Prototyping the Recursive InterNet Architecture:
The IRATI project approach

Sander Vrijder§ Francesco SalvestriiEduard Grasa
Miquel Tarzad, Leonardo Bergesio Dimitri Staessens Didier Colle*
1Ghent University - iMinds, INTEC, Gaston Crommenlaan 8 b04,29050 Gent, Belgium
E-mail: firstname.lasthname@intec.ugent.be
2neXtworks s.r.l., Pisa, ltaly
E-mail: f.salvestrini@nextworks.it
3i2CAT Foundation, Jordi Girona, Barcelona, Spain
E-mail: firstname.lasthname@i2cat.net

other words, the network uses information on “where”
an application is located to identify “which” application
this is. Every time the application changes its point of
attachment it seems different to the network, greatly
complicating multi-homing, mobility and security.

Abstract—In recent years, many new Internet architectures are
being proposed to solve shortcomings in the current Interne A
lot of these new architectures merely extend the current TCRP
architecture and hence do not solve the fundamental cause rfo
these problems. The Recursive InterNet Architecture (RINA
is a true new network architecture, developed from scratch,
building on experiences learned in the past. RINA prototypig
efforts have been ongoing since 2010, but a prototype upon TCP(L4)
which a commercial RINA implementation can be built has not 1P(L3)
been developed yet. The goal of the IRATI reseach project is IEEE 802.3 (L2)
to develop and evaluate such a prototype in Linux/OS. This VXLAN(L2)

article focuses on the software design required to implemdna
network stack in Linux/OS. We motivate the placement of, and
communication between, the different software componentsn
either kernel or user space. A first open source prototype ofte
IRATI implementation of RINA will be available in June 2014

Transport (L4)

Network (L3)

UDP (L4)

Data Link (L2)

1P (L3)

Physical (L1)

1P (L3)

The simple
model

IEEE 802.3 (L2)

MPLS (L2.5)

__DIF (IPC)

DIF (IPC)
Shim DIF (IPC to PHY)

RINA

IEEE 802.1q (L2)
IEEE 802.1ah (L2)
10GBASE-ER (L1)

for researchers, developers and early adopters.

I. INTRODUCTION The complex reality

(just an example)
From the early days of telephony to nowadays, the telecom-

munications and computing industries have evolved signif-
icantly. However, we argue that they have been following
separate paths, without achieving a full integration theat ¢
optimally support distributed computing; the paradigmftshi

from telephony to distributed applications is still not qalete. of them still keep the same old assumptions, merely extendin

Telecoms have been focusing on connecting devices, perp%u : !
i . o e architecture to handle more corner cases, at the price of
ating the telephony model where devices and applications ar

the same. A look at the current Internet architecture Sho\?{%mpllcatmg the general landscape more and more (seeeFigur
many symptoms of this thinking [1]: '
« The network routes data between interfaces of computefs, The Recursive Internet Architecture
as the public switched telephone network switched calls RINA, the Recursive InterNetwork Architecture [2] [3] [4],
between phone terminals. However, it is not the souréga “back to basics” approach learning from the limitatiohs
and destination interfaces that wish to communicate, bUCP/IP [5] and from the experience of other technologies in
the distributed applications. the past. With a clean-slate architecture, one focusesloimgo
« Applications have no way of expressing their desiretthe problem by offering a fundamental solution, in this case
service characteristics to the network, other than chgosiglobal theory of networking, rather than hacking and patghi
a reliable (TCP) or unreliable (UDP) type of transporthe current technologies to ensure temporary operability.
The network assumes that applications are homogeneouRINA starts from the premise thatetworking is Inter
by providing only a single quality of service. Process Communication (IPC) and IPC only. Networking
« The network has no notion of application names, and hpsovides the means by which application processes on depara
to use a combination of the interface address and transpgystems communicate, generalizing the model of local inter
layer port number to identify different applications. Improcess communication. Figure 2 shows a diagram of the

Fig. 1. Layers in Network Architectures.

