
IEEE COMMUNICATIONS LETTERS, VOL. XX, NO. YY, MONTH 2014 1

Design and Evaluation of a Self-Learning
HTTP Adaptive Video Streaming Client

Maxim Claeys, Student Member, IEEE, Steven Latré, Member, IEEE, Jeroen Famaey, Member, IEEE,
and Filip De Turck, Senior Member, IEEE

Abstract—HTTP Adaptive Streaming (HAS) is becoming the
de facto standard for Over-The-Top (OTT)-based video streaming
services such as YouTube and Netflix. By splitting a video into
multiple segments of a couple of seconds and encoding each of
these at multiple quality levels, HAS allows a video client to
dynamically adapt the requested quality during the playout to
react to network changes. However, state-of-the-art quality selec-
tion heuristics are deterministic and tailored to specific network
configurations. Therefore, they are unable to cope with a vast
range of highly dynamic network settings. In this letter, a novel
Reinforcement Learning (RL)-based HAS client is presented and
evaluated. The self-learning HAS client dynamically adapts its
behaviour by interacting with the environment to optimize the
Quality of Experience (QoE), the quality as perceived by the end-
user. The proposed client has been thoroughly evaluated using a
network-based simulator and is shown to outperform traditional
HAS clients by up to 13% in a mobile network environment.

Index Terms—Streaming media, learning systems, intelligent
agent, quality of service

I. INTRODUCTION

IN recent years, Over-The-Top (OTT) video delivery, where
content is transported over the best-effort Internet, has

gained a lot of popularity. For OTT video, HTTP Adaptive
Streaming (HAS) is becoming the de facto standard. The
general HAS concept is illustrated in Fig. 1. A HAS video
file consists of multiple segments with a typical length of 2 to
10 seconds, encoded at multiple quality levels and resolutions.
At the client side, the information about the video segments
and quality levels is provided in the form of a manifest file.
A standard HAS client requests a video segment on arrival of
the previous segment. Based on the perceived network state
and the information in the manifest file, a quality selection
heuristic dynamically adapts the requested quality level. Each
segment is downloaded in a progressive manner, while at the
client side a buffer is used to bridge temporary anomalies
such as a late arrival of a video segment during a small time
window. Finally, the video segments, stored in the buffer, are
played back as a single continuous video stream.

Transporting the video segments over HTTP provides both
seamless interaction through firewalls and reliable delivery.
On the other hand, the best-effort nature of the Internet makes
these HTTP-based techniques prone to bandwidth fluctuations

Manuscript received Month dd, 2013.
M. Claeys, J. Famaey, and F. De Turck are with the Dept. of Information

Tech., Ghent Univ. - iMinds, Belgium (email: maxim.claeys@intec.ugent.be).
S. Latré is with the Dept. of Mathematics and Computer Science, University

of Antwerp - iMinds, Belgium.
Digital Object Identifier 00.0000/XXXXX.0000.000000.000000

Quality

Segmentation

Requested QualityPerceived Bandwidth

Request Segment x, Quality

Segment x, Quality

Server

Client

t t

HTTP

Communication

Manager

Quality Selection

Algorithm

...

Video

Decoder

Buffer

Fig. 1. Schematic overview of the HTTP Adaptive Streaming (HAS) concept.

and network congestion. Given the detrimental impact on the
Quality of Experience (QoE), the intelligence of the quality
selection heuristic is crucial for the quality of HAS techniques.

Several large industrial players, including Microsoft1, Ap-
ple2 and Adobe3 have commercial HAS implementations.
MPEG, in collaboration with other standard groups, such as
3GPP, standardized the HAS interfaces and protocol data in
Dynamic Adaptive Streaming over HTTP (DASH) in 2011 [1].
In this way, a common ground was established between
the vast amount of available implementations. The bitrate
adaptation heuristics are, however, not standardized, and thus
implementation specific.

While current quality adaptation algorithms are hard-wired
to fit specific network configurations [2], in this letter, a
Q-Learning-based HAS client is proposed to dynamically ad-
just its behaviour by interacting with the network environment.
Applying learning enables the client to adapt its behaviour to
network conditions that were not under consideration when de-
signing the typical deterministic quality selection algorithms.
Using a network-based video streaming simulation frame-
work, we performed extensive simulations of the proposed
client for multiple video sequences with different dynamic
scene variations. The simulations allow evaluation of the self-
learning client in terms of convergence speed, performance and
applicability. Furthermore, the evaluations are used to compare
the performance of the proposed self-learning client to the
traditional Microsoft ISS Smooth Streaming (MSS) algorithm.

