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Preface

The study of aggregation functions has become one of the core activities in several
areas of research, as can be seen from the vast number of papers, monographs [2 [6]
9, [48] and summer schools on the topic. Their importance can be seen in applied
mathematics (e.g., probability theory, statistics, fuzzy set theory), computer science
(e.g., artificial intelligence, operations research), as well as in many applied fields
(image processing, decision making, control theory, information retrieval, finance,
etc.).

The word aggregation [6l, 48] refers to the process of combining several input values
into a single representative output value and the function that performs this process
is called an aggregation function. The input values depend on the field of application.
For instance, in fuzzy set theory, they can be degrees of membership, truth values,
intensities of preference, and so on. For this reason, aggregation functions play an
important role in many applications of fuzzy set theory, such as fuzzy modelling,
fuzzy logic [58], preference modelling [28], [54) [T0I] and similarity measurement [26].
Their most prominent use is as fuzzy logical connectives [6].

Special classes of aggregation functions are of particular interest, such as semi-
copulas [12] 4T}, 44], triangular norms [2] [75], quasi-copulas [47 [60, [78] and copu-
las [2, [88]. They are all conjunctors, in the sense that they extend the classical
Boolean conjunction. Semi-copulas have recently gained importance in reliabil-
ity theory, fuzzy set theory and multi-valued logic [3 34, 45, (9]. Triangular
norms are the most popular operations for modelling the intersection in fuzzy
set theory [75] [48]. Quasi-copulas and copulas are widely studied. For instance,
quasi-copulas appear in fuzzy set theoretical approaches to preference modelling
and similarity measurement [25] 20] 28] [62]. Due to Sklar’s theorem [99], cop-
ulas have received ample attention from researchers in probability theory and
statistics [61], [64].

The arithmetic mean is an example of an aggregation function and it has been
used over centuries in several areas of research. This provides us an idea how old
the existence of aggregation functions is. Although the existence of aggregation
functions is rather old, they have been buried until recently. The arrival of
computers in the eighties has created the appropriate circumstances where they
become present. Hence, since the eighties, aggregation functions have become
a genuine research field, rapidly developing, but in a rather scattered way since
aggregation functions are rooted in many different fields.

Modern technologies have helped the researchers to produce a massive amount of
data based on observations. In order to allow more flexible modelling techniques,

xiii



new methods to construct aggregation functions are being proposed continuously
in the literature. Some methods are based on transformations [T}, 17, (29, [76], [77, [86].
In other words, one starts from a given aggregation function and by applying an
appropriate transformation, the resulting function is an aggregation function. Some
other methods are based on composing aggregation functions [10, 48]. Several
construction methods apply linear or quadratic interpolation to various types of
partial information, such as given sections (horizontal, vertical, diagonal, etc.) [4]
17, 21, 42), 48, 49, 50, 91].

In this work, we mainly focus on construction methods of aggregation functions of
the latter type. This dissertation is organized as follows.

1. In Chapter 1, we provide a general introduction.

2. In Part I, we provide several construction methods based on linear inter-
polation. In Chapter 2, we consider the linear interpolation on segments
connecting the upper boundary curve of the zero-set of an aggregation func-
tion to the point (1, 1), while we consider the linear interpolation on segments
connecting the diagonal (resp. opposite diagonal) of the unit square to the
points (0,1) and (1,0) (resp. (0,0) and (1,1)) in Chapter 3. Rather than
using the upper boundary curve of the zero-set, we consider in Chapter 4 any
curve from a semi-copula determined by a strict negation operator. Instead
of using the linear interpolation on segments connecting a line in the unit
square to the corners of the unit square, we consider in Chapter 5 the linear
interpolation on segments that are perpendicular to the diagonal or opposite
diagonal of the unit square. We involve in Chapter 6 both the diagonal and
the opposite diagonal of the unit square in the linear interpolation procedure.

3. In Part II, we provide several construction methods based on quadratic inter-
polation. In Chapter 7, we generalize lower semilinear copulas by considering
the quadratic interpolation on segments connecting the diagonal of the unit
square to the sides of the unit square. In Chapter 8, we complete the results
of Chapter 7, and generalize the results of Chapter 6 by considering all
the possible horizontal and vertical quadratic interpolations on segments
connecting the diagonal or/and opposite diagonal section of the unit square
to the sides of the unit square.

4. Finally, general conclusions are drawn.

Most of our work presented in this dissertation has already been published or
submitted for publication in peer-reviewed international journals. Chapters 2, 3,
4, 5, 6, 7 and 8 have been described in [70], [66], [69], [67], [65], [71] and [68],
respectively.

Xiv



1 General introduction

1.1. Aggregation functions

1.1.1. Basic definitions

Aggregation functions have become very popular over the last years due to their wide
range of applications in several areas of research. Their main role appears in applied
sciences, such as image processing, decision making, control theory, information
retrieval, etc. [0, B0, 48]. In general, aggregation functions are used to convert
finitely many input values into a single representative output value. These input
values can represent experimental observations, intensities of preferences, statistical
data, probabilities, etc. The output value enables us to describe and predict
experimental phenomena, to classify objects and species and make appropriate
decisions. The aggregation process requires the input values as well as the output
value to belong to the same numerical interval. Two properties are fundamental
for any aggregation function A. They coincide in the point 0 = (0,0,---,0)
as well as in the point 1 = (1,1,---,1), and they are increasing. In fuzzy set
theory, for instance, such properties can be seen as follows. The input vectors
0 and 1 represent no membership and full membership. Hence, it is natural
to assign A(0) = 0 and A(1) = 1. Consider the two input vectors (b,a,--- ,a)
and (c¢,a,--- ,a), with b < ¢, representing intensities of preferences. Hence, it is
natural to consider A(b,a,---,a) < A(c,a,---,a). Due to the increasingness of
the aggregation functions involved, it is often possible to rescale the input values
as well as the output values to the unit interval.

Definition 1.1. An n-ary aggregation function A is a [0,1]" — [0,1] function
satisfying the following minimal conditions:

(i) boundary conditions: A(0) =0 and A(1) =1;

(ii) monotonicity: for any x,y € [0,1]™ such that x <y, it holds that A(x) <
Aly)-

Well-known examples of aggregation functions are:

1. the arithmetic mean:

z :1:’ ...
AM(zla‘T27"'7xn>: s 2; +xna
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2. the geometric mean:
GM(Z‘l, Ty« 7xn) = \ﬂ// T1X2 " Tp,

3. harmonic mean:

n
HM(I17x27"’7$n): L_’_L_A'_ _"_La
1 | xo T

4. minimum:

TM('I17IQ7 e 717”) = min(l'l,l'g, T 7xn) )
5. maximum:

Sm(x1,xa, -+ ,@y) = max(zy,Ta, -+, Ty),
6. product:

TP('T17$27 T 7:1:77,) =T1x2° " Tn,
7. bounded sum:
To(xy,@e, - ,xy) =min(l,x; + o + -+ + x,) .

The maximum and minimum aggregation functions have been used to classify
aggregation functions into four main classes:

1. averaging,
2. conjunctive,
3. disjunctive,
4. mixed.
Definition 1.2. Let A:[0,1]™ — [0,1] be an aggregation function. Then

(i) A is called averaging if
min(x) < A(x) < max(x)

for any x € [0,1]™.

(i1) A is called conjunctive if
A(x) < min(x)

for any x € 0,1]™.

(iii) A is called disjunctive if
A(x) > max(x)
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for any x € [0, 1]™.

(iv) Any aggregation function that does not satisfy one of the above inequalities is
called mixed aggregation function.

The aggregation functions A% and A! given by

0 ,if max(x) =0,
A% (x) =

1 , otherwise,

l 1 ,if min(x) =1,
Al(x) =

0 , otherwise,

are respectively the greatest and the smallest aggregation function, i.e. for any
aggregation function A, it holds that

A< A< A,
Throughout the dissertation, we restrict our attention mostly to binary aggregation
functions. A (binary) aggregation function A is an increasing [0,1]2> — [0,1]
function that preserves the bounds, i.e. A(0,0) =0 and A(1,1) = 1. Obviously, this

definition has to be complemented by a variety of additional properties depending
on the field of application.

1.1.2. Properties and facts
Let A :[0,1]?> — [0,1] be an aggregation function.
(i) A has a € [0, 1] as absorbing element if
A(z,a) = Ala,z) = a
for any z € [0,1].
(ii) A has b € [0,1] as neutral element if
A(z,b) = A(b,z) =z
for any z € [0,1].

(iii) A is commutative (or symmetric) if

A(:C’ y) = A(yv .CE)

for any z,y € [0, 1].
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(iv) A is associative if

A(A(CL', y)7 Z) = A(LL‘7 A(yu Z))

for any z,y,z € [0,1].

(v) Ais continuous in the first variable if

T—T0o

for any zg,y € [0, 1].

(vi) A is continuous in the second variable if

lim A(z,y) = A(z,y0)

Y—Yo

for any z,yo € [0, 1].
(vil) A is continuous if it is continuous in each variable.

(viii) A is 1-Lipschitz continuous if
A", y") = Az, y)| < J2" =2 + |y —

for any x,2’,y,y' € [0,1].

(ix) A is 2-increasing if
Va(lz, 2] x [y,9]) = A(z,y) — A(2’,y) — Az, ) + A(@",y") 20 (L.1)

for any z,2',y,y’ € [0,1] such that x < 2/ and y < y'. Vy4 is called the
A-volume of the rectangle [z, z'] X [y, v/].

Note that A-volumes are additive, i.e. when a rectangle is decomposed into a
number of rectangles then the A-volume of the original rectangle is equal to the
sum of the A-volumes of all the rectangles in its decomposition.

If an aggregation function A has 1 as neutral element, then due to its increasingness,
it has 0 as absorbing element as well. The 1-Lipschitz continuity of an aggregation
function implies its continuity. The 2-increasingness of an aggregation function
A that has 1 as neutral element implies its 1-Lipschitz continuity [48]. Note that
a function G : [0,1]2 — [0, 1] that has 0 as absorbing element and 1 as neutral
element, and satisfies the 2-increasingness, is an aggregation function. Moreover,
G is 1-Lipschitz continuous.
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1.1.3. Subclasses of aggregation functions

Conjunctors

Definition 1.3. An aggregation function A is called a conjunctor if it has 0 as
absorbing element.

Conjunctors are used to extend the classical Boolean conjunction. The aggregation
functions J* and A; with J%(z,y) = 0 whenever min(z,y) = 0, and J%(z,y) =1
elsewhere, are respectively the greatest and the smallest conjunctor, i.e. for any
conjunctor J, it holds that

A< J<Jv.

Semi-copulas

Definition 1.4. An aggregation function A is called a semi-copula if it has 1 as
neutral element.

The notion of a semi-copula appeared for the first time in the literature in the field
of reliability theory. Semi-copulas turn out to be appropriate tools for capturing
the relation between multivariate aging and dependence [3, B4]. The functions
Tam and Tp, with Tp(x, y) = min(x, y) whenever max(z,y) = 1, and Tp(z,y) =0
elsewhere, are semi-copulas. Moreover, they are respectively the greatest and the
smallest semi-copula, i.e. for any semi-copula .5, it holds that

Tp < S <Twu.

Any semi-copula is a conjunctor, and hence, the class of semi-copulas is a subclass of
the class of conjunctors. The conjunctor J : [0,1]2 — [0, 1] defined by J(z,y) = zy?
is not a semi-copula. Consequently, the class of semi-copulas is a proper subclass
of the class of conjuntors.

Triangular norms

Definition 1.5. An aggregation function A with neutral element 1 is called a
triangular norm if it is commutative and associative.

Triangular norms (t-norms for short) are the most popular operations for modelling
the intersection in fuzzy set theory. The functions Ty, Tp and Tp are examples of
t-norms. Tp is called the drastic t-norm. Any t-norm is a semi-copula, and hence,
the class of t-norms is a subclass of the class of semi-copulas. The semi-copula
S :[0,1]% — [0, 1] defined by S(x,y) = xy max(z,y) is not a t-norm. Consequently,
the class of t-norms is a proper subclass of the class of semi-copulas.
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Continuous Archimedean t-norms

Let T be a t-norm and x €]0,1[. A T-power of z is defined by
W=z and 2V =T(M 1),

where n € Nj.

Definition 1.6. A t-norm T is called Archimedean if for any (z,y) €]0,1[* there
exists an n € Ny such that
™ <y,

In the following proposition we recall an equivalent condition for a t-norm 7" to be
Archimedean when T is continuous.

Proposition 1.1. [48] A continuous t-norm T is Archimedean if and only if
T(z,z) <z

for any z €]0,1].

The t-norm Tp is Archimedean while T\ is not. The t-norm Tp is an Archimedean
t-norm that is not continuous. Note also that the t-norm T\ given by

0 Jife+y <1,
THM(‘Tay) =
min(z,y) ,ifz+y>1,

is neither continuous nor Archimedean [53].

Let ¢ : [0,1] — [0, 00] be a strictly decreasing continuous function satisfying ¢(1) = 0.
The function t(=1 : [0, 00] — [0, 1] defined by

V() = {tl(x) e e [0,40)],

0 , otherwise,

is called the pseudo-inverse of the function ¢. In fact, any continuous Archimedean
t-norm can be represented by means of a strictly decreasing continuous [0, 1] —
[0, o0] function.
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Theorem 1.1. [2] A continuous t-norm T is Archimedean if and only if there
exists a strictly decreasing continuous [0,1] — [0, 00] function t satisfying t(1) =0
such that

T(z,y) =t (t(z) + t(y))

for any z,y € [0,1].

The function ¢ is called an additive generator. Additive generators of the t-norms
Tp and Ty, are respectively defined by t1(x) = —log(x) and t3(z) =1 — .

Quasi-copulas

Definition 1.7. An aggregation function A with neutral element 1 is called a
quasi-copula if it is 1-Lipschitz continuous.

Quasi-copulas appear in fuzzy set theoretical approaches to preference modelling
and similarity measurement. The 1-Lipschitz continuity of a quasi-copula implies its
continuity. Note that any quasi-copula is a semi-copula, and hence, the class of quasi-
copulas is a subclass of the class of semi-copulas. The function S : [0,1]* — [0, 1]
defined by

0 ,if (z,y) € [0,1/2] x [0,1],

S(JZ, y) =
min(z,y) , otherwise,

is a semi-copula, but it is not a quasi-copula [6]. Consequently, the class of quasi-
copulas is a proper subclass of the class of semi-copulas. The functions Tyy and Ty,
are quasi-copulas. Moreover, they are respectively the greatest and the smallest
quasi-copula, i.e. for any quasi-copula @, it holds that

T, <Q<Tm.

Copulas

Definition 1.8. An aggregation function A with neutral element 1 is called a
copula if it is 2-increasing.

The notion of a copula appeared for the first time in probability theory and statistics.
Copulas turn out to be appropriate tools for linking a joint distribution function
with its margins. Due to Sklar’s theorem, this fact can been seen as follows. For a
joint distribution function H with margins F' and G, there exists a copula C' such
that

H(z,y) = C(F(z),G(y)) .

The copula C' is unique if F' and G are continuous; otherwise it is unique on
RanF x RanG. The functions T and Ty, are also copulas. They are called the
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Fréchet-Hoeffding upper and lower bounds: for any copula C' it holds that
T, <C<Twm.

A third important copula is the product copula Tp. The 2-increasingness of a copula
implies its 1-Lipschitz continuity. Hence, any copula is continuous. Moreover, any
copula is a quasi-copula. Consequently, the class of copulas is a subclass of the
class of quasi-copulas. The function @ : [0,1]? — [0, 1] defined by

min(z,y,1/3,x +y —2/3) ,if2/3<z+y<4/3,
Qz,y) =

max(z +y — 1,0) , otherwise,

is quasi-copula, but it is not a copula [88]. Consequently, the class of copulas
is a proper subclass of the class of quasi-copulas. Every associative copula is a
t-norm (the commutativity can be obtained from the continuity [75]), while every
1-Lipschitz t-norm is a copula.

The relation between the above subclasses of binary aggregation functions is
represented in Figure [1.1

1-Lipschitz t-norms T-norms

Associative copulas

Copulas

Quasi-copulas

Semi-copulas

Conjunctors

Figure 1.1: An illustration of the inclusions and intersections between the above
subclasses of binary aggregation functions.
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1.1.4. Copulas
Some families of copulas

Some families of copulas are of our interest in this dissertation. The Yager family [2]
of copulas is given by

Tz, y) Jif A =00

¥ (e.y) = (1.2)

1

max(0,1 — ((1 —z)* + (1 —y)*)x) ,if A € [1,00[.
Any member of the Yager family has the property of being linear on each segment
connecting a point from the upper boundary curve of its zero-set to the point
(1,1). The Yager family of copulas is a family of t-norms as well. Moreover, for

any A € [0, 00], the function CY defined in is a t-norm. Two members of the
Yager family with their contour plots are shown in Figure [I.2}

:
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0.4 0.4
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Figure 1.2: The 3D plots of two members of the Yager family of copulas with their
contour plots.



CHAPTER 1. GENERAL INTRODUCTION

Another important family is the Farlie-Gumbel-Morgenstern family [88]. This
family is given by

CYM(z,y) = 2y + Azy(1 —2)(1 — y),

with A € [—1,1]. The Farlie-Gumbel-Morgenstern family contains all copulas that
are quadratic in both variables. The product copula is the only copula that is
linear in both variables. The only member of the Farlie-Gumbel-Morgenstern
family that is a t-norm is Tp. Two members of the Farlie-Gumbel-Morgenstern
family with their contour plots are shown in Figure [1.3

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
00 0.2 0.4 0.6 0.8 1 0O 0.2 0.4 0.6 0.8 1

Figure 1.3: The 3D plots of two members of the Farlie-Gumbel-Morgenstern family
with their contour plots.

A third important family of copulas is the Ali-Mikhail-Haq family [88]. This family
is given by
CAMH _ Ty

with A € [-1,1].

10
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The Ali-Mikhail-Haq family has been encountered in the literature when con-
structing copulas based on the algebraic relationship between the joint distribution
function and its margins [88]. The Ali-Mikhail-Haq family of copulas is a family of
t-norms as well. Two members of the Ali-Mikhail-Haq family with their contour
plots are shown in Figure [[.4]

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
O0 0.2 0.4 0.6 0.8 1 OO 0.2 0.4 0.6 0.8 1

Figure 1.4: The 3D plots of two members of the Ali-Mikhail-Haq family of copulas
with their contour plots.

A fourth important family of copulas is the Mayor—Torrens family [88]. This family
is given by

max(z +y —\,0) ,if A €]0,1] and (z,y) € [0, ]?,
Y (z,y) =
min(z, y) , otherwise.

The Mayor—Torrens family of copulas is a family of t-norms as well. This family

11
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has the property of being the only family that satisfies the following equality
C(,y) = max(C(max(z, y), max(z,y)) — |z — y|,0),

for any z,y € [0,1]. Two members of the Mayor—Torrens family with their contour
plots are shown in Figure

0.6 0.6
0.4 0.4
0.2 0.2
0O 0‘5 1 00 0‘5 1

Figure 1.5: The 3D plots of two members of the Mayor—Torrens family of copulas with
their contour plots.

Absolutely continuous and singular copulas

Let B([0,1]%) be the class of Borel subsets of [0,1]2. Any copula C' induces on
B([0,1]?) a measure uc defined by

po([z, 2] % [y, ') = Ve([z, 2] % [y, y'])

12
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for any rectangle [z,2'] x [y,%'] € [0,1]%. In view of the Lebesgue decompostion
theorem [31], it holds that pc = 2 + pf., where p¥ is a measure on B([0, 1]?)
that is absolutely continuous w.r.t. the Lebesgue measure and pf, is a measure on
B([0,1]?) that is singular w.r.t. the Lebesgue measure. Therefore, for any copula
C, it holds that

C= Cac + Cs )

where

Cac(z,y) = p¢ ([0,2] x [0,y])  and  Cs(z,y) = pe([0,2] x [0,9]) -

The function C,. (resp. Cs) is called the absolutely continuous component (resp.
singular component) of C.

Definition 1.9. Let C be a copula.
(i) C is called absolutely continuous if C' = Clc.
(ii) C is called singular if C' = Cs.

If a copula C is absolutely continuous, then it holds that

82
C(z,y) / / 6‘5875 d dt,
92C(s,t)

for any (z,y) € [0,1]?, and C has a density function given by =—-5*. The copulas
Twm and T3, are singular, while the copula Tp is absolutely continuous. Any member
of the Farlie-Gumbel-Morgenstern (resp. Ali-Mikhail-Haq) family of copulas is
absolutely continuous. Several methods to construct absolutely continuous copulas
have been introduced in the literature [15] [33] 46].

In the next proposition we recall a sufficient condition for the singularity of a copula.
To this end we need the definition of the support of a copula. The support of a
copula C' is the complement of the union of all (non-degenerated) open rectangles
of the unit square such that the C-volume of the closed rectangle is equal to zero.
Hence, a point belongs to the support of C' if any rectangle to which the point is
internal, has a positive C-volume. Note that if %ﬁ/y) = 0 for some point (z,y),
then it does not belong to the support of C. The support of the copula Ty (resp.
T1.) is the diagonal (resp. opposite diagonal) of the unit square, while the support
of the copula Tp is the whole unit square.

13
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Proposition 1.2. [31] If a copula C is supported on a set with Lebesgue measure
zero, then C' is singular.

Example 1.1. Consider convex sums of Ty and T, i.e. Cyx = X + (1 — M) Ty,
with X\ € [0,1]. Clearly, the support of Cy consists of the diagonal and opposite
diagonal of the unit square for any X\ €]0,1[. For A =1 (resp. A =0), the support
of Cy is the diagonal (resp. opposite diagonal) of the unit square. Hence, the
support of C has Lebesque measure zero for any X € [0,1]. Due to Proposz'tz'on
the copula C is a singular copula for any A € [0, 1].

1 1 \
08 0.8 \\
06 06
0.4 0.4
0.2 0.2
0 0
0 02 04 06 08 1 0 02 04 06 08 1

Figure 1.6: The 3D plots of two convex sums of Ty and 71, with their contour plots.

The converse of Proposition is not necessarily true [31].

14
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Transformations of copulas

For a given function & : [0,1]2 — R, the transformations 7, ¢, 1, 2, 0, o1 and
oy [57, [72] produce the following [0, 1] — R functions defined by

m(k)(z,y) = K(y,2),
p(R)(zy)=r+y—1+K(l-2,1-y),
e1(6)(z,y) =y — k(1 —2,y),
p2(k)(z,y) =z — K(z,1 —y), (1.3)
o) (x,y)=c+y—1+r(1—y,1—1),

o1(k)(z,y) =z — k(1 —y,2),

o2 (k)(z,y) =y — Ky, 1 — )

The transformations ¢, @9, 0, 01 and o2 can be generated by using only the
transformations 7 and ¢ [67]. If the function x is a (quasi-)copula, then all of
its above transforms are (quasi-)copulas as well [57, [72]. The transform ¢(C') of a
copula C is called the survival copula, while the transforms 1 (C) and ¢2(C) of a
copula C' are called the z-flip and y-flip of C [19, 22]. Such transformations have a
probabilistic interpretation.

Proposition 1.3. [88] Let X and Y be two continuous random variables whose

dependence is modelled by a copula Cxy, and let f (resp. g) be a monotone function
on RanX (resp. RanY ).

1. If f is strictly increasing and g is strictly decreasing, then

Crx)gv) = p2(Cxy).-

2. If f is strictly decreasing and g is strictly increasing, then

Crx)g(v) = ¢1(Cxy) .

3. If f and g are strictly decreasing, then

Crx)gv) = ¢(Cxy).
Definition 1.10. [88] Let C be a copula. Then

1. C is called symmetric if
C=mx(C).

2. C is called opposite symmetric if
C=0(C). (1.4)
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Symmetric copulas model the dependence between exchangeable random variables.
In practice, however, non-exchangeability [5] of random variables is more frequently
encountered. Often the degree of non-symmetry of a copula C' is expressed by
means of the so-called degree of non-exchangeability g4, (C) with respect to the
L, distance [89], defined as

bioo(C)=3  sup  |C(x,y) — C(y,x)|. (1.5)
(z,y)€[0,1]?

The scaling factor 3 ensures that the maximum degree of non-exchangeability is
equal to 1. Recently, Durante et al. [35] have made an in-depth study of this and
other measures of non-exchangeability.

A symmetric copula is opposite symmetric if and only if it coincides with its
survival copula. Any member of the Yager, Farlie-Gumbel-Morgenstern, Ali—
Mikhail-Haq or Mayor—Torrens family of copulas is symmetric. Any member of
the Farlie-Gumbel-Morgenstern family of copulas is opposite symmetric.

Dependence measures

Another property of a bivariate random vector is the degree of concordance of
the two random variables. It is expressed by means of a so-called measure of
association. The three most frequently encountered such measures are Spearman’s
rho, Gini’s gamma and Kendall’s tau [88].

Let X and Y be two continuous random variables whose dependence is modelled
by a copula C.

1. The population version of Spearman’s po for X and Y is given by

1
/nydxdy 3.
0

||

—_

[N}
O\H

2. The population version of Gini’s vy for X and Y is given by

1 1
:4/C:clfxdxf4/ ))de .
0 0

3. The population version of Kendall’s 7¢ for X and Y is given by

1
TC:4/ C(z,y)dC(z,y) —1=1—-4 /% (:U y)dady .
0

(0,1]2

T

o _
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Table 1.1: Spearman’s rho, Gini’s gamma and Kendall’s tau of the copulas T, Tp and
TL.

T | 1| 1] 1
Te | 0| 0] 0
Ty | —1] -1 -1

The relationship between Spearman’s rho and Kendall’s tau has been studied in
detail in [56]. For the copulas Tn, Tp and Tp,, the above measures are listed
in Table For some members of the Farlie-Gumbel-Morgenstern family of
copulas and Ali-Mikhail-Haq family of copulas the above measures are listed in

Table [[.2

Table 1.2: Spearman’s rho, Gini’s gamma and Kendall’s tau of some members of the
families CYS™ and C{AMH,

A |Gy JZeN ey N

| CEFM [1-0.333333 | —0.266667 | —0.222222
CAMH | 0271065 | —0.21586 | —0.181726

0 creM 0 0 0
CAMH | 0 0

) CFGM 0.333333 | 0.266667 | 0.222222
CAMH | 0478418 | 0.381976 | 0.333333

Some other important measures of association are the upper-upper (Ayy ), lower-
lower (Arp), upper-lower (Ayz), and lower-upper (Apy) tail dependence. Let X
and Y be two continuous random variables whose dependence is modelled by a
copula C, and let z; and y; be the 100¢-th percentiles of X and Y for any ¢ €]0, 1].
Then Ayy, Arr, Aur and Apy are defined by

1-2t+C(t,t
\owr = Tim Prob{Y > g | X > 2y} = lim 22t
t—1- t—1- 1-1¢
. . C(tt)
AL = tl_1>1(1)1+ Prob{Y <y | X < a4} = tl_l)r(r)lJr L

1—t—C(t,1—1)

Avr = lim Prob{Y <y;_¢ | X > 2;} = lim
t—1— t—1—

1—t 7
1-C(t,1—-t
Ary = lim Prob{Y >y | X <z} = lim #,
t—0+ t—0+ t

17
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(if the limits exist) [64], [102]. The above tail dependences are used in the literature
to model the dependence between extreme events [98].

Probabilistic properties of copulas

Definition 1.11. Let X and Y be two continuous random variables whose depen-
dence is modelled by a copula Cxy. Then

1. Cxy is positive quadrant dependent (PQD) if Cxy > Tp,
2. Cxy is negative quadrant dependent (NQD) if Cxy < Tp.

A member C}TGM of the Farlie-Gumbel-Morgenstern family is PQD (resp. NQD)
if and only if A > 0 (resp. A < 0). A member C{AMH of the Ali-Mikhail-Haq family
family is PQD (resp. NQD) if and only if A > 0 (resp. A < 0)

Proposition 1.4. [88] Let X and Y be two continuous random variables whose
dependence is modelled by a copula Cxy. Then

1. X andY are independent if and only if Cxy = Tp,
2. Y = f(X), where f is strictly increasing, if and only if Cxy = Twm,

3. Y = f(X), where [ is strictly decreasing, if and only if Cxy = Ty,.

Archimedean copulas

Definition 1.12. A copula C is called Archimedean if there exists a convex strictly
decreasing continuous [0,1] — [0, 00] function t satisfying t(1) =0 such that

Cla,y) =tV (t(x) + ty))

for any z,y € [0,1].

Any member CY of the Yager family is an Archimedean copula with additive
generator ¢ defined by ¢y (z) = (1—z)'/*. Any member C{MH of the Ali-Mikhail-
Haq family of copulas is an Archimedean copula with additive generator ¢, defined

by tx(z) = log (#)

Archimedean copulas are also 1-Lipschitz continuous t-norms. For a copula C, the
strict inequality
Cz,z) <z (1.6)

for any x €]0,1[ is a necessary condition for C' to be Archimedean, but it is not
sufficient in general. The only Archimedean copula of the Mayor—Torrens family of
copulas is CMT = Ty, [48].
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Some types of convexity and concavity of copulas

Definition 1.13. [88] A copula C' is called concave if the inequality
Cha+ (1=XNe,\b+ (1 —=N)d) > AC(a,b) + (1 = N)C(c,d) (1.7)

holds for any a,b,c,d, A € [0,1].

If the converse inequality holds, then the copula C' is called convez. The copula T
(resp. T1,) is the only concave (resp. convex) copula [88]. This shows that the above
definition is strong. Therefore, new types of concavity (resp. convexity), such as
quasi-concavity (resp. quasi-convexity) and Schur-concavity (resp. Schur-convexity),
have been proposed in the literature.

Definition 1.14. [88] Let C be a copula. Then
1. C is called quasi-concave if the inequality
Cha+ (1 —=XNe, \b+ (1 —N)d) > min(C(a,b),C(c,d))
holds for any a,b,c,d, X € [0,1].
2. C is called quasi-convex if the inequality
C(Aa+ (1 —=X)e, b+ (1 = XN)d) <max(C(a,b),C(c,d))

holds for any a,b,c,d, X € [0, 1].

Note that the only quasi-convex copula is Ty, [88], while the class of quasi-concave
copulas is a wide class. In the next proposition we recall a necessary and sufficient
condition for quasi-concavity of copulas. First we need to introduce the upper
boundary curve of a level set of a copula C. Let C be a copula and ¢t € [0,1].
The function whose graph is the upper boundary curve of the t-level set {(z,y) €
[0,1]2 | C(z,y) = t} is denoted as Ly ¢, i.e.

Lio(z) = sup{y € [0,1] | C(z,y) = t},

for any x € [0, 1].

Proposition 1.5. [2] A copula C is quasi-concave if and only if Ly ¢ is convex
for any t € [0,1].

Definition 1.15. A copula C is called Schur-concave [£0, [£3, (87] if the inequality
Cz,y) < CAz+ (1 =Ny, (1 =Nz + A\y) (1.8)

holds for any x,y, X € [0,1].

If the converse inequality holds, then the copula C' is called Schur-convex. Note

19



CHAPTER 1. GENERAL INTRODUCTION

that the only Schur-convex copula is again Ty, while the class of Schur-concave
copulas is a wide class.

Ordinal sums

The notion of an ordinal sum has appeared in the algebraic structure of posets and
lattices [I4] as well as of semigroups [§]. In the framework of aggregation functions,
ordinal sums have been considered mainly with some subclasses of aggregation
functions such as t-norms and copulas. Let {J;} denote a partition of [0, 1], that
is, a (possibly infinite) collection of closed, non-overlapping (except at common
endpoints) nondegenerate intervals J; = [a;, b;] whose union is [0, 1]. Let {C;} be
a collection of copulas with the same indexing as {J;}. Then the ordinal sum of
{C;} with respect to {J;} is the copula given by

T—a; Y—a;

a; + (bi — a;)C; ( )  if (2, y) € [ai, bi]?,

Cla,y) = bi—ai'bi—a;

min(z,y) , otherwise .

Any member of Mayor—Torrens family of copulas is an ordinal sum of {Tr,, T}
with respect to {[0, A], [\, 1]}. Any copula is a trivial ordinal sum of itself with
respect to {[0,1]}. A copula that can be represented not only by the trivial ordinal
sum is called a proper ordinal sum.

Proposition 1.6. [88] Let C be a copula. Then C is an ordinal sum if and only
if there exists a t €]0,1[ such that C(t,t) =t.

For any member CY, with A < oo, it holds that
CY(t,t) <t

for any t €]0,1[. Hence, any member CY, with A\ < 0o, of the Yager family is not
a proper ordinal sum.

1.2. Diagonal sections and opposite diagonal sec-
tions

The diagonal section of a [0,1]2 — [0, 1] function F is the function §f : [0,1] — [0, 1]
defined by dp(z) = F(z,x). In order to characterize the diagonal section of (quasi-)
copulas, the following class of functions was considered. A diagonal function [36), 38]
is a function ¢ : [0, 1] — [0, 1] satisfying the following properties:

(D1) 6(0) =0, §(1) = 1;
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(D2) ¢ is increasing;
(D3) for any = € [0, 1], it holds that é(x) < x;

)

(D4) ¢ is 2-Lipschitz continuous, i.e. for any z,z’ € [0, 1], it holds that

|6(2") — 8(x)| < 2]z — =

The functions dr,, (x) = = and 47 () = max(2x — 1,0) are examples of diagonal
functions. Moreover, for any diagonal function ¢, it holds that

7, <0< Oy -
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Figure 1.7: The 3D plots of the copulas T, Tp and 71, with the 2D plots of their
diagonal section.

The copula Ty is the only copula with diagonal section dr,,. The set of all
diagonal functions is denoted by D. The diagonal section d¢ of a (quasi-)copula
C is a diagonal function. Conversely, for any diagonal function § there exists
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at least one copula C' with diagonal section dc = §. For example, the function
Ks :[0,1]> — [0,1], defined by

Ks(z,y) = min(z,y, (6(x) +0(y))/2), (1.9)

is a copula with diagonal section . Moreover, K is the greatest symmetric copula
with diagonal section d [36] 89, [@0]. The Bertino copula Bs defined by

Bs(z,y) = min(z,y) — min{t — §(¢) | ¢t € [min(x,y), max(z,y)|}, (1.10)

is the smallest copula with diagonal section § [7, [55] [73]. Note that Bj is symmetric.
Copulas with a given diagonal section are important tools for modelling upper-upper
and lower-lower tail dependence, which can be expressed as

/\UUZQ—(SIC(l_) and /\LL:(SICr(O+).

The set of all [0,1] — [0,1] functions that satisfy properties D1-D3 is denoted
by Ds; the subset of absolutely continuous functions in Dg is denoted by Dg°.

Note that for a function § € Dg, the function Cs defined by has neutral
element 1 if and only if §(z) > 2z —1 for any z € [1/2,1]. In fact, the last inequality
holds for the class of diagonal sections of quasi-copulas and copulas. Therefore,
for a given ¢ € Dg, the function Cs defined by need not be a semi-copula in
general. In order to characterize the diagonal section of semi-copulas, the class
Ds was considered. The diagonal section §g of a semi-copula S belongs to Dg.
Conversely, for any é € Dg there exists at least one semi-copula C with diagonal
section dc = §. For example, the function Sy, defined by

min(d(z),d(y)) ,if 2,y € [0,1[,
Ss(z,y) = (1.11)
min(z,y) , otherwise,

is a semi-copula with diagonal section §.

The set of all [0, 1] — [0, 1] functions that satisfy properties D1 and D2 is denoted as
Da. In order to characterize the diagonal section of aggregation functions, the class
Da was considered. The diagonal section 4 of an aggregation function A belongs
to Dp. Conversely, for any § € Dy there exists at least one an aggregation function
A with diagonal section §4 = §. For example, the function As : [0,1]%> — [0,1],

defined by

Ag(a,y) = L0,

is an aggregation function with diagonal section §.

(1.12)

Similarly, the opposite diagonal section of a [0, 1]% — [0, 1] function F is the function
wr : [0,1] = [0,1] defined by wr(z) = F(x,1 — z). In order to characterize the
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opposite diagonal section of (quasi-)copulas, the following class of functions was

considered. An opposite diagonal function [23] 24] is a function w : [0,1] — [0, 1]
satisfying the following properties:

(OD1) for any x € [0, 1], it holds that w(z) < min(z, 1 — x);

(OD2) w is 1-Lipschitz continuous, i.e. for any x, 2’ € [0, 1], it holds that

w(z’) —w(@)| < [’ —af .

The functions wry, (z) = min(z,1 — z) and wp, (z) = 0 are examples of opposite

diagonal functions. Moreover, for any opposite diagonal function w, it holds
that

wr, Sw < wry, -
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Figure 1.8: The 3D plots of the copulas T, Tp and Ti, with the 2D plots of their
opposite diagonal section.

The copula 77, is the only copula with opposite diagonal section wry . The set of all
opposite diagonal functions is denoted by O. The opposite diagonal section we of

23



CHAPTER 1. GENERAL INTRODUCTION

a (quasi-)copula C' is an opposite diagonal function. Conversely, for any opposite
diagonal function w there exists at least one copula C' with opposite diagonal
section we = w. For example, the function F, : [0,1]?> — [0, 1], defined by

Fo(z,y) = Tu(z,y) + min{w(t) | ¢ € [min(z, 1 —y), max(z,1 -y)]},  (1.13)

is a copula with opposite diagonal section [73]. Moreover, F,, is the greatest copula
with opposite diagonal section. Note that F,, is opposite symmetric. Copulas with
a given opposite diagonal section are important tools for modelling upper-lower
and lower-upper tail dependence, which can be expressed as

AUL =1—|—(JJ,C(17) and Apy =1—(JJ/C(O+).

The set of all [0,1] — [0, 1] functions that satisfy condition (OD1) is denoted by
Og; the subset of absolutely continuous functions in Og is denoted by OF°.

The opposite diagonal section wg of a semi-copula S belongs to Os. Conversely, for
any function w € Og there exists at least one semi-copula S with opposite diagonal
section wg = w. For example, the function S, : [0,1]? — [0, 1] defined by

0 Jife+y<1,
Su(z,y) =  w(x) Jfr+y=1, (1.14)
min(z,y) ,ifz+y>1,

is a semi-copula with opposite diagonal section w.

In general, any [0, 1] — [0, 1] function can be the opposite diagonal section of an
aggregation function. For instance, for a function w : [0, 1] — [0, 1], the function
A, :10,1]% — [0,1] defined by

0 Jife+y<1,
Ap(z,y) =S w(x) ,ife+y=1, (1.15)
1 Jife+y>1,

is always an aggregation function with opposite diagonal section w.
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CHAPTER 1. GENERAL INTRODUCTION

1.3. Semilinear and semiquadratic aggregation
functions

Several methods to construct conjunctive aggregation functions have been intro-
duced in the literature. Some of these methods are based on linear or quadratic
interpolation on segments connecting lines in the unit square to the sides of the unit
square. Such lines can be the diagonal, the opposite diagonal, a horizontal straight
line, a vertical straight line or the graph that represents a decreasing function. We
introduce the notions of semilinear and semiquadratic aggregation functions that
generalize all aggregation functions that are obtained based on such methods. We
denote the (linear) segment with endpoints x,y € [0, 1]™ as

(x,y) ={0x+(1-0)y |6 €[0,1]}.

A continuous function f : [0,1] — [0, 1] is called piecewise linear if its graph consists
of segments only.

Definition 1.16. An aggregation function A is called semilinear (resp. semi-
quadratic) if for any x € [0, 1]2, there exists y € [0,1], y # x such that A is linear
(resp. quadratic) on the segment (X,y).

All piecewise linear aggregation functions (in particular, Ty and 71,) are semilinear
copulas since all their horizontal and vertical sections are piecewise linear. The
product copula Tp is semilinear, as all its horizontal and vertical sections are
linear [88]. Any member of Yager family of copulas is also semilinear since its
radial sections are piecewise linear [2]. Any member of Farlie-Gumbel-Morgenstern
family of copulas is also semiquadratic since its horizontal and vertical sections
are quadratic [88]. In this dissertation, we introduce several methods to construct
semilinear and semiquadratic aggregation functions.

Throughout this dissertation, we use the following conventions.

1. We mean by the statement “a function G : [0,1]> — [0, 1] satisfies the
boundary conditions of a (semi-, quasi-)copula” or the statement “a function
G : [0,1]2 — [0,1] satisfies the first condition of the definition of a (semi-,
quasi-)copula” that G has 0 as absorbing element and 1 as neutral element.

2. From Chapter [6] on, we restrict our attention to the class of copulas and we
respectively use the notations M, W and II instead of the notations T, 71,
and Tp.
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PART 1

METHODS BASED ON LINEAR
INTERPOLATION
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2 Conic aggregation functions

2.1. Introduction

The zero-set of a binary aggregation function is of particular interest in this
chapter. In the case of t-norms, for instance, the discovery of Fodor’s nilpotent
minimum t-norm [53] has instigated the study of the zero-set of left-continuous
t-norms [62] [63], [79, [80, 81, 83|, [84]. The boundary curve of the zero-set is in
this case formed by an involutive negator [82]. Characteristic for the aggregation
functions T and Ty, is that their graph is constituted from their zero-set and
linear segments connecting the upper boundary curve of this zero-set to the point
(1,1,1). For this reason, they are called conic, and all conic t-norms have been
characterized as belonging to the Yager family of t-norms [2]. The purpose of
this chapter is to study conic aggregation functions in general, inspired by the
above graphical interpretation of Ty and Ty, and lay bare the connection with
the corresponding zero-sets. It fits in a broader study of aggregation functions
whose surface consists of linear segments [4], 20] 21, 38|, [65] or contains such linear
segments as the result of a transformation [I7].

This chapter is organized as follows. In the next section we give the definition of a
conic aggregation function. In Section we restrict our attention to the class
of binary conic aggregation functions and we recall the characterization of conic
t-norms in Section 2.4} In Sections 2:5H2.7 we characterize the classes of conic
quasi-copulas, conic copulas and conic copulas supported on a set with Lebesgue
measure zero. For conic copulas, we provide simple expressions for Spearman’s p,
Gini’s v and Kendall’s 7 in Section We conclude the chapter with a discussion
of some aggregations of conic (quasi-)copulas.

2.2. Conic aggregation functions

The zero-set Z4 of an aggregation function A is the inverse image of the value
0, i.e.
Zy:=A"1{0}) = {x€[0,1]" | A(x) = 0} .

Since A(1,...,1) =1, Z4 is a proper subset of [0, 1]™. A point x = (1, ...,2,) € Z4
is called a weakly undominated point if there exists noy = (y1,...,yn) € Za such
that y1 > x1, y2 > 2, ..., Yn > x,. In case n = 2, we will refer to the set of weakly
undominated points of the zero-set of a continuous aggregation function as the
upper boundary curve of the zero-set.
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CHAPTER 2. CONIC AGGREGATION FUNCTIONS

Let (X, <) be a partially ordered set. A subset Y C X is called a lower set (of
X) if for all z,y € X such that y <z and = € Y it holds that y € Y. Due to the
increasingness of an aggregation function A it holds for any x,y € [0, 1]" such that
y < x and A(x) = 0 that also A(y) =0, i.e. Z4 is a lower set of [0,1]”. Moreover,
if A is continuous, then Z4 is a closed lower set of [0, 1]™.

Suppose that 0 is the absorbing element of A, i.e. A(z1,...,z,) = 0 whenever
0 € {z1,...,2,}. Then A has no zero-divisors, i.e. A(x1,...,2,) = 0 implies
0€{x1,....,zn}, if and only if Z4 = Z,, with Z, = [0,1]™\ ]0, 1]™.

Now we state the general definition of a conic function.
Definition 2.1. Let Z C [0,1]"™ be a closed lower set containing Z.. We define
the function Az :[0,1]™ — [0,1] as follows:

(i) Az(1) =1;

(ii) Az(x) =0 for anyx € Z;

(iii) for any weakly undominated point x € Z, the function Az is linear on the

segment (x,1).
The function Az is called a conic function with zero-set Z.
Remark 2.1. Note that conic functions are well defined. Indeed, for any fized
x € [0,1]"\ (ZU{1}), let
A=inf{p eR|pux+(1—-p)leZ}.

Then zx = Ax + (1 — A\)1 is the unique weakly undominated point such that the
segment (zx,1) contains x. Hence, Az(x) = 231 €]0,1[.

Theorem 2.1. Let Z C [0,1]™ be a closed lower set containing Z.. Then the conic
function Ay is continuous.

Proof. Consider the set U(Z) of the weakly undominated points of Z, i.e.
U(Z) = {u | u is the greatest element of Z on some segment (x,1)}.

It clearly holds that U(Z) is a compact subset of [0,1]™ such that for any u €
U(Z), the segment (u, 1) does not contain any other point in U(Z), and for any
x € [0,1]™\ (Z U {1}), there exists a unique zx such that x € (zx, 1). Due to the
definition of Az, it holds that Az(x) =0if x € Z, Az(x) €]0,1[ if x ¢ ZU {1}
and Az (1) = 1. Moreover, as 1 is not contained in U(Z) and using any L,-distance
d (e.g. Ly or the Euclidean distance), the distance from 1 to U(Z) is positive, i.e.
a=d(1,U(Z)) > 0. Furthermore, for any x € [0,1]" \ (Z U {1}), it holds that
d(x,zy) d(1,x) d(1,x)

Az = 90 o~ T amey 2 e
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§2.2. Conic aggregation functions

Therefore, for any sequence (x,,) of points in [0, 1]™ such that lim x,, = 1, it holds
that lim Az (x,,) = 1, i.e. the function Az is continuous at 1. Obviously, Az is
continuous on Z \ U(Z) and for points in U(Z) the lower semicontinuity of Az
holds.