Several attempts have been made to propose architectures
that overcome the current Internet limitations. Howevenstn

g — e ———— -

’ . . ey \\\ S -~
'l Application Specific Tasks \I s~ N System (Host) System

e e ' - System , Appl. (Host)
! Appl. Rout Mgmt Process
Other Mgt. Tasks \ PP (Router) Agemt
1 Process .
[ttt 1
IPC Mgt. Tasks : 2
’
Multiol IPC b s IPC IPC IPC
u. P Resource 1 ’ 4 Process -~ - Process Process
exing Mgt. : e Mgmt Sl
I 4 Agémt =
H ’
1
3

Mgmt
SDU i = Agemt
Protecti || MErBIF {1 L7 . shimDIF |- o] [B Shim DIF A,
on Directory o Shim IPC over TCP/UDP Shim IPC . over Ethernet -
AN 7l e Process Process Process Process
_______________ . o
. <

=]
T

[}
1
1
1
1
1
1
[}
1
1
1
1
1
1
\

w
o
=
o
o
3
3
=]
)
o
o
o
&3
23
S
o
=3

]

]

1

1

1

1 CACEP
! w

1 4

, ' :%)' Authentication
: Data Transfer <

I 2

1 o

| 1

1

1

1

\

__

Increasing timescale (functions performed less often) and complexity

Fig. 2. The RINA Architecture Reference Model.

RINA architectural model. In contrast to the fixed, five-laye Since all the layers provide the same functions, all layers
model of the Internet, where each layer provides a differehéve the same structure and components. However, not all
function, RINAs architecture is based on a single type d¢iie layers provide the same levels of service and operate
layer, which is repeated in a recursive fashion as many timeger the same environment, therefore these components must
as required by the network designer. The layer is calledpaovide means to adapt to a very heterogeneous environment.
Distributed IPC Facility (DIF) which is a distributed apgdi- RINA follows the well-known Operating Systems (OS) design
tion that provides Inter-Process Communication serviaes o principle of separating mechanism (the invariant partg) an
a given scopeto the distributed applications above (whichpolicy (the parts that can change) in each of its components.
can be other DIFs or regular applications). Therefore it is possible to customize the behavior of a DIF
A member of a DIF is called an IPC process. Normab optimally support a given set of applications or optimall
IPC processes consist of elements dedicated to Data Trangperate on a certain environment by plugging in specificafets
Data Transfer Control or Layer Management. The elemengslicies instead of having to implement whole new protocols
are ordered in increasing complexity and frequency of udeom scratch. For instance, there is Service Data Unit (SDU)
with elements at the far left being used the most (per packebtection, which allows protection of SDUs, depending on
processing) but the least complex, and elements to the rigilicy (no protection, encryption, ...
being not often used, but very complex. All DIFs provide the
same interface regardless of their rank with respect torot
DIFs. This interface allows applications to request and agan

~—

'E Prototyping of the Recursive Internetwork Architecture

IPC services by RINA prototyping efforts started in 2010, with three main
« allowing an application to declare its reachability thrbugobjectives: debug and improve the initial draft RINA speci-
one or more DIFs fications, get experience on implementing RINA on different

« requesting the allocation of a communication flow tplatforms and learn about the challenges and possibilitfes
another application, specifying its name and the flosverlaying it over TCP and UDP. There are currently three

characteristics independent prototypes in different degrees of maturibyyen
« reading/writing data of them aiming to be the basis of a platform that can be
« requesting the deallocation of the flow deployed in production; they all run in user-space:
1This scope can be a point-to-point link, a local area netwarietropoli- « the Alba prototype, jointly deveIODed by i2CAT and

tan network, an internetwork, a virtual private networlg. et TSSG, entirely based on Java [6]

« the TRIA Network Systems prototype, a C implementazomponents and therefore functionalities spanning the two
tion [7] spaces should be avoided.
« the Boston University prototype, also written in Java. [8] The aforementioned partitioning and coupling introduce

The IRATI project prototype [9] goes beyond the currefiroblems that have been mildly relevant in traditional UNIX
state-of-the-art, since it is the first attempt to estatdisource Pased systems, such as the intra-components commungation
code base upon which commercial RINA implementations c#flich are now originated in both user and kernel spaces,
be based. IRATI's implementation targets Linux/OS platfsy compared to traditional IPC/RPC. Solving these problems
with components placed into both user and kernel spaces. T@ptimally would incur the design of new user/kernel commu-
approach not only allows for performant implementationé‘,ications mechanisms, which are out of scope for the IRATI
but the placement of (at least) some components in kerfépject. Since IRATIs goals are to implement a RINA stack
space is required to access low level functionalities, rvttse with the current technologies available in its mainstrearget
unaccessible. This allows to overlay RINA over differenfernels, such problems are addressed and solved with the

technologies (Ethernet, WiFi, USB, FireWire, etc.). minimum penalties on a per-case basis without requiring sub
stantial modifications on the target systems while maxingjzi

[I. THE MANIFOLD REQUIREMENTS OF A CLEANSLATE the software portability.

