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Abstract – We present a case study of a multimodal routing system that takes into account both 

dynamic and stochastic travel time information. A multimodal network model is presented that 

makes it possible to model the travel time information of each transportation mode differently. 

This travel time information can either be static or dynamic, or either deterministic or 

stochastic. Next to this, a Dijkstra-based routing algorithm is presented that deals with this 

variety of travel time information in a uniform way. This research focuses on a practical 

implementation of the system, which means that a number of assumptions were made, like, for 

example, the modeling of the stochastic distributions, comparing these distributions, etc. A 

tradeoff had to be made between the performance of the system and the accuracy of the results. 

Experiments have shown that our system produces realistic routes in a short amount of time. It 

is demonstrated that routing dynamically indeed results in a travel time gain in comparison to 

routing statically. By making use of the additional stochastic travel time information even better 

(i.e. faster) and more reliable routes can be calculated. Moreover, it is shown that routing in the 
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multimodal network may have its advantages over routing in a unimodal network, especially 

during rush hours. 

1. INTRODUCTION 

With the evolvement of GPS systems, novel routing algorithms for transportation networks 

emerge. In order to better predict the travel time of a route, dynamic travel time information 

should be taken into account. Furthermore, more accurate travel time predictions can be made 

by making use of stochastic information. This results in a route together with a stochastic 

distribution of its travel time. With increasing traffic volumes, often resulting in congestion, 

using multiple transportation modes (e.g. train, plane, ship, etc.) gains more interest. This 

explains the appearance of multimodal routing algorithms that take into account multiple modes 

of transportation to determine the best route between two locations (possibly using a sequence 

of modes).  

In this article, a multimodal dynamic and stochastic routing system is presented. This means that 

it takes into account both the time-dependency and the uncertainty of the travel times. 

Moreover, multiple modes of transportation are considered in order to find a better route 

between an origin and a destination. To the best of our knowledge, routing systems 

incorporating all these characteristics have never been realized before. Nevertheless, both 

unimodal as multimodal systems exist that take into account either the time-dependency of the 

travel time or the uncertainty. In section 1.1 we will review some of these systems and note the 

differences and/or similarities with the system described in this article. 

1.1. RELATED WORK 
The most common (early) routing systems presume the travel time data to be static, i.e. 

independent of the time of the day. In this way, the well-known algorithm of Dijkstra [1] can be 

applied in order to find the shortest (i.e., fastest) route between two locations. Since traffic is not 

a static matter, more accurate travel times can be obtained by taking into account its dynamic 

character, i.e., the (travel time) cost of a link is dependent on the time of the day this link is 
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traversed.  To deal with dynamic travel times, the concept of time-based graphs (or dynamic 

graph models) was introduced in which two major approaches can be distinguished: the time-

expanded and the time-dependent approach [2]. While in the time-expanded approach a node 

exists for every event at a location and links represent time lapses between these events, in the 

time-dependent approach each geographic location is represented by a single node and all 

dynamic travel time information is stored in the links themselves. Due to the large number of 

possible events in a road network, we opted for the time-dependent approach. Delling and 

Wagner [3] give an overview of the current state of time-dependent route planning together 

with a number of speed-up techniques. It includes some of the concepts we used in our research, 

such as the modeling of dynamic travel times, the augmented algorithm of Dijkstra, etc. A 

number of speedup techniques for dynamic shortest path routing, such as hierarchical routing 

([4] and [5]) and bidirectional A* routing [6], have been proposed. Nevertheless, since we are 

routing both dynamically and stochastically, these cannot be directly applied in our system. 

Moreover, it has been shown that time-dependent shortest path computations indeed can 

reduce the travel time significantly [7]. 

Road travel times are not only dynamic, but also contain an amount of uncertainty. One can 

never be a hundred percent sure when to arrive at his/her destination, as the travel time is 

influenced by random factors (individual driver’s behavior, weather conditions, traffic accidents, 

etc.). We model the travel time by custom probability distributions and developed a stochastic 

origin-destination shortest path algorithm. In the early days, some of the basic problems that 

were encountered when developing stochastic shortest path algorithms, were tackled ([8], [9] 

and [10]). Ji [11] presents three kinds of stochastic problems together with  a genetic algorithm 

and adapted linear programming methods to solve these problems. Unfortunately, these 

algorithms have only been tested on small networks and are not scalable for very large (road) 

networks. A promising dynamic stochastic algorithm is presented by Azaron and Kianfar [12]. 

They assume the travel times to have an exponential distribution, while we focus on the more 

accurate custom distributions collected from actual travel time measurements. Li et al. [13] take 
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into account the stochastic properties of the travel time and study whether a long term 

equilibrium exists. While we search mainly for the arrival time starting from a certain departure 

time, they optimize the departure time for a preferred arrival time. Moreover, they do not assign 

stochastic travel time distributions to the links, but look at a long term equilibrium. A 

multicriteria A* shortest path algorithm was presented by Chen et al. [14]. They assume the 

stochastic travel time of a link to be correlated with the travel times of the neighboring links. 

Aside from the fact that this algorithm could only be tested on small networks, they do not take 

into account the time-dependency of the travel times. Samaranayake et al. [15] provide a 

theoretical basis for enabling tractable solutions to the arriving on time problem in a stochastic 

environment and present a stochastic shortest path algorithm that performs well in road 

networks. While we focus on a practical stochastic model, they approach it from a theoretical 

point of view. Moreover, their main focus is on the non-time-dependent case. 