Now consider a sequence (x,,) in ([0,1]™\ (ZU{1}))UU(Z) such that limx,, = x.
If the sequence (zx,,) converges to zy, then
d(X"La me) d(X7 Zx)

lim Az (x,,) = lim i12n ) = i1, 20) = Az(x).

Suppose that limzy, # zx (either it is another point in U(Z) or it does not
exist). In both cases, due to the compactness of U(Z), there exists a subsequence
(Xim,,) such that lim Zx,, = U # zx and all the points x;,,, are on the segment
<mek ,1). Now consider a hyperplane 7 containing the point 1 and separating the
remainder of the segment (zx,1) from (u,1). Evidently, there exists a kg such
that for all k > ko, the segment (zx,, ,1) is on the same side of 7 as the segment
(u,1). Hence, (X, ) cannot converge to x, which being on the segment (zx, 1), is
just on the opposite side of 7. Therefore, convergence of the sequence (x,,) from
([0,1]*\ (ZU{1})) UU(Z) to a point x € ([0,1]™\ (ZU{1})) UU(Z) also implies
lim zx,, = zx. Hence,

d(x,2zx)

A0 = )

and Az is continuous on [0,1]™ \ (Z U {1}) and upper semicontinuous on U(Z).
From the above analysis, the continuity of Az is clear. O

Theorem 2.2. Let Z C [0,1]™ be a closed lower set containing Z,.. Then the conic
function Az is a continuous aggregation function with absorbing element 0.

Proof. As the boundary conditions are trivially fulfilled, it suffices to prove that
Ay is increasing. Consider x,y € [0,1]™ and suppose w.l.o.g. that x = (21,a,...,a)
and y = (y1,4,...,a), with 1 <y;. If x € Z then Az(x) =0 < Az(y). Suppose
that x ¢ Z and x # 1. Let zx = (u1,...,uy) and zy = (v1,...,v,) be the unique
weakly undominated points corresponding to x and y, respectively, i.e. there exist
a, B € [0,1] such that

x=azx+(1—a)l and y=pz,+(1-75)1.

Then Az(x) = 1—aand Az(y) = 1— . Suppose that & < 8. For any i € {2,...,n},
it holds that
au; +1 —a=a=pv;+1- 3,

which implies that u; < v;. Since zx and z, are weakly undominated points, it
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CHAPTER 2. CONIC AGGREGATION FUNCTIONS

must hold that u; > vy, which contradicts the fact that
auy+l—a=z1 <y =pv1+1-7.

Therefore, it holds that a > 8, or equivalently, Az (x) < Az(y), whence Az is an
aggregation function.

Finally, we show that 0 is the absorbing element of Az. Consider x € [0,1]™ such
that #; = 0 for some i € {1,...,n}. If x € Z, then it holds that Az(x) = 0.
If x ¢ Z, then there exists o € [0,1] such that x = azx + (1 — «)1. Hence,
; =0=au; +1—«, whence a = 1, i.e. Az(x)=1—a=0. O

Inspired by the above proposition, the conic function Az will be called a conic
aggregation function with zero-set Z. Evidently, if Z; C Zs, then Az, > Ag,.
Hence, the greatest conic aggregation function Az, is the n-ary version of the
minimum t-norm Ty given by Ty (x) = min(xy,...,z,), for any x € [0,1]". In
contrast, there is no greatest proper closed lower set of [0, 1], and hence, there is
no smallest conic aggregation function.

The following proposition is a straightforward consequence of Theorems[2.1]and [2.2]

Proposition 2.1. Let Z be a proper subset of [0,1]™. Then Z is the zero-set of a
conic aggregation function Az with absorbing element 0 if and only if Z is a closed
lower set containing Z.

Example 2.1. Let Z = {(z1,...,2,) € [0,1]" |21+ + 2z, <n—1}. The set Z
is a closed lower set containing Z,.. The corresponding conic aggregation function
is the n-ary version of the Lukasiewicz t-norm given by

T1(x) = max(xy +---+x, —n+1,0),

for any x € [0,1]". The weakly undominated point zx corresponding to a point
x ¢ Z is here given by

n—1—xz9—--—x, n—1—-—z;— - —xp_1
Zx = .

n—x1— " —Tp, = M= —— Ty

We conclude this section by studying some aggregations of conic aggregation
functions.

Proposition 2.2. For any two conic aggregation functions Az, and Agz,, it holds
that the aggregation functions max(Az,,Az,) and min(Az,, Az,) are also conic
aggregation functions, with respective zero-sets Z1 N Zs and Z1 U Zy. In other words,
the class of conic aggregation functions is closed under maximum and minimum.
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§2.2. Conic aggregation functions

Proof. Let Z = Zy N Zy. Clearly, the aggregation function Az is given by
(i) Ix € Z, then Az(x) =0.

(ii) If x ¢ (ZU{1}) and zx € Z; (here zx is taken w.r.t. Z), then Az(x) =
Az, (%) = Az, (x

).
(iii) If x ¢ (ZU{1}) and zx € Zy (here zx is taken w.r.t. Z), then Az(x) =
Az, (%) = Az, (%).

Since the intersection of two closed lower sets of [0, 1]™ containing Z, is again a
closed lower set of [0, 1]™ containing Z., the function Az is a conic aggregation
function, and coincides with max(Az,, Az,).

Similarly, one can prove that min(Az,, Az,) is a conic aggregation function with
zero-set Z; U Zs. O

Proposition 2.3. For any two distinct conic aggregation functions Az, and Az,
and X €10, 1], the aggregation function AAz, +(1—X) Az, is never a conic aggregation
function.

Proof. Suppose that AAz, + (1 — X)Az, is a conic aggregation function. Obviously,
its zero-set is given by Z; N Z3, which implies, due to Proposition and the
uniqueness of a conic aggregation function with a given zero-set, that

)\AZ1 + (1 - )\)AZ2 = max(AZl,AZ2) s

which is impossible since A €10, 1]. 0O
Example 2.2. The zero-set of the aggregation function (Tyg + T1)/2 is Z.. Since

T + T

T
2 7é M
the former is not a conic aggregation function.

Remark 2.2. Let Az be an n-ary conic aggregation function. Then Az is given
by

(i) Az(1)
(ii) Az(x) =0 for any x € Z;

1;

(iii) if x = (21, ., 20) & (ZU{1}) and 29 # 1 for some i € {1,...,n}, then it
holds that

Ag(x) =22 (2.1)

1— a7

with xg = (29, ...,20) the unique weakly undominated point corresponding to
X.

In case multiple such ¢ exist, Eq. (2.1) always leads to the same value.
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CHAPTER 2. CONIC AGGREGATION FUNCTIONS

2.3. Binary conic aggregation functions

From here on, we will deal with binary aggregation functions only, and omit the
adjective ‘binary’. Obviously, a conic aggregation function Az is commutative if
and only if its zero-set Z is symmetric, i.e. (z,y) € Z if and only if (y,z) € Z.
The next proposition expresses that a closed lower set of [0,1]? containing Z, is
determined by a decreasing function. Let d be the smallest « € [0,1] such that
(z,0) is a weakly undominated point, and d’ be the smallest y € [0, 1] such that
(0,y) is a weakly undominated point.

Proposition 2.4. Let Z be a closed lower set of [0,1]? containing Z.. Then there
exists a decreasing function f:[0,d] — [0,1], such that

Z={(z,y)€[0,1* |z €[0,d] andy < f(x)} U Z..

Note that d = 0 if and only if Z = Z,; also, if d = 0, then f(d) = 0. In order to
make it meaningful to talk about a function f : [0,d] — [0, 1], we will therefore
assume that d > 0, i.e. Az # T; then it also holds that f(0) > 0. Obviously, the
function f is right-continuous at 0 and f(x) > 0 for any z € [0,d].

Since the zero-set of a conic aggregation function is determined by a function f,
when convenient, we will refer to such an aggregation function as Ay. The following
result is an immediate observation.

Proposition 2.5. A conic aggregation function Ay has neutral element 1 if and
only if

(i) f(z) <1 for any x €]0,d];
(1)) d <1 or(d=1 and f(d) =0).

The graph of a conic aggregation function Az is constituted from its zero-set and
segments connecting the upper boundary curve of its zero-set (containing the graph
of f) to the point (1,1, 1).

Suppose that the upper boundary curve of the zero-set of a conic aggregation
function Az contains a segment determined by the points (1, y1) and (z2,y2), then
Ay is linear on the triangle T = A((4, y,),(2,40),(1,1)}- Lhis situation is depicted

in Figure 2.1]

For any (z,y) € T, it holds that

Y1

Az(z,y) = ax + by +c. (2.2)
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§2.3. Binary conic aggregation functions

Furthermore,

ax1+by1 +c =0
axes+bys +¢c =0
at+b+c=1

Solving this system of linear equations, we obtain

Ag(z,y) = (y1 —y2)x + (x2 — 1)y + T1Y2 — T2yn
Z\Ly -
Y1 — Y2 + T2 — T1 + T1Y2 — T2y

on the triangle considered.

(0,0) (1,0)
Figure 2.1: Example of a zero-set with a piecewise linear upper boundary curve
Example 2.3. Let Z = {(z,y) € [0,1]? | min(z,y) < }}. Hered=d' =1 and
1 ,if e <1/4,
flz) =
1/4  ,ifxz>1/4.
The corresponding conic aggregation function Az is given by
Az(z,y) = (1/3) max(min(4z — 1,4y — 1),0) (2.4)

and is depicted in Figure[2.3. Note that Az does not have neutral element 1.
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Figure 2.2: Graph and contour plot of a conic aggregation function

and f(x) =1/2 for any x € [0,1/2]. The corresponding conic aggregation function
Ay is given by

Example 2.4. Let Z = {(z,y) € [0,1]? | max(z,y) < 3} U Z,. Hered=d' =1/2

Az(z,y) = min(z,y, max(2z — 1,2y — 1,0)) (2.5)

and is depicted in Figure[2.3 Note that Az has neutral element 1.
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Figure 2.3: Graph and contour plot of a conic aggregation function
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2.4. Conic t-norms

Conic t-norms have already been investigated in the literature [2].

Proposition 2.6. Fvery associative conic aggregation function has neutral ele-
ment 1.

Proof. Consider an associative conic aggregation function Ay. Consider x €0, 1]
and let (z9,yo) be the unique weakly undominated point corresponding to the
point (z,1) (and hence also to the point (Af(z,1),1)). Then from Eq. it
follows that

T — X

Af(z,1) —zo

A 1) =
(@, 1) T

1_1;0 and Af(Af(I,l),l):

On the other hand, the associativity of Ay leads to Ay(z,1) = Ap(z, Ay(1,1)) =
Af(Af(z,1),1), and therefore A¢(zx,1) = x. Similarly, it follows that Af(1,2) = «.

O

Corollary 2.1. A conic aggregation function is a t-norm if and only if it is
associative.

Proof. Follows from the above proposition and the fact that any associative con-
tinuous aggregation function with neutral element 1 is also commutative (see

Chapter . O

It is easy to check that for every conic t-norm 7T different from Ty, the condition
0(z) = T(x,x) < x is satisfied for any x €]0,1[. Since a conic t-norm is continuous,
it therefore must be Archimedean. The following theorem expresses that the only
conic t-norms are the elements of the Yager family of t-norms.

Theorem 2.3. [2] A t-norm T is conic if and only if either T = Ty or there
exists A €10, 00 such that

for any (x,y) € [0, 1]%.

2.5. Conic quasi-copulas

As mentioned before, both Ty; and Ty, are conic. Note that the zero-set of Ty, is
given by
Z* ={(x,y) €[0,1* |2 +y < 1}.
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Hence, this is the greatest closed lower set that can be considered for constructing
a conic quasi-copula.

In the next proposition, we show that the zero-set of a conic quasi-copula is
determined by a strictly decreasing and continuous function.

Proposition 2.7. Let Z, C Z C Z* be the zero-set of a conic quasi-copula Qz
with corresponding function f : [0,d] — [0,1]. Then f(d) = 0 and [ is strictly
decreasing and continuous.

Proof. Suppose that the upper boundary curve of Z contains some vertical segment
as part of a line © = xg with 29 €]0,1]. Consider z,2’,y € [0,1] with < a’
such that the points (zg,y0) and (zg,y1) are the unique weakly undominated
points corresponding to the points (2',y) and (x,y), respectively. This situation is
depicted in Figure [2.4] The increasingness and 1-Lipschitz continuity of Qz imply

(0,1) (1,1)

(z,9) (o', y)

(w0, 1)

(70, Y0)

(0,0) o (1,0)

Figure 2.4: Illustration for the proof of Proposition

that
QZ(x/;y) _QZ(x,y) S Z‘/—ﬂf,

or equivalently,
/
Tr — X Tr — X
— <z —zx.
1-— ZTo 1-— i)

The latter implies that g = 0. Hence, the function f is continuous.

Similarly one can prove that the upper boundary curve of Z does not contain any
horizontal segment as part of a line y = yo with yg €]0, 1]. Hence, the function f
is strictly decreasing.
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§2.5. Conic quasi-copulas

(0,1) (1,1)

dl

(0,0) 4 (1,0)

Figure 2.5: Illustration of the set F' corresponding to a conic quasi-copula.

As @z has neutral element 1, Proposition implies that d < 1 or (d = 1 and
f(d) =0). As Z, # Z, it holds that d > 0. Consider d €]0,1[, then f(d) > 0
would imply the existence of a vertical segment on the upper boundary curve of
Z. The above proof for the continuity implies that this is impossible and thus

f(d) =o0. O

As a consequence of the previous proposition, the zero-set in Example cannot
be the zero-set of a conic quasi-copula.

For a function f satisfying the conditions of Proposition we introduce the
following notations

Ay = Ago,a1),00,1),01,1)}
Ag = Ay(d,0),(1,0),(1,1)}
F = [0,1]2\ (Z UAd/UAd).

The set F' is depicted in Figure The conic quasi-copula can then be expressed
as follows:

0 if (z,y) € Z,
_ ) y— [f(=o) : 2.7
Qz(z,y) 1= F(zo) ,if (x,y) € F, (2.7)
min(z,y) , otherwise.

Next we characterize all the subsets of the unit square that can be the zero-set of
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a conic quasi-copula.

Theorem 2.4. Let Z be a closed lower set of [0,1]? such that Z. C Z C Z* with
corresponding function f : [0,d] — [0,1]. The conic aggregation function Ay is a
quasi-copula if and only if

(i) f(d)=0;

(ii) f is strictly decreasing and continuous;

(iii) the function oy :]0,d[— [0,1] defined by ¢1(x) = 22 is decreasing;

1—z

(iv) the function s :)0,d[— [0,1] defined by a(x) = =gy i increasing.

Proof. Suppose that conditions (i)—(iv) are satisfied. According to Proposition
the strict decreasingness of f and condition (i) imply that Ay has neutral element
1. To prove that A; is a quasi-copula, we need to show that it is 1-Lipschitz
continuous. Recall that the 1-Lipschitz continuity is equivalent to the 1-Lipschitz
continuity in each variable. We prove that Ay is 1-Lipchitz continuous in the first
variable. For any z,2’,y € [0, 1] such that z < 2’, we need to show that

Ap(ayy) = Ap(z,y) <o’ -z (2:8)
Let us denote b := (x,y) and b’ := (2/,y). We distinguish the following cases:
(a) If b,b’ € Z, then A¢(a',y) — As(z,y) =0 < 2/ —x;
(b) If b,b" € AyU Ay, then

Ap(2',y) — Ap(z,y) = min(z’,y) — min(z,y) < 2’ — x;

(c) If b,b’ € F, then suppose that by = (o, f(20)) and b, = (z1, f(21)) are
the unique weakly undominated points such that b, by and (1,1), as well
as b/, b'f and (1,1), are collinear. Thus, condition (2.8) is equivalent to the
inequality

1= f(z1)  1—f(=o)

Using the collinearity, it follows that

1711?0 B 17%1 >
1= f(zo) 1—f(21)

Therefore, inequality (2.9)) is equivalent to

I’x(ly)<

1 _ 1 < 11—z _ 1—x
L= f(zo) 1= f(xz1) = 1—f(xo) 1-—f(z1)’
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or equivalently,
p2(w1) — p2(z0) 2 0,

which is satisfied due to condition (iv).

The proof that Ay is 1-Lipchitz continuous in the second variable is similar and uses
condition (iii). Consequently, the aggregation function Ay is a conic quasi-copula.

Now suppose that the function Ay is a quasi-copula. Proposition yields (i) and
(ii). Consider arbitrary z1, 22 €10,d[ such that 21 < a9, and let (z,y), (2/,y) be
two points in F' such that (x1, f(x1)) and (z2, f(22)) are the corresponding weakly
undominated points. The 1-Lipschitz continuity of Ay in the first variable implies
that w2 (z2) — @2(x1) > 0. Hence, condition (iv) follows. The 1-Lipschitz continuity
of Ay in the second variable implies condition (iii). O

Example 2.5. Let f : [0, %] — [0,1] be the function defined by

f(x):min(12x,1—23:> .

All the conditions in Theorem [2.4 are satisfied. The corresponding conic quasi-
copula is given by

20—1 2 -1
Q¢(z,y) = min <x,y,max (0,z+ 2y , x+2y >) .

2.6. Conic copulas

In this section, we characterize all the subsets of the unit square that can be the
zero-set of a conic copula.

Proposition 2.8. Consider a conic aggregation function Ay # Ty such that f is
piecewise linear and f(d) = 0. Then Ay is a copula if and only if f is convex.

Proof. Consider a conic aggregation function A; such that f is piecewise linear
and f(d) =0, and its zero-set Z.

Suppose that f is convex, then the fact that it is decreasing and f(d) = 0 implies
that f(z) < 1 for all  €]0,d[. Hence, Ay has neutral element 1. We only need
to show that Ay is 2-increasing. Due to the additivity of volumes, it suffices to
consider a number of cases.

Consider a rectangle [x, 2] X [y, y'] C [0, 1]2. If this rectangle is included in Z, then
its Ag-volume equals 0. Also if the points (z,y) and (2/,y) are located on the
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upper boundary curve of Z, then it holds that

Va, ([z, 2] x [y,y']) = As(2’,y') > 0.

The study of the 2-increasingness on the remaining part of the unit square is
equivalent to the study of this property on each polygon enclosed by two consecutive
segments of the upper boundary curve of Z and the point (1,1). Let us consider the
polygon G determined by the points by := (21, y1), ba := (22, ¥y2), bs := (x3,y3)
and the point (1, 1), as illustrated in Figure The aggregation function Ay
is linear on the triangle Ay := Ay, b, 1,1)) as well as on the triangle Ay :=
Afb,.bs,(1,1)}- Hence, if the rectangle [z, 2] x [y,%/] is included in Ay or Ao, its
Ag-volume equals 0.

Finally, suppose that the segment connecting the points (z,y) and (z/,7’) is a
subset of the segment connecting the points by and (1,1) (this situation is also
depicted in Figure . Using Eq , the nonnegativity of V4, ([z,2'] x [y,y]) is
then equivalent to:

Y1 — Y2 _ Y2 — Y3 >0, (2.10)

Y1 — Y2+ T2 —T1 +T1Y2 — Tay1 Y2 — Y3+ T3 — T2 + Tays — T3y2

or, equivalently,

(y1 — y2) (x5 — w2 + T2ys — 23y2) — (Y2 — y3)(z2 — 21 + T1y2 — 22y1) > 0.
Some elementary manipulations yield
y1(z3—22)—yo(v3—m2) +y3(v2—21) — 1y (w3—22) —yoys(w2—21)+y3 (x3—21) > 0,
or, equivalently,

yi(xs — 22)(1 —y2) — y2(ws — 21)(1 — y2) + ys(z2 — 21)(1 —y2) = 0.
Dividing by (1 — y2), the latter inequality becomes
y1(z3 — 22) — ya(r3 — 1) + y3(v2 — 71) >0,
or, equivalently,
y1(z3 — z2) — ya(r3 — 22 + 22 — 1) + y3(v2 — 1) > 0.
It easily follows that the above inequality is equivalent to

Ys W2 2701 (2.11)
T3 — T2 X9 — Iq

which is satisfied due to the convexity of the function f. The converse part of the
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(0,0) ‘

Figure 2.6: Illustration for the proof of Proposition

proof can be done in a similar way.

O

Next we characterize all the subsets of the unit square that can be the zero-set of
a conic copula. To this end, we need the following lemma.

Lemma 2.1. Let Cy be a conic copula and o, B €10, 00[ such that a < 3. Consider

three points by := (x1, f(z1)), ba := (22, f(x2)) and by := (x3, f(x3)) such that
x1 < x3 < x3 and the segments (b1, (1,1)), (ba, (1,1)) and (bs,(1,1)) have slope
a, vaB and B, respectively. Then it holds that

(i) there exists a rectangle [z, x'] X [y,y'] such that the segment connecting the

points (x,y) and (z',y") is a subset of the segment (bs, (1,1)) and the points
(z,y") and (2',y) are located on the segments (by,(1,1)) and (bs,(1,1))
respectively.

(ii) the point by is below the segment (b1, bs).

Proof. A simple geometric argumentation shows that points by, by and bs with
the desired properties always exist. Observation (i) follows from the fact that
for such points, we can always find a rectangle [z, 2] x [y,y’] of which the main
diagonal is a subset of the segment with slope v = /a8 and the points (z,y’) and
(2, y) are located on the segments with slopes « and 3, respectively.

To prove assertion (ii), we consider the function g : [x1, 23] — [0, 1] such that g

is linear on the interval [x1,z2] as well as on the interval [z, z3]. Consider the

rectangle [z,2'] x [y, y'] from the first part of the proof. Since C} is a copula, it
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follows that

VCZ,([.’II,(L'/] X [%y/]) = ch([%x/] X [y7yl]) Z 07
where Cyz/ is a conic function that has the graph of the function g as part of the
upper boundary curve of its zero-set Z’. Due to ([2.10)), it holds that the function

g is convex, or equivalently, the point by lies below the segment (by, bs), which
completes the proof. O

Theorem 2.5. Let Z be a closed lower set of [0,1]? such that Z. C Z C Z* with
corresponding function f :[0,d] — [0,1]. The conic aggregation function As is a
copula if and only if

(i) f(d) =0;

(ii) f is convex.

Proof. Suppose that conditions (i) and (ii) are satisfied. To prove that Ay is a
copula we need to show its 2-increasingness. Due to the additivity of volumes, it
suffices to consider a number of cases. Let R = [z,2'] x [y,v'] C [0,1]%

(a) If R is located in Ay, Ay or Z, then Vi, (R) = 0.

(b) If (z,y') and (2, y) are located on the upper boundary curve of Z, then again

Va, (R) = Ap(2',y) 2 0.

(c) If the main diagonal of R is a subset of the segment connecting the points
(0,d’) and (1,1) (the case when the main diagonal is a subset of the segment
connecting the points (d,0) and (1,1) is analogous), then it holds that

Va, ([z, 2] x [y, y']) = 2" — Ap(2',y) > 0.

(d) If R is located in F, then let by = (x1, f(z1)), b2 = (a2, f(z2)), bs =
(z3, f(z3)) and by = (24, f(24)) be the weakly undominated points corre-
sponding to the vertices of this rectangle. The points by, ba, bz and by
together with (0,d’) and (d,0), determine a convex piecewise linear function
h:[0,d] — [0,1] such that h(x;) = f(x;) for any i € {1,2,3,4}. This situation
is illustrated in Figure when the main diagonal of this rectangle is a subset
of the segment connecting the weakly undominated point corresponding to
(z,y) and the point (1,1). Due to Proposition the conic aggregation
function Ay, is a conic copula. Therefore,

Va, ([2, 2] x [y,9']) = Va, ([z,2'] x [y, ']) > 0.

Hence, the Ay-volume of any rectangle is nonnegative, which implies that Ay is a
copula.
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(0,1) (1,1)

dl

(0,0) 4 (1,0)

Figure 2.7: Illustration for the proof of Theorem |2.5

Conversely, suppose that Ay is a copula. In view of Theorem it suffices to show
that f is convex. Suppose that it is not convex, i.e. there exist z < y < z such
that the point (y, f(y)) is above the segment connecting the points (z, f(x)) and
(z, f(2)). Since f is continuous there exists ¢ > 0 such that for any @’ € [y — ¢,y + €]
the point (2/, f(a’)) is above the segment connecting the points (z, f(x)) and
(z, f(2)), which contradicts Lemma [2.1} Thus, the function f must be convex. [

Remark 2.3.

(i) Since f is right-continuous at 0, decreasing and f(d) = 0, the convezity of f
implies that f is strictly decreasing and continuous.

(if) As any conic copula Cy is a conic quasi-copula, the convexity of f implies

conditions (iii)-(iv) of Theorem[2.4)

(iii) As associative copulas are (1-Lipschitz) t-norms, the class of associative conic
copulas is also characterized by Theorem[2.3

As the function f in Example[2.5]is not convex, the corresponding conic quasi-copula
Qs is a proper quasi-copula.
Example 2.6. For each A €]0,00[, let fy : [0,1] — [0, 1] represent the boundary
curve of the zero-set of the Yager t-norm CY, i.e. fa(z)=1—(1—(1— o)Mx. It
is easily verified that the function f is convez if and only if X > 1. Hence, CY is
a conic copula for any A > 1.
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Example 2.7. Let f: [0, 4] — [0,1] be the function defined by f(z) = (1 — 2z)%.
All the conditions in Theorem [2.5 are satisfied. The corresponding conic copula is
given by

0 Jif y<(1—22)% and x < 1/2,

_Jdx(l—2)—1+y ;
Cplz,y) = 1-2z)% andy > 2z — 1
(z,y) =2 —1+y sif y > ( x)* and y > 2z ,

min(x, y) , otherwise.

Note that, for any conic copula Cy, the convexity of f implies that the upper
boundary curve of the t-level set is convex for any ¢ € [0, 1[. Hence, the following
corollary is clear.

Corollary 2.2. Any conic copula is quasi-concave.

2.7. Conic copulas supported on a set with Lebesgue
measure zero

We characterize in this section conic copulas that are supported on a set with
Lebesgue measure zero on the basis of their zero-set. To this end, we need the
following lemma.

Lemma 2.2. Let C¢ # T be a conic copula. Then
(i) the graph of the function f is a subset of the support;

(ii) if the upper boundary curve of the zero-set of C; contains two consecutive
segments with common point b, then the segment (b, (1,1)) is a subset of the
support.

Proof. For any rectangle [z, '] x [y, '] such that the points (x,y’) and (z/,y) are
located on the graph of the function f, the 2-increasingness implies that

Vo, ([z, 2] < [y, ¢']) = Cr(a',y) > 0.
Thus (i) follows.

Let b, by and by be three distinct points on the upper boundary curve of the
zero-set of Cy such that (bq,b) and (b, bs) are two segments. Let R be a rectangle
such that its main diagonal is a subset of the segment (b, (1,1)). If V¢, (R) =0,
then due to , the points b, by and by are located on the same segment, which
is a contradiction. Hence, Vi, (R) > 0 and (ii) follows. O
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(0,1) (1,1)

dl

(0,0) 4 (1,0)

Figure 2.8: The support of a conic copula that is supported on a set with Lebesgue
measure zero (case d,d’ < 1).

In Figure the support of a conic copula Cy with a piecewise linear function f
is shown.

Proposition 2.9. A conic copula Cy # T is supported on a set with Lebesgue
measure zero if and only if the function f is piecewise linear.

Proof. Let Cy be a conic copula with a piecewise linear function f. Due to
Lemma the support of Cy is constituted from the graph of the function f and
all segments connecting the point (1,1) and a point on the graph of f connecting
two consecutive segments of this graph. Since the surface of C'y consists of triangles,

2
it holds that 2 8(’; (6“1;”) = 0 in all other points. Therefore, the conic copula C'y is

supported on a set with Lebesgue measure zero.

Conversely, let Cy be supported on a set with Lebesgue measure zero and suppose
that the function f is not piecewise linear, i.e. there exists an interval [m, n] C [0, d]
such that the graph of the restriction of f to [m,n] does not contain any segment.
Let S be the subset of the unit square enclosed by the graph of the function f
between the points (m, f(m)) and (n, f(n)) and the segments connecting the latter
points to (1,1). Consider a rectangle R located in S such that Vo, (R) = 0. It then
holds that Vi, (R1) = 0 for any rectangle R; C R. Choose a rectangle Ry = [z, 2] x
[y,¥'] € R such that its diagonal is a subset of the segment {((1, 1), (z2, f(x2))) with
m < x2 < n. Let (z1, f(z1)) and (x3, f(z3)) be the two points on the graph of f
such that the points (z,y’) and (2,y) are respectively located on the segments

((1,1), (21, f(21))) and ((1,1), (23, f(x3))). Since Vg, (R1) = 0, inequality
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implies that the points (z1, f(z1)), (22, f(x2)) and (z3, f(z3)) are located on the
same segment, which contradicts the fact that f does not contain any segment
on the interval [m,n]. Hence, for any rectangle R located in S, it holds that
Ve, (R) >0, ie. S is a subset of the support of C'y with non-zero Lebesgue measure.
This contradicts the fact that Cy is supported on a set with Lebesgue measure
Zero. O

As a result of the above proposition, a conic copula that is supported on a set with
Lebesgue measure zero is related to a piecewise linear function f and hence, to a
(possibly infinite) sequence of points by = (z1,¥1), ba = (z2,92), ..., by = (Tn, Yn)
and by = (0,1), bpy1 = (1,0), so that 0 < 21 < 23 < ... < z, < 1 and
1>y >...> 9y, >0and

Yi — Yi—1 < Yi+1 — Yi
T — Xi—1 Tl — T

As the function f in Example is not piecewise linear, the corresponding conic
copula Cy is not supported on a set with Lebesgue measure zero.

In the Yager family, only 71, and T are supported on a set with Lebesgue measure
zero.

Since any copula that is supported on a set with Lebesgue measure zero is singular,
the following corollary is clear.

Corollary 2.3. Any conic copula Cy with a piecewise linear function f is singular.

Example 2.8. For each A €]0,1/2], let f :[0,1] — [0, 1] be the function defined

by
A—1

\ z+1 if e < A,
A
A—1
The function fy is convex and piecewise linear for any A €]0,1/2]. The correspond-

ing family of singular conic copulas is given by

N(x) =

(x—=1) ,ifz>A.

max(y—%(l—x),o) 7ny§x7

CA(‘T,y) =

max(z — ﬁ(l —1),0) , otherwise.
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Example 2.9. For each ¢ € [0,1], let f : [0,¢] — [0,1] be the function defined
by f(x) = ¢ —x. The function f is conver and linear for any ¢ € [0,1]. The
corresponding family of singular conic copulas is given by

C.(z,y) = min (a:,y,max <O, x—;y—c)) .
—c

This family was introduced in [21)].

2.8. Dependence measures

In this section, we derive compact formulae for Spearman’s rho, Gini’s gamma and
Kendall’s tau of two continuous random variables whose dependence is modelled
by a conic copula Cy. They can be expressed in terms of the function f.

Proposition 2.10. Let X and Y be two continuous random variables that are
coupled by a conic copula Cy # T and let a €]0,d[ be the unique value such that

fla) = a.

(i) The population version of Spearman’s pc, for X andY is given by
d
—1-4 / fa
0
(i1) The population version of Gini’s yog for X and'Y is given by
o[ (14 2+ 1-d\?
Te = =\\2-d 2—a)

d
(-2 f@)(1— [(&)— ['(@)(1 - 2))
*4/( @z f@) )d

x.

where [’ is the left (or right) derivative of f.

(iii) The population version of Kendall’s o, for X andY is given by

d
_ f'(z)
o ‘1‘2O/<1x>f'<x>1+f<x> o
where [’ is the left (or right) derivative of f.
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Proof. The integral of Cy over the unit square is the volume below its surface.
Given the geometrical fact that the volume of a conic body equals one third of the
product of the area of its base and its height, (i) follows immediately.

In order to find ¢, , we need to compute
1 1
I = /wcf (r)dz and I = /(x — 60, (7)) dx.
0 0

Using formula (2.7), dc, and wc, are given by

0 Jife<a,
oco; (1) = 4 _ 4

T . ,Jifx>a,

l—az—f(zo) .1 1

T fwg)  EOSTETO
wa(‘T):

min(z,1 — x) ,if:L’Sé%ZiOYIZQ%W

where (20, f(z0)) is the weakly undominated point corresponding to (x,1 — ).
Simple elementary manipulations show

1

2—d

a 1/1=d\* 1[/1-d\>
12—5 and Il_Z(?d’) +2<2d) + / U.)Cf(l‘)dl'

1—d’
2—d’

Since (zo, f(x0)), (x,1 — ) and (1,1) are collinear, it holds that

_ 11— f(=o)
2 — 29— f(xo)

Computing dx and wc,, it follows that

d

7wcf<x>dx—/<<1—f—f@))(l—f(f)_f/(x)“_x))) "

2—z—f(z))

1 0

where f is the left (or right) derivative of the function f, which, due to convexity
of f, exists everywhere on the interval ]0,d] (or [0,d[). In 0 (or in d) we can take
the limit without influencing the result of the integration over the interval [0, d].
Note also that the left and right derivatives coincide, except possibly on a countable
subset. Hence, the choice of derivative does not affect the result of the integration.

Substituting /; and I in the expression for y¢,, (ii) follows.
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In order to find 7¢,, we need to compute

1=/ C(z,y)dC¢(z,y).

[0,1]2

Suppose first that Cr is supported on a set with Lebesgue measure zero. Due
to Proposition 2.9] the function f is piecewise linear, i.e. there exists an n € N
such that the graph of the function f is constituted from segments (b;_1,b;),
i € {1,...,n}, with by = (0,y0) and b,, = (2,,0). Due to Lemma [2.2] the mass of
Cfy is distributed uniformly on the segments (b;_1,b;), ¢ € {1,...,n} and on the
segments (b;, (1,1)), j € {0,...,n}. Let a;, i € {1,...,n}, and b;, j € {0, ...,n}, be
the mass distributed respectively on the segment (b;_1,b;) and (b;, (1,1)). For
each segment (b,;_1,b;), the conic copula Cy attains the value 0, therefore the
integral I can be written as

i=1

- a; - b; 13: T; 1
1=y ——— [ od J —Ldr =2 b;.
Zifi—.’EZ',l / x+zl—xj/l—xj v 2 J

or equivalently,
n n
)RUREES 38
§=0 i=1

Hence, the parameter 7 is given by
o, = 1—22@. (2.12)
i=1

For each ¢ € {1, ...,n}, it holds that
a; = VCf([xifh-Ti] X [1/@1/;‘71]) = Cf(xi/yifl)'

Using (2.3)), we obtain

(yi—l - yi)(xi - fvi—l)
Yi—1 —Yi + T — Ti—1 + Ti—1Yi — TilYi—1

Cr(wi,yi—1) =
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Hence, (2.11) can be expressed as

n

(yi—1 — yi) (@i — wi—1)
e, =1-2y —_Gmowon) g
i=1 Yi—1 Yi Zq Ti—1 Ti—1Yi TilYi—1

Let us denote ;1 =z, y;—1 = f(z), x; =z +dz and y; = f(x) + f'(z)dz, where
1! is the left (or right) derivative of the function f.

By letting max dz approach 0, it holds that

n

Z (%4 - yz‘)(wi - xifl)

Yi—1 —Yi + T — Ti—1 + Ti—1Yi — TiYi—1

i=1

converges to

d
!
/ 1) .
J T=a)f@) — 1+ /@
Substituting this result in (2.12)), (iii) follows. O
Example 2.10.
(i) For X €]0,1/2], let Cy be the conic copula given in Example|2.8 Then
1 —4) +2)2
pc, =Tco, =1 —4X and Yo :7+
¢ 1-—A
(ii) For c € [0,1], let C. be the conic copula given in Ezample[2.9 Then

4(1 — 2—-3
pCC:1—202, 'yCC:((C)—c and TO, = C.

The results are listed in Table 2.11

2.9. Aggregation of conic (quasi-)copulas

In this section we study some aggregations of conic quasi-copulas and conic copulas.
We formulate a lemma and two immediate propositions.

Let f; : [0,d;] — [0,1], ¢ € {1,2}, be two strictly decreasing continuous functions
such that f;(d;) = 0. We temporarily extend these functions to [0, 1] by setting
fi(xz) = 0 for any x €]d;, 1]. We define the function

fmax @ [0, max(dy,d2)] — [0,1]
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Table 2.1: Spearman’s rho, Gini’s gamma and Kendall’s tau of the conic copulas C..

c fe pC., Ye. TC,

0 0 1 1 1
02]02-z 0.920000 0.787654 0.777778
04| 04—-2x 0.680000 0.537500 0.500000
06| 06—z 0.280000 0.216327 0.142857
0.8 | 0.8 —x | —0.280000 | —0.244444 | —0.333333

1 1-2z -1 -1 -1

by fmax(z) = max(fi(z), f2(z)). Similarly, we define the function
fmin : [O,min(dl,dg)] — [07 1]

by fmin(z) = min(fi(z), f2(x)).

Lemma 2.3. Using the above notations, it holds that

(i) if the functions fi and fo satisfy condition (iii), resp. (iv), of Theorem|2.4
then also fumax and fmin satisfy condition (iii), resp. (iv);

(ii) 4f the functions f1 and fo are convex, then also fmax is convex.

Proposition 2.11. For any two conic quasi-copulas Qy, and Qy,, it holds that

(i) the functions max(Qy,,Qy,) and min(Qy,,Qy,) are also conic quasi-copulas,
i.e. the class of conic quasi-copulas is closed under mazimum and minimum;

(ii) the corresponding functions are given by fmax and fmin, respectively.

Proposition 2.12. For any two conic copulas Cy, and Cy,, it holds that:

(1) the function min(Cy,,C}y,) is also a conic copula, i.e. the class of conic
copulas is closed under minimum;

(ii) the corresponding function is given by fmax-

In general, the maximum of two conic copulas need not be a conic copula. For
instance, let C'y, and Cy, be two conic copulas with f; and f, as depicted in
Figure Obviously, the function fmin is not convex, and thus max(Cy,,Cy,) is
a proper conic quasi-copula.

Since the function f determining a conic quasi-copula )y can always be written as
the infimum of a family (f;)ier of convex functions, any conic quasi-copula Qs can
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0,1) (1,1)

(0,0) (1,0)

Figure 2.9: An example of the graph of fmin

be written as
Qf =supCy, ,
iel

where C'y, are conic copulas.
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3 Biconic aggregation functions

3.1. Introduction

The surface of the aggregation functions Tn; and 71, is constituted from their
zero-set and linear segments connecting the upper boundary curve of their zero-set
to the point (1,1, 1). In the previous chapter, this observation has led to the notion
of conic aggregation functions. Characteristic for the aggregation functions Tng
and Ty, is also that their surface is constituted from linear segments connecting
their diagonal section to the points (0,1,0) and (1,0,0). Similarly, their surface
is constituted from linear segments connecting their opposite diagonal section to
the points (0,0,0) and (1,1,1). Inspired by these observations, we introduce a
new method to construct aggregation functions. These aggregation functions are
constructed by linear interpolation on segments connecting the diagonal (resp.
opposite diagonal) of the unit square to the points (0,1) and (1,0) (resp. (0,0) and

(1,1)).

This chapter is organized as follows. In Section we introduce the definition of a
biconic function with a given diagonal section and characterize the class of biconic
aggregation functions. In Sections we characterize the classes of biconic
semi-copulas, biconic quasi-copulas, biconic copulas and biconic copulas supported
on a set with Lebesgue measure zero. For biconic copulas, we provide simple
expressions for Spearman’s rho, Kendall’s tau and Gini’s gamma in Section
In Section we study the aggregation of biconic (semi-, quasi-) copulas. The
class of biconic functions with a given opposite diagonal section is introduced in
Section

3.2. Biconic functions with a given diagonal sec-
tion

Biconic functions with a given diagonal section are constructed by linear interpola-
tion on segments connecting the diagonal of the unit square to the points (0, 1)
and (1,0). Let 6 € Dp and «, 8 € [0,1]. The function A?’B :10,1]2 — [0, 1] defined
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CHAPTER 3. BICONIC AGGREGATION FUNCTIONS

by

a(xy)+(1+ym)5<1+z_x) Jify <z,

A5 () = (3.1)

5@—x%ﬂ1+x—w5< :

) , otherwise,
1+z—y

% := 0 is adopted, is well defined. This function is called

a biconic function with a given diagonal section since it satisfies the boundary
conditions

where the convention

AYP(0,1) = B and AFP(1,0) = a,

and A?’ﬁ(t, t) = 6(t) for any ¢ € [0, 1], and since it is linear on segments connecting
the points (¢,t) and (0,1) as well as on segments connecting the points (¢,t) and
(1,0). In the following proposition, we characterize the elements of Dy for which
the corresponding biconic function is an aggregation function.

Let us introduce the following notations
I = {(z,y) € [0,1]* | y < «}

12 = {(xay) € [0,1]2|.’L'§y}
D=5LHnNnI.

Proposition 3.1. Let 6 € Dy and o, 5 € [0,1]. The function A?’B defined in
is an aggregation function if and only if

(1) the functions As.q, As.p :]0,1] = R, defined by

_ @) -« _0(x) -8
Malz) = ———, Asple) = ——,
are increasing;
(i) the functions ps.q , s : [0,1[— R, defined by
_o(z) —« _O(x)—p
Mé,a(ff) - ﬁ ) M(s,ﬂ(m) - 1_ 2 )

are 1ncreasing.

Proof. Suppose conditions (i) and (ii) are satisfied. The function Ag"ﬁ clearly
satisfies A37(0,0) = 0 and A$”(1,1) = 1. Tt suffices to prove the increasingness of
A?’B in each variable. We prove the increasingness of A?’B in the first variable (the
proof of the increasingness in the second variable is similar). Let (z,y), (2/,y) €
[0,1]2 such that x < 2.
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§3.2. Biconic functions with a given diagonal section

If (z,y), (z',y) € I, the increasingness of A?’ﬁ is equivalent to
a(a' =y)+ 1ty —a)6 () —ale—y) ~ (1 +y-2)d ({1 ——) 20
1+y—a 1+y—2/) 7

or, equivalently,

oo (=) o) -0 (o (=) —o) 20

Denoting u = —2— and v’ =

y . .
ey T the above inequality becomes

Y Ns.a(u') = Nsa(u)) > 0.

Since x < 2, it is clear that v < w’. Hence, the last inequality holds due to the
increasingness of the function A; 4.

If (x,y), (2',y) € I, the increasingness of A?’B is equivalent to

fL'l

Bly—a)+(1+a"—y)d <1+a:’—y

)—ﬂ<y—x>—<1+x—y>5(1+§_y) >0,

or, equivalently,

1+2 —y) <5<1J;_y> —5> —(l+z—1) <5<1+;”_y> —5) >0.

. _ xT ! _ 1;»/ . .
Denoting v = Trey and v’ = Tre—y the above inequality becomes

(1 =) (nsp(') = psp(v)) 2 0.

Since x < 2/, it is clear that v < v’. Hence, the last inequality holds due to the
increasingness of the function u;s gs.

The remaining case is when (z,y) € I and (2’,y) € I1 \ D. The two previous cases
then imply that A (¢, y) — AY (x,y) =

(452 ) = 432 ) + (437 0) = 437 @0)) 20.

Similarly, one can prove that the increasingness of the functions As g and 5,4
implies that Ay is increasing in the second variable.

Conversely, suppose that A?’B is an aggregation function. Let z, 2’ € [0, 1] such
that < 2, and y € [0,1] such that y < z. It then holds that

p— / p—
Lty -y P14y -y
- T - z!
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CHAPTER 3. BICONIC AGGREGATION FUNCTIONS

The increasingness of As in the first variable implies that
!/
s (r(+y) -y s (rd+y)—y
A? (aj”y *A? f’y >0.
After some elementary manipulations, the last inequality becomes

a(xy> +Z’,5<x'>a(xy) —Z5(x) >0,

€T T €T

or, equivalently,
Y(Ns,a (@) = As,a(x)) > 0.

Hence, the function As , is increasing. In the same way, it follows that the function
5,3 1s increasing.

Similarly, one can prove that the increasingness of Ay in the second variable implies
the increasingness of the functions A5 g and s, which completes the proof. O

Inspired by the above proposition, the biconic function A?ﬁ is called a biconic
aggregation function with a given diagonal section.

Example 3.1. Consider the diagonal section of Tyg. Obviously, conditions (i)
and (i) of Pmposition are satisfied. The resulting biconic aggregation function
is a Choquet integral [14l, 277], i.e.

ar+(1-—a)y ,ify<wx,
A (2,y) =
(1-=PB)x+ Py , otherwise.

Taking 8 = 1—q, the resulting biconic aggregation function is a weighted arithmetic
mean, i.e.
11—
A?TM z,y)=az+ (1 —a)y.

Lemma 3.1. Let A?’ﬂ be a biconic aggregation function. Then the inequality
max(az, fz) < 0(z) < min(a+ (1 —a)z, B+ (1 — 5)z), (3.2)

holds for any x € [0,1].

Proof. The proof is immediate due to the increasingness of the functions As «, s,
s, and fis 8. ]

Now we identify the functions in D which characterize the extreme biconic
aggregation functions with fixed o and 8. Let o, € [0,1] and consider the
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§3.2. Biconic functions with a given diagonal section

functions éa”g,ga’ﬁ : [0,1] — [0, 1] defined by

max(azx, fz) ,ifz <1,
59(w) =
1 Jifr=1,

min(a+ (1 —a)z,8+ (1 —B)z) ,ifx >0,

5 (z) =
0 ,ifx=0.

