
Prototyping the Recursive InterNet Architecture:
The IRATI project approach

Sander Vrijders1, Francesco Salvestrini2, Eduard Grasa3,
Miquel Tarzan3, Leonardo Bergesio3, Dimitri Staessens1, Didier Colle1

1Ghent University - iMinds, INTEC, Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium
E-mail: firstname.lastname@intec.ugent.be

2neXtworks s.r.l., Pisa, Italy
E-mail: f.salvestrini@nextworks.it

3i2CAT Foundation, Jordi Girona, Barcelona, Spain
E-mail: firstname.lastname@i2cat.net

Abstract—In recent years, many new Internet architectures are
being proposed to solve shortcomings in the current Internet. A
lot of these new architectures merely extend the current TCP/IP
architecture and hence do not solve the fundamental cause for
these problems. The Recursive InterNet Architecture (RINA)
is a true new network architecture, developed from scratch,
building on experiences learned in the past. RINA prototyping
efforts have been ongoing since 2010, but a prototype upon
which a commercial RINA implementation can be built has not
been developed yet. The goal of the IRATI reseach project is
to develop and evaluate such a prototype in Linux/OS. This
article focuses on the software design required to implement a
network stack in Linux/OS. We motivate the placement of, and
communication between, the different software componentsin
either kernel or user space. A first open source prototype of the
IRATI implementation of RINA will be available in June 2014
for researchers, developers and early adopters.

I. I NTRODUCTION

From the early days of telephony to nowadays, the telecom-
munications and computing industries have evolved signif-
icantly. However, we argue that they have been following
separate paths, without achieving a full integration that can
optimally support distributed computing; the paradigm shift
from telephony to distributed applications is still not complete.
Telecoms have been focusing on connecting devices, perpetu-
ating the telephony model where devices and applications are
the same. A look at the current Internet architecture shows
many symptoms of this thinking [1]:

• The network routes data between interfaces of computers,
as the public switched telephone network switched calls
between phone terminals. However, it is not the source
and destination interfaces that wish to communicate, but
the distributed applications.

• Applications have no way of expressing their desired
service characteristics to the network, other than choosing
a reliable (TCP) or unreliable (UDP) type of transport.
The network assumes that applications are homogeneous
by providing only a single quality of service.

• The network has no notion of application names, and has
to use a combination of the interface address and transport
layer port number to identify different applications. In

other words, the network uses information on “where”
an application is located to identify “which” application
this is. Every time the application changes its point of
attachment it seems different to the network, greatly
complicating multi-homing, mobility and security.

Physical (L1) 

Data Link (L2) 

Network (L3) 

Transport (L4) 

The simple 

model 

 

10GBASE-ER (L1) 

The complex reality 

(just an example) 

 

IEEE 802.1ah (L2) 

IEEE 802.1q (L2) 

MPLS (L2.5) 

IEEE 802.3 (L2) 

IP (L3) 

IP (L3) 

UDP (L4) 

VXLAN(L2) 

IEEE 802.3 (L2) 

IP(L3) 

TCP(L4) 

DIF (IPC) 

DIF (IPC) 

Y 

 

RINA 

 

Shim DIF (IPC to PHY) 

Fig. 1. Layers in Network Architectures.

Several attempts have been made to propose architectures
that overcome the current Internet limitations. However, most
of them still keep the same old assumptions, merely extending
the architecture to handle more corner cases, at the price of
complicating the general landscape more and more (see Figure
1).

A. The Recursive Internet Architecture

RINA, the Recursive InterNetwork Architecture [2] [3] [4],
is a “back to basics” approach learning from the limitationsof
TCP/IP [5] and from the experience of other technologies in
the past. With a clean-slate architecture, one focuses on solving
the problem by offering a fundamental solution, in this casea
global theory of networking, rather than hacking and patching
the current technologies to ensure temporary operability.

RINA starts from the premise thatnetworking is Inter
Process Communication (IPC) and IPC only. Networking
provides the means by which application processes on separate
systems communicate, generalizing the model of local inter-
process communication. Figure 2 shows a diagram of the



Fig. 2. The RINA Architecture Reference Model.