IMPLEMENTATION The IRATI implementation is split into three major layers:
the application, the user-space (framework), which is ipost
ﬁgpcerned with layer management tasks of the IPC Processes,
and the kernel layer, which is mostly concerned with data
transfer. The user-space framework is an Application Pro-
gramming Interface (API) that exposes RINA functionatitie
rghe applications and implements them with (traditional XNI
daemons and (dynamic) libraries which in turn request sesvi
f the kernel on behalf of the applications. This common
)proach decouples the applications from the kernel pdatic
] o S ities and enhances the portability of the user space saftwar

- optimally partitioning the components residing in both, oiher kernels with minor changes. The various dynamic
the user and kernel spaces libraries provide bindings to programs without constragni
. defm!ng their mter.face_s . adopters to use only C and/or C++ languages: in order to
« keeping both multitasking and user/kernel mode switchggj; the maximum audience, bindings to other languages (e.g
as low as possible, in order to avoid excessive perfojaya) are provided almost at no cost through the use of the
mances degradation Simplified Wrapper and Interface Generator (SWIG) [10].
The aforementioned requirements imply particular care on
the design of the different components and the way they I1l. HIGH LEVEL SOFTWARE ARCHITECTURE
cooperate with each other. The identification of the openati A
executed on a regular basis is the groundwork for the arsalysi
and consequent design activities. The functionalities &#ma The user-space framework consists of multiple components,
most frequently used should suffer the lowest penalties a#@lich can be seen in Figure 3. The main functions and
are described as residing in the “fast-path”; Protocol Dat@teractions between these components and the appliazion
Units (PDUs) read/write operations are the easiest exampl summarized as:
Operations that should not occur often (such as configuratio « Application Process An application using RINA ser-
or management ones) might suffer penalties without degra- vices to communicate with other applications (residing
dation, which is why they are addressed as residing in the on the same or on a different system).
“slow-paths”. e IPC Process DaemonsEach IPC Process daemon im-
By translating RINA's recursive approaches into iterative plements the layer management components of an IPC
ones, e.g. to avoid abundant use of the stack, the positonin Process: the Resource Information Base (RIB), RIB
of components in either kernel or user space is easily obdain Daemon, Enrollment, Flow Allocator, PDU Forwarding

The IRATI project’s overall high level software architectu
spans the target OS as a whole, from the user space to the
nel space and identifies software components, their irtierec
and delineates their interfaces; the approach describéuein
project architectural deliverable (i.e. D2.1 which can berfd
at [9]) provides generic concepts that may help implementi
the RINA model on different targets.

To accomplish the project goals, the focus of the IRATY
software architecture is manifold and may be summarized

Components placement

and fast-path operations among different processes irathe s Table Generator and Resource Allocator components of
OS space can be obtained at the lowest context-switch cost. the RINA reference model. The IPC Process is also an
Placing the fast-path functionalities into kernel spacmrpr application process, and can request the allocation of N-1

itizes regularly executed tasks and reduces context sagtch flows to other IPC Processes in the system.

as much as possible. On the other hand, the introduced IPC Manager Daemon Manager of the RINA software
partitioning, which places the software components in &ern in the system. It is in charge of creating, configuring and
or user space, means an increase in context switching. Hence destroying the other components of the RINA software
the best partitioning scheme implies an additional netgssi (both in user-space and the kernel). Interaction with the
which is to have loose coupling between the two spaces’ IPC Manager can be performed locally through a text

CLI

Main logic

\

Config
files

Application A

etlink
sockets

RIB & RIB
Daemon

System Netlink
calls sockets

Manageme
nt agent

Normal IPC Process

(Layer Management})
Sysfs PDU
Netlink Forwarding
sockets Table
Generation

Enrollment
|
i
N Resource
allocation
RIB & RIB
Daemon
< Flow
) allocation

System calls System calls N Netlink
] Sysfs
! i sockets
User space v v
Kernel

SDU
Protection

Error and Flow Control

Protocol

Relaying and Multiplexing

Task

frame in/out

N

iV
TCP/UDP in/out

Fig. 3. The IRATI prototype components placement.