Obviously, i Sa’ﬂ € Dx and the conditions of Proposition are satisfied. Note
also that for any two biconic aggregation functions A?l’ﬂ and A?{Z’B , it holds that

Ag‘l’ﬂ < A?Q”B if and only if §; < d5. The following proposition is then obvious.

Proposition 3.2. Let A?’ﬁ be a biconic aggregation function. Then it holds that

B B B8
Aga,/i < A(;a < Aga,/i .

Example 3.2. The functions 6°° and 52 are given by

0 ,ife<l1,
é0,0(aj):
1 L ife=1,

—=0,0 . L . ) .
and " = d1,,. The corresponding biconic aggregation functions are respectively
the smallest t-norm, i.e. AOE)OU = Tp, and the greatest t-norm, i.e. AE;BO =Tm.

(A 5

Example 3.3. The functions 6"' and 5 are given by 641 = oy and
1 ,ifx>0,
0 ,ifz=0.

The corresponding biconic aggregation functions are respectively the smallest ag-
gregation function with neutral element 0, i.e. A(lsfl (z,y) = max(x,y), and the
greatest aggregation function with neutral element 0, i.e. A%fl (z,y) = max(z,y)
whenever min(z,y) =0, and A%’fl (z,y) =1 elsewhere.

Example 3.4. The functions 6*°, 51’0, 8% and 50’1 all coincide with o1,,. The
corresponding biconic aggregation functions coincide with the projection to the first
and second coordinate [0, @], i.e. Alls;(?o (z,y) = A%’l% (z,y) = x and Ag(’fl (z,y) =

0,1
Asa(2,y) = y.
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CHAPTER 3. BICONIC AGGREGATION FUNCTIONS

Remark 3.1. FEvidently, a biconic aggregation function A?’B s continuous if and

only if 0 is continuous. The functions %P and ga’ﬂ need not be continuous in
general. In fact, the only case in which they are both continuous is when

max(a, 8) =1 and min(a, 5) =0.

However, as Example[3.]] shows, it then holds that

«

57 =5 =5"" = opy,.,

and A?’ﬂ coincides with one of the projections.

Proposition 3.3. Let 6 € Da. The function A?’B defined in
(i) is commutative if and only if o = f3;
(ii) has 0 as absorbing element if and only if « = 8 =0;

(iii) has 1 as neutral element if and only if « = B = 0.
Proof. The proof is trivial. O

From here on, we will only consider biconic functions with a given diagonal section
that have 1 as neutral element, i.e. « = = 0. We then abbreviate Ag’o as As. In
this case, A is symmetric and is given by

1+y—=
I+z—y)o (H—Jf—y) , otherwise.

Suppose that the diagonal section of a biconic aggregation function As is linear
on the interval [z1,x2]. From the definition of Aj, it follows that Aj is linear
on the triangle A1 = Ag(a, ,21),(22,22),(1,003 as well as on the triangle Ay :=
A{(z1,21),(x3,55),(0,1)}- This situation is depicted in Figure

For any (z,y) € Ay, it holds that
As(z,y) = ax + by + c. (3.4)
Furthermore,

axy + bry + ¢ = 6(xq)
axo + bre + ¢ = §(x9)
a+c=0.
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§3.3. Biconic semi-copulas with a given diagonal section

(0,1) (1,1)

(T2, 72)

(0,0) (1,0)

Figure 3.1: An illustration for the triangles A; and As.

Solving this system of linear equations and using the symmetry of A, we obtain

rer+Ssy—r

1 7if(x7y)€Ala
m—# 7if(x7y)€A23

where

r = z16(z2) — 220(21)
s = (1= z1)d(w2) = (1 = 22)d(21)

t:$2—$1.

3.3. Biconic semi-copulas with a given diagonal
section

Here, we characterize the elements of Dg for which the corresponding biconic
function is a semi-copula.

Proposition 3.4. Let§ € Dg. The function As defined in is a semi-copula if

and only if the function As :]0,1] — [0,00[, defined by As(x) = @, is increasing.
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CHAPTER 3. BICONIC AGGREGATION FUNCTIONS

Proof. One easily verifies that for § € Dg, the function & : [0, 1] — [0, co[ defined by
&(x) = @ is increasing. Due to Proposition the proof is then immediate. [

x

Example 3.5. Consider the diagonal functions o1, and é1y . Clearly, the functions
Nory, and Asp, s defined in Proposition are increasing. The corresponding
biconic semi-copulas are respectively Tng and Ti,.

Example 3.6. Consider the diagonal function §g(z) = x'+% with 0 € [0,1]. Clearly,
the function Xs,, defined in Proposz'tz'on is increasing for any 0 € [0,1]. The
corresponding family of biconic semi-copulas is given by

y1+0
Aty—20 ° ify<uw,
CQ(I7 y) =
pl+o
m , otherwise.
r—=Yy

Proposition 3.5. Let As be a biconic semi-copula and suppose that §(xg) = xo
for some xy €]0,1[. Then it holds that §(x) = z for any x € [xg, 1].

Proof. Suppose that As is a biconic semi-copula and suppose further that §(z¢) = xg
for some xg €]0,1[. The function As, defined in Proposition is increasing.
Therefore, As(x) > As(z9) = 1 for any x € [z, 1]. Using the fact that d(z) < x
for any x € [zo,1], it must hold also that A\s(z) < 1. Hence, As(z) = 1 for any
x € [xg, 1]. Consequently, §(z) = z for any = € [xq, 1]. O

3.4. Biconic quasi-copulas with a given diagonal
section

Here, we characterize the diagonal functions for which the corresponding biconic
function is a quasi-copula.

Lemma 3.2. Let § € D. Then it holds that

i) the function vs :10,1] — [2,00[, defined by vs(x) = Hé,(z), is decreasing;
(i) :

(ii) the function ¢ : [0,1/2[U]1/2,1] — R, defined by ¢s(z) = 16_(9;)36, is increasing
on the interval [0,1/2[ and on the interval ]1/2,1].

Proof. (i) Consider § € D and consider arbitrary x,z’ €]0,1] such that = < z’.

Since 6(z') — §(z) < 2(2' — z) and 6(z) > 22 — 1, it holds that

o(x") — 6(x) o< 1+ 6(x) .

T —x T
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§3.4. Biconic quasi-copulas with a given diagonal section

The latter inequality implies
(0(2") = d(x))z < (1 +6(x)) (2" — ),

whence
(1+6(z"))z— (1 +6(z))z’ <0,

or, equivalently,
xx' (vs(x') —vs(x)) < 0.

Hence, the decreasingness of vy follows.
(ii) Consider now arbitrary x,z’ € [0,1/2] such that x < z’.
Since § is increasing and 1 — 2z > 0, the following inequality holds
(8(z") = 6(2))(1 = 22) + 2(z" — 2)d(z) > 0.
Simple processing yields
§(2")(1 —2x) — §(x)(1—22") >0,
or, equivalently,
(1 —22)(1 - 22")(¢5(2") — ¢s(x)) > 0.

Hence, the increasingness of ¢s on the interval [0,1/2[ follows. Similarly, one
can prove the increasingness of ¢s on the interval |1/2,1].

O

Proposition 3.6. Let 6 € D. Then the function As : [0,1]> — [0,1] defined
in s a quasi-copula if and only if

(i) the function X\, defined in Proposition 1S increasing;

(i) the function s : [0,1]— [0,1], defined by ps(x) = &) is increasing.

l—xz

Proof. We use the same notations as in Proposition Suppose that conditions
(i) and (ii) are satisfied. Due to Proposition the function A; is increasing.
Therefore, to prove that As is a quasi-copula, we need to show that it is 1-Lipschitz
continuous. Recall that the 1-Lipschitz continuity is equivalent to the 1-Lipschitz
continuity in each variable. Since As is symmetric, it is sufficient to show that A
is 1-Lipschitz continuous in the first variable. Let (z,vy), (z',y) € [0, 1]? such that
x < z'. We need to show that

As(x'y) — As(x,y) <2’ —x. (3.6)
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We distinguish several cases. If (x,y), (z/,y) € I1, then inequality (3.6]) is equivalent
to
y (ws() = vs(w)) < 0.

Due to Lemma i) the last inequality always holds.

If (z,y), (2',y) € I, then inequality (3.6) is equivalent to

(1= y)(us(v) — ps(v)) > 0,
which holds due to condition (ii).

The remaining case is when (z,y) € I and (2/,y) € I1 \ D. The two previous cases
then imply that

As(@,y) — As(z,y) = (As(2y) — As(y,9) + (As(y,y) — As(a,y)) <2’ —a.
Consequently, As is a biconic quasi-copula.

Conversely, suppose that As is a quasi-copula. Proposition [3.4] implies condition
(i). Let z, 2’ € [0,1] such that z < 2/, and y € [0,1] such that y > z’. Let us
consider the following notations

’ 1—a

11—z
Since x < 2’ <y, it holds that 0 < b < ¥’ < y. The 1-Lipschitz continuity of As in
the first variable implies
A(S(b/ay) - A5(b7y) S b/ - b7
or, equivalently,
(1 = y)(us(z') — ps(x)) = 0.

Hence, condition (ii) follows, which completes the proof. O

Proposition 3.7. Let As be a biconic quasi-copula. Then it holds that
(1) if 6(xo) = xo for some xo €]0,1[, then As = Tm;

(i1) of d(zo) = 2x9 — 1 for some xo € [1/2,1], then 6(x) = 2z — 1 for any
x € [z, 1].

Proof. Suppose that As be a biconic quasi-copula and suppose further that §(zg) =
xg for some z¢ €]0,1[. Due to Proposition it holds that 6(x) = = for any
x € [xo,1]. Since A is a biconic quasi-copula, it holds that the function us defined
in Proposition is increasing. Therefore, us(x) < ps(zo) = 0 for any = € [0, xo].
Hence, §(x) > x for any x € [0, x¢].
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§3.4. Biconic quasi-copulas with a given diagonal section

Using the fact that 6(x) < x for any = € [0, 1], it must hold that d(z) = = for
any = € [0,z0]. Based on the above discussion, it holds that §(z) = x for any
x € ]0,1]. Since Ty is the only quasi-copula with d1,, as diagonal section, it holds
that A5 = TM.

Assertion (ii) can be proved similarly using the increasingness of the function pus
on the interval [z, 1]. O

Example 3.7. Consider the diagonal functions in Example [3.6. Clearly, the
functions \s and ps, defined in Propositions and are increasing. The

corresponding family of biconic semi-copulas is a family of biconic quasi-copulas.

Example 3.8. Consider the diagonal function § defined by

0 Jife <y,
1 1 1
25(;_5 ,nggxgz,
@)=,
2x —1 , otherwise.

Clearly, the function \s, defined in Proposition[3.]} is increasing. Note also that the
function pgs, defined in Proposition[3.6], is not increasing. Hence, the corresponding
biconic function As is a proper biconic semi-copula and is given by

0 yify<z<l-byorxz<y<1l-—5z,

1 )

g(ac—l—f)y—l) , 4f max(y,1 —b5y) <ax <1-—3y,

2 ‘ 5y

gy , if max(y,1—3y) <z <54,
Ats(xay): 1

g(y+5x—1) , 4f max(x,1—52) <y<1-3z,

2 . 3—x

gcv , if max(z,1—3x) <y < 5%,

r+y—1 , otherwise.

The diagonal function and the corresponding biconic semi-copula are depicted in
Figure[3.3 Consequently, the class of biconic quasi-copulas with a given diagonal
section is a proper subclass of the class of biconic semi-copulas with a given diagonal
section.
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Figure 3.2: The diagonal function and the corresponding biconic semi-copula of Exam-

ple

3.5. Biconic copulas with a given diagonal section

Here, we characterize the diagonal functions for which the corresponding biconic
function is a copula. Next, we characterize the piecewise linear diagonal functions
for which the corresponding biconic function is a copula. To this end, we need the
following lemma.

Lemma 3.3. Let Ay be a biconic function such that § is linear on the interval
[z1,x2] as well as on the interval [z, x3]. Let R = [x,2'] X [y,y'] be a rectangle
located in the triangle Az, z,),(xs,05),(1,00 Such that its opposite diagonal is a
subset of the segment {(x2,22),(1,0)). Then it holds that Va;(R) > 0 if and only
if 0 is convex on the interval [x1,x3).

Proof. Applying Eq. |D to both triangles A1 := Ay(z) 41),(2,22),(1,0)} and Ag :=
A{(w2,22),(zs,25),(1,0)} (as depicted in Figure a)), it follows that

-
Vi) = o) (5 - 7).
where r and ¢ are as in Eq. (3.5]) and

r’ = 290(x3) — 236(w2)

/
t = T3 — Tg.
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(0,1) (1,1) (0,1) (1,1)
(w3, 73)
(w2, 72)
(w2, T2)
(w1,21) (@,1)
(0,0) (1,0) (0,0) (170)

(a) (b)

Figure 3.3: Illustration for the proofs of Lemma and Proposition

The nonnegativity of Vi, (R) is equivalent to

ror

—_>o0.
T

Substituting the expressions for r, r’, ¢t and t', the latter inequality can be written

as 2 (5(3;3) —0(x2)  d(x2) — 5(“)) >0,

Trs — To To — I

or, equivalently,
(5(3?3) — 5(372) _ (S(LUQ) — 6($1)

Tr3 — T2 To — T

>0, (3.7)

i.e. § is convex on the interval [z1, z3]. O

Proposition 3.8. Let § be a piecewise linear diagonal function. Then the function
As 2 [0,1)2 — [0,1] defined in is a copula if and only if 6 is convexr.

Proof. First suppose that § is convex. To prove that Ay is a copula, we need to show
its 2-increasingness. Since § is piecewise linear, the surface of A5 consists of triangles
of the type Af(z,z,6(2)),(4:4,5(3)),(0,1,00} and of the type Ag(a,z,5(2)),(5.5,6(1)),(1,0,0}-
Note that any rectangle in the unit square can obviously be decomposed into a num-
ber of rectangles that are either located entirely in one of triangles Ay, 2).(y,4),(0,1)}
or Af(z,2),(y.y),(1,0)}» have their diagonal along the diagonal of the unit square or
have their opposite diagonal along one of the edges of these triangles. Due to the
additivity of volumes, it suffices to consider a restricted number of cases. Consider
a rectangle R := [z,2'] x [y,y'] C [0,1]%
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(i) If R is located in one of the above triangles, then its As-volume is 0 since As
is linear on the considered triangle.

(ii) If the opposite diagonal of R is along one of the edges of the above triangles,
then we can consider three points by := (z1,21), bg := (22, z2) and bz :=
(x3,x3) such that 0 is linear on the interval [z1, 23] as well as on the interval
[x2, z3] (see Figure a)).

Suppose that the opposite diagonal of R is a subset of the segment (bs, (1,0))
(the case when the opposite diagonal of R is a subset of the segment (bs, (0, 1))
is identical due to the symmetry of As). Due to Lemma it follows that
Va, (R) > 0.

(iii) If the diagonal of R is along the diagonal of the unit square, then we can
consider two points by := (z1,21) and bs := (z2,22) such that § is linear
on the interval [z1,x2]. Suppose that the diagonal of R is a subset of the
segment (b, bs) (see Figure b)) Applying Eq. , it follows that

t

VAE(R>=<x’—x>(S‘T) 7

where s is as in Eq. (3.5). We distinguish two subcases:

(a) If 29 < 1/2 or x1 > 1/2, then the nonnegativity of V4, (R) is equivalent
to s —r > 0. Substituting the expressions for r and s, the latter
inequality becomes

(1 — 2$1)(1 — 2$2)(¢5($2) — qf)g(l‘l)) Z 0. (38)

Due to Lemma ii), ¢s is increasing on the interval [0,1/2[ and on
the interval |1/2, 1], whence the latter inequality follows.

(b) If 7 < 1/2 < x9, then with §(1/2) = £-

5 it follows that

sS—7T

Va, (R) = («/ — 2) ( > =20z’ —2)8(1/2) > 0.  (3.9)

Conversely, suppose that Aj is a copula. Lemma implies inequality (3.7]) for
any two consecutive segments ((x1,d(z1)), (x2,(z2))) and ((z2, §(z2)), (3, 5(x3)))
of the graph of § with z1 < x5 < x3. Consequently, § is convex. O

Lemma 3.4. Let Cs be a biconic copula and my, mo €]—00,0[ such that mi > ms.
Consider three points by := (x1,21), by := (22, 22) and bz := (x3,2x3) such that
0 <z <z < 23 <1 and the segments (b1, (1,0)), (bs, (1,0)) and (bs,(1,0))
have slope m1, —/mimy and ma, respectively. Then it holds that

(i) there exists a rectangle [z, x'] X [y,y'] such that the segment connecting the
points (x,y') and (2',y) is a subset of the segment (ba, (1,0)) and the points
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§3.5. Biconic copulas with a given diagonal section

(z,y) and (2',y") are located on the segments (b1, (1,0)) and (bs,(1,0))
respectively.

(i) the point (x2,0(x2)) lies below or on the segment {(x1,d(x1)), (x3,(x3))).

Proof. A simple geometric argumentation shows that points by, by and bz with
the desired properties always exist. Observation (i) follows from the fact that for
such points, we can always find a rectangle [z, 2] x [y,3'] of which the opposite
diagonal is a subset of the segment with slope m = —,/mimg and the points (z,y)
and (z',y’) are located on the segments with slopes m; and mq, respectively.

To prove assertion (ii), we consider the function h : [x1, 23] — [0, 1] that is linear
on the interval [z1,x2] as well as on the interval [z, z3] and coincides with § in
the points x1, x2 and x3. Consider the rectangle [z, z'] X [y, y’] from the first part
of the proof. Since Cj is a copula, it follows that

VA&*([x7x/] X [y,y’]) = ch([l‘,x/] X [y,y’]) >0,

where Ag- is a biconic function such that §* coincides with h on the interval [z, 23].
Due to Lemma it holds that the function h is convex, or equivalently, the point
(22,d(z2)) lies below or on the segment ((z1,d(x1)), (x3,(x3))), which completes
the proof. O

Theorem 3.1. Let § € D. Then the function As :[0,1]> — [0, 1] defined in
s a copula if and only if § is conver.

Proof. Suppose that § is convex. To prove that As is a copula, we need to show
the 2-increasingness. Due to the additivity of volumes, it suffices to consider a
restricted number of cases. Consider a rectangle R := [z, 2'] x [y,y'] C [0,1]2.

(i) If R C I (the case when R C I is identical due to the symmetry of As), then
let by, ba, bz and by be four (possibly coinciding) points on the diagonal
of the unit square such that the points (z,y), (x,y’), (¢',y) and (z',y’) are
respectively located on the segments ((1,0), b1), ((1,0),bs), ((1,0),bs) and
((1,0), bs) (see Figure [3.4).

The points by, bg, b3 and by, together with (0,0) and (1, 1), determine a
piecewise linear convex diagonal function §; such that §;(z;) = 6(x;) for any
i €{1,2,3,4}. Due to Proposition the biconic function As, is a biconic

copula. Therefore,
Vas(B) = Vi, (R) 2 0.

(ii) If R = [z,y] x [z,y] with y < 1/2 (the case when 2 > 1/2 can be proved
similarly), then it holds that

Vas(R) =d(x) +d(y) — 245(=,y) .
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(0,1) (1,1)

b

b,

by

(0,0) (1,0)

Figure 3.4: Illustration for the proof of Theorem |3.1

Substituting the expression of As(z,y) and denoting v = , the latter

equation becomes

Va, (R) = 6(x) + 6(y) — 2955(;’) 5 (5(96) ;6@/) - xé(:)) |

T
1+x—y

Since z <y < 1/2, it holds that z < v < %, whence

Vi, (R) 22(5(17);‘%3’)—5(3”;3’)) .

Due to the convexity of §, the right-hand side of the latter inequality is
nonnegative and therefore, Va, (R) > 0.

Consequently, the 2-increasingness of A5 holds, and Ay is a copula.

Conversely, suppose that As is a copula and suppose further that § is not convex, i.e.
there exist * < y < z such that the point (y,d(y)) is above the segment connecting
the points (z,d(z)) and (z,d(z)). Since ¢ is continuous, there exists € > 0 such
that for any =’ € [y — €,y + €] the point (z/,d(2’)) is above the segment connecting
the points (z,8(z)) and (z,8(z)), which contradicts Lemma 3.4 Thus, § must be
convex. O

Since for a biconic copula C' it holds that its diagonal section d¢ is convex, it either
holds that éc = dp, or d¢(z) < x for any = €]0,1[. Hence, there do not exist
proper ordinal sum biconic copulas with a given diagonal section.
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Example 3.9. Consider the diagonal functions in Ezample [3.6. Clearly, & is
convex for any 0 € [0,1]. The corresponding family of biconic semi-copulas is a
family of biconic copulas.

Example 3.10. Consider the diagonal function of a Ali-Mikhail-Haq copula, i.e.
0p(z) = ﬁ for any x € [0,1], with 8 € [—1,1]. Clearly, d¢ is convex for any
0 € [-1,1]. The corresponding family of biconic copulas is given by

2
y(l+y—2) ,
<
Gry—a2—oa—a2 ' Jv=7
CG(xvy) = 5
1 _
r(1t+z-y) otherwise.

(I+z—y2-01-y)?> ~

Example 3.11. Consider the diagonal function § given by

0 Jife <y,

1 1 2

§<4l‘—1) 7Zf1§x§§a
)= 4 8

2z — 1 , otherwise.

Clearly, the functions ps and &5, defined in Proposition[3.6, are increasing. Note
also that § is not convex. Hence, As is a proper biconic quasi-copula and is given

by

0 yify<z<1-3yorxz<y<1-3z,

1 . 2—3y

g(m—l—Sy—l) , if max(y,1 —3y) <z < =54,

1 . _: _

§y ) Zf max(y’%)gmngyy
As(z,y) = 1

g(y—l—?)x—l) . if max(z,1—3z) <y < 2PL

1

§Z‘ ’ Zf Inax(x, 2723I) Syg 277xa

rz+y—1 , otherwise.

The diagonal function and the corresponding biconic quasi-copula are depicted in
Figure[3.5, Consequently, the class of biconic copulas with a given diagonal section
s a proper subclass of the class of biconic quasi-copulas with a given diagonal
section.

In the following lemma, we study the opposite symmetry of a biconic copula with
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Figure 3.5: The diagonal function and the corresponding biconic quasi-copula of Exam-

ple BT

a given diagonal section.

Lemma 3.5. A biconic copula Cs with a given diagonal section § is opposite
symmetric (also called radially symmetric) if and only if the function f(x) = x—4d(x)
is symmetric with respect to the point (1/2,1/2), i.e. §(z) —§(1 —x) =2z — 1 for
any x € [0,1/2].

Proof. Let Cs be a biconic copula. Let (x,y) € I; (the case (x,y) € Iy can be

proved similarly). Using the notation z = 1+y¢—x’ Eq. is equivalent to

0(z) —0(1—2)=2z—-1. (3.10)

i.e. the function f(z) = x — d(x) is symmetric with respect to the point (1/2,1/2).
O

Now, we lay bare the associativity of biconic copulas.

Proposition 3.9. T and Ty, are the only associative biconic copulas (1-Lipschitz
t-norms) with a given diagonal section.

Proof. Let Cs be a biconic copula. Then its diagonal section § is a convex diagonal
function. Hence, the right (resp. left) derivative of ¢ exists everywhere on the
interval [0, 1] (or ]0,1]) [93], 95]. We further assume that Cj is associative. Then
for any 0 < e < d(x) <z <1, it holds that

Cs(e,Cs(x,x)) = Cs(Cs(e,x),x) .
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Let us introduce the notations

B € B €
“= 1+e—d() T e

It then holds that
Cs(e,Cs(x,2)) = (1 +€—6(x))0(u) (3.11)

and

(I+e—x)d(v)
1+ (1+e—2z)d(v) —x

Cs5(Cs(e,x),z) =14+ (1+e—2)d(v) —x)6 ( ) . (3.12)

Expanding the right-hand side of Eq. (3.11)) in powers of € around 0 (by taking the
partial derivative with respect to € and §(0) = 0, and by setting e = 0 and = = 0),
we obtain

Cs(e,Cs(x,2)) = 6" (0)e + O(e?)

where ¢'(0) is the right derivative at 0. Similarly, expanding the right-hand side of
Eq. (3.12) in powers of € around 0 (by taking the partial derivative with respect to
e and §(1) = 1, and by setting e = 0 and = = 1), it holds that

Cs5(Cs(e,x),x) = (6'(0))%e + O(e?) .

It follows that either ¢’(0) = 1 or 6’(0) = 0. In the former case, since ¢ is convex
and §(t) < ¢ for any ¢t € [0,1], it follows that §(t) = ¢ for all ¢ € [0,1], whence
Cs = Tm.

Similarly, the associativity of Cs implies that for 0 < x <1 — € < 1, it holds that
05(05(:6, 1-— 6), 1-— 6) = Cg(CE, 05(1 — €, 1-— 6)) .

We denote the left derivative of ¢ at 1 as ¢’(1). Expanding the left-hand side in
powers of € around 0, we obtain

Cs5(Cs(z,1 —€),1—€) =x+2(1 —&(1))e + O(?),
whereas the right-hand side is expanded as
Cs(x,C5(1—e,1 =€) =a+ (1 —6(1)5(1)e 4+ O(e?).

It follows that either ¢’(1) =1 or §’(1) = 2. Since § is a convex function, the former
case again yields Cs = T\p.

73



CHAPTER 3. BICONIC AGGREGATION FUNCTIONS

Finally, the associativity of Cs implies that for any 0 < e < i, the equality

1 1 1 1
Cs(Cs(=+e€,=+4¢€),1l—€)=Cs5(Cs(=+e,1—€), = +¢€),
2 2 2 2
holds. We denote the right derivative of § at 3 as §'(3). Expanding the left-hand

side in powers of € around 0 yields

05(05(% e, % - = 5(%) (14 5’(%) —§(1)e+O(e2)

whereas expanding the right-hand side yields
1 1 1 1 , .1 , 1 9
Cs(Co(+e 1=e), 5+¢) = 6(3)+ (53— 7 (1) (5) = (7/(1) = Da5) ) e+O().

Putting ¢§’(1) = 2, it follows that

1 1
§(5)=2(1-4(5)).

(3)=201-5(3))
Hence, the (right) tangent of the graph of § at the point (3,4(3)), which is
determined by the linear function

1 1 1
=6(z)+8(=)(x— =
y=03)+8G)—5),
passes through the point (1,1). Since ¢ is convex, its graph must lie above this
tangent line on the interval [§, 1], which leads to a contradiction unless it coincides
entirely with this tangent line on the interval [1/2,1], i.e.

1. 1 1

B(x) = 6(3) +8'(2)(x — 3.
for all z € [§,1]. Since ¢'(1) = 2, it follows that 6(3) = 0, henceforth also that
Cs =Ty.

Since both Tyg and 77, are biconic associative copulas with a given diagonal section,
we conclude that these two extreme copulas are the only biconic associative copulas
with a given diagonal section. O

Corollary 3.1. T\ and 11, are the only associative biconic quasi-copulas with a
given diagonal section.

We conclude this section by establishing the intersection between the set of bi-
conic copulas and conic copulas with the same diagonal section. Conic copulas
were introduced in Chapter [2| and their construction is based on linear interpo-
lation on segments connecting the upper boundary curve of the zero-set to the
point (1,1).
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Lemma 3.6. Let § be a diagonal function and suppose that 61 = 1 — 274 with
0 € [1,00][ is the mazimum value such that §(61) = 0. Then the biconic copula Cs
has the zero set Z¢c, given by

ZC& - {(a:,y) € [0’ 1]2 | Y < fﬁ(m)}»

where the function fo : [0,1] — [0,1] is given by

(1—20)"'a+1 ,ife<1-277,
fo(z) = ) (3.13)
(1—20)(z—1) ,ifz>1-277.

Proof. Let Cy be a biconic copula and suppose that 6; = 1— 277 with 0 € [1,00[ is
the maximum value such that §(61) = 0. Due to the definition of a biconic copula,
it holds that Cs is linear on the segment ((61,61),(1,0)) as well as on the segment
((61,01),(0,1)). Hence, these two segments form the upper boundary curve of
the zero-set of Cs. A simple computation shows that the function fy in
represents the considered segments. O

Due to the above lemma and the definition of a conic copula, the following
proposition is immediate.

Proposition 3.10. The only copulas that are at the same time conic and biconic
with the same given diagonal section, are the members of the following family

max(y + (1 —2)(1—29),0) ,ify <=z,
Co(z,y) = (3.14)
max(x + (1 —y)(1 — 2%),0) , otherwise

where 6 € [1,00[ . This family of copulas was introduced in Chapter @

3.6. Biconic copulas supported on a set with
Lebesgue measure zero

We characterize in this section biconic copulas that are supported on a set with
Lebesgue measure zero. To this end, we need the following proposition.

Proposition 3.11. Let Cs be a biconic copula with a piecewise linear diagonal
section §. Suppose that d € [0,1/2] is the mazimum value such that 6(d) =0, and
d* € [1/2,1] is the minimum value such that 6(d*) = 2d* — 1. Then the support of
Cs consists of:

(i) the segment {(d,d), (d*,d*));
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(ii) the segments {(z,x),(1,0)) and ((x,x),(0,1)), for any x such that the graph
of 0 contains two consecutive segments with common point (x,d(x)).

Proof. From Proposition [3.7)it follows that §(x) = 22 — 1 for any « € [d*,1]. Note
that if d = d* = 1/2, then Cs5 = T, and the support is given by the segment
((1,0), (0,1)). More generally, if ¢ is piecewise linear, then it suffices to consider a
number of cases to prove assertion (i):

(a) Let ((z1,21), (z2,22)), with d < 1 < z2 < 1/2, be a segment such that ¢ is
linear on the interval [x7,zs]. For any rectangle R = [z,y] X [z,y] such that
1 < x <y < x9, it holds that

Ves(R) = (1 —221)(1 — 222)(ps(w2) — ds(x1)) ,

where ¢ is the function defined in Lemma[3.2] Since ¢s is increasing on the
interval [0,1/2], it holds that V¢, (R) > 0. If Vi, (R) = 0, then due to the
increasingness of ¢g, it holds that ¢; is constant on the interval [z1, zo], i.e.
there exists ¢ > 0 such that §(x) = ¢(1 — 2z) on the interval [z1,x2]. The
increasingness of § then implies that ¢ = 0, which is a contradiction with the
fact that d is the maximum value such that §(d) = 0 and hence, Vi, (R) > 0.

(b) Similarly, one can prove that for any segment ((x1, 1), (22, 22)), with 1/2 <
x1 < x9 < d*, such that § is linear on the interval [x7, 5], it holds that
Ve, (R) > 0 for any rectangle R = [x,y] X [x,y] such that 21 < 2 <y < z5.

Since the support is closed, assertion (i) follows.

Next, we prove assertion (ii). Let by := (x1,21), by := (z2,z2) and bs := (x3,x3),
with d < x5 < d*, be three distinct points such that § is linear on the interval
[x1,z2] as well as on the interval [zo, 23], and § is not linear on the interval [z, x3).
Let R C [0,1]? be a rectangle such that its opposite diagonal is a subset of the
segment ((z2,x2), (1,0)). If Vg (R) = 0, then due to inequality (3.7), & is linear
on the interval [z, 3], a contradiction. Hence, Vg, (R) > 0. Consequently, the
segment ((x2,x2),(1,0)) is a subset of the support. Due to the symmetry of Cj,
the segment ((z2,x2),(0,1)) is a subset of the support as well, hence, (ii) follows.

Since the surface of Cy consists of triangles (see the proof of Proposition [3.8]), it

62C(u,v) —0; .
holds that =5~ = 0 in all other points. O
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Example 3.12. Consider the diagonal function § given by

0 Jifx

IA

1
3
ox)=qz—-1/3 ,if<z<}%,

2¢ —1 , otherwise.

Clearly, ¢ is a piecewise linear convex function. The support of the corresponding
copula is depicted in Figure a).

(0,1) (1,1) (0,1) (1,1)
(0,0) (1,0) (0,0) (1,0)

(a) (b)

Figure 3.6: The support of the biconic copulas given in Example (a) and Exam-

ple (b).

Example 3.13. Consider the diagonal function § given by

0 Lifx

INA
W=

IN

z <

)

=
N[

if

1
o(z) = T ,

1
5(3% —1) , otherwise.

Clearly, ¢ is a piecewise linear convex function. The support of the corresponding
copula is depicted in Figure [3.6/(b).

Theorem 3.2. Let Cs be a biconic copula. Then it holds that Cs is supported on
a set with Lebesgue measure zero if and only if § is piecewise linear.
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Proof. Let Cs be a biconic copula with a piecewise linear diagonal section §. From
Proposition [3.11] it follows that Cs is supported on a set with Lebesgue measure
zero. Conversely, let Cs be supported on a set with Lebesgue measure zero and
suppose that d is not piecewise linear, i.e. there exists an interval [dy, d3] such that
the graph of the restriction of ¢ to [dy, ds] does not contain any segment. Consider
the triangle Ag, 4, = Af(d,,dy),(ds,ds),(0,1)}- Consider a rectangle R located in
Ay, 4, such that Vi, (R) = 0. It then holds that Vi, (R1) = 0 for any rectangle
R; C R. Choose a rectangle Ry = [z,2] X [y,¥'] € R such that its opposite
diagonal is a subset of the segment ((0, 1), (x2, x2)) with d1 < x9 < da. Let (z1,21)
and (z3,23) be the two points on the diagonal of the unit square such that the
points (z,y) and (2',y’) are respectively located on the segments ((0, 1), (z1,21))
and ((0,1), (z3,23)). Since Vg, (R1) = 0, inequality implies that the points
(21,0(x1)), (x2,6(x2)) and (x3,d(x3)) are located on the same segment, which
contradicts the fact that 6 does not contain any segment on the interval [dy, ds].
Hence, Vi, (R) > 0 for any rectangle located in S = Ay, 4, \ {{(d1,d1), (d2,d2)) U
((dy,dq1),(0,1)) U {(da,dz),(0,1))}, i.e. S is a subset of the support of Cs5 with
non-zero Lebesgue measure, a contradiction. O

Since any copula that is supported on a set with Lebesgue measure zero is singular,
the following corollary is clear.

Corollary 3.2. Any biconic copula Cs with a piecewise linear diagonal section &
is singular.

Example 3.14. The family of biconic copulas given in is a family of singular
biconic copulas.

3.7. Dependence measures

In this section, we derive compact formulae for Spearman’s rho, Gini’s gamma and
Kendall’s tau of two continuous random variables whose dependence is modelled by
a biconic copula Cy. These parameters can be expressed in terms of the function

J.

Proposition 3.12. Let X and Y be two continuous random variables that are
coupled by a biconic copula Cy.

(i) The population version of Spearman’s pcy for X and'Y is given by
1
PCs :8/§(x)dx73.
0

78



§3.7. Dependence measures

(ii) The population version of Gini’s yo,; for X and'Y is given by

ves =4 [ 8(x)dr —2(1 - 5(1/2)).
/

(iii) The population version of Kendall’s o, for X andY is given by

7oy =1— 4/(5’(;10):10 —8(2)(0" (x)(1 — ) + 6()) dx ,
0

where &' is the left (or right) derivative of 6.

Proof. The integral of Cs over the unit square is the volume below its surface.
Since Cjy is symmetric, we consider twice the volume over the region ;. In fact
the volume over I; can be seen as a conic body with the area of its base equal to

1
J 6(z) dz and height equal to 1. Recalling the geometrical fact that the volume of
0

a conic body equals one third of the product of the area of its base and its height,
(i) follows immediately.

The expression for y¢, can be rewritten as

cs =4 /wq; /x— ,

0

where wc, is the opposite diagonal section of Cs. Since Cj is biconic, wey, is given
by
226(1/2) Jifz < 1/2,

wcé(x):
2(1—x)6(1/2) ,ifz>1/2.

Computing fw05 Ydz, (ii) follows.

In order to find 7¢,, we need to compute

11
I= //@ (z,y)dzdy .
00

%%
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As Cy is symmetric, it holds that I = 2 with I the integral over the region Iy, i.e.

1 z
~ oC oC
1= — — dydzx .
/ 5 (1Y) a9 (2, y)dydx
0 0
Computing the partial derivatives and using the notation u = it holds that

1+y x’

P oo ([ () (B 0
0 0

Since ¢ is convex, the right and left derivatives exist almost everywhere [93][95]. Note
also that the left and right derivatives coincide, except possibly on a countable subset.
Hence, the choice of derivative does not affect the result of the integration [I00].
We then use the notation ¢’ for the right derivative of 4.

Consider the function 1 :]0,1[— R given by

wmjﬁ(yﬁ(ggym.

Substituting ¢ (z) in Eq. (3.15)), it holds that

1
/1—9&
0

By integrating by parts, it holds that

—9f = 2) (8 (2)(1 — z) + 6(x))dx
[owr

Substituting in the expression for 7¢;, (iii) follows. O

Example 3.15. Let § be the diagonal function given in Example|3.0. Then

2 — 30 —204+27%(2+0) d 3—46
= a TCs = .
219 G 2+0 “ = 3120

pcs =

We computed the values of Spearman’s rho, Gini’s gamma and Kendall’s tau
by means of the expressions given in Proposition The results are listed in

Table 3.1
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Table 3.1: Spearman’s rho, Gini’s gamma and Kendall’s tau of the biconic copulas Cs,

with diagonal section dg(t) = ¢+,
9 | 3 PCs, YCs, Cs,
0 t 1 1 1

0.2 | t+2 | 0.636364 | 0.688732 | 0.647059
0.4 | tt4 0.333333 | 0.424525 0.368421
0.6 | t4° | 0.076923 | 0.198215 0.142857
0.8 | 18 | —0.142857 | 0.002920 | —0.043478

1 | # | —0.333333 | —0.166667 | —0.200000

3.8. Aggregation of biconic (semi-, quasi-)copulas

In this section, we study the aggregation of biconic semi-copulas, quasi-copulas
and copulas. We formulate one lemma and two immediate propositions.

Lemma 3.7. The sets Dg and D are closed under minimum, maximum and convex
Sums.

Proposition 3.13. Let §1,02 € Dy (resp. D) and 0 € [0,1]. If Cs, and Cs, are
biconic semi-copulas (resp. quasi-copulas), then also min(Cs,, Cs,), max(Cs,, Cs,)
and 0Cs, + (1 — 60)Cs, are biconic semi-copulas (resp. quasi-copulas). The corre-
sponding diagonal sections are given by dmin = min(dy, d2), dmax = max(dy,d2) and
001 + (1 — 0)d2, respectively.

Consequently, the class of biconic semi-copulas with a given diagonal section and
the class of biconic quasi-copulas with a given diagonal section are closed under
minimum, maximum and convex sums.

Proposition 3.14. Let 61,62 € D and 0 € [0,1]. If Cs, and Cs, are biconic
copulas, then also max(Cs,,Cs,) and 0Cs, + (1 — 0)Cs, are biconic copulas. The
corresponding diagonal sections are given by Omax and 061 + (1 — 0)d2, respectively.

Consequently, the class of biconic copulas with a given diagonal section is closed
under maximum and convex sums. Hence, the class of biconic copulas with a given
diagonal section is not join-dense in the class of biconic quasi-copulas with a given
diagonal section in contrast to the general case [92]. In general, the minimum of
two biconic copulas with a given diagonal section need not be a biconic copula.
For instance, let Cs, and Cjs, be two biconic copulas with d; and 2 as depicted in
Figure Obviously, the function 0.,y is not convex, and thus min(Cs,, Cs,) is a
proper biconic quasi-copula.
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(0,1) (1,1)

(0,0) (1,0)

Figure 3.7: An example of the graph of dmin

Since the diagonal function § determining a biconic quasi-copula Q5 can always
be written as the infimum of a family (§;);e; of convex functions, any biconic
quasi-copula Qs can be written as

Q5 = inf C5i )
i€l

where Cj;, are biconic copulas. Hence, the class of biconic copulas with a given
diagonal section is meet-dense in the class of biconic quasi copulas with a given
diagonal section.

3.9. Biconic functions with a given opposite diag-
onal section

In this section, we introduce biconic functions with a given opposite diagonal
section. Their construction is based on linear interpolation on segments connecting
the opposite diagonal of the unit square and the points (0,0) and (1,1).

Let w:[0,1] = [0,1] and «, 8 € [0,1]. The function A% : [0,1]?> — [0, 1] defined
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by

a(lxy>+<x+y>w<x+y) foty<l,
Au(z,y) = (3.16)

1—
Bz+y—1)+2—-z—-y)w (y) , otherwise
2—z—y
is well defined. This function is called a biconic function with a given opposite
diagonal section since it satisfies the boundary conditions

A%P(0,0) = o and A%P(1,1) = 3,

and A%P(t,1 —t) = w(t) for any t € [0, 1], and since it is linear on segments
connecting the points (t,1 —t) and (0,0) as well as on segments connecting the
points (¢,1 —t) and (1,1). Evidently, for a biconic function A%”, the boundary
conditions A%#(0,0) = 0 and A%#(1,1) = 1 imply that a = 0 and 8 = 1. We then
abbreviate A%! as A, with

(”Hy)“(xiy) Jifr4+y<1,
Ay (2,y) = (3.17)
1—
r+y—1+2—-z—yw (2—scy—y> , otherwise.

Clearly, when w € Og, the function A, defined in (3.17) has 1 as neutral element
and therefore, if A, is an aggregation function then, it is also a semi-copula.

Let us introduce the following notations

Ji={(z,y) €0,1]* |z +y <1}
Jo = {(z,y) € 0,1 |z +y > 1}
O=JNJs.

In the next proposition, we characterize the functions in Og for which the corre-
sponding biconic function is a biconic aggregation function.

Proposition 3.15. Let w € Og. Then the function A, : [0,1]2 — [0,1] defined in
is an aggregation function if and only if

(i) the functions A, , pw :]0,1] — [0, 1], defined by A, (x) = wgf), polz) = 1=
are decreasing;

(ii) the functions p, &, : [0,1[— [0,1], defined by py,(z) = ‘f(_‘”), L, = el
are Increasing.

Proof. Suppose conditions (i) and (ii) are satisfied. The function A, defined in
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clearly satisfies the boundary conditions of an aggregation function. We
prove the increasingness of A, in the first variable (the proof of the increasingness
in the second variable is similar). Let (z,y), (z',y) € [0,1]? such that = < 2’. If
(z,y), (¢',y) € Jy, the increasingness of A, is equivalent to

@¥+ww(fﬁy>—%w+ww<xiy>20.

‘. . . _ ! _ :E/
Using the notations u = praem and v’ = P

() sty

1—w 1—u

the last inequality is equivalent to

or, equivalently,
Y(po (') = pio(u)) > 0. (3.18)
Since x < «’, it holds that v < ' and therefore inequality (3.18) holds due to the

increasingness of the function .

If (z,y), (¢',y) € Ja, the increasingness of A, is equivalent to

l—y l—y

2i;3y and v = 27136%, the last inequality is equivalent

Using the notations v =
to
(22— ) = 1) = (2 -2 —y)w() — 1) > 0.

Simple processing yields,

(1-y) (1‘“(“) - 1‘“(“')) >0,

v v’

or, equivalently,
(1= 9)(pu(v) = pu(v') > 0. (3.19)

Since z < 2/, it holds that v < v’ and therefore inequality (3.19)) holds due to the
decreasingness of the function p,,.

The remaining case is when (x,y) € J; and (2/,y) € Jo \ O. The two previous
cases then imply that

Au(a,y) = Au(z,y) = (Au(@’,y) — Au(1 = y,9)) + (Au(1 — y,y) — Au(z,y)) 2 0.

Similarly, one can prove that the increasingness of A, and the decreasingness of &,
imply that As is increasing in the second variable.

Conversely, suppose that A, is an aggregation function. Let z, 2’ € [0, 1] such that
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x < 2’ and choose y € [0, 1] such that 2’ + y < 1. It then holds that

Ty 'y
< <1.
1—m+y_ 1—m’+y_

The increasingness of A, in the first variable implies

'y Ty
-z — -2 > (0.
Aw(l—x”y) Au (1—x’y>_0

After some elementary manipulations, the last inequality becomes

Y(po (@) — pu(z)) > 0.

Since x and 2’ are arbitrary in [0, 1], the increasingness of p,, follows. Similarly,
the decreasingness of the function p, can be proved using the increasingness of A,
in the first variable.

The decreasingness of A, and the increasingness of £, can be obtained using the
increasingness of A, in the second variable. Therefore, conditions (i) and (ii) follow,
which completes the proof. O

Let A, be a biconic function with opposite diagonal section w. The function A,
defined by
A = ga(A), (3.20)

where @9 is the transformation defined in , is again a biconic function whose
diagonal section 04/ is given by d4/(z) = © — w(x). This transformation permits us
to derive in a straightforward manner the conditions that have to be satisfied by an
opposite diagonal function to obtain a biconic quasi-copula (resp. copula), which has
that opposite diagonal function as opposite diagonal section. Using Proposition [3.6
and Theorem [3.1] the following two propositions are immediate.

Proposition 3.16. Let w € O. Then the function A, : [0,1]*> — [0,1] defined
n s a quasi-copula if and only if the functions A\, and u,, defined in
Proposition [3.15, are decreasing and increasing, respectively.

For the class of biconic semi-copulas with a given opposite diagonal section belonging
to O, one can easily see that the functions p,, and £, are decreasing and increasing,
respectively. Hence, any biconic semi-copula with a given opposite diagonal section
w € O is a biconic quasi-copula. Consequently, the class of biconic semi-copulas
with a given opposite diagonal section coincides with the class of biconic quasi-
copulas with a given opposite diagonal when the opposite diagonal section is an
opposite diagonal function.
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Proposition 3.17. Let w € O. Then the function A, : [0,1]%> — [0,1] defined in
is a copula if and only if w is concave.

