
An analysis of the hybrid FDTD scheme for modeling the
propagation of the electromagnetic waves in a cold magnetized

toroidal plasma

Maryna Surkova 1, Guido Van Oost1, Yvan Pavlenko2, Dirk Van Eester3 and Daniël De Zutter4
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Abstract

To explore the behavior of electromagnetic waves in cold magnetized plasma, a three-dimensional
cylindrical hybrid finite-difference time-domain (FDTD) model is developed. The full discrete dispersion
relation is derived and compared to the exact solutions. We establish an analytical proof of stability in
the case of nonmagnetized plasma. We demonstrate that in the case of nonmagnetized cold plasma the
maximum stable Courant number of the hybrid method coincides with the vacuum Courant condition. In
the case of magnetized plasma the stability of the applied numerical scheme is investigated by numerical
simulation. In order to determine the utility of the applied difference scheme we complete the analysis
of the numerical method demonstrating the limit of the reliability of the numerical results.
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1. Introduction

A lot of research effort has been spent over many years to improve FDTD methods to model wave propagation

in many different types of media, in particular in non-magnetized and magnetized plasma. A thorough

overview of methods to model isotropic cold plasma can be found in [1]. For more recent efforts on magnetized

plasma we refer to the work of Smithe [2], and enhancements along the lines of Smithe in [3], and [4]. The

methods proposed in [2] and [3] are hybrid methods as Faraday’s law is descretized explicitly (classical FDTD

scheme) and Ampere’s law implicitly. The method of [4] is the fully implicit method.

In this work, we construct the three-dimentional FDTD model in order to describe electromagnetic wave

propagation in a magnetized toroidal plasma. In order to examine the efficiency of the applied numerical

scheme the analysis of the reliability of the numerical results is necessary. Therefore a rigorous stability

analysis is provided. It is shown that the maximum stable Courant number in non-magnetized cold plasma

is unity just as for free space [1]. In the case of magnetized plasma the complexity of the implemented

numerical model does not allow to apply a standard analytical analysis that has been discussed in [5].

However, the problem is investigated numerically using the von Neumann method [6].

2. Basic equations

Including the driven equation of motion, Maxwell’s equations in the three-dimensional case describing cold

magnetized plasma in time-domain are:
∂B

∂t
= −∇×E, (1)

ε0
∂E

∂t
= −

∑
s

Js +∇×H, (2)

(
∂

∂t
+ νs)Js = ε0ω

2
psE−ΩΩΩs × Js. (3)

Here, the subscript s denotes the charged particle species in the plasma (e, i for electrons and ions respec-

tively). E is the electric field vector (V/m), B = µ0H is the magnetic flux density vector (Wb/m2), H is

the magnetic field vector (A/m), Js is the current density vector of a particular specie (A/m2). And νs

is a collision frequency term. The vacuum permeability µ0 (H/m) and vacuum permittivity ε0 (F/m) are

independent of the frequency. The plasma frequency ωps (rad/sec) is defined as

ωps =

√
nsq2

s

msε0
(4)

where ns (1/m3), is the density, qs (C), is the charge and ms (kg), is the mass of a given specie. Further,

by construction the cyclotron frequency is

Ωs =
qsB0

ms
, (5)

where B0 is the background magnetic field oriented along the ϕ-axis.
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Time Domain and Space Discretization

The set of equations (1-3) is applied to the FDTD mesh (See Fig. 1) [7]. Here, the E-field and the current

density J-field are defined at integer time steps while the H-field is defined at half-integer time steps [2].

The resulting approximations are:

µ0

[
Hn+1/2 −Hn−1/2

∆t

]
= −∇×En, (6)

ε0

[
En+1 −En

∆t

]
+

[
Jn+1
s + Jns

2

]
= ∇×Hn+1/2, (7)

[
Jn+1
s − Jns

∆t

]
+ νs

[
Jn+1
s + Jns

2

]
= ε0ω

2
ps

[
En+1 + En

2

]
−
[
Ωs ×

Jn+1
s + Jns

2

]
.

(8)

Figure 1: Yee cell. The components Hr, Hϕ, Hz of the magnetic field H are localized at the center of the
edges of the Yee- cell. The method proposed here initially locates the Jr, Jϕ, and Jz components at the
same positions as the Er, Eϕ, and Ez components : at the center of the Yee- cell. It has to be noted that
the spatial averaging is required to calcultate the central- difference derivatives. The averaged values of the
electric field components are marked with a star (*).
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3. Full Discrete Dispersion Relation

In this section the fully discretized dispersion relation f(k, ω) = 0 is derived. Since the eigenfunctions of

the wave equation in cylindrical coordinate system cannot be presented as a plane wave with definite k and

ω, the dispersion relation is obtained in the Cartsian coordinates. The wave fields and plasma currents are

expanded as a Fourier series in space and time (9).

