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Preface

The study of aggregation functions has become one of the core activities in several

areas of research, as can be seen from the vast number of papers, monographs [2, 6,

9, 48] and summer schools on the topic. Their importance can be seen in applied

mathematics (e.g., probability theory, statistics, fuzzy set theory), computer science

(e.g., artificial intelligence, operations research), as well as in many applied fields

(image processing, decision making, control theory, information retrieval, finance,

etc.).

The word aggregation [6, 48] refers to the process of combining several input values

into a single representative output value and the function that performs this process

is called an aggregation function. The input values depend on the field of application.

For instance, in fuzzy set theory, they can be degrees of membership, truth values,

intensities of preference, and so on. For this reason, aggregation functions play an

important role in many applications of fuzzy set theory, such as fuzzy modelling,

fuzzy logic [58], preference modelling [28, 54, 101] and similarity measurement [26].

Their most prominent use is as fuzzy logical connectives [6].

Special classes of aggregation functions are of particular interest, such as semi-

copulas [12, 41, 44], triangular norms [2, 75], quasi-copulas [47, 60, 78] and copu-

las [2, 88]. They are all conjunctors, in the sense that they extend the classical

Boolean conjunction. Semi-copulas have recently gained importance in reliabil-

ity theory, fuzzy set theory and multi-valued logic [3, 34, 45, 59]. Triangular

norms are the most popular operations for modelling the intersection in fuzzy

set theory [75, 48]. Quasi-copulas and copulas are widely studied. For instance,

quasi-copulas appear in fuzzy set theoretical approaches to preference modelling

and similarity measurement [25, 26, 28, 52]. Due to Sklar’s theorem [99], cop-

ulas have received ample attention from researchers in probability theory and

statistics [61, 64].

The arithmetic mean is an example of an aggregation function and it has been

used over centuries in several areas of research. This provides us an idea how old

the existence of aggregation functions is. Although the existence of aggregation

functions is rather old, they have been buried until recently. The arrival of

computers in the eighties has created the appropriate circumstances where they

become present. Hence, since the eighties, aggregation functions have become

a genuine research field, rapidly developing, but in a rather scattered way since

aggregation functions are rooted in many different fields.

Modern technologies have helped the researchers to produce a massive amount of

data based on observations. In order to allow more flexible modelling techniques,

xiii



new methods to construct aggregation functions are being proposed continuously

in the literature. Some methods are based on transformations [1, 17, 29, 76, 77, 86].

In other words, one starts from a given aggregation function and by applying an

appropriate transformation, the resulting function is an aggregation function. Some

other methods are based on composing aggregation functions [10, 48]. Several

construction methods apply linear or quadratic interpolation to various types of

partial information, such as given sections (horizontal, vertical, diagonal, etc.) [4,

17, 21, 42, 48, 49, 50, 91].

In this work, we mainly focus on construction methods of aggregation functions of

the latter type. This dissertation is organized as follows.

1. In Chapter 1, we provide a general introduction.

2. In Part I, we provide several construction methods based on linear inter-

polation. In Chapter 2, we consider the linear interpolation on segments

connecting the upper boundary curve of the zero-set of an aggregation func-

tion to the point (1, 1), while we consider the linear interpolation on segments

connecting the diagonal (resp. opposite diagonal) of the unit square to the

points (0, 1) and (1, 0) (resp. (0, 0) and (1, 1)) in Chapter 3. Rather than

using the upper boundary curve of the zero-set, we consider in Chapter 4 any

curve from a semi-copula determined by a strict negation operator. Instead

of using the linear interpolation on segments connecting a line in the unit

square to the corners of the unit square, we consider in Chapter 5 the linear

interpolation on segments that are perpendicular to the diagonal or opposite

diagonal of the unit square. We involve in Chapter 6 both the diagonal and

the opposite diagonal of the unit square in the linear interpolation procedure.

3. In Part II, we provide several construction methods based on quadratic inter-

polation. In Chapter 7, we generalize lower semilinear copulas by considering

the quadratic interpolation on segments connecting the diagonal of the unit

square to the sides of the unit square. In Chapter 8, we complete the results

of Chapter 7, and generalize the results of Chapter 6 by considering all

the possible horizontal and vertical quadratic interpolations on segments

connecting the diagonal or/and opposite diagonal section of the unit square

to the sides of the unit square.

4. Finally, general conclusions are drawn.

Most of our work presented in this dissertation has already been published or

submitted for publication in peer-reviewed international journals. Chapters 2, 3,

4, 5, 6, 7 and 8 have been described in [70], [66], [69], [67], [65], [71] and [68],

respectively.

xiv



1 General introduction

1.1. Aggregation functions

1.1.1. Basic definitions

Aggregation functions have become very popular over the last years due to their wide

range of applications in several areas of research. Their main role appears in applied

sciences, such as image processing, decision making, control theory, information

retrieval, etc. [6, 30, 48]. In general, aggregation functions are used to convert

finitely many input values into a single representative output value. These input

values can represent experimental observations, intensities of preferences, statistical

data, probabilities, etc. The output value enables us to describe and predict

experimental phenomena, to classify objects and species and make appropriate

decisions. The aggregation process requires the input values as well as the output

value to belong to the same numerical interval. Two properties are fundamental

for any aggregation function A. They coincide in the point 0 = (0, 0, · · · , 0)

as well as in the point 1 = (1, 1, · · · , 1), and they are increasing. In fuzzy set

theory, for instance, such properties can be seen as follows. The input vectors

0 and 1 represent no membership and full membership. Hence, it is natural

to assign A(0) = 0 and A(1) = 1. Consider the two input vectors (b, a, · · · , a)

and (c, a, · · · , a), with b ≤ c, representing intensities of preferences. Hence, it is

natural to consider A(b, a, · · · , a) ≤ A(c, a, · · · , a). Due to the increasingness of

the aggregation functions involved, it is often possible to rescale the input values

as well as the output values to the unit interval.

Definition 1.1. An n-ary aggregation function A is a [0, 1]n → [0, 1] function

satisfying the following minimal conditions:

(i) boundary conditions: A(0) = 0 and A(1) = 1 ;

(ii) monotonicity: for any x,y ∈ [0, 1]n such that x ≤ y, it holds that A(x) ≤
A(y) .

Well-known examples of aggregation functions are:

1. the arithmetic mean:

AM(x1, x2, · · · , xn) =
x1 + x2 + · · ·+ xn

n
,

1



Chapter 1. General introduction

2. the geometric mean:

GM(x1, x2, · · · , xn) = n
√
x1x2 · · ·xn ,

3. harmonic mean:

HM(x1, x2, · · · , xn) =
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

,

4. minimum:

TM(x1, x2, · · · , xn) = min(x1, x2, · · · , xn) ,

5. maximum:

SM(x1, x2, · · · , xn) = max(x1, x2, · · · , xn) ,

6. product:

TP(x1, x2, · · · , xn) = x1x2 · · ·xn ,

7. bounded sum:

TL(x1, x2, · · · , xn) = min(1, x1 + x2 + · · ·+ xn) .

The maximum and minimum aggregation functions have been used to classify

aggregation functions into four main classes:

1. averaging,

2. conjunctive,

3. disjunctive,

4. mixed.

Definition 1.2. Let A : [0, 1]n → [0, 1] be an aggregation function. Then

(i) A is called averaging if

min(x) ≤ A(x) ≤ max(x)

for any x ∈ [0, 1]n.

(ii) A is called conjunctive if

A(x) ≤ min(x)

for any x ∈ [0, 1]n.

(iii) A is called disjunctive if

A(x) ≥ max(x)

2



Chapter 1. General introduction

for any x ∈ [0, 1]n.

(iv) Any aggregation function that does not satisfy one of the above inequalities is

called mixed aggregation function.

The aggregation functions Au and Al given by

Au(x) =

0 , if max(x) = 0 ,

1 , otherwise,

Al(x) =

1 , if min(x) = 1 ,

0 , otherwise,

are respectively the greatest and the smallest aggregation function, i.e. for any

aggregation function A, it holds that

Al ≤ A ≤ Au .

Throughout the dissertation, we restrict our attention mostly to binary aggregation

functions. A (binary) aggregation function A is an increasing [0, 1]2 → [0, 1]

function that preserves the bounds, i.e. A(0, 0) = 0 and A(1, 1) = 1. Obviously, this

definition has to be complemented by a variety of additional properties depending

on the field of application.

1.1.2. Properties and facts

Let A : [0, 1]2 → [0, 1] be an aggregation function.

(i) A has a ∈ [0, 1] as absorbing element if

A(x, a) = A(a, x) = a

for any x ∈ [0, 1].

(ii) A has b ∈ [0, 1] as neutral element if

A(x, b) = A(b, x) = x

for any x ∈ [0, 1].

(iii) A is commutative (or symmetric) if

A(x, y) = A(y, x)

for any x, y ∈ [0, 1].

3



Chapter 1. General introduction

(iv) A is associative if

A(A(x, y), z) = A(x,A(y, z))

for any x, y, z ∈ [0, 1].

(v) A is continuous in the first variable if

lim
x→x0

A(x, y) = A(x0, y)

for any x0, y ∈ [0, 1].

(vi) A is continuous in the second variable if

lim
y→y0

A(x, y) = A(x, y0)

for any x, y0 ∈ [0, 1].

(vii) A is continuous if it is continuous in each variable.

(viii) A is 1-Lipschitz continuous if

|A(x′, y′)−A(x, y)| ≤ |x′ − x|+ |y′ − y|

for any x, x′, y, y′ ∈ [0, 1].

(ix) A is 2-increasing if

VA([x, x′]× [y, y′]) = A(x, y)−A(x′, y)−A(x, y′) +A(x′, y′) ≥ 0 (1.1)

for any x, x′, y, y′ ∈ [0, 1] such that x ≤ x′ and y ≤ y′. VA is called the

A-volume of the rectangle [x, x′]× [y, y′].

Note that A-volumes are additive, i.e. when a rectangle is decomposed into a

number of rectangles then the A-volume of the original rectangle is equal to the

sum of the A-volumes of all the rectangles in its decomposition.

If an aggregation function A has 1 as neutral element, then due to its increasingness,

it has 0 as absorbing element as well. The 1-Lipschitz continuity of an aggregation

function implies its continuity. The 2-increasingness of an aggregation function

A that has 1 as neutral element implies its 1-Lipschitz continuity [48]. Note that

a function G : [0, 1]2 → [0, 1] that has 0 as absorbing element and 1 as neutral

element, and satisfies the 2-increasingness, is an aggregation function. Moreover,

G is 1-Lipschitz continuous.

4



Chapter 1. General introduction

1.1.3. Subclasses of aggregation functions

Conjunctors

Definition 1.3. An aggregation function A is called a conjunctor if it has 0 as

absorbing element.

Conjunctors are used to extend the classical Boolean conjunction. The aggregation

functions Ju and Al with Ju(x, y) = 0 whenever min(x, y) = 0, and Ju(x, y) = 1

elsewhere, are respectively the greatest and the smallest conjunctor, i.e. for any

conjunctor J , it holds that

Al ≤ J ≤ Ju .

Semi-copulas

Definition 1.4. An aggregation function A is called a semi-copula if it has 1 as

neutral element.

The notion of a semi-copula appeared for the first time in the literature in the field

of reliability theory. Semi-copulas turn out to be appropriate tools for capturing

the relation between multivariate aging and dependence [3, 34]. The functions

TM and TD, with TD(x, y) = min(x, y) whenever max(x, y) = 1, and TD(x, y) = 0

elsewhere, are semi-copulas. Moreover, they are respectively the greatest and the

smallest semi-copula, i.e. for any semi-copula S, it holds that

TD ≤ S ≤ TM .

Any semi-copula is a conjunctor, and hence, the class of semi-copulas is a subclass of

the class of conjunctors. The conjunctor J : [0, 1]2 → [0, 1] defined by J(x, y) = xy2

is not a semi-copula. Consequently, the class of semi-copulas is a proper subclass

of the class of conjuntors.

Triangular norms

Definition 1.5. An aggregation function A with neutral element 1 is called a

triangular norm if it is commutative and associative.

Triangular norms (t-norms for short) are the most popular operations for modelling

the intersection in fuzzy set theory. The functions TM, TP and TD are examples of

t-norms. TD is called the drastic t-norm. Any t-norm is a semi-copula, and hence,

the class of t-norms is a subclass of the class of semi-copulas. The semi-copula

S : [0, 1]2 → [0, 1] defined by S(x, y) = xymax(x, y) is not a t-norm. Consequently,

the class of t-norms is a proper subclass of the class of semi-copulas.
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Chapter 1. General introduction

Continuous Archimedean t-norms

Let T be a t-norm and x ∈ ]0, 1[ . A T -power of x is defined by

x(1) = x and x(n+1) = T (x(n), x) ,

where n ∈ N0.

Definition 1.6. A t-norm T is called Archimedean if for any (x, y) ∈ ]0, 1[2 there

exists an n ∈ N0 such that

x(n) < y .

In the following proposition we recall an equivalent condition for a t-norm T to be

Archimedean when T is continuous.

Proposition 1.1. [48] A continuous t-norm T is Archimedean if and only if

T (x, x) < x

for any x ∈ ]0, 1[ .

The t-norm TP is Archimedean while TM is not. The t-norm TD is an Archimedean

t-norm that is not continuous. Note also that the t-norm TnM given by

TnM(x, y) =

0 , if x+ y ≤ 1 ,

min(x, y) , if x+ y > 1 ,

is neither continuous nor Archimedean [53].

Let t : [0, 1]→ [0,∞] be a strictly decreasing continuous function satisfying t(1) = 0.

The function t(−1) : [0,∞]→ [0, 1] defined by

t(−1)(x) =

{
t−1(x) , if x ∈ [0, t(0)] ,

0 , otherwise ,

is called the pseudo-inverse of the function t. In fact, any continuous Archimedean

t-norm can be represented by means of a strictly decreasing continuous [0, 1]→
[0,∞] function.

6



Chapter 1. General introduction

Theorem 1.1. [2] A continuous t-norm T is Archimedean if and only if there

exists a strictly decreasing continuous [0, 1]→ [0,∞] function t satisfying t(1) = 0

such that

T (x, y) = t(−1)(t(x) + t(y))

for any x, y ∈ [0, 1].

The function t is called an additive generator. Additive generators of the t-norms

TP and TL are respectively defined by t1(x) = − log(x) and t2(x) = 1− x.

Quasi-copulas

Definition 1.7. An aggregation function A with neutral element 1 is called a

quasi-copula if it is 1-Lipschitz continuous.

Quasi-copulas appear in fuzzy set theoretical approaches to preference modelling

and similarity measurement. The 1-Lipschitz continuity of a quasi-copula implies its

continuity. Note that any quasi-copula is a semi-copula, and hence, the class of quasi-

copulas is a subclass of the class of semi-copulas. The function S : [0, 1]2 → [0, 1]

defined by

S(x, y) =


0 , if (x, y) ∈ [0, 1/2]× [0, 1[ ,

min(x, y) , otherwise,

is a semi-copula, but it is not a quasi-copula [6]. Consequently, the class of quasi-

copulas is a proper subclass of the class of semi-copulas. The functions TM and TL
are quasi-copulas. Moreover, they are respectively the greatest and the smallest

quasi-copula, i.e. for any quasi-copula Q, it holds that

TL ≤ Q ≤ TM .

Copulas

Definition 1.8. An aggregation function A with neutral element 1 is called a

copula if it is 2-increasing.

The notion of a copula appeared for the first time in probability theory and statistics.

Copulas turn out to be appropriate tools for linking a joint distribution function

with its margins. Due to Sklar’s theorem, this fact can been seen as follows. For a

joint distribution function H with margins F and G, there exists a copula C such

that

H(x, y) = C(F (x), G(y)) .

The copula C is unique if F and G are continuous; otherwise it is unique on

RanF ×RanG. The functions TM and TL are also copulas. They are called the

7



Chapter 1. General introduction

Fréchet-Hoeffding upper and lower bounds: for any copula C it holds that

TL ≤ C ≤ TM .

A third important copula is the product copula TP. The 2-increasingness of a copula

implies its 1-Lipschitz continuity. Hence, any copula is continuous. Moreover, any

copula is a quasi-copula. Consequently, the class of copulas is a subclass of the

class of quasi-copulas. The function Q : [0, 1]2 → [0, 1] defined by

Q(x, y) =


min(x, y, 1/3, x+ y − 2/3) , if 2/3 ≤ x+ y ≤ 4/3 ,

max(x+ y − 1, 0) , otherwise,

is quasi-copula, but it is not a copula [88]. Consequently, the class of copulas

is a proper subclass of the class of quasi-copulas. Every associative copula is a

t-norm (the commutativity can be obtained from the continuity [75]), while every

1-Lipschitz t-norm is a copula.

The relation between the above subclasses of binary aggregation functions is

represented in Figure 1.1.

Conjunctors

Semi-copulas

Quasi-copulas

Copulas

T-norms

Associative copulas

1-Lipschitz t-norms

Figure 1.1: An illustration of the inclusions and intersections between the above
subclasses of binary aggregation functions.
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Chapter 1. General introduction

1.1.4. Copulas

Some families of copulas

Some families of copulas are of our interest in this dissertation. The Yager family [2]

of copulas is given by

CY
λ (x, y) =

TM(x, y) , if λ =∞

max(0, 1− ((1− x)λ + (1− y)λ)
1
λ ) , if λ ∈ [1,∞[ .

(1.2)

Any member of the Yager family has the property of being linear on each segment

connecting a point from the upper boundary curve of its zero-set to the point

(1, 1). The Yager family of copulas is a family of t-norms as well. Moreover, for

any λ ∈ [0,∞], the function CY
λ defined in (1.2) is a t-norm. Two members of the

Yager family with their contour plots are shown in Figure 1.2.
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Figure 1.2: The 3D plots of two members of the Yager family of copulas with their
contour plots.
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Another important family is the Farlie–Gumbel–Morgenstern family [88]. This

family is given by

CFGM
λ (x, y) = xy + λxy(1− x)(1− y) ,

with λ ∈ [−1, 1]. The Farlie–Gumbel–Morgenstern family contains all copulas that

are quadratic in both variables. The product copula is the only copula that is

linear in both variables. The only member of the Farlie–Gumbel–Morgenstern

family that is a t-norm is TP. Two members of the Farlie–Gumbel–Morgenstern

family with their contour plots are shown in Figure 1.3.
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Figure 1.3: The 3D plots of two members of the Farlie–Gumbel–Morgenstern family
with their contour plots.

A third important family of copulas is the Ali–Mikhail–Haq family [88]. This family

is given by

CAMH
λ (x, y) =

xy

1− λ(1− x)(1− y)
,

with λ ∈ [−1, 1].
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Chapter 1. General introduction

The Ali–Mikhail–Haq family has been encountered in the literature when con-

structing copulas based on the algebraic relationship between the joint distribution

function and its margins [88]. The Ali–Mikhail–Haq family of copulas is a family of

t-norms as well. Two members of the Ali–Mikhail–Haq family with their contour

plots are shown in Figure 1.4.
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Figure 1.4: The 3D plots of two members of the Ali–Mikhail–Haq family of copulas
with their contour plots.

A fourth important family of copulas is the Mayor–Torrens family [88]. This family

is given by

CMT
λ (x, y) =


max(x+ y − λ, 0) , if λ ∈ ]0, 1] and (x, y) ∈ [0, λ]2 ,

min(x, y) , otherwise.

The Mayor–Torrens family of copulas is a family of t-norms as well. This family

11



Chapter 1. General introduction

has the property of being the only family that satisfies the following equality

C(x, y) = max(C(max(x, y),max(x, y))− |x− y|, 0) ,

for any x, y ∈ [0, 1]. Two members of the Mayor–Torrens family with their contour

plots are shown in Figure 1.5.
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Figure 1.5: The 3D plots of two members of the Mayor–Torrens family of copulas with
their contour plots.

Absolutely continuous and singular copulas

Let B([0, 1]2) be the class of Borel subsets of [0, 1]2. Any copula C induces on

B([0, 1]2) a measure µC defined by

µC([x, x′]× [y, y′]) = VC([x, x′]× [y, y′])

12
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Chapter 1. General introduction

for any rectangle [x, x′] × [y, y′] ∈ [0, 1]2. In view of the Lebesgue decompostion

theorem [31], it holds that µC = µac
C + µs

C , where µac
C is a measure on B([0, 1]2)

that is absolutely continuous w.r.t. the Lebesgue measure and µs
C is a measure on

B([0, 1]2) that is singular w.r.t. the Lebesgue measure. Therefore, for any copula

C, it holds that

C = Cac + Cs ,

where

Cac(x, y) = µac
C ([0, x]× [0, y]) and Cs(x, y) = µs

C([0, x]× [0, y]) .

The function Cac (resp. Cs) is called the absolutely continuous component (resp.

singular component) of C.

Definition 1.9. Let C be a copula.

(i) C is called absolutely continuous if C = Cac.

(ii) C is called singular if C = Cs.

If a copula C is absolutely continuous, then it holds that

C(x, y) =

∫ 1

0

∫ 1

0

∂2C(s, t)

∂s∂t
dsdt ,

for any (x, y) ∈ [0, 1]2, and C has a density function given by ∂2C(s,t)
∂s∂t . The copulas

TM and TL are singular, while the copula TP is absolutely continuous. Any member

of the Farlie–Gumbel–Morgenstern (resp. Ali–Mikhail–Haq) family of copulas is

absolutely continuous. Several methods to construct absolutely continuous copulas

have been introduced in the literature [15, 33, 46].

In the next proposition we recall a sufficient condition for the singularity of a copula.

To this end we need the definition of the support of a copula. The support of a

copula C is the complement of the union of all (non-degenerated) open rectangles

of the unit square such that the C-volume of the closed rectangle is equal to zero.

Hence, a point belongs to the support of C if any rectangle to which the point is

internal, has a positive C-volume. Note that if ∂2C(x,y)
∂x∂y = 0 for some point (x, y),

then it does not belong to the support of C. The support of the copula TM (resp.

TL) is the diagonal (resp. opposite diagonal) of the unit square, while the support

of the copula TP is the whole unit square.
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Chapter 1. General introduction

Proposition 1.2. [31] If a copula C is supported on a set with Lebesgue measure

zero, then C is singular.

Example 1.1. Consider convex sums of TM and TL, i.e. Cλ = λTM + (1− λ)TL,

with λ ∈ [0, 1]. Clearly, the support of Cλ consists of the diagonal and opposite

diagonal of the unit square for any λ ∈ ]0, 1[ . For λ = 1 (resp. λ = 0), the support

of Cλ is the diagonal (resp. opposite diagonal) of the unit square. Hence, the

support of Cλ has Lebesgue measure zero for any λ ∈ [0, 1]. Due to Proposition 1.2,

the copula Cλ is a singular copula for any λ ∈ [0, 1].
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Figure 1.6: The 3D plots of two convex sums of TM and TL with their contour plots.

The converse of Proposition 1.2 is not necessarily true [31].
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Transformations of copulas

For a given function κ : [0, 1]2 → R, the transformations π, ϕ, ϕ1, ϕ2, σ, σ1 and

σ2 [57, 72] produce the following [0, 1]2 → R functions defined by

π(κ)(x, y) = κ(y, x) ,

ϕ(κ)(x, y) = x+ y − 1 + κ(1− x, 1− y) ,

ϕ1(κ)(x, y) = y − κ(1− x, y) ,

ϕ2(κ)(x, y) = x− κ(x, 1− y) ,

σ (κ)(x, y) = x+ y − 1 + κ(1− y, 1− x) ,

σ1(κ)(x, y) = x− κ(1− y, x) ,

σ2(κ)(x, y) = y − κ(y, 1− x) .

(1.3)

The transformations ϕ, ϕ2, σ, σ1 and σ2 can be generated by using only the

transformations π and ϕ1 [57]. If the function κ is a (quasi-)copula, then all of

its above transforms are (quasi-)copulas as well [57, 72]. The transform ϕ(C) of a

copula C is called the survival copula, while the transforms ϕ1(C) and ϕ2(C) of a

copula C are called the x-flip and y-flip of C [19, 22]. Such transformations have a

probabilistic interpretation.

Proposition 1.3. [88] Let X and Y be two continuous random variables whose

dependence is modelled by a copula CXY , and let f (resp. g) be a monotone function

on RanX (resp. RanY ).

1. If f is strictly increasing and g is strictly decreasing, then

Cf(X)g(Y ) = ϕ2(CXY ) .

2. If f is strictly decreasing and g is strictly increasing, then

Cf(X)g(Y ) = ϕ1(CXY ) .

3. If f and g are strictly decreasing, then

Cf(X)g(Y ) = ϕ(CXY ) .

Definition 1.10. [88] Let C be a copula. Then

1. C is called symmetric if

C = π (C) .

2. C is called opposite symmetric if

C = σ (C) . (1.4)
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Symmetric copulas model the dependence between exchangeable random variables.

In practice, however, non-exchangeability [5] of random variables is more frequently

encountered. Often the degree of non-symmetry of a copula C is expressed by

means of the so-called degree of non-exchangeability µ+∞(C) with respect to the

L+∞ distance [89], defined as

µ+∞(C) = 3 sup
(x,y)∈[0,1]2

|C(x, y)− C(y, x)| . (1.5)

The scaling factor 3 ensures that the maximum degree of non-exchangeability is

equal to 1. Recently, Durante et al. [35] have made an in-depth study of this and

other measures of non-exchangeability.

A symmetric copula is opposite symmetric if and only if it coincides with its

survival copula. Any member of the Yager, Farlie–Gumbel–Morgenstern, Ali–

Mikhail–Haq or Mayor–Torrens family of copulas is symmetric. Any member of

the Farlie–Gumbel–Morgenstern family of copulas is opposite symmetric.

Dependence measures

Another property of a bivariate random vector is the degree of concordance of

the two random variables. It is expressed by means of a so-called measure of

association. The three most frequently encountered such measures are Spearman’s

rho, Gini’s gamma and Kendall’s tau [88].

Let X and Y be two continuous random variables whose dependence is modelled

by a copula C.

1. The population version of Spearman’s ρC for X and Y is given by

ρC = 12

1∫
0

1∫
0

C(x, y) dxdy − 3 .

2. The population version of Gini’s γC for X and Y is given by

γC = 4

1∫
0

C(x, 1− x)dx− 4

1∫
0

(x− C(x, x))dx .

3. The population version of Kendall’s τC for X and Y is given by

τC = 4

∫∫
[0,1]2

C(x, y)dC(x, y)− 1 = 1− 4

1∫
0

1∫
0

∂C

∂x
(x, y)

∂C

∂y
(x, y)dxdy .
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Table 1.1: Spearman’s rho, Gini’s gamma and Kendall’s tau of the copulas TM, TP and
TL.

C ρC γC τC

TM 1 1 1

TP 0 0 0

TL −1 −1 −1

The relationship between Spearman’s rho and Kendall’s tau has been studied in

detail in [56]. For the copulas TM, TP and TL, the above measures are listed

in Table 1.1. For some members of the Farlie–Gumbel–Morgenstern family of

copulas and Ali–Mikhail–Haq family of copulas the above measures are listed in

Table 1.2.

Table 1.2: Spearman’s rho, Gini’s gamma and Kendall’s tau of some members of the
families CFGM

λ and CAMH
λ .

λ Cλ ρCλ γCλ τCλ

−1
CFGM
−1 −0.333333 −0.266667 −0.222222

CAMH
−1 −0.271065 −0.21586 −0.181726

0
CFGM

0 0 0 0

CAMH
0 0 0 0

1
CFGM

1 0.333333 0.266667 0.222222

CAMH
1 0.478418 0.381976 0.333333

Some other important measures of association are the upper-upper (λUU ), lower-

lower (λLL), upper-lower (λUL), and lower-upper (λLU ) tail dependence. Let X

and Y be two continuous random variables whose dependence is modelled by a

copula C, and let xt and yt be the 100t-th percentiles of X and Y for any t ∈ ]0, 1[.

Then λUU , λLL, λUL and λLU are defined by

λUU = lim
t→1−

Prob{Y > yt | X > xt} = lim
t→1−

1− 2t+ C(t, t)

1− t
,

λLL = lim
t→0+

Prob{Y < yt | X < xt} = lim
t→0+

C(t, t)

t
,

λUL = lim
t→1−

Prob{Y < y1−t | X > xt} = lim
t→1−

1− t− C(t, 1− t)
1− t

,

λLU = lim
t→0+

Prob{Y > y1−t | X < xt} = lim
t→0+

1− C(t, 1− t)
t

,
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(if the limits exist) [64, 102]. The above tail dependences are used in the literature

to model the dependence between extreme events [98].

Probabilistic properties of copulas

Definition 1.11. Let X and Y be two continuous random variables whose depen-

dence is modelled by a copula CXY . Then

1. CXY is positive quadrant dependent (PQD) if CXY ≥ TP,

2. CXY is negative quadrant dependent (NQD) if CXY ≤ TP.

A member CFGM
λ of the Farlie–Gumbel–Morgenstern family is PQD (resp. NQD)

if and only if λ ≥ 0 (resp. λ ≤ 0). A member CAMH
λ of the Ali–Mikhail–Haq family

family is PQD (resp. NQD) if and only if λ ≥ 0 (resp. λ ≤ 0)

Proposition 1.4. [88] Let X and Y be two continuous random variables whose

dependence is modelled by a copula CXY . Then

1. X and Y are independent if and only if CXY = TP,

2. Y = f(X), where f is strictly increasing, if and only if CXY = TM,

3. Y = f(X), where f is strictly decreasing, if and only if CXY = TL.

Archimedean copulas

Definition 1.12. A copula C is called Archimedean if there exists a convex strictly

decreasing continuous [0, 1]→ [0,∞] function t satisfying t(1) = 0 such that

C(x, y) = t(−1)(t(x) + t(y))

for any x, y ∈ [0, 1].

Any member CY
λ of the Yager family is an Archimedean copula with additive

generator tλ defined by tλ(x) = (1−x)1/λ. Any member CAMH
λ of the Ali–Mikhail–

Haq family of copulas is an Archimedean copula with additive generator tλ defined

by tλ(x) = log
(

1−λ(1−x)
x

)
.

Archimedean copulas are also 1-Lipschitz continuous t-norms. For a copula C, the

strict inequality

C(x, x) < x (1.6)

for any x ∈ ]0, 1[ is a necessary condition for C to be Archimedean, but it is not

sufficient in general. The only Archimedean copula of the Mayor–Torrens family of

copulas is CMT
1 = TL [48].
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Some types of convexity and concavity of copulas

Definition 1.13. [88] A copula C is called concave if the inequality

C(λa+ (1− λ)c, λb+ (1− λ)d) ≥ λC(a, b) + (1− λ)C(c, d) (1.7)

holds for any a, b, c, d, λ ∈ [0, 1].

If the converse inequality holds, then the copula C is called convex. The copula TM
(resp. TL) is the only concave (resp. convex) copula [88]. This shows that the above

definition is strong. Therefore, new types of concavity (resp. convexity), such as

quasi-concavity (resp. quasi-convexity) and Schur-concavity (resp. Schur-convexity),

have been proposed in the literature.

Definition 1.14. [88] Let C be a copula. Then

1. C is called quasi-concave if the inequality

C(λa+ (1− λ)c, λb+ (1− λ)d) ≥ min(C(a, b), C(c, d))

holds for any a, b, c, d, λ ∈ [0, 1].

2. C is called quasi-convex if the inequality

C(λa+ (1− λ)c, λb+ (1− λ)d) ≤ max(C(a, b), C(c, d))

holds for any a, b, c, d, λ ∈ [0, 1].

Note that the only quasi-convex copula is TL [88], while the class of quasi-concave

copulas is a wide class. In the next proposition we recall a necessary and sufficient

condition for quasi-concavity of copulas. First we need to introduce the upper

boundary curve of a level set of a copula C. Let C be a copula and t ∈ [0, 1[ .

The function whose graph is the upper boundary curve of the t-level set {(x, y) ∈
[0, 1]2 | C(x, y) = t} is denoted as Lt,C , i.e.

Lt,C(x) = sup {y ∈ [0, 1] | C(x, y) = t} ,

for any x ∈ [0, 1].

Proposition 1.5. [2] A copula C is quasi-concave if and only if Lt,C is convex

for any t ∈ [0, 1[ .

Definition 1.15. A copula C is called Schur-concave [40, 43, 87] if the inequality

C(x, y) ≤ C(λx+ (1− λ)y, (1− λ)x+ λy) (1.8)

holds for any x, y, λ ∈ [0, 1].

If the converse inequality holds, then the copula C is called Schur-convex. Note

19



Chapter 1. General introduction

that the only Schur-convex copula is again TL, while the class of Schur-concave

copulas is a wide class.

Ordinal sums

The notion of an ordinal sum has appeared in the algebraic structure of posets and

lattices [14] as well as of semigroups [8]. In the framework of aggregation functions,

ordinal sums have been considered mainly with some subclasses of aggregation

functions such as t-norms and copulas. Let {Ji} denote a partition of [0, 1], that

is, a (possibly infinite) collection of closed, non-overlapping (except at common

endpoints) nondegenerate intervals Ji = [ai, bi] whose union is [0, 1]. Let {Ci} be

a collection of copulas with the same indexing as {Ji}. Then the ordinal sum of

{Ci} with respect to {Ji} is the copula given by

C(x, y) =


ai + (bi − ai)Ci

(
x− ai
bi − ai

,
y − ai
bi − ai

)
, if (x, y) ∈ [ai, bi]

2 ,

min(x, y) , otherwise .

Any member of Mayor–Torrens family of copulas is an ordinal sum of {TL, TM}
with respect to {[0, λ], [λ, 1]}. Any copula is a trivial ordinal sum of itself with

respect to {[0, 1]}. A copula that can be represented not only by the trivial ordinal

sum is called a proper ordinal sum.

Proposition 1.6. [88] Let C be a copula. Then C is an ordinal sum if and only

if there exists a t ∈ ]0, 1[ such that C(t, t) = t.

For any member CY
λ , with λ <∞, it holds that

CYλ (t, t) < t

for any t ∈ ]0, 1[ . Hence, any member CY
λ , with λ <∞, of the Yager family is not

a proper ordinal sum.

1.2. Diagonal sections and opposite diagonal sec-

tions

The diagonal section of a [0, 1]2 → [0, 1] function F is the function δF : [0, 1]→ [0, 1]

defined by δF (x) = F (x, x). In order to characterize the diagonal section of (quasi-)

copulas, the following class of functions was considered. A diagonal function [36, 38]

is a function δ : [0, 1]→ [0, 1] satisfying the following properties:

(D1) δ(0) = 0, δ(1) = 1;
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(D2) δ is increasing;

(D3) for any x ∈ [0, 1], it holds that δ(x) ≤ x;

(D4) δ is 2-Lipschitz continuous, i.e. for any x, x′ ∈ [0, 1], it holds that

|δ(x′)− δ(x)| ≤ 2|x′ − x| .

The functions δTM
(x) = x and δTL

(x) = max(2x− 1, 0) are examples of diagonal

functions. Moreover, for any diagonal function δ, it holds that

δTL
≤ δ ≤ δTM

.
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Figure 1.7: The 3D plots of the copulas TM, TP and TL with the 2D plots of their
diagonal section.