Example 3.16. Consider the opposite diagonal functions wry, and wry (). Obvi-
ously, wry, and wr, are concave functions. The corresponding biconic copulas are
respectively Ty and Ty,.

Example 3.17. Consider the opposite diagonal function wre(xz) = z(1 — x).
Obuviously, wry 1s concave. The corresponding biconic copula is given by

Ty
r+y

,ifr+y <1,

Cpr (l‘,y) =
r(2—z—y)—(1—y)?

, otherwise.
2—r—y

We now focus on the symmetry and opposite symmetry properties of biconic copulas
with a given opposite diagonal section.

Proposition 3.18. Let C,, be a biconic copula. Then it holds that
(i) C, is opposite symmetric;

(ii) C,, is symmetric if and only if w is symmetric with respect to the point
(1/2,1/2), i.e. w(z) = w(l —x) for any x € [0,1/2].

Proof. Let C,, be a biconic copula. Assertion (i) is clear. We discuss the case when
x4y <1 (the case x+y > 1 can be proved similarly). Using the notation z = ﬁ7
the symmetry property of C,, is equivalent to

w(z)=w(l-2),

i.e. w is symmetric with respect to the point (1/2,1/2), whence (ii) follows. [

We conclude this section by finding the intersection between the class of biconic
copulas with a given opposite diagonal section and the class of biconic copulas with
a given diagonal section and the class of conic copulas.

Proposition 3.19. Let C' be a biconic copula with a given opposite diagonal section
and suppose further that C is a biconic copula with a given diagonal section. Then
it holds that C' is a member of convex sums of T and Ty,.

Proof. Suppose that C' is a biconic copula with a given opposite diagonal section
w and suppose further that C' is a biconic copula with a given diagonal section §.
Due to the construction method of biconic copulas with a given diagonal (resp.
opposite diagonal) section, § and w must be piecewise linear and are given by
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2zw(1/2) yif e <1/2,
o(x) =
20— 1421 —2)w(1/2) ,ifx>1/2,
2x6(1/2) yife <1/2,
w(x) =

201 — z)8(1/2) ,ifz>1/2.

Since § and w are the diagonal and opposite diagonal sections of C, it holds that
0(1/2) = w(1/2). Using the notation § = 2§(1/2) = 2w(1/2), § and w can be
rewritten as

0(x) = 001 () + (1 = 0)dr (2),  w(z) = Owny () + (1 — O)wr, (2).-

Recalling that any biconic copula with a given diagonal (resp. opposite diagonal)
section is uniquely determined by its diagonal (resp. opposite diagonal) section,
our assertion follows. O

Let C,, be a biconic copula. Due to the definition of C,, the only possible zero-sets
are

Ze, =21 = [Oa 1]2\]0’ 1]2

and
ZCw :ZTL = {(xvy) € [07”2 | T+y S 1}

Recalling that every conic copula is uniquely determined by its zero-set (see
Chapter , the following proposition is clear.

Proposition 3.20. Let C,, be a biconic copula with a given opposite diagonal
section w and suppose further that C, is a conic copula. Then it holds that
Cw :TM or Cw :TL.
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4 Upper conic, lower conic and biconic
semi-copulas

4.1. Introduction

Several methods to construct (semi-, quasi-)copulas have been introduced in the
literature. Some of these methods start from given sections. Such sections can be
the diagonal section and/or the opposite diagonal section [23] (see also Chapters
and [3)), or a horizontal section and/or a vertical section [37, [74, 7). All of the
above methods use sections that are determined by straight lines in the unit square,
such as the diagonal, the opposite diagonal, a horizontal line or a vertical line. In
the present chapter, we consider sections that are determined by a curve in the
unit square, which represents a strict negation operator.

For any strict negation operator N : [0, 1] — [0, 1], the surface of the semi-copula T
is  constituted from  (linear) segments  connecting the  points
(0,0,0) and (a,N(a),min(a, N(a))) as well as segments connecting the points
(a, N(a),min(a, N(a))) and (1,1,1), with N(a) < a, and segments connecting the
points (0,0,0) and (a,N(a),min(a, N(a))) as well as segments connecting the
points (a, N(a), min(a, N(a))) and (1,1,1), with N(a) > a. This observation has
motivated the construction presented in this chapter.

This chapter is organized as follows. In the following section, we recall some
definitions and facts concerning convexity and generalized convexity. In Section [4.3]
we introduce the class of upper conic functions with a given section. In Sections [{.4]
and we characterize upper conic semi-copulas, upper conic quasi-copulas and
upper conic copulas with a given section. In Sections (resp. , we introduce in
a similar way the classes of lower conic (resp. biconic) functions with a given section
and characterize lower conic (resp. biconic) semi-copulas, lower conic (resp. biconic)
quasi-copulas and lower conic (resp. biconic) copulas with a given section.

4.2. Convexity and generalized convexity

Convexity plays a key role in the characterization of some classes of semilinear
copulas, such as conic copulas (see Chapter [2]) and biconic copulas (see Chapter |3)).
A more general type of convexity, called generalized convexity, has been introduced
in the literature and has been used, for instance, to characterize the comparability
of two quasi-arithmetic means [11], [94].
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We denote an open, half-open or closed interval in R with lower endpoint a and
upper endpoint b as I(a, b).

A function h : I(a,b) — R is called convez (on I(a,b)) [03] if the inequality
h(Az + (1 — N)y) < Mh(z) + (1 — N)h(y) (4.1)

holds for any z,y € I(a,b) and any A € [0, 1]. If the converse inequality holds, then
the function h is called concave. In the next proposition, we state an equivalent
formulation of convexity.

Proposition 4.1. [93] A function h : I(a,b) = R is convex if and only if

1 =z hx)
Ly hy)| =0, (4.2)
1z h(z)

for any z,y,z € I(a,b) such that x <y < z.
Proposition 4.2. A function h: I(a,b) — R is concave if and only if

for any x,y,z € I(a,b) such that x <y < z.

The notion of convexity can be further generalized as follows.

Definition 4.1. Let v : I(a,b) — R be a function and € : I(a,b) — R be a strictly
monotone continuous function. Then v is called convex (resp. concave) w.r.t. & if
the function v o &1 is convex (resp. concave) on the interval £(I(a,b)).

This definition generalizes the one given in [I11 [94], where both functions v and &
were considered to be strictly increasing and continuous.

Example 4.1. Let v,£: [0,1] — [0,1] be defined by v(x) = (1 — x)? and &(z) =
1 —22. Clearly, v and & are strictly decreasing and continuous. One easily verifies
that vo & 1(x) = (1—+/1—2)% and Eov™Y(z) = 1— (1 —/x)%. Hence, v is convex
w.r.t. £, while £ is concave w.r.t. v.

In the following propositions, we state equivalent formulations of generalized
convexity (resp. concavity).
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Proposition 4.3. [II] Let v : I(a,b) — R be a function and £ : I(a,b) — R be a
strictly increasing continuous function. Then

(i) v is convex w.r.t. £ if and only if

L &(z)  v(x)
1 &y) vly)| =0, (4.4)
L&(z)  v(z)

or, equivalently,
V() — i) - vly) — viz)
£z)—&ly) — &) —&x)”

for any x,y,z € I(a,b) such that x < y < z.

(ii) v is concave w.r.t. £ if and only if the converse of inequality holds for
any x,y,z € I(a,b) such that v < y < z.

Similarly, one can obtain the following proposition.

Proposition 4.4. Let v : I(a,b) — R be a function and & : I(a,b) — R be a
strictly decreasing continuous function. Then

(i) v is convex w.r.t. £ if and only if

L &(x) wv(z)
1 &y vy =0, (4.6)
L &z v(2)

or, equivalently,
v(z) ~ () _ i)~ v(a)
£(z) —€ly) ~ &) —&(@)

for any z,y,z € I(a,b) such that x < y < z.

(ii) v is concave w.r.t. £ if and only if the converse of inequality @ holds for
any x,y,z € I(a,b) such that v < y < z.

4.3. Upper conic functions with a given section

In this section, we introduce the definition of an upper conic function with a given
section. A function N : [0,1] — [0,1] is called a negation operator if it is decreasing,
and satisfies N(0) =1 and N(1) = 0. A negation operator N is called strict if it is
continuous and strictly decreasing; a strict negation operator N is called strong if
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it is involutive (see e.g. [82]). A strict negation operator N has exactly one fixed
point a €10,1[, i.e. N(a) = a.

For a strict negation operator N, we introduce the following subsets of [0, 1]? (see

Figure [4.1)):

Sy = {(z,y) €[0,1% | y < N(x)}
Fn = [0,1*\ Sy .

The sets Sy and Fy are depicted in Figure I} Let C be a semi-copula and
g : [0,1] — [0,1] be defined by g(z) = C(z,N(x)). Then the function A% - :
[0,1]> — [0, 1] defined by

C(IL’,y) ) if (fﬂ,y) € SN;
u 1-—
AN colz,y) =1 - 1]%((21))(1 —y) ,if (z,y) € Fy and y # 1, (4.8)
- 1
xr 71fy:1)

where (21, N(x1)) is the unique point such that (x,y) is located on the segment
((x1,N(x1)),(1,1)) (see Figure , is well defined. The function A% ; is called an
upper conic function with section (N, g) since AR ~(t, N(t)) = g(t) for any ¢ € [0, 1],
and it is linear on any segment ((t, N(t)),(1,1)) in Fy. Note that the collinearity
of the points (z1, N(z1)), (z,y) and (1,1) implies that

1 —g(z1)

_2—9m) _1-g(z)
1—N($1)

1—331

1 1-y)=1 (1—=x).

This equality ensures the continuity of A~ on Fy. Note also that A% o is
continuous if and only if C' is continuous on the closure of Sy.

4.4. Upper conic semi-copulas and quasi-copulas
with a given section

. on. W i . . . Wi

In this section, we characterize upper conic semi-copulas and quasi-copulas with a

given section. For an upper conic function A%, ., this characterization involves the
;

use of the functions o, @, ¥, : 10,1[— R defined by

T N 1—=x

V) = 4D B =5
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(0,1) (1,1)

»
=

(0,0) o (1,0)

Figure 4.1: Illustration of the subsets Fxy and Sy corresponding to a strict negation
operator N.

Note that the strict decreasingness of N implies the strict increasingness of ¢ and
the strict decreasingness of @.

Proposition 4.5. Let N : [0,1] — [0, 1] be a strict negation operator and C be a
semi-copula. Then the function A o defined by @) is a semi-copula if and only
if

(i) the function 1; 18 decreasing;

(ii) the function i is increasing.
¥

Proof. Suppose that conditions (i) and (ii) are satisfied. To prove that AY; . is
a semi-copula, it suffices to prove its increasingness. Since C' is a semi—copuia, it
suffices to prove the increasingness of A} -~ in each variable on Fi. We prove
the increasingness of A% .~ in the first variable (the proof of the increasingness in
the second variable is siinilar). Let (z,y),(2',y) € Fn such that < 2’ and let
(21, N(z1)) and (z2, N(x2)) be the unique points such that (z,y) and (2',y) are
located on the segments ((z1, N(x1)), (1,1)) and ((x2, N(z2)), (1, 1)), respectively.
The increasingness of A . in the first variable is then equivalent to

(-0 (12 - {28 ) — (- (@) - Fa) 20, (49)

Since x1 < x5 and 13 is decreasing, inequality lb immediately follows.

Conversely, suppose that Ay - is a semi-copula. Consider arbitrary @1,z € 10,1]
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such that z1 < xo, and let (z,y) and (2’,y) be two points in Fy that are located
on the segments ((z1, N(x1)),(1,1)) and {(x2, N(z2)), (1,1)), respectively. The
increasingness of A% . in the first variable implies that

AN o' y) = A o(2,y) 20, (4.10)

or, equivalently,
Y(x1) — P(2) > 0.

Hence, the decreasingness of J follows. Similarly, the increasingness of Ay - in

o~

the second variable implies the increasingness of i O
2

Before characterizing upper conic quasi-copulas, we provide some properties of
sections of quasi-copulas. These properties are direct consequences of the increas-
ingness and 1-Lipschitz continuity of quasi-copulas.

Proposition 4.6. Let N : [0,1] — [0,1] be a strict negation operator. Let C be a
quasi-copula and g : [0,1] — [0,1] be defined by g(x) = C(x, N(x)). Then it holds
that

(i) max(0,z + N(z) — 1) < g(z) < min(z, N(z)), for any x € [0,1];

(if) N(2') — N(z) < g(z') — g(z) <2’ — x, for any x, 2’ € [0,1] such that x < z'.
Proof. Assertion (i) follows from the bounds on quasi-copulas. Let z, 2’ € [0, 1]
such that x < z’. Since C is increasing, it holds that

C(z,N(z)) < C(2',N(x)) and C(z', N(2")) < C(2', N(x)).
Since C' is 1-Lipschitz continuous, it holds that
C(2',N(x))—C(x,N(x)) <2'—x and C(2', N(z))—C(2', N(2")) < N(z)—N(z').
Using the above inequalities, it follows that

N(z') = N(z) < C(2',N(a')) = C(a', N(z)) < C(a', N(2')) — C(z, N(z))
( ) g .’E) (.’EI,N(LU))—C({E,N(:L')) Sx’—x.

Hence, assertion (ii) follows. O

In fact, assertion (ii) of Proposition implies the decreasingness of ¥ and the

~

increasingness of —
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Proposition 4.7. Let N : [0,1] — [0,1] be a strict negation operator with fixed
point a. Let C be a quasi-copula and g : [0,1] — [0,1] be defined by g(x) =
C(xz,N(x)). Then it holds that

o~

(i) the functions 12 and i are decreasing and increasing, respectively;
2

(ii) the function ¢ : [0,a[U]a,1] — R defined by ((z) = ;_Z‘(\][((xm)) is decreasing

on the interval [0,a[ as well as on the interval ]a,1].

Proof. Consider arbitrary x,2’ €]0,1[ such that < z’. Since N(z') — N(z) <
g(x') —g(z) <2’ —x and 1 — g(z) > max(l —z,1 — N(z)), it holds that

glw) —g@) _1=gl@) o9@) —gl@) o 1-gl@)

N(z) — N(z) ~ 1—N(x) ' —x 1—xz
The latter inequalities imply that
(9(z) —g(2'))(1 = N(2)) < (1 — g(x))(N(x) — N(a'))
and
(9(2") —g(2))(1 = 2) < (1 —g(2))(a" — ).
Some elementary manipulations yield

(1= N(@)(1=g(=") = (1= N@))(1 - g(x)) <0

and
(1—-2)(1-g(x) - (1-=)(1-g(a)) <0,

or, equivalently,

and

Hence, the decreasingness of ¢ and the increasingness — follow, i.e. assertion (i)

follows.

Similarly, one can prove assertion (ii). O
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Corollary 4.1. Let N : [0,1] — [0,1] be a strict negation operator and C be a
quasi-copula. Then the function Ay o defined by @) is a semi-copula.

Proposition 4.8. Let N : [0,1] — [0,1] be a strict negation operator and C be a
quasi-copula. Then the function A}(f,c defined by @) s a quasi-copula if and only

if

(i) the function - © is increasing;

-1
(i) the function v — is decreasing.

Proof. Suppose that conditions (i) and (ii) are satisfied. Due to Corollary [4.1] the
function A’f\,’c is a semi-copula. Therefore, to prove that AT;V’C is a quasi-copula,
we need to show that it is 1-Lipschitz continuous. Recall that the 1-Lipschitz
continuity is equivalent to the 1-Lipschitz continuity in each variable. Since C
is a quasi-copula and A}, - is continuous, it is sufficient to show its 1-Lipschitz
continuity in each variable on Fy. We prove the 1-Lipschitz continuity of A}{LC
in the first variable (the proof of the 1-Lipschitz continuity in the second variable
is similar). Let (z,y), (¢',y) € Fn such that x < 2’ and suppose that (x1, N(z1))
and (g, N(z2)) are the unique points such that (z,y) and (2,y) are located
on the segments ((z1, N(z1)),(1,1)) and {((x2, N(z2)),(1,1)), respectively. The
1-Lipschitz continuity of A}, - in the first variable is equivalent to

(1-y) (11__]3](&)) - 11__]*‘\’[(&22))) < -z (4.11)

Since the points (x1, N(z1)), (z,y) and (1,1) as well as the points (z2, N(z2)),
(z',y) and (1,1) are collinear, it follows that

—z=(1-y) (1 i;vg&l) 1 :VJ(;;J

Therefore, inequality (4.11) is equivalent to

1—g(@1) 1-—g(z2) -2 1-m
1—N(.’171) 1—N((L‘2)_1—N<$1) 1—N((E2)’

or, equivalently,

o~ ~

(Y(x2) — @(22)) — (Y(21) — @la1)) 2 0.

Since x1 < x5 and zz — ¢ is increasing, the above inequality immediately follows.

Conversely, suppose that A}(,C is a quasi-copula. Consider arbitrary 1,29 €]0,1]
such that z1 < xo, and let (z,y) and (2’,y) be two points in Fy that are located
on the segments ((z1, N(x1)),(1,1)) and {(x2, N(z2)), (1,1)), respectively. The
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1-Lipschitz continuity of A}, - in the first variable implies that
AR (e’ y) — Ay ol@,y) <2’ —x, (4.12)

or, equivalently,

~ ~

(¢ (x2) — @la2)) = (P(21) — @(21)) 2 0

Hence, the increasingness of 12 — ¢ follows. Similarly, the 1-Lipschitz continuity of

-1
Ax/,c in the second variable implies the decreasingness of 2 —. O

Example 4.2. Let N : [0,1] — [0,1] be a strict negation operator and C = Tyy.
One easily verifies that the conditions of Proposition[[.§ are satisfied. Moreover,
the corresponding upper conic function is T itself.

Example 4.3. Let N : [0,1] — [0,1] be a strict negation operator such that
N(z) <1—z for any x € [0,1], and C = Tv. One easily verifies that the conditions
of Proposition are satisfied and the corresponding upper conic function AY o is
a semi-copula. On the other hand, due to Propositz'an A}(LC s a quasi-copula

N
if and only if the functions (z) and * are decreasing and increasing on
1—x 1— N(z)

the interval 10, 1[, respectively.

Example 4.4. Let N : [0,1] — [0,1] be a strict negation operator such that
N(z) > 1—=x for any x € [0,1], and C = Tr,. One easily verifies that the conditions
of Proposition [{.§ are satisfied. Moreover, the corresponding upper conic function
is Ty, itself.

Example 4.5. Let N : [0,1] — [0,1] be a strict negation operator and C' = Tp.
One easily verifies that the conditions of Proposition [[.8 are satisfied and the
corresponding upper conic function AX/,C is a quasi-copula, and hence, a semi-
copula. Consequently, when the considered semi-copula is Tp, the class of upper
conic semi-copulas and the class of upper conic quasi-copulas coincide.

Proposition 4.9. Let AJUV,C be an upper conic quasi-copula. Then it holds that
(1) if g(mo) = o for some xg €10, 1], then g(x) =z for any x € [0, zo];

(ii) of g(xo) = N(zg) for some x¢ €]0,1[, then g(z) = N(z) for any z € [xo,1].

Proof. Suppose that Azuv,c is an upper conic quasi-copula and suppose further that
g(wo) = xo for some z¢ €10, 1[. Since A%  is an upper conic quasi-copula, it holds
that the function ¢ — @ is increasing. Therefore, 121\(:13) —¢x) < 7;(1130) —@(xg) =0
for any z €10, z¢]. Hence, g(x) > x for any = €]0, z¢]. Since g(z) < x for any
x € [0,1] and g(0) = 0, it must hold that g(z) = z for any x € [0, z¢], and hence,
assertion (i) follows.
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(0,1) (1,1)

(0,0) (1,0)

Figure 4.2: An illustration of the triangle 7.

Assertion (ii) can be proved similarly using the decreasingness of the function

-1
v — on the interval [zg, 1]. O
P

4.5. Upper conic copulas with a given section

4.5.1. The case of an arbitrary semi-copula '

Suppose that the graph of the strict negation operator N contains a segment
determined by the points (z1, N(z1)) and (w2, N(x2)), with x1 < 2. Suppose
further that the function g¢ is linear on the interval [z1,22]. Let us introduce
the notations y; = N(z;) and z; = g(x;) for ¢ € {1,2}. From the definition of
Ay o, it follows that A} o is linear on the triangle T' := A4, 41) (22.52),(1,1)} -
This configuration is depicted in Figure 4.2

For any (z,y) € T, it holds that
~veo(r,y) =ar+by+c. (4.13)
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84.5. Upper conic copulas with a given section

Furthermore,

ax1 +byr +c =2z

axe +bys + ¢
a+b+c=1.

22

Solving this system of linear equations, we obtain

re+sy+t

Neley) = ——"—, (4.14)

where

r=2zo—21+ty1 — Y2+ Y221 — Y122
S =21 — 29+ Ty — X1+ 2T120 — X227
t = T1Yyo — T2y1 — Y221 + Y122 — 122 + X221

U =22 —21+Y1 — Y2+ T1Y2 — T2Y1 -

Lemma 4.1. For any vi,vs € [x1, 2] it holds that

)
S
|

By =
5

Proof. The proof is a matter of elementary manipulations. O

Next, we characterize the upper conic copulas AK/,C when the functions N and g
are piecewise linear. To this end, we need the following proposition.

Proposition 4.10. Let A%, ~ be an upper conic function such that N and g are lin-
ear on the interval [x1, x2] as well as on the interval [z2, z3]. Let R be a rectangle lo-
cated in the polygon enclosed by the points (z1, N (1)), (z2, N(z2)), (z3, N(z3)) and
(1,1)  such that its diagonal is a  subset of the  segment
((x2, N(z2)),(1,1)). Then it holds that Vay, ., (R) > 0 if and only if ¥ is con-
vex w.r.t. ¢ on the interval [x1, 3]

Proof. Consider the rectangle R = [z,2'] X [y,y] depicted in Figure Let
us introduce the notations y; = N(z;) and z; = g(z;) for i € {1,2,3}. The
A} c-volume of this rectangle is given by

Vag (B = o —) (5= 1)
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(0,1)

(1,1)

1
1

1
1
!

(z1,91)

(72, y2)

SN

(0,0)

Figure 4.3: An illustration for the proof of Proposition m

where

7= 23— 204+ Y2 — Y3 + Y322 — Y223

u' = w3 — w2+ Y2 — Y3 + Tays — T3Y2 .
The nonnegativity of Vau _(R) is equivalent to

r
- <0.
u

(4.15)

Therefore, inequality (4.15]) is equivalent to

(23) = laz) _ Dlaz) =9
Plas) = @lez) ~ Blwz) -

. (4.16)
In fact, inequality li is equivalent to the convexity of 12 w.r.t. @ on the

interval [z, x3]. This can be seen as follows. Since ¢ is strictly decreasing, we
use Proposition (1) to prove that 1 is convex w.r.t. ¢. Consider arbitrary

x,y,z € [x1,23] such that z < y < z. Suppose first that inequality (4.16) is
satisfied. To prove that 1) is convex w.r.t. ¢, we distinguish the following subcases:
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(a) fz <y <z<zgoraz <z <y< z then it holds that

is equivalent to

o~ o~ ~ ~

Dly) = Dlws) _ Dly) = Plea) | dlwa) = ()

< =

Ply) — Plz2) = @y) —@x)  @ly) —Plz)

After some elementary manipulations and using (4.16)), the latter inequality
becomes

V(y) = dls) _ dley) —Plaz) _ Plaz) —dx) _ dls) — (@)

Ply) — P(z2)  Plas) — Glaz) ~ Plz2) —P(z)  @laz) — Glar)’
which always holds.

(¢) The case © < y < x9 < z can be handled similarly.
The converse of the proof is immediate. O

Remark 4.1. Let Ay o be an upper conic function such that g(z) =0 for any
x € [0,1]. Then inequality is equivalent to the convezity of N on the interval

[.’El,.’Eg].

Proof. Setting g(x) = 0, inequality (4.16) is equivalent to

1 _ 1 1 . 1
lfN(:Eg) lfN(diz) < lfN(Iz) lfN(:L’l)

1l—x3 11—z — 11—z l1—z; ?

T—N(z3) 1—N(z2) 17NJ(J12) T 1—-N(=x1)

or, equivalently,

N(z3) — N(z2)
To — T3 + N(J)?,) — N(l‘g) + $3N($2) — l‘gN(J?g)

< N(zq) — N(z1)
T xrp — X2+ N(Jfg) — N(Z‘1) + 1‘2N($1) — .Z‘lN(l‘g) '
Setting N(x;) = y; for any 7 € {1,2,3}, the latter inequality is equivalent to

Y1— Y2 _ Y2 — Y3 >0
Y1 — Y2+ T2 — Ty +X1Y2 — X2Y1 Y2 — Y3 + T3 — T2 + Tays — T3Y2

)
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which is exactly inequality (2.10) in Chapter [2| The latter inequality has led to
the convexity of the function f = N on the interval [z, 23]. O

Proposition 4.11. Let N : [0,1] — [0,1] be a piecewise linear strict negation
operator and C' be a copula such that g is piecewise linear. Then the function A} o

defined by (@ s a copula if and only if
(i) the function ¥ is conver w.r.t. &

(i) for any z,z’ € [0,1] such that x < z’, it holds that

Clz, N(@) + Ay o', N(2)) = g(x) + g(2').

Proof. Suppose that conditions (i) and (ii) are satisfied. Since A}, . satisfies the
boundary conditions of a semi-copula, we need to show its 2-increasingness. Since
N and g are piecewise linear, the set F consists of triangles of the type A =
A (u,N(w)),(v,N(v)),(1,1)} such that g is linear on the interval [u,v] (see Figure .
Due to the additivity of volumes, it suffices to consider a restricted number of cases.
Consider a rectangle R := [z, 2] x [y,3] C [0,1]2.

(a) Suppose that R C Fy. We distinguish the following subcases:
(1) Suppose that R is included in a triangle of type A. Then Vay _(R) =0.

(2) Suppose that the diagonal of R is along the edge shared by two triangles
of type A. Using Proposition condition (i) implies the positivity
of VA}‘\},C (R)

(b) Suppose that R is included in Sy. Then it holds that V4 _(R) = Ve(R) > 0.

(¢) Suppose that the corners (z,3’) and (z’,y) of R are located on the graph
of N, ie. R=[z,2'] x [N(2'), N(z)]. Using condition (ii), the positivity of
Vay, (R) immediately follows.

Conversely, suppose that A“f\,’c is a copula. Proposition implies that ’LZ)\ is
convex w.r.t. ¢ on ]0, 1[ and hence, condition (i) follows. Let x, 2" € [0,1] such that
z <z’ and consider the rectangle R = [z, 2] x [N ('), N(z)]. Since Vay _(R) is
positive, it then follows that

Vag o (R) = C(x, N(2)) = g(x) — g(a) + A} o (2", N(2) 2 0,
and hence, condition (ii) follows. O

The above result can be generalized for any strict negation operator N and any
copula C. To this end, we first need to construct a class of [0,1]2 — [0,1]
functions C* starting from a given copula C. Consider g =0 < 21 < --- <z, =1
and yo = 0 < y1 < -+ < ym = 1. In the points (z;,y;) with i € {0,...,n},
Jj€{0,...,m}, we set C*(z;,y;) = C(x;,y;); in other words, C* coincides with C'
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on the given grid. On any rectangle R; ; = [z, Zi41] X [y, y;+1] withi € {0,...,n—
1}, 7 € {0,...,m — 1}, the function C* is defined to be linear on the triangle
A (i), @501 (wi41,9;)) @5 well as on the triangle Aq(w, ;1) @140 @100}
We show in the following proposition that such a function C* is a copula.
Proposition 4.12. Consider xo =0 < z1 < ... <z, =landy =0< y; <
.. < Yym = 1. For any copula C, the function C* : [0,1]> — [0,1] defined by
C*(z,y) =

C(l’,y) ’ Zf (l‘,y) = (x7,7y])7

ai @ +bigy+eiy i (1,y) € Ry andy < P00 (v — @) + yp1,  (417)

agﬁjx + b;yjy + Cgﬁj . if (z,y) € R;j and y > 7?:’1;1 (x —2) + Y+,

where i € {0,...,n—1}, j €{0,...,m—1}, R; ; = [z, Ti41] X [yj,yj4+1] and

C(ziy1,y;) — Clxi,y5) o = Clxiy1,yj41) — Clwi, yj41)

g = Tig1 — Ty ’ wi Tiy1 — T4 ’
b — C(xi,yj+1) — C(wi, y;) Yo C(zit1,Yj+1) — C(it1,yy)
1, T ) t,J ’
! Yj+1 — Yj e Yj+1 — Yj

/ /
cij = C(xi,y;) — aijai —bijyj, ¢ ;= C(Tit1,Yj+1) — @ Tiy1 — b jYj41,

s a copula.

Proof. Since C is a copula, it holds that C* satisfies the boundary conditions of
a semi-copula. Therefore, to prove that C* is a copula, it suffices to show its
2-increasingness. Let R = [z,2'] x [y,9'] C [0,1]2. Due to the additivity of volumes,
it suffices to consider that R is located in a rectangle R, ;, with ¢ € {0,...,n — 1}
and j € {0,...,m — 1}.

a) If R is located in the triangle A, . . y or in the triangle
(24,y5) i+1,Y5)

S @Y 4+1)5(

, then Vs (R) = 0.

A(wi,yj+l),($i+1yyj+1)7($i+1;yj)

(b) If the opposite diagonal of R is a subset of the segment ((x;, yj+1), (Tit+1,Y5)),
then it holds that

VC* (R) = (,’E/ - x)(a;’j - am») = 7VC(R1’J) >0.
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Remark 4.2. The construction of the copula C* is related to the orthogonal grid
construction of copulas [16] and the construction of piecewise linear aggregation
functions based on triangulation [21]].

Lemma 4.2. Let N : [0,1] — [0, 1] be a strict negation operator and C be a copula.
If N and g are linear on the interval [a,b] C0,1[, then the function 1o @~ is
linear on the interval [p(b), p(a)] as well.

Proof. Since N and g are linear on the interval [a, b], there exist aj, as,b1,by € R
such that N(z) = a;x + by and g(z) = asx + be for any = € [a,b]. Note that
a1 + by # 1 due to fact that b < 1. Some elementary manipulations show that

~ 1 - 1—&2—1)2 ag(l—bl)—al(l—bg)
’(/)OSO (x)_].—al—bg 1—&1—[)1 .
i.e. ¥ o @' is linear on the interval [3(b), #(a)]. O

Theorem 4.1. Let N : [0,1] — [0,1] be a strict negation operator and C be a
copula. Then the function Ay o defined by @ s a copula if and only if

(i) the function O is convex w.r.t. §;

(i) for any z,z" € [0,1] such that x < z’, it holds that
Cla,N(a") + Ay o(2', N(z)) > g(z) + g(2).

Proof. Suppose that conditions (i) and (ii) are satisfied. Since A}, . satisfies the
boundary conditions of a semi-copula, we need to show its 2-increasingness. Due
to the additivity of volumes, it suffices to consider a restricted number of cases.
Consider a rectangle R := [z,2'] x [y,y] C [0, 1]%

(i) If R C Fy, then let by = (21, N(21)), b2 = (22, N(z2)), bg = (23, N(x3))
and by = (x4, N(x4)) be four (possibly coinciding) points on the graph
of N such that the points (z,y), (z,v), (¢/,y) and (z',y’) are located on
the segments (by, (1,1)), (b2, (1,1)), (bs, (1,1)) and (bg, (1, 1)}, respectively
(see Figure [1.4)). Let ¢1 = (z1,9(x1)), c2 = (22, g(22)), c3 = (z3,9(x3)) and
cq4 = (24, 9(z4)) be the points on the graph of ¢g corresponding to by, ba,
bs and by, respectively. The points by, by, by and by, together with (0, 1)
and (1,0), determine a piecewise linear strict negation operator Ny such that
N(x;) = Ni(x;) for any @ € {1,2,3,4}. The points ¢, ¢z, c3 and c4, together
with (0,0) and (1,0), also determine a piecewise linear function g; such that
g(x;) = g1(x;) = Cy(xy, N(x;)) for any ¢ € {1,2,3,4}, for some copula C;
(due to Proposition such a copula C; always exists). Let us introduce
the functions @1 and 1; defined by

P1(w) = %7 )1 (z) = 11—91\/.11((»’;))
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(0,1) (1,1)

(0,0) Ty T2 T3 Lq (1,0)

Figure 4.4: Illustration for the proof of Theorem |4.1

Due to Lemma the function 121\0 aﬁl\_l is piecewise linear. Since 12 is
convex w.r.t. ¢ it holds that

<)

V@) = Pi(a)  Plain) — ()
(ig1) — Pr(y P

5)

- Do) =4
P(xi) — ¢

S F@) —f@n) ~ film) =

for any i € {2,3}, i.e. ¢; is convex w.r.t. @; on the interval [y, z4]. Consider
now zg €]0,1[ such that 3 < x1. Let us introduce the notations x5 = @(x2),
zy = p(x1) and 23 = @(xp). Let us further introduce the functions h and hy
defined by h = 1/70 ¢ 'and hy = 121 o @1 ', Since 1/715 convex w.r.t. to ¢ it
follows that A is convex, and hence,

ha(zp) — ma(2h) _ h(xp) —ha(@y) _ ki) — h(z})

Ty — @) - Ty — @) B Ty — T
< h(z1) = h(z3) _ ha (1) = ha(25)
- @) — 2 x) — 2 ’

ie. 121 is convex w.r.t. ¢1 on [z, z2]. Similarly, one proves that 121 is convex
w.r.t. @1 on [x3,xs] with 24 < z, < 1. Therefore, 91 is convex w.r.t. ¢1. Due
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to Proposition the upper conic function A}, o, is a copula. Therefore,

VAK{,C(R) =Vy (R) >0.

u
N1,Cy =

(ii) The proof of the cases when R C Sy or when the corners (x,y’) and (2, y)
of R are located on the graph of N is similar to the corresponding ones in
the proof of Proposition [4.11

Conversely, suppose that A%; - is a copula and suppose further that 1[ is not convex
w.r.t. @, i.e. there exist 0 < x <y < z < 1 such that

Since ¥ and @ are continuous, there exists € > 0 such that for any z’ € [y —e€,y + €],
it holds that R R . R
Y(z) — (@) _ ¢(a’) —y()
— > LT

¢z) —l) ~ ola') — ()
Due to Proposition any rectangle located in the polygon enclosed by the
points (z, N(x)), (y,N(y), (2, N(2)) and (1,1) has a negative A} o-volume, a

contradiction. The proof of condition (ii) is similar to the previous one. O

To conclude this section, we discuss the lower-lower and upper-upper tail depen-
dences of upper conic copulas. Note that, for an upper conic copula A?{,’C, its
lower-lower tail dependence obviously coincides with the lower-lower tail dependence
of C', while its upper-upper tail dependence is given by

1 —g(a)

Ay =2 —
uu 1—a

)

where a is the fixed point of N.

4.5.2. The case of the product copula

We now focus on upper conic functions Ay ¢ when the considered semi-copula C
is the product copula, i.e. C' = Tp.

Lemma 4.3. Let N : [0,1] — [0, 1] be a strict negation operator. Then the function
Ay 1p defined by @) satisfies the inequality

AN e (2, y) > Te(2,y) , (4.18)

for any (z,y) € [0,1]2.

106



84.5. Upper conic copulas with a given section

Proof. Since C = Tp, it suffices to prove inequality (4.18) for any (x,y) € Fy, i.e.

1— 1‘1]\7(561)
1-— I

1 (1-2)>uy, (4.19)
where (21, N(z1)) is the unique point such that (z,y) is located on the segment
((x1,N(z1)), (1,1)). Since the points (1, N(z1)), (z,y) and (1, 1) are collinear, it

follows that
. 1-— N(l’l)

1-— T
Inequality (4.19) is then equivalent to

1_1_“]%(1_56)256(1_1_1\7(371)(1_:5))7

171‘1 17171

y=1 (1—-2a).

or, equivalently, > x1, which always holds. O

Consequently, any upper conic copula Ay 7,, is positive quadrant dependent (PQD) [88].

Proposition 4.13. Let N : [0,1] — [0,1] be a strict negation operator. Then the
function Ay r, defined by @) is a copula if and only if the function ¢ is convex.

Proof. Condition (i) of Theorem is equivalent to

117215[\7((2)) B llfyjf[\’((y)) 11*y]<[\f((y)) B llfz]\fl\f((z))
—N(z —N(y —N(y —N(=
— — < — — 4.20
EBEE 2) —3@) (4.20)

for any x,y,z €]0,1[ such that < y < z. Some elementary manipulations yield

1+ — —— <1+ = —
P(z) — oY) Ply) — o(z)
or, equivalently,
P(2) —ly) _ ply) — o)

>

z—y y—x
for any z,y, 2 €]0,1[ such that z < y < z, i.e. ¢ is convex. Due to Lemma [4.3] it
holds that

)

Tp(z, N(2')+ AR g (¢, N(2)) = T (z, N(2)+Tp(2', N(2)) = g1 (2)+970 (27) ,

for any z,z’ €]0,1] such that < 2/, i.e. condition (ii) of Theorem always
holds. O
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Figure 4.5: The 3D plot and contour plot of the copula of Example

Example 4.6. Let N : [0,1] — [0,1] be the strict negation operator defined by

N(z) =1—=z. The function ¢ is then given by @(x) = 1_7” One easily verifies
that @ is convex, and hence, the corresponding upper conic function AN e 15 @

copula and is given by

Ty yify<l—ua,

Abze (2:9) = (1-a)1-y)

r+y—1+ , otherwise.

2—x—y
The 3D plot and contour plot of A}(,,H are depicted in Figure @
In the next proposition, we show that the convexity of a strict negation operator

N is a sufficient condition for the convexity of the function .

Proposition 4.14. Let N : [0,1] — [0,1] be a strict negation operator. If N is
convez, then the function ¢ is convexz.

Proof. Since N is continuous, it holds that ¢ is continuous on the interval ]0, 1].
Therefore, in order to prove the convexity of @, it suffices [93] to show that

@(m + y) < e(x) + ¢(y)

2 2 ’

for any x,y €]0,1].

Let z,y €]0, 1] and suppose w.l.o.g that x < y. Since N is convex, it holds that

~frx+y\ 2—xz—y 2—x—y
Q”( 2 ) 2(1—N(%))§2—N(w)—1\’(y)'
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In order to complete the proof, we need to show that

2—x—y _2-z-y-N@)(A-y-Nyd-2) _ ¢ +¢y)
2—N(z)-N(y) ~ 2(1 = N(2))(1 = N(y)) '

After some elementary manipulations, the latter inequality is equivalent to
z—y—N(x)+ N(y) +yN(x) —aN(y) <0.
After adding and subtracting the term xN(z), the latter inequality becomes
(z —y)(1 = N(z)) + (N(y) = N(z))(1 —z) <0.

Since z < y and taking into account that N is decreasing, the latter inequality
clearly holds. O

Proposition 4.15. Let N : [0,1] — [0,1] be a strict negation operator. If N is
convez, then the function Ay 1, defined by @ is a copula.

In fact, the convexity of IV is not a necessary condition in general. This can be
seen in the following example.

Example 4.7. Let N : [0,1] — [0,1] be the strict negation operator defined by
1
22
that N is concave, while the function ¢ is convex. Hence, the function A% r,
defined by @ is a copula; it is given by

N(z) =1—22. The function ¢ is then given by p(x) = . One easily verifies

ry 7ify§1—3027

AY — 3
W7o (%) (v—1+VT-9B- o —p))
T — , otherwise .

41 -2)B-22—y—+/(1—y)(5—4z —y))

Note that, for an upper conic copula A}(,)TP, the upper-upper tail dependence is
given by A\yy = 1 — a, where a is the fixed point of N.

4.6. Lower conic functions with a given section

In this section, we introduce the definition of a lower conic function with a given
section. Let N be a strict negation operator. Let C be a semi-copula and g : [0,1] —
[0,1] be defined by g(x) = C(x, N(x)). Then the function Al - : [0,1]* = [0, 1]
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defined by
920) it (,y) € Sy and y £ 0,
N(z)
AlN,C(x»y) =5C(z,y) ,if (z,y) € Fn, (4.21)
0 yify =0,

where (xg, N(zp)) is the unique point such that (z,y) is located on the segment
((0,0), (xo, N(z0))), is well defined. The function Aé\,vc is called a lower conic
function with section (N, g) since Ay ~(t, N(t)) = g(t) for any ¢ € [0,1], and it is
linear on any segment ((0,0), (¢, N(t))) in Sy. Note that the collinearity of the
points (zg, N(zo)), (z,y) and (0,0) implies that

This equality ensures the continuity of AlN,C on Sy. Note also that Aé\r,c is
continuous if and only if C' is continuous.

Using the same techniques as before the following propositions can be proved.

Proposition 4.16. Let N : [0,1] — [0,1] be a strict negation operator and C be
a semi-copula. Then the function Aﬂv,c defined by (4.21]) is a semi-copula if and

only if the functions 1 and — are increasing and decreasing, respectively.
4

Proposition 4.17. Let N : [0,1] — [0,1] be a strict negation operator and C' be a
quasi-copula. Then the function Aév,c defined by is a quasi-copula if and
only if

(i) the functions ¥ and f are increasing and decreasing, respectively;

(ii) the functions ¥ — ¢ and v

are decreasing and increasing, respectively.

Proposition 4.18. Let N : [0,1] — [0, 1] be a strict negation operator and C' be a
copula. Then the function AéV,C defined by (4.21)) is a copula if and only if

(i) the function v is concave w.r.t. @;

(ii) for any x,x’ € [0,1] such that x < &', it holds that

C(z,N(2)) + Ay ¢ (¢, N(z)) = g(z) + g(z") .
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§4.7. Biconic functions with a given section

Figure 4.6: The 3D plot and contour plot of the copula of Example

Proposition 4.19. Let N : [0,1] — [0, 1] be a strict negation operator. Then the
function Aé\,yTP defined by is a copula if and only if the function ¢ is conver.

Example 4.8. Let N : [0,1] — [0,1] be the strict negation operator defined by
N(z) =1—=x. The function ¢ is then given by p(x) = ;2. One easily verifies
that o is convez, and hence, the corresponding lower conic function AﬂV’TP s a
copula and is given by

Ty
T+y

’ ny S 1- z,
Al]V,Tp (‘T, y) =
Ty , otherwise.

The 3D plot and contour plot of Aé\/,n are depicted in Figure ,

Note that, for a lower conic copula Aﬁv’c, its upper-upper tail dependence coincides
with the upper-upper tail dependence of C, while its lower-lower tail dependence is

g(a)

AL = —=,
a

given by

where a is the fixed point of V. Note also that Ar;, = a when C' = Tp.

4.7. Biconic functions with a given section

In this section, we introduce the definition of a biconic function with a given section.
Let N be a strict negation operator. Let C be a semi-copula and g : [0,1] — [0, 1]
be defined by g(x) = C(x, N(x)). Then the function A% . :[0,1]*> — [0, 1] defined
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by
glzo) , if (z,y) € Sy and y £ 0,
N(l‘o)
Ay olzy) =4 - L=9l) o ¢ F L (422)
’ 1—N(£L’1)( y) y 1 (l‘,y)e Nandy7é )
min(z,y) , otherwise,

where (xg, N(zo)) (resp. (1, N(z1))) is the unique point such that (z,y) is located
on the segment ((0,0), (zo, N(x0))) (resp. ((z1, N(x1)), (1,1))), is well defined. The
function Alzjv,c is called a biconic function with section (N, g) since A?V,C(t, N(t) =
g(t) for any t € [0,1], and it is linear on any segment ((0,0), (¢, N(t))) (resp.
((t, N(t)),(1,1)) in Sy (resp. Fn).

Using the same technique as before, the following propositions can be proved.
Proposition 4.20. Let N : [0,1] — [0,1] be a strict negation operator and C be a
semi-copula. Then the function Al}v,c defined by is a semi-copula if and only

if the functions ¥ and i are increasing, and the functions i and 7]1\ are decreasing.
¥ 2

Proposition 4.21. Let N : [0,1] — [0,1] be a strict negation operator and C be a
quasi-copula. Then the function A’J’\,’C defined by is a quasi-copula if and
only if the conditions of Propositions[{.0 and [[.17 are satisfied.

Proposition 4.22. Let N : [0,1] — [0,1] be a strict negation operator with fixed
point a and C' be a copula. Let a €10,1[. Then the function A?V,C defined by
is a copula if and only if

(i) the function O is convex w.r.t. §;
(ii) the function v is concave w.r.t. @;

(iii) the function ¢ : [0,a[U]a,1] — R defined by ((x) = ;C_;\]]((gjc))

is decreasing

on the interval [0, a[ as well as on the interval ]a, 1].

Note that condition (iii) is always satisfied when g is a section of a quasi-copula C.
Therefore, the following corollary is immediate.

Corollary 4.2. Let N : [0,1] — [0,1] be a strict negation operator and C be a
copula. Then the function Aﬂ’\,yc defined by is a copula if and only if

(i) the function O is convex w.r.t. §;

(i) the function 1 is concave w.r.t. .

Proposition 4.23. Let N : [0,1] — [0, 1] be a strict negation operator. Then the
function A?\,,TP defined by is a copula if and only if the functions ¢ and @

are convex.
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Figure 4.7: The 3D plot and contour plot of the copula of Example

Example 4.9. Let N : [0,1] — [0,1] be the strict negation operator defined by

N(z) = 1—w. The functions ¢ and @ are then given by p(z) = 1% and §(x) = 1=L.
One easily verifies that ¢ and ¢ are convex, and hence, the corresponding biconic

function A?V,Tp 18 a copula and is given by

Ty
r+y

7ify§1_x7
b —

AN,Tp(xay) = (1—:0)(1734)
2—xz—y

r+y—1+ otherwise.