The remainder of this letter is structured as follows: first,
Section II describes the proposed client quality selection
algorithm (Section II-A) and the design of the environmental
state and reward definition (Section II-B). In Section III we
define how the self-learning approach is evaluated (III-A)
and how the experiments have been performed (III-B). The
description of the evaluation results follows in Section III-C.
Finally, Section IV presents the conclusions.

1http://www.iis.net/downloads/microsoft/smooth-streaming
2http://tools.ietf.org/html/draft-pantos-http-live-streaming-10
3http://www.adobe.com/products/hds-dynamic-streaming.html

IEEE COMMUNICATIONS LETTERS, VOL. XX, NO. YY, MONTH 2014 2

II. Q-LEARNING HAS CLIENT

A. Approach

Recently, the first steps in the application of a Reinforce-
ment Learning (RL) agent in a HAS quality selection heuristic
have been investigated [3], [4]. In RL, an agent learns by
iterative interaction with its environment. The agent perceives
the state of the environment and selects one of the available
actions to take in this state. This action possibly causes a state
transition and the agent receives a numerical reward to rate
the quality of this transition. Based on the reward values, the
agent gradually learns the optimal action to take in a specific
state. From the vast amount of available RL algorithms, this
work applies the commonly used Q-Learning algorithm [5].
In Q-learning, estimates of the “Quality” of performing an
action in a particular state, called Q-values, are constructed
for every state-action pair based on the numerical rewards.
These Q-values are used by an exploration policy to select
which action to perform in a given state, defining the trade-
off between exploiting obtained knowledge and exploring new
actions. Even though multiple exploration policies have been
investigated, simulations have shown that Softmax yielded the
best performance in the HAS use case. More information on
Softmax, Q-Learning and its parameters can be found in [5].

B. Use case modelling

To apply RL on the HAS use case, the available actions,
the environmental state and the reward function have to be
modelled. The agent’s action is to select one of the available
quality levels to request for the next video segment, given
the perceived network state. A state definition is needed to
model the behaviour of the networking environment the agent
interacts with. When defining the state definition, care has
to be given to the introduced number of states. Too many
states will slow down learning and introduce the danger of
overfitting, while too few states hamper the ability to correctly
model the environment, leading to unsatisfactory results.

The initial approach to a self-learning HAS client [3]
consisted of an environment model with more than 2.5 million
states, leading to issues in terms of convergence. Furthermore,
the vast environment model made the client unapplicable in
situations with variable bandwidth. In the proposed learning
agent, the state is constructed by only two parameters, found
to be essential to model the networking environment: the
available bandwidth perceived by the client and the current
client buffer filling level, i.e. the total duration of the segments
stored in the client buffer. Both of them are continuous values,
which need to be discretized to be modeled as state variables.
The value ranges and number of discretization levels of these
state elements are shown in Table I. In this table, Bmax
denotes the maximum client buffer size in seconds while Tseg
and N respectively denote the segment duration in seconds and
the number of quality levels. BWmax is the highest possible
throughput, e.g. the physical link capacity.

Since the agent’s goal is to maximize the numerical reward,
we want the reward function to be a measure of the QoE. There
are three factors that impact the video quality as perceived by
the user [6]: (i) the average segment quality level, (ii) the
switching behaviour of quality levels and (iii) video freezes,

TABLE I
PROPOSED ENVIRONMENTAL STATE DEFINITION.

State element Range Levels
Buffer filling [0 ; Bmax]sec Bmax

Tseg
+ 1

Bandwidth [0 ; BWmax]bps N + 1

caused by buffer starvations. For each of these aspects, a
simple linear reward component has been constructed, as
shown in (1), (2) and (3).

Rquality = Qk −N (1)

Rswitches = −1.0 ∗ |Qk −Qk−1| (2)

Rbufferfilling =

{
−100 : Bk = 0

Bk −Bmax : Bk > 0
(3)

In these equations, Qk and Bk respectively denote the
quality level requested for segment k and the buffer filling
at the time of that request. The components drive the agent to
higher quality levels, less switches and higher buffer filling.
Since the highest priority is to avoid video freezes at any
time, a strong penalization is given to an empty buffer. The
exact penalization value is of less importance, but has to be
significantly higher than the other components of the reward
function. The total reward function can be defined as specified
in (4).