By making use of multiple modes of transportation [16], travel times can be shortened. The main 

issue in multimodal transportation systems is the modeling of the (different) information of the 

different transport modes in a more or less uniform way. The most common solutions preserve 

the network of each mode and interconnect these by the means of trans-shipment links, as we 

described elsewhere [17], which is similar to the way this paper deals with multimodality. This 

approach is denoted with the term hierarchical [18], alluding to the different sizes of the 

transportation networks. Another multimodal network model is called a transfer graph [19]. It 

consists of multiple components (typically one for each mode of transportation) with common 

nodes where trans-shipments can take place. Moreover, when routing multimodally, other 

objectives gain importance [20], such as number of transfers, transfer cost, waiting time, etc.  

For more accurate routing, multicriteria algorithms should be used [21]. We opt to omit these 

other objectives in this proof-of-concept and focus on the travel time. Nevertheless, we 

incorporate the waiting time as part of the total travel time. The multimodal system presented 

by Bielli et al. [22] resembles most to the system presented in this article. It incorporates 
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multiple modes of transportation and deals with the different travel time information of each of 

these modes. Moreover, an origin-destination algorithm is presented to find the fastest path 

between two locations. The main difference with the research presented here is that it does not 

take into account the stochastic character of the travel time information. 

In order to accurately predict the travel time between two locations, we made use of both time 

table information and travel time data extracted from cellular networks [23]. This data was 

provided by industrial companies within the IBBT ICON project MobiRoute [24]. 

1.2. OUTLINE 
In this article we present a case study of a practical industrial-strength multimodal routing 

system, which efficiently calculates the routes taking into account the characteristics of the 

travel time data, such as time-dependency and uncertainty. In the next section the time-

dependent network model is presented, in which a lot of attention is given to the cost modeling 

as costs can either be static or dynamic and deterministic or stochastic. Subsequently (see 

Section 3), a novel dynamic and stochastic shortest path algorithm is presented, which is based 

on the algorithm of Dijkstra. In Section 4 it is shown that indeed a time gain can be realized by 

routing dynamically, stochastically and multimodally. Moreover, when the stochastic travel time 

information is used, more reliable paths are calculated. It is demonstrated that, by making use of 

our data structures as presented in Section 2, these paths (with additional stochastic 

information) can be calculated in an acceptable time. Then (see Section 5), we will have a glance 

at the future version of this routing system with more transportation modes and additional 

constraints. Finally, this paper is brought to an end with a number of conclusions. It should be 

noted that the routing system presented here has been commercialized and a stripped down (bi-

modal) version for the Belgian network can be found online [25]. 

 

 



6 
 

2. THE MULTIMODAL DYNAMIC NETWORK MODEL 

In this section the multimodal network model is presented, in which multiple modes of 

transportation are modeled. We opted to build one large network that contains a number of 

mode-specific networks interconnected by trans-shipment links. Each of these mode-specific 

networks is modeled in more or less the same way and the differences between the different 

transportation modes are modeled in the cost objects that are attached to the links.  

2.1. THE MULTIMODAL NETWORK 
The network model needs to be able to cope with dynamic costs. As mentioned in the 

introduction, two major approaches exist to deal with this: the time-expanded network model 

and the time-dependent network model. In the former every event (i.e., departure/arrival) at a 

certain location is modeled as a node, which means that there are multiple nodes for one single 

geographic location. In the time-dependent case, there is one single node for a geographic 

location and all events are modeled in the links themselves.  

 We opted for the time-dependent network model, as the numbers of events can be immense, 

especially for road networks. This would result in extremely large networks for the time-

expanded network model.  

For every mode of transportation a network is built consisting of a node for every geographic 

location that is of importance for this transport mode. If there exists a direct connection between 

two geographic locations in this specific transportation mode, a link is constructed between the 

corresponding nodes. In some cases, for example in the bus network, the number of changes 

needs to be limited. One possible way to do this is by representing the station by one node and 

adding dummy nodes for every service (for example a bus line) which stops at this location. 

Getting off and on the bus can then be modeled as a link between the dummy and the station 

node. 

Once the networks are built for every mode of transportation, they are interconnected by trans-

shipment links. We opted to connect the nodes of every transportation mode to the  closest 
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nodes in the densest network (usually this is the road network), as in this network almost all 

geographic locations are reachable. Trans-shipments between two different (non-road) 

transportation modes always pass through this (road) network, which is realistic as this usually 

represents walking from one station to another. It should be noted that the walking network is 

similar to the road network, but with walking travel times assigned to the links. 

In the end, one large multimodal network is constructed, which consists of all mode-specific 

networks connected together by trans-shipment links. Let us consider a multimodal transport 

network with  modes of transportation. The mode-specific network of mode then 

can be represented by  with  a set of nodes and  a set of links . 

The trans-shipment links are represented by a set . 

The complete multimodal network now is denoted by  with  and 

. 

2.2. COST MODELING 
As mentioned before, all mode-specific information is modeled in the cost objects. In this case 

study, costs represent travel times. These costs can either be static or dynamic. If the time to 

traverse a link is not dependent on the hour of the day, it is considered to be static and can be 

represented as a single value. If, on the other hand, this cost is dynamic and thus dependent on 

the hour of the day the specific link is taken, it can no longer be modeled as a single value, but as 

a travel time function representing the travel time cost in function of the hour of the day. 

Moreover, some of the travel time information has an amount of uncertainty attached to it. This 

leads to stochastic travel time information. Instead of a single value, a time cost at a certain hour 

of the day now is represented by a stochastic distribution. An overview of these different time 

costs is given in Table 1, in which these two characteristics (static/dynamic and 

deterministic/stochastic) are combined. 
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 STATIC DYNAMIC 

DETERMINISTIC 
Single  
value 

Function of  
values 

STOCHASTIC 
Single  

distribution 
Function of  

distributions 
 

Table 1 Travel time costs 

We will now discuss a practical example of each of these cases in more detail. Trans-shipment 

costs are in most cases considered both static and deterministic. It takes always the same 

amount of time and this time is independent of the hour of the day. These costs thus can be 

represented by a single value. 