data in/out

console providing a command-line interface, through con- destruction, monitoring) of the other component instances
figuration files, or remotely through a DIF Management in the kernel, as well as its configuration. It also provides
System. The IPC Manager is also in charge of brokering coordination at the boundary between the different IPC
application registration and flow allocation requests from Processes. It passes data to EFCP or a shim IPC Process
applications, by redirecting these requests to the most ap- component in the outgoing direction, and to either the
propriate IPC Process Daemon. Finally, the IPC Manager RMT or an application process at user space in the
also implements the Inter-DIF Directory, which allows incoming direction.

for the discovery of applications in DIFs not currently

enrolled by the system. There is a single instance of & Communications

IPC Manager Daemon in each system. - L . .
9 y Efficient communication mechanisms are a key requirement

The kernel layer also consists of multiple componentsf the implementation. The RINA model itself implies IPC
These components, their functions and interactions are: communication involving different processes and scopés. T
modular design of the implementation creates a very inter-

¢ (Efrrtct)wtea:jri]fcfierFela\{vEcl::(():nPtr?r:sI:azgf:oecsmE(IEEICD:ITS) :recsggtr?é?lflre fag:tive environment with the need of inter-module commu-
the actual data transfer. It is based on delta-t [11]. EF cation. A consequence of partitioning the components in

. o User and kernel space is that communication is sometimes
is split into the Data Transfer Protocol (DTP) and Dat b

riginated from the kernel to user-space. There are cuyrent
Transfer Control Protocol (DTCP) [12], Iqosely couple ttle mechanisms that allow communication initiated ire th
through a state vector. There is an EFCP instance for e nel
different connection in each IPC Process, which passes- '
data to the Relaying and Multiplexing Task (RMT) in the or user-on_gl_n_ated atomic actions, or belong!ng to fast_-
aths, the definition of a set of system calls provides an effi-

outgoing direction, or to the Kernel IPC Manager in the. .
) : L cient and less resource consuming approach for synchronous
incoming direction.

« Relaying and multiplexing task (RMT): Container of user to ".e"‘?' dialogues, since Fhey don't require a SO‘F“E”
: . : ommunication. When a socket is used for communication, the

the different RMT instances in the system. Each RMT ' . . .

instance (one per IPC Process) multiplexes the data fr data first has to be serlallz_eql before it is send. Upon ravgivi
& data has to be deserialized. Sycalls are for instana® use

N EFCP connectlons toM ur_lderlylng flows, and relay%r Protocol Data Units (PDUSs) read/write operations. Métl
the data coming from underlying flows to EFCP connec-

tions or to other underlying flows with information fromSOCthS [13] also match many of our requirements (1:N, N:M,

the forwarding table, generated by the PDU Forwardin%symhronous' .|n|t|ated commumgatlons by both—spach) a
ake them suitable for the design and implementation of
Table. It passes data to the Kernel IPC Manager

the outgoing direction, and to EFCP in the incominéHe IRATI fram_ewqu. NetI|nI_< can support kernel to_ User:
direction. pace communication due to its full-duplex channels, afigw

. Service Data Unit (SDU) Protection Container of the the framework to warn the application about specific events.

: . . . Netlink sockets and its Generic Netlink family are mainly
different SDU Protection module instances in the system. e . L7)

.) . $ed for notifications and batch-like communications fairth
At the finest granularity, there can be a different SD

asynchronous and multicasting capabilities (e.g. theyuaesl

Protection module instance for each distinct underlyir11%r User-space component-to-component inter-commuoitst

flow. The SDU Protection component in the kernel i%md bidirectional communications between user and kernel
called by the RMT component to either protect data

(outgoing direction) or expose data (incoming direction paces components). Finally, sysFS [14] allows to configure
Shim IPC Process over Ethernet For miarating from he different RINA components residing in kernel space, as
* current TCP/IP over Ethernet networksgto R%NA thgvell as obtaining metrics of these kernel components in-user