7

The 3D plot and contour plot of A?v,n are depicted in Figure ,

In fact, similar results concerning the above classes can be obtained when we
consider sections of semi-copulas that are determined by a strictly increasing
[0,1] — [0, 1] function N such that N(0) = 0 and N (1) = 1. Consider for instance a
biconic function A%  and let N, gc : [0,1] — [0,1] be defined by N(z) = 1 — N(xz)
and jo(z) = x — g(z). Note that N is strictly increasing and satisfies N(0) = 0
and N (1) = 1. The function A’]’\?@C :[0,1]% — [0,1] defined by

Al = pa(AR,), (4.23)

where g is the transformation defined in , is a biconic function with section
(N ,J), and it is linear on any segment connecting a point from the graph of N to
the point (0,1) as well as on any segment connecting a point from the graph of N
to the point (1,0).
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Proposition 4.24. Let N : [0,1] — [0, 1] be a strict negation operator and C' be a

copula. Then the function A% 5 defined by (4.29) is a copula if and only if

g r—1
(i) the function 9C s conver w.r.t. T ;
N N

(i) the function IC_ is convez w.r.t. ——
1-N 1-N
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5 Ortholinear and paralinear

semi-copulas

5.1. Introduction

In the previous chapters, we have considered the linear interpolation on segments
connecting points from a line in the unit square to the corners of the unit square. We
introduce in this chapter semi-copulas that are constructed by linear interpolation
on segments that are perpendicular (resp. parallel) to the diagonal of the unit
square.

The surface of the semi-copula Ty is constituted from (linear) segments connecting
the points (2a,0,0) and (a, a, 07y, (a)) as well as segments connecting the points
(0,2a,0) and (a,a, éry,(a)), with 0 < a < 1/2, and segments connecting the points
(2a — 1,1,2a — 1) and (a,a,dn,(a)) as well as segments connecting the points
(1,2a — 1,2a — 1) and (a,a,dr,(a)), with 1/2 < a < 1. Note that the surface
of the semi-copula Ty is also constituted from segments connecting the points
(0,1 — 2a,0) and (a,1 — a,wp,(a)) as well as segments connecting the points
(2a,1,2a) and (a,1 — a,wny,(a)), with 0 < a < 1/2, and segments connecting
the points (2a — 1,0,0) and (a,1 — a,wn,,(a)) as well as segments connecting the
points (1,2(1 —a),2(1 — a)) and (a,1 — a,wn,(a)), with 1/2 < a < 1. The above
observation has motivated the present construction.

This chapter is organized as follows. In the following section, we introduce or-
tholinear functions. In Sections we characterize the classes of ortholinear
semi-copulas, ortholinear quasi-copulas, ortholinear copulas and ortholinear cop-
ulas supported on a set with Lebesgue measure zero. For ortholinear copulas,
we provide simple expressions for Spearman’s rho, Gini’s gamma and Kendall’s
tau in Section In Section we study the aggregation of ortholinear (semi-,
quasi-)copulas. The class of paralinear functions is introduced in Section

5.2. Ortholinear functions

Ortholinear functions are constructed by linear interpolation on segments that are
perpendicular to the diagonal of the unit square. The linear interpolation scheme
of this type of function on some segments is depicted in Figure [5.1]

Let us introduce the notation z = “"Qﬂ Let us further consider the subtriangles 77,

115



CHAPTER 5. ORTHOLINEAR AND PARALINEAR SEMI-COPULAS

0,1) (1,1)

(0,0) (1,0)

Figure 5.1: Some segments on which an ortholinear function is linear.

Ty, T3 and T} of the unit square (see Figure given by

T :={(z,y) €[0,1?|0<y<1/2andy <z <1-—y},
T, ::{(;L,y)e[071]2|O§x§1/2andx§y§1—x},
Ts:={(z,y) €[0,1*|1/2<y<land 1 —y <z <y},
Ty:={(z,y) €[0,1]*|1/2<z<land 1 —z <y <az}.

y@ Jif (x,y) € Ty,
x@ Jif (2,9) € T,

Alr) = a:f(lfy)%a(;) if (z,y) € T, ol
y_(1_x)%5(;) Jif (2,y) € T,

is well defined. This function is called the ortholinear function with diagonal section
0, since it is linear on segments connecting the points (z,x), (2z,0) and (0, 2z),

with < 1/2, as well as on segments connecting the points (x,z), (2 — 1,1) and
(1,22 — 1), with 2 > 1/2.
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(0,1) (1,1)

T

(0,0) (1,0)

Figure 5.2: Illustration for the triangles T1, T>, T5 and Ty.

Equation (5.1]) can be rewritten in a more compact form as
6(2)
z

As(,y) = z—0(z
min(z,y) — (1 — max(z, y))%(z)

min(zx, y) Jif (z,y) € I U Ty,

if (z,y) € T3 U Ty

For any ortholinear function, the boundary conditions of a semi-copula always
hold. Note that an ortholinear function A is uniquely determined by its diagonal
section. Note also that an ortholinear function As is continuous if and only if § is
continuous.

5.3. Ortholinear semi-copulas

In this section, we characterize the elements of D§® for which the corresponding
ortholinear function is a semi-copula. Let us consider the function A\s defined as in

Chapter

Proposition 5.1. Let § € DE°. Then the ortholinear function As is a semi-copula
if and only if

(i) the function s is increasing on the interval 10,1/2];
(ii) the function & : [0,1] — [0,1], defined by &s5(x) = (1 — x)(z — 6(x)), is

decreasing on the interval [1/2,1].
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Proof. Suppose conditions (i) and (ii) are satisfied. To prove that As is a semi-
copula it suffices to prove its increasingness in each variable. Since Aj is symmetric,
it suffices to prove its increasingness in each variable on T, U T3. We prove that
Aj is increasing in the second variable (the proof of the increasingness in the first
variable is similar).

Let (a:,y/),(ax,y') € Ty, U T3 such that y < 3. Let us introduce the notation

/I __ x+y
Z =5

If (z,y), (z,y") € Ty, then the increasingness of As is equivalent to

x(S(z’) _x® _ x()\g(zl) —s(2)) > 0. (5.2)

! z

z

Since z < 2z’ and As is increasing on the interval ]0, 1/2], inequality (5.2)) immediately
follows.

If (z,y), (z,y) € T3, then the increasingness of As is equivalent to

—u—ywif§§3+wl—wf§§§320,
or, equivalently, ( ) ( )
1- Y 1- y/ /
(1_72)256(2’) - mfé(z ) >0.

Since y < ¢/, it holds that z < z’. Using the fact that &s is decreasing on the
interval [1/2,1[, it then follows that

(1-y) (1-v)
(1-2)2 (1—2)2

&) > LY (6(2) — g5(2)) > 0.

§s(2) — (1—2')2

If (z,y) € T and (z,y’) € T3, then the preceding cases imply that As(z,y’) —
A§ (LU, y) =

(As(z,y') — As(x,1 —x)) + (As(z, 1 —x) — As(z,y)) > 0.

Conversely, suppose that As is a semi-copula. Let y,y’ €]0,1/2] such that y < ¢/
and z € [0,1] such that 2 <y and z + 3’ < 1. Clearly, the points (z,2y — x) and
(x,2y" — ) are located in T». The increasingness of As in the second variable
implies

A(;(:c,2y'fx)fA5(x,2yfx) ZO? (53)

or, equivalently,
2(s(y) = As()) = 0.

Hence, the increasingness of A; on the interval ]0,1/2] follows.

Let y,y" € [1/2,1] such that y < ¢’ and x € [0,1] such that 2 <y and z +y > 1.
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The increasingness of As in the second variable implies

z—94(2)

-y >0. (5.4)

Dividing by 3" — y and taking the limit y" — y, inequality (5.4]) becomes

T2 g0 () 2o

where the derivative exists. Setting z = y, the last inequality is equivalent to

2y —1-0(y) + (1 —y)d'(y) >0,

or, equivalently, &(y) < 0, where the derivative exists. Since § is absolutely
continuous, it holds that &s is absolutely continuous. The fact that {5(y) < 0,
where the derivative exists, on the interval [1/2, 1], then implies that £s is decreasing
on the interval [1/2,1]. O

Example 5.1. Consider the diagonal functions é1,, and ér . Clearly, é1,, and o1,
belong to DS°. One easily verifies that the functions As,,  and As, —are increasing
on the interval 10,1/2], and that the functions &5, =~ and &, are decreasing on
the interval [1/2,1[. The corresponding ortholinear semi-copulas are Ty and Ty,
respectively.

Example 5.2. Consider the diagonal function dg(x) = x' 0 with 6 € [0,1]. Clearly,
0p € DE°. One easily verifies that the function s, is increasing on the interval
10,1/2] for any 6 € [0,1], and that the function &, is decreasing on the interval
[1/2,1] for any 6 € [0,1]. The corresponding family of ortholinear semi-copulas is
given by

min(z, )z’ ,if (xy) e T U Ty,
Aa(x,y) = Z(l _ 20)

min(z,y) — (1 — max(m,y))ﬁ sif (z,y) € TsUTY.
Proposition 5.2. Let As be an ortholinear semi-copula such that § € DE° and
suppose that 0(xg) = xg for some xg €]0,1[. Then it holds that 6(x) = = for any
x € [z, 1].

Proof. Suppose that Ag is an ortholinear semi-copula and suppose further that
0(zg) = xo for some zy €]0,1/2]. The function As, defined in Proposition
is increasing on the interval ]0,1/2]. Therefore, A\s(z) > As(xzg) = 1 for any
x € [x0,1/2]. Hence, As(z) = 1 for any = € [xg, 1/2]. Similarly, the decreasingness
of the function &5, defined in Proposition implies that 6(x) = z for any
x € [1/2,1]. In case zp €]1/2,1[ the decreasingness of s is sufficient to prove the
required result. Consequently, §(x) = x for any x € [z, 1]. O
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5.4. Ortholinear quasi-copulas

In this section, we characterize the elements of D for which the corresponding
ortholinear function is a quasi-copula. Let us consider the function ps defined as
in Chapter
Proposition 5.3. Let § € D. Then the ortholinear function As is a quasi-copula
if and only if

(i) the function As, and the function v : [0,1] — [0,1], defined by

Ys(z) = 2(r = 0(x)),
are increasing on the interval 10,1/2];

(ii) the functions us, and the function & : [0,1] — [0, 1], defined by

&5(x) = (1 —z)(z - 6(z)),

are respectively increasing and decreasing on the interval [1/2,1].

Proof. Suppose conditions (i) and (ii) are satisfied. Due to Proposition the
function As is increasing. Therefore, to prove that Ag is a quasi-copula, we need
to show that it is 1-Lipschitz continuous. Recall that the 1-Lipschitz continuity is
equivalent to the 1-Lipschitz continuity in each variable. Since Ay is symmetric, it
is sufficient to show that Ag is 1-Lipschitz continuous in each variable on Tb U T3.
We prove that As is 1-Lipschitz continuous in the first variable on T U T3 (the
proof of the 1-Lipschitz continuity in the second variable is similar).

Let (x,
w’-‘r
5

y), (¢',y) € To UT;5 such that z < a’. Let us introduce the notation
y

u =
If (x,y), («',y) € Ty, then the 1-Lipschitz continuity of As is equivalent to

x’—(s(u) - xM <a —ux,
u z

or, equivalently,

%%(u) - Z%%/hs(z) >0.

Since z < 2/, it holds that z < u. Using the fact that s is increasing on the
interval ]0,1/2], it then follows that

z T
2

& () — Zys(2) 2 S ws(w) — () 2 0.

z
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If (z,y), (z',y) € T3, then the 1-Lipschitz continuity of As is equivalent to

(1= y)(us(u) — ps(2)) 2 0. (5.5)

Since z < w and ps is increasing on the interval [1/2, 1], inequality (5.5) immediately
follows.

If (z,y) € T and (2/,y) € T3, then the preceding cases imply that As(a’,y) —
A5 (.’IJ, y) =

(As(2',y) — As(1 —y,9)) + (As(1 — y,y) — As(z,y)) <o’ — .

Conversely, suppose that A; is a quasi-copula. Proposition [5.1] implies the increas-
ingness of A5 on the interval |0, 1/2] and the decreasingness of &5 on the interval
[1/2,1]. Let z,2’ € [1/2,1] such that < 2’ and y € [0, 1] such that 2’ <y and
x +y > 1. Clearly, the points (22 — y,y) and (22’ — y,y) are located in T5. The
1-Lipschitz continuity of As in the first variable implies that

As(22" —y,y) — As(22 — y,y) < 2(2' — ), (5.6)

or, equivalently,
(1 = y)(us(a') — ps(x)) = 0.
Hence, the increasingness of us on the interval [1/2,1] follows.

Let z, 2’ €]0,1/2[ such that z < 2’ and y € [0,1] such that 2’ <y and 2’ +y < 1.
The 1-Lipschitz continuity of As in the first variable implies that

—r—~ <z —x. (5.7)

Dividing by 2’ — x and taking the limit ' — x, inequality (5.7) becomes

0L (Y 1,

z z

where the derivative exists. Setting z = y, the last inequality is equivalent to
2z — §(x) — 28’ (z) >0,

or, equivalently, ¥5(x) > 0, where the derivative exists. Since J is absolutely
continuous, it holds that ;5 is absolutely continuous. The fact that ¥5(y) > 0,
where the derivative exists, on the interval |0, 1/2], then implies that 15 is increasing
on the interval ]0,1/2]. O
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Example 5.3. Consider the diagonal functions in Example[5.3 Clearly, conditions
(i) and (i) of Proposition are fulfilled. The corresponding family of ortholinear
semi-copulas is a family of ortholinear quasi-copulas.

Proposition 5.4. Let As be an ortholinear quasi-copula. Then it holds that
(1) if 6(xo) = xo for some xo €]0,1[, then As = Tm;

(i1) of d(zo) = 2x9 — 1 for some xo € [1/2,1], then 6(x) = 2z — 1 for any
x € [z, 1].

Proof. Suppose that As is an ortholinear quasi-copula and suppose further that
0(zg) = xo for some ¢ €]0,1[. Due to Proposition it holds that d(x) = = for
any x € [z, 1]. Since Ay is an ortholinear quasi-copula, it holds that the function
s, defined in Proposition is increasing on the interval ]0,1/2]. Therefore,
Ys(x) < Ys(xg) = 0 for any x € [0, 9] when g < 1/2. Hence, 6(z) > x for any
x € [0,20]. In case xg > 1/2, the increasingness of ps, defined in Proposition
implies that é(x) > x for any = € [1/2,x0]. Using the fact that d(z) < z for
any = € [0,1], it must hold that d(z) = z for any = € [0,z¢]. Based on the
above discussion, it follows that §(z) = = for any = € [0, 1]. Since T is the only
quasi-copula with d7,, as diagonal section, it holds that As = 1.

Assertion (ii) can be proved similarly using the increasingness of the functions
and ps on the intervals |0,1/2] and [1/2, 1], respectively. O

5.5. Ortholinear copulas

In this section, we characterize the elements of D for which the corresponding
ortholinear function is a copula. Next, we characterize the piecewise linear diagonal
functions for which the corresponding ortholinear function is a copula. To this end,
we need the following lemmas.

Lemma 5.1. Let 6 € DE° be piecewise linear and consider the corresponding
ortholinear function As. Let x1 < xo < x3 < 1/2 be such that § is linear on the
interval [x1, 2] as well as on the interval [xa,x3). If Va,(S) > 0 for any square
S that is included in the trapezoid Oz, +1),(0,221),(0,225),(x3,25)} and of which the
opposite diagonal is a subset of the segment {(x2,x2), (0,2x2)), then it holds that §
is convex on the interval [x1,x3).

Proof. Let a and b be the slopes of the segments ((x1,d(x1)), (z2,d(x2))) and
{(w2,8(x2)), (x3,8(x3))), respectively. Let S = [z,2'] x [y,%'] C [0,1]® be an
arbitrary square that is included in the trapezoid Oz, 41),(0,221),(0,223),(23,25)} and
of which the opposite diagonal is a subset of the segment ((z2,x32), (0,2x2)). This
situation is depicted in Figure a).
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(0,1) (1,1) (0,1) (1,1)
(z3,23) (3, x3)
(xo + €, 29 + €)
(z2, z2) (z9,z9)
(x9 — ¢, x5 — €)
(z1,21) (z1,271)
(0,0) (1,0) (0,0) (1,0)

(a) (b)

Figure 5.3: Illustration for the proofs of Lemma and Proposition

Since S is a square, it holds that the points (x,y) and (z/,y’) are located on
segments ((x2 — €,29 — €),(0,2(z2 — €))) and {(x2 + €,22 + €),(0,2(z2 + €))), for
some € > 0, respectively (see Figure b)) A simple computation shows that

S =[z' —2¢,2'] x 229 — 2, 2(x2 +€) — 2'].
The positivity of V4, (S) is equivalent to

:17/ (;(56'2 + 6) + (LL'I _ 26) 5(1’2 B 6) _ 2($/ _ 6) 5(182)
To + € XTo — € 2

>0. (5.8)

Since ¢ is linear on the interval [x2 — €, x2] as well as on the interval [z2, z2 + €], it
holds that
0(xe —€) = d(x2) — ae and d(xo + €) = 6(xa) + be.

Substituting the above, (5.8)) is equivalent to

v’ 22e(b — a) + €2(2ax3 + 2awae — axox’ — brox’ + 26(x2) (2’ — 19 — €))

>0
T (5 — €2) -

3

or, equivalently,
2'23(b — a) + €(2ax3 + 2ax2e — axgx’ — brox’ + 25(x9)(2) — 12 —€)) > 0.

Choosing € sufficiently small implies that the sign of the above expression is
determined by the first term, i.e. it should hold that

t'z2(b—a) >0, (5.9)
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or, equivalently, b > a, i.e. J is convex on the interval [z1, z3]. O

Lemma 5.2. Let 6 € DE° be piecewise linear and consider the corresponding
ortholinear function As. Let 1/2 < x1 < xo < x3 be such that § is linear on the
interval [z1,22] as well as on the interval [xo,x3]. If Va,(S) > 0 for any square S
that is included in the trapezoid Oz, o), (201—1,1),(2w5—1,1),(xs,25)} and of which the
opposite diagonal is a subset of the segment ((xa,x2), (229 — 1,1)), then it holds
that & is convex on the interval [x1,x3].

Proof. The proof is similar to the proof of the previous lemma. O
Lemma 5.3. Let § € D be convex. Then it holds that

(i) the function A\s is increasing;

(ii) the function us is increasing.

Proof. Assertion (i) follows using the fact that convex functions are star-shaped [85].
Since § is convex, for any z,y, z € [0, 1] such that < y < z, it holds that

d(y) —o(z) _ d(2) —d(x)

Yy—x - Z—T

Setting z = 1, assertion (ii) easily follows. O

Proposition 5.5. Let § € D be piecewise linear. Then the ortholinear function
As is a copula if and only if 0 is convew.

Proof. We first give the proof from right to left. Since A satisfies the boundary con-
ditions of a semi-copula, we need to show its 2-increasingness. Since 9 is piecewise lin-
ear, the unit square consists of trapezoids of the type ©1 = O ((y,u),(v,v),(20,0),(2u,0)} 5
O2 = Of(uu),(0,2u,),0.20),(0,0)} O3 = Of(uu),(2u=1,1),(2v-1,1),(v,w)} OF Os =
O (u,u),(v,0),(1,20—1),(1,2u—1)}» Such that J is linear on the interval [u, v] with v < 1/2

or 1/2 < u (see Figure [5.4).

Note that any rectangle in the unit square can obviously be decomposed into a
number of rectangles that are either located in one of these trapezoids, or are
spanning two such trapezoids while having their diagonal along the diagonal of the
unit square or having their opposite diagonal along the edge shared by the two
trapezoids. Due to the additivity of volumes, it suffices to consider the above cases.
Consider a rectangle R := [z, 2] x [y,3] C [0,1]2.

(i) Suppose that R is included in a trapezoid of type O2 (the case of a trapezoid
of type O; is identical due to the symmetry of As). The positivity of Va,(R)
is equivalent to

(As(v) = As(w) (2’ = z)(yy’ — 22’) 2 0. (5.10)
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(if)

(iii)

(0,1) (1,1)
O3
T3 O4
15 T
0, T
S
(0,0) (1,0)

Figure 5.4: Illustration for the proof Proposition

Since R C T, it holds that yy’ — 22’ > 0. Due to Lemma [5.3[i), inequal-
ity (5.10) then follows immediately.

Suppose that R is included in a trapezoid of type O3 (the case of a trapezoid
of type Oy is identical due to the symmetry of As). The positivity of Va,(R)
is equivalent to

(ns(v) = ps(u))(y' —y) (1 —2)(1 —2') = (1 —y)(1 —y") >0.  (5.11)

Since R C T3, it holds that (1 —x)(1 —2') — (1 —y)(1 — ') > 0. Due to
Lemma ii), inequality ([5.11) then follows immediately.

Suppose that the diagonal of R is along the diagonal of the unit square, i.e.
R = [z,2] x [z, 2']. Suppose that 2’ < 1/2 (the case when 1/2 < z is similar).
Then it holds that

Vas(R) =6(x) + 5(33/) - 2A5(£,$/) =d(x) + 5(33/) . 2%5 (;p—éx’) .

Since —2Z, < 1, it holds that
z+x

Vi, (R) > 8(x) + 6(z') — 26 (“2”3) —9 (‘W)Z‘W ) (”“;x» ,

which is positive due to the convexity of § on the interval [0,1/2].

(iv) Suppose that the opposite diagonal of R is along the edge shared by two
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trapezoids (either two trapezoids of the same type, or two trapezoids having
their edge along the opposite diagonal of the unit square).

(a)

Suppose that these two trapezoids are of type Oy (the case of type
O, is similar). Consider Oy = C—){(u’u)’(o,Qu)’(O’QU)’(E’,U)} and ©, =
6{(11,1))7(0,2'0),(O,Qw),(w,w)}- The rectangle R is then given by R = [:L‘, .13’] X

2v—a'+x

5, the positivity of

[2v — 2/,2v — z]. Using the notation r =
V4, (R) is equivalent to

:r@ +x'%f(x+x')@ > 0. (5.12)

Using the convexity of J, it follows that

o(r)+d6(2v—r)
o(v) < —

Denoting the left-hand side of inequality ([5.12)) as ¢, it then holds that

. (' —z)(2v—x—2') (5(20—7“) _ 5(7")) ) (5.13)

- 4ov 20—r r

Since § is convex, the function \g, defined in Lemma [5.3] is increasing.
Using also the facts v > r and 2v — x — 2’ > 0, the right-hand side of

inequality ([5.13)) is positive.

Suppose that these two trapezoids are of type O3 (the case of type ©4
is similar). The proof is similar to the previous case.

Suppose that these two trapezoids are of types ©5 and O3 (the case of
types ©1 and ©y is similar).

Consider @2 = 6{(u,u),(0,2u,),(0,1),(1/2,1/2)} and 63 =
©1(1/2,1/2),(0,1),(2w—1,1),(w,w)}- Lhe rectangle R is then given by }/E =
[x,2'] x [1—a’,1—2] such that 2’ < 1/2. Using the notation r = =2+
it holds that

1—r—6(1—

Va,(R) = x@—25(1/2)x—2§(1/2)x’+x’—x D (5.14)

,

Consider the function v : [0,1] — R given by
v(t)=0(t)+ (1 —1t) —26(1/2).

Using this function, Eq. (5.14]) can be written as

Vas(R) = % (zv(r)+ (1/2=6(1/2)) (2" —2)1 —x—2")) . (5.15)
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Since 0 is convex, it holds that v(¢) > 0 for any ¢ € [0, 1/2], and therefore the
right-hand side of Eq. (5.15)) is positive.

Conversely, suppose that A; is a copula. Lemma[5.1] implies that § is convex on
the interval [0,1/2], while Lemma implies that ¢ is convex on the interval
[1/2,1]. Let 0 < 1 < 1/2 < 29 < 1 be such that ¢ is linear on the interval
[x1,1/2] as well as on the interval [1/2,z2], and let a and b be the slopes of
the segments ((z1,6(21)), (3,0(3))) and ((3,6(3)), (z2,0(z2))), respectively. Let
S = [x,2'] x [y,9'] € [0,1]? be an arbitrary square such that its opposite diagonal
is along the opposite diagonal of the unit square. This situation is depicted in
Figure

(0,1) (1,1)

1—2¢

2.’E1 ! :

(0,0) T 1/2—€ 1/2+ € i) (1’0)
Figure 5.5: Illustration for the proof Proposition

Since S is a square, it holds that the points (z,y) and (2',y’) are located on

segments ((1/2 —€,1/2 —€),(0,1 — 2¢)) and ((1/2 +¢€,1/2 + €), (2¢,1)), for some
€ > 0, respectively. A simple computation shows that

S=lr,r+2€x[1—x—261—2x].
The positivity of V4, (S) is equivalent to

0(1/2 —¢) 1/24+e—48(1/2+¢€)
12— TutEow 1/2— e

—4(z+¢€)0(1/2) >0.  (5.16)

Since 0 is linear on the interval [1/2 —¢€,1/2] as well as on the interval [1/2,1/2+ €],
it holds that

0(1/2 —€) =06(1/2) —ae and 6(1/2 +¢€) = 6(1/2) + be.
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Substituting the above, (5.16) is equivalent to
z(b—a) +2(1 — 2¢ — 2x)(1/2 — §(1/2)) > 0.

Taking the limit  — 1/2, and thus e — 0, the above inequality is equivalent to
b > a. Hence, the convexity of 6 at 1/2 follows, which completes the proof. O

Example 5.4. Consider the diagonal function 69 = 061y, +(1—0)d7, with 6 € [0, 1].
Clearly, d¢ is convex and piecewise linear for any 0 € [0,1]. The corresponding
family of ortholinear copulas is the family of convex sums of Ty and Ty,.

Theorem 5.1. Let § € D. Then the ortholinear function As is a copula if and
only if 0 is convex.

Proof. Suppose that d is convex. To prove that Ag is a copula, we need to show
its 2-increasingness. Due to the additivity of volumes, it suffices to consider a
restricted number of cases. Consider a rectangle R := [x,2'] X [y,4'] C [0, 1]>.

(i) If R C Ty (the case when R C Tj is identical due to the symmetry of Ays),
then let b1 = (xl,xl), bg = (1‘2,172), b3 = (Ig,:l?g) and b4 = (I4,£ZE4) be
four (possibly coinciding) points on the diagonal of the unit square such
that the points (x,y), (x,y’), (’,y) and (2/,y’) are located on the segments
((0,221),b1), ((0,222), ba), ((0,2z3), bs) and ((0,2x4), ba), respectively (see

Figure .

(0,1) (1,1)

by
bs
by
b;

(0,0) (1,0)

Figure 5.6: An illustration for the proof of Theorem |5.1

The points by, ba, bs and by, together with (0,0) and (1
z;

1), determine a
piecewise linear convex diagonal function d; such that d;(z;) =

d(z;) for any

)
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i € {1,2,3,4}. Due to Proposition the ortholinear function As, is an
ortholinear copula. Therefore,

VAS(R) = VA51 (R) >0.

(ii) The proof of the cases when R C T3 or R C Ty is similar to the previous one.

The remaining case is when the diagonal (resp. opposite diagonal) of R is along
the diagonal (opposite diagonal) of the unit square. The proof of the positivity of
V4, (R) in this case is similar as in the proof of Proposition Consequently, the
2-increasingness of As holds and, hence Aj is a copula.

Conversely, suppose that Aj is a copula and suppose further that ¢ is not convex on
the interval [0,1/2], i.e. there exist < y < z such that the point (y, §(y)) is above
the segment connecting the points (z,d(z)) and (z,0(z)). Since § is continuous,
there exists € > 0 such that for any z’ € [y —¢, y+¢] the point (z’, d(x")) is above the
segment connecting the points (z,d(z)) and (2, 8(z)), which contradicts Lemma 5.1}
Similarly, Lemma [5.2| implies that § is convex on the interval |1/2,1]. Thus, ¢ is
convex on the interval [0,1/2] as well as on the interval |1/2,1]. The proof of the
convexity of § at 1/2 can be done in similar manner. Thus, § is convex. O

Since for an ortholinear copula C, it holds that its diagonal section d¢ is convex, it
either holds that éc = dp, or dc(z) < z for any x €]0,1[. Hence, there do not
exist ortholinear copulas that are proper ordinal sums.

Example 5.5. Consider the diagonal functions 1y, and d7y.. Clearly, the functions
oy, and 61y, are convex. The corresponding ortholinear copulas are Tng and 11,
respectively.

Example 5.6. Consider the diagonal function dg(x) = x'T¢ with 6 € [0,1]. Clearly,
dp is convez for any 6 € [0,1]. The corresponding family of ortholinear functions is
a family of ortholinear copulas.

Example 5.7. Consider the diagonal function § defined by

- 1
0 :’fogga
1 1 1
5(63”_1) cifg < <3,
o(x) = 3
g(9x—4) , otherwise.

Clearly, the conditions of Proposition are satisfied. Consider the rectangle
R = [§,3] x [§,1]. One easily verifies that Va,(R) =
corresponding ortholinear function is a proper quasi-copula.

1
105, and hence, the
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Consequently, the class of ortholinear copulas with a given diagonal section is a
proper subclass of the class of ortholinear quasi-copulas with a given diagonal
section.

Now we lay bare the Schur-concavity [40} 43|, 87] of ortholinear copulas.

Proposition 5.6. Any ortholinear copula is Schur-concave.

Proof. Suppose that Cj is an ortholinear copula. Let A € [0,1] and (z,y) € [0, 1]*.
If (z,y) € T1, then inequality (1.8) is equivalent to

2 <oyt

or, equivalently, (1 — A\)(y — ) < 0. Since (z,y) € T, the latter inequality
immediately follows. Similarly, one can prove inequality (|1.8) when (x,y) is located
in Ty, T3 or Ty. O

5.6. Ortholinear copulas supported on a set with
Lebesgue measure zero

We characterize in this section ortholinear copulas that are supported on a set with
Lebesgue measure zero. To this end, we need the following proposition.

Proposition 5.7. Let Cs be an ortholinear copula with a piecewise linear diagonal
section §. Suppose that d €]0,1/2] is the mazimum value such that §(d) = 0, and
d* € [1/2,1] is the minimum value such that 6(d*) = 2d* — 1. Then the support of
Cs consists of:

(i) the segment {(d,d), (d*,d*));

(ii) the trapezoids ©y(24,0),(0,24),(0,1),(1,0)} a1 OL(0,1),(1,0),(2d*—1,1),(1,2d*—1)} -

Proof. From Proposition [5.4} it follows that 6(z) = 2z — 1 for any z € [d*,1]. Note
that if d = d* = 1/2, then Cs = T, and the support is given by the segment
((1,0), (0,1)). More generally, if ¢ is piecewise linear, then it suffices to consider a
number of cases to prove assertion (i):

(a) Let {(z1,21), (z2,22)), with d < x1 < 2 < 1/2, be a segment such that ¢ is
linear on the interval [x1, z2]. For any rectangle R = [z, 2] X [z, 2'] such that
21 < x < 7' < 29, it holds that

Vou(®) = =gz,

z
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If Ve, (R) = 0, then it holds that d(z) = 0, which contradicts the fact that d
is the maximum value such that §(d) = 0, and hence, Vg, (R) > 0.

(b) Let {(z1,21), (w2, 22)), with 1/2 < z1 < x5 < d*, be a segment such that ¢
is linear on the interval [z, z2]. For any rectangle R = [z, 2] x [z, 2'] such
that 1 < z < 2’ < x4, it holds that

(2 )

1—=2

Vo, (R) = (0(2) = (22 - 1)).
If Vo, (R) = 0, then it holds that §(z) = 2z—1, which contradicts the fact that
d* is the minimum value such that §(d*) = 2d* — 1 and hence, V¢, (R) > 0.

Since the support is closed, assertion (i) follows.

Next, we prove assertion (ii). Let by := (x1,z1) and bs := (23, 23), with d <
x9 < d*, be two distinct points such that § is linear on the interval [zq, 23], i.e.
5(t) = at + b for any t € [z1,22]. Let R C [0,1]? be a rectangle. We distinguish
two cases:

(a) Suppose that R - @2 = 9{(w1,1‘1),(0,2z1),(0,27;2),(1'2,5;2)} and suppose fur-
ther that Vg, (R) = 0. Due to inequality (5.10)), it holds that (As(z2) —
As(z1))(yy’ — xzx’) = 0. Since d > 0 and § is convex it must hold that
As(z2) — As(x1) > 0 and it then follows that = 2’ = y = ¥/, a contradiction.
Hence, V¢, (R) > 0. Consequently, the trapezoid O is a subset of the support.
Due to the symmetry of Cs, it holds that ©1 = Oz, 1), (22,22),(222,0),(221,0)}
is a subset of the support as well.

(b) Suppose that R C O3 = O((z,,21),(221—1,1),(2w2—1,1),(z2,22)} and suppose fur-
ther that Ve, (R) = 0. Due to inequality (5.11), it holds that (us(z2) —
ps(z1))(1 —y)(1 —y') — (1 —x)(1 —2’)) = 0. Since d* < 1 and ¢ is
convex, it must hold that us(z2) — ps(z1) > 0 and it then follows that
x =1a' =y =1, a contradiction. Hence, V¢, (R) > 0. Consequently, the
trapezoid ©3 is a subset of the support. Due to the symmetry of Cy, it holds
that ©4 = O((2, 21),(2o,20),(1,202—1),(1,20:—1)} 18 a subset of the support as
well.

Since the support is closed, assertion (ii) follows. O

Corollary 5.1. Let Cs be an ortholinear copula with a piecewise linear diagonal
section 0. Suppose that d = 0 is the maximum value such that §(d) = 0, and
d* € [1/2,1] is the minimum value such that 6(d*) = 2d* — 1. If § is linear on the
interval [0,1/2], then the support of Cs consists of:

(i) the segment {(0,0), (d*,d*));

(ii) the trapezoid ©((o,1),(1,0),(2d*—1,1),(1,2d*—1)} -
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Corollary 5.2. Let Cs be an ortholinear copula with a piecewise linear diagonal
section 0. Suppose that d €10,1/2] is the mazimum value such that 6(d) =0, and
d* =1 is the minimum value such that 6(d*) = 2d* — 1. If § is linear on the
interval [1/2,1], then the support of Cs consists of:

(i) the segment {(d,d), (1,1));
(ii) the trapezoid 6{(Qdyo)’(072d)1(071)’(1,0)}.
Example 5.8. Consider the diagonal function § given by

0 )

Q;

1
X 35

IN

oz)=qz-1/3 ,if3<x<3,

2x —1 , otherwise.

Clearly, ¢ is a piecewise linear convex function. The support of the corresponding
copula is depicted in Figure a).

(0,1) (1,1) (0,1) (1,1)

(1,0)

(0)

Figure 5.7: The support of the ortholinear copulas given in Example (a) and

Example (b).
Example 5.9. Consider the diagonal function § given by

0 cifr <L

IN

r <

)

N
N|—=

dx)y=qx—~ ,if

1
5(3:17 —1) , otherwise.
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Clearly, ¢ is a piecewise linear convex function. The support of the corresponding
copula is depicted in Figure b).

Proposition 5.8. Let Cs be an ortholinear copula. Then it holds that Cs is
supported on a set with Lebesgue measure zero if and only if Cs is a member of the
family of convex sums of Ty and Ty,.

Proof. The family of convex sums of Tyg and T, is a family of copulas supported
on a set with Lebesgue measure zero (see Chapter [1). In Example it was
shown that the latter family is a family of ortholinear copulas. Therefore, to
complete the proof, it suffices to prove the necessity. Let Cs be an ortholinear
copula and suppose further that Cs is supported on a set with Lebesgue measure
zero. Suppose that d € [0,1/2] is the maximum value such that 6(d) = 0, and
d* € [1/2,1] is the minimum value such that §(d*) = 2d* — 1. If § is piecewise
linear, then due to Proposition it must hold that d = 0 and d* = 1 or
d = d* = 1/2. Suppose that § is not piecewise linear, i.e. there exists an interval
[d1, ds] such that the graph of the restriction of § to [d;, d2] does not contain any
segment. Assume w.l.o.g. that dy < 1/2. Let R = [z,2'] X [y,y] be a rectangle
located in the trapezoid Oz = O (4, d,),(0,2d,),(0,2d2),(ds,d2)} and let by = (z1,21),
ba = (22, x2), bg = (z3,23) and by = (x4, 24) be four (possibly coinciding) points
on the diagonal of the unit square such that the points (x,y), (z,y'), (¢/,y) and
(2,3’ are located on the segments ((0,2z1),b1), {(0,2z2), ba), ((0,2x3),bs) and
((0,2x4),by), respectively (see Figure. The points by, ba, bs and by, together
with (0,0), (d,d), (d*,d*) and (1, 1), determine a piecewise linear convex diagonal
function é; such that &1 (x;) = d(z;) for any ¢ € {1,2,3,4}. Due to Proposition
the ortholinear function A;s, is an ortholinear copula. Therefore,

Va,(R) = VA51 (R)>0.

Furthermore, as in the proof of Proposition (ii), it holds that Vi, (R) > 0.
Consequently, the trapezoid © is a subset of the support, a contradiction. Hence,
¢ is piecewise linear. Similarly to the proof of Proposition ii) and using the
fact that Cy is supported on a set with Lebesgue measure zero, it follows that § is
linear on the interval [0,1/2] as well as on the interval [1/2,1], i.e.

(5(x) = 06TM (fE) + (1 — 0)5TL ((E) s

with 6 € [0, 1]. Recalling that any ortholinear copula is uniquely determined by its
diagonal section, our assertion follows. O
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5.7. Dependence measures

In this section, we derive compact formulae for Spearman’s rho, Gini’s gamma and
Kendall’s tau of two continuous random variables whose dependence is modelled
by an ortholinear copula Cs. These parameters can be expressed in terms of the
function §.

Proposition 5.9. Let X and Y be two continuous random variables whose copula
is an ortholinear copula Cs.

(i) The population version of Spearman’s pc; for X and'Y is given by

1/2
pes :24/x((5(x)+5(1—x))dm—2.

0

(ii) The population version of Gini’s oy for X and'Y is given by
1
Yo, = 4/5(m)dx —2(1-4(1/2)).
0

(iil) The population version of Kendall’s 7oy for X andY is given by

o, = 1— (4/3)(6%(1/2) — 6(1/2) + 5)

—(4/3) :)//Qx <((i(5(x))>2 4 (im - x)>2> dz
+16 1//25(1 _ ) da+ (8/3) 1//252(:”) +(L=0@)
0 0 “ '

Proof. In order to find pc,, we need to compute

0 0

As Cj is symmetric, it holds that I = 2I with I the integral over the region Tp U T},
ie.

1/21—x 1y
i:/ /Ca(x,y)dydx+/ /Ca(x,y)dxdy-
0 =z 1/21-y
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Substituting the expression for Cs(z,y), it holds that

1/21—1 1/2 1/2
//Cg(a:,y)dydm=2/xdx/@dz. (5.17)
0 =z 0 T

Consider the function ¢ :]0,1[— R given by
¢(z) = / Mdu.

u
0

Substituting ¢(x) in Eq. (5.17) and integrating by parts, it follows that

/212 1/2
/ / Cs(z,y)dydr = /xé(m) dz.
0 =z 0
Similarly, one can find that
1 Yy 1/2
/ / Cs(z,y)dady = / xd(l—z)dr+1/24.
17215y 0
Hence,
1/2
I=2I=2 / z(0(z) +6(1 —2))da +1/12.
0

Substituting in the expression for pc,, (i) follows.

The expression for y¢, can be rewritten as

1

o =4 | [[woy(a)de - / (2 — d(z))da | |
0

0

where wc, is the opposite diagonal section of C's. Since Cj is ortholinear, we, is
given by
2x6(1/2) Jif e <1/2,

Wcé(w):
2(1 —x)6(1/2) ,ifz>1/2.

1
Computing [ we, (z)dz, (i) follows.
0
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In order to find 7¢;,, we need to compute

11
://% (a: y)dady .
x
00

Let us introduce the notations

o, 9C;s
I =
1 / / pe (2, y)—H— oy 2 (2, y)dady,

and

Yy
9Cs 9Cs
b= [ [ Gl sy,

1/21-y

As Cj is symmetric, it holds that I = 2 with I the integral over the region T5 UT5,
ie.
I=L+1.

Computing the partial derivatives, it holds that

1/21—2
1d 1 d
L= As(2) 4 2o (As(2) ) (o (As(2) ) dady
[ ] (55 00) (5o 0o9)
1/2 1/2 4 1/2 1/2d
:(1/2)/xdx/Ag(z)&(/\g(z))der(l/Z)/xdz/&(/\(;(z))de
0 T 0 T
1/2 1 ) 1/252
_(1/12)62(1/2)+(1/6)/x(dm(d(z))) dx—(1/3)/ Q(CI) dz .
0 0
Similarly, one can find that
o ? 1/21_5(1_ )2
=) [o(foa-am) -am [
0 0

1/2

—2 / §(1 —x)da + (1/12)6%(1/2) — (1/6)6(1/2) +5/6.

0

Substituting in the expression for 7¢,, (iii) follows. O
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Table 5.1: Spearman’s rho, Gini’s gamma and Kendall’s tau of the ortholinear copulas

Cs, with diagonal section & (t) = t*1.
9 | 3 PCs, YCs, Cs,
0 t 1 1 1

0.2 | t'2 0.667144 0.688732 0.651416
0.4 | tt4 0.383928 0.424525 0.380099
0.6 | !¢ 0.141183 0.198215 0.161747
0.8 | t18 | —0.068242 0.002921 | —0.017583
1 t2 | —0.250000 | —0.166667 | —0.166667

Example 5.10. We reconsider the ortholinear copulas associated with the diagional
functions introduced in Example [5.6, For these copulas we computed the values
of Spearman’s rho, Gini’s gamma and Kendall’s tau by means of the expressions
giwen in Proposition[5.9 The results are listed in Table[5.1]

5.8. Aggregations of ortholinear copulas

In this section we study the aggregation of ortholinear copulas. We formulate two
lemmas and two immediate propositions.

Lemma 5.4. The sets D§° and D are closed under minimum, mazimum and
convex sums.

Lemma 5.5. Let Cs, and Cs, be two ortholinear functions. Then it holds that
Cs, < Cs, if and only if 61 < 2.

Proposition 5.10. Let 61,02 € DE® (resp. D) and 6 € [0,1]. If Cs, and Cs, are or-
tholinear — semi-copulas (resp. quasi-copulas), then also min(Cs,,Cs,),
max(Cs,, Cs,) and 0Cs, + (1 — 0)Cs, are ortholinear semi-copulas (resp. quasi-
copulas). The corresponding diagonal sections are given by Omin = min(dy, da),
Omax = max(d1,d2) and 061 + (1 — 0)d2, respectively.

Consequently, the class of ortholinear semi-copulas and the class of orthogonal
quasi-copulas are closed under minimum, maximum and convex sums.
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Proposition 5.11. Let 61,92 € D and 6 € [0,1]. If Cs5, and Cs, are ortholinear
copulas, then also max(Cs,,Cs,) and 0Cs, +(1—0)Cs, are ortholinear copulas. The
corresponding diagonal sections are given by dmax and 061 + (1 — 0)da, respectively.

Consequently, the class of ortholinear copulas is closed under maximum and convex
sums. Hence, the class of orthogonal copulas is not join-dense in the class of
ortholinear quasi-copulas in contrast to the general case [92]. In general, the
minimum of two ortholinear copulas need not be an ortholinear copula. For
instance, let Cs, and Cs, be two ortholinear copulas with J; and d5 as depicted in
Figure Obviously, the function duyi, is not convex, and thus min(Cs,, Cs,) is a
proper ortholinear quasi-copula.

(0,1) (1,1)

(0,0) (1,0)
Figure 5.8: An example of the graph of dmin

Since the diagonal function ¢ determining an orthogonal quasi-copula Qs can always
be written as the infimum of a family (J;);c; of convex functions, any orthogonal
quasi-copula Qs can be written as

Qs = inf Cj, ,
el

where Cj, are orthogonal copulas. Hence, the class of orthogonal copulas is meet-
dense in the class of orthogonal quasi copulas.

5.9. Paralinear functions

Paralinear functions are constructed by linear interpolation on segments that are
parallel to the diagonal of the unit square. The linear interpolation scheme of this
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type of functions on some segments is depicted in Figure [5.9

(0,1)

(1,1)

(0,0)

(1,0)

Figure 5.9: Some segments on which a paralinear function is linear.

Let us introduce the notation v = MT_y

Let w € Os. The function A, : [0,1]> — [0, 1] given by

yl—v s
) |
Au(z,y) °
w\T,Y) =
pry—140-y2
w(v)
ety—1+Q0-2)—

if (z,y) € Ty,
if (l‘, y) € T2 3

(5.18)
if (fﬂ, y) € T3 ’

if (z,y) € Ty,

is well defined. This function is called the paralinear function with opposite diagonal
section w, since it is linear on segments connecting the points (z,1 — ), (0,1 — 2x)
and (2z,1), with x < 1/2; as well as on segments connecting the points (z,1 — z),

(22 —1,0) and (1,2(1 — x)), with = > 1/2.