E,H,Js ∝ exp(j(kxx+ kyy + kzz − ωt)) (9)

If the wavelength is significanly shorter than the distance to the cylindrical axis, the Cartesian dispersion

relation approximates the cylindrical one, therefore the full discrete dispersion relation is:

(a2
1a

2
2b

2
3ε1 + a2

1a
2
3b

2
2ε3 + a2

2a
2
3b

2
1ε1)k̃2

−(a2
1(b22 + b23)ε1ε3 + a2

2(b21 + b23)(ε21 − ε22) + a2
3(b21 + b22)ε1ε3)b24

+ε3(ε21 − ε22)b44 = 0,

(10)

where

ε1 = 1−
∑
α

ω2
pαω̃

ω∗(ω̃2 − ω2
αϕ)

,

ε2 = −
∑
α

ω2
pαωαϕ

ω∗(ω̃2 − ω2
αϕ)

,

ε3 = 1−
∑
α

ω2
pα

ω∗ω̃
,

ω∗ =
2

∆t
tan(ω∆t/2),

ω̃ = ω∗ + iνs,

a1 ≡ cos(kr∆r/2), b1 ≡
2

∆r
sin(kr∆r/2),

a2 ≡ cos(n∆ϕ/2), b2 ≡
2

r∆ϕ
sin(n∆ϕ/2),

a3 ≡ cos(kz∆z/2), b3 ≡
2

∆z
sin(kz∆z/2),

a4 ≡ cos(ω∆t/2), b4 ≡
2

c∆t
sin(ω∆t/2),

(11)

and k̃2 ≡ b21 + b22 + b23 is a square of the discretized wave vector.

3.1. Vacuum case

In vacuum case when the plasma density is zero, the discrete dispersion relation becomes:

k2
r + (n/r)2 + k2

z ≡ k2 = ω2/c2. (12)
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Demanding that real k always maps to real ω in (12) it requires the Courant condition:

c∆t <
1√

( 1
∆r )2 + ( 1

r∆ϕ )2 + ( 1
∆z )2

. (13)

The expression (12) is a well-known dispersion relation for electromagnetic waves in vacuum described in

[10], [11].

3.2. Nonmagnetized case

In the absence of a background magnetic field and if the collision frequency term is neglected, the full discrete

dispersion relation transforms into the slow wave dispersion relation:

k2
r + (n/r)2 + k2

z ≡ k2 = ε3(ω2/c2), (14)

The analysis of the (14) shows that the Courant condition in case of a nonmagnetized plasma is absolutely

equivalent to the vacuum Courant condition (13).

3.3. Magnetized plasma

In 1D case when the problem is uniform along the z and ϕ directions, the discrete dispersion relation is:

ε1k̃
4 − (ε1ε3 + (ε21 − ε22))b24k̃

2 + ε3(ε21 − ε22)b44 = 0. (15)

Equation (15) gives two well-known solutions. One of them is the slow wave dispersion relation (14) and the

second one is the extraordinary wave [10]:

k2 =
ε21 − ε22
ε1

ω2

c2
= α

ω2

c2
. (16)

4. Reliability of the Numerical Results

The numerically obtained results should in principle reflect the results we get analytically. Both results

however are not completely identical. There are several reasons for this difference. The impact of each of

the reasons questions whether the applied numerical scheme is accurate enough. Usually the utility of the

numerical scheme is determined by a stability test. One of the well-known stability requirements is the

Courant condition. It requires the time step ∆t to have a specific bound on the grid step. For example, as it

is shown above, the maximum stable Courant number in unmagnetized cold plasma is unity just as for the

vacuum case. Though in case of magnetized plasma, due to the complexity of the applied numerical scheme

the stability analysis is rather arduous. It has been found empirically that the stability requirement in case

of non-magnetized plasma is still valid for the magnetized case [12]. There is however no analytical proof.

We assume that when a high-density nonuniform plasma possesses one (or more) ion species, there exists

a plasma resonance area where it might be problematic to satisfy the Courant condition. Therefore in the

following section we are going to determine the limit of the reliability of the numerical results.
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Figure 2: The numerical dispersion function of the extraordinary wave in the low frequency range in one-
ion (Deuterium) plasma media. The simulation parameters corresponding to this particular test are: the
plasma electron density is equal to the deuterium (D) ion density ne = nD = 3 ·1019(1/m3), the background
magnetic field B0 is equal to 3 T. The time step ∆t is changing in order to provide the variation of the
argument of the tangent of the numerical frequency from 0 to π/2. In order to perform the sufficient spatial
resolution, 10 points per wavelength are used to determine the cell size [8-9].

Here, we choose to simulate the positive part of the extraordinary wave (15) in a low frequency range.

According to the analytical dispersion relation it spreads from 0 to the low hybrid frequency ωLH =(
(ΩeΩi)

−1
+ ω−2

pi

)−1/2

. If the numerical dispersion function appears to be negative in the range where

the analytical dispersion function must be positive, the numerical scheme may be unstable or lead to poor

numerical accuracy. Fig. (2) presents the results of the simulations. The figure shows that the dispersion

numerical function acquires negative values (the blue area) near the lower hybrid resonance. For the sake

of comparison, in Fig. (3) the upper limit of the time increment ∆t is plotted next to the vacuum Courant

condition. According to Fig. (2) and Fig. (3) the numerical dispersion function becomes negative above the

black dashed line thus limiting the reliability of the numerical results to the area below this (dashed) line.