. . Space.
concept of a shim IPC Process was introduced. The taé?in ser-space the communication framework abstracts the
of a shim IPC Process is to put as small as possible venge u P unicatl W

over a legacy protocol to alow a regular IPC process {8 CUEYE SRTUIEREE LER G e
use it unchanged. This component is the container of

the shim IPC Processes over Ethernet instances in @ Iy_and update thejr ;tate. This frgmework interacts with
system. In the outgoing direction, this component pass e different communications mechanisms used for userespa
data to the relevant device driver, and in the incomintg user-space, user-space to kemel and kernel to uses-spac
direction, to the Kernel IPC Manager. ommunication.
o Shim IPC Process over TCP/UDP Container of all
the shim IPC Process over TCP/UDP instances in tl%
system. In the outgoing direction, this component acts The user-space components and functionalities are prdvide
as a gateway from RINA to TCP/UDP+IP, and in thdy two separate software packages: librina and rinad. The
incoming direction, to the Kernel IPC Manager. librina package implements the aforementioned user-space

« Kernel IPC Manager: Manages the lifetime (creation,components into the following libraries (see also Figure 3)

The user-space framework, applications and daemons

« librina-common: provides the common classes and util- nation of procedures to detect bit errors, encrypt/decrypt
ities shared by all the libraries belonging to the librina SDUs and other features.

framework. _ _ The rinad package contains the two daemons of the RINA
« librina-application : provides the native RINA AP, al- framework in user-space: the IPC Manager daemon and the

lowing applications to i) express their availability to bapc process daemon. Both daemons make use of the librina

accessed through one or more DIFs (registration); i) all@praries to accomplish their tasks.

cate and deallocate flows to destination applications (ﬂo"VAppIications can be written using the aforementioned

aIIocation/deaIIogation); iii) read and write .data fro/t framework by simply linking these libraries and adoptingith
allocated flows (in the form of SDUs) and iv) query theyps. By following this approach, portability problems angp

DIFs available in the system and their properties. different systems and issues caused by the underlying kerne
« librina-cdap: The Common Distributed Application Pro-|ayel API/ABI changes are reduced to the minimum.

tocol (CDAP) allows applications to inter-communicate The Jibrina package is not limited to provide C bindings

by performing operations in a well-defined syntax ((frea,tSnly, as the majority of libraries available. It currentiyopides
delete, read, write, start or stop) on each appl'(_:at'cﬂ?ndings to C, C++ and Java languages. More languages,
process Resource Information Base (RIB), which is the pyihon and Ruby, are expected to be supported in the
local representation of the view of the DIF in the IPC Prog,q e " part of these bindings (i.e. Java) are automagicall
cess. Before any two application processes can exchap@eerated using SWIG, which is used to parse the librina
CDAP messages, they_have to ?Stabl'Sh an appllpat|8r/‘b++ interfaces and automatically generate the “glue tode
connection in order to i) athenncate each other if r€aquired for the target languages to use the wrapped intsfa
quwed_and i) agree on a version of the syntax and specifig,a 1o the approach taken with regard to wrapping, future
encoding of the application protocol to be used for thge,ejopment only takes a small amount of effort compared to
communication. The application connection procedure {§e handwriting of bindings for all the targeted languaggs.
RINA IS defined by the Common Appll(?a'uon anneCt'o%Xtending this procedure to other languages, the reuseeof th
Establlshment Phgse ,(CACEP) (61, V,Vh'_Ch provides hQOIﬁ?oject’s solutions is encouraged and is expected to bela rea
to plug-in authentication modules. librina-cdap providegqantage, compared to the efforts spent implementing .them
an implementation of both the CACEP and CDAP state

machines. o 'D. The kernel-space framework and components
« librina-faux-sockets: supports legacy applications, albeit . .
under-performant, without requiring a migration to the The kernel space software has different requirements and

native RINA API. This library mimics the sockets AP targets cor_‘npared to the user-space, e.g. a well define_d set of
mapping most of the sockets operations to operatioR&9ramming languages (i.e. only assembly and C), difteren
on flows using the native RINA API. This way legacyMemory and resources models, different synchronizatieh an
application traffic can be carried over DIFs, withoufOncurrency techniques, development patterns and, lasobu
applications being aware of that (at the cost of ndgast, a generally harsher environment compared to the user
enjoying all the features of the native API). space one. S

