 122.79, 131.05, 139.73, 147.17, 151.07, 165.47; MS: m/z (%)= 201 

[M+ 1]+ (100), 202 (10), 203 (30); HRMS calcd. for C8H10ClN2O2 [M + 1]+ 201.0425;  

found 201.0427. 

 

2-Chloro-nicotinic acid 2-[(2-chloro-pyridine-3-carbonyl)-amino]-

ethyl ester (206); colorless oil; IR: 3276 (NH), 1733 (C(O)NH or 

C(O)O), 1649, 1579, 1561 (C=C), 1399 (C-H), 1272 (C-O);  
1H NMR (300 MHz, CDCl3): 3.89 (dt, J= 10.68 Hz, 2H, CH2-NH), 4.59 (t, J= 5.24 Hz, 2H, O-CH2), 

7.11 (t, J= 5.92 Hz, 1H, C(O)NH), 7.33 (dd, J= 15.69, 4.80 Hz, 1H, py), 7.33 (d, J= 4.76 Hz, 1H, py), 

8.02 (dd, J= 7.62, 1.98 Hz, 1H, py), 8.20 (dd, J= 7.70, 1.98 Hz, 1H, py), 8.42 (dd, J= 4.78, 1.98 Hz, 

1H, py), 8.50 (dd, J= 4.80, 2.00 Hz, 1H, py); 13C (CDCl3): δ 39.21, 64.43, 122.29, 122.76, 126.40, 

131.09, 139.41, 140.59, 147.07, 149.83, 151.03, 152.14, 164.39, 165.14; MS: m/z (%)= 340 [M+ 1]+ 

(53), 341 (9), 342 (35), 343 (6); HRMS calcd. for C14H12Cl2N3O3 [M + 1]+ 340.0250; found 340.0240. 

 
7.2.6.5.2. Synthesis of 2-(alkyl/aromatic)amino-N-(2-hydroxyethyl)-nicotinamide 
 
7.2.6.5.2.1. Synthesis of 2-(alkyl/aromatic)-N-(2-hydroxyethyl)-nicotinamide 208 
 

General procedure  

The 2-chloro-N-(2-hydroxyethyl)-nicotinamide (0.3g, 0.0015mol) in alkyl/aromaticamine (6 ml) was 

stirred at reflux for 69h. The excess of amine was removed and product was separated by column 

chromatography. 

 

2-Allylamino-N-(2-hydroxyethyl)-nicotinamide (208a);  

eluent: EtOAc; 0.302g, 91%; orange oil; IR: 3330 (NH), 1628 (C(O)NH), 1578, 

1508 (C=C), 1258 (C-N); 1H NMR (300 MHz, CDCl3): 3.53 (dt, J= 10.20, 5.48 

Hz, 2H, CH2-OH), 3.77 (dt, J= 5.54, 4.58 Hz, 2H, NH-CH2), 4.09 (tt, J= 5.38, 

1.66 Hz, 2H, O-CH2), 5.11 (ddt, J= 10.29, 3.03, 1.51 Hz, 1H, =CH2), 5.24 (ddt, J= 17.18, 3.31, 1.73 

Hz, 1H, =CH2), 5.97 (qt, J= 17.18, 10.36, 5.20 Hz, 1H, -CH=), 6.44 (dd, J= 7.64, 4.88 Hz, 1H, py), 

6.88 (br, C(O)NH), 7.59 (dd, J= 7.68, 1.80 Hz, 1H, py), 8.13 (br, NH-allyl), 8.16 (dd, J= 4.88, 1.76 

Hz, 1H, py); 13C (CDCl3): δ 42.42, 43.27, 61.78, 109.88, 110.69, 115.45, 135.08, 135.57, 151.77, 
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157.60, 169.17; MS: m/z (%)= 222 [M+ 1]+ (100), 223 (13); HRMS calcd. for C11H16N3O2 [M + 1]+ 

222.1232; found 222.1242. 

 

2-n-Propylamino-N-(2-hydroxyethyl)-nicotinamide (208b);  

eluent: EtOAc; 0.304g, 91%; orange oil; IR: 3330 (NH), 1627 (C(O)NH), 1578 

(N-H), 1513 (C=C), 1259 (C-N); 1H NMR (300 MHz, CDCl3): 0.96 (t, J= 7.40 

Hz, 3H, CH3), 1.61 (dq, J= 7.26 Hz, 2H, CH2-CH3), 3.34 (dt, J= 7.04 Hz, 2H, 

CH2-OH), 3.49 (dt, J= 5.2 Hz, 2H, NH-CH2), 3.74 (t, J= 5.14 Hz, 2H, CH2-CH2-CH3),  

6.37 (dd, J= 7.62, 4.90 Hz, 1H, py), 7.18 (t, J= 5.48 Hz, 1H, C(O)NH), 7.61 (dd, J= 7.68, 1.76 Hz, 1H, 

py), 8.04 (t, J= 5.10 Hz, 1H, NH-prop), 8.10 (dd, J= 4.90, 1.74 Hz, 1H, py); 13C (CDCl3): δ 11.65, 

22.55, 42.32, 42.87, 61.44, 109.80, 110.18, 135.75, 151.49, 157.83, 169.22; MS: m/z (%)= 224  

[M+ 1]+ (100), 225 (12); HRMS calcd. for C11H18N3O2 [M + 1]+ 224.1394; found 224.1393. 