In the railroad network (and all other networks which are bound to time tables), we consider 

the costs to be dynamic and deterministic. The travel time, which consists of both a waiting time 

in the station and a driving time, is dependent on the hour of the day, but considered to be 

deterministic and thus independent of external factors. Time tables can easily be translated to a 

travel time function as indicated in Figure 1 where the lowest points represent a train leaving 

the station and the lines model the waiting in the station.  

 

Figure 1 Travel time function in railroad network 



9 
 

Since waiting times are proportional to the hour of the day, this function can be represented by a 

number of departure times, together with their corresponding driving time. Suppose the driving 

time at departure time is , then the travel time  at time  between two known 

departure times  and  ( ) can be calculated as follows: 

 

A binary search algorithm can be applied to find the neighboring departure times. If memory 

consumption is not an issue, a speedup can be realized by calculating the travel time for every 

minute (i.e. the finest detail of the time table) and storing this in an array which then can easily 

be accessed by translating the specific hour of the day to the corresponding index. This leads to 

faster travel time calculations, but has a major impact on the memory consumption. Since the 

networks that are used in our proof-of-concept system are relatively small, we can make use of 

these memory-intensive arrays to store the travel time information, with the advantage of fast 

lookup operations. 

In an underground network, subway trains leave the station every  minutes, but are not bound 

to a specific time table. This introduces an amount of uncertainty which leads to a stochastic and 

static (supposed day and night are equal) time cost. Suppose for example, a subway train leaves 

every 6 minutes and driving to the next station takes 2 minutes, then the travel time of this link 

lies somewhere between 2 and 8 minutes depending on the time one arrives in the subway 

station. We will make use of a cumulative distribution which contains for each probability the 

maximum travel time. In the example we have a 100% chance to travel less or equal than 8 

minutes, while we have 50% chance of travelling less than 5 minutes. In order to both save 

memory and simplify the calculations, we will represent a stochastic distribution by   values, 

corresponding to  predefined percentiles. The -th percentile of a stochastic distribution is the 

value that is higher than  of all values of the distribution. This number  results in a trade-off 
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between accuracy and performance. The more percentiles, the more accurate the results, but the 

more storage space is needed. 

In a road network, travel time costs are both dynamic and stochastic. Due to possible traffic jams 

the travel time in a road network is dependent on the hour of the day. Moreover, external factors 

(for example traffic accidents) are the cause that one can never be sure when to arrive precisely 

at the destination. The dynamic and stochastic travel time costs are modeled as a function of 

distributions. In our use case, travel time data was collected for every quarter of an hour during 

multiple (similar) days. Stochastic distributions are constructed from this data for each quarter 

of an hour for each day of the week (i.e. Monday, Tuesday, …). For the times in between these 

quarters, linear interpolation is used between the corresponding percentiles. The x-th percentile 

of the travel time distribution  at time  between two timestamps (i.e. quarters)  and  

( ) then can be calculated as follows: 

 

A more accurate travel time function can be obtained by adding more timestamps, at the cost of 

more intensive memory usage. 

3. THE ROUTING ALGORITHM 

As indicated in the previous section, a multimodal graph consists of a set of nodes  and a set of 

links , which consists of links specific to a certain transport mode and trans-shipment links. 

Each of these links has assigned to it a travel cost, which can be a single value 

(static/deterministic), a function of values (dynamic/deterministic), a distribution 

(static/stochastic) or a function of distributions (dynamic/stochastic).  

In this section, we present a shortest path algorithm that is adjusted to deal with both dynamic 

and stochastic travel time information. As both static and deterministic information can easily be 
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translated to dynamic and stochastic functions respectively, we will develop an algorithm which 

assumes all travel time information to be dynamic and stochastic.  

The problem that is addressed here can be described as follows. Given an origin and destination 

node together with a departure time, find the path between the origin and the destination that 

has the ‘smallest’ distribution of the arrival time, according to a comparison measure that will be 

defined further on. The network, in which the routing happens, contains multiple modes of 

transportation and the travel time costs can either be static or dynamic, and deterministic or 

stochastic. 

The algorithm presented here is based on the algorithm of Dijkstra [1], a label-setting algorithm 

with labels representing the shortest distance between the origin and the specific node. During 

initialization the label of the origin node is set to zero and all other labels are set to infinity. The 

set  contains all (non-permanent) nodes whose labels have been updated by the algorithm. In 

every iteration the node with the lowest label is removed from  and made permanent. Then, all 

labels of the neighboring nodes are updated. More specifically, if the sum of the label of the 

investigated (permanent) node and of the link cost is smaller than the previous label of the 

neighboring node, then the label is changed to this sum. This process is repeated until the 

destination node has been made permanent. The algorithm of Dijkstra requires all link cost to be 

non-negative values, which is the case as we are working with travel times here. 

The algorithm described above needs to be altered in two ways. Firstly, the dynamic character of 

the links costs needs to be taken into account when determining the travel time on a link. 

Secondly, labels are no longer single values but distributions. We need to define how to combine 

and compare stochastic distributions with each other. 