RINA architectural model. In contrast to the fixed, five-layer
model of the Internet, where each layer provides a different
function, RINAs architecture is based on a single type of
layer, which is repeated in a recursive fashion as many times
as required by the network designer. The layer is called a
Distributed IPC Facility (DIF) which is a distributed applica-
tion that provides Inter-Process Communication services over
a given scope1 to the distributed applications above (which
can be other DIFs or regular applications).

A member of a DIF is called an IPC process. Normal
IPC processes consist of elements dedicated to Data Transfer,
Data Transfer Control or Layer Management. The elements
are ordered in increasing complexity and frequency of use,
with elements at the far left being used the most (per packet
processing) but the least complex, and elements to the right
being not often used, but very complex. All DIFs provide the
same interface regardless of their rank with respect to other
DIFs. This interface allows applications to request and manage
IPC services by

• allowing an application to declare its reachability through
one or more DIFs

• requesting the allocation of a communication flow to
another application, specifying its name and the flow
characteristics

• reading/writing data
• requesting the deallocation of the flow

1This scope can be a point-to-point link, a local area network, a metropoli-
tan network, an internetwork, a virtual private network, etc.

Since all the layers provide the same functions, all layers
have the same structure and components. However, not all
the layers provide the same levels of service and operate
over the same environment, therefore these components must
provide means to adapt to a very heterogeneous environment.
RINA follows the well-known Operating Systems (OS) design
principle of separating mechanism (the invariant parts) and
policy (the parts that can change) in each of its components.
Therefore it is possible to customize the behavior of a DIF
to optimally support a given set of applications or optimally
operate on a certain environment by plugging in specific setsof
policies instead of having to implement whole new protocols
from scratch. For instance, there is Service Data Unit (SDU)
protection, which allows protection of SDUs, depending on
policy (no protection, encryption, ...).

B. Prototyping of the Recursive Internetwork Architecture

RINA prototyping efforts started in 2010, with three main
objectives: debug and improve the initial draft RINA speci-
fications, get experience on implementing RINA on different
platforms and learn about the challenges and possibilitiesof
overlaying it over TCP and UDP. There are currently three
independent prototypes in different degrees of maturity, none
of them aiming to be the basis of a platform that can be
deployed in production; they all run in user-space:

• the Alba prototype, jointly developed by i2CAT and
TSSG, entirely based on Java [6]



• the TRIA Network Systems prototype, a C implementa-
tion [7]

• the Boston University prototype, also written in Java. [8]

The IRATI project prototype [9] goes beyond the current
state-of-the-art, since it is the first attempt to establisha source
code base upon which commercial RINA implementations can
be based. IRATI’s implementation targets Linux/OS platforms,
with components placed into both user and kernel spaces. This
approach not only allows for performant implementations,
but the placement of (at least) some components in kernel
space is required to access low level functionalities, otherwise
unaccessible. This allows to overlay RINA over different
technologies (Ethernet, WiFi, USB, FireWire, etc.).

II. T HE MANIFOLD REQUIREMENTS OF A CLEAN-SLATE

IMPLEMENTATION

The IRATI project’s overall high level software architecture
spans the target OS as a whole, from the user space to the ker-
nel space and identifies software components, their interactions
and delineates their interfaces; the approach described inthe
project architectural deliverable (i.e. D2.1 which can be found
at [9]) provides generic concepts that may help implementing
the RINA model on different targets.

To accomplish the project goals, the focus of the IRATI
software architecture is manifold and may be summarized as:

• optimally partitioning the components residing in both
the user and kernel spaces

• defining their interfaces
• keeping both multitasking and user/kernel mode switches

as low as possible, in order to avoid excessive perfor-
mances degradation

The aforementioned requirements imply particular care on
the design of the different components and the way they
cooperate with each other. The identification of the operations
executed on a regular basis is the groundwork for the analysis
and consequent design activities. The functionalities that are
most frequently used should suffer the lowest penalties and
are described as residing in the “fast-path”; Protocol Data
Units (PDUs) read/write operations are the easiest example.
Operations that should not occur often (such as configuration
or management ones) might suffer penalties without degra-
dation, which is why they are addressed as residing in the
“slow-paths”.