« librina-ipc-manager: provides the functionalities used [N order to overcome all the possible limitations of the
by the IPC Manager to perform IPC Process creatioffVironment, redl_Jce the problem_s that may be cau_sed _bylncre
deletion and configuration, to serve requests by appncral_entally |_ntroducmg featur_es during th_e yvhole projecttiihe
tion processes, and manage the Inter-DIF Directory. amq keepl_ng code refactoring at the minimum, we followed an
abstracts the details that allow the IPC Manager to corf?Piect Oriented (OO) approach throughout all our kerneile
municate with the IPC Process daemons and applicatigmponents. OOP approaches applied to C development are
processes in user space (using Netlink) and the RIN2Qtnew however, e.g. the earl_y C++ compilers prototypegwer
components in the kernel (using system calls, NetlirMost preprocessors producing all the C required bodéep|
sockets and sysfs). and a I(_)t of I|teratur.e. is easily available in the public doma

« librina-ipc-process: encapsulates the operations that al43]- It is worth noticing however that these approaches and
low the IPC Process daemon to serve the requests(@¢hniques usually deal with C in user-space and must be
application processes, to allow configuration by the |Pt&factored opportunely to be applied into kernel spacet. éfar
Manager and to configure the IPC Process componem§se OOP “te_chmques” are aIre_ady in use in the Linux _kernel
residing in the kernel. (e.g. creation/modification/deiet (@nd we applied them in our implementation accordingly)
of EFCP instances, updates to the PDU forwarding tabfdhile the remaining ones have been mtroduged during the
or the modification of the kernel SDU Protection polidevelopment phase where needed. To simply introduce some

assignment of the IPC Process to a DIF, the registratione Information hiding: Implemented through the use of

to one or more N-1 IPC Processes or the triggering of an forward definitions of the object’s type in its header

enrollment operation. file while the complete definition is embedded into the
« librina-sdu-protection: This library provides a combi- corresponding compilation module

o Constructors and destructors: Implemented through thee
use of functions mimicking (C++) constructors and de-
structors.

o Methods, polymorphism and inheritance: Implemented
through the use of function pointers defined into the
corresponding object type. By opportunely mangling
these pointers and enforcing common naming constraints,
polymorphism and inheritance can be easily obtained

By applying such techniques, the internal implementatifon o *
a stack component can be hidden and its interface “exported”
as a set of function pointers and an opaque data pointer
(pointing to the component’s internal state). That inteefaan
be dynamically bound into other components by storing these
function pointers and data pointer into the targets, rexkiv
through the use of an accessory function. The opposite oper-
ation, the unbinding, is similar. .

With the generalized adoption of the previously discussed
approaches throughout the stack and with the kernel prdvide
runtime dynamic linking features (i.e. module loading and
unloading), the implementation of dynamical embedding and
removal of features into the stack at runtime is possiblehSu
characteristic avoids the need to change the core of th& stac

1st phase (restricted prototype, Nov. 2013)This proto-
type targets a first implementation of all the components
with limited functionalities which will allow the creation
of DIFs over Ethernet. This will provide levels of service
similar to TCP/IP and UDP/IP, with the added features
of supporting authentication when joining the DIF, and
inherent support for mobility and multi-homing, as is the
case for RINA.

2nd phase (open source prototype, Jun. 2014Yhis
prototype will be an evolution of the first one, fixing
known bugs and introducing functionalities not present
in the 1st prototype such as supporting levels of service
different to those of TCP and UDP thanks to the devel-
opment of different resource allocation policies and the
implementation of SDUs protection mechanisms.

3rd phase (open source prototype Dec. 2014)As

in the 2nd phase, this prototype will be fixing bugs
and introducing the remaining functionalities towards a
feature-complete state. Compared to the other phases,
the focus is on the interoperability with the non-IRATI
prototype(s) and the completion of the eventual open
issues that could not have been addressed before.

each time the internal implementation of a component chgnge Upon the first public release (2nd phase prototype), the
which is especially important for the shim IPC processdBRATI project will start promoting an open source community
since they strongly depend on the technology underneagh (¢o further develop and enhance the public prototype. Apart
Ethernet, WiFi) and thus their implementation vary widelyirom the aforementioned official releases, developmensone
This way, new technologies can easily be made availablewill be rolled out more often and the repository will be stthre
the RINA stack. with the community.
The dynamic components binding is primarily used inside
the Kernel IPC Manager (KIPCM), which is also in charge

of providing the entry-points of the RINA syscalls. The p\a the Recursive InterNet Architecture is a “back-to-