 

2-i-Pentylamino-N-(2-hydroxyethyl)-nicotinamide (208c);  

eluent: EtOAc; 0.369g, 98%; orange oil; IR: 3322 (NH), 1628 (C(O)NH), 1578 

(N-H), 1513 (C=C), 1259 (C-N); 1H NMR (300 MHz, CDCl3): 0.93 (s, 3H, 

CH3), 0.95 (s, 3H, CH3), 1.53 (dt, J= 14.64 Hz, 2H, CH2-OH),  

1.66-1.78 (m, 1H, CH), 3.41-3.48 (m, 2H, CH2), 3.55 (dt, J= 10.04 Hz, 2H, NH-

CH2), 3.79 (t, J= 4.98 Hz, 2H, O-CH2), 6.42 (dd, J= 7.62, 4.86 Hz, 1H, py), 6.91 (br, C(O)NH), 7.61 

(dd, J= 7.68, 1.80 Hz, 1H, py), 8.01 (br, NH-i-Pr), 8.18 (dd, J= 4.86, 1.74 Hz, 1H, py);  
13C (CDCl3): δ 22.37, 22.56, 25.96, 38.37, 39.30, 42.47, 61.75, 109.66, 110.06, 135.51, 151.75, 

157.98, 169.23, 170.64; MS: m/z (%)= 252 [M+ 1]+ (100), 253 (16); HRMS calcd. for C13H22N3O2  

[M + 1]+ 252.1707; found 252.1714. 

 

2-Benzylamino-N-(2-hydroxyethyl)-nicotinamide 208d);  

eluent: EtOAc; 0.386g, 95%; mp. 81°C; IR: 3320 (NH, OH), 1627 (C(O)NH), 

1577, 1508 (C=C), 1257 (C(O)-N), 1063 (C-N); 1H NMR (300 MHz, CDCl3): 

3.55 (dt, J= 10.16, 10.08 Hz, 2H, CH2-OH), 3.78 (dt, J= 5.02 Hz, 2H, NH-CH2), 4.71 (d, J= 5.56 Hz, 

2H, CH2-Ph), 6.49 (dd, J= 7.61, 4.88 Hz, 1H, py), 6.55 (br, C(O)NH), 7.21-7.39 (m, 5H, Ph),  

7.59 (dd, J= 7.68, 1.80 Hz, 1H, py), 8.23 (d, J= 4.84, 1.76 Hz, 1H, py), 8.42 (br, NH-Ph); 13C (CDCl3): 

δ 42.39, 44.90, 62.12, 109.64, 110.77, 126.95, 127.55, 128.51, 135.29, 139.58, 152.08, 157.82, 

169.11; MS: m/z (%)= 272 [M+ 1]+ (100), 273 (11); HRMS calcd. for C15H18N3O2 [M + 1]+ 272.1394; 

found 272.1396. 
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2-Cyclohexylamino-N-(2-hydroxyethyl)-nicotinamide (208e);  

eluent: EtOAc; 0.087g, 22%; mp. 102°C; IR: 3306 (NH), 1738 (C(O)NH), 1620 

(N-H), 1575, 1503 (C=C), 1253 (C-O), 1063 (C-N); 1H NMR (300 MHz, 

CDCl3): 1.17-1.33 (m, 4H, cyclohexyl), 1.33-1.48 (m, 2H, cyclohexyl),  

1.66-1.77 (m, 2H, cyclohexyl), 1.94-2.04 (m, 2H, cyclohexyl), 3.46 (br, OH), 

3.53 (dt, J= 10.24 Hz, 2H, CH2-OH), 3.78 (dt, J= 5.58 Hz, 2H, NH-CH2), 3.92-4.03 (m, 1H, CH-

cyclohexyl), 6.38 (dd, J= 7.64, 4.84 Hz, 1H, py), 6.85 (t, J= 4.94 Hz, 1H, C(O)NH), 7.58 (dd, J= 7.75, 

1.80 Hz, 1H, py), 8.08 (d, J= 7.56 Hz, NH-cyclohexyl), 8.15 (dd, J= 4.84, 1.76 Hz, 1H, py);  
13C (CDCl3): δ 24.81, 25.86, 29.69, 33.08, 42.42, 48.77, 61.87, 109.24, 109.94, 135.65, 151.91, 

157.29, 169.34; MS: m/z (%)= 264 [M+ 1]+ (100), 265 (17); HRMS calcd. for C14H22N3O2 [M + 1]+ 

264.1707; found 264.1707. 

 
7.2.6.5.2.2.  Synthesis of 2-benzylamino-N-(2-hydroxyethyl)-nicotinamide 208d 

 

Procedure based on WO 2010109123 

To a suspension of 2-benzylamino-3-pyridinecarboxylic acid (0.6g, 0.0026mol) in dry THF (15 ml), 

Et3N (0.8g, 0.0079mol), ethanolamine (0.19g, 0.0031mol) and BOP (1.39g, 0.0031mol) were added. 

The reaction mixture was stirred at room temperature for 21h. The precipitate was filtered off, washed 

with THF and EtOAc. The filtrate was concentrated and product was isolated by column 

chromatography using EtOAc as eluent. The 2-benzyl-N-(2-hydroxy-ethyl)-nicotinamide was obtained 

as light orange oil in 80% yield (0.571g). 

 

7.2.6.5.3. Synthesis of 3-(propyl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-

dione 213b and 3-(benzyl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-dione 213d 

 

Synthesis of 3-(propyl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 

 

To a solution of 2-propylamino-N-(2-hydroxyethyl)-nicotinamide (0.2g, 0.0009mol) in dry CH2Cl2  

(5 ml), DIPEA (0.347g, 0.0027mol) was added and the mixture was stirred at room temperature for 

10min. Then the solution was cooled to 0°C and solution of triphosgene (0.319g, 0.0011mol) in dry 

CH2Cl2 (3 ml) was added dropwise. The reaction mixture was stirred at room temperature for 4h.  