R = Rquality +Rswitches +Rbufferfilling (4)

III. PERFORMANCE EVALUATION

A. Evaluation Metric

In order to allow fair comparison between the deterministic
MSS algorithm and the proposed approach, an objective video
quality metric is required. De Vriendt et al. [7] define the QoE
of video delivered using HAS to be dependent on the average
segment quality and the standard deviation of the segment
quality. Using this quality level model, its parameters were
tuned based on the results of a small subjective test by experts
in the field of multimedia streaming.

Furthermore, Mok et al. [6] define the influence of the
frequency and duration of video freezes on the estimated
Mean Opinion Score (MOS). While the proposed formulation
only considers three discrete levels of freeze frequency and
length, we use a continuous interpolation of these levels to
measure the influence of freezes on QoE. The result of this
interpolation is given in (5), where Ffreq and Favg represent
the number of freezes relative to the number of segments and
the average duration over all freezes respectively.

φ =
7 ∗max

(
ln (Ffreq)

6 + 1, 0
)
+
(

min (Favg,15)
15

)
8

(5)

Based on these considerations, the MOS for the playout of
a video with K segments, N quality levels and played quality
level Qk for segment k can be estimated by (6).

eMOS = max (5.67 ∗ µ− 6.72 ∗ σ − 4.95 ∗ φ+ 0.17, 0) (6)

In this equation, µ and σ represent the normalized

average quality level (
∑K

k=1

Qk
N

K) and standard deviation

IEEE COMMUNICATIONS LETTERS, VOL. XX, NO. YY, MONTH 2014 3

TABLE II
QUALITY LEVEL (QL) BITRATES (IN KBPS) FOR THE USED VIDEO

TRACES: BIG BUCK BUNNY (B.B.B.), ELEPHANTS DREAM (E.D.), STAR
WARS (S.W.), TOKYO OLYMPICS (T.O.), SONY DEMO (S.D.) AND

SILENCE OF THE LAMBS (S.O.T.L.)

Q
L

B
.B

.B
.

E
.D

.

S.
W

.

T.
O

.

S.
D

.

S.
o.

t.L
.

1 262 261 150 165 229 165
2 333 328 276 338 505 337
3 521 523 424 548 863 544
4 789 796 672 907 1510 892
5 1030 1032 1371 1959 3379 1876
6 1242 1230 2222 – – –
7 2128 2117 – – – –
ω 1.081 1.276 3.441 4.061 2.408 7.705

(

√∑K

k=1
(
Qk
N −µ)2

K−1) respectively. One can verify that the theo-
retical range of this metric is [0; 5.84]. During the simulations
however, a practical metric range [0.00; 5.41] was observed,
which corresponds to the typical levels of an estimated MOS.

B. Experimental Setup

All of the experiments have been performed using the NS-3-
based simulation framework described by Bouten et al. [8].
The simulated network topology consists of a single HAS
server and client, between which the available bandwidth
models a 3G bandwidth trace, described by Riiser et al. [9].
Based on these 3G bandwidth traces with a total duration of
220 minutes, measured on the bus path between Ljan and
Oslo central station, Norway4, we constructed a bandwidth
trace with 800 unique episodes of 10 minutes. The resulting
trace had an average bandwidth of 2163kbps with a standard
deviation of 1268kbps. The minimum and maximum available
bandwidth are 22bps and 6335kbps respectively. It is impor-
tant to note that this bandwidth trace not only yields high
variability within an episode, but also across the episodes. At
the client side, a buffer of 20 seconds is available.

Over this topology, multiple video sequences with varying
content types were streamed. Each video sequence, encoded
using the H.264 Advanced Video Coding (AVC) codec, has a
duration of about 10 minutes, a segment length of 2 seconds
and quality levels as shown in Table II. The different bitrates
are obtained by applying a different Quantization Parameter
(QP) in the encoding. The average relative rangewidth ω is
defined as an indication of the dispersion of segment bitrates,
calculated as the average over all quality levels i of the relative
rangewidth maxk br

i
k−mink br

i
k

avgkbr
i
k

. In this formula, brik denotes the
bitrate of segment k in quality level i. For the learning agent to
be able to converge, each simulation consisted of 400 episodes
of streaming a 10 minutes video trace. To evaluate the results
in the converged state, only the last 50 episodes are considered.