The copula TM is the only copula with diagonal section δTM
. The set of all

diagonal functions is denoted by D. The diagonal section δC of a (quasi-)copula

C is a diagonal function. Conversely, for any diagonal function δ there exists
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at least one copula C with diagonal section δC = δ. For example, the function

Kδ : [0, 1]2 → [0, 1], defined by

Kδ(x, y) = min(x, y, (δ(x) + δ(y))/2) , (1.9)

is a copula with diagonal section δ. Moreover, Kδ is the greatest symmetric copula

with diagonal section δ [36, 39, 90]. The Bertino copula Bδ defined by

Bδ(x, y) = min(x, y)−min{t− δ(t) | t ∈ [min(x, y),max(x, y)]} , (1.10)

is the smallest copula with diagonal section δ [7, 55, 73]. Note that Bδ is symmetric.

Copulas with a given diagonal section are important tools for modelling upper-upper

and lower-lower tail dependence, which can be expressed as

λUU = 2− δ′C(1−) and λLL = δ′C(0+) .

The set of all [0, 1] → [0, 1] functions that satisfy properties D1–D3 is denoted

by DS; the subset of absolutely continuous functions in DS is denoted by Dac
S .

Note that for a function δ ∈ DS, the function Cδ defined by (1.9) has neutral

element 1 if and only if δ(x) ≥ 2x−1 for any x ∈ [1/2, 1]. In fact, the last inequality

holds for the class of diagonal sections of quasi-copulas and copulas. Therefore,

for a given δ ∈ DS, the function Cδ defined by (1.9) need not be a semi-copula in

general. In order to characterize the diagonal section of semi-copulas, the class

DS was considered. The diagonal section δS of a semi-copula S belongs to DS.

Conversely, for any δ ∈ DS there exists at least one semi-copula C with diagonal

section δC = δ. For example, the function Sδ, defined by

Sδ(x, y) =

min(δ(x), δ(y)) , if x, y ∈ [0, 1[ ,

min(x, y) , otherwise,
(1.11)

is a semi-copula with diagonal section δ.

The set of all [0, 1]→ [0, 1] functions that satisfy properties D1 and D2 is denoted as

DA. In order to characterize the diagonal section of aggregation functions, the class

DA was considered. The diagonal section δA of an aggregation function A belongs

to DA. Conversely, for any δ ∈ DA there exists at least one an aggregation function

A with diagonal section δA = δ. For example, the function Aδ : [0, 1]2 → [0, 1],

defined by

Aδ(x, y) =
δ(x) + δ(y)

2
, (1.12)

is an aggregation function with diagonal section δ.

Similarly, the opposite diagonal section of a [0, 1]2 → [0, 1] function F is the function

ωF : [0, 1] → [0, 1] defined by ωF (x) = F (x, 1 − x). In order to characterize the
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opposite diagonal section of (quasi-)copulas, the following class of functions was

considered. An opposite diagonal function [23, 24] is a function ω : [0, 1]→ [0, 1]

satisfying the following properties:

(OD1) for any x ∈ [0, 1], it holds that ω(x) ≤ min(x, 1− x);

(OD2) ω is 1-Lipschitz continuous, i.e. for any x, x′ ∈ [0, 1], it holds that

|ω(x′)− ω(x)| ≤ |x′ − x| .

The functions ωTM
(x) = min(x, 1− x) and ωTL

(x) = 0 are examples of opposite

diagonal functions. Moreover, for any opposite diagonal function ω, it holds

that

ωTL
≤ ω ≤ ωTM

.
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Figure 1.8: The 3D plots of the copulas TM, TP and TL with the 2D plots of their
opposite diagonal section.

The copula TL is the only copula with opposite diagonal section ωTL
. The set of all

opposite diagonal functions is denoted by O. The opposite diagonal section ωC of
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a (quasi-)copula C is an opposite diagonal function. Conversely, for any opposite

diagonal function ω there exists at least one copula C with opposite diagonal

section ωC = ω. For example, the function Fω : [0, 1]2 → [0, 1], defined by

Fω(x, y) = TL(x, y) + min {ω(t) | t ∈ [min(x, 1− y),max(x, 1− y)]} , (1.13)

is a copula with opposite diagonal section [73]. Moreover, Fω is the greatest copula

with opposite diagonal section. Note that Fω is opposite symmetric. Copulas with

a given opposite diagonal section are important tools for modelling upper-lower

and lower-upper tail dependence, which can be expressed as

λUL = 1 + ω′C(1−) and λLU = 1− ω′C(0+) .

The set of all [0, 1]→ [0, 1] functions that satisfy condition (OD1) is denoted by

OS; the subset of absolutely continuous functions in OS is denoted by Oac
S .

The opposite diagonal section ωS of a semi-copula S belongs to OS. Conversely, for

any function ω ∈ OS there exists at least one semi-copula S with opposite diagonal

section ωS = ω. For example, the function Sω : [0, 1]2 → [0, 1] defined by

Sω(x, y) =


0 , if x+ y < 1 ,

ω(x) , if x+ y = 1 ,

min(x, y) , if x+ y > 1 ,

(1.14)

is a semi-copula with opposite diagonal section ω.

In general, any [0, 1]→ [0, 1] function can be the opposite diagonal section of an

aggregation function. For instance, for a function ω : [0, 1]→ [0, 1], the function

Aω : [0, 1]2 → [0, 1] defined by

Aω(x, y) =


0 , if x+ y < 1 ,

ω(x) , if x+ y = 1 ,

1 , if x+ y > 1 ,

(1.15)

is always an aggregation function with opposite diagonal section ω.
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1.3. Semilinear and semiquadratic aggregation

functions

Several methods to construct conjunctive aggregation functions have been intro-

duced in the literature. Some of these methods are based on linear or quadratic

interpolation on segments connecting lines in the unit square to the sides of the unit

square. Such lines can be the diagonal, the opposite diagonal, a horizontal straight

line, a vertical straight line or the graph that represents a decreasing function. We

introduce the notions of semilinear and semiquadratic aggregation functions that

generalize all aggregation functions that are obtained based on such methods. We

denote the (linear) segment with endpoints x,y ∈ [0, 1]n as

〈x,y〉 = {θx + (1− θ)y | θ ∈ [0, 1]} .

A continuous function f : [0, 1]→ [0, 1] is called piecewise linear if its graph consists

of segments only.

Definition 1.16. An aggregation function A is called semilinear (resp. semi-

quadratic) if for any x ∈ [0, 1]2, there exists y ∈ [0, 1]2, y 6= x such that A is linear

(resp. quadratic) on the segment 〈x,y〉.

All piecewise linear aggregation functions (in particular, TM and TL) are semilinear

copulas since all their horizontal and vertical sections are piecewise linear. The

product copula TP is semilinear, as all its horizontal and vertical sections are

linear [88]. Any member of Yager family of copulas is also semilinear since its

radial sections are piecewise linear [2]. Any member of Farlie–Gumbel–Morgenstern

family of copulas is also semiquadratic since its horizontal and vertical sections

are quadratic [88]. In this dissertation, we introduce several methods to construct

semilinear and semiquadratic aggregation functions.

Throughout this dissertation, we use the following conventions.

1. We mean by the statement “a function G : [0, 1]2 → [0, 1] satisfies the

boundary conditions of a (semi-, quasi-)copula” or the statement “a function

G : [0, 1]2 → [0, 1] satisfies the first condition of the definition of a (semi-,

quasi-)copula” that G has 0 as absorbing element and 1 as neutral element.

2. From Chapter 6 on, we restrict our attention to the class of copulas and we

respectively use the notations M, W and Π instead of the notations TM, TL
and TP.
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2 Conic aggregation functions

2.1. Introduction

The zero-set of a binary aggregation function is of particular interest in this

chapter. In the case of t-norms, for instance, the discovery of Fodor’s nilpotent

minimum t-norm [53] has instigated the study of the zero-set of left-continuous

t-norms [62, 63, 79, 80, 81, 83, 84]. The boundary curve of the zero-set is in

this case formed by an involutive negator [82]. Characteristic for the aggregation

functions TM and TL is that their graph is constituted from their zero-set and

linear segments connecting the upper boundary curve of this zero-set to the point

(1, 1, 1). For this reason, they are called conic, and all conic t-norms have been

characterized as belonging to the Yager family of t-norms [2]. The purpose of

this chapter is to study conic aggregation functions in general, inspired by the

above graphical interpretation of TM and TL, and lay bare the connection with

the corresponding zero-sets. It fits in a broader study of aggregation functions

whose surface consists of linear segments [4, 20, 21, 38, 65] or contains such linear

segments as the result of a transformation [17].

This chapter is organized as follows. In the next section we give the definition of a

conic aggregation function. In Section 2.3 we restrict our attention to the class

of binary conic aggregation functions and we recall the characterization of conic

t-norms in Section 2.4. In Sections 2.5–2.7, we characterize the classes of conic

quasi-copulas, conic copulas and conic copulas supported on a set with Lebesgue

measure zero. For conic copulas, we provide simple expressions for Spearman’s ρ,

Gini’s γ and Kendall’s τ in Section 2.8. We conclude the chapter with a discussion

of some aggregations of conic (quasi-)copulas.

2.2. Conic aggregation functions

The zero-set ZA of an aggregation function A is the inverse image of the value

0, i.e.

ZA := A−1({0}) = {x ∈ [0, 1]n | A(x) = 0} .

Since A(1, . . . , 1) = 1, ZA is a proper subset of [0, 1]n. A point x = (x1, ..., xn) ∈ ZA
is called a weakly undominated point if there exists no y = (y1, ..., yn) ∈ ZA such

that y1 > x1, y2 > x2, ..., yn > xn. In case n = 2, we will refer to the set of weakly

undominated points of the zero-set of a continuous aggregation function as the

upper boundary curve of the zero-set.
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Let (X,≤) be a partially ordered set. A subset Y ⊆ X is called a lower set (of

X) if for all x, y ∈ X such that y ≤ x and x ∈ Y it holds that y ∈ Y . Due to the

increasingness of an aggregation function A it holds for any x,y ∈ [0, 1]n such that

y ≤ x and A(x) = 0 that also A(y) = 0, i.e. ZA is a lower set of [0, 1]n. Moreover,

if A is continuous, then ZA is a closed lower set of [0, 1]n.

Suppose that 0 is the absorbing element of A, i.e. A(x1, ..., xn) = 0 whenever

0 ∈ {x1, ..., xn}. Then A has no zero-divisors, i.e. A(x1, ..., xn) = 0 implies

0 ∈ {x1, ..., xn}, if and only if ZA = Z∗, with Z∗ = [0, 1]n\ ]0, 1]n.

Now we state the general definition of a conic function.

Definition 2.1. Let Z ⊂ [0, 1]n be a closed lower set containing Z∗. We define

the function AZ : [0, 1]n → [0, 1] as follows:

(i) AZ(1) = 1;

(ii) AZ(x) = 0 for any x ∈ Z;

(iii) for any weakly undominated point x ∈ Z, the function AZ is linear on the

segment 〈x,1〉.

The function AZ is called a conic function with zero-set Z.

Remark 2.1. Note that conic functions are well defined. Indeed, for any fixed

x ∈ [0, 1]n \ (Z ∪ {1}), let

λ = inf{µ ∈ R | µx + (1− µ)1 ∈ Z} .

Then zx = λx + (1 − λ)1 is the unique weakly undominated point such that the

segment 〈zx,1〉 contains x. Hence, AZ(x) = λ−1
λ ∈ ]0, 1[ .

Theorem 2.1. Let Z ⊂ [0, 1]n be a closed lower set containing Z∗. Then the conic

function AZ is continuous.

Proof. Consider the set U(Z) of the weakly undominated points of Z, i.e.

U(Z) = {u | u is the greatest element of Z on some segment 〈x,1〉} .

It clearly holds that U(Z) is a compact subset of [0, 1]n such that for any u ∈
U(Z), the segment 〈u,1〉 does not contain any other point in U(Z), and for any

x ∈ [0, 1]n \ (Z ∪ {1}), there exists a unique zx such that x ∈ 〈zx,1〉. Due to the

definition of AZ , it holds that AZ(x) = 0 if x ∈ Z, AZ(x) ∈ ]0, 1[ if x /∈ Z ∪ {1}
and AZ(1) = 1. Moreover, as 1 is not contained in U(Z) and using any Lp-distance

d (e.g. L1 or the Euclidean distance), the distance from 1 to U(Z) is positive, i.e.

a = d(1, U(Z)) > 0. Furthermore, for any x ∈ [0, 1]n \ (Z ∪ {1}), it holds that

AZ(x) =
d(x, zx)

d(1, zx)
= 1− d(1,x)

d(1, zx)
≥ 1− d(1,x)

a
.
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Therefore, for any sequence (xm) of points in [0, 1]n such that lim xm = 1, it holds

that limAZ(xm) = 1, i.e. the function AZ is continuous at 1. Obviously, AZ is

continuous on Z \ U(Z) and for points in U(Z) the lower semicontinuity of AZ
holds.

Now consider a sequence (xm) in ([0, 1]n \ (Z ∪ {1}))∪U(Z) such that lim xm = x.

If the sequence (zxm) converges to zx, then

limAZ(xm) = lim
d(xm, zxm)

d(1, zxm)
=
d(x, zx)

d(1, zx)
= AZ(x) .

Suppose that lim zxm 6= zx (either it is another point in U(Z) or it does not

exist). In both cases, due to the compactness of U(Z), there exists a subsequence

(xmk) such that lim zxmk = u 6= zx and all the points xmk are on the segment

〈zxmk ,1〉. Now consider a hyperplane τ containing the point 1 and separating the

remainder of the segment 〈zx,1〉 from 〈u,1〉. Evidently, there exists a k0 such

that for all k ≥ k0, the segment 〈zxmk ,1〉 is on the same side of τ as the segment

〈u,1〉. Hence, (xmk) cannot converge to x, which being on the segment 〈zx,1〉, is

just on the opposite side of τ . Therefore, convergence of the sequence (xm) from

([0, 1]n \ (Z ∪ {1})) ∪ U(Z) to a point x ∈ ([0, 1]n \ (Z ∪ {1})) ∪ U(Z) also implies

lim zxm = zx. Hence,

AZ(x) =
d(x, zx)

d(1, zx)
,

and AZ is continuous on [0, 1]n \ (Z ∪ {1}) and upper semicontinuous on U(Z).

From the above analysis, the continuity of AZ is clear.

Theorem 2.2. Let Z ⊂ [0, 1]n be a closed lower set containing Z∗. Then the conic

function AZ is a continuous aggregation function with absorbing element 0.

Proof. As the boundary conditions are trivially fulfilled, it suffices to prove that

AZ is increasing. Consider x,y ∈ [0, 1]n and suppose w.l.o.g. that x = (x1, a, ..., a)

and y = (y1, a, ..., a), with x1 < y1. If x ∈ Z then AZ(x) = 0 ≤ AZ(y). Suppose

that x /∈ Z and x 6= 1. Let zx = (u1, . . . , un) and zy = (v1, . . . , vn) be the unique

weakly undominated points corresponding to x and y, respectively, i.e. there exist

α, β ∈ [0, 1] such that

x = αzx + (1− α)1 and y = βzy + (1− β)1 .

Then AZ(x) = 1−α and AZ(y) = 1−β. Suppose that α < β. For any i ∈ {2, ..., n},
it holds that

αui + 1− α = a = βvi + 1− β ,

which implies that ui < vi. Since zx and zy are weakly undominated points, it
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must hold that u1 > v1, which contradicts the fact that

αu1 + 1− α = x1 < y1 = βv1 + 1− β .

Therefore, it holds that α ≥ β, or equivalently, AZ(x) ≤ AZ(y), whence AZ is an

aggregation function.

Finally, we show that 0 is the absorbing element of AZ . Consider x ∈ [0, 1]n such

that xi = 0 for some i ∈ {1, . . . , n}. If x ∈ Z, then it holds that AZ(x) = 0.

If x /∈ Z, then there exists α ∈ [0, 1] such that x = αzx + (1 − α)1. Hence,

xi = 0 = αui + 1− α, whence α = 1, i.e. AZ(x) = 1− α = 0.

Inspired by the above proposition, the conic function AZ will be called a conic

aggregation function with zero-set Z. Evidently, if Z1 ⊆ Z2, then AZ1
≥ AZ2

.

Hence, the greatest conic aggregation function AZ∗ is the n-ary version of the

minimum t-norm TM given by TM(x) = min(x1, . . . , xn), for any x ∈ [0, 1]n. In

contrast, there is no greatest proper closed lower set of [0, 1]n, and hence, there is

no smallest conic aggregation function.

The following proposition is a straightforward consequence of Theorems 2.1 and 2.2.

Proposition 2.1. Let Z be a proper subset of [0, 1]n. Then Z is the zero-set of a

conic aggregation function AZ with absorbing element 0 if and only if Z is a closed

lower set containing Z∗.

Example 2.1. Let Z = {(x1, . . . , xn) ∈ [0, 1]n | x1 + · · ·+ xn ≤ n− 1}. The set Z

is a closed lower set containing Z∗. The corresponding conic aggregation function

is the n-ary version of the  Lukasiewicz t-norm given by

TL(x) = max(x1 + · · ·+ xn − n+ 1, 0) ,

for any x ∈ [0, 1]n. The weakly undominated point zx corresponding to a point

x /∈ Z is here given by

zx =

(
n− 1− x2 − · · · − xn
n− x1 − · · · − xn

, . . . ,
n− 1− x1 − · · · − xn−1

n− x1 − · · · − xn

)
.

We conclude this section by studying some aggregations of conic aggregation

functions.

Proposition 2.2. For any two conic aggregation functions AZ1 and AZ2 , it holds

that the aggregation functions max(AZ1
, AZ2

) and min(AZ1
, AZ2

) are also conic

aggregation functions, with respective zero-sets Z1∩Z2 and Z1∪Z2. In other words,

the class of conic aggregation functions is closed under maximum and minimum.
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Proof. Let Z = Z1 ∩ Z2. Clearly, the aggregation function AZ is given by

(i) If x ∈ Z, then AZ(x) = 0.

(ii) If x /∈ (Z ∪ {1}) and zx ∈ Z1 (here zx is taken w.r.t. Z), then AZ(x) =

AZ1
(x) ≥ AZ2

(x).

(iii) If x /∈ (Z ∪ {1}) and zx ∈ Z2 (here zx is taken w.r.t. Z), then AZ(x) =

AZ2
(x) ≥ AZ1

(x).

Since the intersection of two closed lower sets of [0, 1]n containing Z∗ is again a

closed lower set of [0, 1]n containing Z∗, the function AZ is a conic aggregation

function, and coincides with max(AZ1 , AZ2).

Similarly, one can prove that min(AZ1
, AZ2

) is a conic aggregation function with

zero-set Z1 ∪ Z2.

Proposition 2.3. For any two distinct conic aggregation functions AZ1 and AZ2

and λ ∈ ]0, 1[, the aggregation function λAZ1
+(1−λ)AZ2

is never a conic aggregation

function.

Proof. Suppose that λAZ1 + (1−λ)AZ2 is a conic aggregation function. Obviously,

its zero-set is given by Z1 ∩ Z2, which implies, due to Proposition 2.2 and the

uniqueness of a conic aggregation function with a given zero-set, that

λAZ1
+ (1− λ)AZ2

= max(AZ1
, AZ2

) ,

which is impossible since λ ∈ ]0, 1[ .

Example 2.2. The zero-set of the aggregation function (TM + TL)/2 is Z∗. Since

TM + TL
2

6= TM ,

the former is not a conic aggregation function.

Remark 2.2. Let AZ be an n-ary conic aggregation function. Then AZ is given

by

(i) AZ(1) = 1;

(ii) AZ(x) = 0 for any x ∈ Z;

(iii) if x = (x1, ..., xn) /∈ (Z ∪ {1}) and x0
i 6= 1 for some i ∈ {1, ..., n}, then it

holds that

AZ(x) =
xi − x0

i

1− x0
i

(2.1)

with x0 = (x0
1, ..., x

0
n) the unique weakly undominated point corresponding to

x.

In case multiple such i exist, Eq. (2.1) always leads to the same value.
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Chapter 2. Conic aggregation functions

2.3. Binary conic aggregation functions

From here on, we will deal with binary aggregation functions only, and omit the

adjective ‘binary’. Obviously, a conic aggregation function AZ is commutative if

and only if its zero-set Z is symmetric, i.e. (x, y) ∈ Z if and only if (y, x) ∈ Z.

The next proposition expresses that a closed lower set of [0, 1]2 containing Z∗ is

determined by a decreasing function. Let d be the smallest x ∈ [0, 1] such that

(x, 0) is a weakly undominated point, and d′ be the smallest y ∈ [0, 1] such that

(0, y) is a weakly undominated point.

Proposition 2.4. Let Z be a closed lower set of [0, 1]2 containing Z∗. Then there

exists a decreasing function f : [0, d]→ [0, 1], such that

Z = {(x, y) ∈ [0, 1]2 | x ∈ [0, d] and y ≤ f(x)} ∪ Z∗ .

Note that d = 0 if and only if Z = Z∗; also, if d = 0, then f(d) = 0. In order to

make it meaningful to talk about a function f : [0, d] → [0, 1], we will therefore

assume that d > 0, i.e. AZ 6= TM; then it also holds that f(0) > 0. Obviously, the

function f is right-continuous at 0 and f(x) > 0 for any x ∈ [0, d[.

Since the zero-set of a conic aggregation function is determined by a function f ,

when convenient, we will refer to such an aggregation function as Af . The following

result is an immediate observation.

Proposition 2.5. A conic aggregation function Af has neutral element 1 if and

only if

(i) f(x) < 1 for any x ∈ ]0, d];

(ii) d < 1 or (d = 1 and f(d) = 0).

The graph of a conic aggregation function AZ is constituted from its zero-set and

segments connecting the upper boundary curve of its zero-set (containing the graph

of f) to the point (1, 1, 1).

Suppose that the upper boundary curve of the zero-set of a conic aggregation

function AZ contains a segment determined by the points (x1, y1) and (x2, y2), then

AZ is linear on the triangle T = ∆{(x1,y1),(x2,y2),(1,1)}. This situation is depicted

in Figure 2.1.

For any (x, y) ∈ T , it holds that

AZ(x, y) = ax+ by + c . (2.2)
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§2.3. Binary conic aggregation functions

Furthermore,

ax1 + by1 + c = 0

ax2 + by2 + c = 0

a+ b+ c = 1 .

Solving this system of linear equations, we obtain

AZ(x, y) =
(y1 − y2)x+ (x2 − x1)y + x1y2 − x2y1

y1 − y2 + x2 − x1 + x1y2 − x2y1
(2.3)

on the triangle considered.

T

Z

(x1, y1)

(x2, y2)

(x, y)

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2.1: Example of a zero-set with a piecewise linear upper boundary curve

Example 2.3. Let Z = {(x, y) ∈ [0, 1]2 | min(x, y) ≤ 1
4}. Here d = d′ = 1 and

f(x) =


1 , if x ≤ 1/4 ,

1/4 , if x > 1/4 .

The corresponding conic aggregation function AZ is given by

AZ(x, y) = (1/3) max(min(4x− 1, 4y − 1), 0) (2.4)

and is depicted in Figure 2.2. Note that AZ does not have neutral element 1.
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Figure 2.2: Graph and contour plot of a conic aggregation function

Example 2.4. Let Z = {(x, y) ∈ [0, 1]2 | max(x, y) ≤ 1
2} ∪ Z∗. Here d = d′ = 1/2

and f(x) = 1/2 for any x ∈ [0, 1/2]. The corresponding conic aggregation function

AZ is given by

AZ(x, y) = min(x, y,max(2x− 1, 2y − 1, 0)) (2.5)

and is depicted in Figure 2.3. Note that AZ has neutral element 1.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.3: Graph and contour plot of a conic aggregation function
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§2.4. Conic t-norms

2.4. Conic t-norms

Conic t-norms have already been investigated in the literature [2].

Proposition 2.6. Every associative conic aggregation function has neutral ele-

ment 1.

Proof. Consider an associative conic aggregation function Af . Consider x ∈ ]0, 1[

and let (x0, y0) be the unique weakly undominated point corresponding to the

point (x, 1) (and hence also to the point (Af (x, 1), 1)). Then from Eq. (2.1) it

follows that

Af (x, 1) =
x− x0

1− x0
and Af (Af (x, 1), 1) =

Af (x, 1)− x0

1− x0
.

On the other hand, the associativity of Af leads to Af (x, 1) = Af (x,Af (1, 1)) =

Af (Af (x, 1), 1), and therefore Af (x, 1) = x. Similarly, it follows that Af (1, x) = x.

Corollary 2.1. A conic aggregation function is a t-norm if and only if it is

associative.

Proof. Follows from the above proposition and the fact that any associative con-

tinuous aggregation function with neutral element 1 is also commutative (see

Chapter 1).

It is easy to check that for every conic t-norm T different from TM, the condition

δ(x) = T (x, x) < x is satisfied for any x ∈ ]0, 1[ . Since a conic t-norm is continuous,

it therefore must be Archimedean. The following theorem expresses that the only

conic t-norms are the elements of the Yager family of t-norms.

Theorem 2.3. [2] A t-norm T is conic if and only if either T = TM or there

exists λ ∈ ]0,∞[ such that

T (x, y) = CY
λ (x, y) , (2.6)

for any (x, y) ∈ [0, 1]2.

2.5. Conic quasi-copulas

As mentioned before, both TM and TL are conic. Note that the zero-set of TL is

given by

Z∗ = {(x, y) ∈ [0, 1]2 | x+ y ≤ 1} .
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Chapter 2. Conic aggregation functions

Hence, this is the greatest closed lower set that can be considered for constructing

a conic quasi-copula.

In the next proposition, we show that the zero-set of a conic quasi-copula is

determined by a strictly decreasing and continuous function.

Proposition 2.7. Let Z∗ ⊂ Z ⊆ Z∗ be the zero-set of a conic quasi-copula QZ
with corresponding function f : [0, d] → [0, 1]. Then f(d) = 0 and f is strictly

decreasing and continuous.

Proof. Suppose that the upper boundary curve of Z contains some vertical segment

as part of a line x = x0 with x0 ∈ ]0, 1]. Consider x, x′, y ∈ [0, 1] with x ≤ x′

such that the points (x0, y0) and (x0, y1) are the unique weakly undominated

points corresponding to the points (x′, y) and (x, y), respectively. This situation is

depicted in Figure 2.4. The increasingness and 1-Lipschitz continuity of QZ imply

x0

(x, y) (x′, y)

Z
(x0, y0)

(x0, y1)

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2.4: Illustration for the proof of Proposition 2.7.

that

QZ(x′, y)−QZ(x, y) ≤ x′ − x ,

or equivalently,
x′ − x0

1− x0
− x− x0

1− x0
≤ x′ − x .

The latter implies that x0 = 0. Hence, the function f is continuous.

Similarly one can prove that the upper boundary curve of Z does not contain any

horizontal segment as part of a line y = y0 with y0 ∈ ]0, 1]. Hence, the function f

is strictly decreasing.
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§2.5. Conic quasi-copulas

Z

f

F

d′

d(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2.5: Illustration of the set F corresponding to a conic quasi-copula.

As QZ has neutral element 1, Proposition 2.5 implies that d < 1 or (d = 1 and

f(d) = 0). As Z∗ 6= Z, it holds that d > 0. Consider d ∈ ]0, 1[, then f(d) > 0

would imply the existence of a vertical segment on the upper boundary curve of

Z. The above proof for the continuity implies that this is impossible and thus

f(d) = 0.

As a consequence of the previous proposition, the zero-set in Example 2.4 cannot

be the zero-set of a conic quasi-copula.

For a function f satisfying the conditions of Proposition 2.7, we introduce the

following notations

∆d′ = ∆{(0,d′),(0,1),(1,1)}

∆d = ∆{(d,0),(1,0),(1,1)}

F = [0, 1]2 \ (Z ∪∆d′ ∪∆d) .

The set F is depicted in Figure 2.5. The conic quasi-copula can then be expressed

as follows:

QZ(x, y) =



0 , if (x, y) ∈ Z ,

y − f(x0)

1− f(x0)
, if (x, y) ∈ F ,

min(x, y) , otherwise.

(2.7)

Next we characterize all the subsets of the unit square that can be the zero-set of
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Chapter 2. Conic aggregation functions

a conic quasi-copula.

Theorem 2.4. Let Z be a closed lower set of [0, 1]2 such that Z∗ ⊂ Z ⊆ Z∗ with

corresponding function f : [0, d]→ [0, 1]. The conic aggregation function Af is a

quasi-copula if and only if

(i) f(d) = 0;

(ii) f is strictly decreasing and continuous;

(iii) the function ϕ1 : ]0, d[→ [0, 1] defined by ϕ1(x) = f(x)
1−x is decreasing;

(iv) the function ϕ2 : ]0, d[→ [0, 1] defined by ϕ2(x) = x
1−f(x) is increasing.

Proof. Suppose that conditions (i)–(iv) are satisfied. According to Proposition 2.5,

the strict decreasingness of f and condition (i) imply that Af has neutral element

1. To prove that Af is a quasi-copula, we need to show that it is 1-Lipschitz

continuous. Recall that the 1-Lipschitz continuity is equivalent to the 1-Lipschitz

continuity in each variable. We prove that Af is 1-Lipchitz continuous in the first

variable. For any x, x′, y ∈ [0, 1] such that x ≤ x′, we need to show that

Af (x′, y)−Af (x, y) ≤ x′ − x . (2.8)

Let us denote b := (x, y) and b′ := (x′, y). We distinguish the following cases:

(a) If b,b′ ∈ Z, then Af (x′, y)−Af (x, y) = 0 ≤ x′ − x;

(b) If b,b′ ∈ ∆d ∪∆d′ , then

Af (x′, y)−Af (x, y) = min(x′, y)−min(x, y) ≤ x′ − x ;

(c) If b,b′ ∈ F , then suppose that bf = (x0, f(x0)) and b′f = (x1, f(x1)) are

the unique weakly undominated points such that b, bf and (1, 1), as well

as b′, b′f and (1, 1), are collinear. Thus, condition (2.8) is equivalent to the

inequality
y − f(x1)

1− f(x1)
− y − f(x0)

1− f(x0)
≤ x′ − x . (2.9)

Using the collinearity, it follows that

x′ − x = (1− y)

(
1− x0

1− f(x0)
− 1− x1

1− f(x1)

)
.

Therefore, inequality (2.9) is equivalent to

1

1− f(x0)
− 1

1− f(x1)
≤ 1− x0

1− f(x0)
− 1− x1

1− f(x1)
,
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§2.6. Conic copulas

or equivalently,

ϕ2(x1)− ϕ2(x0) ≥ 0 ,

which is satisfied due to condition (iv).

The proof that Af is 1-Lipchitz continuous in the second variable is similar and uses

condition (iii). Consequently, the aggregation function Af is a conic quasi-copula.

Now suppose that the function Af is a quasi-copula. Proposition 2.7 yields (i) and

(ii). Consider arbitrary x1, x2 ∈ ]0, d[ such that x1 ≤ x2, and let (x, y), (x′, y) be

two points in F such that (x1, f(x1)) and (x2, f(x2)) are the corresponding weakly

undominated points. The 1-Lipschitz continuity of Af in the first variable implies

that ϕ2(x2)−ϕ2(x1) ≥ 0. Hence, condition (iv) follows. The 1-Lipschitz continuity

of Af in the second variable implies condition (iii).

Example 2.5. Let f : [0, 1
2 ]→ [0, 1] be the function defined by

f(x) = min

(
1− x

2
, 1− 2x

)
.

All the conditions in Theorem 2.4 are satisfied. The corresponding conic quasi-

copula is given by

Qf (x, y) = min

(
x, y,max

(
0,
x+ 2y − 1

2
,

2x+ y − 1

2

))
.

2.6. Conic copulas

In this section, we characterize all the subsets of the unit square that can be the

zero-set of a conic copula.

Proposition 2.8. Consider a conic aggregation function Af 6= TM such that f is

piecewise linear and f(d) = 0. Then Af is a copula if and only if f is convex.

Proof. Consider a conic aggregation function Af such that f is piecewise linear

and f(d) = 0, and its zero-set Z.

Suppose that f is convex, then the fact that it is decreasing and f(d) = 0 implies

that f(x) < 1 for all x ∈ ]0, d[. Hence, Af has neutral element 1. We only need

to show that Af is 2-increasing. Due to the additivity of volumes, it suffices to

consider a number of cases.

Consider a rectangle [x, x′]× [y, y′] ⊆ [0, 1]2. If this rectangle is included in Z, then

its Af -volume equals 0. Also if the points (x, y′) and (x′, y) are located on the
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Chapter 2. Conic aggregation functions

upper boundary curve of Z, then it holds that

VAf ([x, x′]× [y, y′]) = Af (x′, y′) ≥ 0 .

The study of the 2-increasingness on the remaining part of the unit square is

equivalent to the study of this property on each polygon enclosed by two consecutive

segments of the upper boundary curve of Z and the point (1, 1). Let us consider the

polygon G determined by the points b1 := (x1, y1), b2 := (x2, y2), b3 := (x3, y3)

and the point (1, 1), as illustrated in Figure 2.6. The aggregation function Af
is linear on the triangle ∆1 := ∆{b1,b2,(1,1)} as well as on the triangle ∆2 :=

∆{b2,b3,(1,1)}. Hence, if the rectangle [x, x′] × [y, y′] is included in ∆1 or ∆2, its

Af -volume equals 0.

Finally, suppose that the segment connecting the points (x, y) and (x′, y′) is a

subset of the segment connecting the points b2 and (1, 1) (this situation is also

depicted in Figure 2.6). Using Eq (2.3), the nonnegativity of VAf ([x, x′]× [y, y′]) is

then equivalent to:

y1 − y2

y1 − y2 + x2 − x1 + x1y2 − x2y1
− y2 − y3

y2 − y3 + x3 − x2 + x2y3 − x3y2
≥ 0 , (2.10)

or, equivalently,

(y1 − y2)(x3 − x2 + x2y3 − x3y2)− (y2 − y3)(x2 − x1 + x1y2 − x2y1) ≥ 0 .

Some elementary manipulations yield

y1(x3−x2)−y2(x3−x2)+y3(x2−x1)−y1y2(x3−x2)−y2y3(x2−x1)+y2
2(x3−x1) ≥ 0 ,

or, equivalently,

y1(x3 − x2)(1− y2)− y2(x3 − x1)(1− y2) + y3(x2 − x1)(1− y2) ≥ 0 .

Dividing by (1− y2), the latter inequality becomes

y1(x3 − x2)− y2(x3 − x1) + y3(x2 − x1) ≥ 0 ,

or, equivalently,

y1(x3 − x2)− y2(x3 − x2 + x2 − x1) + y3(x2 − x1) ≥ 0 .

It easily follows that the above inequality is equivalent to

y3 − y2

x3 − x2
≥ y2 − y1

x2 − x1
, (2.11)

which is satisfied due to the convexity of the function f . The converse part of the
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Z

(x1, y1)

(x2, y2)

(x3, y3)

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2.6: Illustration for the proof of Proposition 2.8

proof can be done in a similar way.

Next we characterize all the subsets of the unit square that can be the zero-set of

a conic copula. To this end, we need the following lemma.