The CH2Cl2 and H2O were added and organic layer was washed with brine, dried over MgSO4, filtered 

and concentrated. The desire product was separated by preparative TLC using mixture of EtOAc and 

PE (1:2) as eluent. The 3-(propyl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione was 

obtained in 27% yield (0.06g) as colorless oil. 
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3-(n-Propyl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 

(213b); eluent: EtOAc/PE (1/2); 0.06g, 27%; colorless oil; IR: 1704 (NC(O)N), 

1662, 1591, 1484 (C=C), 1430 (C-H). 1H NMR (300 MHz, CDCl3): 1.00  

(t, J= 7.44 Hz, 3H, CH3), 1.77 (m, 2H, CH2-CH3), 3.81 (t, J= 6.64 Hz, 2H, CH2-

OH), 4.32 (dt, J= 9.64 Hz, 2H, -CH2- CH2- CH3), 4.46 (t, J= 6.64 Hz, 2H,  

N-CH2),  7.72 (dd, J= 7.79, 4.77 Hz, 1H, py), 8.47 (dd, J= 7.76, 1.96 Hz, 1H, py), 8.68 (dd, J= 4.76, 

1.92 Hz, 1H, py); 13C NMR (CDCl3): δ 11.23, 21.13, 40.24, 42.58, 44.19, 110.59, 118.93, 137.81, 

150.72, 150.81, 154.36, 161.23; MS: m/z (%)= 250 [M+ 1]+ (100), 250 (13); HRMS calcd. for 

C12H16N3O3 [M + 1]+ 250.1186; found 250.1185. 

 

Synthesis of 3-(benzyl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 

 

To a solution of 2-benzylamino-N-(2-hydroxyethyl)-nicotinamide (0.2g, 0.0007mol) in dry CH2Cl2  

(5 ml), DIPEA (0.0017g, 0.0027mol) was added and the mixture was stirred at room temperature for 

15min. Then the solution was cooled to 0°C and solution of triphosgene (0.263g, 0.0009mol) in dry 

CH2Cl2 (3 ml) was added dropwise. The reaction mixture was stirred at room temperature for 4h.  

The CH2Cl2 and H2O were added and organic layer was washed with brine, dried over MgSO4, filtered 

and concentrated. The desire product was separated by preparative TLC using EtOAc as eluent.  

The 3-(benzyl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione was obtained in 20% 

(0.046g) yield as yellow oil. 

 

3-(Benzyl)-1-(2-hydroxyethyl)-pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 

(213d); eluent: EtOAc/PE (1/2); 0.046g, 20%; yellow oil; IR: 1774 (NC(O)N), 

1707 (C(O)N), 1651, 1594, 1459, (C=C), 1272 (C-O). 1H NMR (300 MHz, 

CDCl3): 3.80 (t, J= 6.60 Hz, 2H, CH2-OH), 4.46 (t, J= 6.60 Hz, 2H, N-CH2), 5.57 (s, 2H, CH2-Bn), 

7.18-7.35 (m, 5H, Bn), 7.49 (d, J= 7.15 Hz, 1H, py), 8.47 (dd, J= 7.71, 1.65 Hz, 1H, py),  

8.69 (dd, J= 4.40, 1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 29.79, 40.27, 42.79, 45.49, 110.75, 119.36, 

127.77, 128.57, 128.69, 136.84, 138.05, 150.79, 151.04, 154.43, 161.19; MS: m/z (%)= 316 [M+ 1 + 

NH4]
+ (100), 317 (20), 318 (36), 319 (8); HRMS calcd. for C16H16N3O3 [M + 1]+ 298.3160; found 

298.1170. 
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7.2.6.5.3.1.  Synthesis of 2-[(2-benzylaminopyridine-3-carbonyl)-amino]-ethyl imidazole-

1-carboxylate 210 

 

Procedure based on J. Am. Chem. Soc. 2002, 124, 1933-1940. 

The mixture of 2-benzyl-N-(2-hydroxyethyl)-nicotinamide (0.55g, 0.002mol) and CDI (0.33g, 

0.002mol) in dry THF (20 ml) was refluxed for 40h. The solvent was removed and product was 

isolated by column chromatography using EtOAc as eluent. The 2-[(2-benzylamino-pyridine-3-

carbonyl)-amino]-ethyl imidazole-1-carboxylate was obtained as pale yellow oil in 35% yield 

(0.223g).  

 

 2-[(2-Benzylaminopyridine-3-carbonyl)-amino]-ethyl imidazole-1-

carboxylate (210); eluent: EtOAc; 0.223g, 35%; pale yellow oil;  

IR: 3287 (NH), 2923, 2857 (C=C-H), 1766 (C(O)), 1633, 1495 (C=C), 

1293 (C-O), 1241 (C-N). 1H NMR (300 MHz, CDCl3): 3.82 (q, J= 5.41 Hz, 2H, CH2-NH),  

4.59 (t, J= 5.22 Hz, 2H, O-CH2), 4.71 (d, J= 5.52 Hz, 2H, CH2-Ph), 6.52 (dd, J= 7.64, 4.84 Hz, 1H, 

py), 6.62 (t, J= 5.56 Hz, 1H, C(O)-NH), 7.05 (dt, J= 1.58 Hz, 1H, imidazole), 7.21-7.42 (m, 6H, Bn 

and proton from imidazole), 7.59 (dd, J= 7.72, 1.80 Hz, 1H, py), 8.11 (t, J= 1.00 Hz, 1H, imidazole), 

8.25 (dd, J= 4.84, 1.76 Hz, 1H, py), 8.42 (t, J= 4.80 Hz, NH-Ph); 13C NMR (CDCl3): δ 29.59, 38.98, 

44.88, 66.88, 109.15, 110.68, 117.04, 126.84, 127.50, 128.42, 130.91, 134.93, 137.07, 139.69, 148.90, 

152.39, 158.00, 168.65; MS: m/z (%)= 366 [M+ 1]+ (100), 367 (25); HRMS calcd. for C19H20N5O3  

[M + 1]+ 366.1561. 