For any paralinear function, the boundary conditions of a semi-copula always hold.
Note that a paralinear function A, is uniquely determined by its opposite diagonal
section. Note also that a paralinear function A, is continuous if and only if w is
continuous. Let us consider the functions A, and p,, defined as in Chapter [3]
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Proposition 5.12. Let w € O&°. The paralinear function A, is a semi-copula if
and only if

(i) the function A, and the function i, : [0,1] — [0,1] defined by
Y, () = 2w(z),
are respectively decreasing and increasing on the interval 10,1/2];

(ii) the function p,, and the function &, : [0,1] — [0,1] defined by

o) = (1 - z)w(z),

are respectively increasing and decreasing on the interval [1/2,1].

Proof. Suppose conditions (i) and (ii) are satisfied. To prove that A, is a semi-
copula we need to show its increasingness in each variable. We prove the increasing-
ness of A, in the second variable (the proof of the increasingness in the first variable
is similar). Let (x,7), (x,9’) € [0,1]? be such that y < y’. Let us introduce the
notation v’ = H'IT_ZJI If (x,y), (z,y") € T1, the increasingness of A, is equivalent

° (v) (v)
,w(v w(v
— >0
Y1 Y1y
or, equivalently,
y ) y 0
— >0.
(1 _ U/)2 §w(v ) (1 _ U)wa(v) =

Since z +y <z + ¢y’ < 1 and the decreasingness of £, on the interval [0,1/2], it
holds that

(13/0/)2&0(7/) ) 2 o ) ~6) 20,

If (z,y), (z,y) € Ty, the increasingness of A, is equivalent to

(225

v’ v

or, equivalently,
(A (V') = Au(v)) > 0. (5.19)

Since y < ¥/, it holds that v < v and therefore inequality ([5.19)) holds due to the
decreasingness of the function A, on the interval ]0,1/2].

If (z,y), (z,y) € T3, the increasingness of A, is equivalent to

Yy —y+(1 —y’)ws,)/) —(1 —y)wiv) >0,
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or, equivalently,

(1= 9)(1 = A (®) = (L =)L = X)) > 0.

Since y <y’ and the decreasingness of A, on the interval ]0,1/2], it holds that

1=y =) = (1 =11 = A(®)) = (1 =) (A (v) = Au(v)) 2 0.

Similarly, one can prove the increasingness of A, in the second variable on Tj.

Conversely, suppose that A, is a semi-copula. Let y,y’ €]0,1/2] be such that
y <9y, and € [0,1] be such that z + ¢’ < 1 and y > 2/. Clearly, the points
(x,14+ 2 —2y) and (z,1 4+ x — 2y’) are located in T. The increasingness of A, in
the second variable implies

Ap(z,1+x2—2y) — Ap(z,1+2—-2y") >0, (5.20)
or, equivalently,

z(Aw(y) — Au(y)) > 0.

Hence, the decreasingness of A, on the interval ]0,1/2] follows.

Let z,2' €]0,1/2] such that < 2’ and y € [0,1] such that y > 2’ and 2’ +y < 1.
Clearly, the points (2z + y — 1,y) and (22’ + y — 1,y) are located in T5. The
increasingness of A, in the first variable implies

w(x')

1./

(22" +y—1) >0, (5.21)

or, equivalently,

2(w(2’) —w(z)) — (1 —y) (w(x/) - w(x)) >0, (5.22)

x! T

Dividing by 2’ — = and taking the limit 2’ — z, inequality (5.22)) becomes

2/ (2) — (1 - y) (“‘“”) >0,

x
where the derivative exists. Setting y = 1 — z, the last inequality is equivalent to
2w (z) + w(z) >0,

or, equivalently, ¢/ (z) > 0, where the derivative exists. Since w is absolutely
continuous, it holds that 1), is absolutely continuous. The fact that ¥/ (z) > 0,
where the derivative exists, on the interval |0, 1/2], then implies that v, is increasing
on the interval 10,1/2].
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Let z,2" € [1/2,1] such that <z’ and y € [0, 1] such that x + ¢’ <1 and y < x.
Clearly, the points (2z +y — 1,y) and (22’ + y — 1,y) are located in T;. The
increasingness of A, in the first variable implies

Au(22'+y—-1,y) - Au2r +y —1,y) >0, (5.23)

or, equivalently,
Y(po (') = po(z)) > 0.

Hence, the increasingness of p,, on the interval [1/2,1] follows. Similarly, one can
prove the increasingness of 1),, on the interval ]0,1/2] and the decreasingness of &,
on the interval [1/2,1[, which completes the proof. O

Let A, be an ortholinear function with opposite diagonal section w. The function
A’, defined by
A = pa(4), (5.24)

where ¢ is the transformation defined in , is again an ortholinear function
whose diagonal section d4: is given by d4/(x) = x — w(x). This transformation
permits to derive in a straightforward manner the conditions that guarantee the
existence of a paralinear function. Based on the above discussion the proofs of the
following propositions are obvious due to Proposition [5.3] and Theorem [5.1

Proposition 5.13. Let w € O. The paralinear function A, is a quasi-copula if
and only if

(i) the function A\, and the function 1, defined in Proposition are respec-
tively decreasing and increasing on the interval ]0,1/2]

(ii) the functions p, and the function &, defined in Proposition are respec-
tively increasing and decreasing on the interval [1/2,1].

Proposition 5.14. Let w € O. The paralinear function A, is a copula if and only
if the function w is concave.

Example 5.11. Consider the opposite diagonal functions wr,, and wry . Clearly,
wry, and wry, are concave functions. The corresponding ortholinear copulas are
Tn and Ty, respectively.
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Example 5.12. Consider the opposite diagonal function wrs(x) = z(1 — x).
Clearly, wry is concave. The corresponding ortholinear copula is given by

yv ,if (xyy) € Th
z(1—v) L if (xyy) € Ty,
A=y if (w,y) €Ty,
y—(=a)(1=v) ,if(wy) €Ty

We conclude this section by finding the intersection between the class of ortholinear
copulas and the class of paralinear copulas.

Proposition 5.15. Let C' be a copula. Then it holds that C' is an ortholinear
copula as well as a paralinear copula if and only if C' is a member of the family of
convezr sums of Tng and Tx,.

Proof. Suppose that C is an ortholinear copula with opposite diagonal section w
and suppose further that C' is a paralinear copula with diagonal section §. Due to
the construction method of ortholinear copulas and paralinear copulas, § and w
must be piecewise linear and are given by

2zw(1/2) yif e <1/2,
o(x) =
20— 1421 —2)w(1/2) ,ifx>1/2,
2x6(1/2) yif e <1/2,
w(x) =

21— 2)5(1/2) ,ifx>1/2.
Since § and w are the diagonal and opposite diagonal sections of C, it holds that
0(1/2) = w(1/2). Using the notation § = 2§(1/2) = 2w(1/2), § and w can be
rewritten as

0(x) = 001 () + (1 = 0)dr (2),  w(z) = Owny () + (1 = O)wr, (2).

Recalling that any ortholinear (resp. paralinear) copula is uniquely determined by
its diagonal (resp. opposite diagonal) section, our assertion follows. O
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6 Semilinear copulas based on horizontal
and vertical interpolation

6.1. Introduction

Rather than including one line in the unit square in the linear interpolation
procedure as in the previous chapters, we include in this chapter two lines. More
specifically, these two lines are the diagonal and the opposite diagonal of the unit
square. We restrict our attention in this chapter to the class of copulas.

We introduce in this chapter new families of semilinear copulas. Recently, Durante
et al. [38] introduced two families of semilinear copulas with a given diagonal
section, which they called lower and upper semilinear copulas. These copulas are
obtained by linear interpolation on segments connecting the diagonal and one of
the sides of the unit square. Lower and upper semilinear copulas are symmetric.
In order to allow for non-symmetric semilinear copulas as well, De Baets et al. [20]
have introduced two related families of semilinear copulas with a given diagonal
section, called horizontal and vertical semilinear copulas. In the present chapter,
we first introduce four families of semilinear copulas with a given opposite diagonal
section, called lower-upper, upper-lower, horizontal and vertical semilinear copulas.
There is a great similarity between the case of a given opposite diagonal section
and that of a given diagonal section (see also [23]), which can be explained by the
existence of a transformation that maps copulas onto copulas in such a way that
the diagonal is mapped onto the opposite diagonal and vice versa. In the second
part of this chapter, we consider the construction of semilinear copulas with given
diagonal and opposite diagonal sections. Also here, four new families of semilinear
copulas are introduced, called orbital, vertical, horizontal and radial semilinear
copulas.

This chapter is organized as follows. In Section [6.2] we recall some essential facts on
semilinear copulas with a given diagonal section, while in Section we introduce
semilinear copulas with a given opposite diagonal section. In Section [6.4] we
introduce the four families of semilinear copulas with given diagonal and opposite
diagonal sections and provide for each family the conditions to be satisfied by
a diagonal and opposite diagonal function such that they can be the diagonal
and opposite diagonal sections of a semilinear copula belonging to that family.
Finally, in Section we derive some interesting properties of the family of orbital
semilinear copulas.

145



CHAPTER 6. SEMILINEAR COPULAS BASED ON HORIZONTAL AND VERTICAL INTERPOLATION

Lower Upper Horizontal Vertical

Figure 6.1: Semilinear copulas with a given diagonal section.

6.2. Semilinear copulas with a given diagonal sec-

tion

Two different methods for constructing semilinear copulas with a given diagonal
section have been presented recently. The first method is based on linear interpola-
tion on segments connecting the diagonal with the left and lower side (resp. right
and upper side) of the unit square; these symmetric copulas are called lower (resp.
upper) semilinear copulas [38]. The second method is based on linear interpolation
on segments connecting the diagonal with the lower and upper side (resp. left
and right side) of the unit square; these in general non-symmetric copulas are
called vertical (resp. horizontal) semilinear copulas [20]. The different interpolation
schemes are depicted in Figure

We briefly recall the conditions on a diagonal function ¢ that guarantee the existence
of a lower or vertical semilinear copula with § as diagonal section.

Let us consider the subtriangles I; and I3 of the unit square as in Chapter [3] Let
us further consider the functions A\s and ps defined as in Chapter

Proposition 6.1. [38] Let § be a diagonal function. The function C% : [0,1]*> —
[0,1] defined by

o(x ‘
l y(T) cif (,y) € In,
05(1’, y) = J(y) (61)
7 ’ Zf ('Tv y) € IQ )
where the convention % := 0 is adopted, is a copula with diagonal section §, called

lower semilinear copula with diagonal section ¢, if and only if

(i) the function A\s is increasing;

(i) the function ps :]0,1] — [1,00[, defined by ps(x) = ) is decreasing.

€T
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Proposition 6.2. [20] Let § be a diagonal function. The function C¥ :[0,1]? —
[0,1] defined by

oz )
y% ) Zf(l'vy)ejlv
Cs(z,y) = (6.2)
wy—x) 1-y :
) 1
1—2 +1-.’E (x) 7Zf(xay)€ 2,
where the convention % :=1 is adopted, is a copula with diagonal section §, called

vertical semilinear copula with diagonal section 6, if and only if
(i) the function As is increasing;
(ii) the function pg is increasing;
(iii) & > 0, i.e. for any x € [0,1], it holds that §(z) > z2.
It can be easily proven that the upper semilinear copula with a given diagonal
section can be regarded as a transform of a lower semilinear copula.
Propositicgn 6.3. Let 0 be a diagonal function and § be the diagonal function
defined by 6(z) = 2z — 14 6(1 — x). The function C¥ : [0,1]*> — [0, 1], defined by
Cy =a(CY), (6.3)

where o is the transformation defined in , is a copula with diagonal section ¢,
called upper semilinear copula with diagonal section ¢, if and only if

(i) the function us is increasing;
(i) the function os : [0,1][ — [1,00[, defined by o5(x) = %, is increasing.

Similarly, the horizontal semilinear copula with a given diagonal section is a
transform of a vertical semilinear copula.

Proposition 6.4. Let § be a diagonal function. The function C¥ : [0,1]? — [0,1],
defined by
C§ =n(C3), (6.4)

where w is the transformation defined in , is a copula with diagonal section §,
called horizontal semilinear copula with diagonal section d, if and only if C§ is a
copula, i.e. under the conditions of Proposition[6.2

Note that for any two lower (resp. upper, vertical, horizontal) semilinear copulas
C1 and Cj it holds that C; < Cs if and only if ¢, < d¢,. Since the function ps is
decreasing, ps(z) > ps(1) = 1 for any = €]0, 1]. Therefore, §(z) > 22, for any lower
semilinear copula C. Similarly, since the function o5 is increasing, 6(x) > 2, for
any upper semilinear copula C. Note also that M and II are examples of copulas
that are at the same time lower, upper, vertical and horizontal semilinear copulas.
Hence, II is the smallest semilinear copula (of one of the above four types), i.e.
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every semilinear copula with a given diagonal section (of one of the above four
types) is positive quadrant dependent.

6.3. Semilinear copulas with a given opposite di-
agonal section

In analogy with the lower (resp. upper) and vertical (resp. horizontal) semilinear
copulas with a given diagonal section d, we introduce lower-upper (resp. upper-
lower) and vertical (resp. horizontal) semilinear copulas with a given opposite
diagonal section w. For instance, the lower-upper semilinear copula is constructed
based on linear interpolation on segments connecting the opposite diagonal with
the left and upper side of the unit square. See also Figure where the four
different interpolation schemes are depicted.

Lower-upper Upper-lower Horizontal Vertical

Figure 6.2: Semilinear copulas with a given opposite diagonal section.

Let C,, be a copula with opposite diagonal section w. The function C’, defined by
C’ = po(C), where s is the transformation defined in (1.3))), is again a copula
whose diagonal section d¢v is given by d¢r(x) =  — w(x). This transformation
permits to derive in a straightforward manner the conditions that guarantee the
existence of a semilinear copula (of any of the above types) with a given opposite
diagonal section. Let us consider the subtriangles J; and J of the unit square
as in Chapter Let us further consider the functions A\, and defined pu,, as in
Chapter

Proposition 6.5. Let w be an opposite diagonal function. The function C* :
[0,1]2 = [0,1] defined by

x .
(o g) mw(l—y) cif (zy) € Jh, 65)
C ) (z,y) = 1_ 6.5
x—i—y—l—i—Tyw(m) ,if (z,y) € Jo,

where the convention g

w, called lower-upper semilinear copula with opposite diagonal section w, if and

:= 0 s adopted, is a copula with opposite diagonal section
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only if
(i) the function X\, is decreasing;

(i) the function n,, :]0,1] — [1,00[, defined by n,(z) = =) is decreasing.

x2

Proposition 6.6. Let w be an opposite diagonal function. The function CY :
[0,1]% — [0,1], defined by

w(x) ’ Zf ($7y) € Jla

1—
phy—1+—Lw@) i) e,

1—2z

Colz,y) = (6.6)

where the convention % := 0 is adopted, is a copula with opposite diagonal section
w, called vertical semilinear copula with opposite diagonal section w, if and only if

(i) the function A\, is decreasing;

(ii) the function p, is increasing;

(i) w < wr, i.e. for any x € [0,1], it holds that w(z) < z(1 — ).
Proposition 6.7. Let w be an opposite diagonal function and & be the opposite
diagonal function defined by &(x) = w(1 — ). The function C# : [0,1]* — [0,1],

defined by
Col =m(CE), (6.7)

s a copula with opposite diagonal section w, called upper-lower semilinear copula
with opposite diagonal section w, if and only if

(i) the function p, is increasing;
(ii) the function (, : [0,1[— [1,00[, defined by (,(x) = 17(%:)(2"”), is increasing.

Similarly, the horizontal semilinear copula with a given opposite diagonal section
is a linear transform of a vertical semilinear copula.

Proposition 6.8. Let w be an opposite diagonal function and & be the opposite
diagonal function defined by &(x) = w(1 — x). The function C* : [0,1]%> — [0,1],
defined by

Cl=m(CY), (6.8)

s a copula with opposite diagonal section w, called horizontal semilinear copula
with opposite diagonal section w, if and only if C} is a copula, i.e. under the
conditions of Proposition [6.6

Note that for any two lower-upper (resp. vertical, upper-lower, horizontal) semilinear
copulas C7 and Cy it holds that C; < Cs if and only if we, < we,. From
Propositions and it follows that w(z) < z(1 — z) for any lower-upper,
upper-lower, horizontal or vertical semilinear copula. Note also that W and II are
examples of copulas that are at the same time lower-upper, vertical, upper-lower
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X X X

Orbital Vertical Horizontal Radial

Figure 6.3: Semilinear copulas with given diagonal and opposite diagonal sections.

and horizontal semilinear copulas. Hence, II is the greatest semilinear copula (of one
of the above four types), i.e. every semilinear copula with a given opposite diagonal
section (of one of the above four types) is negative quadrant dependent.

6.4. Semilinear copulas with given diagonal and
opposite diagonal sections

In this section we introduce four new families of semilinear copulas. Their con-
struction is based on linear interpolation on segments connecting the diagonal and
opposite diagonal or connecting the diagonal or opposite diagonal and one of the
sides of the unit square. Since in any of the four triangular parts of the unit square
delimited by the diagonal and opposite diagonal, we can either interpolate between
a point on the diagonal and a point on the opposite diagonal, or between a point on
the sides of the unit square and a point on the diagonal or opposite diagonal, there
are sixteen possible interpolation schemes. Based on symmetry considerations, we
will consider only the four interpolation schemes depicted in Figure [6.3

Clearly, in general, given a diagonal function § and an opposite diagonal function
w, there need not exist a copula that has § as diagonal section and w as opposite
diagonal section. For instance, the diagonal function §(z) = 22 and the opposite
diagonal function w(x) = min(x, 1—z) cannot be the diagonal and opposite diagonal
sections of a copula since §(1/2) =1/4 #1/2 = w(1/2).

Let us consider the subtriangles 17, T, T3 and Ty of the unit square as in Chap-
ter
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Proposition 6.9. Let § and w be diagonal and opposite diagonal functions such
that 6(1/2) = w(1/2). The function Cf, : [0,11* = [0,1], defined by

~1 _
29— 1 29 — 1

Cg,w(xay) = .’K+y*1 r—y (69)
5 1 §(z) + 57— 1 w(z) , otherwise,

where the convention % :=1/2 is adopted, is a copula with diagonal section 6 and

opposite diagonal section w, called orbital semilinear copula with diagonal section
¢ and opposite diagonal section w, if and only if:

(1) the functions 954, Vs 1 [0,1/2[U]1/2,1] — [0,1], defined by

w(z) —é(x)
1—-22

w(l—2z)—6(x)

Yowl@) = 1—22

¢5,w (.13) =

are increasing on the interval [0,1/2] and on the interval ]1/2,1];
(ii) for any xz,a’ € [0,1/2[, such that x < 2’, it holds that

8(z')(1 — 22) — 6(z)(1 — 2)

wr)+wl—2) < po

)

(2")(1 = 22) —w(x)(1 —22")

)

8(z) +6(1—z) > =

-z
(iil) for any z,x’ €]1/2,1], such that x < «’, it holds that

5(z")(1 —2x) — 6(x)(1 — 227)

-

wr')+wl—2") <

)

w(z')(1 - 22) —w(z)(1 — 22) .

' —x

(') +6(1 -2 >

Proof. The function Cf , defined in clearly satisfies the boundary conditions
of a copula. Therefore, it suffices to prove that conditions (i)-(iii) are equivalent to
the property of 2-increasingness. Due to the additivity of volumes, we distinguish
the following cases. Consider a rectangle R = [z, 2'] x [y,y'] C [0, 1]%.

(a) If R C Ty such that 2’ < 1/2, then it holds that

Vog (R) = (95.0(2") — Da(@)(y/ — 1)

The nonnegativity of Ve (R) is clearly equivalent to the increasingness of
the function 95, on the intervals [0,1/2[. Similarly, the nonnegativity of
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Voo (R) for any rectangle R C Ty such that z > 1/2 is equivalent to the
increasingness of the function 95, on the interval |1/2,1].

(b) If R C T3 such that ¢’ < 1/2, then it holds that

Vog (B) = (Ws(y') — bsw() (@ — ).

The nonnegativity of Ve (R) is clearly equivalent to the increasingness of
the function s, on the intervals [0,1/2[. Similarly, the nonnegativity of
Ves | (R) for any rectangle R C T3 such that y > 1/2 is equivalent to the
increasingness of the function t;,, on the intervals |1/2,1].

(c) If Ris of the type [z, 2'] X [z, 2] or of the type [z, 2'] x [1 -2, 1 — ] (otherwise
stated, rectangles whose diagonal or opposite diagonal is situated on the
diagonal or opposite diagonal of the unit square), then the nonnegativity of
Vg, (R) is equivalent to conditions (i) and (iii). O

Note that conditions (ii) and (iii) can be reformulated by means of the functions
¥s.w and 15, in the following way:

(it") for any z,z’ € [0,1/2[ such that z < 2/, it holds that

M) Z0E) gt ) — i) > L0200,

1957“,(13) + wa,w(l‘) < S x —x

xT

(iii") for any x,2’ €]1/2,1] such that x < 2/, it holds that

Do) suel) 2 DOy 1 aty oty < AL

In case § and w are differentiable functions, the latter two conditions are equivalent
with

(ii”) for any = < 1/2, it holds that

8'(2) 2 Vs.0(2) + Vs0(),  W'(2) Ss0(l—2) = Vsw(@);

(iii”) for any = > 1/2, it holds that

0'(@) < Vsw(@) + Vs0(2), W'(2) 250l —2) —Jsu(@).
Example 6.1. Consider the diagonal function §(x) = 2% and the opposite diagonal
function w(z) = (1/2) min(z, 1 — ). Note that 6(1/2) = w(1/2) = 1/4. Clearly,

the functions 95, and s, are increasing on the intervals [0,1/2[ and 11/2,1]. For
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any 0 <z <z’ <1/2, it holds that

o(x") — o(x)

!

_ r_
V5w(@) + Ysw(z) =z <z+a' = o

and 1 /

whence condition (ii’) is satisfied. Similarly, condition (¥i’) is satisfied, and
therefore the function C§ , defined in is the orbital semilinear copula with

diagonal section § and opposite diagonal section w.

Next, we consider the construction of the horizontal (resp. vertical) semilinear
copula with given diagonal and opposite diagonal sections. It is constructed by
interpolating in the z-direction (resp. y-direction). As it is again possible to connect
the two types by means of a transformation, we will make explicit the conditions
to be fulfilled by ¢ and w for just one type.

Proposition 6.10. Let 6 and w be diagonal and opposite diagonal functions such
that 6(1/2) = w(1/2). The function Cgfw :[0,1]% = [0,1], defined by C}, (x,y) =

1 _
o )+ e —y) i () € LTy and (a.9) # (1/2.1/2).
§5<y> Cif (@) €Ty and y < 1/2,
1x w(l—y) ,if (xyy) €Ty and y > 1/2,

)
1—x .
eryflJrTw(lfy) ,if (xyy) €Ty and y < 1/2,
1—x .
yfl_y(y*5(y)) cif (y) €Ty and y > 1/2,
(6.10)
where the convention % := 0 is adopted, is a copula with diagonal section 6 and

opposite diagonal section w, called horizontal semilinear copula with diagonal section
¢ and opposite diagonal section w, if and only if:

(i) the function s, is increasing on the interval [0,1/2] and on the inter-
val 11/2,1];

(ii) the function As is increasing on the interval |0,1/2] and the function \,is
decreasing on the interval [1/2,1];

(iil) the function us is increasing on the interval [1/2,1] and the function i, is
increasing on the interval [0,1/2];

(iv) for any x € [0,1/2], it holds that
min[(1 — 2)d(x) — 2w(l — ) ,26(1 — ) — (1 — x)w(x)] > 0;
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(v) for any x € [1/2,1], it holds that

min[z(1-2z)—(1—z)w(l—z)+zé(z), (6(1—2)+2z—1)(1—z) —zw(z)] > 0.

Proof. The proof is similar to that of Proposition [6.9] O

Example 6.2. Consider the diagonal function §(x) = 5% and the opposite di-
agonal function w(z) = 2min(z,1 — x). Note that 6(1/2) = w(1/2) = 1/3. The
first three conditions of Proposition[6.10 are trivially fulfilled. Moreover, for any

x €[0,1/2], it holds that

(3 —xz)(1 — 2z)
3(2—x)

(1-2)0(z) —zw(l—x) = >0

and

z(1—z)(1 —2x) >0,
31+ 2) -

which implies condition (iv). Condition (v) holds similarly. Therefore the function

ng is the horizontal semilinear copula with diagonal section 6 and opposite diagonal
section w.

20(1—2) — (1 —2)w(x) =

The vertical semilinear copula ng with diagonal section § and opposite diagonal
section w is defined by
3, = m(Cla) (6.11)

with & the opposite diagonal function defined by w(x) = w(1 — 2) and Cf, the
horizontal semilinear copula with diagonal section ¢ and opposite diagonal section
w, provided the latter is properly defined. In fact, the conditions on ¢ and w are
exactly conditions (i)—(v) of Proposition

Finally, we consider the case where the interpolation is done on segments connecting
points on the diagonal or opposite diagonal and points on the sides of the unit
square. We call a semilinear copula that results from this interpolation scheme a
radial semilinear copula.
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Proposition 6.11. Let 6 and w be diagonal and opposite diagonal functions such
that 6(1/2) = w(1/2). The function Cf , : [0,11* = [0,1], defined by

gé(:}:) ,if (myy) €Ty and x < 1/2,
x
13;6(.0(1‘) sif (vyy) €Th and x > 1/2,
§6<y> Cif (zy) €Ty andy < 1/2,
ey if (@,y) €Ty andy > 1/2,
Co(:9) = :L’—l—y—l—l—iy (x) ,if (zyy) €Ty and 2 < 1/2, (6.12)
1—
x—ﬁ(m—é(m)) ,if (myy) € Ts and x> 1/2,
11—z .
1—
x+y—1+7%<1—y> L if (w,y) € Ty andy < 1/2,

where the convention % := 0 is adopted, is a copula with diagonal section 6 and

opposite diagonal section w, called radial semilinear copula with diagonal section ¢
and opposite diagonal section w, if and only if

(i) the function As is increasing on ]0,1/2], the function ps is decreasing on
10,1/2], the function A, is decreasing on 10,1/2] and the function 1, is
decreasing on 10,1/2];

(ii) the function us is increasing on [1/2,1], the function os is increasing on
[1/2,1], the function u,, is increasing on [1/2,1[ and the function (, is
increasing on [1/2,1].

Note that M, IT and W are examples of copulas that are at the same time orbital,
vertical, horizontal and radial semilinear copulas with given diagonal and opposite
diagonal sections.

6.5. Properties of orbital semilinear copulas with
a given diagonal or opposite diagonal section

In this section we will further study the family of orbital semilinear copulas. It is
the only family for which the interpolation in all the triangular parts of the unit
square occurs between points on the diagonal and points on the opposite diagonal,
and therefore it has no counterpart at all in the families of semilinear copulas which
were constructed before by giving either a diagonal or an opposite diagonal section.
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It is well known that M (resp. W) is the only copula with diagonal section d; (resp.
opposite diagonal section wy). As these copulas are orbital semilinear copulas,
they are obviously the only such copulas with that given behaviour. In general,
however, M (resp. W) is not the only copula with opposite diagonal section wys
(resp. diagonal section dy ). For instance, the copula Fj,, defined in differs
from W.

In the context of orbital semilinear copulas, however, M and W take up a unique
role again.

Proposition 6.12.

(i) M is the only orbital semilinear copula which has wy as opposite diagonal
section;

(ii) W is the only orbital semilinear copula which has dyw as diagonal section.

Proof. We will prove (ii), the proof of (i) being similar. Suppose that Cg_  is
the orbital semilinear copula with diagonal section Jdy and a not yet specified
opposite diagonal section w. Note that w(1/2) = dw(1/2) = 0. From condition
(ii) of Proposition it follows that for any = € [0,1/2[, it must hold that
w(z)+w(1—z) = 0, which implies that w = ww. Hence, C§ ,=Cg  =W. [

We now investigate the situation where either the given diagonal function is the
diagonal section dry of the product copula II, or the given opposite diagonal function
w is the opposite diagonal section wyy of II. In fact, we will prove a more general
statement by introducing parametrized families of diagonal (resp. opposite diagonal)
functions that contain dry (resp. wr).

Proposition 6.13. Let § and w be differentiable diagonal and opposite diagonal
functions such that §(1/2) = w(1/2).

(i) If 6(x) = aa® + (1 — a)x for arbitrary o €]0,1], then the function C3,
given by is an orbital semilinear copula if and only if the function
ow 1 [0,1/2[U]1/2,1] — [-1,1], defined by

_ 2w(z) + (20 —x4+1/2) — 1
Pu(®) = 2(1 — 2z) ’

is decreasing and a-Lipschitz continuous on both intervals [0,1/2[ and ]1/2,1].

(i) If w(z) = az(l — x) for arbitrary a €]0,1], then the function C§, given
by is an orbital semilinear copula if and only if the function ¢s :
[0,1/2][U]1/2,1] — [-1,1], defined by

d(z) — ax?

¢s(r) = =355
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is increasing and a-Lipschitz continuous on both intervals [0,1/2[ and ]11/2,1].

Proof. We will prove (ii). The proof of (i) is analogous. Let Cg , be the function
defined in with w(z) = az(l — z). Note that the functions ¥s,., and s,
coincide. This function is an orbital semilinear copula if and only if conditions (i)
(iii) of Proposition are satisfied. Since ¢ is differentiable, we use the equivalent
conditions (ii’) and (iii’). In the case x € [0,1/2[, it should therefore hold that
0'(x) > V5.0 () + Vs, (x), or

, w(z) +w(l —2x) —26(x)
V(@)= 12z ’

which is equivalent to the condition that the function ¢; is increasing on [0,1/2[,
as can be readily verified by computing the derivative of ¢5. Furthermore, it is
required that 5, is increasing on [0,1/2[, or, equivalently, a — ¢5(x) > 0. It
follows that ¢s must be a-Lipschitz continuous on [0,1/2]. Since ¢5(0) = 0, the
increasingness of ¢ implies that §(x) > ax? for any x € [0,1/2[, whence

S(x)+6(1 —z) > alz® + (1 —2)?) = (2)(1 — 2z) + 2w(z),

which is equivalent to w'(z) < ¢5.,(1 — x) — Y5, (z) for any x € [0,1/2]. Hence,
on the subinterval [0,1/2[, all conditions of Proposition [6.9] are satisfied. In case
x €]1/2,1], the proof is similar. O

Example 6.3.

(i) Let 6(z) = ax® + (1 — a)z, with o €]0,1] and consider the opposite diagonal
function
«@ .
w(z) = (1 — 5) min(z,1 —z).

The function ¢, is decreasing and «-Lipschitz continuous on [0,1/2] and
11/2,1], whence for any o €10, 1] the functions 6 and w are the diagonal and
opposite diagonal sections of an orbital semilinear copula.

(if) Let w(z) = ax(l —x), with a €10, 1], and consider the diagonal function
a a
0(z) = (1 - 5) max(2z — 1,0) + 5%

The function ¢ is increasing and a-Lipschitz continuous on [0,1/2] and
11/2,1], whence for any o €10, 1] the functions 6 and w are the diagonal and
opposite diagonal sections of an orbital semilinear copula.

To conclude this section, we lay bare the necessary and sufficient conditions on a
diagonal function § guaranteeing that the corresponding Bertino copula is an orbital
semilinear copula and we investigate also the symmetry and opposite symmetry
properties of orbital semilinear copulas.
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Proposition 6.14. Let § be a diagonal function, then the corresponding Bertino
copula By defined in is an orbital semilinear copula if and only if for any
x €10,1/2] and any t € [x,1 — z], it holds that

t—0(t) > min(z — §(z),l —z —6(1 —x)). (6.13)
Proof. Let Bs be the Bertino copula defined ([1.10)) and suppose that Bj is an

orbital semilinear copula. The opposite diagonal section wp of this Bertino copula
is given by

wp(x) =min(z,1 —z) — min{t — §(¢) | t € [min(z,1 — z), max(z,1 — x)]}.

Let Cs,,, be the orbital semilinear copula with diagonal section 6 and opposite
diagonal section wp, then it obviously coincides with Bs. In the triangular sector
described by z <y <1 — z, it holds that

z+y—1 () r—y

97 — 1 5y — 1 we(®) =z —min{t —4(t) [t € [z, 4]}

Now, consider the function f defined by f(t) = ¢ — §(¢), then

(@+y=1)0@) + (z—y)— min f(t) =22 1)@ - min f(t)),

or equivalently,

(1—2z) nin f)=0-z-y) min f)+(y - x)teggrlx] f(t).

Let t* € [z, 1 — x| be such that [min ]f(t) = f(t*) (note that ¢t* is not necessarily
telx,1—x
unique). The above equality, with y = t*, reduces to

(1 =22)f(t") = (L =z = ") f(z) + (" = 2) f(1"),

which implies that either t* = 1 — x or f(t*) = f(x). This means that on the
interval [z, 1 — z] the minimal value of f is attained in at least one of the points
t =x ort =1 — x, whence condition follows. The three other triangular
sectors lead to the same condition. The above reasoning can obviously be traversed
in the converse direction. O

Corollary 6.1. Let 6 be a diagonal function. If
(i) & 4s 1-Lipschitz continuous on [0,1/2],
(i1) for every x € [0,1/2], it holds that 6(1 — z) = §(z) + 1 — 2z,

then the corresponding Bertino copula Bs is an orbital semilinear copula.
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Proof. Condition (ii) expresses that the function f(t) =t — d(¢) is symmetric w.r.t.
1/2 and it therefore suffices to show that

t—9(t) > min(z — d(z),l —z—6(1 —x)) =2 — §(z),

for any x € [0,1/2] and any ¢ € [x,1/2]. As condition (i) simply states that the
function f(t) =t — 0(¢) is increasing on [0, 1/2], the latter is trivially fulfilled. O

Proposition 6.15. Let w be an opposite diagonal function, then the corresponding
copula F,, defined in s an orbital semilinear copula if and only if for any
x €10,1/2] and any t € [x,1 — ], it holds that

w(t) > min(w(z),w(l — x)). (6.14)
Corollary 6.2. Let w be an opposite diagonal function. If
(i) w is increasing on [0,1/2],
(ii) for every x € [0,1/2] it holds that w(1 — z) = w(x),
then the corresponding copula F,, is an orbital semilinear copula.

Conditions (6.13]) and (6.14]) respectively express that the function f(t) =t — d(t)
and the function w satisfy a restricted form of convexity by considering only

intervals symmetric w.r.t. the point 1/2. Note that dy satisfies the conditions of
Corollary while wys satisfies the conditions of Corollary This confirms
that Bs,, = W and F,,,, = M are orbital semilinear copulas.

Proposition 6.16. Let 6 and w be diagonal and opposite diagonal functions such
that 6(1/2) = w(1/2).

(i) Let §(x) = ax® + (1 — a)z for arbitrary o €]0,1] (see Proposition , then
the smallest orbital semilinear copula with diagonal section § is the Bertino

copula Bs defined in .

(i) Let w(z) = ax(l — z) for arbitrary a €]0,1] (see Proposition [6.13), then
the greatest orbital semilinear copula with opposite diagonal section w is the
copula F,, defined in (3).

Proof. One easily verifies that the given diagonal function satisfies the sufficient
conditions of Corollary Hence, the Bertino copula is an orbital semilinear
copula. As it is the smallest copula with diagonal section ¢, it is obviously also the
smallest orbital semilinear copula with this diagonal section. The same reasoning
applies to F,. O
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The following proposition is a matter of direct verification.
Proposition 6.17. An orbital (resp. radial) semilinear copula C3 , (resp. C§ ) is

(i) opposite symmetric if and only if the function f(x) = x — §(x) is symmetric
wrt. v =1/2,d.e 6(1 —x)=0(z)+1—2z for any x € [0,1/2];
(ii) symmetric if and only if w is symmetric w.r.t. x = 1/2, i.e. w(z) = w(l — )
for any x €10,1/2].
Under the conditions of Corollary [6.1] the Bertino copula Bjs is an orbital semilinear
copula that is both symmetric and opposite symmetric. Similarly, under the

conditions of Corollary the copula F,, defined in (1.13]) is also an orbital
semilinear copula that is both symmetric and opposite symmetric.
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7 Lower semiquadratic copulas with a
given diagonal section

7.1. Introduction

The aim of the present chapter is to propose a method to construct semiquadratic
copulas. In Chapter [6] we have studied families of semilinear copulas with a given
diagonal section and/or opposite diagonal section. A copula constructed by linear
interpolation on segments connecting the diagonal of the unit square to the left
and lower side of the unit square is called a lower semilinear copula [38].

In the present chapter, we construct semiquadratic copulas by quadratic interpola-
tion on segments connecting the diagonal of the unit square to the left and lower
side of the unit square, and call them lower semiquadratic copulas. We unveil
the conditions on a diagonal function § that guarantee the existence of a lower
semiquadratic copula with diagonal section §. Unlike lower semilinear copulas,
lower semiquadratic copulas can be not symmetric. Next, we characterize the
smallest and the greatest symmetric lower semiquadratic copulas with a given
diagonal section. We also characterize the class of continuous differentiable (resp.
absolutely continuous) lower semiquadratic copulas. Finally, we provide expressions
for the degree of non-exchangeability and the measures of association for various
families of lower semiquadratic copulas.

7.2. Lower semiquadratic copulas

For any two ]0,1] — R functions « and v that are absolutely continuous and satisfy

lim y(xz —y)u(z) =0 and lim z(y —x)v(y) =0, (7.1)
z—0 y—0
0<y<z 0<z<y

and any diagonal function 4, the function C3"" : [0,1]?> — R defined by:

gfﬁ(y)fx(y—x)v(y) o<z <y,
Gty =1, (7.2)
20(@) —yle —ylu(z) ,if0<y<u,

with C§""(t,0) = C§""(0,t) = 0 for any ¢ € [0,1], is well defined. Note that the
limit conditions on w and v ensure that C"" is continuous. The function C}"" will
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be called a lower semiquadratic function since it satisfies C§""(t,t) = 6(t) for any
t € [0,1], and since it is quadratic in z on 0 < 2 < y < 1 and quadratic in y on
0 <y <z < 1. Obviously, symmetric functions are obtained when u = v. Note
that for u = v = 0, the definition of a lower semilinear function is retrieved.

In the following lemma, we provide a sufficient condition for limit conditions (|7.1)).
Lemma 7.1. Let f be a ]0,1] = R function. If }irr(l) t2|f(t)| = 0, then
—
lim y(zr—y)f(x)=0 and lim z(y—x)f(y) =0.

z—0 y—0
0<y<z 0<z<y

We now investigate the conditions to be fulfilled by the functions u, v and § such
that the lower semiquadratic function C§"" is a copula. Note that v and v, being
absolutely continuous, are differentiable almost everywhere.

Let us consider the subtriangles I; and I of the unit square as in Chapter

Proposition 7.1. Let 6 be a diagonal function and let u and v be two absolutely
continuous functions that satisfy conditions . Then the lower semiquadratic
function C§5° defined in is a copula with diagonal section § if and only if

(i) u(1) =v(1) =0, (7.3)

(i) max (u(t) + ¢ [/ (1)], v(t) + L]/ (1)) < (5“ ) , (7.4)

T
i) u(o)+ o) 2 ¢ (%)) (7.5

for any t €]0,1] where the derivatives exist.

Proof. The boundary conditions C§""(t,1) =t and C§""(1,t) =t for any t € [0,1]
immediately lead to the conditions u(1) = v(1) = 0. Therefore, it suffices to prove
that the 2-increasingness of C§" is equivalent to conditions (ii) and (iii).

Suppose that C§"" is 2-increasing. For any rectangle R = [z, 2] X [y,y'] C I, it
then holds that Vouw (R) >0, ie.

o) (9280

Yy’ y

o) 4 o)y + @+ ) () — v(y») >0,

or, equivalently,

oy 5y
(y/) - (y) —v(y)y +o(y)y+ (z +2)(v(y) —v(y) > 0. (7.6)
Dividing by 3’ — y and taking the limits ' — z and 3y — ¥, inequality (7.6)
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becomes

((5(5)) —v(y) + 2z —y)v'(y) 2 0. (1)

Since the left-hand side of inequality ([7.7) is linear in z, this condition is equivalent
to requiring that it holds for x = 0 and = = y, i.e.

(‘“yy))/ —o(y) +y'(y) 20 and <5(y))/ —v(y) —y'(y) 20,

or, equivalently, to

o) +y | (3)] < (5@)) . (7.8)

Y

Similarly, the fact that Vguw (R) > 0 for any rectangle located in I; implies that
inequality ([7.8)) also holds for the function u. Hence, condition (ii) follows.

Finally, the fact that Vguw(R) > 0 for any square R = [z,2'] x [z,2'] centered
around the main diagonal is equivalent to

VC’;*”([xvx/] X [.7;,3;‘/]) = C;7U($’$) + C;L,U(x/’x/) - CZ;’U(SC,Q?/) - Cg’v(:];/,$>
= §(z) +6(z") — 2%(5(.%‘,) +z(z' — z)(u(z") +v(2") > 0.

Dividing by z(z’ — z) and taking the limit 2’ — z, condition (iii) immediately
follows.

Now suppose that conditions (ii) and (iii) are satisfied. Due to the additivity
of volumes, it suffices to consider a restricted number of cases to prove the 2-
increasingness of C5"". Let R = [a,b] x [a/, V'] be a rectangle located in I5. Since
condition (ii) is satisfied, inequality follows and it holds that

/ab dy /ab ((5(;))/ —o(y) + (27 - y)v’(y)) dz>0.

Computing the above integral, the latter inequality becomes

- (% = 25 o) + o) + (a4 o) - (at Bota)) 20,

or, equivalently, Vou.v(R) > 0. Similarly, one can verify that Vou»(R) > 0 for any
rectangle R = [a, b] x [a’, V] located in I;.

Finally, let S = [a,b] X [a,b] be a square centered around the main diagonal. Due
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to condition (iii), it holds that

x <u(x) +o(z) —a (@)) >0,

for any x €]0, 1], which implies that

i :/abm <u(x)+v(x)—x(‘ii?>/> dz > 0.

Again using inequality (7.7)), it follows that

3 /ab/: (((ng”)'v(ywmm'(y)) dyda > 0.

As inequality (7.7) also holds for the function w, it follows after exchanging the
variables z and y that

I — /ab /yb ((‘ﬁ”) —u(z) + (2y—x)u'(a:)> dzdy > 0.

Computing the above integrals and setting I = I, + I + I, it follows that
1= 5(a) +3(5) = 233(6) + a(b — a)(u(b) +v()) > 0,

or, equivalently,
I = chx”(s) Z 0.

O

Note that if w = v = 0, then we retrieve the necessary and sufficient conditions
from Proposition [6.1] on § which guarantee that the copula is a lower semilinear
copula (see Chapter @

In the next proposition we show an interesting property of lower semiquadratic
copulas.

Proposition 7.2. Let C§"" be a lower semiquadratic copula. Then it holds that
2 max(fu(t)], [v(t)]) < min(5(t), ¢ = 5(t)), (7.9)

for any t €]0,1].

Proof. Since C§"" is a copula, it holds that C§" is increasing and 1-Lipschitz
continuous in each variable. Let (z,y), (2',y) € I such that < z’/. Expressing
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that C§" is a 1-Lipschitz continuous increasing function leads to the condition

05 @ —a) ("L 4 (@ ha o) <o -
or, equivalently,
0<4(y) +ylx+a"—yy) <y.

Taking the limit 2’ — z, the latter double inequality becomes

0<d(y)+y2z —y)v(y) <y.

For fixed y €]0, 1], this double inequality should hold for any x € [0,y] and since
the expression is linear in x one can equivalently state that the double inequality
should hold for x = 0 and = = y, leading to

0<d(y) —y*u(y) <y and 0<d(y) +yu(y) <y,
for any y €10, 1]. Since 0 < §(y) < y, it must hold for any y €]0, 1] that

y?[o(y)] < min(6(y),y — d(y)).

Similarly, expressing that C§"" is a 1-Lipschitz continuous increasing function in
the first variable on I; implies that

v lu(y)| < min(d(y),y —o(y)).-

Combining the above, condition (7.9) follows. O

Example 7.1. Let oy be the diagonal section of the greatest copula M, i.e. dp(t) =
t for any t € [0,1]. Condition (7.9) on u can be written as

2lu(t)] <0 for anyt €]0,1],

from which it follows that w = 0 on ]0,1]. Similarly, v = 0 on ]0,1]. Since
N i 42 _ o . ]
}g%t lu(t)| = %g%t [v(t)] =0, Lemma implies that conditions hold. There
fore, the only lower semiquadratic copula with diagonal section oy is the (lower
semilinear) copula M itself. A proper lower semiquadratic copula with diagonal
section Oy does not exist.

Example 7.2. Let 011 be the diagonal section of the product copula I1, i.e. 6 (t) = t2

for any t € [0,1]. Condition (7.9) on u can be written as

lu(®)| <1  foranyte€l0,1/2] and |u(t)] < ? for any t € [1/2,1].

Consider the greatest function u that satisfies these conditions, i.e. ug(t) =1 if
t €]0,1/2] and ug(t) = (1 —t)/t if t € [1/2,1]. One can verify that uy does not
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satisfy differential condition on [1/2,1], since (1—t)/t+t|(=1/t*)| =2/t—1 > 1
on ]1/2,1]. The greatest function u satisfying conditions and that is
decreasing on 10,1] is the solution of the differential equation

u(t) —tu'(t) =1,

with boundary condition u(1) = 0, and is given by u(t) = 1—t. The same observation
holds for v. Since lim t*(1 —t) = 0, Lemma implies that conditions hold.
t—0

Hence, for Cgr’[v to be a lower semiquadratic copula the following conditions on u
and v must be satisfied for any t €10,1]:

1 1
max<—171—t> <wu(t) <1-—t, max<—171—t> <wo(t)<1-t,

and
u(t) +ov(t) >0.