Lemma 2.1. Let Cf be a conic copula and α, β ∈ ]0,∞[ such that α < β. Consider

three points b1 := (x1, f(x1)), b2 := (x2, f(x2)) and b3 := (x3, f(x3)) such that

x1 < x2 < x3 and the segments 〈b1, (1, 1)〉, 〈b2, (1, 1)〉 and 〈b3, (1, 1)〉 have slope

α,
√
αβ and β, respectively. Then it holds that

(i) there exists a rectangle [x, x′]× [y, y′] such that the segment connecting the

points (x, y) and (x′, y′) is a subset of the segment 〈b2, (1, 1)〉 and the points

(x, y′) and (x′, y) are located on the segments 〈b1, (1, 1)〉 and 〈b3, (1, 1)〉
respectively.

(ii) the point b2 is below the segment 〈b1,b3〉.

Proof. A simple geometric argumentation shows that points b1, b2 and b3 with

the desired properties always exist. Observation (i) follows from the fact that

for such points, we can always find a rectangle [x, x′]× [y, y′] of which the main

diagonal is a subset of the segment with slope γ =
√
αβ and the points (x, y′) and

(x′, y) are located on the segments with slopes α and β, respectively.

To prove assertion (ii), we consider the function g : [x1, x3] → [0, 1] such that g

is linear on the interval [x1, x2] as well as on the interval [x2, x3]. Consider the

rectangle [x, x′]× [y, y′] from the first part of the proof. Since Cf is a copula, it
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follows that

VCZ′ ([x, x
′]× [y, y′]) = VCf ([x, x′]× [y, y′]) ≥ 0 ,

where CZ′ is a conic function that has the graph of the function g as part of the

upper boundary curve of its zero-set Z ′. Due to (2.10), it holds that the function

g is convex, or equivalently, the point b2 lies below the segment 〈b1,b3〉, which

completes the proof.

Theorem 2.5. Let Z be a closed lower set of [0, 1]2 such that Z∗ ⊂ Z ⊆ Z∗ with

corresponding function f : [0, d]→ [0, 1]. The conic aggregation function Af is a

copula if and only if

(i) f(d) = 0;

(ii) f is convex.

Proof. Suppose that conditions (i) and (ii) are satisfied. To prove that Af is a

copula we need to show its 2-increasingness. Due to the additivity of volumes, it

suffices to consider a number of cases. Let R = [x, x′]× [y, y′] ⊆ [0, 1]2.

(a) If R is located in ∆d, ∆d′ or Z, then VAf (R) = 0.

(b) If (x, y′) and (x′, y) are located on the upper boundary curve of Z, then again

VAf (R) = Af (x′, y′) ≥ 0 .

(c) If the main diagonal of R is a subset of the segment connecting the points

(0, d′) and (1, 1) (the case when the main diagonal is a subset of the segment

connecting the points (d, 0) and (1, 1) is analogous), then it holds that

VAf ([x, x′]× [y, y′]) = x′ −Af (x′, y) ≥ 0 .

(d) If R is located in F , then let b1 = (x1, f(x1)), b2 = (x2, f(x2)), b3 =

(x3, f(x3)) and b4 = (x4, f(x4)) be the weakly undominated points corre-

sponding to the vertices of this rectangle. The points b1, b2, b3 and b4

together with (0, d′) and (d, 0), determine a convex piecewise linear function

h : [0, d]→ [0, 1] such that h(xi) = f(xi) for any i ∈ {1, 2, 3, 4}. This situation

is illustrated in Figure 2.7 when the main diagonal of this rectangle is a subset

of the segment connecting the weakly undominated point corresponding to

(x, y) and the point (1, 1). Due to Proposition 2.8, the conic aggregation

function Ah is a conic copula. Therefore,

VAf ([x, x′]× [y, y′]) = VAh([x, x′]× [y, y′]) ≥ 0 .

Hence, the Af -volume of any rectangle is nonnegative, which implies that Af is a

copula.
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Z

d′

d

f

h

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2.7: Illustration for the proof of Theorem 2.5.

Conversely, suppose that Af is a copula. In view of Theorem 2.4, it suffices to show

that f is convex. Suppose that it is not convex, i.e. there exist x < y < z such

that the point (y, f(y)) is above the segment connecting the points (x, f(x)) and

(z, f(z)). Since f is continuous there exists ε > 0 such that for any x′ ∈ [y− ε, y+ ε]

the point (x′, f(x′)) is above the segment connecting the points (x, f(x)) and

(z, f(z)), which contradicts Lemma 2.1. Thus, the function f must be convex.

Remark 2.3.

(i) Since f is right-continuous at 0, decreasing and f(d) = 0, the convexity of f

implies that f is strictly decreasing and continuous.

(ii) As any conic copula Cf is a conic quasi-copula, the convexity of f implies

conditions (iii)-(iv) of Theorem 2.4.

(iii) As associative copulas are (1-Lipschitz) t-norms, the class of associative conic

copulas is also characterized by Theorem 2.3.

As the function f in Example 2.5 is not convex, the corresponding conic quasi-copula

Qf is a proper quasi-copula.

Example 2.6. For each λ ∈ ]0,∞[ , let fλ : [0, 1]→ [0, 1] represent the boundary

curve of the zero-set of the Yager t-norm CY
λ , i.e. fλ(x) = 1− (1− (1− x)λ)

1
λ . It

is easily verified that the function fλ is convex if and only if λ ≥ 1. Hence, CY
λ is

a conic copula for any λ ≥ 1.
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Example 2.7. Let f : [0, 1
2 ]→ [0, 1] be the function defined by f(x) = (1− 2x)2.

All the conditions in Theorem 2.5 are satisfied. The corresponding conic copula is

given by

Cf (x, y) =



0 , if y ≤ (1− 2x)2 and x ≤ 1/2 ,

4x(1− x)− 1 + y

4(1− x)− 1 + y
, if y > (1− 2x)2 and y ≥ 2x− 1 ,

min(x, y) , otherwise .

Note that, for any conic copula Cf , the convexity of f implies that the upper

boundary curve of the t-level set is convex for any t ∈ [0, 1[. Hence, the following

corollary is clear.

Corollary 2.2. Any conic copula is quasi-concave.

2.7. Conic copulas supported on a set with Lebesgue

measure zero

We characterize in this section conic copulas that are supported on a set with

Lebesgue measure zero on the basis of their zero-set. To this end, we need the

following lemma.

Lemma 2.2. Let Cf 6= TM be a conic copula. Then

(i) the graph of the function f is a subset of the support;

(ii) if the upper boundary curve of the zero-set of Cf contains two consecutive

segments with common point b, then the segment 〈b, (1, 1)〉 is a subset of the

support.

Proof. For any rectangle [x, x′]× [y, y′] such that the points (x, y′) and (x′, y) are

located on the graph of the function f , the 2-increasingness implies that

VCf ([x, x′]× [y, y′]) = Cf (x′, y′) > 0 .

Thus (i) follows.

Let b, b1 and b2 be three distinct points on the upper boundary curve of the

zero-set of Cf such that 〈b1,b〉 and 〈b,b2〉 are two segments. Let R be a rectangle

such that its main diagonal is a subset of the segment 〈b, (1, 1)〉. If VCf (R) = 0,

then due to (2.10), the points b, b1 and b2 are located on the same segment, which

is a contradiction. Hence, VCf (R) > 0 and (ii) follows.

46



§2.7. Conic copulas supported on a set with Lebesgue measure zero

Z

d′

d

f

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2.8: The support of a conic copula that is supported on a set with Lebesgue
measure zero (case d, d′ < 1).

In Figure 2.8, the support of a conic copula Cf with a piecewise linear function f

is shown.

Proposition 2.9. A conic copula Cf 6= TM is supported on a set with Lebesgue

measure zero if and only if the function f is piecewise linear.

Proof. Let Cf be a conic copula with a piecewise linear function f . Due to

Lemma 2.2, the support of Cf is constituted from the graph of the function f and

all segments connecting the point (1, 1) and a point on the graph of f connecting

two consecutive segments of this graph. Since the surface of Cf consists of triangles,

it holds that ∂2C(u,v)
∂u∂v = 0 in all other points. Therefore, the conic copula Cf is

supported on a set with Lebesgue measure zero.

Conversely, let Cf be supported on a set with Lebesgue measure zero and suppose

that the function f is not piecewise linear, i.e. there exists an interval [m,n] ⊆ [0, d]

such that the graph of the restriction of f to [m,n] does not contain any segment.

Let S be the subset of the unit square enclosed by the graph of the function f

between the points (m, f(m)) and (n, f(n)) and the segments connecting the latter

points to (1, 1). Consider a rectangle R located in S such that VCf (R) = 0. It then

holds that VCf (R1) = 0 for any rectangle R1 ⊆ R. Choose a rectangle R1 = [x, x′]×
[y, y′] ⊆ R such that its diagonal is a subset of the segment 〈(1, 1), (x2, f(x2))〉 with

m < x2 < n. Let (x1, f(x1)) and (x3, f(x3)) be the two points on the graph of f

such that the points (x, y′) and (x′, y) are respectively located on the segments

〈(1, 1), (x1, f(x1))〉 and 〈(1, 1), (x3, f(x3))〉. Since VCf (R1) = 0, inequality (2.10)

47



Chapter 2. Conic aggregation functions

implies that the points (x1, f(x1)), (x2, f(x2)) and (x3, f(x3)) are located on the

same segment, which contradicts the fact that f does not contain any segment

on the interval [m,n]. Hence, for any rectangle R located in S, it holds that

VCf (R) > 0, i.e. S is a subset of the support of Cf with non-zero Lebesgue measure.

This contradicts the fact that Cf is supported on a set with Lebesgue measure

zero.

As a result of the above proposition, a conic copula that is supported on a set with

Lebesgue measure zero is related to a piecewise linear function f and hence, to a

(possibly infinite) sequence of points b1 = (x1, y1), b2 = (x2, y2), . . ., bn = (xn, yn)

and b0 = (0, 1), bn+1 = (1, 0), so that 0 ≤ x1 < x2 < . . . < xn < 1 and

1 > y1 > . . . > yn ≥ 0 and

yi − yi−1

xi − xi−1
≤ yi+1 − yi
xi+1 − xi

.

As the function f in Example 2.7 is not piecewise linear, the corresponding conic

copula Cf is not supported on a set with Lebesgue measure zero.

In the Yager family, only TL and TM are supported on a set with Lebesgue measure

zero.

Since any copula that is supported on a set with Lebesgue measure zero is singular,

the following corollary is clear.

Corollary 2.3. Any conic copula Cf with a piecewise linear function f is singular.

Example 2.8. For each λ ∈ ]0, 1/2], let fλ : [0, 1]→ [0, 1] be the function defined

by

fλ(x) =


λ− 1

λ
x+ 1 , if x ≤ λ ,

λ

λ− 1
(x− 1) , if x > λ .

The function fλ is convex and piecewise linear for any λ ∈ ]0, 1/2]. The correspond-

ing family of singular conic copulas is given by

Cλ(x, y) =


max(y − λ

1− λ
(1− x), 0) , if y ≤ x ,

max(x− λ

1− λ
(1− y), 0) , otherwise .

48



§2.8. Dependence measures

Example 2.9. For each c ∈ [0, 1], let f : [0, c] → [0, 1] be the function defined

by f(x) = c − x. The function f is convex and linear for any c ∈ [0, 1]. The

corresponding family of singular conic copulas is given by

Cc(x, y) = min

(
x, y,max

(
0,
x+ y − c

2− c

))
.

This family was introduced in [21].

2.8. Dependence measures

In this section, we derive compact formulae for Spearman’s rho, Gini’s gamma and

Kendall’s tau of two continuous random variables whose dependence is modelled

by a conic copula Cf . They can be expressed in terms of the function f .

Proposition 2.10. Let X and Y be two continuous random variables that are

coupled by a conic copula Cf 6= TM and let a ∈ ]0, d[ be the unique value such that

f(a) = a.

(i) The population version of Spearman’s ρCf for X and Y is given by

ρCf = 1− 4

d∫
0

f(x) dx .

(ii) The population version of Gini’s γCδ for X and Y is given by

γCδ = 2

((
1− d
2− d

)2

+

(
1− d′

2− d′

)2

− a

)

+ 4

d∫
0

(
(1− x− f(x))(1− f(x)− f ′(x)(1− x))

(2− x− f(x))3

)
dx .

where f ′ is the left (or right) derivative of f .

(iii) The population version of Kendall’s τCf for X and Y is given by

τCf = 1− 2

d∫
0

f ′(x)

(1− x)f ′(x)− 1 + f(x)
dx ,

where f ′ is the left (or right) derivative of f .
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Proof. The integral of Cf over the unit square is the volume below its surface.

Given the geometrical fact that the volume of a conic body equals one third of the

product of the area of its base and its height, (i) follows immediately.

In order to find γCδ , we need to compute

I1 =

1∫
0

ωCf (x) dx and I2 =

1∫
0

(x− δCf (x)) dx .

Using formula (2.7), δCf and ωCf are given by

δCf (x) =


0 , if x ≤ a ,

x− a
1− a

, if x ≥ a ,

ωCf (x) =


1− x− f(x0)

1− f(x0)
, if 1−d′

2−d′ ≤ x ≤
1

2−d ,

min(x, 1− x) , if x ≤ 1−d′
2−d′ or x ≥ 1

2−d ,

where (x0, f(x0)) is the weakly undominated point corresponding to (x, 1 − x).

Simple elementary manipulations show

I2 =
a

2
and I1 =

1

2

(
1− d′

2− d′

)2

+
1

2

(
1− d
2− d

)2

+

1
2−d∫

1−d′
2−d′

ωCf (x) dx

Since (x0, f(x0)), (x, 1− x) and (1, 1) are collinear, it holds that

x =
1− f(x0)

2− x0 − f(x0)
.

Computing dx and ωCf , it follows that

1
2−d∫

1−d′
2−d′

ωCf (x) dx =

d∫
0

(
(1− x− f(x))(1− f(x)− f ′(x)(1− x))

(2− x− f(x))3

)
dx ,

where f ′ is the left (or right) derivative of the function f , which, due to convexity

of f , exists everywhere on the interval ]0, d] (or [0, d[ ). In 0 (or in d) we can take

the limit without influencing the result of the integration over the interval [0, d].

Note also that the left and right derivatives coincide, except possibly on a countable

subset. Hence, the choice of derivative does not affect the result of the integration.

Substituting I1 and I2 in the expression for γCf , (ii) follows.
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In order to find τCf , we need to compute

I =

∫∫
[0,1]2

Cf (x, y) dCf (x, y) .

Suppose first that Cf is supported on a set with Lebesgue measure zero. Due

to Proposition 2.9, the function f is piecewise linear, i.e. there exists an n ∈ N
such that the graph of the function f is constituted from segments 〈bi−1,bi〉,
i ∈ {1, ..., n}, with b0 = (0, y0) and bn = (xn, 0). Due to Lemma 2.2, the mass of

Cf is distributed uniformly on the segments 〈bi−1,bi〉, i ∈ {1, ..., n} and on the

segments 〈bj , (1, 1)〉, j ∈ {0, ..., n}. Let ai, i ∈ {1, ..., n}, and bj , j ∈ {0, ..., n}, be

the mass distributed respectively on the segment 〈bi−1,bi〉 and 〈bj , (1, 1)〉. For

each segment 〈bi−1,bi〉, the conic copula Cf attains the value 0, therefore the

integral I can be written as

I =

n∑
i=1

ai
xi − xi−1

xi∫
xi−1

0 dx+

n∑
j=0

bj
1− xj

1∫
xj

x− xj
1− xj

dx =
1

2

n∑
j=0

bj .

Since the total mass is equal to one, it holds that

n∑
i=1

ai +

n∑
j=0

bj = 1 ,

or equivalently,
n∑
j=0

bj = 1−
n∑
i=1

ai .

Hence, the parameter τ is given by

τCf = 1− 2

n∑
i=1

ai . (2.12)

For each i ∈ {1, ..., n}, it holds that

ai = VCf ([xi−1, xi]× [yi, yi−1]) = Cf (xi, yi−1) .

Using (2.3), we obtain

Cf (xi, yi−1) =
(yi−1 − yi)(xi − xi−1)

yi−1 − yi + xi − xi−1 + xi−1yi − xiyi−1
.
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Hence, (2.11) can be expressed as

τCf = 1− 2

n∑
i=1

(yi−1 − yi)(xi − xi−1)

yi−1 − yi + xi − xi−1 + xi−1yi − xiyi−1
. (2.13)

Let us denote xi−1 = x, yi−1 = f(x), xi = x+ dx and yi = f(x) + f ′(x)dx, where

f ′ is the left (or right) derivative of the function f .

By letting max dx approach 0, it holds that

n∑
i=1

(yi−1 − yi)(xi − xi−1)

yi−1 − yi + xi − xi−1 + xi−1yi − xiyi−1

converges to
d∫

0

f ′(x)

(1− x)f ′(x)− 1 + f(x)
dx .

Substituting this result in (2.12), (iii) follows.

Example 2.10.

(i) For λ ∈ ]0, 1/2], let Cλ be the conic copula given in Example 2.8. Then

ρCλ = τCλ = 1− 4λ and γCc =
1− 4λ+ 2λ2

1− λ
.

(ii) For c ∈ [0, 1], let Cc be the conic copula given in Example 2.9. Then

ρCc = 1− 2c2 , γCc =
4(1− c)
(2− c)2

− c and τCc =
2− 3c

2− c
.

The results are listed in Table 2.1.

2.9. Aggregation of conic (quasi-)copulas

In this section we study some aggregations of conic quasi-copulas and conic copulas.

We formulate a lemma and two immediate propositions.

Let fi : [0, di]→ [0, 1], i ∈ {1, 2}, be two strictly decreasing continuous functions

such that fi(di) = 0. We temporarily extend these functions to [0, 1] by setting

fi(x) = 0 for any x ∈ ]di, 1]. We define the function

fmax : [0,max(d1, d2)]→ [0, 1]
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Table 2.1: Spearman’s rho, Gini’s gamma and Kendall’s tau of the conic copulas Cc.

c fc ρCc γCc τCc

0 0 1 1 1

0.2 0.2− x 0.920000 0.787654 0.777778

0.4 0.4− x 0.680000 0.537500 0.500000

0.6 0.6− x 0.280000 0.216327 0.142857

0.8 0.8− x −0.280000 −0.244444 −0.333333

1 1− x −1 −1 −1

by fmax(x) = max(f1(x), f2(x)). Similarly, we define the function

fmin : [0,min(d1, d2)]→ [0, 1]

by fmin(x) = min(f1(x), f2(x)).

Lemma 2.3. Using the above notations, it holds that

(i) if the functions f1 and f2 satisfy condition (iii), resp. (iv), of Theorem 2.4,

then also fmax and fmin satisfy condition (iii), resp. (iv);

(ii) if the functions f1 and f2 are convex, then also fmax is convex.

Proposition 2.11. For any two conic quasi-copulas Qf1
and Qf2

, it holds that

(i) the functions max(Qf1
, Qf2

) and min(Qf1
, Qf2

) are also conic quasi-copulas,

i.e. the class of conic quasi-copulas is closed under maximum and minimum;

(ii) the corresponding functions are given by fmax and fmin, respectively.

Proposition 2.12. For any two conic copulas Cf1
and Cf2

, it holds that:

(i) the function min(Cf1 , Cf2) is also a conic copula, i.e. the class of conic

copulas is closed under minimum;

(ii) the corresponding function is given by fmax.

In general, the maximum of two conic copulas need not be a conic copula. For

instance, let Cf1 and Cf2 be two conic copulas with f1 and f2 as depicted in

Figure 2.9. Obviously, the function fmin is not convex, and thus max(Cf1
, Cf2

) is

a proper conic quasi-copula.

Since the function f determining a conic quasi-copula Qf can always be written as

the infimum of a family (fi)i∈I of convex functions, any conic quasi-copula Qf can
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f1

f2

fmin

Z

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 2.9: An example of the graph of fmin

be written as

Qf = sup
i∈I

Cfi ,

where Cfi are conic copulas.
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3 Biconic aggregation functions

3.1. Introduction

The surface of the aggregation functions TM and TL is constituted from their

zero-set and linear segments connecting the upper boundary curve of their zero-set

to the point (1, 1, 1). In the previous chapter, this observation has led to the notion

of conic aggregation functions. Characteristic for the aggregation functions TM
and TL is also that their surface is constituted from linear segments connecting

their diagonal section to the points (0, 1, 0) and (1, 0, 0). Similarly, their surface

is constituted from linear segments connecting their opposite diagonal section to

the points (0, 0, 0) and (1, 1, 1). Inspired by these observations, we introduce a

new method to construct aggregation functions. These aggregation functions are

constructed by linear interpolation on segments connecting the diagonal (resp.

opposite diagonal) of the unit square to the points (0, 1) and (1, 0) (resp. (0, 0) and

(1, 1)).

This chapter is organized as follows. In Section 3.2 we introduce the definition of a

biconic function with a given diagonal section and characterize the class of biconic

aggregation functions. In Sections 3.3–3.6, we characterize the classes of biconic

semi-copulas, biconic quasi-copulas, biconic copulas and biconic copulas supported

on a set with Lebesgue measure zero. For biconic copulas, we provide simple

expressions for Spearman’s rho, Kendall’s tau and Gini’s gamma in Section 3.7.

In Section 3.8, we study the aggregation of biconic (semi-, quasi-) copulas. The

class of biconic functions with a given opposite diagonal section is introduced in

Section 3.9.

3.2. Biconic functions with a given diagonal sec-

tion

Biconic functions with a given diagonal section are constructed by linear interpola-

tion on segments connecting the diagonal of the unit square to the points (0, 1)

and (1, 0). Let δ ∈ DA and α, β ∈ [0, 1]. The function Aα,βδ : [0, 1]2 → [0, 1] defined
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by

Aα,βδ (x, y) =


α(x− y) + (1 + y − x) δ

(
y

1 + y − x

)
, if y ≤ x ,

β(y − x) + (1 + x− y) δ

(
x

1 + x− y

)
, otherwise,

(3.1)

where the convention 0
0 := 0 is adopted, is well defined. This function is called

a biconic function with a given diagonal section since it satisfies the boundary

conditions

Aα,βδ (0, 1) = β and Aα,βδ (1, 0) = α ,

and Aα,βδ (t, t) = δ(t) for any t ∈ [0, 1], and since it is linear on segments connecting

the points (t, t) and (0, 1) as well as on segments connecting the points (t, t) and

(1, 0). In the following proposition, we characterize the elements of DA for which

the corresponding biconic function is an aggregation function.

Let us introduce the following notations

I1 = {(x, y) ∈ [0, 1]2 | y ≤ x}
I2 = {(x, y) ∈ [0, 1]2 | x ≤ y}
D = I1 ∩ I2 .

Proposition 3.1. Let δ ∈ DA and α, β ∈ [0, 1]. The function Aα,βδ defined in (3.1)

is an aggregation function if and only if

(i) the functions λδ,α, λδ,β : ]0, 1]→ R, defined by

λδ,α(x) =
δ(x)− α

x
, λδ,β(x) =

δ(x)− β
x

,

are increasing;

(ii) the functions µδ,α , µδ,β : [0, 1[→ R, defined by

µδ,α(x) =
δ(x)− α

1− x
, µδ,β(x) =

δ(x)− β
1− x

,

are increasing.

Proof. Suppose conditions (i) and (ii) are satisfied. The function Aα,βδ clearly

satisfies Aα,βδ (0, 0) = 0 and Aα,βδ (1, 1) = 1. It suffices to prove the increasingness of

Aα,βδ in each variable. We prove the increasingness of Aα,βδ in the first variable (the

proof of the increasingness in the second variable is similar). Let (x, y), (x′, y) ∈
[0, 1]2 such that x ≤ x′.
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If (x, y), (x′, y) ∈ I1, the increasingness of Aα,βδ is equivalent to

α(x′−y) + (1 +y−x′) δ
(

y

1 + y − x′

)
−α(x−y)− (1 +y−x) δ

(
y

1 + y − x

)
≥ 0 ,

or, equivalently,

(1 + y − x′)
(
δ

(
y

1 + y − x′

)
− α

)
− (1 + y − x)

(
δ

(
y

1 + y − x

)
− α

)
≥ 0 .

Denoting u = y
1+y−x and u′ = y

1+y−x′ , the above inequality becomes

y(λδ,α(u′)− λδ,α(u)) ≥ 0 .

Since x ≤ x′, it is clear that u ≤ u′. Hence, the last inequality holds due to the

increasingness of the function λδ,α.

If (x, y), (x′, y) ∈ I2, the increasingness of Aα,βδ is equivalent to

β(y−x′) + (1 +x′−y) δ

(
x′

1 + x′ − y

)
−β(y−x)− (1 +x−y) δ

(
x

1 + x− y

)
≥ 0 ,

or, equivalently,

(1 + x′ − y)

(
δ

(
x′

1 + x′ − y

)
− β

)
− (1 + x− y)

(
δ

(
x

1 + x− y

)
− β

)
≥ 0 .

Denoting v = x
1+x−y and v′ = x′

1+x′−y , the above inequality becomes

(1− y)(µδ,β(v′)− µδ,β(v)) ≥ 0 .

Since x ≤ x′, it is clear that v ≤ v′. Hence, the last inequality holds due to the

increasingness of the function µδ,β .

The remaining case is when (x, y) ∈ I2 and (x′, y) ∈ I1 \D. The two previous cases

then imply that Aα,βδ (x′, y)−Aα,βδ (x, y) =(
Aα,βδ (x′, y)−Aα,βδ (y, y)

)
+
(
Aα,βδ (y, y)−Aα,βδ (x, y)

)
≥ 0 .

Similarly, one can prove that the increasingness of the functions λδ,β and µδ,α
implies that Aδ is increasing in the second variable.

Conversely, suppose that Aα,βδ is an aggregation function. Let x, x′ ∈ [0, 1] such

that x ≤ x′, and y ∈ [0, 1] such that y ≤ x. It then holds that

y ≤ x(1 + y)− y
x

≤ x′(1 + y)− y
x′

.

57



Chapter 3. Biconic aggregation functions

The increasingness of Aδ in the first variable implies that

Aα,βδ

(
x′(1 + y)− y

x′
, y

)
−Aα,βδ

(
x(1 + y)− y

x
, y

)
≥ 0 .

After some elementary manipulations, the last inequality becomes

α

(
x′ − y
x′

)
+
y

x′
δ(x′)− α

(
x− y
x

)
− y

x
δ(x) ≥ 0 ,

or, equivalently,

y(λδ,α(x′)− λδ,α(x)) ≥ 0 .

Hence, the function λδ,α is increasing. In the same way, it follows that the function

µδ,β is increasing.

Similarly, one can prove that the increasingness of Aδ in the second variable implies

the increasingness of the functions λδ,β and µδ,α, which completes the proof.

Inspired by the above proposition, the biconic function Aα,βδ is called a biconic

aggregation function with a given diagonal section.

Example 3.1. Consider the diagonal section of TM. Obviously, conditions (i)

and (ii) of Proposition 3.1 are satisfied. The resulting biconic aggregation function

is a Choquet integral [14, 27], i.e.

Aα,βδTM
(x, y) =


αx+ (1− α)y , if y ≤ x ,

(1− β)x+ βy , otherwise.

Taking β = 1−α, the resulting biconic aggregation function is a weighted arithmetic

mean, i.e.

Aα,1−αδTM
(x, y) = αx+ (1− α)y .

Lemma 3.1. Let Aα,βδ be a biconic aggregation function. Then the inequality

max(αx, βx) ≤ δ(x) ≤ min(α+ (1− α)x, β + (1− β)x) , (3.2)

holds for any x ∈ [0, 1].

Proof. The proof is immediate due to the increasingness of the functions λδ,α, λδ,β ,

µδ,α and µδ,β .

Now we identify the functions in DA which characterize the extreme biconic

aggregation functions with fixed α and β. Let α, β ∈ [0, 1] and consider the
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functions δα,β , δ
α,β

: [0, 1]→ [0, 1] defined by

δα,β(x) =


max(αx, βx) , if x < 1 ,

1 , if x = 1 ,

δ
α,β

(x) =


min(α+ (1− α)x, β + (1− β)x) , if x > 0 ,

0 , if x = 0 .

Obviously, δα,β , δ
α,β ∈ DA and the conditions of Proposition 3.1 are satisfied. Note

also that for any two biconic aggregation functions Aα,βδ1 and Aα,βδ2 , it holds that

Aα,βδ1 ≤ A
α,β
δ2

if and only if δ1 ≤ δ2. The following proposition is then obvious.

Proposition 3.2. Let Aα,βδ be a biconic aggregation function. Then it holds that

Aα,β
δα,β
≤ Aα,βδ ≤ Aα,β

δ
α,β .

Example 3.2. The functions δ0,0 and δ
0,0

are given by

δ0,0(x) =


0 , if x < 1 ,

1 , if x = 1 ,

and δ
0,0

= δTM
. The corresponding biconic aggregation functions are respectively

the smallest t-norm, i.e. A0,0
δ0,0 = TD, and the greatest t-norm, i.e. A0,0

δ
0,0 = TM.

Example 3.3. The functions δ1,1 and δ
1,1

are given by δ1,1 = δTM
and

δ
1,1

(x) =


1 , if x > 0 ,

0 , if x = 0 .

The corresponding biconic aggregation functions are respectively the smallest ag-

gregation function with neutral element 0, i.e. A1,1
δ1,1(x, y) = max(x, y), and the

greatest aggregation function with neutral element 0, i.e. A1,1

δ
1,1(x, y) = max(x, y)

whenever min(x, y) = 0, and A1,1

δ
1,1(x, y) = 1 elsewhere.

Example 3.4. The functions δ1,0, δ
1,0

, δ0,1 and δ
0,1

all coincide with δTM
. The

corresponding biconic aggregation functions coincide with the projection to the first

and second coordinate [6, 9], i.e. A1,0
δ1,0(x, y) = A1,0

δ
1,0(x, y) = x and A0,1

δ0,1(x, y) =

A0,1

δ
0,1(x, y) = y.
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Remark 3.1. Evidently, a biconic aggregation function Aα,βδ is continuous if and

only if δ is continuous. The functions δα,β and δ
α,β

need not be continuous in

general. In fact, the only case in which they are both continuous is when

max(α, β) = 1 and min(α, β) = 0 .

However, as Example 3.4 shows, it then holds that

δα,β = δ = δ
α,β

= δTM
,

and Aα,βδ coincides with one of the projections.

Proposition 3.3. Let δ ∈ DA. The function Aα,βδ defined in (3.1)

(i) is commutative if and only if α = β;

(ii) has 0 as absorbing element if and only if α = β = 0;

(iii) has 1 as neutral element if and only if α = β = 0.

Proof. The proof is trivial.

From here on, we will only consider biconic functions with a given diagonal section

that have 1 as neutral element, i.e. α = β = 0. We then abbreviate A0,0
δ as Aδ. In

this case, Aδ is symmetric and is given by

Aδ(x, y) =


(1 + y − x) δ

(
y

1 + y − x

)
, if y ≤ x ,

(1 + x− y) δ

(
x

1 + x− y

)
, otherwise.

(3.3)

Suppose that the diagonal section of a biconic aggregation function Aδ is linear

on the interval [x1, x2]. From the definition of Aδ, it follows that Aδ is linear

on the triangle ∆1 = ∆{(x1,x1),(x2,x2),(1,0)} as well as on the triangle ∆2 :=

∆{(x1,x1),(x2,x2),(0,1)}. This situation is depicted in Figure 3.1.

For any (x, y) ∈ ∆1, it holds that

Aδ(x, y) = ax+ by + c . (3.4)

Furthermore,

ax1 + bx1 + c = δ(x1)

ax2 + bx2 + c = δ(x2)

a+ c = 0 .
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∆1

∆2 (x2, x2)

(x1, x1)

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 3.1: An illustration for the triangles ∆1 and ∆2.

Solving this system of linear equations and using the symmetry of Aδ, we obtain

Aδ(x, y) =


rx+ sy − r

t
, if (x, y) ∈ ∆1 ,

sx+ ry − r
t

, if (x, y) ∈ ∆2 ,

(3.5)

where

r = x1δ(x2)− x2δ(x1)

s = (1− x1)δ(x2)− (1− x2)δ(x1)

t = x2 − x1 .

3.3. Biconic semi-copulas with a given diagonal

section

Here, we characterize the elements of DS for which the corresponding biconic

function is a semi-copula.

Proposition 3.4. Let δ ∈ DS. The function Aδ defined in (3.3) is a semi-copula if

and only if the function λδ : ]0, 1]→ [0,∞[ , defined by λδ(x) = δ(x)
x , is increasing.
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Proof. One easily verifies that for δ ∈ DS, the function ξδ : [0, 1[→ [0,∞[ defined by

ξδ(x) = δ(x)
1−x is increasing. Due to Proposition 3.1, the proof is then immediate.

Example 3.5. Consider the diagonal functions δTM
and δTL

. Clearly, the functions

λδTM and λδTL , defined in Proposition 3.4, are increasing. The corresponding

biconic semi-copulas are respectively TM and TL.

Example 3.6. Consider the diagonal function δθ(x) = x1+θ with θ ∈ [0, 1]. Clearly,

the function λδθ , defined in Proposition 3.4, is increasing for any θ ∈ [0, 1]. The

corresponding family of biconic semi-copulas is given by

Cθ(x, y) =


y1+θ

(1 + y − x)θ
, if y ≤ x ,

x1+θ

(1 + x− y)θ
, otherwise.

Proposition 3.5. Let Aδ be a biconic semi-copula and suppose that δ(x0) = x0

for some x0 ∈ ]0, 1[ . Then it holds that δ(x) = x for any x ∈ [x0, 1].

Proof. Suppose that Aδ is a biconic semi-copula and suppose further that δ(x0) = x0

for some x0 ∈ ]0, 1[ . The function λδ, defined in Proposition 3.4, is increasing.

Therefore, λδ(x) ≥ λδ(x0) = 1 for any x ∈ [x0, 1]. Using the fact that δ(x) ≤ x

for any x ∈ [x0, 1], it must hold also that λδ(x) ≤ 1. Hence, λδ(x) = 1 for any

x ∈ [x0, 1]. Consequently, δ(x) = x for any x ∈ [x0, 1].

3.4. Biconic quasi-copulas with a given diagonal

section

Here, we characterize the diagonal functions for which the corresponding biconic

function is a quasi-copula.

Lemma 3.2. Let δ ∈ D. Then it holds that

(i) the function νδ : ]0, 1]→ [2,∞[ , defined by νδ(x) = 1+δ(x)
x , is decreasing;

(ii) the function φδ : [0, 1/2[∪ ]1/2, 1]→ R, defined by φδ(x) = δ(x)
1−2x , is increasing

on the interval [0, 1/2[ and on the interval ]1/2, 1].

Proof. (i) Consider δ ∈ D and consider arbitrary x, x′ ∈ ]0, 1] such that x < x′.

Since δ(x′)− δ(x) ≤ 2(x′ − x) and δ(x) ≥ 2x− 1, it holds that

δ(x′)− δ(x)

x′ − x
≤ 2 ≤ 1 + δ(x)

x
.
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The latter inequality implies

(δ(x′)− δ(x))x ≤ (1 + δ(x))(x′ − x),

whence

(1 + δ(x′))x− (1 + δ(x))x′ ≤ 0 ,

or, equivalently,

xx′(νδ(x
′)− νδ(x)) ≤ 0 .

Hence, the decreasingness of νδ follows.

(ii) Consider now arbitrary x, x′ ∈ [0, 1/2[ such that x < x′.