 

In order to make this algorithm dynamic, some small adaptations are needed. Labels now 

represent the earliest time at which one can arrive in a specific node starting at the origin node 

at a specific departure time. In the initialization phase the origin label is set to this departure 

time. Furthermore, the travel time of a link is dependent on the time at which this link is 
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traversed. For a link  this time is equal to the label of the start node  . The value of a 

tentative new label can then be calculated as follows: 

 

When the algorithm is finished, the label of the destination node represents the earliest arrival 

time, starting at a predefined departure time in the origin node. 

Making this algorithm stochastic introduces new challenges. Labels are no longer single values, 

but probabilistic distributions of travel times, represented by a number of percentiles. Two 

operations need to be defined: comparing labels and updating labels. Deciding which of two 

labels is the ‘best’ is no unambiguous process. We opted to compare a single percentile. In most 

cases the 50% percentile suffices, but if the user is interested in a more certain solution a higher 

percentile can be used, such as the 90% percentile. A more accurate comparison would involve 

all percentiles and applying a multi-objective algorithm, but this would require a higher amount 

of computing power. 

To define the sum of two labels we investigate two extreme cases, namely one in which the 

distributions of the links are completely correlated and one in which they are completely 

uncorrelated (and stochastically independent). While in the former the pointwise sum can be 

used, the latter needs the convolution product to combine two labels. In the stochastic case, the 

label of node  can be represented as an array of  percentiles ,  (note: in the 

remainder of this article we will omit the boundaries of  and use square brackets to denote an 

array over index ). The pointwise sum of two labels  and  then can be defined 

as: 

 

Calculating the convolution product is more complex. In calculus, the convolution product of two 

functions f and g can be defined as 



13 
 

 

When the distributions are represented as a number of percentiles, the convolution sum of two 

labels  and  can be determined as follows. Calculate for each and : 

. The requested percentiles then can be extracted from the distribution of 

these  values. It should be noted that determining percentiles in large arrays can be sped up 

by making use of order statistics [26]. 

In reality, some of the links are correlated with each other, while others are not. For example, 

two consecutive sections on a highway are closely correlated. A traffic jam in one of the sections 

increases the chance of a traffic jam in the other section. On the other hand, a section on the 

highway has nearly no correlation with a small road besides it. As determining all correlations 

between all links of the network and then combining the costs of these links appropriately is 

very burdensome, we will work with these two extreme cases. The user then can decide how 

much he wants to tempt his fate making use of these calculated boundaries. 

Below, the pseudo code of the algorithm as described above is given. It should be noted that  

represents a constant distribution with value . 

[1] l(o) = [departure_time] 

[2] l(v) = [∞], v≠o 

[3] P = {o} 

[4] while( l(d)=[∞] || d ∈ P){ 

[5]   x = remove_smallest(P) 

[6]   for(y: neighbor(x)){ 

[7]    new_distribution = l(x) ∎ translate(cost((x,y), l(x))) 

[8]    if(new_distribution < l(y)){ 

[9]     l(y) = new_distribution 
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[10]     P = P U {y} 

[11]    } 

[12]   } 

[13] } 

The first three lines are the initialization phase. The label of the origin node is set to a constant 

distribution of the departure time (line [1]), while all other labels are set to the infinity 

distribution (line [2]). Subsequently, the temporary set is initialized with a singleton containing 

the origin node (line[3]). As long as the destination node is not permanent, i.e., as long as its 

label is the infinity distribution or it is an element of the temporary set (line [4]), the following 

steps are executed. Firstly, the node with the smallest label  is removed from the temporary set 

(line [5]). For each neighbor  or this node, a new tentative label is determined by combining the 

label of  with the dynamic and stochastic cost of the link between  and  (line [7]). If the cost 

of the link is static or deterministic, it is translated to a dynamic and stochastic one. We assume 

the distributions to be either completely correlated or completely uncorrelated, as described 

above. The operator ∎ can thus either represent a pointwise sum or a convolution product. 

When this tentative label appears to be smaller (w.r.t. the comparison operator as described 

above) than the previous label of , it is changed and the temporary set is updated (line[8] to 

line[10]). 

4. RESULTS 

In this section it is shown that indeed a travel time gain can be realized by routing dynamically 

(in comparison to routing statically), stochastically (in comparison to deterministically) and 

multimodally (in comparison to unimodally). Moreover, when routing stochastically, additional 

information about the travel time is provided to the user. After a general description of the setup 

of the system and the experiments (see Section 4.1), some light is shed on the execution times of 

the different algorithms (see Section 4.2). Subsequently, we will investigate the deterministic 

case and show how better (i.e. faster) routes can be calculated by making use of dynamic 



15 
 

information (see Section 4.3). Section 4.4 deals with the core issue of our research, namely 

stochastic routing. It will be demonstrated that, indeed, by making use of additional stochastic 

information, more reliable routes can be calculated. Here, we will examine the two extreme 

cases, namely assuming all links are completely correlated and assuming all links are completely 

uncorrelated. In Section 4.5, we will have a look at multimodal routing in comparison with 

unimodal routing. It will be shown that making use of multiple modes of transportation may 

have its advantages in particular cases, especially during rush hours. 

4.1. GENERAL DESCRIPTIONS OF SETUP 

The routing system as described in this article was implemented in Java (version 1.6.0-18) on a 

machine with the following specifications: Intel ® Core TM 2 Duo CPU P8600, 2.40 GHz and 4 GB 

of RAM.  

Currently, the system contains only two modes of transportation, namely road and railroad, but 

we are gathering data of the other transport modes to further expand the network. For the 

experiments we made use of a bimodal Belgian network (as for this network we have very 

detailed travel time information at our disposal) composed of a road network of 53010 nodes 

and 96286 links and a railroad network of 551 nodes and 1716 links. For each train station three 

trans-shipment links were added connecting it to the road network.  