We conclude that the functions u(t) = v(t) = 1 — t satisfy conditions (7.3)-(7.5)
for any t €10,1]. Note that for any two lower semiquadratic functions C""* and
C§*, it holds that C5*"" < C{*? if and only if uy > us and vy > vy. Thus,
Cs", with u(t) = v(t) = 1 —t for any t €]0,1], is the smallest lower semiquadratic
copula with diagonal section or;. Moreover, it is a symmetric copula. Finally, we
distinguish two special non-symmetric lower semiquadratic copulas with diagonal
section 6r1. They are obtained with u(t) = —v(t) =1 —1t and —u(t) = v(t) =1 —t,
respectively. One easily verifies that the degree of non-exchangeability pii o (see
Chapter for both copulas equals 2/9.

For the class of lower semilinear copulas with a given diagonal section, it was shown
that the diagonal section of the product copula is the smallest diagonal function
that can be considered [37]. In the next two examples, we give examples of lower
semiquadratic copulas whose diagonal section is smaller than the diagonal section
of the product copula.

Example 7.3. Let §) be a convex sum of the diagonal section of the product
copula T1 and the diagonal section of the smallest copula W, i.e. 5x(t) = A\t? + (1 —
A)max (2t — 1,0) for any t € [0,1], with A € [0,1]. Let uy and vy be defined by

1 .

A+§U—lmﬂ Vif0<t <3,

() = ua(t) = t 1-)1
_ -
(420 + A+ —— iz <t<1.
Since lim t? [uy ()| = lim t2 |ux(t)| = 0, Lemma implies that conditions (7.1
t—0 t—0

hold. One can verify that condition (@ holds if and only if A € [0.7,1]. The
conditions of Proposition are satisfied for any A € [0.7,1] and hence, C5*"* is
a lower semiquadratic copula for any A € [0.7,1].
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Example 7.4. Let §) be the diagonal section of a Farlie—-Gumbel-Morgenstern
copula, i.e. 6x(t) = t2(1+ A(1 —t)?) for any t € [0,1], with X\ € [-1,1]. The Farlie—
Gumbel-Morgenstern family of copulas contains all copulas that are quadratic in
both variables |88, [96]. Observe that dx < o1y if and only if A € [-1,0]. Let uy and
vy be defined by

ux(t) = wva(t) =2|A[t(1 —¢t)  for anyt €]0,1].

Since 7}1_r)1(1) 2 Jur(t)| = }g% t? Jua(t)| = 0, Lemma implies that conditions (7.1

hold. One can verify that condition (@) holds if and only if X € [-1/2,1/2]. The
conditions of Pmposition are satisfied for any A € [—1/2,1/2] and hence, C:;A“’*
is a lower semiquadratic copula for any X\ € [—1/2,1/2]. The corresponding family
of lower semiquadratic copulas is given by

Csy " (2,y) = wy(1 + (1 — max(z, y))(A(1 — max(z,y)) — [2A(y — z)[)) ,

with A € [-1/2,1/2] .

7.3. Extreme lower semiquadratic copulas

We now turn to the problem of identifying for a given diagonal function 4, if
possible, the smallest and the greatest functions w and v such that C§"" defined in
(7.2) is a lower semiquadratic copula.

Proposition 7.3. Let § be a differentiable diagonal function and let ¢5 and s be
the 10,1] = R functions defined by

(bg(t):t/t L (‘S(Z)> dz and s(t) = 2070 (7.10)

22 z t2
Then

(i) ¢s is an upper bound for the functions u and v (i.e. Cg”’% is a lower bound
for the lower semiquadratic copulas with diagonal section §). Moreover,
C’?‘”ﬁ‘; is a copula (i.e. it is the smallest lower semiquadratic copula with
diagonal section §) if and only if

L <M>/ < ¢s(t) < <M>/ Jor any t €10,1]. (7.11)

2 12 t

(ii) s is a lower bound for the functions u and v (i.e. C’gb‘s’w‘s is an upper bound

for the lower semiquadratic copulas with diagonal section ). Moreover,
Cg/}‘;’w‘; is a copula (i.e. it is the greatest lower semiquadratic copula with
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diagonal section §) if and only if

26(t) —t < td'(t) <46(t) —2t  for any t €]0,1]. (7.12)

Proof. (i): Let f be an absolutely continuous function such that f(1) = 0 and
!/
FO) +Hf ()] < (@) for any ¢ €1]0,1]. Since f(t) — tf'(t) < f(£) + t|f'(t)| for

any t €]0, 1] where the derivative exists, we have

s -0 < (4P (7.13)

for any t €10, 1] where the derivatives exist. Since the solution of the initial value
problem over 10, 1]

v -/ = () =0 (7.14)

is given by y = ¢s, condition ([7.13)) yields
) —tf'(t) < ¢s(t) — ts(t),

for any ¢t €]0,1] where the derivatives exist. Let v be the ]0,1] — R function
defined by v(t) = M The function v is increasing since
V(1) $s(t) = f() = t(5(1) = f'(1))

- t2 207

for any ¢ €10, 1] where the derivatives exist. Thus, v(¢) < (1) =0 for any ¢t €]0, 1],
whence f(t) < ¢s(t) for any t €]0, 1]. In particular, we have that ¢s is an upper
bound for u and v. Hence, C§"" > C’f“’%.

Next, we characterize the diagonal functions ¢ for which the function C?‘s"b" is a
copula. Note that }ir%tQ (6(t)/t) =0, and hence PH(I) t2|ps(t)] = 0. Therefore, due
— —

to Lemma condition 1) holds for u = v = ¢5. Thus, C(?‘S’% is a copula if
and only if the conditions of Proposition hold for the functions u = v = ¢5. We
know that condition (7.3)) is satisfied. With regard to condition (7.4)), observe that

5(t)

o0) + 11650 < (N2 (= 0500~ t5(0)  for any ¢ €01

/
if and only if ¢5(t) < 0 for any t €]0, 1]. Since t¢5(t) = ¢5(t) — (@) , we have

li
that ¢%(¢) < 0 if and only if ¢s(t) < (%f)) . Thus, we conclude that u = v = ¢
satisfy condition (7.4]) if and only if the second inequality in ([7.11)) holds.

Moreover, it is immediate that © = v = ¢; satisfy condition ([7.5)) if and only
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/
if 2¢5(t) >t (5(5)) for any t €]0, 1], which is equivalent to the first inequality

EzE
in 1D,

(ii): Let f be an absolutely continuous function such that f(1) = 0 and f(t) +
/
tf (1) < (@) for any ¢ €]0,1]. Since f(t) + tf'(t) < f(t) + t|f'(t)| for any

t €]0,1] where the derivative exists, we have

s+ < (22) (7.15)

for any t €10, 1] where the derivatives exist. Since the solution of the initial value
problem over ]0, 1]

y(t) + 14/ (1) = (‘5“)) oy =0,

t
is given by y = s, condition (7.15)) yields
F@O) +f(t) < s(t) +t5(t)

for any t €]0,1] where the derivatives exist. Let u be the ]0,1] — R function
defined by u(t) = t(f(t) —1s(t)). The function p is decreasing since

p(t) = f(t) = s (t) + t(f'(t) — ¥5(t) <0

for any ¢ €]0, 1] where the derivatives exist. Thus, pu(¢) > p(1) = 0 for any ¢ €10, 1],
whence f(t) > 1s(t) for any t €]0,1]. In particular, we have that ;s is a lower
bound for u and v. Hence, C§"" < C}’é’w‘s.

Next, we characterize the diagonal functions ¢ for which the function C;pmw is
. . 2 T 4 — . . ;-
a copula. Since }l_r)I(l)t [s(t)| = }gr(l) |6(t) — t|] = 0, Lemma implies that condi

tions || hold for v = v = 5. Thus, C’;Z""% is a copula if and if the conditions of
Proposition hold for the functions u = v = 5. We know that condition (7.3)) is
satisfied. With regard to condition ([7.4)), observe that

3(t)

st + 0] < (U0) (= vate) + 105(0) for any e €J0.1

if and only if ¢5(¢) > 0 for any ¢ €10, 1]. Since ti§(t) = (5(t ) —15(t), we have

that ¥4(t) > 0 if and only if 5 (1) (‘5 ) . Thus, we conclude that « = v = ¢
satisfy condition if and only if

5(t) —t _ 18'(t) ~ 8(0)
t2 t2

for any ¢ €]0,1],
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which is equivalent to the first inequality in (7.12)).
Moreover, it is immediate that u = v = s satisfy condition (7.5) if and only if
I
25(t) >t (%) for any t €]0, 1], which is equivalent to the second inequality
in (T12). 0
Remark 7.1.
(i) Condition can also be written as
INVEION s\
5t (752)) < ahs(t) < <i)> for any t €]0,1], (7.16)
which is the same as condition , now expressed for the function 5.

(ii) Note that ¥s(t) <0 for any t €]0,1].

(iil) Moreover, if 5 satisfies the right inequality in , d.e. §5(t) <0 for any
t €10, 1], it follows from ¢5(1) =0 that ¢s(t) > 0 for any t €]0,1].

Corollary 7.1. Let § be a differentiable diagonal function. Then the functions
C?“% and C}’“’wa are both copulas if and only if

L <M> < s(t) < du(t) < <

2 12

()

" > for any t €10,1]. (7.17)

C?Mba C;l)(s,wa

Moreover, if and are copulas, then the function \s defined as in

Chapter[3 is increasing, and the function ps defined as in Chapter|[f is decreasing.

Corollary implies that if C’g";’% and C;Z"S’w‘; are copulas, then the same diagonal
function can be used to construct a lower semilinear copula.

Example 7.5. Let 0y be a convex sum of the diagonal section of the product copula
I and the diagonal section of the greatest copula M, i.e. 5x(t) = AXt? + (1 — \)t for
any t € [0,1], with A € [0,1]. Observe that

At —1)
t

It is immediate that ¢s, satisfies condition . Thus, as Proposition

establishes, Cg)j”%* is a lower bound for the lower semiquadratic copulas with

G5, () =A1—1t) and s, (1) = for any t €]0,1].

diagonal section §y. Moreover, C’?j*’%* is a copula for any A € [0,1]. The function

Vs, satisfies the second inequality in for any A\ € [0,1]. However, s,
satisfies the first inequality in if and only if

% <At—-1) foranyt€]0,1],

i.e. if X\ < 1/3. Thus, as Proposition establishes, C;lf* Yo s an upper bound
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for the lower semiquadratic copulas with diagonal section 8y for any X € [0,1], but
ng sy
§

A

is a copula only when X € [0,1/3].

The following proposition shows that the function ¢s can be used to construct two
non-symmetric lower semiquadratic copulas with diagonal section §.

Proposition 7.4. Let § be a differentiable diagonal function. Then C§", with
U= —v = @5 or with —u = v = ¢g, is a lower semiquadratic copula with diagonal
section 0 if and only if

o(t) o(t)

(t) <0< 6s(t) < (t) for any t €10,1]. (7.18)

Proof. Let u = ¢s and v = —¢;. Since }ir% t2¢5(t) = }ir% —t2¢5(t) = 0, Lemma
— —

implies that conditions (7.1) hold. Clearly, v and v satisfy condition (7.3]) in

Proposition Condition ([7.4)) in Proposition now reads

o)

/
” > for any t €]0,1],

max (65(t) + ¢165(0)], —(t) + t|B5(0)]) < (

which is equivalent to

0 < ¢s(t) < <5$)> for any ¢ €]0,1].

This follows from the fact that, as in the proof of Proposition [7.3] the condition

on)+ il < () forany telo]

is equivalent to the second inequality in condition (7.11]), and that the latter implies
that ¢s(t) > 0 for any ¢t €]0,1].

On the other hand, u = ¢5 and v = —¢s satisfy condition ([7.5)) in Proposition
if and only if
JORY
ds(t) — gs(t) = ¢ oh for any ¢ €]0, 1].
ie.

!/
(6;5)) <0 foranytel0,1].
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Example 7.6. Let 65 be the diagonal section from Ezample[7.5 Obviously, 6y
satisfies the first inequality in . Since ¢s, satisfies the third inequality in
(see Example and the second inequality in (see Remark [7.1(ii1)), it
follows that C5°, with uw = —v = ¢s, , is a lower semiquadratic copula with diagonal
section 0y .

Example 7.7. Let 0,(t) =t be the diagonal function with parameter o € [0, 1].
For values of a outside the unit interval, d, is not a diagonal function. Observe
that

li
(6at(t)) =at*t >0, foranyt€lo,1],

(6a(t)>l=(a—1>ta—2so, for any t €]0,1]

and

a—1

1
os,, (t) = at/t 222 dz = 5 fa[tD“l —t]  foranyt€]0,1]. (7.19)

Since (64(t)/t?) <0 and ¢s,, (t) > 0 for any t €]0,1], ¢s, satisfies condition
of Proposition if and only if the third inequality of condition holds, i.e.
a—1 <279 for any t €]0,1] and the latter is trivially satisfied when o < 1.
It follows that Cg;v, with w = —v = ¢5_, 15 a lower semiquadratic copula with
diagonal section d.,.

Example 7.8. Let 64,5 be the [0,1] — [0,1] function defined by 6,5(t) = t* +
t*(1 — t)# with real parameters o > 1 and B > 1. It can be verified that in general
da,p is not a diagonal function. For instance, dz4,1 does not satisfy 54 1(t) < 2 for
any t €10,1]. Note that the first inequality in holds if and only if o < 2. We
will only consider the case a = 2 from here on. We compute

cinsz,ﬁ(t)zzt/t1 (12+ -7 —ﬁ(l_z)ﬂl)dz.

z 22 z

Integrating by parts, we obtain

05,4 (t) = t(“tt)ﬁ + /t1 (212 - 25“?“) dz)

1 —
1—2)81
= 1—t+(1—t)6—25t/ =27,
t z
1—t , -1
:1—t+(1—t)/3—25t/ Y du,
o l—-u
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which, in terms of the incomplete beta function B, can be written as
bs,,(t) =1—t+ (1 —t)7 —2BtB[L — ¢;3,0].

For B =1, we find
$s,,(t) =2 —2t 4+ 2tInt;

for B =2, we find
G5y, =2+t —3t> +4tInt;

and, for 8 =3, we find
b5y 5 (t) =2+ 5t — 9t> +2t° + 6tInt.

Now, in each case we should investigate whether the second and third inequalities
in condition are fulfilled for the functions ¢s, ,, with § € {1,2,3}. For
G5y, 5 for instance, this amounts to verifying whether for any t €10,1] it holds that
0 <2—2t+2tln(t) <2—2t. These inequalities are trivially satisfied. For all cases
under consideration, we find that condition 18 satisfied, and Proposition
can be applied, i.e. C:;Q’Z, with uw = —v = ¢s, 45, 1 a lower semiquadratic copula
with diagonal section d2. 5 for B € {1,2,3}.

In contrast to the fact that under condition the lower semiquadratic function
C{", with u = —v = ¢5 or with —u = v = ¢s, is a lower semiquadratic copula
with diagonal section §, the lower semiquadratic function C§"", with u = —v = s
or with —u = v = 1y, is a lower semiquadratic copula with diagonal section 9§ if
and only if C§"" = M.

U,V

Proposition 7.5. Let § be a differentiable diagonal function. Then Cs'°, with
u = —v =15 or with —u = v = g, is a lower semiquadratic copula with diagonal
section 6 if and only if C§"" = M.

Proof. As in the proof of Proposition 1 satisfies condition (7.4) if and only if
the first inequality in condition (7.12]) holds. Thus, 1)s must be increasing. The
function —; satisfies condition ([7.4) if and only if

—hs(t) + ts(t) < (6(;)) for any t €]0,1],

it must hold that §(t) = ¢ for any ¢t € [0,1]. Since M is the only copula with

which is equivalent to ¢t — §(¢) < 0 for any ¢ €10, 1]. Since §(¢t) < ¢ for any ¢ € [0, 1],
]
diagonal section dy, it must hold that C§"" = M. O

Similarly to Proposition the functions ¢5 and s can be used to construct two
non-symmetric lower semiquadratic copulas with diagonal section §.

175



CHAPTER 7. LOWER SEMIQUADRATIC COPULAS WITH A GIVEN DIAGONAL SECTION

Proposition 7.6. Let § be a differentiable diagonal function. Then C§"", with
u = ¢s and v = Ps or with u = Y5 and v = ¢s, is a lower semiquadratic copula
with diagonal section § if and only if

t+t6'(t) — 36(t)
12

5(t)
Tt

< ¢s(t) < < ) for any t €]0,1]. (7.20)

Proof. Let u = ¢s5 and v = 15. In Proposition [7.3} it is shown that u and v
satisfy conditions . Clearly, u and v satisfy condition in Proposition
Condition in Proposition is equivalent to the second inequality in condi-
tion and the second inequality in condition (or the first inequality in

condition (7.12))), i.e.

5(t)

Ps(t) < ds(t) < <t> for any ¢t €]0,1].

On the other hand, u = ¢5 and v = 15 satisfy condition ([7.5)) in Proposition if
and only if

ds(t) + 1s(t) >t ((Sg)) for any t €]0,1],
bo(t) > t <5t(§)> —s(t) = t”‘sl(g* 390 for any ¢ €]0,1].

O

Example 7.9. Let §y be the diagonal section from Ezample 7.5 Clearly, the
function ¢s satisfies the second inequality in for any A € [0,1]. Moreover, it
satisfies the first inequality in if and only if

—14+2X =Xt

; <X1-=t) foranytel0,1],

i.e. if A< 1/2. Thus, as Proposition establishes, C’?j’% is a copula for any
A€[0,1/2].

7.4. Continuous differentiable lower semiquadratic
copulas

Condition (iii) in Propositionexpresses that the C§""-volume of squares centered
around the main diagonal is positive. We now give an alternative interpretation of
that condition.
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Proposition 7.7. Let 6 be a differentiable diagonal function and C§*" be a lower
semiquadratic copula. Then it holds that

i OCE @) L OC y)
T—y— ox T—y+ ox

for any y €10,1[, and

i OCE@y) L OC y)
y—a— dy y—z+ oy

for any x €]0,1[.

Proof. From (7.2)) we compute for z < y that

ac: (%Ex y) _ 5<yy) + (22 — y)o(y),

and for x > y that

oCH" (x,y) y (6(35

ox T

>)—yw@—yw—wwmw

It follows that o
oCs™" (z,y) _ d(y)

zlgz?f Ox Ty +yely),
and ,
. 0Cy (x,y) ()
Jm = v\, ) T,
from which it follows that
hm 806 ' (xa y) hm 6C§ ’ (l’, y)
T—Yy— ox =Y+ ox
) )\’
ytuts) + o))+ 22—y (22)

:yww>+v@»—y2<§?) >0, (7.21)

where the last inequality follows from condition (7.5)), satisfied by any lower
semiquadratic copula. Interchanging the roles of z and y leads to the analogous
result for the partial derivatives w.r.t. y. O

Proposition 7.8. Let §, u and v be continuous differentiable functions such that

C5" is a lower semiquadratic copula. Then C§ is continuous differentiable in
both arguments if and only if
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holds for any t €]0,1].

Proof. From it is clear that C§"" is continuous differentiable in both arguments
on [0, 1]? except possibly on the diagonal of the unit square. Due to inequality 7
it holds that C"" is in both arguments continuous differentiable on the diagonal if
and only if is realized as an equality for any ¢ €]0,1]. O

Example 7.10. Let oy be the diagonal section of the product copula I1. Since
(6 (t)/t?)" = 0, all lower semiquadratic copulas in

{Cgﬁv |u=—v, ult) =AX1-1), A € [-1,1]},

are continuous differentiable in both arguments.

The continuous differentiability does not imply that the horizontal or/and vertical
sections of a lower semiquadratic copula are necessarily quadratic functions. The
only lower semiquadratic copulas that have quadratic horizontal sections are the
symmetric copulas with quadratic sections which were already introduced and
characterized in [96].

Proposition 7.9. Let C§"" be a lower semiquadratic copula with quadratic hori-
zontal (resp. vertical) sections. Then C§"" is symmetric and belongs to the Farlie-
Gumbel-Morgenstern family of copulas.

Proof. A lower semiquadratic copula C§"’ can only have quadratic horizontal
sections if u is a quadratic function, i.e. if u is of the form

u(t) = ug + urt + ust?,
and § is a quartic function without constant term, i.e.
5(t) = (01 + Ot + 03t + 5at?)
whence also v must be a quadratic function, i.e.

v(t) = vo + v1t + vat2 .

U,v

Expressing that for any fixed y € [0, 1], C5""(z,y) should be the same quadratic
function on the intervals [0, y] and [y, 1], immediately leads to the following equali-
ties:

h=ug=v9=0, wu;+wvi=903, uUy=vy=204.

Expressing that u(1) = v(1) = 0, it follows that u; = v; = —d4 = J3/2, whence
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u = v and C§"" is symmetric. Expressing further that §(1) = 1, leads to d3 = 1+ d4.
Renaming d4 as 0, it follows that

St)=t[1+0(1—1t)? and u(t)=v(t)=—0t(1—1),

with 6 a real constant. Finally, to be a copula, conditions and (| need
to be satisfied. The reader can easily verify that such is the case if and only if
6] <1. O

7.5. Absolutely continuous lower semiquadratic cop-

ulas

o C(r y)
dxdy
almost everywhere (see Chapter ' In the next proposition we characterize the

class of absolutely continuous lower semiquadratic copulas.

A copula C' is absolutely continuous if its density function is given by

Proposition 7.10. Let C§"" be a lower semiquadratic copula. Then it holds that
C§" is absolutely continuous if and only if

t2

u(t) + o(t) — ¢ (5(”)/ —0, (7.22)
for any t €]0,1].

Proof. Let C' = C§"" be a lower semiquadratic copula. Consider a rectangle
R = [z1,22] X [y1,y2] C Is. Let us introduce the following notation

82
I_
/ / 59651/

It then holds that

I = ]2 d$7 <<6(yy)>/ —v(y) = (y — 2w)v’(y)> dy

(s — ) (‘““ () 5(5) i yw(yl))

Y2
+(z2 — 1) (22 + 21)(v(y2) — v(y1))
= C(x2,92) + C(x1,91) — C(x1,y2) — Cw2,51) = Ve (R) .
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Similarly, one can verify that

x

2 Y2
*C(z,y)

T1 Y1

for any rectangle R = [x1, 23] X [y1, y2] located in I;. Therefore, C' is absolutely
continuous on I; as well as on I5. Hence, if there exists a singular component, its
support must be spread on the main diagonal. Due to the above, it follows that C
is absolutely continuous if and only if

[ 4 [ PCEy)
0 0

for any a € [0,1]. Computing the above integral, the latter equality becomes

5a) = /0 ’ (25(;) Ft(ult) + v(t))) at, (7.23)

for any a € [0, 1]. Integrating by parts, it holds that

/()GQCSE?dt:é(a)—/()at2 (igf))/dt.

Substituting in Eq. (7.23)), it follows that

/Oa <t(u(t) +u(t)) — 2 <5t(2t)>l> dt =0,

for any a € [0, 1]. Since condition ([7.5) is satisfied, the last equality is equivalent

to the condition ,
o(t
u(t) + o(t) — ¢ (“) o0,

for any t €]0,1].

Example 7.11. The family of copulas given in Proposition [7.9 is a family of
absolutely continuous lower semiquadratic copulas. One can easily verify condi-
tion .

Example 7.12. Let 6 be the diagonal section of the product copula II. In
Ezample 2, it was shown that C5", with w = v = 1 —t for any t €]0,1], is the
smallest lower semiquadratic copula with diagonal section dr. One can easily verify
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that /
u(t) +v(t) =201 — ) A0 =1t (5(’5))

12
for any t €]0,1[, and therefore, C5*" is not absolutely continuous.
Due to Propositions [7.8 and the class of continuous differentiable lower semi-
quadratic copulas as well as the class of absolutely continuous lower semiquadratic
copulas are characterized by realizing condition (7.5]) as an equality. Consequently, if
u and v are continuous differentiable functions, and C"" is an absolutely continuous
lower semiquadratic copula, then C§"" is continuous differentiable.

7.6. Degree of non-exchangeability of lower semi-
quadratic copulas

In general, the degree of non-exchangeability of a lower semiquadratic copula does
not lend itself to a simple expression. However, for the non-symmetric copulas
obtained in Propositions [7.4] and [7.6] this is possible.

Proposition 7.11. Let 6 be a differentiable diagonal function that satisfies condi-
tion . Then the degree of non-exchangeability of C = C§"", with uw = —v = ¢5
or —u = v = ¢g, is given by

)2 (5(*)\
e €)= U (B0 (7:24)
where t* is a solution in |0, 1] of the equation

3¢s(t) = (5(0)’ : (7.25)

t

Proof. We consider the case u = —v = ¢4, the case —u = v = ¢ being simi-
lar. From the definition of p1.(C) in (1.5) and the general expression (7.2)), it
immediately follows that

ftoo(C5") =6 sup  x(y —x)ds(y) .
0<z<y<1

It follows that for fixed y €10, 1] the maximum is attained at the point (y/2,y).
Letting y vary, we need to find the value y* €]0, 1] for which the function y2¢s(y)
attains its maximum on ]0,1]. Obviously, ¢s being a solution of , it is
differentiable. Hence, y* is a solution of the equation

2yds(y) + y°d5(y) =0,

181



CHAPTER 7. LOWER SEMIQUADRATIC COPULAS WITH A GIVEN DIAGONAL SECTION

or, equivalently, of the equation

3¢s(y) — ((5;34))/ =0.

The stated result immediately follows. O

Example 7.13. Let §) be the diagonal function from Example and Cy = CZ;A’U
with u = —v = ¢5, . Equation reads

3IN1—1t)=A
and has t* = 2/3 as solution. It follows that

2\

ftoo(Cr) = 9

Example 7.14. Let 6, be the diagonal function from Example and C,, = C’:;;U
with uw = —v = ¢s_,. Equation reads

o [tafl o t] — tafl

2—« 3

and has t* = ((1 + @) /3)/2=%) as solution. It follows that

14+
o (l+a)?=
wslCa) =5 (552) 7

In particular, pyoo(Co) =0, pyoo(C1) =2/9 and pyoo(Chy2) = 1/8.

Example 7.15. Let 21, d22 and 2.3 be the diagonal functions from Example .
The results obtained from and are summarized in Table 1.

Table 7.1: Degree of non-exchangeability of the lower semiquadratic copulas C’;‘Q’”ﬁ with

diagonal section dz 5 = t2 + t*(1 — t)?, where u = —v = By -

5 52,ﬁ ¢52,/3 t Moo

1| 24+t3(1—1¢) 2 —2t+2tInt 0.466411 | 0.116076
2 | 2 +12(1—-1)? 2+t —3t2 4+ 4tlnt 0.711292 | 0.170157
3| 2 4+t2(1—t)3 | 2+ 5t —9t2 +2t3 +6tInt | 0.698683 | 0.204307

As Proposition [7.3] establishes, the functions ¢5 and 15 characterize the smallest
and the greatest lower semiquadratic copulas with diagonal section §, respectively.
Clearly, under condition ([7.20) a lower semiquadratic copula C;"" with maximal
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degree of non-exchangeability is obtained when u = ¢5 and v = 15 or when u = g
and v = ¢s.

Proposition 7.12. Let 6 be a differentiable diagonal function that satisfies condi-
tion . Then the degree of non-exchangeability of C = C§"", with u = ¢5 and
v =Ps or with u = 5 and v = ¢s, is given by

peoel€) = L0, (7.26)

where t* is a solution in ]0,1] of the equation

305(t) = s(t) + 2 (5(;)) . (7.27)

Proof. We consider the case u = ¢5 and v = 15, the case u = 15 and v = ¢ being
similar. From the definition of pi4.(C) in (1.5) and the general expression (7.2]), it
immediately follows that

fioo(C5") =3 oS z(y —x)(ps(y) — vs(y)) -

It follows that for fixed y €10, 1] the maximum is attained at the point (y/2,y).
Letting y vary, we need to find the value y* €]0, 1] for which the function 32 (¢s(y) —
¥s(y)) attains its maximum on ]0,1]. Since ¢; is a solution of and ¢ is
differentiable, the function ¢s — ¥ is differentiable. Hence, y* is a solution of the
equation

2y(9s(y) — s (y)) + y*(d5(y) — ¥5(y)) =0,

or, equivalently, of the equation

305(y) — vs(y) — 2 (‘E”) _o.

The stated result immediately follows. O

Example 7.16. Let §) be the diagonal function from Example and Cy = C:;‘A’U
with u = ¢s, and v = s, . It was shown in Example that C’:{A’v s a copula for
any X € [0,1/2]. Equation reads

3A(1—1t) = At=1)

and has t* = 1/\/3 as solution. It follows that

A

f4oo(CN) = ﬁ
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Note that for any A € [0,1/2], it holds that

A 2>\ - Doy —Psy
froo(Cr) = 2\[ =79 = f4o0(C) )

7.7. Measuring the dependence of random vari-
ables coupled by a lower semiquadratic cop-

ula

We finally want to compute Spearman’s rho and Kendall’s tau for two continuous
random variables whose dependence is modelled by a lower semiquadratic copula.

Proposition 7.13. Let C = C§"" be a lower semiquadratic copula. Then the
measures of association pc and Tc are given by

o =2 /O (6t5(8) — £3(ult) + v(t))) dt —

and

= — 1 @ /— u v
o= 1-2 /0 <2t6(t)( t ) £8(6) (u(t) + (t))) dt
+§/O <t25(t)((u’(t))+v’(t))—t3 (5(:)>

2 ! 3(,,2 2
+§/O t°(u(t) +v4(t)) dt.

(u(t) + v(t))) dt

Proof. In order to find pc and 7¢, we need to compute

1 11
/nydxdyan fT://aC )ddy
0 0 0 %

Decomposing the integrals 7, » and I,, it holds that

O\H

x

7 :j/c(x,y) dydx+/1/10(x,y) dydx
0 0 0

T
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and

1 =z
~://6Ca:y8033y)dd+//80$y)60(1’y)dydx_
0 % o

Computing the above integrals and substituting in the expressions for pc and 7¢,
the desired result follows. O

Corollary 7.2. Let 6 be a differentiable diagonal function. If § satisfies con-
dition , then the measures of association pc and 1¢ of C = C§"", with
u=v = ¢g, are given by

1
pczg Owum—%3 (7.28)
and ) 5 ,
80 56
mzug(ﬁmmmw—géw@<?>w. (7.29)

If § satisfies condition , then the measures of association pc and Tc of
C =C§"", with u = v = s, are given by

1
5
Cz8/t&ﬂ&—f (7.30)
0 3
and )
=1+ 8/ to(t)ws(t) de. (7.31)
0
If § satisfies condition , then the measures of association pc and Tc of
C =C§", withu= —v = ¢s or —u=v = ¢35, are given by
1
0:12/)wuyﬁ—3 (7.32)
0
and

m:ugiﬁmmuﬁ—?éwmcf)u. (7.33)

If & satisfies condition , then the measures of association pc and 1c of
C =C§"", with u = ¢5 and v =1ps or with u = s and v = ¢, are given by

56 (1 41
= [ t@#)dt — —= 7.34
po =+ ; (t) G (7.34)

and

40 1 ! 28 1 !
o =1+ i t8(t) s (t) dt+4/0 8 (t)1ps(t) dt—§/0 to(t) (t> dt. (7.35)
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Proof. Expressions (|7.28)), (7.30)), (7.32)) and ([7.34]) are obtained by substituting
expression ([7.2]) in the expression for ps in Proposition and using expression
(7.10) of ¢5 and 5. The computation is straightforward. To obtain (7.29)), (7.31)),

(7.33)) and (7.35)) we have used the expression for 75 in Proposition and also
for (7.33) and (7.35) the following equalities between integrals containing ¢s and d,
which can be proven by means of partial integration:

[ eewra=g [ oow (") a

/01 ts(t) <5(tt)>/ dt = /01 to(t) (5(;))/ dt — 4/01 t6(t) s (t) dt .

Example 7.17. Let 05 be the diagonal function from Ezample . Using 7
7.39)), we obtain for C'= C§", with u = v = ¢5, and X € [0,1], that the measures
of association are given by

O

_ 5-6)
===,

94264 )N)
-ty

pc TC
for C = C3)", with w=v = s,, and X € [0,1/3], they are given by

C342M(-24))
=Emet Y,

_3-2)

, T
pc 3 C
for C = C35", withu = —v = ¢5, or —u=v = ¢5,, and X € [0, 1], they are given

by
45+ 4AN(—1544))

45 ’
and for C = C5)", with u = ¢5, and v = s, or with u = 15, and v = ¢5,, and
A€ [0,1/2], they are given by

pczl_)\7 TC

15— 14)

(3 — 21)2
pc = 15 , .

TC = 9
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& Semiquadratic copulas based on
horizontal and vertical interpolation

8.1. Introduction

The aim of this chapter is to complete the results of the previous chapter and
generalize the results of Chapter [6] We first recall lower semiquadratic copulas
(see Chapter [7)) and introduce in a similar manner three families of semiquadratic
copulas with a given diagonal section. Analogously, we introduce four families of
semiquadratic copulas with a given opposite diagonal section. There is a great
similarity between the case of a given opposite diagonal section and that of a
given diagonal section (see also [23]), which can be explained by the existence of a
transformation that maps copulas onto copulas in such a way that the diagonal
section is mapped onto the opposite diagonal section and vice versa. In the second
part of this chapter, we consider the construction of semiquadratic copulas with
given diagonal and opposite diagonal sections. Also here, we introduce sixteen
families of semiquadratic copulas and, based on a set of transformations given
in (L.3)), we classify them into six classes.

This chapter is organized as follows. In the next section we introduce lower, upper,
horizontal and vertical semiquadratic functions with a given diagonal section and
characterize the corresponding families of copulas. In Section we introduce
in a similar way lower-upper, upper-lower, horizontal and vertical semiquadratic
functions with a given opposite diagonal section and characterize the corresponding
families of copulas. In Section [8.3] we introduce six classes of semiquadratic
functions with given diagonal and opposite diagonal sections and characterize the
corresponding classes of copulas.

8.2. Semiquadratic copulas with a given diagonal
section (resp. opposite diagonal section)

8.2.1. Classification procedure

In this section we recall a class of semiquadratic copulas and introduce a new class
as well. The construction of these copulas is based on quadratic interpolation on
segments connecting the diagonal (resp. opposite diagonal) and one of the sides
of the unit square. Since in both of the two triangular parts of the unit square
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) 6 7 8

Figure 8.1: Eight possible schemes for horizontal and vertical interpolation when the
diagonal (resp. opposite diagonal) section is given.

delimited by the diagonal (resp. opposite diagonal), we can either interpolate
horizontally or vertically between a point on the diagonal (resp. opposite diagonal)
and a point on the sides of the unit square, there are eight possible interpolation
schemes (see Figure . This quadratic interpolation requires one or two auxiliary
functions: a function f(y) (resp. g(x)) providing the coefficient of 22 (resp. y?)
in case of horizontal (resp. vertical) interpolation; the coefficients of the linear
terms and the constants are determined by the boundary conditions. We will
restrict our attention when characterizing a class of semiquadratic functions to
such functions f and g that are absolutely continuous. Note that f and g, being
absolutely continuous, are differentiable almost everywhere.

Based on symmetry considerations, we classify the families represented in Figure 8.1
into two classes (see Table [8.1)). Using the transformations defined in (1.3]), we

Class I | Class II

[=20NNGL B NG}
(oIS

Table 8.1: Classification of the families in Figure into two classes.
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only need to consider one family from each class for characterization. This can be
seen as follows. Let us consider the subtriangles I; and I5 of the unit square as in
Chapter 3] For a diagonal function ¢ and two functions f,g : [0,1] — R, generic
members of the first and second families in class T are denoted as 1C{ and 5C{*9,
and are given by

Y5(@) +yly — )gle) i (vy) € I,
1P () =S (8.1)
f(y) +a(r—y) fly) if (z,y) € Iz,

and
G ) (- @) ) € I
Yy
I (2,y) = o
m_%(l—y)ﬂl—y)(w—y)g(x) if (z,y) € Iy.

Consider a diagonal function § and let §; be the diagonal function defined by
61(x) =2z — 1+ (1 — z). Consider two functions f, g : [0,1] — R and let f and
§ be the functions defined by f(z) = f(1 —z) and §(z) = g(1 — ). One easily
verifies that X

2077 = p(1C37).

In Figure we illustrate the transformations between the families in the same
class.

$2 1
P1 Y1 02 o1
P2 ¥
O, & © &
™ ™
(a) Class I (b) Class II

Figure 8.2: Transformations between the families from the same class.
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8.2.2. Characterization

Class 1

For any diagonal function § and any two functions f, g : [0,1] — R, the function
110({,9 : [0,1]2 — R defined in where the convention § := 0 is adopted, is a
semiquadratic function with diagonal section § since it satisfies Ing’g (t,t) =4(t)
for all ¢ € [0, 1], and it is quadratic in = on I; and quadratic in y on I5. Obviously,
symmetric functions are obtained when f = g. Note that if the functions f and
g are continuous, then 1105’9 is continuous. Note also that for f = g = 0, the
definition of a lower semilinear function [36] is retrieved. In Chapter [7 we have
identified the necessary and sufficient conditions to be fulfilled by the functions §,
f and g (in a slightly more general setting, i.e. for functions f and g not necessarily
defined in 0, but satisfying some appropriate limit conditions). Let us consider the
function As defined as in Chapter

Proposition 8.1. [T1] Let 6 be a diagonal function and let f,g : [0,1] — R be two
absolutely continuous functions. Then the semiquadratic function Ing’g defined in
s a copula with diagonal section 6 if and only if

() £(1) = g(1) =0,
(i) max(£(1) +¢1/(0)] g(8) + g/ ()]) < N5(0),
(i) (1) +g() > ¢ (40

for all t €]0,1] where the derivatives erist.

Example 8.1. Let dr1 be the diagonal section of the product copula 11, i.e. 6 (t) = 2
for allt €10,1]. Let f and g be defined by f(t) zﬁt) =1—t forallt €]0,1]. One

easily verifies that the conditions of Proposition|8.1| are satisfied and hence, %C({r’[g
is a semiquadratic copula with diagonal section ory.

Class 11

For any diagonal function § and any function f : [0,1] — R, the function }JC{ :
[0,1]% = R defined by ¥C{ (z,y) =

y- 1:; (y—06w)+ 1A —a)y—=)f(y) ,if (z,y) €11,
(8.2)

where the convention % := 0 is adopted, is a semiquadratic function with diagonal

section 0 since it satisfies }SIC({ (t,t) = 0(¢) for all t € [0,1], and it is quadratic in
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on I as well as on I5. Note that for f = 0, the definition of a horizontal semilinear
function [20] is retrieved.

We now state the conditions to be fulfilled by the functions 6 and f such that },’IC({
is a copula. Let us consider the function us defined as in Chapter

Proposition 8.2. Let § be a diagonal function and let f : [0,1] — R be an
absolutely continuous function. Then the semiquadratic function gC’g defined in
s a copula with diagonal section 6 if and only if

(i) f(0) = f(1) =0,

(i) f&) +Elf ()] < A5()

(i) f(t) + (1 — '@ < pst)
(iv) £(t) > T8

(t)’

for allt €]0, 1] where the derivatives exist.

Proof. Let C' = HC’({. The boundary conditions C(¢,0) = 0 and C(t,1) = ¢ for all
t € [0,1] immediately lead to the conditions f(0) = f(1) = 0. Therefore, it suffices
to prove that the 2-increasingness of C' is equivalent to conditions (ii)—(iv).

Suppose that C is 2-increasing. For any rectangle R = [z1, 23] X [y1,y2] C I2, it
then holds that Vo (R) > 0, i.e.

(x2 — 1) (N (y2) — As(y1) — f(y2)ye + f(yr)yr + (x1 +22)(f(y2) — f(y1))) >0,

or, equivalently,

As(y2) = As(y1) — f(y2)y2 + f(y)yr + (w1 + 22)(f(y2) — f(y1)) > 0. (8.3)

Dividing by y2 — y1 and taking the limits x5 — 1 and y» — y1, inequality (8.3)
becomes
As(y1) = f(y1) + 221 —y1) f' (1) > 0. (8.4)

Since the left-hand side of inequality (8.4) is linear in x1, this condition is equivalent
to requiring that it holds for 1 = 0 and =1 = y1, i.e.

As(1) = f(yr) +yif'(y1) >0 and  A5(y1) — f(y1) — v f'(y1) >0,

or, equivalently, to

fly) +yr [ f (o)l < Ns(yr) - (8.5)

Hence, condition (ii) follows. Similarly, for any rectangle R = [x1, z2] X [y1,y2] C I,
it holds that Vo(R) > 0, i.e.

(wa—21) (15 (y2) — ps(yr) — f(y2)y2 + f(y)yr + (21 + 22 = 1)(f(y2) — f(11))) 2 0,
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or, equivalently,

ps(y2) — ps(yr) — f(y2)y2 + f(y)yr + (z1 + 22 — ) (f(y2) — f(y1)) = 0. (8.6)

Dividing by y» — y1 and taking the limits xo — x1 and ys — ¥1, inequality
becomes
ps(y) — f(y) + 221 —y1 = 1) f(y1) > 0. (8.7)

Since the left-hand side of inequality (8.7) is linear in x7, this condition is equivalent
to requiring that it holds for 1 = y; and 1 =1, i.e.

ws(yr) — fyr) — (L —y1)f'(y1) >0 and  ws(y1) — f(y1) + (1 —y1)f'(y1) >0,

or, equivalently, to

Flyn) + (A =y) 1f (y)| < ps(y) - (8.8)

Hence, condition (iii) follows.

Finally, the fact that Vo (R) > 0 for any square R = [z1, T3] X [21, 2] centered
around the main diagonal is equivalent to

VC(R) = C(xhxl) -+ C(I'Q,IL'Q) — C(Z’l,xg) — C(CEQ,.’[l)

= (zq — 1) (5(961)+§(xz)+$1f(x2)+(l—x2)f(:r1)— 1 >>07

1—561 Xro 1—331

or, equivalently,

As(w2) — po(w1) + 21 f(22) + (1 — 2) f(21) = 0.
Taking the limit o — 1, condition (iv) immediately follows.

Now suppose that conditions (ii)—(iv) are satisfied. Due to the additivity of volumes,
it suffices to consider a restricted number of cases to prove the 2-increasingness of
C. Let R = [a1,b1] X [ag, ba] be a rectangle located in I;. Since condition (iii) is
satisfied, inequality follows and it holds that

ba by
[ [ ) = 1) + @1 =0 = DF () don 2 0.
a al
Computing the above integral, the latter inequality becomes

(b1—a1) (ps(b2) — ps(az) — baf(b2) + azf(az) + (a1 + b1 — 1)(f(b2) — f(az))) >0,
or, equivalently, Vo(R) > 0.

Let R = [a1,b1] X [a2,bs] be a rectangle located in Is. Since condition (ii) is
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satisfied, inequality (8.4) follows and it holds that

bo by
[ [ 06 = 1) + o= ) ) do 20,
a aq
Computing the above integral, the latter inequality becomes

(b1 — a1) (As(b2) — As(az) — baf(b2) + asf(az) + (a1 + b1)(f(b2) — f(az2))) >0,

or, equivalently, Vo (R) > 0.

Finally, let S = [a,b] X [a,b] be a square centered around the main diagonal. Due
to condition (iv), it holds that

x} — d(x1)

(El(]. — 251)

f(@1) =

>0,

for all 1 €]0,1], which implies that

flz/ab (f(xl)—ﬁ_é(xl)> dz; > 0.

z1(1 — 1)
Using inequality (84), it follows that
~ b b
I = / / (Ns(y1) = f(ya) + (221 —y1) £/ (1)) dyrdzy > 0.
a T

Using inequality (8.7)), it follows that

b b
I; = / / (s(y1) — flyr) + 2z1 —y1 — 1) f'(y1)) derdys > 0.

Computing the above integrals and setting I = I; + Ir + I, it follows that

I'=(b—a)(As(b) — ps(a) +af(b) + (1 - b)f(a)) =20,

or, equivalently,
1= Vc(S) >0.

Example 8.2. Let o5y be the diagonal section of the product copula. Let f be
defined by f(t) =t(1 —t) for allt € [0,1]. One easily verifies that the conditions
of Proposition m are satisfied and hence, éIC({H is a semiquadratic copula with
diagonal section dry.
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8.3. Semiquadratic functions with given diagonal
and opposite diagonal sections

8.3.1. Classification procedure

In this section we introduce six new classes of semiquadratic copulas. The construc-
tion of these classes is based on quadratic interpolation on segments connecting the
diagonal and opposite diagonal, or connecting the diagonal or opposite diagonal
and one of the sides of the unit square. Since in any of the four triangular parts
of the unit square delimited by the diagonal and opposite diagonal, we can either
interpolate between a point on the diagonal and a point on the opposite diagonal,
or between a point on the sides of the unit square and a point on the diagonal or
opposite diagonal, there are sixteen possible interpolation schemes (see Figure .
Based on symmetry considerations, we classify the families represented in Figure 8.3
into six different classes (see Table .

Class III | Class IV | Class V | Class VI | Class VII | Class VIII
9 10 14 16 20 24
11 15 17 21
12 18 22
13 19 23

Table 8.2: Classification of the families in Figure into six classes.