By translating RINA’s recursive approaches into iterative
ones, e.g. to avoid abundant use of the stack, the positioning
of components in either kernel or user space is easily obtained
and fast-path operations among different processes in the same
OS space can be obtained at the lowest context-switch cost.
Placing the fast-path functionalities into kernel space prior-
itizes regularly executed tasks and reduces context switches
as much as possible. On the other hand, the introduced
partitioning, which places the software components in kernel
or user space, means an increase in context switching. Hence,
the best partitioning scheme implies an additional necessity,
which is to have loose coupling between the two spaces’

components and therefore functionalities spanning the two
spaces should be avoided.

The aforementioned partitioning and coupling introduce
problems that have been mildly relevant in traditional UNIX
based systems, such as the intra-components communications
which are now originated in both user and kernel spaces,
compared to traditional IPC/RPC. Solving these problems
optimally would incur the design of new user/kernel commu-
nications mechanisms, which are out of scope for the IRATI
project. Since IRATIs goals are to implement a RINA stack
with the current technologies available in its mainstream target
kernels, such problems are addressed and solved with the
minimum penalties on a per-case basis without requiring sub-
stantial modifications on the target systems while maximizing
the software portability.

The IRATI implementation is split into three major layers:
the application, the user-space (framework), which is mostly
concerned with layer management tasks of the IPC Processes,
and the kernel layer, which is mostly concerned with data
transfer. The user-space framework is an Application Pro-
gramming Interface (API) that exposes RINA functionalities to
the applications and implements them with (traditional UNIX)
daemons and (dynamic) libraries which in turn request services
of the kernel on behalf of the applications. This common
approach decouples the applications from the kernel particular-
ities and enhances the portability of the user space software
to other kernels with minor changes. The various dynamic
libraries provide bindings to programs without constraining
adopters to use only C and/or C++ languages: in order to
suit the maximum audience, bindings to other languages (e.g.
Java) are provided almost at no cost through the use of the
Simplified Wrapper and Interface Generator (SWIG) [10].

III. H IGH LEVEL SOFTWARE ARCHITECTURE

A. Components placement

The user-space framework consists of multiple components,
which can be seen in Figure 3. The main functions and
interactions between these components and the applicationcan
be summarized as:

• Application Process: An application using RINA ser-
vices to communicate with other applications (residing
on the same or on a different system).

• IPC Process Daemons: Each IPC Process daemon im-
plements the layer management components of an IPC
Process: the Resource Information Base (RIB), RIB
Daemon, Enrollment, Flow Allocator, PDU Forwarding
Table Generator and Resource Allocator components of
the RINA reference model. The IPC Process is also an
application process, and can request the allocation of N-1
flows to other IPC Processes in the system.

• IPC Manager Daemon: Manager of the RINA software
in the system. It is in charge of creating, configuring and
destroying the other components of the RINA software
(both in user-space and the kernel). Interaction with the
IPC Manager can be performed locally through a text



Fig. 3. The IRATI prototype components placement.



console providing a command-line interface, through con-
figuration files, or remotely through a DIF Management
System. The IPC Manager is also in charge of brokering
application registration and flow allocation requests from
applications, by redirecting these requests to the most ap-
propriate IPC Process Daemon. Finally, the IPC Manager
also implements the Inter-DIF Directory, which allows
for the discovery of applications in DIFs not currently
enrolled by the system. There is a single instance of an
IPC Manager Daemon in each system.