To compare the behaviour of the learning client to cur-
rent deterministic HAS algorithms, we used the traditional
Microsoft ISS Smooth Streaming (MSS) algorithm5 and the

4Dataset available from:
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/bus.ljansbakken-oslo/

5Original source code available from:
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300 350 400 450
 0

 20

 40

 60

 80

 100

 120

Pe
rf

o
rm

a
n
ce

 r
a
ti

o

Q
-v

a
lu

e
 c

h
a
n
g

e

Episode number

RL Client
Miller Client
MSS Client

RL Client Q-value change

Fig. 2. Convergence of the learning client performance for the Big Buck
Bunny video trace.

DASH client proposed by Miller et al. [10]. In MSS, three
buffer thresholds are used to configure the client behaviour.
In our experiments, the values of 25%, 40% and 80% have
been used for the panic, lower and upper buffer thresholds
respectively, as experimentally defined by Famaey et al. [11].
The parameter values used for the client designed by Miller
et al. are the ones proposed by the authors [10].

C. Obtained Results

This section describes the evaluation results of the proposed
self-learning HAS client. Since the behaviour of a learning
agent depends on the configuration of multiple parameters, a
parameter analysis has been performed to find the most ap-
propriate parameter configuration out of a set of 500 possible
configurations. The analysis showed that the best performance
is obtained setting the learning rate, discount factor, Softmax
inverse temperature and eligibility factor to 0.1, 0.1, 5.0
and 0.6 respectively. Since simulations have shown that this
configuration yields satisfactory results in a wide range of
network conditions, these values will be applied throughout
the remainder of the evaluations.

1) Performance Convergence: On the left axis, Fig. 2 shows
the relative performance of the RL-based client and the client
proposed by Miller et al. compared to the traditional MSS
client in terms of average MOS for the Big Buck Bunny video
sequence. To be able to observe the general trend, a moving
average of the metric values of the last 50 episodes is used.
The graph shows that after a learning period of about 75
episodes, the RL-based client is able to achieve the same
level of performance as the MSS client. After about 200
episodes, the increasing trend stabilizes. The convergence of
the learning agent can also be seen in the flattening out of the
Q-value changes, plotted on the right axis. Considering the
converged state in the last 50 episodes, the self-learning HAS
client outperforms the traditional MSS client with on average
13.05%. Furthermore, it can be seen that the performance of
the client proposed by Miller et al. is overall about 10% lower
than the MSS client. For this reason, the remainder of the
results will be compared to the MSS client.

2) Performance Reconvergence: An important property of
a learning agent is its ability to adapt to an environment
change. Therefore, we evaluated the client performance when
streaming different video sequences during a single learning
session. For this purpose, we selected the Big Buck Bunny and

IEEE COMMUNICATIONS LETTERS, VOL. XX, NO. YY, MONTH 2014 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200 300 400 500 600 700 800 900

Pe
rf

o
rm

a
n
ce

 r
a
ti

o

Episode number

RL Client
MSS Client

Fig. 3. Reconvergence of learning client performance when shifting between
the Big Buck Bunny and Elephants Dream video sequences every 100
episodes.

Elephants Dream video sequences since these have similar
quality level bitrates. This is a plausible assumption since
a content provider will most likely offer all videos encoded
using the same settings. Fig. 3 shows the performance ratio
of the RL-based client, compared to the MSS client, in a
situation where the video sequence shifts every 100 episodes.
The graph shows that the self-learning client is able to instantly
adapt to a new video sequence without performance loss. The
previously obtained knowledge can be reused when learning
on a new video sequence. It is clear that after a learning phase
of comparable length as in the single video case, the self-
learning client is able to outperform the MSS client by 15.48%
in the converged state of the last 50 episodes.