 

7.2.6.5.3.2.  Synthesis of 2-[(2-benzylaminopyridine-3-carbonyl)-amino]-ethyl 2-

benzylaminopyridinecarboxylate 212 

 

To a solution of 2-benzyl-N-(2-hydroxyethyl)-nicotinamide (0.12g, 0.0004mol) in dry THF (15 ml) 

NaH (0.021g, 0.0006mol) and CDI (0.072g, 0.0004mol) were added. The reaction mixture was stirred 

at room tempereature for 20h. The solvent was removed and product isolated by column 

chromatography using mixture of EtOAc and PE (1:1) as eluent. The 2-[(2-benzylaminopyridine-3-

carbonyl)-amino]-ethyl 2-benzylaminopyridinecarboxylate was isolated in 10% (0.02g) yield as a pale 

yellow oil. 

 

 

 

 

N

O

N
H

NHBn

O N

O

N



EXPERIMENTAL PART 

152 

 2-[(2-benzylaminopyridine-3-carbonyl)-amino]-ethyl 2-

benzylaminopyridinecarboxylate (212); eluent: EtOAc/PE (1/1); 

0.02g, 10%; pale yellow oil; IR: 3363 (NH), 2922, 2852 (C=C-H), 1686 

(C(O)), 1633 (C(O)N), 1577, 1508 (C=C), 1243 (C-O), 1132 (C-N). 1H NMR (300 MHz, CDCl3): 3.74 

(dt, J= 10.60 Hz, 2H, CH2-NH), 4.46 (t, J= 5.08 Hz, 2H, O-CH2), 4.69 (d, J= 5.66 Hz, 2H, CH2-Ph), 

4.75 (d, J= 5.46 Hz, 2H, CH2-Ph), 6.43 (dd, J= 7.64, 4.84 Hz, 1H, py), 6.53 (dd, J= 7.80, 4.76 Hz, 1H, 

py), 6.54 (br, C(O)NH), 7.20-7.38 (m, 10H, Ph), 7.52 (dd, J= 7.72, 1.80 Hz, 1H, py),  

8.11 (dd, J= 7.78, 1.98 Hz, 1H, py), 8.22 (dd, J= 4.84, 1.76 Hz, 1H, py), 8.23 (br, NH-Ph), 8.30 (dd, 

J= 4.76, 1.96 Hz, 1H, py), 8.44 (t, J= 5.24 Hz, 1H, NH-Ph); 13C NMR (CDCl3): δ 39.53, 44.87, 44.89, 

63.49, 105.32, 109.47, 110.76, 111.40, 126.93, 127.13, 127.48, 127.53, 128.51, 128.61, 135.15, 

139.32, 139.58, 140.10, 152.13, 154.24, 157.85, 158.52, 167.88, 168.49; MS: m/z (%)= 482 [M+ 1]+ 

(100), 483 (34), 484 (6); HRMS calcd. for C28H28N5O3 [M + 1]+ 482.2181; found 482.2193. 

 
7.2.6.6. Synthesis of 3,4-dihydro-4-benzyl-pyrido[3,2-f]-1,4-oxazepin-5(2H)-one 221 

 

7.2.6.6.1. Synthesis of N-benzyl-2-chloro-N-(2-hydroxyethyl)-nicotinamide 219 and 2-

chloronicotinic acid 2-[benzyl-(2-chloropyridine-3-carbonyl)-amino]-ethyl ester 

220 

 

The 2-chloro-3-pyridinecarboxylic acid (1.6g, 0.0102mol) in thionyl chloride (25 ml) was stirred at 

reflux for 2h. The excess of thionyl chloride was removed under vacuum and dried on vacuum pomp 

for 3h. The 2-chloro-3-pyridinecarbonyl chloride (1.73g, 0.0098mol) was placed in the flask, and then 

the flask in the ice-bath. To the stirred 2-chloro-3-pyridinecarbonyl chloride, N-benzylethanolamine 

(1.78g, 0.0118mol) in CH2Cl2 (10 ml) was added dropwise. The mixture was stirred at room 

temperature for 10min. The solvent was removed and products separated by column chromatography 

using EtOAc as eluent. 

 

 N-Benzyl-2-chloro-N-(2-hydroxyethyl)-nicotinamide (219);  

colorless oil; eluent: EtOAc; 1.27g, 48% yield; IR: 3390 (OH), 1732 (C(O)N), 

1619 (C=C), 1396 (C-H), 1058, 1046 (C-O); 1H NMR (300 MHz, CDCl3): 3.26 

(br, 2H, CH2-OH), 3.88 (t, J= 5.04 Hz, 2H, CH2-N), 4.47 (s, 2H, CH2-Bn), 7.11 (d, J= 6.76 Hz, 1H, 

Bn), 7.20 (dd, J= 7.56, 4.84 Hz, 1H, py), 7.26-7.44 (m, 4H, Bn), 7.59 (dd, J= 7.54, 1.90 Hz, 1H, py), 

8.40 (dd, J= 4.86, 1.82 Hz, 1H, py); 13C (CDCl3): δ 48.54, 53.79, 61.27, 122.32, 127.11, 127.73, 

128.02, 128.32, 128.74, 128.90, 135.89, 136.73, 137.63, 149.85, 150.08; MS: m/z (%)= 291 [M+ 1]+ 

(100), 292 (19), 293 (34), 294 (6); HRMS calcd. for C15H16ClN2O2 [M + 1]+ 291.0895; found 