The kernel layer also consists of multiple components.
These components, their functions and interactions are:

• Error and Flow Control Protocol (EFCP) : Container
of the different EFCP instances. EFCP is responsible for
the actual data transfer. It is based on delta-t [11]. EFCP
is split into the Data Transfer Protocol (DTP) and Data
Transfer Control Protocol (DTCP) [12], loosely coupled
through a state vector. There is an EFCP instance for each
different connection in each IPC Process, which passes
data to the Relaying and Multiplexing Task (RMT) in the
outgoing direction, or to the Kernel IPC Manager in the
incoming direction.

• Relaying and multiplexing task (RMT): Container of
the different RMT instances in the system. Each RMT
instance (one per IPC Process) multiplexes the data from
N EFCP connections to M underlying flows, and relays
the data coming from underlying flows to EFCP connec-
tions or to other underlying flows with information from
the forwarding table, generated by the PDU Forwarding
Table. It passes data to the Kernel IPC Manager in
the outgoing direction, and to EFCP in the incoming
direction.

• Service Data Unit (SDU) Protection: Container of the
different SDU Protection module instances in the system.
At the finest granularity, there can be a different SDU
Protection module instance for each distinct underlying
flow. The SDU Protection component in the kernel is
called by the RMT component to either protect data
(outgoing direction) or expose data (incoming direction).

• Shim IPC Process over Ethernet: For migrating from
current TCP/IP over Ethernet networks to RINA, the
concept of a shim IPC Process was introduced. The task
of a shim IPC Process is to put as small as possible veneer
over a legacy protocol to allow a regular IPC process to
use it unchanged. This component is the container of all
the shim IPC Processes over Ethernet instances in the
system. In the outgoing direction, this component passes
data to the relevant device driver, and in the incoming
direction, to the Kernel IPC Manager.

• Shim IPC Process over TCP/UDP: Container of all
the shim IPC Process over TCP/UDP instances in the
system. In the outgoing direction, this component acts
as a gateway from RINA to TCP/UDP+IP, and in the
incoming direction, to the Kernel IPC Manager.

• Kernel IPC Manager: Manages the lifetime (creation,

destruction, monitoring) of the other component instances
in the kernel, as well as its configuration. It also provides
coordination at the boundary between the different IPC
Processes. It passes data to EFCP or a shim IPC Process
component in the outgoing direction, and to either the
RMT or an application process at user space in the
incoming direction.

B. Communications

Efficient communication mechanisms are a key requirement
of the implementation. The RINA model itself implies IPC
communication involving different processes and scopes. The
modular design of the implementation creates a very inter-
active environment with the need of inter-module commu-
nication. A consequence of partitioning the components in
user and kernel space is that communication is sometimes
originated from the kernel to user-space. There are currently
little mechanisms that allow communication initiated in the
kernel.

For user-originated atomic actions, or belonging to fast-
paths, the definition of a set of system calls provides an effi-
cient and less resource consuming approach for synchronous
user to kernel dialogues, since they don’t require a socket for
communication. When a socket is used for communication, the
data first has to be serialized before it is send. Upon receiving,
the data has to be deserialized. Sycalls are for instance used
for Protocol Data Units (PDUs) read/write operations. Netlink
sockets [13] also match many of our requirements (1:N, N:M,
asynchronous, initiated communications by both-spaces) and
make them suitable for the design and implementation of
the IRATI framework. Netlink can support kernel to user-
space communication due to its full-duplex channels, allowing
the framework to warn the application about specific events.
Netlink sockets and its Generic Netlink family are mainly
used for notifications and batch-like communications for their
asynchronous and multicasting capabilities (e.g. they areused
for user-space component-to-component inter-communications
and bidirectional communications between user and kernel
spaces components). Finally, sysFS [14] allows to configure
the different RINA components residing in kernel space, as
well as obtaining metrics of these kernel components in user-
space.

In user-space the communication framework abstracts the
lower-level communication details. It is completely event-
based in order to allow the different modules to react accord-
ingly and update their state. This framework interacts with
the different communications mechanisms used for user-space
to user-space, user-space to kernel and kernel to user-space
communication.