Stochastic distributions, represented as 5 percentiles (i.e. the 10%, 30%, 50%, 70% and 90% 

percentile) were calculated for the road links based on historical measurements of travel times.  

Railroad time tables were analyzed and translated to the data structure as presented in section 

2. We opted for an array with a travel time for every minute of the day, as there is sufficient 

memory available for these networks. While for the railroad network a dynamic granularity of 1 

minute was used, the road network employs a granularity of 15 minutes, due to the data 

restrictions of the measurements. Interpolation, as shown in section 2, is applied for the times in 

between timestamps.   
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In the experiments the different algorithms are compared to one another. To compare the 

(travel time) costs of the resulting paths, a difference measure was defined. The amount of 

difference ( ), in percentage, of the cost of the path calculated by algorithm (2) compared to the 

cost of the path calculated by algorithm (1) is 

 

Both the average and the maximum values of this parameter will be reported. 

All the experiments of the following subsections were executed on the multimodal network as 

described above, unless explicitly stated otherwise. 

4.2. CALCULATION TIME 

First and foremost, we investigated the performance of the algorithms. Table 2 shows the 

average calculation times (in ms) of all algorithms that were used during the experiments.  

The static deterministic algorithm is in fact the standard Dijkstra algorithm in a network where 

all travel time costs are assumed to be constant. When the link costs are dynamic travel times, 

we opted to use the values of a quiet timeslot (i.e. a timeslot outside of the rush hours). This 

represents driving when there is not much traffic, such as driving at night. When the travel time 

information is stochastic, the median values (i.e. 50% percentile) are used.  

The dynamic deterministic algorithm takes into account the dynamic travel time information but 

still assumes the travel times to be single values. For the links with stochastic distributions 

assigned to them, the median values were used.  

The static stochastic algorithm makes use of a single stochastic distribution for each link. When 

the travel times are dynamic stochastic, again we opted to use a distribution of a timeslot in the 

night.  
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In the dynamic stochastic algorithm, all available travel time information was used to calculate 

the best (fastest) routes. The stochastic algorithms were executed for two extreme cases, namely 

assuming that all links are completely correlated (using the pointwise sum) and assuming that 

they are completely uncorrelated (using the convolution product). 

 

 Calculation 
Time (ms) 

static deterministic 10.7 
dynamic deterministic 20.9 
static stochastic (correlated) 30.7 
static stochastic (uncorrelated) 37.6 
dynamic stochastic (correlated) 43.3 
dynamic stochastic (uncorrelated) 48.9 

 

Table 2. Average calculation times of the different algorithms 

The results of Table 2 are averages of 10 000 shortest path calculations with randomly chosen 

origin-destination pairs and random departure times. It can be seen that taking into account the 

dynamic information slightly slows down the calculations (static vs. dynamic). Moreover, for the 

stochastic algorithms, assuming the links are completely uncorrelated consumes more 

calculation time that assuming that they are completely correlated. This is as expected as the 

convolution product is a more complex operation than the pointwise sum.  

The results show that for these algorithms the two most crucial operations are determining the 

travel time of a link at the time this link is traversed and combining this travel time information. 

While in the static deterministic case the constant cost values of the links can just be added up, 

in the dynamic cases the exact travel time needs to be determined by making use of the arrival 

time in the start node of the link in question. For the stochastic algorithms combining the 

distributions even adds more computational complexity to the problem. 

These calculation times are indeed acceptable, as they stay below 50 ms while providing better 

(i.e. faster) and more reliable routes. 
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4.3. DETERMINISTIC ROUTING: DYNAMIC VS. STATIC ROUTES 

In this subsection, it will be demonstrated how better (i.e. faster) routes can be calculated by 

making use of the dynamic travel time information. We will start with a small example to show 

that routing dynamically indeed has its advantages. In the unimodal road network a route was 

calculated from Ghent to Liège for different departure times. This route passes through Brussels 

which is a known bottleneck of the Belgian road network. Parts of these routes, namely those 

around Brussels, are depicted in Figure 2, when leaving at 6 am, 7 am and 8 am. It can be seen 

that, during rush hour, the ring road around Brussels is avoided. At 7 am, the highway before 

Brussels is left earlier in order to avoid the first part of the ring way. At 8 am, a road going 

through the center of Brussels proves to be faster than waiting in the traffic jams on the ring 

road.  

 

Figure 2 Dynamic Routes in Belgian Road Network 

 Table 3 shows the actual travel time gain realized by the static deterministic algorithm in 

comparison to the dynamic deterministic algorithm. For this, 10 000 paths were calculated 

between random origin-destination pairs at a random departure time. Subsequently, both the 

dynamic deterministic and the dynamic stochastic costs of the resulting paths were calculated. 

For this, the actual travel time costs were removed from the paths and recalculated assuming 

that all links of the paths are dynamic deterministic and dynamic stochastic respectively. The 

differences between these travel time costs (i.e. the recalculated costs of the paths calculated by 

both algorithms) are reported in the table. 
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travel time cost average Δ (%) maximum Δ (%) 

dynamic 
deterministic 

14.25 56.96 

  10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 

dynamic stochastic 
(correlated) 

-2.59 -0.42 1.19 3.24 3.68 25.92 32.09 35.61 42.75 49.30 

dynamic stochastic 
(uncorrelated) 

0.78 1.27 1.66 2.04 2.35 34.31 34.53 34.65 35.91 36.93 

 

Table 3 Comparison of the travel times of the paths calculated by the static deterministic algorithm (1)  

and the dynamic deterministic algorithm (2) 

First of all, the dynamic deterministic travel time costs were compared. The paths calculated by 

the dynamic deterministic algorithm are on average 14.25% shorter than the paths of the static 

deterministic algorithm, with a maximum value of 56.96%. This proves that, indeed, making use 

of the dynamic travel time information in the routing algorithm has its benefits. In 85.12% of the 

cases, a shorter route has been found by the dynamic deterministic algorithm.  