Since δ is increasing and 1− 2x > 0, the following inequality holds

(δ(x′)− δ(x))(1− 2x) + 2(x′ − x)δ(x) ≥ 0 .

Simple processing yields

δ(x′)(1− 2x)− δ(x)(1− 2x′) ≥ 0 ,

or, equivalently,

(1− 2x)(1− 2x′)(φδ(x
′)− φδ(x)) ≥ 0 .

Hence, the increasingness of φδ on the interval [0, 1/2[ follows. Similarly, one

can prove the increasingness of φδ on the interval ]1/2, 1] .

Proposition 3.6. Let δ ∈ D. Then the function Aδ : [0, 1]2 → [0, 1] defined

in (3.3) is a quasi-copula if and only if

(i) the function λδ, defined in Proposition 3.4, is increasing;

(ii) the function µδ : [0, 1[→ [0, 1] , defined by µδ(x) = x−δ(x)
1−x , is increasing.

Proof. We use the same notations as in Proposition 3.1. Suppose that conditions

(i) and (ii) are satisfied. Due to Proposition 3.4, the function Aδ is increasing.

Therefore, to prove that Aδ is a quasi-copula, we need to show that it is 1-Lipschitz

continuous. Recall that the 1-Lipschitz continuity is equivalent to the 1-Lipschitz

continuity in each variable. Since Aδ is symmetric, it is sufficient to show that Aδ
is 1-Lipschitz continuous in the first variable. Let (x, y), (x′, y) ∈ [0, 1]2 such that

x ≤ x′. We need to show that

Aδ(x
′, y)−Aδ(x, y) ≤ x′ − x . (3.6)
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We distinguish several cases. If (x, y), (x′, y) ∈ I1, then inequality (3.6) is equivalent

to

y (νδ(u
′)− νδ(u)) ≤ 0 .

Due to Lemma 3.2(i) the last inequality always holds.

If (x, y), (x′, y) ∈ I2, then inequality (3.6) is equivalent to

(1− y)(µδ(v
′)− µδ(v)) ≥ 0 ,

which holds due to condition (ii).

The remaining case is when (x, y) ∈ I2 and (x′, y) ∈ I1 \D. The two previous cases

then imply that

Aδ(x
′, y)−Aδ(x, y) = (Aδ(x

′, y)−Aδ(y, y)) + (Aδ(y, y)−Aδ(x, y)) ≤ x′ − x .

Consequently, Aδ is a biconic quasi-copula.

Conversely, suppose that Aδ is a quasi-copula. Proposition 3.4 implies condition

(i). Let x, x′ ∈ [0, 1[ such that x ≤ x′, and y ∈ [0, 1] such that y ≥ x′. Let us

consider the following notations

b =
(1− y)x

1− x
, b′ =

(1− y)x′

1− x′
.

Since x ≤ x′ ≤ y, it holds that 0 ≤ b ≤ b′ ≤ y. The 1-Lipschitz continuity of Aδ in

the first variable implies

Aδ(b
′, y)−Aδ(b, y) ≤ b′ − b ,

or, equivalently,

(1− y)(µδ(x
′)− µδ(x)) ≥ 0 .

Hence, condition (ii) follows, which completes the proof.

Proposition 3.7. Let Aδ be a biconic quasi-copula. Then it holds that

(i) if δ(x0) = x0 for some x0 ∈ ]0, 1[ , then Aδ = TM;

(ii) if δ(x0) = 2x0 − 1 for some x0 ∈ [1/2, 1[ , then δ(x) = 2x − 1 for any

x ∈ [x0, 1].

Proof. Suppose that Aδ be a biconic quasi-copula and suppose further that δ(x0) =

x0 for some x0 ∈ ]0, 1[. Due to Proposition 3.5, it holds that δ(x) = x for any

x ∈ [x0, 1]. Since Aδ is a biconic quasi-copula, it holds that the function µδ defined

in Proposition 3.6 is increasing. Therefore, µδ(x) ≤ µδ(x0) = 0 for any x ∈ [0, x0].

Hence, δ(x) ≥ x for any x ∈ [0, x0].
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Using the fact that δ(x) ≤ x for any x ∈ [0, 1], it must hold that δ(x) = x for

any x ∈ [0, x0]. Based on the above discussion, it holds that δ(x) = x for any

x ∈ [0, 1]. Since TM is the only quasi-copula with δTM
as diagonal section, it holds

that Aδ = TM.

Assertion (ii) can be proved similarly using the increasingness of the function µδ
on the interval [x0, 1].

Example 3.7. Consider the diagonal functions in Example 3.6. Clearly, the

functions λδ and µδ, defined in Propositions 3.4 and 3.6, are increasing. The

corresponding family of biconic semi-copulas is a family of biconic quasi-copulas.

Example 3.8. Consider the diagonal function δ defined by

δ(x) =



0 , if x ≤ 1
6 ,

2x− 1

3
, if 1

6 ≤ x ≤
1
4 ,

2

3
x , if 1

4 ≤ x ≤
3
4 ,

2x− 1 , otherwise.

Clearly, the function λδ, defined in Proposition 3.4, is increasing. Note also that the

function µδ, defined in Proposition 3.6, is not increasing. Hence, the corresponding

biconic function Aδ is a proper biconic semi-copula and is given by

Aδ(x, y) =



0 , if y ≤ x ≤ 1− 5y or x ≤ y ≤ 1− 5x ,

1

3
(x+ 5y − 1) , if max(y, 1− 5y) ≤ x ≤ 1− 3y ,

2

3
y , if max(y, 1− 3y) ≤ x ≤ 3−y

3 ,

1

3
(y + 5x− 1) , if max(x, 1− 5x) ≤ y ≤ 1− 3x ,

2

3
x , if max(x, 1− 3x) ≤ y ≤ 3−x

3 ,

x+ y − 1 , otherwise.

The diagonal function and the corresponding biconic semi-copula are depicted in

Figure 3.2. Consequently, the class of biconic quasi-copulas with a given diagonal

section is a proper subclass of the class of biconic semi-copulas with a given diagonal

section.
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Figure 3.2: The diagonal function and the corresponding biconic semi-copula of Exam-
ple 3.8.

3.5. Biconic copulas with a given diagonal section

Here, we characterize the diagonal functions for which the corresponding biconic

function is a copula. Next, we characterize the piecewise linear diagonal functions

for which the corresponding biconic function is a copula. To this end, we need the

following lemma.

Lemma 3.3. Let Aδ be a biconic function such that δ is linear on the interval

[x1, x2] as well as on the interval [x2, x3]. Let R = [x, x′] × [y, y′] be a rectangle

located in the triangle ∆{(x1,x1),(x3,x3),(1,0)} such that its opposite diagonal is a

subset of the segment 〈(x2, x2), (1, 0)〉. Then it holds that VAδ(R) ≥ 0 if and only

if δ is convex on the interval [x1, x3].

Proof. Applying Eq. (3.5) to both triangles ∆1 := ∆{(x1,x1),(x2,x2),(1,0)} and ∆2 :=

∆{(x2,x2),(x3,x3),(1,0)} (as depicted in Figure 3.3(a)), it follows that

VAδ(R) = (x′ − x)

(
r′

t′
− r

t

)
,

where r and t are as in Eq. (3.5) and

r′ = x2δ(x3)− x3δ(x2)

t′ = x3 − x2 .
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(x3, x3)

(x2, x2)

(x1, x1)

(0, 0) (1, 0)

(0, 1) (1, 1)

(a)

(x2, x2)

(x1, x1)

(0, 0) (1, 0)

(0, 1) (1, 1)

(b)

Figure 3.3: Illustration for the proofs of Lemma 3.3 and Proposition 3.8

The nonnegativity of VAδ(R) is equivalent to

r′

t′
− r

t
≥ 0 .

Substituting the expressions for r, r′, t and t′, the latter inequality can be written

as

x2

(
δ(x3)− δ(x2)

x3 − x2
− δ(x2)− δ(x1)

x2 − x1

)
≥ 0 ,

or, equivalently,
δ(x3)− δ(x2)

x3 − x2
− δ(x2)− δ(x1)

x2 − x1
≥ 0 , (3.7)

i.e. δ is convex on the interval [x1, x3].

Proposition 3.8. Let δ be a piecewise linear diagonal function. Then the function

Aδ : [0, 1]2 → [0, 1] defined in (3.3) is a copula if and only if δ is convex.

Proof. First suppose that δ is convex. To prove that Aδ is a copula, we need to show

its 2-increasingness. Since δ is piecewise linear, the surface of Aδ consists of triangles

of the type ∆{(x,x,δ(x)),(y,y,δ(y)),(0,1,0)} and of the type ∆{(x,x,δ(x)),(y,y,δ(y)),(1,0,0)}.

Note that any rectangle in the unit square can obviously be decomposed into a num-

ber of rectangles that are either located entirely in one of triangles ∆{(x,x),(y,y),(0,1)}
or ∆{(x,x),(y,y),(1,0)}, have their diagonal along the diagonal of the unit square or

have their opposite diagonal along one of the edges of these triangles. Due to the

additivity of volumes, it suffices to consider a restricted number of cases. Consider

a rectangle R := [x, x′]× [y, y′] ⊆ [0, 1]2.
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(i) If R is located in one of the above triangles, then its Aδ-volume is 0 since Aδ
is linear on the considered triangle.

(ii) If the opposite diagonal of R is along one of the edges of the above triangles,

then we can consider three points b1 := (x1, x1), b2 := (x2, x2) and b3 :=

(x3, x3) such that δ is linear on the interval [x1, x2] as well as on the interval

[x2, x3] (see Figure 3.3(a)).

Suppose that the opposite diagonal of R is a subset of the segment 〈b2, (1, 0)〉
(the case when the opposite diagonal of R is a subset of the segment 〈b2, (0, 1)〉
is identical due to the symmetry of Aδ). Due to Lemma 3.3, it follows that

VAδ(R) ≥ 0.

(iii) If the diagonal of R is along the diagonal of the unit square, then we can

consider two points b1 := (x1, x1) and b2 := (x2, x2) such that δ is linear

on the interval [x1, x2]. Suppose that the diagonal of R is a subset of the

segment 〈b1,b2〉 (see Figure 3.3(b)). Applying Eq. (3.5), it follows that

VAδ(R) = (x′ − x)

(
s− r
t

)
,

where s is as in Eq. (3.5). We distinguish two subcases:

(a) If x2 ≤ 1/2 or x1 ≥ 1/2, then the nonnegativity of VAδ (R) is equivalent

to s − r ≥ 0. Substituting the expressions for r and s, the latter

inequality becomes

(1− 2x1)(1− 2x2)(φδ(x2)− φδ(x1)) ≥ 0 . (3.8)

Due to Lemma 3.2(ii), φδ is increasing on the interval [0, 1/2[ and on

the interval ]1/2, 1], whence the latter inequality follows.

(b) If x1 ≤ 1/2 ≤ x2, then with δ(1/2) = s−r
2t , it follows that

VAδ(R) = (x′ − x)

(
s− r
t

)
= 2(x′ − x)δ(1/2) ≥ 0 . (3.9)

Conversely, suppose that Aδ is a copula. Lemma 3.3 implies inequality (3.7) for

any two consecutive segments 〈(x1, δ(x1)), (x2, δ(x2))〉 and 〈(x2, δ(x2)), (x3, δ(x3))〉
of the graph of δ with x1 < x2 < x3. Consequently, δ is convex.

Lemma 3.4. Let Cδ be a biconic copula and m1,m2 ∈ ]−∞, 0[ such that m1 > m2.

Consider three points b1 := (x1, x1), b2 := (x2, x2) and b3 := (x3, x3) such that

0 ≤ x1 < x2 < x3 ≤ 1 and the segments 〈b1, (1, 0)〉, 〈b2, (1, 0)〉 and 〈b3, (1, 0)〉
have slope m1, −√m1m2 and m2, respectively. Then it holds that

(i) there exists a rectangle [x, x′]× [y, y′] such that the segment connecting the

points (x, y′) and (x′, y) is a subset of the segment 〈b2, (1, 0)〉 and the points
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(x, y) and (x′, y′) are located on the segments 〈b1, (1, 0)〉 and 〈b3, (1, 0)〉
respectively.

(ii) the point (x2, δ(x2)) lies below or on the segment 〈(x1, δ(x1)), (x3, δ(x3))〉.

Proof. A simple geometric argumentation shows that points b1, b2 and b3 with

the desired properties always exist. Observation (i) follows from the fact that for

such points, we can always find a rectangle [x, x′]× [y, y′] of which the opposite

diagonal is a subset of the segment with slope m = −√m1m2 and the points (x, y)

and (x′, y′) are located on the segments with slopes m1 and m2, respectively.

To prove assertion (ii), we consider the function h : [x1, x3]→ [0, 1] that is linear

on the interval [x1, x2] as well as on the interval [x2, x3] and coincides with δ in

the points x1, x2 and x3. Consider the rectangle [x, x′]× [y, y′] from the first part

of the proof. Since Cδ is a copula, it follows that

VAδ∗ ([x, x′]× [y, y′]) = VCδ([x, x
′]× [y, y′]) ≥ 0 ,

where Aδ∗ is a biconic function such that δ∗ coincides with h on the interval [x1, x3].

Due to Lemma 3.3, it holds that the function h is convex, or equivalently, the point

(x2, δ(x2)) lies below or on the segment 〈(x1, δ(x1)), (x3, δ(x3))〉, which completes

the proof.

Theorem 3.1. Let δ ∈ D. Then the function Aδ : [0, 1]2 → [0, 1] defined in (3.3)

is a copula if and only if δ is convex.

Proof. Suppose that δ is convex. To prove that Aδ is a copula, we need to show

the 2-increasingness. Due to the additivity of volumes, it suffices to consider a

restricted number of cases. Consider a rectangle R := [x, x′]× [y, y′] ⊆ [0, 1]2.

(i) If R ⊆ I1 (the case when R ⊆ I2 is identical due to the symmetry of Aδ), then

let b1, b2, b3 and b4 be four (possibly coinciding) points on the diagonal

of the unit square such that the points (x, y), (x, y′), (x′, y) and (x′, y′) are

respectively located on the segments 〈(1, 0),b1〉, 〈(1, 0),b2〉, 〈(1, 0),b3〉 and

〈(1, 0),b4〉 (see Figure 3.4).

The points b1, b2, b3 and b4, together with (0, 0) and (1, 1), determine a

piecewise linear convex diagonal function δ1 such that δ1(xi) = δ(xi) for any

i ∈ {1, 2, 3, 4}. Due to Proposition 3.8, the biconic function Aδ1 is a biconic

copula. Therefore,

VAδ(R) = VAδ1 (R) ≥ 0 .

(ii) If R = [x, y] × [x, y] with y ≤ 1/2 (the case when x ≥ 1/2 can be proved

similarly), then it holds that

VAδ(R) = δ(x) + δ(y)− 2Aδ(x, y) .
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b1

b2

b3

b4

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 3.4: Illustration for the proof of Theorem 3.1.

Substituting the expression of Aδ(x, y) and denoting v = x
1+x−y , the latter

equation becomes

VAδ(R) = δ(x) + δ(y)− 2x
δ(v)

v
= 2

(
δ(x) + δ(y)

2
− xδ(v)

v

)
.

Since x ≤ y ≤ 1/2, it holds that x ≤ v ≤ x+y
2 , whence

VAδ(R) ≥ 2

(
δ(x) + δ(y)

2
− δ

(
x+ y

2

))
.

Due to the convexity of δ, the right-hand side of the latter inequality is

nonnegative and therefore, VAδ(R) ≥ 0.

Consequently, the 2-increasingness of Aδ holds, and Aδ is a copula.

Conversely, suppose that Aδ is a copula and suppose further that δ is not convex, i.e.

there exist x < y < z such that the point (y, δ(y)) is above the segment connecting

the points (x, δ(x)) and (z, δ(z)). Since δ is continuous, there exists ε > 0 such

that for any x′ ∈ [y − ε, y + ε] the point (x′, δ(x′)) is above the segment connecting

the points (x, δ(x)) and (z, δ(z)), which contradicts Lemma 3.4. Thus, δ must be

convex.

Since for a biconic copula C it holds that its diagonal section δC is convex, it either

holds that δC = δTM
or δC(x) < x for any x ∈ ]0, 1[ . Hence, there do not exist

proper ordinal sum biconic copulas with a given diagonal section.
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Example 3.9. Consider the diagonal functions in Example 3.6. Clearly, δ is

convex for any θ ∈ [0, 1]. The corresponding family of biconic semi-copulas is a

family of biconic copulas.

Example 3.10. Consider the diagonal function of a Ali–Mikhail–Haq copula, i.e.

δθ(x) = x2

1−θ(1−x)2 for any x ∈ [0, 1], with θ ∈ [−1, 1] . Clearly, δθ is convex for any

θ ∈ [−1, 1] . The corresponding family of biconic copulas is given by

Cθ(x, y) =


y2(1 + y − x)

(1 + y − x)2 − θ(1− x)2
, if y ≤ x ,

x2(1 + x− y)

(1 + x− y)2 − θ(1− y)2
, otherwise.

Example 3.11. Consider the diagonal function δ given by

δ(x) =



0 , if x ≤ 1
4 ,

1

3
(4x− 1) , if 1

4 ≤ x ≤
2
5 ,

1

2
x , if 2

5 ≤ x ≤
2
3 ,

2x− 1 , otherwise.

Clearly, the functions µδ and ξδ, defined in Proposition 3.6, are increasing. Note

also that δ is not convex. Hence, Aδ is a proper biconic quasi-copula and is given

by

Aδ(x, y) =



0 , if y ≤ x ≤ 1− 3y or x ≤ y ≤ 1− 3x ,

1

3
(x+ 3y − 1) , if max(y, 1− 3y) ≤ x ≤ 2−3y

2 ,

1

2
y , if max(y, 2−3y

2 ) ≤ x ≤ 2−y
2 ,

1

3
(y + 3x− 1) , if max(x, 1− 3x) ≤ y ≤ 2−3x

2 ,

1

2
x , if max(x, 2−3x

2 ) ≤ y ≤ 2−x
2 ,

x+ y − 1 , otherwise.

The diagonal function and the corresponding biconic quasi-copula are depicted in

Figure 3.5. Consequently, the class of biconic copulas with a given diagonal section

is a proper subclass of the class of biconic quasi-copulas with a given diagonal

section.

In the following lemma, we study the opposite symmetry of a biconic copula with
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Figure 3.5: The diagonal function and the corresponding biconic quasi-copula of Exam-
ple 3.11.

a given diagonal section.

Lemma 3.5. A biconic copula Cδ with a given diagonal section δ is opposite

symmetric (also called radially symmetric) if and only if the function f(x) = x−δ(x)

is symmetric with respect to the point (1/2, 1/2), i.e. δ(x)− δ(1− x) = 2x− 1 for

any x ∈ [0, 1/2].

Proof. Let Cδ be a biconic copula. Let (x, y) ∈ I1 (the case (x, y) ∈ I2 can be

proved similarly). Using the notation z = y
1+y−x , Eq. (1.4) is equivalent to

δ(z)− δ(1− z) = 2z − 1 . (3.10)

i.e. the function f(x) = x− δ(x) is symmetric with respect to the point (1/2, 1/2).

Now, we lay bare the associativity of biconic copulas.

Proposition 3.9. TM and TL are the only associative biconic copulas (1-Lipschitz

t-norms) with a given diagonal section.

Proof. Let Cδ be a biconic copula. Then its diagonal section δ is a convex diagonal

function. Hence, the right (resp. left) derivative of δ exists everywhere on the

interval [0, 1[ (or ]0, 1]) [93, 95]. We further assume that Cδ is associative. Then

for any 0 ≤ ε ≤ δ(x) ≤ x ≤ 1, it holds that

Cδ(ε, Cδ(x, x)) = Cδ(Cδ(ε, x), x) .
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§3.5. Biconic copulas with a given diagonal section

Let us introduce the notations

u =
ε

1 + ε− δ(x)
, v =

ε

1 + ε− x
.

It then holds that

Cδ(ε, Cδ(x, x)) = (1 + ε− δ(x))δ(u) (3.11)

and

Cδ(Cδ(ε, x), x) = (1 + (1 + ε− x)δ(v)− x)δ

(
(1 + ε− x)δ(v)

1 + (1 + ε− x)δ(v)− x

)
. (3.12)

Expanding the right-hand side of Eq. (3.11) in powers of ε around 0 (by taking the

partial derivative with respect to ε and δ(0) = 0, and by setting ε = 0 and x = 0),

we obtain

Cδ(ε, Cδ(x, x)) = δ′(0)ε+O(ε2) ,

where δ′(0) is the right derivative at 0. Similarly, expanding the right-hand side of

Eq. (3.12) in powers of ε around 0 (by taking the partial derivative with respect to

ε and δ(1) = 1, and by setting ε = 0 and x = 1), it holds that

Cδ(Cδ(ε, x), x) = (δ′(0))2ε+O(ε2) .

It follows that either δ′(0) = 1 or δ′(0) = 0. In the former case, since δ is convex

and δ(t) ≤ t for any t ∈ [0, 1], it follows that δ(t) = t for all t ∈ [0, 1], whence

Cδ = TM.

Similarly, the associativity of Cδ implies that for 0 < x ≤ 1− ε ≤ 1, it holds that

Cδ(Cδ(x, 1− ε), 1− ε) = Cδ(x,Cδ(1− ε, 1− ε)) .

We denote the left derivative of δ at 1 as δ′(1). Expanding the left-hand side in

powers of ε around 0, we obtain

Cδ(Cδ(x, 1− ε), 1− ε) = x+ 2(1− δ′(1))ε+O(ε2) ,

whereas the right-hand side is expanded as

Cδ(x,Cδ(1− ε, 1− ε)) = x+ (1− δ′(1))δ′(1)ε+O(ε2) .

It follows that either δ′(1) = 1 or δ′(1) = 2. Since δ is a convex function, the former

case again yields Cδ = TM.
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Finally, the associativity of Cδ implies that for any 0 ≤ ε < 1
4 , the equality

Cδ(Cδ(
1

2
+ ε,

1

2
+ ε), 1− ε) = Cδ(Cδ(

1

2
+ ε, 1− ε), 1

2
+ ε) ,

holds. We denote the right derivative of δ at 1
2 as δ′( 1

2 ). Expanding the left-hand

side in powers of ε around 0 yields

Cδ(Cδ(
1

2
+ ε,

1

2
+ ε), 1− ε) = δ(

1

2
) + (1 + δ′(

1

2
)− δ′(1))ε+O(ε2) ,

whereas expanding the right-hand side yields

Cδ(Cδ(
1

2
+ε, 1−ε), 1

2
+ε) = δ(

1

2
)+

(
1

2
(3− δ′(1))δ′(

1

2
)− (δ′(1)− 1)δ(

1

2
)

)
ε+O(ε2) .

Putting δ′(1) = 2, it follows that

δ′(
1

2
) = 2(1− δ(1

2
)) .

Hence, the (right) tangent of the graph of δ at the point ( 1
2 , δ(

1
2 )), which is

determined by the linear function

y = δ(
1

2
) + δ′(

1

2
)(x− 1

2
) ,

passes through the point (1, 1). Since δ is convex, its graph must lie above this

tangent line on the interval [ 1
2 , 1], which leads to a contradiction unless it coincides

entirely with this tangent line on the interval [1/2, 1], i.e.

δ(x) = δ(
1

2
) + δ′(

1

2
)(x− 1

2
) ,

for all x ∈ [ 1
2 , 1]. Since δ′(1) = 2, it follows that δ( 1

2 ) = 0, henceforth also that

Cδ = TL.

Since both TM and TL are biconic associative copulas with a given diagonal section,

we conclude that these two extreme copulas are the only biconic associative copulas

with a given diagonal section.

Corollary 3.1. TM and TL are the only associative biconic quasi-copulas with a

given diagonal section.

We conclude this section by establishing the intersection between the set of bi-

conic copulas and conic copulas with the same diagonal section. Conic copulas

were introduced in Chapter 2 and their construction is based on linear interpo-

lation on segments connecting the upper boundary curve of the zero-set to the

point (1, 1).
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Lemma 3.6. Let δ be a diagonal function and suppose that θ1 = 1 − 2−
1
θ with

θ ∈ [1,∞[ is the maximum value such that δ(θ1) = 0. Then the biconic copula Cδ
has the zero set ZCδ given by

ZCδ = {(x, y) ∈ [0, 1]2 | y ≤ fθ(x)} ,

where the function fθ : [0, 1]→ [0, 1] is given by

fθ(x) =


(1− 2

1
θ )−1x+ 1 , if x ≤ 1− 2−

1
θ ,

(1− 2
1
θ )(x− 1) , if x ≥ 1− 2−

1
θ .

(3.13)

Proof. Let Cδ be a biconic copula and suppose that θ1 = 1−2−
1
θ with θ ∈ [1,∞[ is

the maximum value such that δ(θ1) = 0. Due to the definition of a biconic copula,

it holds that Cδ is linear on the segment 〈(θ1, θ1), (1, 0)〉 as well as on the segment

〈(θ1, θ1), (0, 1)〉. Hence, these two segments form the upper boundary curve of

the zero-set of Cδ. A simple computation shows that the function fθ in (3.13)

represents the considered segments.

Due to the above lemma and the definition of a conic copula, the following

proposition is immediate.

Proposition 3.10. The only copulas that are at the same time conic and biconic

with the same given diagonal section, are the members of the following family

Cθ(x, y) =


max(y + (1− x)(1− 2

1
θ ), 0) , if y ≤ x ,

max(x+ (1− y)(1− 2
1
θ ), 0) , otherwise

(3.14)

where θ ∈ [1,∞[ . This family of copulas was introduced in Chapter 2.

3.6. Biconic copulas supported on a set with

Lebesgue measure zero

We characterize in this section biconic copulas that are supported on a set with

Lebesgue measure zero. To this end, we need the following proposition.

Proposition 3.11. Let Cδ be a biconic copula with a piecewise linear diagonal

section δ. Suppose that d ∈ [0, 1/2] is the maximum value such that δ(d) = 0, and

d∗ ∈ [1/2, 1] is the minimum value such that δ(d∗) = 2d∗ − 1. Then the support of

Cδ consists of:

(i) the segment 〈(d, d), (d∗, d∗)〉;
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(ii) the segments 〈(x, x), (1, 0)〉 and 〈(x, x), (0, 1)〉, for any x such that the graph

of δ contains two consecutive segments with common point (x, δ(x)).

Proof. From Proposition 3.7 it follows that δ(x) = 2x− 1 for any x ∈ [d∗, 1]. Note

that if d = d∗ = 1/2, then Cδ = TL and the support is given by the segment

〈(1, 0), (0, 1)〉. More generally, if δ is piecewise linear, then it suffices to consider a

number of cases to prove assertion (i):

(a) Let 〈(x1, x1), (x2, x2)〉, with d ≤ x1 < x2 ≤ 1/2, be a segment such that δ is

linear on the interval [x1, x2]. For any rectangle R = [x, y]× [x, y] such that

x1 ≤ x < y ≤ x2, it holds that

VCδ(R) = (1− 2x1)(1− 2x2)(φδ(x2)− φδ(x1)) ,

where φδ is the function defined in Lemma 3.2. Since φδ is increasing on the

interval [0, 1/2] , it holds that VCδ(R) ≥ 0. If VCδ(R) = 0, then due to the

increasingness of φδ, it holds that φδ is constant on the interval [x1, x2], i.e.

there exists c ≥ 0 such that δ(x) = c(1 − 2x) on the interval [x1, x2]. The

increasingness of δ then implies that c = 0, which is a contradiction with the

fact that d is the maximum value such that δ(d) = 0 and hence, VCδ (R) > 0.

(b) Similarly, one can prove that for any segment 〈(x1, x1), (x2, x2)〉, with 1/2 ≤
x1 < x2 ≤ d∗, such that δ is linear on the interval [x1, x2], it holds that

VCδ(R) > 0 for any rectangle R = [x, y]× [x, y] such that x1 ≤ x < y ≤ x2.

Since the support is closed, assertion (i) follows.

Next, we prove assertion (ii). Let b1 := (x1, x1), b2 := (x2, x2) and b3 := (x3, x3),

with d ≤ x2 ≤ d∗, be three distinct points such that δ is linear on the interval

[x1, x2] as well as on the interval [x2, x3], and δ is not linear on the interval [x1, x3].

Let R ⊆ [0, 1]2 be a rectangle such that its opposite diagonal is a subset of the

segment 〈(x2, x2), (1, 0)〉. If VCδ(R) = 0, then due to inequality (3.7), δ is linear

on the interval [x1, x3], a contradiction. Hence, VCδ(R) > 0. Consequently, the

segment 〈(x2, x2), (1, 0)〉 is a subset of the support. Due to the symmetry of Cδ,

the segment 〈(x2, x2), (0, 1)〉 is a subset of the support as well, hence, (ii) follows.

Since the surface of Cδ consists of triangles (see the proof of Proposition 3.8), it

holds that ∂2C(u,v)
∂u∂v = 0 in all other points.
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Example 3.12. Consider the diagonal function δ given by

δ(x) =


0 , if x ≤ 1

3 ,

x− 1/3 , if 1
3 ≤ x ≤

2
3 ,

2x− 1 , otherwise.

Clearly, δ is a piecewise linear convex function. The support of the corresponding

copula is depicted in Figure 3.6(a).

(0, 0) (1, 0)

(0, 1) (1, 1)

(a)

(0, 0) (1, 0)

(0, 1) (1, 1)

(b)

Figure 3.6: The support of the biconic copulas given in Example 3.12 (a) and Exam-
ple 3.13 (b).

Example 3.13. Consider the diagonal function δ given by

δ(x) =



0 , if x ≤ 1
4 ,

x− 1

4
, if 1

4 ≤ x ≤
1
2 ,

1

2
(3x− 1) , otherwise.

Clearly, δ is a piecewise linear convex function. The support of the corresponding

copula is depicted in Figure 3.6(b).

Theorem 3.2. Let Cδ be a biconic copula. Then it holds that Cδ is supported on

a set with Lebesgue measure zero if and only if δ is piecewise linear.
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Proof. Let Cδ be a biconic copula with a piecewise linear diagonal section δ. From

Proposition 3.11, it follows that Cδ is supported on a set with Lebesgue measure

zero. Conversely, let Cδ be supported on a set with Lebesgue measure zero and

suppose that δ is not piecewise linear, i.e. there exists an interval [d1, d2] such that

the graph of the restriction of δ to [d1, d2] does not contain any segment. Consider

the triangle ∆d1,d2
= ∆{(d1,d1),(d2,d2),(0,1)}. Consider a rectangle R located in

∆d1,d2
such that VCδ(R) = 0. It then holds that VCδ(R1) = 0 for any rectangle

R1 ⊆ R. Choose a rectangle R1 = [x, x′] × [y, y′] ⊆ R such that its opposite

diagonal is a subset of the segment 〈(0, 1), (x2, x2)〉 with d1 < x2 < d2. Let (x1, x1)

and (x3, x3) be the two points on the diagonal of the unit square such that the

points (x, y) and (x′, y′) are respectively located on the segments 〈(0, 1), (x1, x1)〉
and 〈(0, 1), (x3, x3)〉. Since VCδ(R1) = 0, inequality (3.7) implies that the points

(x1, δ(x1)), (x2, δ(x2)) and (x3, δ(x3)) are located on the same segment, which

contradicts the fact that δ does not contain any segment on the interval [d1, d2].

Hence, VCδ(R) > 0 for any rectangle located in S = ∆d1,d2
\ {〈(d1, d1), (d2, d2)〉 ∪

〈(d1, d1), (0, 1)〉 ∪ 〈(d2, d2), (0, 1)〉}, i.e. S is a subset of the support of Cδ with

non-zero Lebesgue measure, a contradiction.

Since any copula that is supported on a set with Lebesgue measure zero is singular,

the following corollary is clear.

Corollary 3.2. Any biconic copula Cδ with a piecewise linear diagonal section δ

is singular.

Example 3.14. The family of biconic copulas given in (3.14) is a family of singular

biconic copulas.

3.7. Dependence measures

In this section, we derive compact formulae for Spearman’s rho, Gini’s gamma and

Kendall’s tau of two continuous random variables whose dependence is modelled by

a biconic copula Cδ. These parameters can be expressed in terms of the function

δ.

Proposition 3.12. Let X and Y be two continuous random variables that are

coupled by a biconic copula Cδ.

(i) The population version of Spearman’s ρCδ for X and Y is given by

ρCδ = 8

1∫
0

δ(x) dx− 3 .
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(ii) The population version of Gini’s γCδ for X and Y is given by

γCδ = 4

1∫
0

δ(x)dx− 2(1− δ(1/2)) .

(iii) The population version of Kendall’s τCδ for X and Y is given by

τCδ = 1− 4

1∫
0

(δ′(x)x− δ(x))(δ′(x)(1− x) + δ(x)) dx ,

where δ′ is the left (or right) derivative of δ.

Proof. The integral of Cδ over the unit square is the volume below its surface.

Since Cδ is symmetric, we consider twice the volume over the region I1. In fact

the volume over I1 can be seen as a conic body with the area of its base equal to
1∫
0

δ(x) dx and height equal to 1. Recalling the geometrical fact that the volume of

a conic body equals one third of the product of the area of its base and its height,

(i) follows immediately.

The expression for γCδ can be rewritten as

γCδ = 4

 1∫
0

ωCδ(x)dx−
1∫

0

(x− δ(x))dx

 ,
where ωCδ is the opposite diagonal section of Cδ. Since Cδ is biconic, ωCδ is given

by

ωCδ(x) =


2xδ(1/2) , if x ≤ 1/2 ,

2(1− x)δ(1/2) , if x ≥ 1/2 .

Computing
1∫
0

ωCδ(x)dx, (ii) follows.

In order to find τCδ , we need to compute

I =

1∫
0

1∫
0

∂C

∂x
(x, y)

∂C

∂y
(x, y)dxdy .
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As Cδ is symmetric, it holds that I = 2Ĩ with Ĩ the integral over the region I1, i.e.

Ĩ =

1∫
0

x∫
0

∂C

∂x
(x, y)

∂C

∂y
(x, y)dydx .

Computing the partial derivatives and using the notation u = y
1+y−x , it holds that

Ĩ =

1∫
0

(1− x)

 x∫
0

u2

(
δ(u)

u

)′(
δ(u)

1− u

)′
du

 dx . (3.15)

Since δ is convex, the right and left derivatives exist almost everywhere [93, 95]. Note

also that the left and right derivatives coincide, except possibly on a countable subset.

Hence, the choice of derivative does not affect the result of the integration [100].

We then use the notation δ′ for the right derivative of δ.

Consider the function ψ : ]0, 1[→ R given by

ψ(x) =

x∫
0

u2

(
δ(u)

u

)′(
δ(u)

1− u

)′
du .

Substituting ψ(x) in Eq. (3.15), it holds that

Ĩ =

1∫
0

(1− x)ψ(x)dx .

By integrating by parts, it holds that

I = 2Ĩ =

1∫
0

(δ′(x)x− δ(x))(δ′(x)(1− x) + δ(x))dx .

Substituting in the expression for τCδ , (iii) follows.

Example 3.15. Let δ be the diagonal function given in Example 3.6. Then

ρCδ =
2− 3θ

2 + θ
, γCδ =

−2θ + 2−θ(2 + θ)

2 + θ
and τCδ =

3− 4θ

3 + 2θ
.