C. The user-space framework, applications and daemons

The user-space components and functionalities are provided
by two separate software packages: librina and rinad. The
librina package implements the aforementioned user-space
components into the following libraries (see also Figure 3):



• librina-common: provides the common classes and util-
ities shared by all the libraries belonging to the librina
framework.

• librina-application : provides the native RINA API, al-
lowing applications to i) express their availability to be
accessed through one or more DIFs (registration); ii) allo-
cate and deallocate flows to destination applications (flow
allocation/deallocation); iii) read and write data from/to
allocated flows (in the form of SDUs) and iv) query the
DIFs available in the system and their properties.

• librina-cdap : The Common Distributed Application Pro-
tocol (CDAP) allows applications to inter-communicate
by performing operations in a well-defined syntax (create,
delete, read, write, start or stop) on each application
process Resource Information Base (RIB), which is the
local representation of the view of the DIF in the IPC Pro-
cess. Before any two application processes can exchange
CDAP messages, they have to establish an application
connection in order to i) authenticate each other if re-
quired and ii) agree on a version of the syntax and specific
encoding of the application protocol to be used for the
communication. The application connection procedure in
RINA is defined by the Common Application Connection
Establishment Phase (CACEP) [6], which provides hooks
to plug-in authentication modules. librina-cdap provides
an implementation of both the CACEP and CDAP state
machines.

• librina-faux-sockets: supports legacy applications, albeit
under-performant, without requiring a migration to the
native RINA API. This library mimics the sockets API,
mapping most of the sockets operations to operations
on flows using the native RINA API. This way legacy
application traffic can be carried over DIFs, without
applications being aware of that (at the cost of not
enjoying all the features of the native API).

• librina-ipc-manager: provides the functionalities used
by the IPC Manager to perform IPC Process creation,
deletion and configuration, to serve requests by applica-
tion processes, and manage the Inter-DIF Directory. It
abstracts the details that allow the IPC Manager to com-
municate with the IPC Process daemons and application
processes in user space (using Netlink) and the RINA
components in the kernel (using system calls, Netlink
sockets and sysfs).

• librina-ipc-process: encapsulates the operations that al-
low the IPC Process daemon to serve the requests of
application processes, to allow configuration by the IPC
Manager and to configure the IPC Process components
residing in the kernel. (e.g. creation/modification/deletion
of EFCP instances, updates to the PDU forwarding table
or the modification of the kernel SDU Protection poli-
cies). IPC Manager configuration requests involve the
assignment of the IPC Process to a DIF, the registration
to one or more N-1 IPC Processes or the triggering of an
enrollment operation.

• librina-sdu-protection : This library provides a combi-

nation of procedures to detect bit errors, encrypt/decrypt
SDUs and other features.

The rinad package contains the two daemons of the RINA
framework in user-space: the IPC Manager daemon and the
IPC Process daemon. Both daemons make use of the librina
libraries to accomplish their tasks.

Applications can be written using the aforementioned
framework by simply linking these libraries and adopting their
APIs. By following this approach, portability problems among
different systems and issues caused by the underlying kernel
level API/ABI changes are reduced to the minimum.

The librina package is not limited to provide C bindings
only, as the majority of libraries available. It currently provides
bindings to C, C++ and Java languages. More languages,
e.g. Python and Ruby, are expected to be supported in the
future. Part of these bindings (i.e. Java) are automatically
generated using SWIG, which is used to parse the librina
C/C++ interfaces and automatically generate the “glue code”
required for the target languages to use the wrapped interfaces.
Due to the approach taken with regard to wrapping, future
development only takes a small amount of effort compared to
the handwriting of bindings for all the targeted languages.By
extending this procedure to other languages, the reuse of the
project’s solutions is encouraged and is expected to be a real
advantage, compared to the efforts spent implementing them.

D. The kernel-space framework and components

The kernel space software has different requirements and
targets compared to the user-space, e.g. a well defined set of
programming languages (i.e. only assembly and C), different
memory and resources models, different synchronization and
concurrency techniques, development patterns and, last but not
least, a generally harsher environment compared to the user-
space one.