Next, we looked at the stochastic costs, for both extreme cases, and compared the corresponding 

percentile values with one another. Despite of the fact that the average values are relatively 

small, if we look at the maximum values still a remarkable travel time gain can be realized by 

routing dynamically instead of statically. Moreover, the amount of difference between the two 

algorithms is higher for the higher percentile values. This means that for users who want more 

reliability routing dynamically really pays off.  For the lower percentiles, routing dynamically is 

on average even slightly worse than routing statically assuming the links are completely 

correlated. If we compare the case in which is assumed that all links are completely correlated 
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(using pointwise sum) and the case in which they are assumed to be completely uncorrelated 

(using convolution product), we see that the difference between the lowest and the higher 

percentiles is larger when using the pointwise sum. This is as expected, since in the pointwise 

sum, the extreme values are combined with each other, while the convolution product takes into 

account all values of the distributions smoothing out the extreme values. 

4.4. STOCHASTIC ROUTING 

This subsection deals with stochastic routing. We will demonstrate that by making use of the 

additional stochastic travel time information, more intelligent routes can be calculated. After an 

example that illustrates the difference between the two extreme cases (i.e. the links are 

completely correlated vs. completely uncorrelated), two aspects will be investigated. First we 

will compare the static stochastic algorithm with the dynamic stochastic algorithm and report on 

the travel time gain that can be realized by routing dynamically. Subsequently, a comparison is 

made between the dynamic deterministic algorithm and the dynamic stochastic algorithm to 

illustrate the strength of using the additional stochastic information to come to more intelligent 

routes. 

With respect to combining stochastic distributions, two extreme cases were investigated: 

completely correlated links (with the pointwise sum) and completely uncorrelated links (with 

the convolution product). In Figure 3 an example is given of a day overview for one specific path 

in both scenarios. The dynamic stochastic shortest route was calculated for each time of the day 

in the unimodal (road) network and the resulting percentiles were plotted. Here distributions 

were compared w.r.t. their 50% percentiles.  

The rush hours can be readily observed, namely a major one in the morning (7 am-9 am) and a 

smaller one in the evening (4 pm-6 pm). Moreover, it should be noticed that the 50% percentile 

values are similar with only differences of a couple of seconds. The main difference between the 

two calculation methods lies in the other percentiles. While the standard deviation in the 

uncorrelated case is small, the percentiles of the correlated case are more scattered. This can be 
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explained intuitively as the convolution product takes into account all values of the distributions, 

resulting in extreme values being weakened by the others. In the completely correlated case 

(pointwise sum) a high probability of congested traffic on one link of the network results in a 

higher probability on all other links following this link. Extreme percentile values have a direct 

influence on the corresponding percentile of the resulting distribution. 

As mentioned before, the percentiles of the actual distribution lie somewhere between these two 

extremes. This means that for the percentiles under the 50% percentiles (which is used here for 

comparison) the uncorrelated case is an upper bound and the correlated case a lower bound. 

The opposite is true for the percentiles above the 50% percentile. If the user wants more 

certainty of its arrival time, i.e. he wants to be sure to be at his destination at the latest at a 

certain chosen time, the 90% percentile can be used to compare labels. In this case the pointwise 

sum calculations always serve as a lower bound. 

In the remainder of this section stochastic distributions will be compared by comparing their 

90% percentile values. 



22 
 

 

Figure 3 Stochastic Day Overview 

Top: correlated links (pointwise sum) – Bottom: uncorrelated links (convolution product) 

4.4.1. Static Stochastic vs. Dynamic Stochastic 

Table 4 shows the average and maximum amount of difference between the travel times of the 

paths calculated by the static stochastic algorithm and the dynamic stochastic algorithm for the 

two extreme cases. These values were calculated from 10 000 shortest path calculations 

between random origins and destinations at random departure times.  Similar to the statements 

made in section 4.3, indeed a travel time gain can be realized by making use of the dynamic 

character of the travel time information. Despite the relatively low average values, the maximum 

travel time gain is noteworthy. To compare labels with one another, we made use of the 90% 
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percentiles, so the resulting paths are optimized with respect to this percentile. The results show 

that indeed the highest travel time gains are realized for this percentile. 

links are … average Δ (%) maximum Δ (%) 

  10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 

completely 
correlated 

2.20 2.31 2.14 3.81 7.29 35.90 36.02 37.16 39.44 50.39 

completely 
uncorrelated 

1.23 1.59 1.85 2.04 2.31 33.17 34.44 35.82 36.82 37.72 

 

Table 4 Comparison of the travel times of the paths calculated by the static stochastic algorithm (1)  

and the dynamic stochastic algorithm (2) 

Next we looked at the amount of better paths (w.r.t. the 90% percentile values of the 

distributions) that were calculated by routing dynamically. In the situation that all links are 

assumed to be completely correlated, in 81.82% of the cases a better path is found, while in the 

other situation (all links are completely uncorrelated), this comes down to 65.06% of the cases. 

This proves that it is worth routing dynamically when the information is available. 

In conclusion, for users who are interested in reliable routes (making use of the 90% 

percentiles), by routing dynamically instead of statically a travel time gain of up to 50% can be 

realized in the case all links are correlated, and nearly 38% in the case the links are completely 

uncorrelated.  