291.0903. 
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 2-Chloronicotinic acid 2-[benzyl-(2-chloropyridine-3-carbonyl)-

amino]-ethyl ester (220); colorless oil; eluent: EtOAc; 2.03g, 52% 

yield; IR: 1732 (C(O)N and C(O)O), 1639 (C=C), 1396 (C-H), 1241, 

1063 (C-O); 1H NMR (300 MHz, CDCl3): 3.50 (t, J= 5.50 Hz, 2H, CH2-OH), 4.49 (s, 2H, CH2-Bn), 

4.63 (t, J= 5.34 Hz, 2H, NH-CH2), 7.09 (d, J= 6.80 Hz, 2H, Bn), 7.20 (dd, J= 7.52, 4.84 Hz, 1H, py), 

7.26-7.42 (m, 4H, Bn), 7.30 (dd, J= 4.70, 2.86 Hz, 1H, py), 7.59 (dd, J= 7.54, 1.94 Hz, 1H, py), 8.19 

(dd, J= 7.70, 1.94 Hz, 1H, py), 8.39 (dd, J= 4.80, 1.88 Hz, 1H, py), 8.50 (dd, J= 4.76, 1.92 Hz, 1H, 

py); 13C (CDCl3): δ 46.07, 53.21, 62.83, 122.05, 122.37, 126.75, 127.91, 128.37, 128.81, 128.97, 

135.56, 136.74, 139.96, 140.36, 150.13, 150.20, 151.91, 152.13, 164.26, 167.45; MS: m/z (%)= 430 

[M+ 1]+ (100), 431 (24), 432 (66), 433 (14), 434 (11); HRMS calcd. for C21H18Cl2N3O3 [M + 1]+ 

430.0720; found 430.0733. 

 

7.2.6.6.2. Synthesis of 3,4-dihydro-4-benzyl-pyrido[3,2-f]-1,4-oxazepin-5(2H)-one 221 

 

To a cold solution of N-benzyl-2-chloro-N-(2-hydroxyethyl)-nicotinamide (0.2g, 0.0007mol) in dry 

THF (25 ml) under nitrogen atmosphere, NaH (0.33g in oil, 1.2eq). The reaction mixture was stirred at 

room temperature for 16h. The H2O was added and the product was extracted with EtOAc (3x),  

the combinate organic layers were dried over MgSO4, filtered and the solvent removed. The desired  

3,4-dihydro-4-benzyl-pyrido[3,2-f]-1,4-oxazepin-5(2H)-one was obtained in 90% yield (0.158g) as 

colorless oil.  

 

3,4-Dihydro-4-benzyl-pyrido[3,2-f]-1,4-oxazepin-5(2H)-one (221);  

colorless oil; 0.158g, 90% yield; IR: 1630 (C(O)O), 1586, 1427 (C=C), 1050 (C-O); 
1H NMR (300 MHz, CDCl3): 3.58 (t, J= 4.40 Hz, 2H, CH2-O), 4.38 (t, J= 4.40 Hz, 2H, 

N-CH2), 4.82 (s, 2H, CH2-Bn), 7.16 (dd, J= 7.71, 4.95 Hz, 1H, py), 7.26-7.42 (m, 5H, Bn), 8.40  

(dd, J= 4.40, 1.65 Hz, 1H, py), 8.47 (dd, J= 7.71, 1.65 Hz, 1H, py); 13C (CDCl3): δ 46.79, 51.89, 

118.87, 119.21, 128.06, 128.37, 129.01, 136.43, 143.36, 152.14, 159.77, 166.48; MS: m/z (%)= 255 

[M+ 1]+ (100), 256 (18); HRMS calcd. for C15H15N2O2 [M + 1]+ 255.1128; found 255.1132. 

 

7.2.6.7. Synthesis of 7,8,16,17-tetrahydro-dipyrido[f,m][1,8,4,11]dioxadiazacyclotetradecine-

9,18(6H,15H)-dione 215 

 

To a cold solution of 2-chloro-N-(2-hydroxyethyl)-nicotinamide (0.25g, 0.0013mol) in dry THF  

(25 ml) under N2 atmosphere, NaH (0.036g, 0.0015mol, 60% in oil) was added in one portion.  

The ice-bath was removed and the reaction mixture was stirred at room temperature for 22h.  

The precipitate was filtered off, washed with THF and dried. The 7,8,16,17-tetrahydro-dipyrido[f,m]
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[1,8,4,11]dioxadiazacyclotetradecine-9,18(6H,15H)-dione was obtained in 33% (0.135g) as white 

solid.  

 

7,8,16,17-tetrahydro-dipyrido[f,m][1,8,4,11]dioxadiazacyclotetradecine-

9,18(6H,15H)-dione (215); mp. >260°C; IR: 3358 (NH), 1646 (C(O)NH), 

1535, 1420 (C=C), 1235 (C-N). 1H NMR (300 MHz, DMSO-d6):  

3.72 (dt, J= 10.04 Hz, 4H, 2xCH2-NH), 4.49 (t, J= 4.96 Hz, 4H, 2xCH2-O), 

7.15 (dd, J= 7.42, 4.90 Hz, 2H, 2xpy), 8.13 (dd, J= 7.42, 2.02 Hz, 2H, 2xpy), 

8.30 (dd, J= 4.90, 1.98 Hz, 2H, 2xpy), 8.59 (br, NH); 13C (DMSO-d6): δ64.71, 118.21, 140.29, 149.47, 

159.94, 164.24; MS: m/z (%)= 329 [M+ 1]+ (100), 330 (19); HRMS calcd. for C16H17N4O4 [M + 1]+ 

329.1244; found 329.1243. 