KIPCM exposes its hooks to the syscalls layer which in i, qies» anproach on network architectures. We presented th
are boundeq to thg_lqwer_ parts of the _stack,. the s.h|ms. d%sign decisions made in the IRATI prototype of RINA, the
reverse-chain of initializations and bindings (i.e. thensh first open source code base upon which commercial RINA
IPC Processes initialized and bounded to the core of th& St?l‘ﬁplementations can be based. We outlined and motivated
which in turn is finally bounded to the RINA syscalls) prowdey, e pacement of the components in user and kernel space
tue ”;](_)St viable Wiy to implement ltlhe dg/ngmlc plugging Al gescribed their functionality and the interactionsveen

the shims IPCs at boot-time, as well as during runtime. yho The first open source prototype will be available ineJun

The overall OO approach adopted shows its potential in);4 \vhich can be a starting point for developers and/or be
the IPC processes layer: the KIPCM provides the same bindifgaq to to experiment with.

and usage APIs for both the normal and the shim IPC
Processes, regardless of their “exact” type. This way al th
functionalities they provide are transparent (and homegan)

to the upper layers, even though their inner workings may var This work is partly funded by the European Commission
greatly. For instance, the “regular” IPC Processes haveFEFthrough the IRATI project (Grant 317814), part of the Future
and RMT instances while the shims are completely missif@ternet Research and Experimentation (FIRE) objective®f
them, but the user-space components working in the fakspapeventh Framework Programme (FP7).

are unaware of such differences.

V. CONCLUSION

ACKNOWLEDGMENT

REFERENCES
IV. FUTURE WORK [1] A. McKenzie, “INWG and the conception of the Internet: Apewitness
_ account,”Annals of the History of Computing, |EEE, vol. 33, no. 1, pp.
The official IRATI project implementation roadmap is sliced g5_71, 2011, Y mPing PP
into three phases, providing incremental features on top @f] J. Day, Patterns in network architecture: a return to fundamentals.
each other, towards the implementation of an open sourcg, Prentice Hall, 2008.

. .] V. Ishakian, J. Akinwumi, and I. Matta, “On the Cost of Sugting
fu”fﬂﬁdged' RINA stack. This roadmap can be Summar'zeas Multihoming and Mobility,” Boston University Computer ®tice De-
as r1ollows:

partment, Tech. Rep., 2009.

(4

(5]

(6]

(7]

(8]

[9]
[20]

[11]

[12]

[13]

[14]
[15]

J. Day, E. Trouva, E. Grasa, P. Phelan, M. P. de Leon, ScBunMatta,
L. T. Chitkushev, and L. Pouzin, “Bounding the router tabieesin
an ISP network using RINA,” ifNetwork of the Future (NOF), 2011
International Conference on the. |EEE, 2011, pp. 57-61.

J. Day, “How in the heck do you lose a layer!?” Metwork of the
Future (NOF), 2011 International Conference on the. IEEE, 2011, pp.
135-143.

E. Grasa, E. Trouva, S. Bunch, P. DeWolf, and J. Day, “Dmvieg
a RINA prototype over UDP/IP using TINOS,” iRroceedings of the
7th International Conference on Future Internet Technologies, 2012, pp.
31-36.

(2013, Nov.) TRIA Network Systems, LLC. [Online]. Avable:
http://www.trianetworksystems.com/

Y. Wang, F. Esposito, |. Matta, and J. Day, “Recursiveetitetworking
Architecture (RINA) Boston University Prototype ProgrammManual
(version 1.0).”

(2013, Nov.) The IRATI website. [Online]. Available: tt//www.irati.eu
D. M. Beazley et al., “SWIG: An easy to use tool for integrating
scripting languages with C and C++,” Rroceedings of the 4th USENIX
Tcl/Tk workshop, 1996, pp. 129-139.

R. W. Watson, “Timer-based mechanisms in reliable dpamt protocol
connection managemenComputer Networks (1976), vol. 5, no. 1, pp.
47-56, 1981.

G. Gursun, |. Matta, and K. Mattar, “Revisiting a sof&® approach
to managing reliable transport connections,” Rroceedings of the
Eighth International Workshop on Protocols for Future, Large-Scale and
Diverse Network Transports (PFLDNeT), 2010.

P. Neira-Ayuso, R. M. Gasca, and L. Lefevre, “Commutiiga between
the kernel and user-space in Linux using Netlink socke$sftware:
Practice and Experience, vol. 40, no. 9, pp. 797-810, 2010.

P. Mochel, “The sysfs filesystem,” ibinux Symposium, 2005, p. 313.
A.-T. Schreiner, “Object oriented programming with ANC,” 1993.