 

4.4.2. Dynamic Deterministic vs. Dynamic Stochastic 

In this section we will investigate the advantages of using the stochastic travel time information 

in the algorithm and compare the dynamic deterministic algorithm with the dynamic stochastic 

one. Again the shortest paths were calculated for 10 000 randomly chosen origin-destination 

pairs at random departure times. The stochastic travel time was then calculated for the resulting 

shortest paths and all percentile values were compared to one another. The average and 

maximum amounts of difference are shown in Table 5. 
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links are … average Δ (%) maximum Δ (%) 

  10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 

completely 
correlated 

-1.36 -0.97 -0.71 -0.75 2.69 22.78 18.94 14.27 18.36 81.32 

completely 
uncorrelated 

0.88 0.80 0.74 0.66 0.75 19.32 15.31 13.77 13.77 51.03 

 

Table 5 Comparison of the travel times of the paths calculated by the dynamic deterministic algorithm (1)  

and the dynamic stochastic algorithm (2) 

The average values of  

Table 5 Table 5 are small, meaning that on average not that much travel time gain can be 

realized by routing stochastically. In the case that all links are assumed to be correlated, for the 

lower percentiles the paths calculated by the stochastic algorithm are even worse than those 

calculated by the deterministic algorithm. However, the paths calculated by the stochastic 

algorithm are more reliable than those calculated by the deterministic algorithm. Looking at the 

90% percentiles (for which these paths were optimized, i.e. minimized), we see that for this 

percentile indeed a travel time gain is realized by the stochastic algorithm. This means that more 

reliable paths are calculated.  

If we look at the maximum amount of difference of the 90% percentile values, we see that travel 

time gains can be realized of up to 81.32% and 51.03% for the correlated and the uncorrelated 

case respectively, which is quite remarkable. Users who are interested in reliable routes can 

really benefit from routing stochastically. 

Subsequently, for each origin-destination pair the 90% percentiles of the travel time 

distributions of the paths found by both algorithms were compared with each other. When it is 

assumed that all links are uncorrelated, 53.30% of the paths are actually better, while only 

12.75% of the paths are worse. For the case that all links are correlated, these numbers are 

37.61% and 33.42% respectively. As more reliable routes are produced, routing stochastically 

indeed is valuable. So, in 87.25% (completely uncorrelated) and 66.57% (completely correlated) 
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of the cases the paths are as well as or better than the paths calculated by the deterministic 

algorithm. Moreover, the resulting routes are more reliable. This means that making use of the 

stochastic travel time information when determining the shortest path, indeed is valuable. 

4.5. MULTIMODAL VS. UNIMODAL ROUTING 

The system presented here is multimodal, which means that both roads and railroads are taken 

into account. In this section we will determine whether travelling multimodally indeed has 

advantages (with respect to the travel time) over travelling unimodally. We start with a small 

example, which is similar to the example of section 4.3, as it also concerns the bottleneck around 

Brussels in the Belgian road network. In Figure 4 the multimodal routes between Leuven (on the 

right) and Ghent (on the left) are depicted for different departure times. These routes were 

calculated with the dynamic deterministic algorithm.  While in the example in section 4.3 the 

traffic jams around Brussels were avoided by taking other routes in the road network, here the 

traffic jams are avoided by making use of another mode of transportation, namely railroads. 

Outside the rush hour, for example at 6 am, the road is chosen to be the best mode of 

transportation. Nevertheless, when traffic is jammed around Brussels (in the case of leaving at 

7:30 am) the train becomes more favorable. Combinations of both transport modes are also 

possible. For example, at 7 am the best route is the one leaving by car in Leuven and taking the 

train in Brussels to continue to Ghent. 
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Figure 4 Multimodal Routes (Leuven-Ghent) 

red = road - blue = railroad 

Next, a more systematic comparison was performed. For this, routes were calculated between 10 

000 random origin-destination pairs in both the unimodal (road) and the multimodal (road-

railroad) network (making use of the dynamic stochastic algorithm). As the previous example 

shows that during rush hours the multimodal network might be more favorable than outside 

these rush hours, these two cases were examined separately, namely starting at 7:30 am (during 

the rush hour) and departing at 2 pm (outside of the rush hour). Results are shown in Table 6. 
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links are … average Δ (%) maximum Δ (%) 

 DURING RUSH HOUR (7:30 am) 

  10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 

completely 
correlated -1.32 -0.41 -0.09 1.50 1.69 38.37 40.16 39.83 41.73 41.89 

completely 
uncorrelated 

0.72 0.79 0.83 0.89 0.89 41.31 41.28 41.02 41.51 41.86 

 OUTSIDE RUSH HOUR (2 pm) 

  10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 

completely 
correlated 

-0.23 -0.03 0.02 0.12 0.31 4.20 6.33 7.14 19.77 24.33 

completely 
uncorrelated 

0.16 0.17 0.18 0.19 0.19 14.01 14.19 14.67 15.33 15.88 

 

Table 6 Comparison of the travel times of the paths in the unimodal network (1)  

and the multimodal network (2) 

The average travel time gain by using the multimodal network is almost negligible outside of the 

rush hours. Moreover, in approximately 5% of the cases (5.58% and 4.46% for the completely 

uncorrelated and correlated case respectively) a better path is found in the multimodal network. 

During these hours, taking the car is in most cases more advantageous than using multiple 

modes of transportation. It should be noted that, if a unimodal path is the best option to get from 

the origin to the destination, this path will be returned by the algorithm, even when routing in a 

multimodal network. When traveling during the rush hours, multimodal transportation may 

result in travel time gains of up to more than 40%. Moreover, during the rush hours in 

approximately 15% of the cases (14.13% and 14.87% for the completely uncorrelated and 

correlated case respectively) a better path (according to the 90% percentiles) is found in the 

multimodal network.  