In order to overcome all the possible limitations of the
environment, reduce the problems that may be caused by incre-
mentally introducing features during the whole project lifetime
and keeping code refactoring at the minimum, we followed an
Object Oriented (OO) approach throughout all our kernel-level
components. OOP approaches applied to C development are
not new however, e.g. the early C++ compilers prototypes were
almost preprocessors producing all the C required boilerplates,
and a lot of literature is easily available in the public domain
[15]. It is worth noticing however that these approaches and
techniques usually deal with C in user-space and must be
refactored opportunely to be applied into kernel space. Part of
these OOP “techniques” are already in use in the Linux kernel
(and we applied them in our implementation accordingly)
while the remaining ones have been introduced during the
development phase where needed. To simply introduce some
of them, without the intention of discussing them in detail:

• Information hiding: Implemented through the use of
forward definitions of the object’s type in its header
file while the complete definition is embedded into the
corresponding compilation module



• Constructors and destructors: Implemented through the
use of functions mimicking (C++) constructors and de-
structors.

• Methods, polymorphism and inheritance: Implemented
through the use of function pointers defined into the
corresponding object type. By opportunely mangling
these pointers and enforcing common naming constraints,
polymorphism and inheritance can be easily obtained

By applying such techniques, the internal implementation of
a stack component can be hidden and its interface “exported”
as a set of function pointers and an opaque data pointer
(pointing to the component’s internal state). That interface can
be dynamically bound into other components by storing these
function pointers and data pointer into the targets, received
through the use of an accessory function. The opposite oper-
ation, the unbinding, is similar.

With the generalized adoption of the previously discussed
approaches throughout the stack and with the kernel provided
runtime dynamic linking features (i.e. module loading and
unloading), the implementation of dynamical embedding and
removal of features into the stack at runtime is possible. Such
characteristic avoids the need to change the core of the stack
each time the internal implementation of a component changes,
which is especially important for the shim IPC processes
since they strongly depend on the technology underneath (e.g.
Ethernet, WiFi) and thus their implementation vary widely.
This way, new technologies can easily be made available to
the RINA stack.

The dynamic components binding is primarily used inside
the Kernel IPC Manager (KIPCM), which is also in charge
of providing the entry-points of the RINA syscalls. The
KIPCM exposes its hooks to the syscalls layer which in turn
are bounded to the lower parts of the stack, the shims. A
reverse-chain of initializations and bindings (i.e. the shims
IPC Processes initialized and bounded to the core of the stack
which in turn is finally bounded to the RINA syscalls) provides
the most viable way to implement the dynamic plugging of
the shims IPCs at boot-time, as well as during runtime.

The overall OO approach adopted shows its potential into
the IPC processes layer: the KIPCM provides the same binding
and usage APIs for both the normal and the shim IPC
Processes, regardless of their “exact” type. This way all the
functionalities they provide are transparent (and homogeneous)
to the upper layers, even though their inner workings may vary
greatly. For instance, the “regular” IPC Processes have EFCP
and RMT instances while the shims are completely missing
them, but the user-space components working in the fast-paths
are unaware of such differences.

IV. FUTURE WORK

The official IRATI project implementation roadmap is sliced
into three phases, providing incremental features on top of
each other, towards the implementation of an open source,
full fledged, RINA stack. This roadmap can be summarized
as follows:

• 1st phase (restricted prototype, Nov. 2013): This proto-
type targets a first implementation of all the components
with limited functionalities which will allow the creation
of DIFs over Ethernet. This will provide levels of service
similar to TCP/IP and UDP/IP, with the added features
of supporting authentication when joining the DIF, and
inherent support for mobility and multi-homing, as is the
case for RINA.

• 2nd phase (open source prototype, Jun. 2014): This
prototype will be an evolution of the first one, fixing
known bugs and introducing functionalities not present
in the 1st prototype such as supporting levels of service
different to those of TCP and UDP thanks to the devel-
opment of different resource allocation policies and the
implementation of SDUs protection mechanisms.