Using the transformations defined in (1.3]), we only need to consider one family
from each class for characterization. This can be seen as follows. Let us consider
the subtriangles 77, T, T3 and T} of the unit square as in Chapter

For a diagonal function §, opposite diagonal function w and two functions f,g :
[0,1] — R, generic members of the first and third families in class IV are denoted
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N\

X1

<
5

X X -
\T N X ]
ﬁ X X

Figure 8.3: Sixteen possible schemes for horizontal and vertical interpolation when the

diagonal and opposite diagonal sections are given.
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as %C({’g and TYC{¥. and are given by YV C{¥ (z,y) =

S,w? S,w
r+y—1 Yy—x
2y — 1 5(y)+2y_1w(1 y)—(y—z)(@+y—1)f(y)
7if(xay)€Tla
r+y—1 Yy—
S b(a) — @) + (y - @)@ty — 1) g(o)
7if(‘ray)€T2UT4a
l—y

Tty —1+—= () =1 —y)z+y—1)g(x)

,if (z,y) € Tz and © < 1/2,

-2V (- 5@) - (- )y —2)g(x) i () €Ty and > 12,

1—2
(8.9)
and YO (x,y) =
%6(1‘) +y(y —x)g(x) ,if (z,y) € Ty and x < 1/2,
%w(x)—i—y(x—i—y—l)g(x) ,if (z,y) € Ty and 2 > 1/2,
z+y—1 Yy—
5y =1 0@ — 5 wl@) +(y—2)(@+y—1)g()
if (z,y) € T U Ty,
z+y—1 Yy—
5y — 1 5(y)+2y71w(1 y)—(y—z)(x+y—1)f(y)
,if (z,y) € Ts.

Consider a diagonal function § and an opposite diagonal function w and let d2 be
the diagonal function defined d5(2) =  —w(z) and & the opposite diagonal function
defined by &(x) = 2 — §(z). Consider two functions f,g : [0,1] — R and let f and
§ be the functions defined by f(z) = —f(1 — 2) and §(z) = —g(z). One easily
verifies that 11\2/0({ 9=y ({\O/nggw) . In Figure we illustrate the transformations
between the families in the same class.

8.3.2. Characterization

Class II1I

For any diagonal function ¢ and opposite diagonal function w such that §(1/2) =
w(1/2), and any two functions f,g : [0,1] — R, the function %,HC({’:)’ defined by
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g2 02

¥

I
(a) Class IV (b) Class V
o

% 2
o1 o1 7 s

0 ©
(W) @——=—)

(¢) Class VI (d) Class VII

Figure 8.4: Transformations between the families from the same class.

L.y =

z+y—1 - .
Syt W g e = =Dy = DS i (6y) ETUT,
z+y—1 Yy— .
(8.10)
where the convention § := §(1/2) is adopted, is a semiquadratic function with

diagonal section § and opposite diagonal section w. Note that if the functions f

and g are continuous, then éHC({’g(a?, y) is continuous. Note also that for f = g =0,

the definition of an orbital semilinear function (see Chapter [6]).

We now state the conditions to be fulfilled by the functions J, w, f and g such that
gIC?:‘; is a copula.

Let us consider the functions s, and 5, defined as in Chapter @
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Proposition 8.3. Let § and w be diagonal and opposite diagonal functions such

that 6(1/2) = w(1/2). Let f,g:]0,1] — R be two absolutely continuous functions.
i)

The function HIC‘SW defined in is a copula with diagonal section & and
opposite diagonal sectwn w if and only if
(i) f(0) =9(0) = f(1) =9(1) =0,
(i) ¥5.,(t) — (1 =26)f'(t)] = 0,
(iif) @5, (t) = (1 =2t)g'(t)] > 0, for all t €]0,1] where the derivatives exist,
)

(iv) for all t €]0,1/2[, it holds that
3'(t) = @sw(t) + vow(t) + (2t = 1)(f(t) +g(t)), and
W' (t) < Yow(l —1) = s0(t) + (2t = 1)(f(1 — 1) + (1)),
where the derivatives exist,

(v) for allt €]1/2,1], it holds that

'(t) < Pow(t) + vsw(t) + (2t = 1)(f(t) +9(t)), and
W(t) 2 Yow(l =) = @ow(t) + (2t = D(f(1 = 1) +g(t)),

where the derivatives exist.

Proof. Let C' = HIC&:. The boundary conditions C'(¢,0) = 0, C(0,t) = 0,
C(t,1) =t and C(1,t) = ¢ for all t € [0,1] immediately lead to the conditions
f(0) = ¢g(0) = f(1) = g(1) = 0. Therefore, it suffices to prove that the 2-
increasingness of C' is equivalent to conditions (ii)—(v).

Suppose that C' is 2-increasing. For any rectangle R = [z1, 22] X [y1,y2] C 11 U T3,
it then holds that Vo (R) > 0, i.e.

) )
(a2 =) (o)~ 2L )1 - - )

— o —o0) (Gl ) )1 -1 - aa)) 20,

or, equivalently,

V5w (y2) — Ysw(yr) + (f(y1) — f(y2))(1 — 21 — 22) > 0. (8.11)

Dividing by y2 — y1 and taking the limits x5 — 21 and y2 — y1, inequality (8.11)
becomes
Vsw(yn) — (1 —221) f'(y1) > 0. (8.12)
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Since the left-hand side of inequality (8.12)) is linear in 1, this condition is equivalent
to requiring that it holds for 1 = y; and 1 =1 — ¥, i.e.

Vswr) —(1=2y1) f'(y1) 20 and o5, (y1) + (1 = 2y1)f' (1) > 0,

or, equivalently,
Vse(yr) = (1= 2y1) f (y1)] = 0. (8.13)

Similarly, the fact that Vo (R) > 0 for any rectangle located in 75 U Ty implies that
inequality (8.13]) also holds for the functions ¢s., and g. Hence, condition (iii)
follows.

The fact that Vo (R) > 0 for any square R = [z1, 23] X [x1, 23] such that zo < 1/2
is equivalent to

Vo(R) = C(z1,21) + C(z2,72) — C(21,22) — C(72,71)

To — x1)

r1+a9—1
2331—1

2.731 -1
(@2 — 21)(1 — 21 — 22)(f(21) + g(21)) > 0,

= 6(x1) + 0(22) — 2 o(x1) + (w(@1) + w(l — 1))

or, equivalently,

O(w2)=6(x1)+(xa=21) (=ps.0(21) = Ys0(@1) + (1 =21 — 22)(f(21) + g(21))) =2 0.

Dividing by x9 — 21 and taking the limit 9 — x1, it follows that

0" (1) = @50 (1) = Y50 (x1) + (1 = 221) (f(21) + g(21)) > 0.

or, equivalently,

8" (1) > @50 (1) + 50 (x1) + (221 — 1) (f(21) + g(21)) -

The fact that Vo (R) > 0 for any square R = [z1, 23] X [1 — 22,1 — x1] such that
x9 < 1/2 is equivalent to

Ve(R) = Clxy,1 —x2) + Claa, 1 — 1) — C(x1,1 — 1) — C(22,1 — 3)

To — X1 r1+a9—1
= 1) o(1 — - 2—
1_2%1( (z1) +6(1 —21)) 2,

w(z)
(@2 — x1) (21 + 22 — 1)(f(21) + 9(21)) — w(21) —w(22) 20,
or, equivalently,

w(r1) —w(@2) = (z2 — 1) (—¥50(1 — 1) + @s.w(21))

+ (v2 —x1)(z1 + 22 — (f(1 —21) + g(21)) 2 0.

199



CHAPTER 8. SEMIQUADRATIC COPULAS BASED ON HORIZONTAL AND VERTICAL INTERPOLATION

Dividing by x2 — x1 and taking the limit x5 — x1, it follows that
—w'(21) + V5wl — 1) — @sw(@1) — (1 = 221)(f(1 — 21) + g(21)) >0,
or, equivalently,
W' (1) < Y501 = 21) — Psw(@1) + (221 — D)(f(1 = 21) + g(21)) -
Thus, condition (iv) follows. Similarly, the fact that Vo (R) > 0 for any square

R = [x1,22] X [z1,22] (resp. R = [x1,22] X [1 — 23,1 — x1]) such that z; > 1/2
implies condition (v).

Now suppose that conditions (ii)—(v) are satisfied. Due to the additivity of volumes,
it suffices to consider a restricted number of cases to prove the 2-increasingness of
C. Let R = [a1,b1] X [az, b2] be a rectangle located in T3 U T5. Since condition (ii)
is satisfied, inequality follows and it holds that

b2 bl
/ dy1/ (V5w (y1) — (1= 221) f'(y1)) dzy > 0.
a ay
Computing the above integral, the latter inequality becomes

(b1 —a1) (Ys.0(b2) — Yswl(az) — (1 — a1 —b1)(f(b2) — f(a2))) >0,

or, equivalently, Vo(R) > 0. Similarly, one can verify that Vo(R) > 0 for any
rectangle R = [a1, b1] X [az, ba] located in To UTy. Let S = [a, ] X [a, b] be a square
such that b < 1/2. Due to condition (iv), it holds that

(1) = s.0(71) = Ysw(x1) = (221 = )(f(21) + g(21)) 2 0.
for all 21 €]0,1/2], which implies that

b
I = / (0"(21) = @s.0(71) = Ys.0(21) = 221 — 1)(f(21) + g(21)) dzy > 0.
Using inequality (8.12)), it follows that

b ez
I = / / (V5.0 (y1) — (1 = 221) f'(31)) dyaday > 0.

As inequality (8.12)) also holds for the functions ¢s,, and g, it follows after exchang-
ing the variables x; and y; that

b T
Iy = / / ((pg,w(xl) - (1 — 2y1)g’(9c1)) dxldyl >0.
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Computing the above integrals and setting I = I; + Ir + I, it follows that

I'=6(b) —6(a) — (a = b)(pswla) + Yswla) — (L —a—b)(f(a) +g(a))) 20,

or, equivalently,
I=Ve(S)>0.

Similarly, one can verify that Vo (R) > 0 for any rectangle R = [a, b] X [a, b] when
a>1/2. O

Example 8.3. Suppose that the functions f and g are linear. Condition (i) of
Proposition implies that f(x) = g(x) =0 for all x € [0,1]. The corresponding
family of semiquadratic copulas coincides with the family of orbital semilinear
copulas [65].

Example 8.4. Consider the diagonal section and the opposite diagonal section
of the product copula. Let fx,gx : [0,1] = R be the functions defined by fx(z) =
—ga(z) = Amin(z,1 — z) for all x € [0,1], with A € [-1,1]. One easily verifies
that the conditions of Propositions[8.3 are satisfied and the corresponding family
of semiquadratic functions gIC’f“g* s a family of semiquadratic copulas, and is

Sr1,win
given by

zy— ANy —z)(z+y—1)min(y,1 —y) ,if (z,y) € T1UT3,
§1Ch i (,y) =

xy — My —x)(x+y—1)min(z,1 —z) , otherwise,

with A € [—1,1].

Class IV

For any diagonal function § and opposite diagonal function w such that 6(1/2) =
w(1/2), and any two functions f, g : [0,1] — R, the function {\O/C({i :10,1]2 — [0,1]
defined in where the convention % := 0 is adopted, is a semiquadratic function
with diagonal section § and opposite diagonal section w. Note that if the functions

f and g are continuous, then 11\010({ ' is continuous.
We now state the conditions to be fulfilled by the functions §, w, f and g such
that {XC({ % is a copula. Let us consider the functions A, and g, defined as in

Chapter
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Proposition 8.4. Let § and w be diagonal and opposite diagonal functions such
that 6(1/2) = w(1/2). Let f,g:[0,1] = R be two absolutely continuous functions.
The function %Cg”g defined in is a copula with diagonal section § and opposite
diagonal section w if and only if

(i) for allt €]0,1[, it holds that
P5.0(t) = 1A =20)f' ) =0, ¥5,(t) —[(1-2t)g'()] =0,

where the derivatives exist,

(iii) for all t €]0,1/2], it holds that
—u,(t) < g(t) —tlg' ()],
po(1—t) < f() =t f'(®)l,
3'(t) = pow(t) + vew(t) + (2t = 1)(f(t) + (1)),
Aolt) <1 —p50(t) — (1 —1)g(t),
where the derivatives exist,
(iv) for all t € [1/2,1[, it holds that
ps(t) > max(f(t) + (1 —=t) [f/(®)],9(t) + (1L =1) g (D)),
3'(t) < wow(t) +vsw(t) + (2t —1)(f(t) +9(t)),
ps(t) < @s.0(t) +tg(t),

where the derivatives exist.

Class V

For any diagonal function ¢ and opposite diagonal function w such that §(1/2) =
w(1/2), and any function f : [0, 1] — R, the function YE)C({W : [0,1]> — [0, 1] defined
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by Y5Cz{,w (1’7 y) =

S8 + = w1l — )~ (= a)a = 1))

Jif (z,y) € Y U T3,
%5(19) —z(y —z)f(y) ,if (z,y) € To and y < 1/2,
lfywu—y%+ﬂw+y—lﬁ@) if (2,y) € Th and y > 1/2,

m+y—1+3§fwu—yw—u—mxx+y—nﬂw
Jif (z,y) € Ty and y < 1/2,

1—=x
1-y

y—=0)+Q-a)y—2)fly) ,if(z,y)eTyandy>1/2,

(8.14)
where the convention % := 0 is adopted, is a semiquadratic function with diagonal
section § and opposite diagonal section w. Note that if the function f is continuous,
then Y5C({ » is continuous. Note also that for f = 0, the definition of a horizontal
semilinear function (see Chapter [6) is retrieved.

Y —

We now state the conditions to be fulfilled by the functions J, w and f such that
Vs ({w is a copula.

Proposition 8.5. Let § and w be diagonal and opposite diagonal functions such
that §(1/2) = w(1/2). Let f:[0,1] = R be an absolutely continuous function. The
function ¥5C({w defined in (8.14)) is a copula with diagonal section & and opposite
diagonal section w if and only if

(i) f(0)=r(1)=0,
(ii) for allt €]0,1[, it holds that

Psw(t) = [(1=20)f' ()],
where the derivatives exist,

(i) for all t €]0,1/2], it holds that
As(t) = f(&) + ()]
pL(L=1t) < f(t) —tI1f (1),
As(t) = sw(t) — (1 =) f(t),
Ao(t) < sl —t) = (1—t)f(1—1),
where the derivatives exist,
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(iii) for allt € [1/2,1], it holds that
ps(t) = f() + L1

fO) =A=' @1,

Vsw(t) + (1),

1— 501 —t) —tf(1—1),

) >
—AL(1—1)

ps ()
po(t) <

IN

IN

where the derivatives exist.
Example 8.5. Suppose that the function f is linear. Condition (i) of Propo-
sition implies that f(x) = 0 for all x € [0,1]. The corresponding family of
semiquadratic copulas coincides with the family of horizontal semilinear copulas (see

Chapter @

Class VI

For any diagonal function § and opposite diagonal function w such that 6(1/2) =
w(1/2), and any two functions f, g : [0,1] — R, the function {5 ICfg [0,1] — [0,1]

defined by YGIC’M)(;U y) =

r+y—1 Yy—

oy 1 0W t 5, ey~ = a) @ty - DfE)
aif(z7y)€T17

rty-1

5(a) = g wla) + (y — o) +y — V()

20 —1
,lf(l’,y) €T27

ey =1+ L) - (1 -y +y - gla)

,if (z,y) € Tz and © < 1/2,

-1V e 5@) - (- )y —2)g(x) . if (x.y) € Ty and z > 172,

1—=
V= =)+ (=) —)f ) i () €T and y 2172,

11—z
T+y— 1+TW(1—y)—(1—w)(w+y— Df(y)
,if (z,y) € Ty and y < 1/2,
(8.15)
where the convention % := 0 is adopted, is a semiquadratic function with diagonal
section ¢ and opposite diagonal section w. Note that if the functions f and g are

continuous, then YGIC({ 9 is continuous.
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We now state the conditions to be fulfilled by the functions §, w, f and g such that

YGIC({’E, is a copula.

Proposition 8.6. Let § and w be diagonal and opposite diagonal functions such
that 6(1/2) = w(1/2). Let f,g:[0,1] — R be two absolutely continuous functions.
8.1

The function YGIC({’:}] defined in

18 a copula with diagonal section § and

opposite diagonal section w if and only if

Psw(t) = [(L=20)f' ()],
U5 (2)

AL(t) <

3'(t) > pswl(t)

Au(t)

where the derivatives exist,

(iii) for allt € [1/2,1[, it holds that

s (t)
'(t)

2A—-1-61)\
(1—1)? )

o2 (

where the derivatives exist.

Hew (t)

Class VII

> g(@)+ (1 —2)lg' ()],

< @50 (t) + Ys.w(t) + (26 = 1)(f () + 9(t))
< f(t) +9(),
< 1*%@(1*15)*75}0(1*15),

For any diagonal function ¢ and opposite diagonal function w such that §(1/2) =

w(1/2), and any two functions f, g :

[0,1] — R, the function ;/OHC({’:)’ :10,1]2 — [0,1]
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defined by ;’HC’g’g (z,y) =

W

%5(m)+y(y—x)g(x) Jif (z,y) € Ty and © < 1/2,
1g$w(a¢)+y(x+y—l)g($) ,if (z,y) € Ty and x > 1/2,
EEE L 5w) - 2w + (- )+ y — Dg(a)

alf (I7y) €T27

l-y
ety—1+—=w()-(1-ylz+y-1)g()
,if (z,y) € Tz and © < 1/2,

1:5 (x=0(x)) —(A—y)y—2)g(x) ,if (z,y) €Ty and x> 1/2,

x+y—1+1§fwu—yw—u—xxx+y—nﬂm
Jif (x,y) € Ty and y < 1/2,

1—=z
1-y

(y—0y)+ @ —z)y—2)fly) ,if(z,y)eTyandy >1/2,
(8.16)

where the convention % := 0 is adopted, is a semiquadratic function with diagonal

section § and opposite diagonal section w. Note that if the functions f and g are

continuous, then 3, HC'f 9(x,y) is continuous.

Y —

We now state the conditions to be fulfilled by the functions §, w, f and g such that
YeL9 is a copula.

Proposition 8.7. Let § and w be diagonal and opposite diagonal functions such

that 6(1/2) = w(1/2). Let f,g:[0,1] — R be two absolutely continuous functions.
<i)

The function ¥HCf9 defined in is a copula with diagonal section § and
opposite diagonal section w if and only if

(i) for allt €]0,1/2], it holds that

(A=20)f"(®)| ,
g(t) +tlg' @) ,
g(t) —tlg' @) ,
> psw(t) = (1 =1)g(t),

<1—su(t) — (1 —1)g(t),

Pow(t) >
As(t)
Au(t)
)
)

Y

IA

As(t
Ao (t
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where the derivatives exist,
(iii) for allt € [1/2,1], it holds that
ps(t) = max(f(t) + (L=t)[f' ()], 9(t) + 1 =) [g'®)]),

() —A=1)g"®)],

where the derivatives exist.

Class VIII

For any diagonal function § and opposite diagonal function w such that 6(1/2) =
w(1/2), and any two functions f, g : [0, 1] — R, the function ;’41110({’5 :10,1]2 — [0,1]
defined by ;/41110({’0‘:7 (x,y) =

%6($)+y(y—x)g(x) Jif (z,y) € Ty and o < 1/2,
&w(m)—&—y(w—i—y—l)g(:ﬂ) Jif (z,y) € Ty and @ > 1/2,
00 =2ty =) 1) Jif (2,y) €T and y < 1/2,
ey ety = D) if (2y) € T and y > 1/2,
ry—1+—2w@) - (1-y)(e+y-1g()
Jif (z,y) €Ty and 2 < 1/2,
_ i: (@—8x) — (1— y)(y —2)glx) ,if (z,y) € Ty and 2 > 1/2,
y— 1_; (y—ow)+0-a)y—2)fly) if(z,y)€Tyandy>1/2,
Pty 14wy~ (1) - 1))
Jif (z,y) € Ty and y < 1/2,

(8.17)
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where the convention % := 0 is adopted, is a semiquadratic function with diagonal
section ¢ and opposite diagonal section w. Note that if the functions f and g are
HICf 9 is continuous. Note also that for f = g = 0, the definition

of a radial semilinear functlon (see Chapter @ is retrieved.

continuous, then 4,

We now state the conditions to be fulfilled by the functions J, w, f and g such that
YICL9 is a copula.

Proposition 8.8. Let § and w be diagonal and opposite diagonal functions such
that §(1/2) = w(1/2). Let f,g:[0,1] = R be two absolutely continuous functions.
The function ;’HIC({’U‘Z] defined in is a copula with diagonal section § and
opposite diagonal section w if and only if

(i1) for allt €]0,1/2], it holds that
As(t) = max(f(t) +t[f' ()], 9(t) +t1g'(B)])
Au(t) < g(t) = tlg' (@) ,

WL(—) < F(H) =170,
2 (‘“”) < F() + (1),

-7 (F552l) = s+ a0,

where the derivatives exist,

(iii) for allt € [1/2,1], it holds that

ps(t) = max(f(t) + (L= 1) [f' ()], 9(t) + (1 = 1) [g'(£)])
—h,(t) < g(t) = (A=) |g'(H)] ,
“A,(L=t) < f(t) - A=) [f (D),

where the derivatives exist.
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Example 8.6. Suppose that the functions f and g are linear. Condition (i) of
Proposz'tion implies that f(x) = g(x) =0 for all x € [0,1]. The corresponding
family of semiquadratic copulas coincides with the family of radial semilinear
copulas (see Chapter @

Example 8.7. Consider the diagonal section and the opposite diagonal section
of the product copula. Let fx,gx : [0,1] = R be the functions defined by fx(x) =
—ga(x) = Az(1 — z) for all x € [0,1], with A\ € [—1,1]. One easily verifies that
the conditions of Propositions [8.8 are satisfied and the corresponding family of

semiquadratic functions ;’EIC’(Q’Z?I s a family of semiquadratic copulas.

As the product copula is a typical example of all types of semilinear copulas
based on horizontal and vertical interpolation, we show in the following example
that the Farlie-Gumbel-Morgenstern family of copulas is a typical example of
all types of semiquadratic copulas based on horizontal and vertical interpolation.
Just as the product copula is the only copula that is linear in both variables, the
Farlie-Gumbel-Morgenstern family contains all copulas that are quadratic in both
variables [88, [96] (see also Chapter [1)).

Example 8.8. Let 05 and wy be the diagonal and opposite sections of a Farlie—
Gumbel-Morgenstern copula, i.e. 5x(t) = 2%(1 + A(1 — 2)?) and wr(t) = z(1 —
z)(1+ Ax(1 —x)) for all t € [0,1], with A € [-1,1]. Let fx,gx : [0,1] — [0,1] be
defined by fr(x) = gx(x) = —=Ax(1 —x) for all x € [0,1]. One easily verifies that the
conditions of Propositions[8-1H8-8 are satisfied and all corresponding semiquadratic
functions {C’gj’g*fﬁanjﬁ; coincide with the given Farlie-Gumbel-Morgenstern
copula.
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General conclusions

In this chapter, the main conclusions that can be drawn from the work in this
dissertation are summarized.

We have introduced the class of conic aggregation functions and have characterized
the subsets of [0,1]™ that can be the zero-set of a conic aggregation function. We
have focused our attention on the binary case, and have identified the necessary
and sufficient conditions on the upper boundary curve of the zero-set of a conic
aggregation function in order to have a conic quasi-copula or a (singular) conic
copula. Moreover, we have investigated basic aggregations, such as minimum,
maximum and convex sums, of conic (quasi-)copulas.

We have introduced biconic aggregation functions with a given diagonal (resp.
opposite diagonal) section. We have also characterized the classes of biconic semi-
copulas, quasi-copulas and copulas with a given diagonal (resp. opposite diagonal)
section. The t-norms (resp. copulas) Ty and T, turn out to be the only 1-Lipschitz
(resp. associative) biconic t-norms (resp. copulas) with a given diagonal section.
Moreover, a copula that is a biconic copula with a given diagonal section as well as
with a given opposite diagonal section turns out to be a convex sum of Ty and T1,.

We have introduced upper conic, lower conic and biconic functions with a given
section. We have also characterized the classes of upper conic, lower conic and
biconic (semi-, quasi-)copulas with a given section. Generalized convexity has
played an important role when characterizing upper conic, lower conic and biconic
copulas with a given section.

We have introduced ortholinear (resp. paralinear) functions. We have also char-
acterized the classes of ortholinear (resp. paralinear) (semi- and quasi-)copulas.
Ortholinear copulas supported on a set with Lebesgue measure zero and copulas
that are ortholinear as well as paralinear turn out to be a convex sum of Ty; and
TL-

We have introduced four new types of semilinear copulas and have derived necessary
and sufficient conditions on given diagonal and opposite diagonal functions such
that a copula of one of the considered types exists that has these functions as
diagonal and opposite diagonal sections. The most interesting new copulas are the
so-called orbital semilinear copulas which are obtained based on linear interpolation
on segments connecting points on the diagonal and opposite diagonal of the unit
square solely. The extreme copulas M and W are both orbital semilinear copulas, as
well as the product copula II. Moreover, the smallest copula whose diagonal section
coincides with the diagonal section of the product copula and also the greatest
copula whose opposite diagonal section coincides with the opposite diagonal section
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of the product copula turn out to be orbital semilinear copulas different from II, as
follows from Proposition [6.16

We have introduced the class of lower semiquadratic functions. Moreover, we have
identified the necessary and sufficient conditions on a diagonal function and two
auxiliary real functions u and v to obtain a copula that has this diagonal function
as diagonal section. The class of lower semilinear copulas turns out to be a subclass
of lower semiquadratic copulas. Also, we have characterized the extreme lower
semiquadratic copulas with a given diagonal section.

We have introduced eight classes of semiquadratic functions with given diagonal
and/or opposite diagonal sections. Moreover, we have identified for each class the
necessary and sufficient conditions on the given diagonal and/or opposite diagonal
functions and two auxiliary real functions f and g to obtain a copula that has
these diagonal and/or opposite diagonal functions as diagonal and/or opposite
diagonal sections. The use of the transformations m, ¢, @1, 2, 0, 01 and o5 has
considerably eased the effort compared to the semilinear case.
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Summary

Summary for Dutch translation

Conjunctive aggregation functions have been extensively used in fuzzy logic and
fuzzy set theory. They turn out to be the appropriate operations for modelling the
fuzzy logical connective “and”. Particular subclasses of conjunctive aggregation
functions such as triangular norms (t-norms), semi-copulas, quasi-copulas and
copulas have received ample attention from researchers in reliability theory, fuzzy
set theory, probability theory and statistics.

Several methods to construct conjunctive aggregation functions have been intro-
duced in the literature. Some of these methods are based on linear or quadratic
interpolation on segments connecting lines in the unit square to the sides of the
unit square. Such lines can be the diagonal, the opposite diagonal, a horizontal
straight line, a vertical straight line or the graph that represents a decreasing
function. We introduce the notions of semilinear and semiquadratic aggregation
functions that generalize all aggregation functions that are obtained based on such
methods. More specifically, an aggregation function A is called semilinear (resp.
semi-quadratic) if for any (z,y) € [0,1]2, A is linear (resp. quadratic) in at least
one direction.

In this dissertation, we introduce several methods to construct semilinear and
semiquadratic aggregation functions.

Conic aggregation functions

Inspired by the notion of conic t-norms, we introduce in this chapter conic aggre-
gation functions. Their construction is based on linear interpolation on segments
connecting the upper boundary curve of the zero-set to the point (1,1). Such
aggregation functions are completely characterized by their zero-set, in particular
by the upper boundary curve of this zero-set. Special classes of binary conic
aggregation functions such as conic quasi-copulas and conic copulas are considered.
We provide the necessary and sufficient conditions on the function f that represents
the upper boundary curve of the zero-set of a conic aggregation function to obtain
a conic (quasi-)copula and conclude that the class of conic copulas is a proper
subclass of the class of conic quasi-copulas. Moreover, we characterize the class
of conic copulas that are supported on a set with Lebesgue measure zero. The
convexity of f plays a key role in characterizing the class of conic copulas. We
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derive compact formulae for Spearman’s rho, Gini’s gamma and Kendall’s tau of
two continuous random variables whose dependence is modelled by a conic copula.

Biconic aggregation functions

Inspired by the previous chapter, we introduce a new method to construct aggrega-
tion functions. These aggregation functions are called biconic aggregation functions
with a given diagonal (resp. opposite diagonal) section and their construction is
based on linear interpolation on segments connecting the diagonal (resp. opposite
diagonal) of the unit square to the points (0,1) and (1,0) (resp. (0,0) and (1,1)).
Subclasses of biconic aggregation functions such as biconic semi-copulas, biconic
quasi-copulas and biconic copulas are studied in detail. We provide the necessary
and sufficient conditions on a given diagonal (resp. opposite diagonal) function §
(resp. w) to obtain a biconic (semi-, quasi-)copula that has ¢ (resp. w) as diagonal
(resp. opposite diagonal) section. We conclude that the class of biconic copulas is a
proper subclass of the class of biconic quasi-copulas. Moreover, the class of biconic
quasi-copulas turns out to be a proper subclass of the class of biconic semi-copulas.
The convexity (resp. concavity) of the diagonal (resp. opposite diagonal) section
plays a key role in characterizing the class of biconic copulas with a given diagonal
(resp. opposite diagonal) section. The piecewise linearity of the diagonal section
of a biconic copula turns out to be the necessary and sufficient condition to be
supported on a set with Lebesgue measure zero. We derive compact formulae
for Spearman’s rho, Gini’'s gamma and Kendall’s tau of two continuous random
variables whose dependence is modelled by a biconic copula with a given diagonal
section.

Upper conic, lower conic and biconic semi-copulas with a
given section

Inspired by the previous two chapters, we introduce upper conic, lower conic and
biconic semi-copulas with a given section. Such semi-copulas are constructed by
linear interpolation on segments connecting the graph of a strict negation operator
to the points (0,0) and/or (1,1). Special classes of upper conic, lower conic and
biconic semi-copulas with a given section such as upper conic, lower conic and
biconic (quasi-)copulas with a given section are considered. We recall in this
chapter the notion of generalized convexity (resp. concavity). This notion plays a
key role in characterizing upper conic, lower conic and biconic copulas with a given
section. When the given section is taken from the product copula, the convexity of
the strict negation operator turns out be a sufficient condition to obtain an upper
conic, lower conic or biconic copula with this given section and to conclude that
the resulting upper conic, lower conic and biconic copulas are positive quadrant
dependent.
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Ortholinear and paralinear semi-copulas

Rather than using linear interpolation on segments connecting a line in the unit
square to one point or two points in the unit square as in the above chapters, we
introduce in this chapter a new method to construct semi-copulas based on linear
interpolation on segments that are perpendicular (resp. parallel) to the diagonal of
the unit square. These semi-copulas are called ortholinear (resp. paralinear) semi-
copulas. We provide the necessary and sufficient conditions on a given diagonal
(resp. opposite diagonal) function to obtain an ortholinear (resp. paralinear) (quasi-
)copula. We conclude that the class of ortholinear copulas is a proper subclass of
the class of biconic quasi-copulas. The convexity (resp. concavity) of the diagonal
(resp. opposite diagonal) section plays again a key role in characterizing the class
of ortholinear (resp. paralinear) copulas. Ortholinear copulas have the property of
being Schur-concave. Convex sums of Ty and T3, are the only ortholinear copulas
that are supported on a set with Lebesgue measure zero. We derive compact
formulae for Spearman’s rho, Gini’s gamma and Kendall’s tau of two continuous
random variables whose dependence is modelled by an ortholinear copula.

Some types of semilinear copulas based on horizontal and
vertical interpolation

We first introduce four families of semilinear copulas with a given opposite diagonal
section, called lower-upper, upper-lower, horizontal and vertical semilinear copulas.
There is a great similarity between the case of a given opposite diagonal section
and that of a given diagonal section, which can be explained by the existence of a
transformation that maps copulas onto copulas in such a way that the diagonal
is mapped onto the opposite diagonal and vice versa. In the second part of this
chapter, we consider the construction of semilinear copulas with given diagonal
and opposite diagonal sections. Also here, four new families of semilinear copulas
are introduced, called orbital, vertical, horizontal and radial semilinear copulas.
For each of these families, we provide necessary and sufficient conditions under
which given diagonal and opposite diagonal functions can be the diagonal and
opposite diagonal sections of a semilinear copula belonging to that family. We
focus particular attention on the family of orbital semilinear copulas, which are
obtained by linear interpolation on segments connecting the diagonal and opposite
diagonal of the unit square.

Lower semiquadratic copulas with a given diagonal section

Inspired by the notion of lower semilinear copulas, introduced by Durante et al.
we introduce a new class of copulas. These copulas, called lower semiquadratic
copulas, are constructed by quadratic interpolation on segments connecting the
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diagonal of the unit square to the lower and left boundary of the unit square.
Moreover, we unveil the necessary and sufficient conditions on a diagonal function
and two auxiliary real functions to obtain a copula that has this diagonal function
as diagonal section. Under some mild assumptions, we characterize the smallest
and the greatest lower semiquadratic copulas with a given diagonal section. Unlike
lower semilinear copulas, lower semiquadratic copulas can be not symmetric. We
also characterize the class of continuous differentiable (resp. absolutely continuous)
lower semiquadratic copulas. Finally, we provide expressions for the degree of
non-exchangeability and the measures of association for various families of lower
semiquadratic copulas.

Semiquadratic copulas based on horizontal and vertical inter-
polation

Generalizing the results in the previous two chapters, we introduce several families
of semiquadratic copulas of which the diagonal and/or opposite diagonal sections
are given functions. These copulas are constructed by quadratic interpolation on
segments connecting the diagonal, opposite diagonal and sides of the unit square;
all interpolations are therefore performed horizontally or vertically. For each family
we provide the necessary and sufficient conditions on the given diagonal and/or
opposite diagonal functions and two auxiliary real functions to obtain a copula that
has these diagonal and/or opposite diagonal functions as diagonal and/or opposite
diagonal sections. Just as the product copula is a central member of all families
of semilinear copulas based on horizontal and vertical interpolation, it turns out
that the Farlie-Gumbel-Morgenstern family of copulas is included in all families of
semiquadratic copulas introduced and characterized here.
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Samenvatting

Conjunctieve aggregatiefuncties worden uitvoerig gebruikt in de vaaglogica (fuzzy
logic) en de vaagverzamelingenleer (fuzzy set theory). Ze blijken geschikte opera-
toren te zijn voor het modelleren van de boolese “en”. Bijzondere subklassen van
conjunctieve aggregatiefuncties zoals t-normen (triangular norms), copulas, semi-
copulas, en quasi-copulas, werden uitgebreid onderzocht door onderzoekers in de
betrouwbaarheidstheorie, de vaagverzamelingenleer, de waarschijnlijkheidstheorie
en de statistiek.

In de literatuur werden verschillende methodes voor de constructie van conjunctieve
aggregatiefuncties geintroduceerd. Sommige van deze methodes zijn gebaseerd op
lineaire of kwadratische interpolatie op segmenten die lijnen binnen het eenheids
vierkant met de zijden ervan verbinden. Dergelijke lijnen kunnen de diagonaal,
de nevendiagonaal, een horizontale lijn, een verticale lijn zijn, of een grafiek die
een dalende functie voorstelt. We introduceren de begrippen semi-lineaire en
semi-kwadratische aggregatiefuncties die alle aggregatiefuncties veralgemenen die
bekomen werden gebruikmakend van dergelijke methodes. Meer in het bijzonder
wordt een functie A : [0,1]% — [0, 1] semi-lineair (resp. semi-kwadratisch) genoemd
als, voor elke (z,y) € [0,1]?, A lineair (resp. kwadratisch) is in tenminste één
richting.

In dit proefschrift introduceren we verschillende methodes voor de constructie van
semi-lineaire en semi-kwadratische aggregatiefuncties.

Conische aggegratiefuncties

In dit hoofdstuk introduceren we, geinspireerd door de notie van t-normen, conische
aggregatiefuncties. De constructie van dergelijke functies steunt op lineaire inter-
polatie op segmenten die de bovenste grenscurve van de nul-set verbinden met het
punt (1,1). Dergelijke aggregatiefuncties kunnen volledig gekarakteriseerd worden
door hun nul-set, in het bijzonder de bovenste grenscurve van die nul-set. Speciale
klassen van binaire aggregatiefuncties, zoals conische copulas en conische quasi-
copulas, worden behandeld. We voorzien in de nodige en voldoende voorwaarden
waaraan de functie f, die de bovenste grenscurve van de nul-set voorstelt, moet
voldoen om een conische (quasi)-copula te bekomen. De conclusie is dat de klasse
van conische copulas een echte subklasse van de klasse van conische quasi-copulas
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vormt. We karakteriseren bovendien de klasse van conische copulas die gedragen
worden door een set met Lebesguemaat nul. In het karakteriseringsproces van de
klasse van conische copulas speelt de convexiteit van f een sleutelrol. We leiden
compacte formules af voor Spearman’s rangcorrelatiecoéfficiént p, de Gini-coéfficiént
v en Kendall’s rangcorrelatiecoéfficiént 7 voor twee continue toevalsveranderlijken
waarvan de onderlinge afhankelijkheid gemodelleerd wordt door een conische copula.

Biconische aggegratiefuncties

Geinspireerd door het vorige hoofdstuk, introduceren we in dit hoofdstuk een
nieuwe methode voor de constructie van aggregatiefuncties. Deze functies worden
biconische aggregatiefuncties met een gegeven (neven)diagonaal genoemd. Hun
constructie is gebaseerd op lineaire interpolatie op segmenten die, in het eenhei-
dsvierkant, de diagonaal (resp. nevendiagonaal) met de punten (0,1) en (1,0)
(resp. (0,0) en (1,1)) verbinden. Subklassen van biconische aggregatiefuncties zoals
biconische copulas, biconische semi-copulas en biconische quasi-copulas worden
in detail bestudeerd. We voorzien de nodige en voldoende voorwaarden waaraan
een gegeven diagonaal- (resp. nevendiagonaal-)functie ¢ (resp. w) moet voldoen
om een biconische (semi-, quasi-)copula te bekomen die § (resp. w) als diagonale
(resp. nevendiagonale) sectie heeft. De conclusie is dat de klasse van biconische
copulas een echte subklasse vormt van de klasse van biconische quasi-copulas. De
convexiteit (resp. concaviteit) van de diagonale (resp. nevendiagonale) sectie speelt
een sleutelrol bij de karakterisering van de klasse van biconische copulas met een
gegeven (neven-)diagonale sectie. Het blijkt dat de stuksgewijze lineariteit van de
diagonale sectie van een biconische copula een nodige en voldoende voorwaarde is
om gedragen te kunnen worden door een set met Lebesguemaat nul. We leiden
compacte formules af voor Spearman’s rangcorrelatiecoéfficiént p, de Gini-coéfficiént
~ en Kendall’s rangcorrelatiecoéfficiént 7 voor twee continue toevalsveranderlijken
waarvan de onderlinge afhankelijkheid gemodelleerd wordt door een biconische
copula met een gegeven diagonale sectie.

Bovenconische, onderconische en biconische semi-
copulas met een gegeven sectie

In dit hoofdstuk introduceren we, geinspireerd door de vorige twee hoofdstukken,
bovenconische, onderconische en biconische semi-copulas met een gegeven sectie.
Dergelijke semi-copulas worden geconstrueerd door lineaire interpolatie op seg-
menten die de grafiek van een strikte negatie-operator verbinden met de punten
(0,0) en/of (1,1). We behandelen speciale klassen van onderconische en biconische
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semi-copulas met een gegeven sectie, zoals bovenconische, onderconische en biconis-
che (quasi-)copulas met een gegeven sectie. We herhalen in dit hoofdstuk het begrip
veralgemeende convexiteit (resp. concaviteit). Dit speelt een belangrijke rol bij de
karakterisering van bovenconische, onderconische en biconische copulas met een
gegeven sectie. Wanneer de gegeven sectie genomen wordt van de productcopula,
blijkt de convexiteit van de strikte negatie-operator een voldoende voorwaarde te
zijn voor het bekomen van een bovenconische, onderconische of biconische cop-
ula met deze opgegeven sectie. De resulterende bovenconische, onderconische en
biconische copulas blijken positief-kwadrant-afhankelijk te zijn.

Ortholineaire en paralineaire semi-copulas

In plaats van gebruik te maken van lineaire interpolatie op segmenten die, zoals
in de vorige hoofdstukken, een lijn in het eenheidsvierkant verbinden met één
of twee punten in het eenheidsvierkant, introduceren we hier een nieuwe meth-
ode voor de constructie van semi-copulas gebaseerd op lineaire interpolatie op
segmenten die loodrecht (resp. parallel) staan t.o.v. het eenheidsvierkant. Deze
semi-copulas worden ortholineaire (resp. paralineaire) semi-copulas genoemd. We
voorzien de nodige en voldoende voorwaarden waaraan een gegeven diagonaal- (resp.
nevendiagonaal-)functie moet voldoen om een ortholineaire (resp. paralineaire)
(quasi-)copula te bekomen. We vinden dat de klasse van ortholineaire copulas
een echte subklasse is van de klasse van biconische quasi-copulas. The convexiteit
(resp. concaviteit) van de diagonale (resp. nevendiagonale) sectie speelt ook nu een
sleutelrol bij de karakterisering van de klasse van ortholineaire (resp. paralineaire)
copulas. Ortholineaire copulas hebben de eigenschap Schur-concaaf te zijn. De
convexe sommen van Typ en 71, zijn de enige ortholineaire copulas die gedragen
worden door een set met Lebesgue-maat nul. We leiden compacte formules af voor
Spearman’s rangcorrelatiecoéfficiént p, de Gini-coéfficiént « en Kendall’s rangcorre-
latiecoéfficiént 7 voor twee continue toevalsveranderlijken waarvan de onderlinge
afhankelijkheid gemodelleerd wordt door een ortholineaire copula.

Enkele types van semi-lineaire copulas gebaseerd
op horizontale en verticale interpolatie

In het eerste deel van dit hoofdstuk introduceren we vier families van semi-lineaire
copulas met een gegeven nevendiagonale sectie, namelijk boven-onder, onder-boven,
horizontale en verticale semi-lineaire copulas. Er is een grote overeenkomst tussen
de gevallen met een gegeven diagonale of nevendiagonale sectie, hetgeen verklaard
wordt door het bestaan van een transformatie die copulas op copulas afbeeldt
zodanig dat de diagonaal op de nevendiagonaal wordt afgebeeld en omgekeerd.
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In het tweede deel van dit hoofdstuk beschouwen we de constructie van semi-lineaire
copulas met gegeven diagonale en nevendiagonale secties. We introduceren hier ook
vier nieuwe families van semi-lineaire copulas, namelijk orbitale, radiale, verticale en
horizontale semi-lineaire copulas. Voor elk van deze families voorzien we de nodige
en voldoende voorwaarden waaronder gegeven diagonaal en nevendiagonaalfuncties
de diagonale en nevendiagonale secties kunnen zijn van semi-lineaire copula die tot
die families behoren. We schenken bijzondere aandacht aan de familie van orbitale
semi-lineaire copulas die bekomen werden door lineaire interpolatie op segmenten
die de diagonaal met de nevendiagonaal van het eenheidsvierkant verbinden.

Onder semi-kwadratische copulas met een gegeven
diagonale sectie

Geinspireerd door het begrip semi-lineaire copulas, geintroduceerd door Durante
et al. introduceren we in dit hoofdstuk een nieuwe klasse van copulas. Deze
laatste, ondere semi-kwadratische copulas genoemd, worden geconstrueerd door
kwadratische interpolatie op segmenten die, in het eenheidsvierkant, de diagonaal
met de onder- en linkerzijde verbinden. We voorzien bovendien de nodige en
voldoende voorwaarden waaraan de diagonaalfunctie en twee reéle hulpfuncties
moet voldoen om een copula te bekomen die de diagonaalfunctie als diagonale
sectie heeft. Onder een aantal milde aannames karakteriseren we de kleinste en
grootste ondere semi-kwadratische copulas met een gegeven diagonale sectie. In
tegenstelling tot semi-lineaire copulas, kunnen ondere semi-kwadratische copulas
asymmetrisch zijn. Verder karakteriseren we ook de klasse van continu-afleidbare
(resp. absoluut continue) ondere semi-kwadratische copulas. We geven tenslotte
uitdrukkingen voor de graad van niet-uitwisselbaarheid en voor de associatiematen
voor verschillende families van semi-kwadratische copulas.

Semi-kwadratische copulas gebaseerd op horizon-
tale en verticale interpolatie

In dit hoofdstuk veralgemenen we de resultaten uit de vorige twee hoofdstukken,
en introduceren we verschillende families van semi-kwadratische copulas waarvan
de diagonale en/of nevendiagonale secties gegeven functies zijn. Deze copulas
worden geconstrueerd door kwadratische interpolatie op segmenten die, in het
eenheidsvierkant, de diagonaal, de nevendiagonaal en de zijden met elkaar verbinden.
Alle interpolaties worden derhalve horizontaal of verticaal uitgevoerd.

Voor elke familie voorzien we de nodige en voldoende voorwaarden waaraan de
gegeven diagonaal- en/of nevendiagonaalfunctie en twee reéle hulpfuncties moeten
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voldoen om een copula te bekomen die deze diagonaal- en/of nevendiagonaalfunctie
als diagonale en/of nevendiagonale sectie heeft.

Zoals de productcopula een centraal lid is van de familie van semi-lineaire copulas
gebaseerd op horizontale en verticale interpolatie, blijkt dat de Farli-Gumbel-
Morgenstern familie van copulas vervat is in alle families van semi-kwadratische
copulas die hier geintroduceerd en gekarakteriseerd werden.
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