We computed the values of Spearman’s rho, Gini’s gamma and Kendall’s tau

by means of the expressions given in Proposition 3.12. The results are listed in

Table 3.1.
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Table 3.1: Spearman’s rho, Gini’s gamma and Kendall’s tau of the biconic copulas Cδθ
with diagonal section δθ(t) = tθ+1.

θ δθ ρCδθ γCδθ τCδθ

0 t 1 1 1

0.2 t1.2 0.636364 0.688732 0.647059

0.4 t1.4 0.333333 0.424525 0.368421

0.6 t1.6 0.076923 0.198215 0.142857

0.8 t1.8 −0.142857 0.002920 −0.043478

1 t2 −0.333333 −0.166667 −0.200000

3.8. Aggregation of biconic (semi-, quasi-)copulas

In this section, we study the aggregation of biconic semi-copulas, quasi-copulas

and copulas. We formulate one lemma and two immediate propositions.

Lemma 3.7. The sets DS and D are closed under minimum, maximum and convex

sums.

Proposition 3.13. Let δ1, δ2 ∈ DS (resp. D) and θ ∈ [0, 1]. If Cδ1 and Cδ2 are

biconic semi-copulas (resp. quasi-copulas), then also min(Cδ1 , Cδ2), max(Cδ1 , Cδ2)

and θCδ1 + (1− θ)Cδ2 are biconic semi-copulas (resp. quasi-copulas). The corre-

sponding diagonal sections are given by δmin = min(δ1, δ2), δmax = max(δ1, δ2) and

θδ1 + (1− θ)δ2, respectively.

Consequently, the class of biconic semi-copulas with a given diagonal section and

the class of biconic quasi-copulas with a given diagonal section are closed under

minimum, maximum and convex sums.

Proposition 3.14. Let δ1, δ2 ∈ D and θ ∈ [0, 1]. If Cδ1 and Cδ2 are biconic

copulas, then also max(Cδ1 , Cδ2) and θCδ1 + (1− θ)Cδ2 are biconic copulas. The

corresponding diagonal sections are given by δmax and θδ1 + (1− θ)δ2, respectively.

Consequently, the class of biconic copulas with a given diagonal section is closed

under maximum and convex sums. Hence, the class of biconic copulas with a given

diagonal section is not join-dense in the class of biconic quasi-copulas with a given

diagonal section in contrast to the general case [92]. In general, the minimum of

two biconic copulas with a given diagonal section need not be a biconic copula.

For instance, let Cδ1 and Cδ2 be two biconic copulas with δ1 and δ2 as depicted in

Figure 3.7. Obviously, the function δmin is not convex, and thus min(Cδ1 , Cδ2) is a

proper biconic quasi-copula.
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δ2

δ1

δmin

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 3.7: An example of the graph of δmin

Since the diagonal function δ determining a biconic quasi-copula Qδ can always

be written as the infimum of a family (δi)i∈I of convex functions, any biconic

quasi-copula Qδ can be written as

Qδ = inf
i∈I

Cδi ,

where Cδi are biconic copulas. Hence, the class of biconic copulas with a given

diagonal section is meet-dense in the class of biconic quasi copulas with a given

diagonal section.

3.9. Biconic functions with a given opposite diag-

onal section

In this section, we introduce biconic functions with a given opposite diagonal

section. Their construction is based on linear interpolation on segments connecting

the opposite diagonal of the unit square and the points (0, 0) and (1, 1).

Let ω : [0, 1]→ [0, 1] and α, β ∈ [0, 1]. The function Aα,βω : [0, 1]2 → [0, 1] defined
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by

Aω(x, y) =


α(1− x− y) + (x+ y)ω

(
x

x+ y

)
, if x+ y ≤ 1 ,

β(x+ y − 1) + (2− x− y)ω

(
1− y

2− x− y

)
, otherwise

(3.16)

is well defined. This function is called a biconic function with a given opposite

diagonal section since it satisfies the boundary conditions

Aα,βω (0, 0) = α and Aα,βω (1, 1) = β ,

and Aα,βω (t, 1 − t) = ω(t) for any t ∈ [0, 1], and since it is linear on segments

connecting the points (t, 1 − t) and (0, 0) as well as on segments connecting the

points (t, 1− t) and (1, 1). Evidently, for a biconic function Aα,βω , the boundary

conditions Aα,βω (0, 0) = 0 and Aα,βω (1, 1) = 1 imply that α = 0 and β = 1. We then

abbreviate A0,1
ω as Aω, with

Aω(x, y) =


(x+ y)ω

(
x

x+ y

)
, if x+ y ≤ 1 ,

x+ y − 1 + (2− x− y)ω

(
1− y

2− x− y

)
, otherwise.

(3.17)

Clearly, when ω ∈ OS, the function Aω defined in (3.17) has 1 as neutral element

and therefore, if Aω is an aggregation function then, it is also a semi-copula.

Let us introduce the following notations

J1 = {(x, y) ∈ [0, 1]2 | x+ y ≤ 1}
J2 = {(x, y) ∈ [0, 1]2 | x+ y ≥ 1}
O = J1 ∩ J2 .

In the next proposition, we characterize the functions in OS for which the corre-

sponding biconic function is a biconic aggregation function.

Proposition 3.15. Let ω ∈ OS. Then the function Aω : [0, 1]2 → [0, 1] defined in

(3.17) is an aggregation function if and only if

(i) the functions λω , ρω : ]0, 1]→ [0, 1], defined by λω(x) = ω(x)
x , ρω(x) = 1−ω(x)

x ,

are decreasing;

(ii) the functions µω, ξω : [0, 1[→ [0, 1], defined by µω(x) = ω(x)
1−x , ξω = x−ω(x)

1−x ,

are increasing.

Proof. Suppose conditions (i) and (ii) are satisfied. The function Aω defined in
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(3.17) clearly satisfies the boundary conditions of an aggregation function. We

prove the increasingness of Aω in the first variable (the proof of the increasingness

in the second variable is similar). Let (x, y), (x′, y) ∈ [0, 1]2 such that x ≤ x′. If

(x, y), (x′, y) ∈ J1, the increasingness of Aω is equivalent to

(x′ + y)ω

(
x′

x′ + y

)
− (x+ y)ω

(
x

x+ y

)
≥ 0 .

Using the notations u = x
x+y and u′ = x′

x′+y , the last inequality is equivalent to

y

(
ω(u′)

1− u′
− ω(u)

1− u

)
≥ 0 ,

or, equivalently,

y(µω(u′)− µω(u)) ≥ 0 . (3.18)

Since x ≤ x′, it holds that u ≤ u′ and therefore inequality (3.18) holds due to the

increasingness of the function µω.

If (x, y), (x′, y) ∈ J2, the increasingness of Aω is equivalent to

x′+y−1+(2−x′−y)ω

(
1− y

2− x′ − y

)
−x−y+1−(2−x−y)ω

(
1− y

2− x− y

)
≥ 0 .

Using the notations v = 1−y
2−x−y and v′ = 1−y

2−x′−y , the last inequality is equivalent

to

(2− x′ − y)(ω(v′)− 1)− (2− x− y)(ω(v)− 1) ≥ 0 .

Simple processing yields,

(1− y)

(
1− ω(v)

v
− 1− ω(v′)

v′

)
≥ 0 ,

or, equivalently,

(1− y)(ρω(v)− ρω(v′)) ≥ 0 . (3.19)

Since x ≤ x′, it holds that v ≤ v′ and therefore inequality (3.19) holds due to the

decreasingness of the function ρω.

The remaining case is when (x, y) ∈ J1 and (x′, y) ∈ J2 \ O. The two previous

cases then imply that

Aω(x′, y)−Aω(x, y) = (Aω(x′, y)−Aω(1− y, y)) + (Aω(1− y, y)−Aω(x, y)) ≥ 0 .

Similarly, one can prove that the increasingness of λω and the decreasingness of ξω
imply that Aδ is increasing in the second variable.

Conversely, suppose that Aω is an aggregation function. Let x, x′ ∈ [0, 1] such that
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x ≤ x′ and choose y ∈ [0, 1] such that x′ + y ≤ 1. It then holds that

xy

1− x
+ y ≤ x′y

1− x′
+ y ≤ 1 .

The increasingness of Aω in the first variable implies

Aω

(
x′y

1− x′
, y

)
−Aω

(
xy

1− x
, y

)
≥ 0 .

After some elementary manipulations, the last inequality becomes

y(µω(x′)− µω(x)) ≥ 0 .

Since x and x′ are arbitrary in [0, 1], the increasingness of µω follows. Similarly,

the decreasingness of the function ρω can be proved using the increasingness of Aω
in the first variable.

The decreasingness of λω and the increasingness of ξω can be obtained using the

increasingness of Aω in the second variable. Therefore, conditions (i) and (ii) follow,

which completes the proof.

Let Aω be a biconic function with opposite diagonal section ω. The function A′,

defined by

A′ = ϕ2(A) , (3.20)

where ϕ2 is the transformation defined in (1.3), is again a biconic function whose

diagonal section δA′ is given by δA′(x) = x− ω(x). This transformation permits us

to derive in a straightforward manner the conditions that have to be satisfied by an

opposite diagonal function to obtain a biconic quasi-copula (resp. copula), which has

that opposite diagonal function as opposite diagonal section. Using Proposition 3.6

and Theorem 3.1, the following two propositions are immediate.

Proposition 3.16. Let ω ∈ O. Then the function Aω : [0, 1]2 → [0, 1] defined

in (3.17) is a quasi-copula if and only if the functions λω and µω, defined in

Proposition 3.15, are decreasing and increasing, respectively.

For the class of biconic semi-copulas with a given opposite diagonal section belonging

to O, one can easily see that the functions ρω and ξω are decreasing and increasing,

respectively. Hence, any biconic semi-copula with a given opposite diagonal section

ω ∈ O is a biconic quasi-copula. Consequently, the class of biconic semi-copulas

with a given opposite diagonal section coincides with the class of biconic quasi-

copulas with a given opposite diagonal when the opposite diagonal section is an

opposite diagonal function.
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Proposition 3.17. Let ω ∈ O. Then the function Aω : [0, 1]2 → [0, 1] defined in

(3.17) is a copula if and only if ω is concave.

Example 3.16. Consider the opposite diagonal functions ωTM
and ωTL

(x). Obvi-

ously, ωTM
and ωTL

are concave functions. The corresponding biconic copulas are

respectively TM and TL.

Example 3.17. Consider the opposite diagonal function ωTP
(x) = x(1 − x).

Obviously, ωTP
is concave. The corresponding biconic copula is given by

CωTP (x, y) =


xy

x+ y
, if x+ y ≤ 1 ,

x(2− x− y)− (1− y)2

2− x− y
, otherwise .

We now focus on the symmetry and opposite symmetry properties of biconic copulas

with a given opposite diagonal section.

Proposition 3.18. Let Cω be a biconic copula. Then it holds that

(i) Cω is opposite symmetric;

(ii) Cω is symmetric if and only if ω is symmetric with respect to the point

(1/2, 1/2), i.e. ω(x) = ω(1− x) for any x ∈ [0, 1/2] .

Proof. Let Cω be a biconic copula. Assertion (i) is clear. We discuss the case when

x+y ≤ 1 (the case x+y ≥ 1 can be proved similarly). Using the notation z = x
x+y ,

the symmetry property of Cω is equivalent to

ω(z) = ω(1− z) ,

i.e. ω is symmetric with respect to the point (1/2, 1/2), whence (ii) follows.

We conclude this section by finding the intersection between the class of biconic

copulas with a given opposite diagonal section and the class of biconic copulas with

a given diagonal section and the class of conic copulas.

Proposition 3.19. Let C be a biconic copula with a given opposite diagonal section

and suppose further that C is a biconic copula with a given diagonal section. Then

it holds that C is a member of convex sums of TM and TL.

Proof. Suppose that C is a biconic copula with a given opposite diagonal section

ω and suppose further that C is a biconic copula with a given diagonal section δ.

Due to the construction method of biconic copulas with a given diagonal (resp.

opposite diagonal) section, δ and ω must be piecewise linear and are given by

86



§3.9. Biconic functions with a given opposite diagonal section

δ(x) =


2xω(1/2) , if x ≤ 1/2 ,

2x− 1 + 2(1− x)ω(1/2) , if x ≥ 1/2 ,

ω(x) =


2xδ(1/2) , if x ≤ 1/2 ,

2(1− x)δ(1/2) , if x ≥ 1/2 .

Since δ and ω are the diagonal and opposite diagonal sections of C, it holds that

δ(1/2) = ω(1/2). Using the notation θ = 2δ(1/2) = 2ω(1/2), δ and ω can be

rewritten as

δ(x) = θδTM
(x) + (1− θ)δTL

(x) , ω(x) = θωTM
(x) + (1− θ)ωTL

(x) .

Recalling that any biconic copula with a given diagonal (resp. opposite diagonal)

section is uniquely determined by its diagonal (resp. opposite diagonal) section,

our assertion follows.

Let Cω be a biconic copula. Due to the definition of Cω, the only possible zero-sets

are

ZCω = ZTM
= [0, 1]2\ ]0, 1]2

and

ZCω = ZTL
= {(x, y) ∈ [0, 1]2 | x+ y ≤ 1} .

Recalling that every conic copula is uniquely determined by its zero-set (see

Chapter 2), the following proposition is clear.

Proposition 3.20. Let Cω be a biconic copula with a given opposite diagonal

section ω and suppose further that Cω is a conic copula. Then it holds that

Cω = TM or Cω = TL.
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4 Upper conic, lower conic and biconic

semi-copulas

4.1. Introduction

Several methods to construct (semi-, quasi-)copulas have been introduced in the

literature. Some of these methods start from given sections. Such sections can be

the diagonal section and/or the opposite diagonal section [23] (see also Chapters 2

and 3), or a horizontal section and/or a vertical section [37, 74, 97]. All of the

above methods use sections that are determined by straight lines in the unit square,

such as the diagonal, the opposite diagonal, a horizontal line or a vertical line. In

the present chapter, we consider sections that are determined by a curve in the

unit square, which represents a strict negation operator.

For any strict negation operator N : [0, 1]→ [0, 1], the surface of the semi-copula TM
is constituted from (linear) segments connecting the points

(0, 0, 0) and (a,N(a),min(a,N(a))) as well as segments connecting the points

(a,N(a),min(a,N(a))) and (1, 1, 1), with N(a) ≤ a, and segments connecting the

points (0, 0, 0) and (a,N(a),min(a,N(a))) as well as segments connecting the

points (a,N(a),min(a,N(a))) and (1, 1, 1), with N(a) ≥ a. This observation has

motivated the construction presented in this chapter.

This chapter is organized as follows. In the following section, we recall some

definitions and facts concerning convexity and generalized convexity. In Section 4.3,

we introduce the class of upper conic functions with a given section. In Sections 4.4

and 4.5, we characterize upper conic semi-copulas, upper conic quasi-copulas and

upper conic copulas with a given section. In Sections 4.6 (resp. 4.7), we introduce in

a similar way the classes of lower conic (resp. biconic) functions with a given section

and characterize lower conic (resp. biconic) semi-copulas, lower conic (resp. biconic)

quasi-copulas and lower conic (resp. biconic) copulas with a given section.

4.2. Convexity and generalized convexity

Convexity plays a key role in the characterization of some classes of semilinear

copulas, such as conic copulas (see Chapter 2) and biconic copulas (see Chapter 3).

A more general type of convexity, called generalized convexity, has been introduced

in the literature and has been used, for instance, to characterize the comparability

of two quasi-arithmetic means [11, 94].
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We denote an open, half-open or closed interval in R with lower endpoint a and

upper endpoint b as I(a, b).

A function h : I(a, b)→ R is called convex (on I(a, b)) [93] if the inequality

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y) (4.1)

holds for any x, y ∈ I(a, b) and any λ ∈ [0, 1]. If the converse inequality holds, then

the function h is called concave. In the next proposition, we state an equivalent

formulation of convexity.

Proposition 4.1. [93] A function h : I(a, b)→ R is convex if and only if∣∣∣∣∣∣∣∣∣∣
1 x h(x)

1 y h(y)

1 z h(z)

∣∣∣∣∣∣∣∣∣∣
≥ 0 , (4.2)

for any x, y, z ∈ I(a, b) such that x < y < z.

Proposition 4.2. A function h : I(a, b)→ R is concave if and only if∣∣∣∣∣∣∣∣∣∣
1 1− x h(x)

1 1− y h(y)

1 1− z h(z)

∣∣∣∣∣∣∣∣∣∣
≥ 0 , (4.3)

for any x, y, z ∈ I(a, b) such that x < y < z.

The notion of convexity can be further generalized as follows.

Definition 4.1. Let ν : I(a, b)→ R be a function and ξ : I(a, b)→ R be a strictly

monotone continuous function. Then ν is called convex (resp. concave) w.r.t. ξ if

the function ν ◦ ξ−1 is convex (resp. concave) on the interval ξ(I(a, b)).

This definition generalizes the one given in [11, 94], where both functions ν and ξ

were considered to be strictly increasing and continuous.

Example 4.1. Let ν, ξ : [0, 1] → [0, 1] be defined by ν(x) = (1 − x)2 and ξ(x) =

1− x2. Clearly, ν and ξ are strictly decreasing and continuous. One easily verifies

that ν ◦ ξ−1(x) = (1−
√

1− x)2 and ξ ◦ ν−1(x) = 1− (1−
√
x)2. Hence, ν is convex

w.r.t. ξ, while ξ is concave w.r.t. ν.

In the following propositions, we state equivalent formulations of generalized

convexity (resp. concavity).
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Proposition 4.3. [11] Let ν : I(a, b)→ R be a function and ξ : I(a, b)→ R be a

strictly increasing continuous function. Then

(i) ν is convex w.r.t. ξ if and only if∣∣∣∣∣∣∣∣∣∣
1 ξ(x) ν(x)

1 ξ(y) ν(y)

1 ξ(z) ν(z)

∣∣∣∣∣∣∣∣∣∣
≥ 0 , (4.4)

or, equivalently,
ν(z)− ν(y)

ξ(z)− ξ(y)
≥ ν(y)− ν(x)

ξ(y)− ξ(x)
, (4.5)

for any x, y, z ∈ I(a, b) such that x < y < z.

(ii) ν is concave w.r.t. ξ if and only if the converse of inequality (4.4) holds for

any x, y, z ∈ I(a, b) such that x < y < z.

Similarly, one can obtain the following proposition.

Proposition 4.4. Let ν : I(a, b) → R be a function and ξ : I(a, b) → R be a

strictly decreasing continuous function. Then

(i) ν is convex w.r.t. ξ if and only if∣∣∣∣∣∣∣∣∣∣
1 ξ(x) ν(x)

1 ξ(y) ν(y)

1 ξ(z) ν(z)

∣∣∣∣∣∣∣∣∣∣
≤ 0 , (4.6)

or, equivalently,
ν(z)− ν(y)

ξ(z)− ξ(y)
≤ ν(y)− ν(x)

ξ(y)− ξ(x)
, (4.7)

for any x, y, z ∈ I(a, b) such that x < y < z.

(ii) ν is concave w.r.t. ξ if and only if the converse of inequality (4.6) holds for

any x, y, z ∈ I(a, b) such that x < y < z.

4.3. Upper conic functions with a given section

In this section, we introduce the definition of an upper conic function with a given

section. A function N : [0, 1]→ [0, 1] is called a negation operator if it is decreasing,

and satisfies N(0) = 1 and N(1) = 0. A negation operator N is called strict if it is

continuous and strictly decreasing; a strict negation operator N is called strong if
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it is involutive (see e.g. [82]). A strict negation operator N has exactly one fixed

point a ∈ ]0, 1[, i.e. N(a) = a.

For a strict negation operator N , we introduce the following subsets of [0, 1]2 (see

Figure 4.1):

SN = {(x, y) ∈ [0, 1]2 | y < N(x)}
FN = [0, 1]2 \ SN .

The sets SN and FN are depicted in Figure 4.1. Let C be a semi-copula and

g : [0, 1] → [0, 1] be defined by g(x) = C(x,N(x)). Then the function AuN,C :

[0, 1]2 → [0, 1] defined by

AuN,C(x, y) =



C(x, y) , if (x, y) ∈ SN ,

1− 1− g(x1)

1−N(x1)
(1− y) , if (x, y) ∈ FN and y 6= 1 ,

x , if y = 1 ,

(4.8)

where (x1, N(x1)) is the unique point such that (x, y) is located on the segment

〈(x1, N(x1)), (1, 1)〉 (see Figure 4.1), is well defined. The function AuN,C is called an

upper conic function with section (N, g) since AuN,C(t,N(t)) = g(t) for any t ∈ [0, 1],

and it is linear on any segment 〈(t,N(t)), (1, 1)〉 in FN . Note that the collinearity

of the points (x1, N(x1)), (x, y) and (1, 1) implies that

1− 1− g(x1)

1−N(x1)
(1− y) = 1− 1− g(x1)

1− x1
(1− x) .

This equality ensures the continuity of AuN,C on FN . Note also that AuN,C is

continuous if and only if C is continuous on the closure of SN .

4.4. Upper conic semi-copulas and quasi-copulas

with a given section

In this section, we characterize upper conic semi-copulas and quasi-copulas with a

given section. For an upper conic function AuN,C , this characterization involves the

use of the functions ϕ, ϕ̂, ψ, ψ̂ : ]0, 1[→ R defined by

ϕ(x) =
x

N(x)
, ϕ̂(x) =

1− x
1−N(x)

,

ψ(x) =
g(x)

N(x)
, ψ̂(x) =

1− g(x)

1−N(x)
.
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(x, y)

x1

N(x1)

SN

N

FN

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 4.1: Illustration of the subsets FN and SN corresponding to a strict negation
operator N .

Note that the strict decreasingness of N implies the strict increasingness of ϕ and

the strict decreasingness of ϕ̂.

Proposition 4.5. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be a

semi-copula. Then the function AuN,C defined by (4.8) is a semi-copula if and only

if

(i) the function ψ̂ is decreasing;

(ii) the function
ψ̂

ϕ̂
is increasing.

Proof. Suppose that conditions (i) and (ii) are satisfied. To prove that AuN,C is

a semi-copula, it suffices to prove its increasingness. Since C is a semi-copula, it

suffices to prove the increasingness of AuN,C in each variable on FN . We prove

the increasingness of AuN,C in the first variable (the proof of the increasingness in

the second variable is similar). Let (x, y), (x′, y) ∈ FN such that x ≤ x′ and let

(x1, N(x1)) and (x2, N(x2)) be the unique points such that (x, y) and (x′, y) are

located on the segments 〈(x1, N(x1)), (1, 1)〉 and 〈(x2, N(x2)), (1, 1)〉, respectively.

The increasingness of AuN,C in the first variable is then equivalent to

(1− y)

(
1− g(x1)

1−N(x1)
− 1− g(x2)

1−N(x2)

)
= (1− y)(ψ̂(x1)− ψ̂(x2)) ≥ 0 . (4.9)

Since x1 ≤ x2 and ψ̂ is decreasing, inequality (4.9) immediately follows.

Conversely, suppose that AuN,C is a semi-copula. Consider arbitrary x1, x2 ∈ ]0, 1[

93



Chapter 4. Upper conic, lower conic and biconic semi-copulas

such that x1 ≤ x2, and let (x, y) and (x′, y) be two points in FN that are located

on the segments 〈(x1, N(x1)), (1, 1)〉 and 〈(x2, N(x2)), (1, 1)〉, respectively. The

increasingness of AuN,C in the first variable implies that

AuN,C(x′, y)−AuN,C(x, y) ≥ 0 , (4.10)

or, equivalently,

ψ̂(x1)− ψ̂(x2) ≥ 0 .

Hence, the decreasingness of ψ̂ follows. Similarly, the increasingness of AuN,C in

the second variable implies the increasingness of
ψ̂

ϕ̂
.

Before characterizing upper conic quasi-copulas, we provide some properties of

sections of quasi-copulas. These properties are direct consequences of the increas-

ingness and 1-Lipschitz continuity of quasi-copulas.

Proposition 4.6. Let N : [0, 1]→ [0, 1] be a strict negation operator. Let C be a

quasi-copula and g : [0, 1]→ [0, 1] be defined by g(x) = C(x,N(x)). Then it holds

that

(i) max(0, x+N(x)− 1) ≤ g(x) ≤ min(x,N(x)), for any x ∈ [0, 1];

(ii) N(x′)−N(x) ≤ g(x′)− g(x) ≤ x′ − x, for any x, x′ ∈ [0, 1] such that x ≤ x′.

Proof. Assertion (i) follows from the bounds on quasi-copulas. Let x, x′ ∈ [0, 1]

such that x ≤ x′. Since C is increasing, it holds that

C(x,N(x)) ≤ C(x′, N(x)) and C(x′, N(x′)) ≤ C(x′, N(x)) .

Since C is 1-Lipschitz continuous, it holds that

C(x′, N(x))−C(x,N(x)) ≤ x′−x and C(x′, N(x))−C(x′, N(x′)) ≤ N(x)−N(x′) .

Using the above inequalities, it follows that

N(x′)−N(x) ≤ C(x′, N(x′))− C(x′, N(x)) ≤ C(x′, N(x′))− C(x,N(x))

= g(x′)− g(x) ≤ C(x′, N(x))− C(x,N(x)) ≤ x′ − x .

Hence, assertion (ii) follows.

In fact, assertion (ii) of Proposition 4.6 implies the decreasingness of ψ̂ and the

increasingness of
ψ̂

ϕ̂
.
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Proposition 4.7. Let N : [0, 1] → [0, 1] be a strict negation operator with fixed

point a. Let C be a quasi-copula and g : [0, 1] → [0, 1] be defined by g(x) =

C(x,N(x)). Then it holds that

(i) the functions ψ̂ and
ψ̂

ϕ̂
are decreasing and increasing, respectively;

(ii) the function ζ : [0, a[∪ ]a, 1]→ R defined by ζ(x) =
x− g(x)

x−N(x)
is decreasing

on the interval [0, a[ as well as on the interval ]a, 1].

Proof. Consider arbitrary x, x′ ∈ ]0, 1[ such that x < x′. Since N(x′) − N(x) ≤
g(x′)− g(x) ≤ x′ − x and 1− g(x) ≥ max(1− x, 1−N(x)), it holds that

g(x)− g(x′)

N(x)−N(x′)
≤ 1 ≤ 1− g(x)

1−N(x)
and

g(x′)− g(x)

x′ − x
≤ 1 ≤ 1− g(x)

1− x
.

The latter inequalities imply that

(g(x)− g(x′))(1−N(x)) ≤ (1− g(x))(N(x)−N(x′))

and

(g(x′)− g(x))(1− x) ≤ (1− g(x))(x′ − x) .

Some elementary manipulations yield

(1−N(x))(1− g(x′))− (1−N(x′))(1− g(x)) ≤ 0

and

(1− x′)(1− g(x))− (1− x)(1− g(x′)) ≤ 0 ,

or, equivalently,

(1−N(x))(1−N(x′))(ψ̂(x′)− ψ̂(x)) ≤ 0

and

(1− x)(1− x′)

(
ψ̂(x)

ϕ̂(x)
− ψ̂(x′)

ϕ̂(x′)

)
≤ 0 .

Hence, the decreasingness of ψ̂ and the increasingness
ψ̂

ϕ̂
follow, i.e. assertion (i)

follows.

Similarly, one can prove assertion (ii).
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Corollary 4.1. Let N : [0, 1] → [0, 1] be a strict negation operator and C be a

quasi-copula. Then the function AuN,C defined by (4.8) is a semi-copula.

Proposition 4.8. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be a

quasi-copula. Then the function AuN,C defined by (4.8) is a quasi-copula if and only

if

(i) the function ψ̂ − ϕ̂ is increasing;

(ii) the function
ψ̂ − 1

ϕ̂
is decreasing.

Proof. Suppose that conditions (i) and (ii) are satisfied. Due to Corollary 4.1, the

function AuN,C is a semi-copula. Therefore, to prove that AuN,C is a quasi-copula,

we need to show that it is 1-Lipschitz continuous. Recall that the 1-Lipschitz

continuity is equivalent to the 1-Lipschitz continuity in each variable. Since C

is a quasi-copula and AuN,C is continuous, it is sufficient to show its 1-Lipschitz

continuity in each variable on FN . We prove the 1-Lipschitz continuity of AuN,C
in the first variable (the proof of the 1-Lipschitz continuity in the second variable

is similar). Let (x, y), (x′, y) ∈ FN such that x ≤ x′ and suppose that (x1, N(x1))

and (x2, N(x2)) are the unique points such that (x, y) and (x′, y) are located

on the segments 〈(x1, N(x1)), (1, 1)〉 and 〈(x2, N(x2)), (1, 1)〉, respectively. The

1-Lipschitz continuity of AuN,C in the first variable is equivalent to

(1− y)

(
1− g(x1)

1−N(x1)
− 1− g(x2)

1−N(x2)

)
≤ x′ − x . (4.11)

Since the points (x1, N(x1)), (x, y) and (1, 1) as well as the points (x2, N(x2)),

(x′, y) and (1, 1) are collinear, it follows that

x′ − x = (1− y)

(
1− x1

1−N(x1)
− 1− x2

1−N(x2)

)
.

Therefore, inequality (4.11) is equivalent to

1− g(x1)

1−N(x1)
− 1− g(x2)

1−N(x2)
≤ 1− x1

1−N(x1)
− 1− x2

1−N(x2)
,

or, equivalently,

(ψ̂(x2)− ϕ̂(x2))− (ψ̂(x1)− ϕ̂(x1)) ≥ 0 .

Since x1 ≤ x2 and ψ̂ − ϕ̂ is increasing, the above inequality immediately follows.

Conversely, suppose that AuN,C is a quasi-copula. Consider arbitrary x1, x2 ∈ ]0, 1[

such that x1 ≤ x2, and let (x, y) and (x′, y) be two points in FN that are located

on the segments 〈(x1, N(x1)), (1, 1)〉 and 〈(x2, N(x2)), (1, 1)〉, respectively. The
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1-Lipschitz continuity of AuN,C in the first variable implies that

AuN,C(x′, y)−AuN,C(x, y) ≤ x′ − x , (4.12)

or, equivalently,

(ψ̂(x2)− ϕ̂(x2))− (ψ̂(x1)− ϕ̂(x1)) ≥ 0 .

Hence, the increasingness of ψ̂ − ϕ̂ follows. Similarly, the 1-Lipschitz continuity of

AuN,C in the second variable implies the decreasingness of
ψ̂ − 1

ϕ̂
.

Example 4.2. Let N : [0, 1] → [0, 1] be a strict negation operator and C = TM.

One easily verifies that the conditions of Proposition 4.8 are satisfied. Moreover,

the corresponding upper conic function is TM itself.

Example 4.3. Let N : [0, 1] → [0, 1] be a strict negation operator such that

N(x) ≤ 1−x for any x ∈ [0, 1], and C = TL. One easily verifies that the conditions

of Proposition 4.5 are satisfied and the corresponding upper conic function AuN,C is

a semi-copula. On the other hand, due to Proposition 4.8, AuN,C is a quasi-copula

if and only if the functions
N(x)

1− x
and

x

1−N(x)
are decreasing and increasing on

the interval ]0, 1[, respectively.

Example 4.4. Let N : [0, 1] → [0, 1] be a strict negation operator such that

N(x) ≥ 1−x for any x ∈ [0, 1], and C = TL. One easily verifies that the conditions

of Proposition 4.8 are satisfied. Moreover, the corresponding upper conic function

is TL itself.

Example 4.5. Let N : [0, 1] → [0, 1] be a strict negation operator and C = TP.

One easily verifies that the conditions of Proposition 4.8 are satisfied and the

corresponding upper conic function AuN,C is a quasi-copula, and hence, a semi-

copula. Consequently, when the considered semi-copula is TP, the class of upper

conic semi-copulas and the class of upper conic quasi-copulas coincide.

Proposition 4.9. Let AuN,C be an upper conic quasi-copula. Then it holds that

(i) if g(x0) = x0 for some x0 ∈ ]0, 1[, then g(x) = x for any x ∈ [0, x0];

(ii) if g(x0) = N(x0) for some x0 ∈ ]0, 1[, then g(x) = N(x) for any x ∈ [x0, 1].

Proof. Suppose that AuN,C is an upper conic quasi-copula and suppose further that

g(x0) = x0 for some x0 ∈ ]0, 1[ . Since AuN,C is an upper conic quasi-copula, it holds

that the function ψ̂ − ϕ̂ is increasing. Therefore, ψ̂(x)− ϕ̂(x) ≤ ψ̂(x0)− ϕ̂(x0) = 0

for any x ∈ ]0, x0]. Hence, g(x) ≥ x for any x ∈ ]0, x0]. Since g(x) ≤ x for any

x ∈ [0, 1] and g(0) = 0, it must hold that g(x) = x for any x ∈ [0, x0], and hence,

assertion (i) follows.
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T

SN

(x1, y1)

(x2, y2)

(x, y)

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 4.2: An illustration of the triangle T .

Assertion (ii) can be proved similarly using the decreasingness of the function

ψ̂ − 1

ϕ̂
on the interval [x0, 1[ .

4.5. Upper conic copulas with a given section

4.5.1. The case of an arbitrary semi-copula C

Suppose that the graph of the strict negation operator N contains a segment

determined by the points (x1, N(x1)) and (x2, N(x2)), with x1 < x2. Suppose

further that the function g is linear on the interval [x1, x2]. Let us introduce

the notations yi = N(xi) and zi = g(xi) for i ∈ {1, 2}. From the definition of

AuN,C , it follows that AuN,C is linear on the triangle T := ∆{(x1,y1),(x2,y2),(1,1)} .

This configuration is depicted in Figure 4.2.

For any (x, y) ∈ T , it holds that

AuN,C(x, y) = ax+ by + c . (4.13)

98



§4.5. Upper conic copulas with a given section

Furthermore,

ax1 + by1 + c = z1

ax2 + by2 + c = z2

a+ b+ c = 1 .

Solving this system of linear equations, we obtain

AuN,C(x, y) =
rx+ sy + t

u
, (4.14)

where

r = z2 − z1 + y1 − y2 + y2z1 − y1z2

s = z1 − z2 + x2 − x1 + x1z2 − x2z1

t = x1y2 − x2y1 − y2z1 + y1z2 − x1z2 + x2z1

u = x2 − x1 + y1 − y2 + x1y2 − x2y1 .

Lemma 4.1. For any v1, v2 ∈ [x1, x2] it holds that

ψ̂(v2)− ψ̂(v1)

ϕ̂(v2)− ϕ̂(v1)
=
r

u
.

Proof. The proof is a matter of elementary manipulations.

Next, we characterize the upper conic copulas AuN,C when the functions N and g

are piecewise linear. To this end, we need the following proposition.

Proposition 4.10. Let AuN,C be an upper conic function such that N and g are lin-

ear on the interval [x1, x2] as well as on the interval [x2, x3]. Let R be a rectangle lo-

cated in the polygon enclosed by the points (x1, N(x1)), (x2, N(x2)), (x3, N(x3)) and

(1, 1) such that its diagonal is a subset of the segment

〈(x2, N(x2)), (1, 1)〉. Then it holds that VAuN,C (R) ≥ 0 if and only if ψ̂ is con-

vex w.r.t. ϕ̂ on the interval [x1, x3].