• 3rd phase (open source prototype Dec. 2014): As
in the 2nd phase, this prototype will be fixing bugs
and introducing the remaining functionalities towards a
feature-complete state. Compared to the other phases,
the focus is on the interoperability with the non-IRATI
prototype(s) and the completion of the eventual open
issues that could not have been addressed before.

Upon the first public release (2nd phase prototype), the
IRATI project will start promoting an open source community
to further develop and enhance the public prototype. Apart
from the aforementioned official releases, development ones
will be rolled out more often and the repository will be shared
with the community.

V. CONCLUSION

RINA, the Recursive InterNet Architecture is a “back-to-
basics” approach on network architectures. We presented the
design decisions made in the IRATI prototype of RINA, the
first open source code base upon which commercial RINA
implementations can be based. We outlined and motivated
the placement of the components in user and kernel space
and described their functionality and the interactions between
them. The first open source prototype will be available in June
2014, which can be a starting point for developers and/or be
used to to experiment with.

ACKNOWLEDGMENT

This work is partly funded by the European Commission
through the IRATI project (Grant 317814), part of the Future
Internet Research and Experimentation (FIRE) objective ofthe
Seventh Framework Programme (FP7).

REFERENCES

[1] A. McKenzie, “INWG and the conception of the Internet: Aneyewitness
account,”Annals of the History of Computing, IEEE, vol. 33, no. 1, pp.
66–71, 2011.

[2] J. Day, Patterns in network architecture: a return to fundamentals.
Prentice Hall, 2008.

[3] V. Ishakian, J. Akinwumi, and I. Matta, “On the Cost of Supporting
Multihoming and Mobility,” Boston University Computer Science De-
partment, Tech. Rep., 2009.



[4] J. Day, E. Trouva, E. Grasa, P. Phelan, M. P. de Leon, S. Bunch, I. Matta,
L. T. Chitkushev, and L. Pouzin, “Bounding the router table size in
an ISP network using RINA,” inNetwork of the Future (NOF), 2011
International Conference on the. IEEE, 2011, pp. 57–61.

[5] J. Day, “How in the heck do you lose a layer!?” inNetwork of the
Future (NOF), 2011 International Conference on the. IEEE, 2011, pp.
135–143.

[6] E. Grasa, E. Trouva, S. Bunch, P. DeWolf, and J. Day, “Developing
a RINA prototype over UDP/IP using TINOS,” inProceedings of the
7th International Conference on Future Internet Technologies, 2012, pp.
31–36.

[7] (2013, Nov.) TRIA Network Systems, LLC. [Online]. Available:
http://www.trianetworksystems.com/

[8] Y. Wang, F. Esposito, I. Matta, and J. Day, “Recursive InterNetworking
Architecture (RINA) Boston University Prototype Programming Manual
(version 1.0).”

[9] (2013, Nov.) The IRATI website. [Online]. Available: http://www.irati.eu
[10] D. M. Beazley et al., “SWIG: An easy to use tool for integrating

scripting languages with C and C++,” inProceedings of the 4th USENIX
Tcl/Tk workshop, 1996, pp. 129–139.

[11] R. W. Watson, “Timer-based mechanisms in reliable transport protocol
connection management,”Computer Networks (1976), vol. 5, no. 1, pp.
47–56, 1981.

[12] G. Gursun, I. Matta, and K. Mattar, “Revisiting a soft-state approach
to managing reliable transport connections,” inProceedings of the
Eighth International Workshop on Protocols for Future, Large-Scale and
Diverse Network Transports (PFLDNeT), 2010.

[13] P. Neira-Ayuso, R. M. Gasca, and L. Lefevre, “Communicating between
the kernel and user-space in Linux using Netlink sockets,”Software:
Practice and Experience, vol. 40, no. 9, pp. 797–810, 2010.

[14] P. Mochel, “The sysfs filesystem,” inLinux Symposium, 2005, p. 313.
[15] A.-T. Schreiner, “Object oriented programming with ANSI-C,” 1993.