3) Multiple Video Sequences: To show the general applica-
bility of the RL-based client, experiments have been performed
using the six video sequences shown in Table II. This set
of video sequences contains multiple types of content with
differences in scene variations. For each of the sequences,
400 episodes have been streamed. Fig. 4 shows the average
performance and its standard deviation in the converged state
of the last 50 episodes for each of the videos. On average,
the RL-based client is able to outperform the MSS client by
9.12% in terms of average MOS, while reducing its standard
deviation on average by 16.65%. Observations show an inverse
relationship between the performance gained by the RL-based
client and the dispersion of segment bitrates within a quality
level. High values of ω affect the performance of the learning
agent. This is illustrated by the lower performance increase
for the Silence of the Lambs video with high bitrate dispersion
and the high performance increases for the other videos with
moderate dispersion.

IV. CONCLUSIONS

In this letter, a Q-Learning-based HTTP Adaptive Stream-
ing (HAS) client is presented, able to dynamically adjust
its behaviour to the perceived networking environment. By
using only two state elements, a self-learning client was
built that outperforms the deterministic traditional Microsoft
ISS Smooth Streaming (MSS) algorithm by up to 13% in a
mobile network environment. Furthermore, the Q-Learning-
based client is shown to be very well suited to react to video
shifts. Since previously obtained knowledge can be reused
when learning on a new video sequence, the learning agent

 0

 1

 2

 3

 4

 5

Big
Buck

Bunny

Elephants
Dream

Silence
of the
Lambs

Star
Wars

Tokyo
Olympics

Sony
Demo

A
v
e
ra

g
e
 M

O
S

Video sequence

RL Client
MSS Client

+13.05% +13.01%

+0.94% +9.20% +7.95%

+10.56%

Fig. 4. Performance evaluation of the RL-based client for multiple video
sequences in the converged state of the last 50 episodes.

can be trained offline in a variable bandwidth environment
before being applied in an online HAS client. After an offline
training phase of about 200 episodes, the self-learning HAS
client is able to instantly adapt to network and video changes
for all considered scenarios, making it applicable in a practical
environment.

ACKNOWLEDGMENT

M. Claeys is funded by grant of the Agency for Inno-
vation by Science and Technology in Flanders (IWT). The
research was performed partially within the ICON MISTRAL
project (under grant agreement no. 10838). This work was
partly funded by Flamingo, a Network of Excellence project
(318488) supported by the European Commission under its
Seventh Framework Programme.

REFERENCES

[1] T. Stockhammer, “Dynamic adaptive streaming over HTTP: standards
and design principles,” in ACM Conference on Multimedia Systems
(MMSys), 2011.

[2] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An Experimental Evalua-
tion of Rate-adaptation Algorithms in Adaptive Streaming over HTTP,”
in ACM Conference on Multimedia Systems (MMSys), 2011.

[3] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and
F. De Turck, “Design of a Q-Learning-based Client Quality Selection
Algorithm for HTTP Adaptive Video Streaming,” in Workshop on
Adaptive and Learning Agents (ALA), 2013.

[4] V. Menkovski and A. Liotta, “Intelligent control for adaptive video
streaming,” in IEEE International Conference on Consumer Electronics
(ICCE), 2013.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). MIT Press, Mar. 1998.

[6] R. Mok, E. Chan, and R. Chang, “Measuring the Quality of Experience
of HTTP video streaming,” in IFIP/IEEE International Symposium on
Integrated Network Management (IM), 2011.

[7] J. De Vriendt, D. De Vleeschauwer, and D. Robinson, “Model for
estimating QoE of Video delivered using HTTP Adaptive Streaming,”
in IFIP/IEEE Workshop on QoE Centric Management (QCMAN), 2013.

[8] N. Bouten, J. Famaey, S. Latré, R. Huysegems, B. De Vleeschauwer,
W. Van Leekwijck, and F. De Turck, “QoE optimization through in-
network quality adaptation for HTTP Adaptive Streaming,” in Interna-
tional Conference on Network and Service Management (CNSM), 2012.

[9] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute Path
Bandwidth Traces from 3G Networks: Analysis and Applications,” in
ACM Conference on Multimedia Systems (MMSys), 2013.

[10] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, “Adaptation algo-
rithm for adaptive streaming over HTTP,” in International Workshop on
Packet Video (PV), 2012.

[11] J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck, “On
the Merits of SVC-Based HTTP Adaptive Streaming,” in IFIP/IEEE
International Symposium on Integrated Network Management (IM),
2013.