Proof. Consider the rectangle R = [x, x′] × [y, y′] depicted in Figure 4.3. Let

us introduce the notations yi = N(xi) and zi = g(xi) for i ∈ {1, 2, 3}. The

AuN,C-volume of this rectangle is given by

VAuN,C (R) = (x− x′)
(
r′

u′
− r

u

)
,
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SN

R

(x1, y1)

(x2, y2)

(x3, y3)

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 4.3: An illustration for the proof of Proposition 4.10.

where

r′ = z3 − z2 + y2 − y3 + y3z2 − y2z3

u′ = x3 − x2 + y2 − y3 + x2y3 − x3y2 .

The nonnegativity of VAuN,C (R) is equivalent to

r′

u′
− r

u
≤ 0 . (4.15)

From Lemma 4.1, it follows that

r

u
=
ψ̂(x2)− ψ̂(x1)

ϕ̂(x2)− ϕ̂(x1)
and

r′

u′
=
ψ̂(x3)− ψ̂(x2)

ϕ̂(x3)− ϕ̂(x2)
.

Therefore, inequality (4.15) is equivalent to

ψ̂(x3)− ψ̂(x2)

ϕ̂(x3)− ϕ̂(x2)
≤ ψ̂(x2)− ψ̂(x1)

ϕ̂(x2)− ϕ̂(x1)
. (4.16)

In fact, inequality (4.16) is equivalent to the convexity of ψ̂ w.r.t. ϕ̂ on the

interval [x1, x3]. This can be seen as follows. Since ϕ̂ is strictly decreasing, we

use Proposition 4.4(i) to prove that ψ̂ is convex w.r.t. ϕ̂. Consider arbitrary

x, y, z ∈ [x1, x3] such that x < y < z. Suppose first that inequality (4.16) is

satisfied. To prove that ψ̂ is convex w.r.t. ϕ̂, we distinguish the following subcases:
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(a) If x < y < z ≤ x2 or x2 ≤ x < y < z, then it holds that

ψ̂(z)− ψ̂(y)

ϕ̂(z)− ϕ̂(y)
=
ψ̂(y)− ψ̂(x)

ϕ̂(y)− ϕ̂(x)
.

(b) If x ≤ x2 ≤ y < z, then using Lemma 4.1, it follows that the inequality

ψ̂(z)− ψ̂(y)

ϕ̂(z)− ϕ̂(y)
≤ ψ̂(y)− ψ̂(x)

ϕ̂(y)− ϕ̂(x)

is equivalent to

ψ̂(y)− ψ̂(x2)

ϕ̂(y)− ϕ̂(x2)
≤ ψ̂(y)− ψ̂(x2)

ϕ̂(y)− ϕ̂(x)
+
ψ̂(x2)− ψ̂(x)

ϕ̂(y)− ϕ̂(x)
.

After some elementary manipulations and using (4.16), the latter inequality

becomes

ψ̂(y)− ψ̂(x2)

ϕ̂(y)− ϕ̂(x2)
=
ψ̂(x3)− ψ̂(x2)

ϕ̂(x3)− ϕ̂(x2)
≤ ψ̂(x2)− ψ̂(x)

ϕ̂(x2)− ϕ̂(x)
=
ψ̂(x2)− ψ̂(x1)

ϕ̂(x2)− ϕ̂(x1)
,

which always holds.

(c) The case x < y ≤ x2 ≤ z can be handled similarly.

The converse of the proof is immediate.

Remark 4.1. Let AuN,C be an upper conic function such that g(x) = 0 for any

x ∈ [0, 1]. Then inequality (4.16) is equivalent to the convexity of N on the interval

[x1, x3].

Proof. Setting g(x) = 0, inequality (4.16) is equivalent to

1
1−N(x3) −

1
1−N(x2)

1−x3

1−N(x3) −
1−x2

1−N(x2)

≤
1

1−N(x2) −
1

1−N(x1)

1−x2

1−N(x2) −
1−x1

1−N(x1)

,

or, equivalently,

N(x3)−N(x2)

x2 − x3 +N(x3)−N(x2) + x3N(x2)− x2N(x3)

≤ N(x2)−N(x1)

x1 − x2 +N(x2)−N(x1) + x2N(x1)− x1N(x2)
.

Setting N(xi) = yi for any i ∈ {1, 2, 3}, the latter inequality is equivalent to

y1 − y2

y1 − y2 + x2 − x1 + x1y2 − x2y1
− y2 − y3

y2 − y3 + x3 − x2 + x2y3 − x3y2
≥ 0 ,
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which is exactly inequality (2.10) in Chapter 2. The latter inequality has led to

the convexity of the function f = N on the interval [x1, x3].

Proposition 4.11. Let N : [0, 1] → [0, 1] be a piecewise linear strict negation

operator and C be a copula such that g is piecewise linear. Then the function AuN,C
defined by (4.8) is a copula if and only if

(i) the function ψ̂ is convex w.r.t. ϕ̂;

(ii) for any x, x′ ∈ [0, 1] such that x ≤ x′, it holds that

C(x,N(x′)) +AuN,C(x′, N(x)) ≥ g(x) + g(x′) .

Proof. Suppose that conditions (i) and (ii) are satisfied. Since AuN,C satisfies the

boundary conditions of a semi-copula, we need to show its 2-increasingness. Since

N and g are piecewise linear, the set FN consists of triangles of the type ∆ =

∆{(u,N(u)),(v,N(v)),(1,1)} such that g is linear on the interval [u, v] (see Figure 4.2).

Due to the additivity of volumes, it suffices to consider a restricted number of cases.

Consider a rectangle R := [x, x′]× [y, y′] ⊆ [0, 1]2.

(a) Suppose that R ⊆ FN . We distinguish the following subcases:

(1) Suppose that R is included in a triangle of type ∆. Then VAuN,C (R) = 0.

(2) Suppose that the diagonal of R is along the edge shared by two triangles

of type ∆. Using Proposition 4.10, condition (i) implies the positivity

of VAuN,C (R).

(b) Suppose that R is included in SN . Then it holds that VAuN,C (R) = VC(R) ≥ 0.

(c) Suppose that the corners (x, y′) and (x′, y) of R are located on the graph

of N , i.e. R = [x, x′]× [N(x′), N(x)]. Using condition (ii), the positivity of

VAuN,C (R) immediately follows.

Conversely, suppose that AuN,C is a copula. Proposition 4.10 implies that ψ̂ is

convex w.r.t. ϕ̂ on ]0, 1[ and hence, condition (i) follows. Let x, x′ ∈ [0, 1] such that

x ≤ x′ and consider the rectangle R = [x, x′]× [N(x′), N(x)]. Since VAuN,C (R) is

positive, it then follows that

VAuN,C (R) = C(x,N(x′))− g(x)− g(x′) +AuN,C(x′, N(x) ≥ 0 ,

and hence, condition (ii) follows.

The above result can be generalized for any strict negation operator N and any

copula C. To this end, we first need to construct a class of [0, 1]2 → [0, 1]

functions C∗ starting from a given copula C. Consider x0 = 0 < x1 < · · · < xn = 1

and y0 = 0 < y1 < · · · < ym = 1. In the points (xi, yj) with i ∈ {0, . . . , n},
j ∈ {0, . . . ,m}, we set C∗(xi, yj) = C(xi, yj); in other words, C∗ coincides with C
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on the given grid. On any rectangle Ri,j = [xi, xi+1]× [yj , yj+1] with i ∈ {0, . . . , n−
1}, j ∈ {0, . . . ,m − 1}, the function C∗ is defined to be linear on the triangle

∆{(xi,yj),(xi,yj+1),(xi+1,yj)} as well as on the triangle ∆{(xi,yj+1),(xi+1,yj+1),(xi+1,yj)}.

We show in the following proposition that such a function C∗ is a copula.

Proposition 4.12. Consider x0 = 0 < x1 < . . . < xn = 1 and y0 = 0 < y1 <

. . . < ym = 1. For any copula C, the function C∗ : [0, 1]2 → [0, 1] defined by

C∗(x, y) =
C(x, y) , if (x, y) = (xi, yj) ,

ai,jx+ bi,jy + ci,j , if (x, y) ∈ Ri,j and y ≤ yj−yj+1

xi+1−xi (x− xi) + yj+1 ,

a′i,jx+ b′i,jy + c′i,j , if (x, y) ∈ Ri,j and y >
yj−yj+1

xi+1−xi (x− xi) + yj+1 ,

(4.17)

where i ∈ {0, . . . , n− 1}, j ∈ {0, . . . ,m− 1}, Ri,j = [xi, xi+1]× [yj , yj+1] and

ai,j =
C(xi+1, yj)− C(xi, yj)

xi+1 − xi
, a′i,j =

C(xi+1, yj+1)− C(xi, yj+1)

xi+1 − xi
,

bi,j =
C(xi, yj+1)− C(xi, yj)

yj+1 − yj
, b′i,j =

C(xi+1, yj+1)− C(xi+1, yj)

yj+1 − yj
,

ci,j = C(xi, yj)− ai,jxi − bi,jyj , c′i,j = C(xi+1, yj+1)− a′i,jxi+1 − b′i,jyj+1 ,

is a copula.

Proof. Since C is a copula, it holds that C∗ satisfies the boundary conditions of

a semi-copula. Therefore, to prove that C∗ is a copula, it suffices to show its

2-increasingness. Let R = [x, x′]× [y, y′] ⊆ [0, 1]2. Due to the additivity of volumes,

it suffices to consider that R is located in a rectangle Ri,j , with i ∈ {0, . . . , n− 1}
and j ∈ {0, . . . ,m− 1}.

(a) If R is located in the triangle ∆(xi,yj),(xi,yj+1),(xi+1,yj) or in the triangle

∆(xi,yj+1),(xi+1,yj+1),(xi+1,yj), then VC∗(R) = 0.

(b) If the opposite diagonal of R is a subset of the segment 〈(xi, yj+1), (xi+1, yj)〉,
then it holds that

VC∗(R) = (x′ − x)(a′i,j − ai,j) =
x′ − x

xi+1 − xi
VC(Ri,j) ≥ 0 .
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Remark 4.2. The construction of the copula C∗ is related to the orthogonal grid

construction of copulas [16] and the construction of piecewise linear aggregation

functions based on triangulation [21].

Lemma 4.2. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be a copula.

If N and g are linear on the interval [a, b] ⊆ ]0, 1[, then the function ψ̂ ◦ ϕ̂−1 is

linear on the interval [ϕ̂(b), ϕ̂(a)] as well.

Proof. Since N and g are linear on the interval [a, b], there exist a1, a2, b1, b2 ∈ R
such that N(x) = a1x + b1 and g(x) = a2x + b2 for any x ∈ [a, b]. Note that

a1 + b1 6= 1 due to fact that b < 1. Some elementary manipulations show that

ψ̂ ◦ ϕ̂−1(x) =
1− a2 − b2
1− a1 − b2

+
a2(1− b1)− a1(1− b2)

1− a1 − b1
x ,

i.e. ψ̂ ◦ ϕ̂−1 is linear on the interval [ϕ̂(b), ϕ̂(a)].

Theorem 4.1. Let N : [0, 1] → [0, 1] be a strict negation operator and C be a

copula. Then the function AuN,C defined by (4.8) is a copula if and only if

(i) the function ψ̂ is convex w.r.t. ϕ̂;

(ii) for any x, x′ ∈ [0, 1] such that x ≤ x′, it holds that

C(x,N(x′)) +AuN,C(x′, N(x)) ≥ g(x) + g(x′) .

Proof. Suppose that conditions (i) and (ii) are satisfied. Since AuN,C satisfies the

boundary conditions of a semi-copula, we need to show its 2-increasingness. Due

to the additivity of volumes, it suffices to consider a restricted number of cases.

Consider a rectangle R := [x, x′]× [y, y′] ⊆ [0, 1]2.

(i) If R ⊆ FN , then let b1 = (x1, N(x1)), b2 = (x2, N(x2)), b3 = (x3, N(x3))

and b4 = (x4, N(x4)) be four (possibly coinciding) points on the graph

of N such that the points (x, y), (x, y′), (x′, y) and (x′, y′) are located on

the segments 〈b1, (1, 1)〉, 〈b2, (1, 1)〉, 〈b3, (1, 1)〉 and 〈b4, (1, 1)〉, respectively

(see Figure 4.4). Let c1 = (x1, g(x1)), c2 = (x2, g(x2)), c3 = (x3, g(x3)) and

c4 = (x4, g(x4)) be the points on the graph of g corresponding to b1, b2,

b3 and b4, respectively. The points b1, b2, b3 and b4, together with (0, 1)

and (1, 0), determine a piecewise linear strict negation operator N1 such that

N(xi) = N1(xi) for any i ∈ {1, 2, 3, 4}. The points c1, c2, c3 and c4, together

with (0, 0) and (1, 0), also determine a piecewise linear function g1 such that

g(xi) = g1(xi) = C1(xi, N(xi)) for any i ∈ {1, 2, 3, 4}, for some copula C1

(due to Proposition 4.12, such a copula C1 always exists). Let us introduce

the functions ϕ̂1 and ψ̂1 defined by

ϕ̂1(x) =
1− x

1−N1(x)
, ψ̂1(x) =

1− g1(x)

1−N1(x)
.
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SN

x1 x2 x3 x4(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 4.4: Illustration for the proof of Theorem 4.1.

Due to Lemma 4.2, the function ψ̂1 ◦ ϕ̂1
−1

is piecewise linear. Since ψ̂ is

convex w.r.t. ϕ̂ it holds that

ψ̂1(xi+1)− ψ̂1(xi)

ϕ̂1(xi+1)− ϕ̂1(xi)
=
ψ̂(xi+1)− ψ̂(xi)

ϕ̂(xi+1)− ϕ̂(xi)

≤ ψ̂(xi)− ψ̂(xi−1)

ϕ̂(xi)− ϕ̂(xi−1)
=
ψ̂1(xi)− ψ̂1(xi−1)

ϕ̂1(xi)− ϕ̂1(xi−1)

for any i ∈ {2, 3}, i.e. ψ̂1 is convex w.r.t. ϕ̂1 on the interval [x1, x4]. Consider

now xβ ∈ ]0, 1[ such that xβ < x1. Let us introduce the notations x′2 = ϕ̂(x2),

x′1 = ϕ̂(x1) and x′β = ϕ̂(xβ). Let us further introduce the functions h and h1

defined by h = ψ̂ ◦ ϕ̂−1 and h1 = ψ̂1 ◦ ϕ̂1
−1. Since ψ̂ is convex w.r.t. to ϕ̂ it

follows that h is convex, and hence,

h1(x′β)− h1(x′1)

x′β − x′1
≤
h(x′β)− h1(x′1)

x′β − x′1
=
h(x′β)− h(x′1)

x′β − x′1

≤ h(x′1)− h(x′2)

x′1 − x′2
=
h1(x′1)− h1(x′2)

x′1 − x′2
,

i.e. ψ̂1 is convex w.r.t. ϕ̂1 on [xβ , x2]. Similarly, one proves that ψ̂1 is convex

w.r.t. ϕ̂1 on [x3, xα] with x4 < xα < 1. Therefore, ψ̂1 is convex w.r.t. ϕ̂1. Due
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to Proposition 4.11, the upper conic function AuN1,C1
is a copula. Therefore,

VAuN,C (R) = VAuN1,C1
(R) ≥ 0 .

(ii) The proof of the cases when R ⊆ SN or when the corners (x, y′) and (x′, y)

of R are located on the graph of N is similar to the corresponding ones in

the proof of Proposition 4.11.

Conversely, suppose that AuN,C is a copula and suppose further that ψ̂ is not convex

w.r.t. ϕ̂, i.e. there exist 0 < x < y < z < 1 such that

ψ̂(z)− ψ̂(y)

ϕ̂(z)− ϕ̂(y)
>
ψ̂(y)− ψ̂(x)

ϕ̂(y)− ϕ̂(x)
.

Since ψ̂ and ϕ̂ are continuous, there exists ε > 0 such that for any x′ ∈ [y− ε, y+ ε],

it holds that
ψ̂(z)− ψ̂(x′)

ϕ̂(z)− ϕ̂(x′)
>
ψ̂(x′)− ψ̂(x)

ϕ̂(x′)− ϕ̂(x)
.

Due to Proposition 4.10, any rectangle located in the polygon enclosed by the

points (x,N(x)), (y,N(y), (z,N(z)) and (1, 1) has a negative AuN,C-volume, a

contradiction. The proof of condition (ii) is similar to the previous one.

To conclude this section, we discuss the lower-lower and upper-upper tail depen-

dences of upper conic copulas. Note that, for an upper conic copula AuN,C , its

lower-lower tail dependence obviously coincides with the lower-lower tail dependence

of C, while its upper-upper tail dependence is given by

λUU = 2− 1− g(a)

1− a
,

where a is the fixed point of N .

4.5.2. The case of the product copula

We now focus on upper conic functions AN,C when the considered semi-copula C

is the product copula, i.e. C = TP.

Lemma 4.3. Let N : [0, 1]→ [0, 1] be a strict negation operator. Then the function

AuN,TP
defined by (4.8) satisfies the inequality

AuN,TP
(x, y) ≥ TP(x, y) , (4.18)

for any (x, y) ∈ [0, 1]2.
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Proof. Since C = TP, it suffices to prove inequality (4.18) for any (x, y) ∈ FN , i.e.

1− 1− x1N(x1)

1− x1
(1− x) ≥ xy , (4.19)

where (x1, N(x1)) is the unique point such that (x, y) is located on the segment

〈(x1, N(x1)), (1, 1)〉. Since the points (x1, N(x1)), (x, y) and (1, 1) are collinear, it

follows that

y = 1− 1−N(x1)

1− x1
(1− x) .

Inequality (4.19) is then equivalent to

1− 1− x1N(x1)

1− x1
(1− x) ≥ x

(
1− 1−N(x1)

1− x1
(1− x)

)
,

or, equivalently, x ≥ x1, which always holds.

Consequently, any upper conic copulaAuN,TP
is positive quadrant dependent (PQD) [88].

Proposition 4.13. Let N : [0, 1]→ [0, 1] be a strict negation operator. Then the

function AuN,TP
defined by (4.8) is a copula if and only if the function ϕ̂ is convex.

Proof. Condition (i) of Theorem 4.1 is equivalent to

1−zN(z)
1−N(z) −

1−yN(y)
1−N(y)

ϕ̂(z)− ϕ̂(y)
≤

1−yN(y)
1−N(y) −

1−xN(x)
1−N(x)

ϕ̂(y)− ϕ̂(x)
, (4.20)

for any x, y, z ∈ ]0, 1[ such that x < y < z. Some elementary manipulations yield

1 +
z − y

ϕ̂(z)− ϕ̂(y)
≤ 1 +

y − x
ϕ̂(y)− ϕ̂(x)

,

or, equivalently,
ϕ̂(z)− ϕ̂(y)

z − y
≥ ϕ̂(y)− ϕ̂(x)

y − x
,

for any x, y, z ∈ ]0, 1[ such that x < y < z, i.e. ϕ̂ is convex. Due to Lemma 4.3, it

holds that

TP(x,N(x′))+AuN,TP
(x′, N(x)) ≥ TP(x,N(x′))+TP(x′, N(x)) ≥ gTP

(x)+gTP
(x′) ,

for any x, x′ ∈ ]0, 1[ such that x ≤ x′, i.e. condition (ii) of Theorem 4.1 always

holds.
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Figure 4.5: The 3D plot and contour plot of the copula of Example 4.6.

Example 4.6. Let N : [0, 1] → [0, 1] be the strict negation operator defined by

N(x) = 1 − x. The function ϕ̂ is then given by ϕ̂(x) = 1−x
x . One easily verifies

that ϕ̂ is convex, and hence, the corresponding upper conic function AuN,TP
is a

copula and is given by

AuN,TP
(x, y) =


xy , if y ≤ 1− x ,

x+ y − 1 +
(1− x)(1− y)

2− x− y
, otherwise.

The 3D plot and contour plot of AuN,Π are depicted in Figure 4.5.

In the next proposition, we show that the convexity of a strict negation operator

N is a sufficient condition for the convexity of the function ϕ̂.

Proposition 4.14. Let N : [0, 1] → [0, 1] be a strict negation operator. If N is

convex, then the function ϕ̂ is convex.

Proof. Since N is continuous, it holds that ϕ̂ is continuous on the interval ]0, 1[ .

Therefore, in order to prove the convexity of ϕ̂, it suffices [93] to show that

ϕ̂

(
x+ y

2

)
≤ ϕ̂(x) + ϕ̂(y)

2
, for any x, y ∈ ]0, 1[ .

Let x, y ∈ ]0, 1[ and suppose w.l.o.g that x < y. Since N is convex, it holds that

ϕ̂

(
x+ y

2

)
=

2− x− y
2
(
1−N

(
x+y

2

)) ≤ 2− x− y
2−N(x)−N(y)

.
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In order to complete the proof, we need to show that

2− x− y
2−N(x)−N(y)

≤ 2− x− y −N(x)(1− y)−N(y)(1− x)

2(1−N(x))(1−N(y))
=
ϕ̂(x) + ϕ̂(y)

2
.

After some elementary manipulations, the latter inequality is equivalent to

x− y −N(x) +N(y) + yN(x)− xN(y) ≤ 0 .

After adding and subtracting the term xN(x), the latter inequality becomes

(x− y)(1−N(x)) + (N(y)−N(x))(1− x) ≤ 0 .

Since x < y and taking into account that N is decreasing, the latter inequality

clearly holds.

Proposition 4.15. Let N : [0, 1] → [0, 1] be a strict negation operator. If N is

convex, then the function AuN,TP
defined by (4.8) is a copula.

In fact, the convexity of N is not a necessary condition in general. This can be

seen in the following example.

Example 4.7. Let N : [0, 1] → [0, 1] be the strict negation operator defined by

N(x) = 1− x2. The function ϕ̂ is then given by ϕ̂(x) =
1− x
x2

. One easily verifies

that N is concave, while the function ϕ̂ is convex. Hence, the function AuN,TP

defined by (4.8) is a copula; it is given by

AuN,TP
(x, y) =


xy , if y ≤ 1− x2 ,

x−

(
y − 1 +

√
(1− y)(5− 4x− y)

)3

4(1− x)(3− 2x− y −
√

(1− y)(5− 4x− y))
, otherwise .

Note that, for an upper conic copula AuN,TP
, the upper-upper tail dependence is

given by λUU = 1− a, where a is the fixed point of N .

4.6. Lower conic functions with a given section

In this section, we introduce the definition of a lower conic function with a given

section. Let N be a strict negation operator. Let C be a semi-copula and g : [0, 1]→
[0, 1] be defined by g(x) = C(x,N(x)). Then the function AlN,C : [0, 1]2 → [0, 1]
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defined by

AlN,C(x, y) =



g(x0)

N(x0)
y , if (x, y) ∈ SN and y 6= 0 ,

C(x, y) , if (x, y) ∈ FN ,

0 , if y = 0 ,

(4.21)

where (x0, N(x0)) is the unique point such that (x, y) is located on the segment

〈(0, 0), (x0, N(x0))〉, is well defined. The function AlN,C is called a lower conic

function with section (N, g) since AlN,C(t,N(t)) = g(t) for any t ∈ [0, 1], and it is

linear on any segment 〈(0, 0), (t,N(t))〉 in SN . Note that the collinearity of the

points (x0, N(x0)), (x, y) and (0, 0) implies that

g(x0)

N(x0)
y =

g(x0)

x0
x .

This equality ensures the continuity of AlN,C on SN . Note also that AlN,C is

continuous if and only if C is continuous.

Using the same techniques as before the following propositions can be proved.

Proposition 4.16. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be

a semi-copula. Then the function AlN,C defined by (4.21) is a semi-copula if and

only if the functions ψ and
ψ

ϕ
are increasing and decreasing, respectively.

Proposition 4.17. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be a

quasi-copula. Then the function AlN,C defined by (4.21) is a quasi-copula if and

only if

(i) the functions ψ and
ψ

ϕ
are increasing and decreasing, respectively;

(ii) the functions ψ − ϕ and
ψ − 1

ϕ
are decreasing and increasing, respectively.

Proposition 4.18. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be a

copula. Then the function AlN,C defined by (4.21) is a copula if and only if

(i) the function ψ is concave w.r.t. ϕ;

(ii) for any x, x′ ∈ [0, 1] such that x ≤ x′, it holds that

C(x,N(x′)) +AlN,C(x′, N(x)) ≥ g(x) + g(x′) .
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Figure 4.6: The 3D plot and contour plot of the copula of Example 4.8.

Proposition 4.19. Let N : [0, 1]→ [0, 1] be a strict negation operator. Then the

function AlN,TP
defined by (4.21) is a copula if and only if the function ϕ is convex.

Example 4.8. Let N : [0, 1] → [0, 1] be the strict negation operator defined by

N(x) = 1 − x. The function ϕ is then given by ϕ(x) = x
1−x . One easily verifies

that ϕ is convex, and hence, the corresponding lower conic function AlN,TP
is a

copula and is given by

AlN,TP
(x, y) =


xy

x+ y
, if y ≤ 1− x ,

xy , otherwise.

The 3D plot and contour plot of AlN,Π are depicted in Figure 4.6.

Note that, for a lower conic copula AlN,C , its upper-upper tail dependence coincides

with the upper-upper tail dependence of C, while its lower-lower tail dependence is

given by

λLL =
g(a)

a
,

where a is the fixed point of N . Note also that λLL = a when C = TP.

4.7. Biconic functions with a given section

In this section, we introduce the definition of a biconic function with a given section.

Let N be a strict negation operator. Let C be a semi-copula and g : [0, 1]→ [0, 1]

be defined by g(x) = C(x,N(x)). Then the function AbN,C : [0, 1]2 → [0, 1] defined
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by

AbN,C(x, y) =



g(x0)

N(x0)
y , if (x, y) ∈ SN and y 6= 0 ,

1− 1− g(x1)

1−N(x1)
(1− y) , if (x, y) ∈ FN and y 6= 1 ,

min(x, y) , otherwise,

(4.22)

where (x0, N(x0)) (resp. (x1, N(x1))) is the unique point such that (x, y) is located

on the segment 〈(0, 0), (x0, N(x0))〉 (resp. 〈(x1, N(x1)), (1, 1)〉), is well defined. The

function AbN,C is called a biconic function with section (N, g) since AbN,C(t,N(t)) =

g(t) for any t ∈ [0, 1], and it is linear on any segment 〈(0, 0), (t,N(t))〉 (resp.

〈(t,N(t)), (1, 1)〉 in SN (resp. FN ).

Using the same technique as before, the following propositions can be proved.

Proposition 4.20. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be a

semi-copula. Then the function AbN,C defined by (4.22) is a semi-copula if and only

if the functions ψ and
ψ̂

ϕ̂
are increasing, and the functions

ψ

ϕ
and ψ̂ are decreasing.

Proposition 4.21. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be a

quasi-copula. Then the function AbN,C defined by (4.22) is a quasi-copula if and

only if the conditions of Propositions 4.6 and 4.17 are satisfied.

Proposition 4.22. Let N : [0, 1]→ [0, 1] be a strict negation operator with fixed

point a and C be a copula. Let a ∈ ]0, 1[. Then the function AbN,C defined by (4.22)

is a copula if and only if

(i) the function ψ̂ is convex w.r.t. ϕ̂;

(ii) the function ψ is concave w.r.t. ϕ;

(iii) the function ζ : [0, a[∪ ]a, 1]→ R defined by ζ(x) =
x− g(x)

x−N(x)
is decreasing

on the interval [0, a[ as well as on the interval ]a, 1].

Note that condition (iii) is always satisfied when g is a section of a quasi-copula C.

Therefore, the following corollary is immediate.

Corollary 4.2. Let N : [0, 1] → [0, 1] be a strict negation operator and C be a

copula. Then the function AbN,C defined by (4.22) is a copula if and only if

(i) the function ψ̂ is convex w.r.t. ϕ̂;

(ii) the function ψ is concave w.r.t. ϕ.

Proposition 4.23. Let N : [0, 1]→ [0, 1] be a strict negation operator. Then the

function AbN,TP
defined by (4.22) is a copula if and only if the functions ϕ and ϕ̂

are convex.
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Figure 4.7: The 3D plot and contour plot of the copula of Example 4.9.

Example 4.9. Let N : [0, 1] → [0, 1] be the strict negation operator defined by

N(x) = 1−x. The functions ϕ and ϕ̂ are then given by ϕ(x) = x
1−x and ϕ̂(x) = 1−x

x .

One easily verifies that ϕ and ϕ̂ are convex, and hence, the corresponding biconic

function AbN,TP
is a copula and is given by

AbN,TP
(x, y) =


xy

x+ y
, if y ≤ 1− x ,

x+ y − 1 +
(1− x)(1− y)

2− x− y
, otherwise.

The 3D plot and contour plot of AbN,Π are depicted in Figure 4.7.

In fact, similar results concerning the above classes can be obtained when we

consider sections of semi-copulas that are determined by a strictly increasing

[0, 1]→ [0, 1] function Ñ such that Ñ(0) = 0 and Ñ(1) = 1. Consider for instance a

biconic function AbN,C and let Ñ , g̃C : [0, 1]→ [0, 1] be defined by Ñ(x) = 1−N(x)

and g̃C(x) = x − g(x). Note that Ñ is strictly increasing and satisfies Ñ(0) = 0

and Ñ(1) = 1. The function Ab
Ñ,g̃C

: [0, 1]2 → [0, 1] defined by

Ab
Ñ,g̃C

= ϕ2(AbN,g) , (4.23)

where ϕ2 is the transformation defined in (1.3), is a biconic function with section

(Ñ , g̃), and it is linear on any segment connecting a point from the graph of Ñ to

the point (0, 1) as well as on any segment connecting a point from the graph of Ñ

to the point (1, 0).
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Proposition 4.24. Let N : [0, 1]→ [0, 1] be a strict negation operator and C be a

copula. Then the function Ab̃
Ñ ,g̃

defined by (4.23) is a copula if and only if

(i) the function
g̃C

Ñ
is convex w.r.t.

x− 1

Ñ
;

(ii) the function
g̃C

1− Ñ
is convex w.r.t.

x

1− Ñ
.
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5 Ortholinear and paralinear

semi-copulas

5.1. Introduction

In the previous chapters, we have considered the linear interpolation on segments

connecting points from a line in the unit square to the corners of the unit square. We

introduce in this chapter semi-copulas that are constructed by linear interpolation

on segments that are perpendicular (resp. parallel) to the diagonal of the unit

square.

The surface of the semi-copula TM is constituted from (linear) segments connecting

the points (2a, 0, 0) and (a, a, δTM
(a)) as well as segments connecting the points

(0, 2a, 0) and (a, a, δTM
(a)), with 0 ≤ a ≤ 1/2, and segments connecting the points

(2a − 1, 1, 2a − 1) and (a, a, δTM
(a)) as well as segments connecting the points

(1, 2a − 1, 2a − 1) and (a, a, δTM
(a)), with 1/2 ≤ a ≤ 1. Note that the surface

of the semi-copula TM is also constituted from segments connecting the points

(0, 1 − 2a, 0) and (a, 1 − a, ωTM
(a)) as well as segments connecting the points

(2a, 1, 2a) and (a, 1 − a, ωTM
(a)), with 0 ≤ a ≤ 1/2, and segments connecting

the points (2a− 1, 0, 0) and (a, 1− a, ωTM
(a)) as well as segments connecting the

points (1, 2(1− a), 2(1− a)) and (a, 1− a, ωTM
(a)), with 1/2 ≤ a ≤ 1. The above

observation has motivated the present construction.

This chapter is organized as follows. In the following section, we introduce or-

tholinear functions. In Sections 5.3–5.6, we characterize the classes of ortholinear

semi-copulas, ortholinear quasi-copulas, ortholinear copulas and ortholinear cop-

ulas supported on a set with Lebesgue measure zero. For ortholinear copulas,

we provide simple expressions for Spearman’s rho, Gini’s gamma and Kendall’s

tau in Section 5.7. In Section 5.8, we study the aggregation of ortholinear (semi-,

quasi-)copulas. The class of paralinear functions is introduced in Section 5.9.

5.2. Ortholinear functions

Ortholinear functions are constructed by linear interpolation on segments that are

perpendicular to the diagonal of the unit square. The linear interpolation scheme

of this type of function on some segments is depicted in Figure 5.1.

Let us introduce the notation z = x+y
2 . Let us further consider the subtriangles T1,
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(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 5.1: Some segments on which an ortholinear function is linear.

T2, T3 and T4 of the unit square (see Figure 5.2) given by

T1 := {(x, y) ∈ [0, 1]2 | 0 ≤ y ≤ 1/2 and y ≤ x ≤ 1− y} ,
T2 := {(x, y) ∈ [0, 1]2 | 0 ≤ x ≤ 1/2 and x ≤ y ≤ 1− x} ,
T3 := {(x, y) ∈ [0, 1]2 | 1/2 ≤ y ≤ 1 and 1− y ≤ x ≤ y} ,
T4 := {(x, y) ∈ [0, 1]2 | 1/2 ≤ x ≤ 1 and 1− x ≤ y ≤ x} .

Let δ ∈ DS. The function Aδ : [0, 1]2 → [0, 1] given by

Aδ(x, y) =



y
δ(z)

z
, if (x, y) ∈ T1 ,

x
δ(z)

z
, if (x, y) ∈ T2 ,

x− (1− y)
z − δ(z)

1− z
, if (x, y) ∈ T3 ,

y − (1− x)
z − δ(z)

1− z
, if (x, y) ∈ T4 ,

(5.1)

is well defined. This function is called the ortholinear function with diagonal section

δ, since it is linear on segments connecting the points (x, x), (2x, 0) and (0, 2x),

with x ≤ 1/2, as well as on segments connecting the points (x, x), (2x− 1, 1) and

(1, 2x− 1), with x ≥ 1/2.
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T1

T2

T3

T4

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 5.2: Illustration for the triangles T1, T2, T3 and T4.

Equation (5.1) can be rewritten in a more compact form as

Aδ(x, y) =


min(x, y)

δ(z)

z
, if (x, y) ∈ T1 ∪ T2 ,

min(x, y)− (1−max(x, y))
z − δ(z)

1− z
, if (x, y) ∈ T3 ∪ T4 .

For any ortholinear function, the boundary conditions of a semi-copula always

hold. Note that an ortholinear function Aδ is uniquely determined by its diagonal

section. Note also that an ortholinear function Aδ is continuous if and only if δ is

continuous.

5.3. Ortholinear semi-copulas

In this section, we characterize the elements of Dac
S for which the corresponding

ortholinear function is a semi-copula. Let us consider the function λδ defined as in

Chapter 3.

Proposition 5.1. Let δ ∈ Dac
S . Then the ortholinear function Aδ is a semi-copula

if and only if

(i) the function λδ is increasing on the interval ]0, 1/2];

(ii) the function ξδ : [0, 1] → [0, 1], defined by ξδ(x) = (1 − x)(x − δ(x)), is

decreasing on the interval [1/2, 1[ .
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Proof. Suppose conditions (i) and (ii) are satisfied. To prove that Aδ is a semi-

copula it suffices to prove its increasingness in each variable. Since Aδ is symmetric,

it suffices to prove its increasingness in each variable on T2 ∪ T3. We prove that

Aδ is increasing in the second variable (the proof of the increasingness in the first

variable is similar).