However, Fig. (3) shows that the vacuum Courant condition is definitely stronger than the upper limit of the

time increment mentioned above. We would like the reader to pay attention to the area where the plasma

resonance occurs. Fig. (3) shows that the time step ∆t tends towards zero exactly near the plasma resonance

area, therefore it might be challenging to simulate in this range. As a practical example, the one dimensional

problem of the fast wave mode propagating through a three component plasma (electron, deuterium (D)

and hydrogen (H) ions) with a nonuniform magnetic field is considered. In Fig. (4) the black line presents a

typical wave dispersion in a cold collisionless plasma. The position of the plasma resonance (where the wave

vector goes to infinity) and the plasma cut-off (where the wave vector becomes equal to zero) are also shown

in the figure. On the left-hand side of the resonance, both the wave phase velocity and the wave length tend

towards zero. In order to resolve the short wavelength on the left-hand side of the resonance the grid step

should be much smaller than the wavelength (∆r << 1/kr). On the other hand both the phase velocity and
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Figure 3: The limit of the reliability of the numerical scheme. The black dashed line shows the upper limit
of the time increment of the applied FDTD algorithm in case of magnetized plasma. The blue curve is the
vacuum Courant Condition.
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Figure 4: The dispersion of the fast wave propagation through the three component plasma in a nonuniform
magnetic field.

the wavelength tend toward infinity near the plasma cut-off where the grid step cannot be larger than the

plasma column resolution requirement (∆r << 1/a, where a is the width of a plasma region). According to

the numerical example described above (see Fig.3), it is not feasable to comply with the vacuum Courant

condition near the plasma resonance. Therefore the suitable grid step must be carefully chosen. The criteria

for choosing the size of the grid step may be obtained through the analysis of the dispersion relation.

The next test is provided for the case where the collision frequency term is included. The red line in

Fig.(4) shows the fast wave dispersion. The plasma resonance and cut-off have disappeared due to the

presence of the collision frequency term (ν = 10−3ω). The values of the wavelength are bounded from below
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and the phase velocity does not exceed the speed of light. Hence, the inclusion of the collision frequency

term gives us the possibility to overcome the stability problem near the plasma resonance area. The collision

frequency term certainly provides the additional power dissipation near the evanescent layer (the range

between the resonance and the cut- off). But for this particular test the magnitude of the collision frequency

term is chosen in such a way that the provided damping is negligible for the wave propagation outside the

evanescent layer.

5. Numerical Stability

The numerical stability analysis can be provided based on the von Neumann method [6]. The 1D problem

with the wave propagationg in the r-direction with non-zero components Er, Ez, Hϕ, Jr, Jz in magnetized

plasma is considered. The set of the difference equation can be written in the general form:

F t+1︸ ︷︷ ︸
future

= M F t︸︷︷︸
past

, (17)

where F represents a column vector containing all discretized electric, magnetic and current field components,

M is an amplification matrix. The numerical scheme is stable if the eigenvalues lie on the unit circle in the

complex plane. However, if there are any losses assumed either due to the nature of the material or due to

the radiation phenomena, some of the eigenvalues may be inside the unit circle. In Fig.(5) the eigenvalues

of the amplification matrix of the applied FDTD method in case of magnetized plasma are presented. The
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Figure 5: Numerical stability test. The eigenvalues of the amplification matrix. The simulation parameters
are: ne− = 3 · 1019 (1/m3), nD = 0.98ne− (1/m3), nH = 0.02ne− (1/m3). The background magnetic field is
uniform and it is equal to 3 T.

validated example shows that the applied numerical scheme is stable for these specific scenario, but it has

to be noted that the time step ∆t must be sufficiently small to satisfy the Courant condition.
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5. Conclusions

The finite-difference time-domain(FDTD) method is applied for numerical simulations of the electromagnetic

waves in cold magnetized toroidal plasma. The proposed discretization scheme of the Maxwell’s equations

and the equation of motion has an upper time limit on a time grid step ∆t. This limit should not be

exceeded to provide the numerical stability. It is demonstrated that in case of nonmagnetized cold plasma, the

maximum stable Courant number of the hybrid method is unity just as for free space, i.e. it coincides with the

vacuum Courant condition. For magnetized cold plasma, the stability of the applied scheme is investigated

numerically using von Neumann method. It has been found numerically that the plasma resonance area can

be problematic for simulations, however the collision frequency term may give the possibility to resolve that

problem. It has to be noted that for the ion- cyclotron frequency range in magnetized case a suitable cell size

must be carefully chosen to satisfy both the stability condition and the accuracy requirements. The criteria

for choosing the size of the grid-mesh may be obtained through dispersion relation analysis. The general

conclusion states the necessity of the accurate validation of the numerical stability for considered frequency

ranges and expected wave modes.
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