All multimodal paths were inspected more closely and it was observed that the origin and/or 

destination of these routes are situated close to train stations, which is as expected. If the origin 

and the destination are situated far from train station, a multimodal route would consist of a 

rather long path from the origin to the ‘closest’ train station, followed by a train ride, followed by 
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a rather long path from the last train station to the destination. In most cases, this cannot 

compete with a direct route by car. 

Next, we investigated for which origin-destination pairs a better route was found in the 

multimodal network. More specifically, it is determined whether routing multimodally is more 

rewarding for short range routes or for long range routes. For this, 10 000 paths (with random 

origin-destination pairs) were calculated in both the unimodal and the multimodal network and 

both during and outside the rush hour. In this experiment the dynamic stochastic algorithm was 

used. These paths were ordered according to their Dijkstra-rank (defined as the number of 

nodes that have been made permanent when the algorithm finishes) and divided into 10 

categories. For each of these categories the percentage of paths that are multimodal (i.e. paths 

that are better in the multimodal network compared to unimodal ones) was then calculated. 

Results are shown in Figure 5. Here we assumed that all links are completely correlated. Similar 

results are obtained when all links are uncorrelated. It is clear that routing multimodally has 

more advantages for long range paths, and during the rush hours. When the origin and the 

destination are situated further apart (i.e. a higher Dijkstra-rank), the percentage of multimodal 

paths increases steadily. Outside the rush hour, this phenomenon is not that prominent. Here, 

the main promoter for multimodal transportation is whether the origin and the destination are 

situated close to train stations. 
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Figure 5. Percentage of multimodal paths in function of the Dijkstra-rank. 

 

As the travel time gain of multimodal routing over unimodal routing differs depending on the 

departure time, we want to investigate how this evolves during the day. For this, the fastest 

route was calculated between one origin (Ghent) and one destination (Leuven) for a number of 

different departure times (with the dynamic stochastic algorithm, assuming all links are 

completely uncorrelated). The 90% percentile values for these different departure times are 

depicted in Figure 6. When the travel time in the multimodal network is equal to that in the 

unimodal network, this means that the route in the multimodal network is in fact unimodal as no 

travel time gain can be realized by multimodal routing. Again, it is seen that routing 

multimodally is most advantageous during the rush hours. So, for commuters, taking the train is 

a good alternative. The irregular shape of the multimodal travel time function is due to the time 

table restrictions in the train network. The travel time is higher when users have to wait longer 

in the stations.  
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Figure 6. Comparison of travel times in unimodal and multimodal networks (day overview) 

In conclusion, while in most cases the road network seems to be more rewarding, multimodal 

transportation (in this case study: taking the train) proves to be a good alternative to travel 

between major cities (i.e. close to train stations) and long distances at rush hour.  

5. FUTURE WORK 

As mentioned previously, a proof-of-concept system has been built making use of both road and 

railroad travel time data. In the future we would like to incorporate other transportation modes 

as well, like bus transport, subways, trams, etc. This was not possible at this moment, as we are 

still gathering data of these transport modes. The travel time costs of most of these public 

transportation modes could be modeled similarly to the railroad travel times as presented in 

this article with a similar translation of the time table information. 

Furthermore, better predictions of the trans-shipment travel times could be made by making use 

of additional information. For example, information about the parking possibilities around 

stations could help with more accurate predictions of the trans-shipment costs, as the trans-

shipment cost in the current system is a fixed (slow walking) travel time. Moreover, in our proof-

of-concept system, trans-shipment between the railroad and road network is always possible, 
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even when no car is available. It is supposed that at each station a taxi or car rental service is 

present. Additional information about these services could help us define better constraints on 

the trans-shipment possibilities. Additionally, if other public transport mode information would 

be available, a trans-shipment to for example bus transport can be a valuable when arriving in a 

station where no car is available. 

The perfect multimodal system would have access to all information about all modes of 

transportation and make more clever routing decisions making use of the additional (trans-

shipment) constraints. This would only have a minor impact on the shortest path algorithm 

presented in this article as constraints can be stored in the labels. Then, in each iteration of the 

algorithm, only the neighbors which are accessible, with respect to the constraints, are updated.  

In the ideal case, the system should be able to route worldwide. To realize this, the algorithm 

presented in this article needs to be accelerated. We aim at investigating a promising technique 

to speed up shortest path routing algorithms, namely by making use of a hierarchical approach 

(for example [27], [28] and [29]). One of the most promising approaches here are contraction 

hierarchies [28]. At this moment, research has been done to construct time-dependent 

contraction hierarchies [30], but no ready-made solution exists to deal with stochastic 

information. 

6. CONCLUSION 

In this article we presented a case study of a novel practical multimodal routing system. Next to 

the dynamic travel times, additional information about the (un)certainty of the results is 

calculated. A lot of attention was given to the design of efficient data structures to store the 

needed travel time information. Making use of these data structures an algorithm was developed 

to calculate the shortest path between two locations, both dynamically and stochastically. 

Experiments have shown that by routing dynamically, stochastically and multimodally indeed a 

travel time gain can be realized by avoiding the congested roads. Moreover, in the case of 

stochastic routing, additional stochastic information is provided, which gives the user an idea of 
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the (un)certainty of the travel time of the presented route. Two extreme cases, namely 

completely correlated links and completely uncorrelated links, were investigated, which provide 

a lower and an upper bound of the actual stochastic distribution.  A stripped down version of the 

system presented in this article can be accessed online [25]. Moreover, the research presented in 

this paper has been commercialized as an industrial-strength routing engine.  
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