Let (x, y), (x, y′) ∈ T2 ∪ T3 such that y ≤ y′. Let us introduce the notation

z′ = x+y′

2 .

If (x, y), (x, y′) ∈ T2, then the increasingness of Aδ is equivalent to

x
δ(z′)

z′
− xδ(z)

z
= x(λδ(z

′)− λδ(z)) ≥ 0 . (5.2)

Since z ≤ z′ and λδ is increasing on the interval ]0, 1/2], inequality (5.2) immediately

follows.

If (x, y), (x, y′) ∈ T3, then the increasingness of Aδ is equivalent to

−(1− y′)z
′ − δ(z′)
1− z′

+ (1− y)
z − δ(z)

1− z
≥ 0 ,

or, equivalently,
(1− y)

(1− z)2
ξδ(z)−

(1− y′)
(1− z′)2

ξδ(z
′) ≥ 0 .

Since y ≤ y′, it holds that z ≤ z′. Using the fact that ξδ is decreasing on the

interval [1/2, 1[ , it then follows that

(1− y)

(1− z)2
ξδ(z)−

(1− y′)
(1− z′)2

ξδ(z
′) ≥ (1− y′)

(1− z′)2
(ξδ(z)− ξδ(z′)) ≥ 0 .

If (x, y) ∈ T2 and (x, y′) ∈ T3, then the preceding cases imply that Aδ(x, y
′) −

Aδ(x, y) =

(Aδ(x, y
′)−Aδ(x, 1− x)) + (Aδ(x, 1− x)−Aδ(x, y)) ≥ 0 .

Conversely, suppose that Aδ is a semi-copula. Let y, y′ ∈ ]0, 1/2] such that y ≤ y′
and x ∈ [0, 1] such that x ≤ y and x+ y′ ≤ 1. Clearly, the points (x, 2y − x) and

(x, 2y′ − x) are located in T2. The increasingness of Aδ in the second variable

implies

Aδ(x, 2y
′ − x)−Aδ(x, 2y − x) ≥ 0 , (5.3)

or, equivalently,

x(λδ(y
′)− λδ(y)) ≥ 0 .

Hence, the increasingness of λδ on the interval ]0, 1/2] follows.

Let y, y′ ∈ [1/2, 1[ such that y < y′ and x ∈ [0, 1] such that x ≤ y and x+ y ≥ 1.
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The increasingness of Aδ in the second variable implies

(1− y)
z − δ(z)

1− z
− (1− y′)z

′ − δ(z′)
1− z′

≥ 0 . (5.4)

Dividing by y′ − y and taking the limit y′ → y, inequality (5.4) becomes

z − δ(z)
1− z

− 1

2
(1− y)

(
z − δ(z)

1− z

)′
≥ 0 ,

where the derivative exists. Setting x = y, the last inequality is equivalent to

2y − 1− δ(y) + (1− y)δ′(y) ≥ 0 ,

or, equivalently, ξ′δ(y) ≤ 0 , where the derivative exists. Since δ is absolutely

continuous, it holds that ξδ is absolutely continuous. The fact that ξ′δ(y) ≤ 0 ,

where the derivative exists, on the interval [1/2, 1[ , then implies that ξδ is decreasing

on the interval [1/2, 1[ .

Example 5.1. Consider the diagonal functions δTM
and δTL

. Clearly, δTM
and δTL

belong to Dac
S . One easily verifies that the functions λδTM and λδTL are increasing

on the interval ]0, 1/2], and that the functions ξδTM and ξδTL are decreasing on

the interval [1/2, 1[ . The corresponding ortholinear semi-copulas are TM and TL,

respectively.

Example 5.2. Consider the diagonal function δθ(x) = x1+θ with θ ∈ [0, 1]. Clearly,

δθ ∈ Dac
S . One easily verifies that the function λδθ is increasing on the interval

]0, 1/2] for any θ ∈ [0, 1], and that the function ξδθ is decreasing on the interval

[1/2, 1[ for any θ ∈ [0, 1]. The corresponding family of ortholinear semi-copulas is

given by

Aθ(x, y) =


min(x, y)zθ , if (x, y) ∈ T1 ∪ T2 ,

min(x, y)− (1−max(x, y))
z(1− zθ)

1− z
, if (x, y) ∈ T3 ∪ T4 .

Proposition 5.2. Let Aδ be an ortholinear semi-copula such that δ ∈ Dac
S and

suppose that δ(x0) = x0 for some x0 ∈ ]0, 1[ . Then it holds that δ(x) = x for any

x ∈ [x0, 1].

Proof. Suppose that Aδ is an ortholinear semi-copula and suppose further that

δ(x0) = x0 for some x0 ∈ ]0, 1/2] . The function λδ, defined in Proposition 5.1,

is increasing on the interval ]0, 1/2]. Therefore, λδ(x) ≥ λδ(x0) = 1 for any

x ∈ [x0, 1/2]. Hence, λδ(x) = 1 for any x ∈ [x0, 1/2]. Similarly, the decreasingness

of the function ξδ, defined in Proposition 5.1, implies that δ(x) = x for any

x ∈ [1/2, 1]. In case x0 ∈ ]1/2, 1[ the decreasingness of ξδ is sufficient to prove the

required result. Consequently, δ(x) = x for any x ∈ [x0, 1].
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5.4. Ortholinear quasi-copulas

In this section, we characterize the elements of D for which the corresponding

ortholinear function is a quasi-copula. Let us consider the function µδ defined as

in Chapter 3.

Proposition 5.3. Let δ ∈ D. Then the ortholinear function Aδ is a quasi-copula

if and only if

(i) the function λδ, and the function ψδ : [0, 1]→ [0, 1], defined by

ψδ(x) = x(x− δ(x)) ,

are increasing on the interval ]0, 1/2];

(ii) the functions µδ, and the function ξδ : [0, 1]→ [0, 1], defined by

ξδ(x) = (1− x)(x− δ(x)) ,

are respectively increasing and decreasing on the interval [1/2, 1[ .

Proof. Suppose conditions (i) and (ii) are satisfied. Due to Proposition 5.1, the

function Aδ is increasing. Therefore, to prove that Aδ is a quasi-copula, we need

to show that it is 1-Lipschitz continuous. Recall that the 1-Lipschitz continuity is

equivalent to the 1-Lipschitz continuity in each variable. Since Aδ is symmetric, it

is sufficient to show that Aδ is 1-Lipschitz continuous in each variable on T2 ∪ T3.

We prove that Aδ is 1-Lipschitz continuous in the first variable on T2 ∪ T3 (the

proof of the 1-Lipschitz continuity in the second variable is similar).

Let (x, y), (x′, y) ∈ T2 ∪ T3 such that x ≤ x′. Let us introduce the notation

u = x′+y
2 .

If (x, y), (x′, y) ∈ T2, then the 1-Lipschitz continuity of Aδ is equivalent to

x′
δ(u)

u
− xδ(z)

z
≤ x′ − x ,

or, equivalently,
x′

u2
ψδ(u)− x

z2
ψδ(z) ≥ 0 .

Since x ≤ x′, it holds that z ≤ u. Using the fact that ψδ is increasing on the

interval ]0, 1/2], it then follows that

x′

u2
ψδ(u)− x

z2
ψδ(z) ≥

x

z2
(ψδ(u)− ψδ(z)) ≥ 0 .
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If (x, y), (x′, y) ∈ T3, then the 1-Lipschitz continuity of Aδ is equivalent to

(1− y)(µδ(u)− µδ(z)) ≥ 0 . (5.5)

Since z ≤ u and µδ is increasing on the interval [1/2, 1[ , inequality (5.5) immediately

follows.

If (x, y) ∈ T2 and (x′, y) ∈ T3, then the preceding cases imply that Aδ(x
′, y) −

Aδ(x, y) =

(Aδ(x
′, y)−Aδ(1− y, y)) + (Aδ(1− y, y)−Aδ(x, y)) ≤ x′ − x .

Conversely, suppose that Aδ is a quasi-copula. Proposition 5.1 implies the increas-

ingness of λδ on the interval ]0, 1/2] and the decreasingness of ξδ on the interval

[1/2, 1[ . Let x, x′ ∈ [1/2, 1[ such that x ≤ x′ and y ∈ [0, 1] such that x′ ≤ y and

x+ y ≥ 1. Clearly, the points (2x− y, y) and (2x′ − y, y) are located in T3. The

1-Lipschitz continuity of Aδ in the first variable implies that

Aδ(2x
′ − y, y)−Aδ(2x− y, y) ≤ 2(x′ − x) , (5.6)

or, equivalently,

(1− y)(µδ(x
′)− µδ(x)) ≥ 0 .

Hence, the increasingness of µδ on the interval [1/2, 1[ follows.

Let x, x′ ∈ ]0, 1/2[ such that x < x′ and y ∈ [0, 1] such that x′ ≤ y and x′ + y ≤ 1.

The 1-Lipschitz continuity of Aδ in the first variable implies that

x′
δ(z′)

z′
− xδ(z)

z
≤ x′ − x . (5.7)

Dividing by x′ − x and taking the limit x′ → x, inequality (5.7) becomes

δ(z)

z
+

1

2
x

(
δ(z)

z

)′
≤ 1 ,

where the derivative exists. Setting x = y, the last inequality is equivalent to

2x− δ(x)− xδ′(x) ≥ 0 ,

or, equivalently, ψ′δ(x) ≥ 0 , where the derivative exists. Since δ is absolutely

continuous, it holds that ψδ is absolutely continuous. The fact that ψ′δ(y) ≥ 0 ,

where the derivative exists, on the interval ]0, 1/2], then implies that ψδ is increasing

on the interval ]0, 1/2].
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Example 5.3. Consider the diagonal functions in Example 5.2. Clearly, conditions

(i) and (ii) of Proposition 5.3 are fulfilled. The corresponding family of ortholinear

semi-copulas is a family of ortholinear quasi-copulas.

Proposition 5.4. Let Aδ be an ortholinear quasi-copula. Then it holds that

(i) if δ(x0) = x0 for some x0 ∈ ]0, 1[ , then Aδ = TM;

(ii) if δ(x0) = 2x0 − 1 for some x0 ∈ [1/2, 1[ , then δ(x) = 2x − 1 for any

x ∈ [x0, 1].

Proof. Suppose that Aδ is an ortholinear quasi-copula and suppose further that

δ(x0) = x0 for some x0 ∈ ]0, 1[ . Due to Proposition 5.2, it holds that δ(x) = x for

any x ∈ [x0, 1]. Since Aδ is an ortholinear quasi-copula, it holds that the function

ψδ, defined in Proposition 5.3, is increasing on the interval ]0, 1/2]. Therefore,

ψδ(x) ≤ ψδ(x0) = 0 for any x ∈ [0, x0] when x0 ≤ 1/2. Hence, δ(x) ≥ x for any

x ∈ [0, x0]. In case x0 ≥ 1/2, the increasingness of µδ, defined in Proposition 5.3,

implies that δ(x) ≥ x for any x ∈ [1/2, x0]. Using the fact that δ(x) ≤ x for

any x ∈ [0, 1], it must hold that δ(x) = x for any x ∈ [0, x0]. Based on the

above discussion, it follows that δ(x) = x for any x ∈ [0, 1]. Since TM is the only

quasi-copula with δTM
as diagonal section, it holds that Aδ = TM.

Assertion (ii) can be proved similarly using the increasingness of the functions ψδ
and µδ on the intervals ]0, 1/2] and [1/2, 1[ , respectively.

5.5. Ortholinear copulas

In this section, we characterize the elements of D for which the corresponding

ortholinear function is a copula. Next, we characterize the piecewise linear diagonal

functions for which the corresponding ortholinear function is a copula. To this end,

we need the following lemmas.

Lemma 5.1. Let δ ∈ Dac
S be piecewise linear and consider the corresponding

ortholinear function Aδ. Let x1 < x2 < x3 ≤ 1/2 be such that δ is linear on the

interval [x1, x2] as well as on the interval [x2, x3]. If VAδ(S) ≥ 0 for any square

S that is included in the trapezoid Θ{(x1,x1),(0,2x1),(0,2x3),(x3,x3)} and of which the

opposite diagonal is a subset of the segment 〈(x2, x2), (0, 2x2)〉, then it holds that δ

is convex on the interval [x1, x3].

Proof. Let a and b be the slopes of the segments 〈(x1, δ(x1)), (x2, δ(x2))〉 and

〈(x2, δ(x2)), (x3, δ(x3))〉, respectively. Let S = [x, x′] × [y, y′] ⊂ [0, 1]2 be an

arbitrary square that is included in the trapezoid Θ{(x1,x1),(0,2x1),(0,2x3),(x3,x3)} and

of which the opposite diagonal is a subset of the segment 〈(x2, x2), (0, 2x2)〉. This

situation is depicted in Figure 5.3(a).
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(x1, x1)

(x2, x2)

(x3, x3)

(x1, x1)

(x2, x2)

(x3, x3)

(x2 + ε, x2 + ε)

(x2 − ε, x2 − ε)

(0, 0) (1, 0)

(0, 1) (1, 1)

(a)

(0, 0) (1, 0)

(0, 1) (1, 1)

(b)

Figure 5.3: Illustration for the proofs of Lemma 5.1 and Proposition 5.5

Since S is a square, it holds that the points (x, y) and (x′, y′) are located on

segments 〈(x2 − ε, x2 − ε), (0, 2(x2 − ε))〉 and 〈(x2 + ε, x2 + ε), (0, 2(x2 + ε))〉, for

some ε > 0, respectively (see Figure 5.3(b)). A simple computation shows that

S = [x′ − 2ε, x′]× [2x2 − x′, 2(x2 + ε)− x′] .

The positivity of VAδ(S) is equivalent to

x′
δ(x2 + ε)

x2 + ε
+ (x′ − 2ε)

δ(x2 − ε)
x2 − ε

− 2(x′ − ε)δ(x2)

x2
≥ 0 . (5.8)

Since δ is linear on the interval [x2 − ε, x2] as well as on the interval [x2, x2 + ε], it

holds that

δ(x2 − ε) = δ(x2)− aε and δ(x2 + ε) = δ(x2) + bε .

Substituting the above, (5.8) is equivalent to

x′x2
2ε(b− a) + ε2(2ax2

2 + 2ax2ε− ax2x
′ − bx2x

′ + 2δ(x2)(x′ − x2 − ε))
x2(x2

2 − ε2)
≥ 0 ,

or, equivalently,

x′x2
2(b− a) + ε(2ax2

2 + 2ax2ε− ax2x
′ − bx2x

′ + 2δ(x2)(x′ − x2 − ε)) ≥ 0 .

Choosing ε sufficiently small implies that the sign of the above expression is

determined by the first term, i.e. it should hold that

x′x2
2(b− a) ≥ 0 , (5.9)
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or, equivalently, b ≥ a, i.e. δ is convex on the interval [x1, x3].

Lemma 5.2. Let δ ∈ Dac
S be piecewise linear and consider the corresponding

ortholinear function Aδ. Let 1/2 ≤ x1 < x2 < x3 be such that δ is linear on the

interval [x1, x2] as well as on the interval [x2, x3]. If VAδ (S) ≥ 0 for any square S

that is included in the trapezoid Θ{(x1,x1),(2x1−1,1),(2x3−1,1),(x3,x3)} and of which the

opposite diagonal is a subset of the segment 〈(x2, x2), (2x2 − 1, 1)〉, then it holds

that δ is convex on the interval [x1, x3].

Proof. The proof is similar to the proof of the previous lemma.

Lemma 5.3. Let δ ∈ D be convex. Then it holds that

(i) the function λδ is increasing;

(ii) the function µδ is increasing.

Proof. Assertion (i) follows using the fact that convex functions are star-shaped [85].

Since δ is convex, for any x, y, z ∈ [0, 1] such that x < y < z, it holds that

δ(y)− δ(x)

y − x
≤ δ(z)− δ(x)

z − x
.

Setting z = 1, assertion (ii) easily follows.

Proposition 5.5. Let δ ∈ D be piecewise linear. Then the ortholinear function

Aδ is a copula if and only if δ is convex.

Proof. We first give the proof from right to left. Since Aδ satisfies the boundary con-

ditions of a semi-copula, we need to show its 2-increasingness. Since δ is piecewise lin-

ear, the unit square consists of trapezoids of the type Θ1 = Θ{(u,u),(v,v),(2v,0),(2u,0)},

Θ2 = Θ{(u,u),(0,2u,),(0,2v),(v,v)}, Θ3 = Θ{(u,u),(2u−1,1),(2v−1,1),(v,v)} or Θ4 =

Θ{(u,u),(v,v),(1,2v−1),(1,2u−1)}, such that δ is linear on the interval [u, v] with v ≤ 1/2

or 1/2 ≤ u (see Figure 5.4).

Note that any rectangle in the unit square can obviously be decomposed into a

number of rectangles that are either located in one of these trapezoids, or are

spanning two such trapezoids while having their diagonal along the diagonal of the

unit square or having their opposite diagonal along the edge shared by the two

trapezoids. Due to the additivity of volumes, it suffices to consider the above cases.

Consider a rectangle R := [x, x′]× [y, y′] ⊆ [0, 1]2.

(i) Suppose that R is included in a trapezoid of type Θ2 (the case of a trapezoid

of type Θ1 is identical due to the symmetry of Aδ). The positivity of VAδ (R)

is equivalent to

(λδ(v)− λδ(u))(x′ − x)(yy′ − xx′) ≥ 0 . (5.10)
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T1

T2

T3

T4

Θ2

Θ1

Θ3

Θ4

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 5.4: Illustration for the proof Proposition 5.5.

Since R ⊆ T2, it holds that yy′ − xx′ ≥ 0. Due to Lemma 5.3(i), inequal-

ity (5.10) then follows immediately.

(ii) Suppose that R is included in a trapezoid of type Θ3 (the case of a trapezoid

of type Θ4 is identical due to the symmetry of Aδ). The positivity of VAδ (R)

is equivalent to

(µδ(v)− µδ(u))(y′ − y)((1− x)(1− x′)− (1− y)(1− y′)) ≥ 0 . (5.11)

Since R ⊆ T3, it holds that (1 − x)(1 − x′) − (1 − y)(1 − y′) ≥ 0. Due to

Lemma 5.3(ii), inequality (5.11) then follows immediately.

(iii) Suppose that the diagonal of R is along the diagonal of the unit square, i.e.

R = [x, x′]× [x, x′]. Suppose that x′ ≤ 1/2 (the case when 1/2 ≤ x is similar).

Then it holds that

VAδ(R) = δ(x) + δ(x′)− 2Aδ(x, x
′) = δ(x) + δ(x′)− 2

2x

x+ x′
δ

(
x+ x′

2

)
.

Since 2x
x+x′ ≤ 1, it holds that

VAδ(R) ≥ δ(x) + δ(x′)− 2δ

(
x+ x′

2

)
= 2

(
δ(x) + δ(x′)

2
− δ

(
x+ x′

2

))
,

which is positive due to the convexity of δ on the interval [0, 1/2].

(iv) Suppose that the opposite diagonal of R is along the edge shared by two
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trapezoids (either two trapezoids of the same type, or two trapezoids having

their edge along the opposite diagonal of the unit square).

(a) Suppose that these two trapezoids are of type Θ2 (the case of type

Θ1 is similar). Consider Θ2 = Θ{(u,u),(0,2u),(0,2v),(v,v)} and Θ′2 =

Θ{(v,v),(0,2v),(0,2w),(w,w)}. The rectangle R is then given by R = [x, x′]×
[2v − x′, 2v − x]. Using the notation r = 2v−x′+x

2 , the positivity of

VAδ(R) is equivalent to

x
δ(r)

r
+ x′

δ(2v − r)
2v − r

− (x+ x′)
δ(v)

v
≥ 0. (5.12)

Using the convexity of δ, it follows that

δ(v) ≤ δ(r) + δ(2v − r)
2

.

Denoting the left-hand side of inequality (5.12) as c, it then holds that

c ≥ (x′ − x)(2v − x− x′)
4v

(
δ(2v − r)

2v − r
− δ(r)

r

)
. (5.13)

Since δ is convex, the function λδ, defined in Lemma 5.3, is increasing.

Using also the facts v ≥ r and 2v − x− x′ ≥ 0, the right-hand side of

inequality (5.13) is positive.

(b) Suppose that these two trapezoids are of type Θ3 (the case of type Θ4

is similar). The proof is similar to the previous case.

(c) Suppose that these two trapezoids are of types Θ2 and Θ3 (the case of

types Θ1 and Θ4 is similar).

Consider Θ2 = Θ{(u,u),(0,2u,),(0,1),(1/2,1/2)} and Θ3 =

Θ{(1/2,1/2),(0,1),(2w−1,1),(w,w)}. The rectangle R is then given by R =

[x, x′]× [1−x′, 1−x] such that x′ ≤ 1/2. Using the notation r = 1−x′+x
2 ,

it holds that

VAδ(R) = x
δ(r)

r
−2δ(1/2)x−2δ(1/2)x′+x′−x1− r − δ(1− r)

r
. (5.14)

Consider the function ν : [0, 1] → R given by

ν(t) = δ(t) + δ(1− t)− 2δ(1/2) .

Using this function, Eq. (5.14) can be written as

VAδ(R) =
1

r
(xν(r) + (1/2− δ(1/2))(x′ − x)(1− x− x′)) . (5.15)
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Since δ is convex, it holds that ν(t) ≥ 0 for any t ∈ [0, 1/2], and therefore the

right-hand side of Eq. (5.15) is positive.

Conversely, suppose that Aδ is a copula. Lemma 5.1 implies that δ is convex on

the interval [0, 1/2], while Lemma 5.2 implies that δ is convex on the interval

[1/2, 1]. Let 0 ≤ x1 < 1/2 < x2 ≤ 1 be such that δ is linear on the interval

[x1, 1/2] as well as on the interval [1/2, x2], and let a and b be the slopes of

the segments 〈(x1, δ(x1)), ( 1
2 , δ(

1
2 ))〉 and 〈( 1

2 , δ(
1
2 )), (x2, δ(x2))〉, respectively. Let

S = [x, x′]× [y, y′] ⊆ [0, 1]2 be an arbitrary square such that its opposite diagonal

is along the opposite diagonal of the unit square. This situation is depicted in

Figure 5.5.

x1 1/2 − ε 1/2 + ε x2

2x1

1− 2ε

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 5.5: Illustration for the proof Proposition 5.5.

Since S is a square, it holds that the points (x, y) and (x′, y′) are located on

segments 〈(1/2− ε, 1/2− ε), (0, 1− 2ε)〉 and 〈(1/2 + ε, 1/2 + ε), (2ε, 1)〉, for some

ε > 0, respectively. A simple computation shows that

S = [x, x+ 2ε]× [1− x− 2ε, 1− x] .

The positivity of VAδ(S) is equivalent to

x
δ(1/2− ε)

1/2− ε
+ x+ 2ε− x1/2 + ε− δ(1/2 + ε)

1/2− ε
− 4(x+ ε)δ(1/2) ≥ 0 . (5.16)

Since δ is linear on the interval [1/2− ε, 1/2] as well as on the interval [1/2, 1/2 + ε],

it holds that

δ(1/2− ε) = δ(1/2)− aε and δ(1/2 + ε) = δ(1/2) + bε .
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Substituting the above, (5.16) is equivalent to

x(b− a) + 2(1− 2ε− 2x)(1/2− δ(1/2)) ≥ 0 .

Taking the limit x → 1/2, and thus ε → 0, the above inequality is equivalent to

b ≥ a. Hence, the convexity of δ at 1/2 follows, which completes the proof.

Example 5.4. Consider the diagonal function δθ = θδTM
+(1−θ)δTL

with θ ∈ [0, 1].

Clearly, δθ is convex and piecewise linear for any θ ∈ [0, 1]. The corresponding

family of ortholinear copulas is the family of convex sums of TM and TL.

Theorem 5.1. Let δ ∈ D. Then the ortholinear function Aδ is a copula if and

only if δ is convex.

Proof. Suppose that δ is convex. To prove that Aδ is a copula, we need to show

its 2-increasingness. Due to the additivity of volumes, it suffices to consider a

restricted number of cases. Consider a rectangle R := [x, x′]× [y, y′] ⊆ [0, 1]2.

(i) If R ⊆ T2 (the case when R ⊆ T1 is identical due to the symmetry of Aδ),

then let b1 = (x1, x1), b2 = (x2, x2), b3 = (x3, x3) and b4 = (x4, x4) be

four (possibly coinciding) points on the diagonal of the unit square such

that the points (x, y), (x, y′), (x′, y) and (x′, y′) are located on the segments

〈(0, 2x1),b1〉, 〈(0, 2x2),b2〉, 〈(0, 2x3),b3〉 and 〈(0, 2x4),b4〉, respectively (see

Figure 5.6).

b1

b2

b3

b4

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 5.6: An illustration for the proof of Theorem 5.1.

The points b1, b2, b3 and b4, together with (0, 0) and (1, 1), determine a

piecewise linear convex diagonal function δ1 such that δ1(xi) = δ(xi) for any
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i ∈ {1, 2, 3, 4}. Due to Proposition 5.5, the ortholinear function Aδ1 is an

ortholinear copula. Therefore,

VAδ(R) = VAδ1 (R) ≥ 0 .

(ii) The proof of the cases when R ⊆ T3 or R ⊆ T4 is similar to the previous one.

The remaining case is when the diagonal (resp. opposite diagonal) of R is along

the diagonal (opposite diagonal) of the unit square. The proof of the positivity of

VAδ (R) in this case is similar as in the proof of Proposition 5.5. Consequently, the

2-increasingness of Aδ holds and, hence Aδ is a copula.

Conversely, suppose that Aδ is a copula and suppose further that δ is not convex on

the interval [0, 1/2[ , i.e. there exist x < y < z such that the point (y, δ(y)) is above

the segment connecting the points (x, δ(x)) and (z, δ(z)). Since δ is continuous,

there exists ε > 0 such that for any x′ ∈ [y−ε, y+ε] the point (x′, δ(x′)) is above the

segment connecting the points (x, δ(x)) and (z, δ(z)), which contradicts Lemma 5.1.

Similarly, Lemma 5.2 implies that δ is convex on the interval ]1/2, 1]. Thus, δ is

convex on the interval [0, 1/2[ as well as on the interval ]1/2, 1]. The proof of the

convexity of δ at 1/2 can be done in similar manner. Thus, δ is convex.

Since for an ortholinear copula C, it holds that its diagonal section δC is convex, it

either holds that δC = δTM
or δC(x) < x for any x ∈ ]0, 1[ . Hence, there do not

exist ortholinear copulas that are proper ordinal sums.

Example 5.5. Consider the diagonal functions δTM
and δTL

. Clearly, the functions

δTM
and δTL

are convex. The corresponding ortholinear copulas are TM and TL,

respectively.

Example 5.6. Consider the diagonal function δθ(x) = x1+θ with θ ∈ [0, 1]. Clearly,

δθ is convex for any θ ∈ [0, 1]. The corresponding family of ortholinear functions is

a family of ortholinear copulas.

Example 5.7. Consider the diagonal function δ defined by

δ(x) =



0 , if x ≤ 1
6 ,

1

5
(6x− 1) , if 1

6 ≤ x ≤
1
3 ,

3

5
x , if 1

3 ≤ x ≤
2
3 ,

1

5
(9x− 4) , otherwise.

Clearly, the conditions of Proposition 5.3 are satisfied. Consider the rectangle

R = [ 1
4 ,

1
2 ] × [ 1

6 ,
1
4 ]. One easily verifies that VAδ(R) = − 1

100 , and hence, the

corresponding ortholinear function is a proper quasi-copula.

129



Chapter 5. Ortholinear and paralinear semi-copulas

Consequently, the class of ortholinear copulas with a given diagonal section is a

proper subclass of the class of ortholinear quasi-copulas with a given diagonal

section.

Now we lay bare the Schur-concavity [40, 43, 87] of ortholinear copulas.

Proposition 5.6. Any ortholinear copula is Schur-concave.

Proof. Suppose that Cδ is an ortholinear copula. Let λ ∈ [0, 1] and (x, y) ∈ [0, 1]2.

If (x, y) ∈ T1, then inequality (1.8) is equivalent to

y
δ(z)

z
≤ (λy + (1− λ)x)

δ(z)

z
,

or, equivalently, (1 − λ)(y − x) ≤ 0 . Since (x, y) ∈ T1, the latter inequality

immediately follows. Similarly, one can prove inequality (1.8) when (x, y) is located

in T2, T3 or T4.

5.6. Ortholinear copulas supported on a set with

Lebesgue measure zero

We characterize in this section ortholinear copulas that are supported on a set with

Lebesgue measure zero. To this end, we need the following proposition.

Proposition 5.7. Let Cδ be an ortholinear copula with a piecewise linear diagonal

section δ. Suppose that d ∈ ]0, 1/2] is the maximum value such that δ(d) = 0, and

d∗ ∈ [1/2, 1[ is the minimum value such that δ(d∗) = 2d∗ − 1. Then the support of

Cδ consists of:

(i) the segment 〈(d, d), (d∗, d∗)〉;

(ii) the trapezoids Θ{(2d,0),(0,2d),(0,1),(1,0)} and Θ{(0,1),(1,0),(2d∗−1,1),(1,2d∗−1)}.

Proof. From Proposition 5.4, it follows that δ(x) = 2x− 1 for any x ∈ [d∗, 1]. Note

that if d = d∗ = 1/2, then Cδ = TL and the support is given by the segment

〈(1, 0), (0, 1)〉. More generally, if δ is piecewise linear, then it suffices to consider a

number of cases to prove assertion (i):

(a) Let 〈(x1, x1), (x2, x2)〉, with d ≤ x1 < x2 ≤ 1/2, be a segment such that δ is

linear on the interval [x1, x2]. For any rectangle R = [x, x′]× [x, x′] such that

x1 ≤ x < x′ ≤ x2, it holds that

VCδ(R) =
(x′ − x)

z
δ(z) .
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If VCδ (R) = 0, then it holds that δ(z) = 0, which contradicts the fact that d

is the maximum value such that δ(d) = 0, and hence, VCδ(R) > 0.

(b) Let 〈(x1, x1), (x2, x2)〉, with 1/2 ≤ x1 < x2 ≤ d∗, be a segment such that δ

is linear on the interval [x1, x2]. For any rectangle R = [x, x′]× [x, x′] such

that x1 ≤ x < x′ ≤ x2, it holds that

VCδ(R) =
(x′ − x)

1− z
(δ(z)− (2z − 1)) .

If VCδ (R) = 0, then it holds that δ(z) = 2z−1, which contradicts the fact that

d∗ is the minimum value such that δ(d∗) = 2d∗ − 1 and hence, VCδ(R) > 0.

Since the support is closed, assertion (i) follows.

Next, we prove assertion (ii). Let b1 := (x1, x1) and b2 := (x2, x2), with d ≤
x2 ≤ d∗, be two distinct points such that δ is linear on the interval [x1, x2], i.e.

δ(t) = at + b for any t ∈ [x1, x2]. Let R ⊆ [0, 1]2 be a rectangle. We distinguish

two cases:

(a) Suppose that R ⊆ Θ2 = Θ{(x1,x1),(0,2x1),(0,2x2),(x2,x2)} and suppose fur-

ther that VCδ(R) = 0. Due to inequality (5.10), it holds that (λδ(x2) −
λδ(x1))(yy′ − xx′) = 0. Since d > 0 and δ is convex it must hold that

λδ(x2)− λδ(x1) > 0 and it then follows that x = x′ = y = y′, a contradiction.

Hence, VCδ (R) > 0. Consequently, the trapezoid Θ2 is a subset of the support.

Due to the symmetry of Cδ, it holds that Θ1 = Θ{(x1,x1),(x2,x2),(2x2,0),(2x1,0)}
is a subset of the support as well.

(b) Suppose that R ⊆ Θ3 = Θ{(x1,x1),(2x1−1,1),(2x2−1,1),(x2,x2)} and suppose fur-

ther that VCδ(R) = 0. Due to inequality (5.11), it holds that (µδ(x2) −
µδ(x1))((1 − y)(1 − y′) − (1 − x)(1 − x′)) = 0. Since d∗ < 1 and δ is

convex, it must hold that µδ(x2) − µδ(x1) > 0 and it then follows that

x = x′ = y = y′, a contradiction. Hence, VCδ(R) > 0. Consequently, the

trapezoid Θ3 is a subset of the support. Due to the symmetry of Cδ, it holds

that Θ4 = Θ{(x1,x1),(x2,x2),(1,2x2−1),(1,2x1−1)} is a subset of the support as

well.

Since the support is closed, assertion (ii) follows.

Corollary 5.1. Let Cδ be an ortholinear copula with a piecewise linear diagonal

section δ. Suppose that d = 0 is the maximum value such that δ(d) = 0, and

d∗ ∈ [1/2, 1[ is the minimum value such that δ(d∗) = 2d∗ − 1. If δ is linear on the

interval [0, 1/2], then the support of Cδ consists of:

(i) the segment 〈(0, 0), (d∗, d∗)〉;

(ii) the trapezoid Θ{(0,1),(1,0),(2d∗−1,1),(1,2d∗−1)}.
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Corollary 5.2. Let Cδ be an ortholinear copula with a piecewise linear diagonal

section δ. Suppose that d ∈ ]0, 1/2] is the maximum value such that δ(d) = 0, and

d∗ = 1 is the minimum value such that δ(d∗) = 2d∗ − 1. If δ is linear on the

interval [1/2, 1], then the support of Cδ consists of:

(i) the segment 〈(d, d), (1, 1)〉;

(ii) the trapezoid Θ{(2d,0),(0,2d),(0,1),(1,0)}.

Example 5.8. Consider the diagonal function δ given by

δ(x) =


0 , if x ≤ 1

3 ,

x− 1/3 , if 1
3 ≤ x ≤

2
3 ,

2x− 1 , otherwise.

Clearly, δ is a piecewise linear convex function. The support of the corresponding

copula is depicted in Figure 5.7(a).

(0, 0) (1, 0)

(0, 1) (1, 1)

(a)

(0, 0) (1, 0)

(0, 1) (1, 1)

(b)

Figure 5.7: The support of the ortholinear copulas given in Example 5.8 (a) and
Example 5.9 (b).

Example 5.9. Consider the diagonal function δ given by

δ(x) =



0 , if x ≤ 1
4 ,

x− 1

4
, if 1

4 ≤ x ≤
1
2 ,

1

2
(3x− 1) , otherwise.

132



§5.6. Ortholinear copulas supported on a set with Lebesgue measure zero

Clearly, δ is a piecewise linear convex function. The support of the corresponding

copula is depicted in Figure 5.7(b).

Proposition 5.8. Let Cδ be an ortholinear copula. Then it holds that Cδ is

supported on a set with Lebesgue measure zero if and only if Cδ is a member of the

family of convex sums of TM and TL.