 
7.2.6.8. Synthesis of  intermediates to the 2,3-dihydro-pyrido[2,3-e][1,4]oxazepin-5(1H)-one 

 

7.2.6.8.1. Synthesis of 2-chloroethyl 2-amino-3-pyridinecarboxylate 222a  

 

Procedure based on WO 2010109123 (2010)  

To a suspension of 2-aminopyridine-3-carboxylic acid (0.4g, 0.0029mol) in THF (30 ml), Et3N (0.88g, 

0.0087mol), 2-chloroethanol (0.28g, 0.0035mol) and BOP (1.54g, 0.0035mol) were added. The 

reaction mixture was stirred at room temperature for 19h. The solvent was removed and the 2-

chloroethyl 2-amine-3-pyridinecarboxylate was isolated by column chromatography using EtOAc as 

eluent, as a white solid (0.52g, 90% yield). 

 

2-chloroethyl 2-amino-3-pyridinecarboxylate (222a);  

eluent: EtOAc; 0.52g, 90%; white solid; mp. 122°C; IR: 3428 (NH), 1693 

(C(O)O), 1619, 1566 (C=C), 1236, 838 (C-Cl). 1H NMR (300 MHz, CDCl3): 

3.81 (t, J= 5.64 Hz, 2H, CH2-Cl), 4.54 (t, J= 5.67 Hz, 2H, O-CH2), 6.65 (dd, J= 7.90, 4.78 Hz, 1H, 

py), 8.21 (dd, J= 28.69, 1.92 Hz, 1H, py), 8.21 (dd, J= 16.09, 1.96 Hz, 1H, py);  
13C NMR (CDCl3): δ 41.65, 64.32, 105.73, 112.87, 140.38, 153.97, 1599.42, 166.47;  

MS: m/z (%)= 201 [M+ 1]+ (100), 202 (10), 203 (31); HRMS calcd. for C8H10ClN2O2 [M + 1]+ 

201.04253; found 201.0426. 

 

7.2.6.8.2. Synthesis of 2-chloroethyl 2-benzylamino-3-pyridinecarboxylate 222b 

 

Procedure based on WO 2010109123 (2010)  

To a suspension of 2-benzylamino-3-pyridinecarboxylic acid (0.2g, 0.0009mol) in dry THF (15 ml), 

Et3N (0.266g, 0.0026mol), 2-chloroethanol (0.08g, 0.0010mol) and BOP (0.465g, 0.0.0010mol) were 
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added. The reaction mixture was stirred at room temperature for 19h. The precipitate was filtered off, 

washed with THF and EtOAc. The filtrate was concentrated and product was isolated by column 

chromatography using mixture of EtOAc and PE (1:1) as eluent. The 2-chloroethyl 2-benzyl-3-

pyridinecarboxylate was obtained as light orange oil in 80% yield (0.204g). 

 

2-chloroethyl 2-benzylamino-3-pyridinecarboxylate (222b);  

eluent: EtOAc/PE (1/1); 0.204g, 80%; light orange oil; IR: 3389 (NH), 1681 

(C(O)O), 1590, 1578, 1507 (C=C), 1240, 733 (C-Cl). 1H NMR (300 MHz, 

CDCl3): 3.69 (t, J= 6.05 Hz, 2H, CH2-Cl), 4.42 (t, J= 5.50 Hz, 2H, O-CH2), 4.68 (d, J= 5.50 Hz, 2H, 

CH2-Bn), 6.49 (dd, J= 7.71, 4.40 Hz, 1H, py), 7.14-7.32 (m, 5H, Bn), 8.09 (dd, J= 7.71, 2.20 Hz, 1H, 

py), 8.13 (br, NH), 8.24 (dd, J= 4.95, 1.65 Hz, 1H, py); 13C NMR (CDCl3): δ 41.75, 44.96, 64.30, 

105.45, 111.51, 127.19, 127.62, 128.67, 139.45, 140.32, 154.25, 158.59, 167.10; MS: m/z (%)= 291 

[M+ 1]+ (100), 292 (17), 293 (33); HRMS calcd. for C15H16ClN2O2 [M + 1]+ 291.0895; found 

291.0900. 

 

7.3. Characterization of the NPP inhibitors 

 

Materials 

2-(N-cyclohexylamino)ethanesulfonic acid (CHES) and Tris(hydroxymethyl)aminomethane (Tris) 

were obtained from Applichem (Darmstadt, Germany). Disodium hydrogen phosphate was purchased 

from Carl Roth (Karlsruhe, Germany). ATP, calcium chloride, dimethyl sulfoxide (DMSO), 

magnesium chloride, p-nitrophenyl 5’-thymidine monophosphate (p-Nph-5’-TMP), sodium chloride 

and sodium hydroxide were obtained Sigma (Steinheim, Germany). Human recombinant soluble 

NPP1, expressed in NS0 cells from murine myeloma, was obtained from R&D Systems GmbH 

(Wiesbaden, Germany). Human recombinant soluble NPP1, expressed in Sf9 insect cells,  

was prepared in the laboratory headed by Professor Christa E. Müller (PharmaCenter Bonn, 

Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-

53121 Bonn, Germany). 

 

Initial screen 

The initial screening of compounds for inhibition of human NPP1 was performed as previously 

described using a colorimetric assay with the artificial substrate  p-nitrophenyl 5’-thymidine 

monophosphate (p-Nph-5’-TMP).[191][215] The assays were carried out at 37°C in a total volume of 

100µl in a clear 96-well microplate. The reaction mixture contained 1mM CaCl2, 200µM ZnCl2, 

50mM Tris, pH 9.0, 400µM p-Nph-5’-TMP, and 10µM of each test compounds. The enzyme reactions 

were initiated by the addition of 20ng of human NPP1 (commercial, Km = 8.17µM), then incubated at 

37°C for 15min, and subsequently terminated by the addition of 20µl of 1.0 N NaOH. The amounts of 
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p-nitrophenolate liberated were measured at 400nm. All experiments were performed two times in 

triplicate. The % inhibition of test compounds was evaluated when sets the blank (without test 

compound) as 100 % of enzyme activity. 

 

ATP assays 

For compounds that showed at least 70 % inhibition versus the artificial substrate, their inhibitory 

activities were investigated versus the natural substrate ATP at 37°C in a final volume of 100µl.   

The reaction mixture contained 1mM MgCl2, 2mM CaCl2, 10mM  

2-(N-cyclohexylamino)ethanesulfonic acid (CHES), pH 9.0, 400µM ATP as substrate and 10µM of 

test compounds. The reaction was initiated by the addition of 20ng of human NPP1 (commercial, Km = 

8.17µM) or 360ng of human NPP1 (produced, Km = 43.2µM), respectively. The mixture was 

incubated for 30 min, respectively and terminated by heating at 90°C for 3min. After cooling the 

reaction samples in ice, they were transferred into capillary electrphoresis (CE) vials and injected into 

the CE instrument. The previous operation conditions in CE were modified for the NPP1 

detections.[216] All experiments were carried out using a P/ACE MDQ capillary electrophoresis system 

(Beckman Instruments, Fullerton, CA, USA) equipped with a DAD detection system. Data collection 

and peak area analysis were performed by the P/ACE MDQ software 32 KARAT obtained from 

Beckman Coulter (Fullerton, CA, USA). The electrophoretic separations were carried out using  

a polyacrylamide-coated capillary (40cm [30cm effective length], x 50µm (id) obtained from CS-

Chromatography (Langerwehe, Germany)). Electrokinetic injections were performed using a voltage 

of –6kV for 60s and separations were carried out by a voltage of – 15kV. Analytes were detected 

using direct UV absorbance at 260nm. The capillary temperature was kept constant at 15°C and the 

temperature of the storing unit was adjusted to 15°C. The running buffer consisted of 50mM 

phosphate buffer (pH 6.5). Between separations, the capillary was washed with water for 2min (20psi) 

and subsequently with running buffer for 2min (20psi) before each injection. All experiments were 

performed two times in triplicate. For compounds that showed at least 70 % inhibition vs. ATP, 

concentration-inhibition curves were determined with 6-8 different concentrations of test compound 

and IC50 values were determined by nonlinear curve fitting using the program PRISM 5.0 (GraphPad, 

San Diego, USA). Inhibition mechanisms were determined using five different concentrations of ATP 

(from 20 to 500 µM), and three different concentrations of inhibitor. The inhibition type of each 

inhibitor was evaluated graphically from the Lineweaver-Burk plots using PRISM 5.0. 
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7.4. Antimicrobial activity test methodology 

 

Culturing of test strains 

• Escherichia coli LMG 8063, Klebsiella pneumonia LMG 2095, Staphylococcus aureus LMG 

8064, Bacillus subtilis LMG 13579 were routinely grown in Mueller Hinton II broth medium 

(BD ref 212322). All strains were incubated at 37°C for 24h under aerobic conditions, except 

LMG 13579 which was incubated at 28°C. Accordingly, the same broth media and incubation 

conditions were also used during the actual tests. 

• Inocula were prepared in MH broth until a density of 105 CFU/mL (or a McFarland turbidity 

standard equivalent) was reached. 

Bioassay 

• The bioassay was carried out in a batch. 

• Working solutions of test compounds were prepared by mixing 200µL of the supplied DMSO 

solutions of the compounds (app. 50mg/mL) and 800µL Mueller Hinton II (MH) culture broth. 

• The bioassay was carried out in sterile 96-well microtiter plates. Per plate, the antimicrobial 

potency of compounds was tested in duplicate against a single test strain. Also included were 

duplicate wells of positive, negative and sterility controls, respectively.  

- To each well, 170µL of sterile MH broth was added. Next, depending on the type of well, 

additional reagents are added. 

- In each pair of test wells, 10µL of the working solution prepared from each test compound 

was added.  

- In the two positive control wells, 10µL gentamicin sulfate solution (in a concentration similar 

to the compound concentration) was added. 

- In the two negative control wells, 10µL of sterile 0.85% saline was added. 

- Finally, in all wells, 20µL of bacterial inoculum was added. In the two sterility control wells, 

30µL sterile MH broth was added. 

- This way, final concentrations of app. 0.5µg/mL test compound and 104 CFU/mL test bacteria 

were obtained in a test volume of 200µL. 

 

Depending on the test strain, plates were incubated at the respective temperatures (28 or 37°C) for 24h 

under aerobic conditions. Plates were covered with a seal to prevent dehydration during incubation. 

Bacterial growth was scored visually. Turbidity levels comparable to those in the positive control 

wells were regarded as positive for antimicrobial activity of the compound in question. Turbidity 

levels comparable to those in the negative control wells were considered as negative for antimicrobial 

activity.  
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Remark: Originally, it was planned to also assess growth by spectrophotometric turbidity 

measurement at 590nm. However, because several compounds upon addition to the MH growth 

medium caused a ´milky´ or ´orange´coloration which may interfere with OD measurements, it was 

decided to only rely on visual growth inspection. 

 

7.5. The ADME (Absorption, Distribution, Metabolism, and Excretion) study 

performed on selected examples of the synthesized library- methodology 

 

Intraluminal solubility profiling:  The solubility of the pyrido[2,3-d]pyrimidines was experimentally 

determined in the biorelevant medium FaSSIF, possessing mixed micelles of taurocholate and lecithin. 

The thermodynamic solubility was determined by adding an excess of compound to the medium 

(0.8mg/300µL). This suspension was shaken for 24h at 175rpm and 37°C (KS 4000i Control incubator 

shaker, Staufen, Germany) and afterwards centrifuged at 20,817g for 15min (5804 Centrifuge, 

Eppendorf, Hamburg, Germany) to remove undissolved drug. The supernatant was analyzed with 

HPLC and UV detection. 

 

Intestinal permeability:  Caco-2 cells were obtained from American Type Culture Collection 

(Manassas, VA) and were grown in DMEM+ at 37°C in an atmosphere of 5% CO2 and 90% relative 

humidity. Cells were passaged every 3 to 4 days (at 80–90% confluence) at a split ratio of 1:6.  

For transport experiments, cells were seeded at a density of 90,000 cells/cm2 on Costar Transwell 

membrane inserts (3µm pore diameter, 12 mm diameter; Corning Inc., Corning, NY) and were used 

for experiments 17 to 18 days after seeding. Only monolayers with transepithelial electrical resistance 

values higher than 150 Ω
.cm2 were used. Transport studies were performed using a previously 

described method.[204] HBSS+ (pH 7.4) containing 0.2% D-α-tocopheryl polyethylene glycol 1000 

succinate was used in the basolateral compartment to create sink conditions; in the apical 

compartment, FaSSIF (pH 6.5) was used. The experiment was initiated by adding the incubation 

medium, containing the pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones (30µM) in absence or presence of 

GF120918 (4µM), to the donor compartment. Due to solubility issues of compound 196i in DMSO, an 

initial concentration of 20µM was used in order to obtain a non-toxic DMSO concentration below 1%. 

Samples were shaken at 300 rotations per minute (rpm) for 1h at 37°C (Thermostar, BMG Labtech, 

Offenburg, Germany). Afterwards, analysis of the samples was done with HPLC and UV detection. 

The apparent permeability coefficient (Papp) was calculated according to the following equation: 

donor
app CAt

Q
P

×
×

∆
∆= 1
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where Q is the cumulative amount of drug appearing in the acceptor compartment, A is the surface 

area of the Transwell membrane, and Cdonor is the drug concentration in the donor compartment.  

 

Human hepatic in vitro intrinsic clearance: Test compounds (8µM) were incubated with a pool of 

human liver microsomes (HLM) from 45 donors (KaKy-Cell, Plobsheim, France) (0.5mg microsomal 

protein/ml), NADPH (1mM), glucose-6-phosphate (3mM) in a total volume of 400µl phosphate buffer 

(0.1M) containing 3mM MgCl2 at a pH of 7.4. Incubations were conducted at 37°C at 350 rpm 

(Thermostar, BMG Labtech, Offenburg, Germany). Reactions were commenced with the addition of 

NADPH and glucose-6-phosphate and after 0, 10, 20 and 30min, aliquots (75µl) were removed and 

added to acetonitrile (75µl) to quench the reaction. Incubations in the absence of NADPH and glucose-

6-phosphate were performed as a negative control. Parallel incubation with 5µM verapamil was 

performed with human liver microsomes in a concentration of 0.25mg microsomal protein/ml. 

Intrinsic clearance (Clint) values were obtained with the ‘in vitro t1/2 method’[207] Briefly, residual 

concentrations of the parent compound were converted to the percentage of the drug remaining 

relative to the initial concentration. The slope of the linear regression from the log percentage 

remaining versus incubation time was used to calculate the elimination rate constant k=-slope*(ln 10). 

Finally, in vitro t1/2 is calculated from k and incorporated in the following equation to obtain scaled 

Clint values for hepatic metabolism in human (Clint,hep,human): 

 

 Scaled	Cl	
�,
��,
���
 =
�,���

	
	�	���	��/�
×

	
�� ��	�
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HPLC analysis: The HPLC system used to analyze the pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones 

samples consisted of a Waters 2790 Alliance series separations module and a Novapak C18 column 

under radial compression (Waters, Milford, MA). UV absorbance was monitored using a Waters 2487 

detector and fluorescence using a FP-1520 intelligent fluorescence detector (Jasco, Tokyo, Japan).  

The observed peaks were integrated using Empower Pro (Empower 2) software. The calibration 

curves of the pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were linear over the concentration range of 

0.39µM to 100µM. The assessment of intraday and interday reproducibility at concentrations of 

1.25µM and 0.125µM for each pyrido[2,3-d]pyrimidine-2,4-(1H,3H)-dione in 50:50 microsomal 

buffer:ACN, resulted in a RSD below 2.1 (n=5). The deviation from the theoretical concentration was 

lower than 3.2%. The different HPLC methods of the pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones are 

listed in Table 1. 
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Table 1 Conditions of the HPLC analysis of pyrido[2,3-d]pyrimidine-
2,4(1H,3H)-diones analogues 

Compound Mobile Phase UV/Fluo detection tR
a 

 

(Methanol / 25mM acetate  

(nm)  (min) buffer pH 5.5) 

196i 95/5 340 11 

197a 60/40 Ex:330/Em:369 4.7 

197d 80/20 340 4.9 

197f 90/10 Ex:256/Em:420 5.3 

198a 80/20 Ex:243/Em:366 4.9 

198b 80/20 Ex:243/Em:366 7.2 

198d 90/10 Ex:222/Em:361 8.6 

198j 80/20 340 10.1 

199e 90/10 350 5.6 

200a 90/10 Ex:245/Em:363 5.7 

Atenolol 40/60 Ex:271/Em:302 2.8 

Indomethacin 70/30 318 4.4 

Indinavir 80/20 Ex:256/Em:290 5.1 

Verapamil 60/40 Ex:275/Em:315 9.7 
aRetention time 
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