Proof. The family of convex sums of TM and TL is a family of copulas supported

on a set with Lebesgue measure zero (see Chapter 1). In Example 5.4, it was

shown that the latter family is a family of ortholinear copulas. Therefore, to

complete the proof, it suffices to prove the necessity. Let Cδ be an ortholinear

copula and suppose further that Cδ is supported on a set with Lebesgue measure

zero. Suppose that d ∈ [0, 1/2] is the maximum value such that δ(d) = 0, and

d∗ ∈ [1/2, 1] is the minimum value such that δ(d∗) = 2d∗ − 1. If δ is piecewise

linear, then due to Proposition 5.7 it must hold that d = 0 and d∗ = 1 or

d = d∗ = 1/2. Suppose that δ is not piecewise linear, i.e. there exists an interval

[d1, d2] such that the graph of the restriction of δ to [d1, d2] does not contain any

segment. Assume w.l.o.g. that d2 ≤ 1/2. Let R = [x, x′] × [y, y′] be a rectangle

located in the trapezoid Θ2 = Θ{(d1,d1),(0,2d1),(0,2d2),(d2,d2)} and let b1 = (x1, x1),

b2 = (x2, x2), b3 = (x3, x3) and b4 = (x4, x4) be four (possibly coinciding) points

on the diagonal of the unit square such that the points (x, y), (x, y′), (x′, y) and

(x′, y′) are located on the segments 〈(0, 2x1),b1〉, 〈(0, 2x2),b2〉, 〈(0, 2x3),b3〉 and

〈(0, 2x4),b4〉, respectively (see Figure 5.6). The points b1, b2, b3 and b4, together

with (0, 0), (d, d), (d∗, d∗) and (1, 1), determine a piecewise linear convex diagonal

function δ1 such that δ1(xi) = δ(xi) for any i ∈ {1, 2, 3, 4}. Due to Proposition 5.5,

the ortholinear function Aδ1 is an ortholinear copula. Therefore,

VAδ(R) = VAδ1 (R) ≥ 0 .

Furthermore, as in the proof of Proposition 5.7(ii), it holds that VAδ1 (R) > 0.

Consequently, the trapezoid Θ2 is a subset of the support, a contradiction. Hence,

δ is piecewise linear. Similarly to the proof of Proposition 5.7(ii) and using the

fact that Cδ is supported on a set with Lebesgue measure zero, it follows that δ is

linear on the interval [0, 1/2] as well as on the interval [1/2, 1], i.e.

δ(x) = θδTM
(x) + (1− θ)δTL

(x) ,

with θ ∈ [0, 1]. Recalling that any ortholinear copula is uniquely determined by its

diagonal section, our assertion follows.
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5.7. Dependence measures

In this section, we derive compact formulae for Spearman’s rho, Gini’s gamma and

Kendall’s tau of two continuous random variables whose dependence is modelled

by an ortholinear copula Cδ. These parameters can be expressed in terms of the

function δ.

Proposition 5.9. Let X and Y be two continuous random variables whose copula

is an ortholinear copula Cδ.

(i) The population version of Spearman’s ρCδ for X and Y is given by

ρCδ = 24

1/2∫
0

x(δ(x) + δ(1− x)) dx− 2 .

(ii) The population version of Gini’s γCδ for X and Y is given by

γCδ = 4

1∫
0

δ(x)dx− 2(1− δ(1/2)) .

(iii) The population version of Kendall’s τCδ for X and Y is given by

τCδ = 1− (4/3)(δ2(1/2)− δ(1/2) + 5)

−(4/3)

1/2∫
0

x

((
d

dx
(δ(x))

)2

+

(
d

dx
δ(1− x)

)2
)

dx

+16

1/2∫
0

δ(1− x) dx+ (8/3)

1/2∫
0

δ2(x) + (1− δ(x))2

x
dx .

Proof. In order to find ρCδ , we need to compute

I =

1∫
0

1∫
0

Cδ(x, y) dxdy .

As Cδ is symmetric, it holds that I = 2Ĩ with Ĩ the integral over the region T2 ∪T3,

i.e.

Ĩ =

1/2∫
0

1−x∫
x

Cδ(x, y)dydx+

1∫
1/2

y∫
1−y

Cδ(x, y)dxdy .
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Substituting the expression for Cδ(x, y), it holds that

1/2∫
0

1−x∫
x

Cδ(x, y)dydx = 2

1/2∫
0

x dx

1/2∫
x

δ(z)

z
dz . (5.17)

Consider the function ζ : ]0, 1[→ R given by

ζ(x) =

x∫
0

δ(u)

u
du .

Substituting ζ(x) in Eq. (5.17) and integrating by parts, it follows that

1/2∫
0

1−x∫
x

Cδ(x, y)dydx =

1/2∫
0

xδ(x) dx .

Similarly, one can find that

1∫
1/2

y∫
1−y

Cδ(x, y)dxdy =

1/2∫
0

xδ(1− x) dx+ 1/24 .

Hence,

I = 2Ĩ = 2

1/2∫
0

x(δ(x) + δ(1− x)) dx+ 1/12 .

Substituting in the expression for ρCδ , (i) follows.

The expression for γCδ can be rewritten as

γCδ = 4

 1∫
0

ωCδ(x)dx−
1∫

0

(x− δ(x))dx

 ,
where ωCδ is the opposite diagonal section of Cδ. Since Cδ is ortholinear, ωCδ is

given by

ωCδ(x) =


2xδ(1/2) , if x ≤ 1/2 ,

2(1− x)δ(1/2) , if x ≥ 1/2 .

Computing
1∫
0

ωCδ(x)dx, (ii) follows.
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In order to find τCδ , we need to compute

I =

1∫
0

1∫
0

∂Cδ
∂x

(x, y)
∂Cδ
∂y

(x, y)dxdy .

Let us introduce the notations

I1 =

1/2∫
0

1−x∫
x

∂Cδ
∂x

(x, y)
∂Cδ
∂y

(x, y)dxdy ,

and

I2 =

1∫
1/2

y∫
1−y

∂Cδ
∂x

(x, y)
∂Cδ
∂y

(x, y)dxdy .

As Cδ is symmetric, it holds that I = 2Ĩ with Ĩ the integral over the region T2 ∪T3,

i.e.

Ĩ = I1 + I2 .

Computing the partial derivatives, it holds that

I1 =

1/2∫
0

1−x∫
x

(
λδ(z) +

1

2

d

dz
(λδ(z))

)(
1

2
x

d

dz
(λδ(z))

)
dxdy

= (1/2)

1/2∫
0

xdx

1/2∫
x

λδ(z)
d

dz
(λδ(z)) dz + (1/2)

1/2∫
0

xdx

1/2∫
x

d

dz
(λδ(z))

2 dz

= (1/12)δ2(1/2) + (1/6)

1/2∫
0

x

(
d

dx
(δ(x))

)2

dx− (1/3)

1/2∫
0

δ2(x)

x
dx .

Similarly, one can find that

I2 = (1/6)

1/2∫
0

x

(
d

dx
(δ(1− x))

)2

− (1/3)

1/2∫
0

1− δ(1− x))2

x
dx

−2

1/2∫
0

δ(1− x) dx+ (1/12)δ2(1/2)− (1/6)δ(1/2) + 5/6 .

Substituting in the expression for τCδ , (iii) follows.
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Table 5.1: Spearman’s rho, Gini’s gamma and Kendall’s tau of the ortholinear copulas
Cδθ with diagonal section δθ(t) = tθ+1.

θ δθ ρCδθ γCδθ τCδθ

0 t 1 1 1

0.2 t1.2 0.667144 0.688732 0.651416

0.4 t1.4 0.383928 0.424525 0.380099

0.6 t1.6 0.141183 0.198215 0.161747

0.8 t1.8 −0.068242 0.002921 −0.017583

1 t2 −0.250000 −0.166667 −0.166667

Example 5.10. We reconsider the ortholinear copulas associated with the diagional

functions introduced in Example 5.6. For these copulas we computed the values

of Spearman’s rho, Gini’s gamma and Kendall’s tau by means of the expressions

given in Proposition 5.9. The results are listed in Table 5.1.

5.8. Aggregations of ortholinear copulas

In this section we study the aggregation of ortholinear copulas. We formulate two

lemmas and two immediate propositions.

Lemma 5.4. The sets Dac
S and D are closed under minimum, maximum and

convex sums.

Lemma 5.5. Let Cδ1 and Cδ2 be two ortholinear functions. Then it holds that

Cδ1 ≤ Cδ2 if and only if δ1 ≤ δ2 .

Proposition 5.10. Let δ1, δ2 ∈ Dac
S (resp. D) and θ ∈ [0, 1]. If Cδ1 and Cδ2 are or-

tholinear semi-copulas (resp. quasi-copulas), then also min(Cδ1 , Cδ2),

max(Cδ1 , Cδ2) and θCδ1 + (1 − θ)Cδ2 are ortholinear semi-copulas (resp. quasi-

copulas). The corresponding diagonal sections are given by δmin = min(δ1, δ2),

δmax = max(δ1, δ2) and θδ1 + (1− θ)δ2, respectively.

Consequently, the class of ortholinear semi-copulas and the class of orthogonal

quasi-copulas are closed under minimum, maximum and convex sums.
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Proposition 5.11. Let δ1, δ2 ∈ D and θ ∈ [0, 1]. If Cδ1 and Cδ2 are ortholinear

copulas, then also max(Cδ1 , Cδ2) and θCδ1 +(1−θ)Cδ2 are ortholinear copulas. The

corresponding diagonal sections are given by δmax and θδ1 + (1− θ)δ2, respectively.

Consequently, the class of ortholinear copulas is closed under maximum and convex

sums. Hence, the class of orthogonal copulas is not join-dense in the class of

ortholinear quasi-copulas in contrast to the general case [92]. In general, the

minimum of two ortholinear copulas need not be an ortholinear copula. For

instance, let Cδ1 and Cδ2 be two ortholinear copulas with δ1 and δ2 as depicted in

Figure 5.8. Obviously, the function δmin is not convex, and thus min(Cδ1 , Cδ2) is a

proper ortholinear quasi-copula.

δ2

δ1 δmin

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 5.8: An example of the graph of δmin

Since the diagonal function δ determining an orthogonal quasi-copula Qδ can always

be written as the infimum of a family (δi)i∈I of convex functions, any orthogonal

quasi-copula Qδ can be written as

Qδ = inf
i∈I

Cδi ,

where Cδi are orthogonal copulas. Hence, the class of orthogonal copulas is meet-

dense in the class of orthogonal quasi copulas.

5.9. Paralinear functions

Paralinear functions are constructed by linear interpolation on segments that are

parallel to the diagonal of the unit square. The linear interpolation scheme of this
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type of functions on some segments is depicted in Figure 5.9.

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 5.9: Some segments on which a paralinear function is linear.

Let us introduce the notation v = 1+x−y
2 .

Let ω ∈ OS. The function Aω : [0, 1]2 → [0, 1] given by

Aω(x, y) =



y
ω(v)

1− v
, if (x, y) ∈ T1 ,

x
ω(v)

v
, if (x, y) ∈ T2 ,

x+ y − 1 + (1− y)
ω(v)

v
, if (x, y) ∈ T3 ,

x+ y − 1 + (1− x)
ω(v)

1− v
, if (x, y) ∈ T4 ,

(5.18)

is well defined. This function is called the paralinear function with opposite diagonal

section ω, since it is linear on segments connecting the points (x, 1− x), (0, 1− 2x)

and (2x, 1), with x ≤ 1/2, as well as on segments connecting the points (x, 1− x),

(2x− 1, 0) and (1, 2(1− x)), with x ≥ 1/2.

For any paralinear function, the boundary conditions of a semi-copula always hold.

Note that a paralinear function Aω is uniquely determined by its opposite diagonal

section. Note also that a paralinear function Aω is continuous if and only if ω is

continuous. Let us consider the functions λω and µω defined as in Chapter 3.
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Proposition 5.12. Let ω ∈ Oac
S . The paralinear function Aω is a semi-copula if

and only if

(i) the function λω, and the function ψω : [0, 1]→ [0, 1] defined by

ψω(x) = xω(x) ,

are respectively decreasing and increasing on the interval ]0, 1/2];

(ii) the function µω, and the function ξω : [0, 1]→ [0, 1] defined by

ξω(x) = (1− x)ω(x) ,

are respectively increasing and decreasing on the interval [1/2, 1[ .

Proof. Suppose conditions (i) and (ii) are satisfied. To prove that Aω is a semi-

copula we need to show its increasingness in each variable. We prove the increasing-

ness of Aω in the second variable (the proof of the increasingness in the first variable

is similar). Let (x, y), (x, y′) ∈ [0, 1]2 be such that y ≤ y′. Let us introduce the

notation v′ = 1+x−y′
2 . If (x, y), (x, y′) ∈ T1, the increasingness of Aω is equivalent

to

y′
ω(v′)

1− v′
− y ω(v)

1− v
≥ 0 ,

or, equivalently,
y′

(1− v′)2
ξω(v′)− y

(1− v)2
ξω(v) ≥ 0 .

Since x+ y ≤ x+ y′ ≤ 1 and the decreasingness of ξω on the interval [0, 1/2], it

holds that

y′

(1− v′)2
ξω(v′)− y

(1− v)2
ξω(v) ≥ y

(1− v)2
(ξω(v′)− ξω(v)) ≥ 0 .

If (x, y), (x, y′) ∈ T2, the increasingness of Aω is equivalent to

x

(
ω(v′)

v′
− ω(v)

v

)
≥ 0 ,

or, equivalently,

x(λω(v′)− λω(v)) ≥ 0 . (5.19)

Since y ≤ y′, it holds that v′ ≤ v and therefore inequality (5.19) holds due to the

decreasingness of the function λω on the interval ]0, 1/2].

If (x, y), (x, y′) ∈ T3, the increasingness of Aω is equivalent to

y′ − y + (1− y′)ω(v′)

v′
− (1− y)

ω(v)

v
≥ 0 ,
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or, equivalently,

(1− y)(1− λω(v))− (1− y′)(1− λω(v′)) ≥ 0 .

Since y ≤ y′ and the decreasingness of λω on the interval ]0, 1/2], it holds that

(1− y)(1− λω(v))− (1− y′)(1− λω(v′)) ≥ (1− y′)(λω(v′)− λω(v)) ≥ 0 .

Similarly, one can prove the increasingness of Aω in the second variable on T4.

Conversely, suppose that Aω is a semi-copula. Let y, y′ ∈ ]0, 1/2] be such that

y ≤ y′, and x ∈ [0, 1] be such that x + y′ ≤ 1 and y ≥ x′. Clearly, the points

(x, 1 + x− 2y) and (x, 1 + x− 2y′) are located in T2. The increasingness of Aω in

the second variable implies

Aω(x, 1 + x− 2y)−Aω(x, 1 + x− 2y′) ≥ 0 , (5.20)

or, equivalently,

x(λω(y)− λω(y′)) ≥ 0 .

Hence, the decreasingness of λω on the interval ]0, 1/2] follows.

Let x, x′ ∈ ]0, 1/2] such that x < x′ and y ∈ [0, 1] such that y ≥ x′ and x′ + y ≤ 1.

Clearly, the points (2x + y − 1, y) and (2x′ + y − 1, y) are located in T2. The

increasingness of Aω in the first variable implies

(2x′ + y − 1)
ω(x′)

x′
− (2x+ y − 1)

ω(x)

x
≥ 0 , (5.21)

or, equivalently,

2(ω(x′)− ω(x))− (1− y)

(
ω(x′)

x′
− ω(x)

x

)
≥ 0 , (5.22)

Dividing by x′ − x and taking the limit x′ → x, inequality (5.22) becomes

2ω′(x)− (1− y)

(
ω(x)

x

)′
≥ 0 ,

where the derivative exists. Setting y = 1− x, the last inequality is equivalent to

xω′(x) + ω(x) ≥ 0 ,

or, equivalently, ψ′ω(x) ≥ 0 , where the derivative exists. Since ω is absolutely

continuous, it holds that ψω is absolutely continuous. The fact that ψ′ω(x) ≥ 0 ,

where the derivative exists, on the interval ]0, 1/2], then implies that ψω is increasing

on the interval ]0, 1/2] .

141



Chapter 5. Ortholinear and paralinear semi-copulas

Let x, x′ ∈ [1/2, 1[ such that x ≤ x′ and y ∈ [0, 1] such that x+ y′ ≤ 1 and y ≤ x.

Clearly, the points (2x + y − 1, y) and (2x′ + y − 1, y) are located in T1. The

increasingness of Aω in the first variable implies

Aω(2x′ + y − 1, y)−Aω(2x+ y − 1, y) ≥ 0 , (5.23)

or, equivalently,

y(µω(x′)− µω(x)) ≥ 0 .

Hence, the increasingness of µω on the interval [1/2, 1[ follows. Similarly, one can

prove the increasingness of ψω on the interval ]0, 1/2] and the decreasingness of ξω
on the interval [1/2, 1[ , which completes the proof.

Let Aω be an ortholinear function with opposite diagonal section ω. The function

A′, defined by

A′ = ϕ2(A) , (5.24)

where ϕ2 is the transformation defined in (1.3), is again an ortholinear function

whose diagonal section δA′ is given by δA′(x) = x − ω(x). This transformation

permits to derive in a straightforward manner the conditions that guarantee the

existence of a paralinear function. Based on the above discussion the proofs of the

following propositions are obvious due to Proposition 5.3 and Theorem 5.1.

Proposition 5.13. Let ω ∈ O. The paralinear function Aω is a quasi-copula if

and only if

(i) the function λω, and the function ψω defined in Proposition 5.12, are respec-

tively decreasing and increasing on the interval ]0, 1/2]

(ii) the functions µω, and the function ξω defined in Proposition 5.12, are respec-

tively increasing and decreasing on the interval [1/2, 1[ .

Proposition 5.14. Let ω ∈ O. The paralinear function Aω is a copula if and only

if the function ω is concave.

Example 5.11. Consider the opposite diagonal functions ωTM
and ωTL

. Clearly,

ωTM
and ωTL

are concave functions. The corresponding ortholinear copulas are

TM and TL, respectively.
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Example 5.12. Consider the opposite diagonal function ωTP
(x) = x(1 − x).

Clearly, ωTP
is concave. The corresponding ortholinear copula is given by

AωTP (x, y) =



yv , if (x, y) ∈ T1 ,

x(1− v) , if (x, y) ∈ T2 ,

x− (1− y)v , if (x, y) ∈ T3 ,

y − (1− x)(1− v) , if (x, y) ∈ T4 .

We conclude this section by finding the intersection between the class of ortholinear

copulas and the class of paralinear copulas.

Proposition 5.15. Let C be a copula. Then it holds that C is an ortholinear

copula as well as a paralinear copula if and only if C is a member of the family of

convex sums of TM and TL.

Proof. Suppose that C is an ortholinear copula with opposite diagonal section ω

and suppose further that C is a paralinear copula with diagonal section δ. Due to

the construction method of ortholinear copulas and paralinear copulas, δ and ω

must be piecewise linear and are given by

δ(x) =


2xω(1/2) , if x ≤ 1/2 ,

2x− 1 + 2(1− x)ω(1/2) , if x ≥ 1/2 ,

ω(x) =


2xδ(1/2) , if x ≤ 1/2 ,

2(1− x)δ(1/2) , if x ≥ 1/2 .

Since δ and ω are the diagonal and opposite diagonal sections of C, it holds that

δ(1/2) = ω(1/2). Using the notation θ = 2δ(1/2) = 2ω(1/2), δ and ω can be

rewritten as

δ(x) = θδTM
(x) + (1− θ)δTL

(x) , ω(x) = θωTM
(x) + (1− θ)ωTL

(x) .

Recalling that any ortholinear (resp. paralinear) copula is uniquely determined by

its diagonal (resp. opposite diagonal) section, our assertion follows.
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6 Semilinear copulas based on horizontal

and vertical interpolation

6.1. Introduction

Rather than including one line in the unit square in the linear interpolation

procedure as in the previous chapters, we include in this chapter two lines. More

specifically, these two lines are the diagonal and the opposite diagonal of the unit

square. We restrict our attention in this chapter to the class of copulas.

We introduce in this chapter new families of semilinear copulas. Recently, Durante

et al. [38] introduced two families of semilinear copulas with a given diagonal

section, which they called lower and upper semilinear copulas. These copulas are

obtained by linear interpolation on segments connecting the diagonal and one of

the sides of the unit square. Lower and upper semilinear copulas are symmetric.

In order to allow for non-symmetric semilinear copulas as well, De Baets et al. [20]

have introduced two related families of semilinear copulas with a given diagonal

section, called horizontal and vertical semilinear copulas. In the present chapter,

we first introduce four families of semilinear copulas with a given opposite diagonal

section, called lower-upper, upper-lower, horizontal and vertical semilinear copulas.

There is a great similarity between the case of a given opposite diagonal section

and that of a given diagonal section (see also [23]), which can be explained by the

existence of a transformation that maps copulas onto copulas in such a way that

the diagonal is mapped onto the opposite diagonal and vice versa. In the second

part of this chapter, we consider the construction of semilinear copulas with given

diagonal and opposite diagonal sections. Also here, four new families of semilinear

copulas are introduced, called orbital, vertical, horizontal and radial semilinear

copulas.

This chapter is organized as follows. In Section 6.2, we recall some essential facts on

semilinear copulas with a given diagonal section, while in Section 6.3, we introduce

semilinear copulas with a given opposite diagonal section. In Section 6.4, we

introduce the four families of semilinear copulas with given diagonal and opposite

diagonal sections and provide for each family the conditions to be satisfied by

a diagonal and opposite diagonal function such that they can be the diagonal

and opposite diagonal sections of a semilinear copula belonging to that family.

Finally, in Section 6.5, we derive some interesting properties of the family of orbital

semilinear copulas.
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Lower Upper Horizontal Vertical

Figure 6.1: Semilinear copulas with a given diagonal section.

6.2. Semilinear copulas with a given diagonal sec-

tion

Two different methods for constructing semilinear copulas with a given diagonal

section have been presented recently. The first method is based on linear interpola-

tion on segments connecting the diagonal with the left and lower side (resp. right

and upper side) of the unit square; these symmetric copulas are called lower (resp.

upper) semilinear copulas [38]. The second method is based on linear interpolation

on segments connecting the diagonal with the lower and upper side (resp. left

and right side) of the unit square; these in general non-symmetric copulas are

called vertical (resp. horizontal) semilinear copulas [20]. The different interpolation

schemes are depicted in Figure 6.1.

We briefly recall the conditions on a diagonal function δ that guarantee the existence

of a lower or vertical semilinear copula with δ as diagonal section.

Let us consider the subtriangles I1 and I2 of the unit square as in Chapter 3. Let

us further consider the functions λδ and µδ defined as in Chapter 3.

Proposition 6.1. [38] Let δ be a diagonal function. The function Clδ : [0, 1]2 →
[0, 1] defined by

Clδ(x, y) =


y
δ(x)

x
, if (x, y) ∈ I1 ,

x
δ(y)

y
, if (x, y) ∈ I2 ,

(6.1)

where the convention 0
0 := 0 is adopted, is a copula with diagonal section δ, called

lower semilinear copula with diagonal section δ, if and only if

(i) the function λδ is increasing;

(ii) the function ρδ : ]0, 1]→ [1,∞[ , defined by ρδ(x) = δ(x)
x2 , is decreasing.
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Proposition 6.2. [20] Let δ be a diagonal function. The function Cvδ : [0, 1]2 →
[0, 1] defined by

Cvδ (x, y) =


y
δ(x)

x
, if (x, y) ∈ I1 ,

x(y − x)

1− x
+

1− y
1− x

δ(x) , if (x, y) ∈ I2 ,
(6.2)

where the convention 0
0 := 1 is adopted, is a copula with diagonal section δ, called

vertical semilinear copula with diagonal section δ, if and only if

(i) the function λδ is increasing;

(ii) the function µδ is increasing;

(iii) δ ≥ δΠ, i.e. for any x ∈ [0, 1], it holds that δ(x) ≥ x2.

It can be easily proven that the upper semilinear copula with a given diagonal

section can be regarded as a transform of a lower semilinear copula.

Proposition 6.3. Let δ be a diagonal function and δ̂ be the diagonal function

defined by δ̂(x) = 2x− 1 + δ(1− x). The function Cuδ : [0, 1]2 → [0, 1], defined by

Cuδ = σ(Cl
δ̂
) , (6.3)

where σ is the transformation defined in (1.3), is a copula with diagonal section δ,

called upper semilinear copula with diagonal section δ, if and only if

(i) the function µδ is increasing;

(ii) the function σδ : [0, 1[→ [1,∞[ , defined by σδ(x) = δ(x)−x2

(1−x)2 , is increasing.

Similarly, the horizontal semilinear copula with a given diagonal section is a

transform of a vertical semilinear copula.

Proposition 6.4. Let δ be a diagonal function. The function Cvδ : [0, 1]2 → [0, 1],

defined by

Chδ = π(Cvδ ) , (6.4)

where π is the transformation defined in (1.3), is a copula with diagonal section δ,

called horizontal semilinear copula with diagonal section δ, if and only if Cvδ is a

copula, i.e. under the conditions of Proposition 6.2.

Note that for any two lower (resp. upper, vertical, horizontal) semilinear copulas

C1 and C2 it holds that C1 ≤ C2 if and only if δC1
≤ δC2

. Since the function ρδ is

decreasing, ρδ(x) ≥ ρδ(1) = 1 for any x ∈ ]0, 1]. Therefore, δ(x) ≥ x2, for any lower

semilinear copula C. Similarly, since the function σδ is increasing, δ(x) ≥ x2, for

any upper semilinear copula C. Note also that M and Π are examples of copulas

that are at the same time lower, upper, vertical and horizontal semilinear copulas.

Hence, Π is the smallest semilinear copula (of one of the above four types), i.e.
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every semilinear copula with a given diagonal section (of one of the above four

types) is positive quadrant dependent.

6.3. Semilinear copulas with a given opposite di-

agonal section

In analogy with the lower (resp. upper) and vertical (resp. horizontal) semilinear

copulas with a given diagonal section δ, we introduce lower-upper (resp. upper-

lower) and vertical (resp. horizontal) semilinear copulas with a given opposite

diagonal section ω. For instance, the lower-upper semilinear copula is constructed

based on linear interpolation on segments connecting the opposite diagonal with

the left and upper side of the unit square. See also Figure 6.2 where the four

different interpolation schemes are depicted.

Lower-upper Upper-lower Horizontal Vertical

Figure 6.2: Semilinear copulas with a given opposite diagonal section.

Let Cω be a copula with opposite diagonal section ω. The function C ′, defined by

C ′ = ϕ2(C), where ϕ2 is the transformation defined in (1.3)), is again a copula

whose diagonal section δC′ is given by δC′(x) = x − ω(x). This transformation

permits to derive in a straightforward manner the conditions that guarantee the

existence of a semilinear copula (of any of the above types) with a given opposite

diagonal section. Let us consider the subtriangles J1 and J2 of the unit square

as in Chapter 3. Let us further consider the functions λω and defined µω as in

Chapter 3.

Proposition 6.5. Let ω be an opposite diagonal function. The function Cluω :

[0, 1]2 → [0, 1] defined by

Cluω (x, y) =


x

1− y
ω(1− y) , if (x, y) ∈ J1 ,

x+ y − 1 +
1− y
x

ω(x) , if (x, y) ∈ J2 ,
(6.5)

where the convention 0
0 := 0 is adopted, is a copula with opposite diagonal section

ω, called lower-upper semilinear copula with opposite diagonal section ω, if and
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only if

(i) the function λω is decreasing;

(ii) the function ηω : ]0, 1]→ [1,∞[ , defined by ηω(x) = x−ω(x)
x2 , is decreasing.

Proposition 6.6. Let ω be an opposite diagonal function. The function Cvω :

[0, 1]2 → [0, 1], defined by

Cvω(x, y) =


y

1− x
ω(x) , if (x, y) ∈ J1 ,

x+ y − 1 +
1− y
x

ω(x) , if (x, y) ∈ J2 ,
(6.6)

where the convention 0
0 := 0 is adopted, is a copula with opposite diagonal section

ω, called vertical semilinear copula with opposite diagonal section ω, if and only if

(i) the function λω is decreasing;

(ii) the function µω is increasing;

(iii) ω ≤ ωΠ, i.e. for any x ∈ [0, 1], it holds that ω(x) ≤ x(1− x).

Proposition 6.7. Let ω be an opposite diagonal function and ω̂ be the opposite

diagonal function defined by ω̂(x) = ω(1− x). The function Culδ : [0, 1]2 → [0, 1],

defined by

Culω = π(Cluω̂ ) , (6.7)

is a copula with opposite diagonal section ω, called upper-lower semilinear copula

with opposite diagonal section ω, if and only if

(i) the function µω is increasing;

(ii) the function ζω : [0, 1[→ [1,∞[ , defined by ζω(x) = 1−x−ω(x)
(1−x)2 , is increasing.

Similarly, the horizontal semilinear copula with a given opposite diagonal section

is a linear transform of a vertical semilinear copula.

Proposition 6.8. Let ω be an opposite diagonal function and ω̂ be the opposite

diagonal function defined by ω̂(x) = ω(1 − x). The function Chω : [0, 1]2 → [0, 1],

defined by

Chω = π(Cvω̂) , (6.8)

is a copula with opposite diagonal section ω, called horizontal semilinear copula

with opposite diagonal section ω, if and only if Cvω̂ is a copula, i.e. under the

conditions of Proposition 6.6.

Note that for any two lower-upper (resp. vertical, upper-lower, horizontal) semilinear

copulas C1 and C2 it holds that C1 ≤ C2 if and only if ωC1 ≤ ωC2 . From

Propositions 6.5 and 6.6, it follows that ω(x) ≤ x(1 − x) for any lower-upper,

upper-lower, horizontal or vertical semilinear copula. Note also that W and Π are

examples of copulas that are at the same time lower-upper, vertical, upper-lower
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Orbital Vertical Horizontal Radial

Figure 6.3: Semilinear copulas with given diagonal and opposite diagonal sections.

and horizontal semilinear copulas. Hence, Π is the greatest semilinear copula (of one

of the above four types), i.e. every semilinear copula with a given opposite diagonal

section (of one of the above four types) is negative quadrant dependent.

6.4. Semilinear copulas with given diagonal and

opposite diagonal sections

In this section we introduce four new families of semilinear copulas. Their con-

struction is based on linear interpolation on segments connecting the diagonal and

opposite diagonal or connecting the diagonal or opposite diagonal and one of the

sides of the unit square. Since in any of the four triangular parts of the unit square

delimited by the diagonal and opposite diagonal, we can either interpolate between

a point on the diagonal and a point on the opposite diagonal, or between a point on

the sides of the unit square and a point on the diagonal or opposite diagonal, there

are sixteen possible interpolation schemes. Based on symmetry considerations, we

will consider only the four interpolation schemes depicted in Figure 6.3.

Clearly, in general, given a diagonal function δ and an opposite diagonal function

ω, there need not exist a copula that has δ as diagonal section and ω as opposite

diagonal section. For instance, the diagonal function δ(x) = x2 and the opposite

diagonal function ω(x) = min(x, 1−x) cannot be the diagonal and opposite diagonal

sections of a copula since δ(1/2) = 1/4 6= 1/2 = ω(1/2).

Let us consider the subtriangles T1, T2, T3 and T4 of the unit square as in Chap-

ter 5.
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Proposition 6.9. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). The function Coδ,ω : [0, 1]2 → [0, 1], defined by

Coδ,ω(x, y) =


x+ y − 1

2y − 1
δ(y) +

y − x
2y − 1

ω(1− y) , if (x, y) ∈ T1 ∪ T3 ,

x+ y − 1

2x− 1
δ(x) +

x− y
2x− 1

ω(x) , otherwise ,

(6.9)

where the convention 0
0 := 1/2 is adopted, is a copula with diagonal section δ and

opposite diagonal section ω, called orbital semilinear copula with diagonal section

δ and opposite diagonal section ω, if and only if:

(i) the functions ϑδ,ω, ψδ,ω : [0, 1/2[ ∪ ]1/2, 1]→ [0, 1], defined by

ϑδ,ω(x) =
ω(x)− δ(x)

1− 2x
, ψδ,ω(x) =

ω(1− x)− δ(x)

1− 2x
,

are increasing on the interval [0, 1/2[ and on the interval ]1/2, 1];

(ii) for any x, x′ ∈ [0, 1/2[ , such that x < x′, it holds that

ω(x) + ω(1− x) ≤ δ(x′)(1− 2x)− δ(x)(1− 2x′)

x′ − x
,

δ(x) + δ(1− x) ≥ ω(x′)(1− 2x)− ω(x)(1− 2x′)

x′ − x
;

(iii) for any x, x′ ∈ ]1/2, 1] , such that x < x′, it holds that

ω(x′) + ω(1− x′) ≤ δ(x′)(1− 2x)− δ(x)(1− 2x′)

x′ − x
,

δ(x′) + δ(1− x′) ≥ ω(x′)(1− 2x)− ω(x)(1− 2x′)

x′ − x
.

Proof. The function Coδ,ω defined in (6.9) clearly satisfies the boundary conditions

of a copula. Therefore, it suffices to prove that conditions (i)-(iii) are equivalent to

the property of 2-increasingness. Due to the additivity of volumes, we distinguish

the following cases. Consider a rectangle R = [x, x′]× [y, y′] ⊆ [0, 1]2.

(a) If R ⊆ T2 such that x′ < 1/2, then it holds that

VCoδ,ω (R) = (ϑδ,ω(x′)− ϑδ,ω(x))(y′ − y) .

The nonnegativity of VCoδ,ω(R) is clearly equivalent to the increasingness of

the function ϑδ,ω on the intervals [0, 1/2[ . Similarly, the nonnegativity of
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VCoδ,ω(R) for any rectangle R ⊆ T4 such that x > 1/2 is equivalent to the

increasingness of the function ϑδ,ω on the interval ]1/2, 1].

(b) If R ⊆ T1 such that y′ < 1/2, then it holds that

VCoδ,ω (R) = (ψδ,ω(y′)− ψδ,ω(y))(x′ − x) .

The nonnegativity of VCoδ,ω(R) is clearly equivalent to the increasingness of

the function ψδ,ω on the intervals [0, 1/2[ . Similarly, the nonnegativity of

VCoδ,ω(R) for any rectangle R ⊆ T3 such that y > 1/2 is equivalent to the

increasingness of the function ψδ,ω on the intervals ]1/2, 1].

(c) If R is of the type [x, x′]× [x, x′] or of the type [x, x′]× [1−x′, 1−x] (otherwise

stated, rectangles whose diagonal or opposite diagonal is situated on the

diagonal or opposite diagonal of the unit square), then the nonnegativity of

VCoδ,ω (R) is equivalent to conditions (ii) and (iii).

Note that conditions (ii) and (iii) can be reformulated by means of the functions

ϑδ,ω and ψδ,ω in the following way:

(ii’) for any x, x′ ∈ [0, 1/2[ such that x < x′, it holds that

ϑδ,ω(x) + ψδ,ω(x) ≤ δ(x′)− δ(x)

x′ − x
, ψδ,ω(1− x)− ϑδ,ω(x) ≥ ω(x′)− ω(x)

x′ − x
;

(iii’) for any x, x′ ∈ ]1/2, 1] such that x < x′, it holds that

ϑδ,ω(x′)+ψδ,ω(x′) ≥ δ(x′)− δ(x)

x′ − x
, ψδ,ω(1−x′)−ϑδ,ω(x′) ≤ ω(x′)− ω(x)

x′ − x
.

In case δ and ω are differentiable functions, the latter two conditions are equivalent

with

(ii”) for any x < 1/2, it holds that

δ′(x) ≥ ϑδ,ω(x) + ψδ,ω(x) , ω′(x) ≤ ψδ,ω(1− x)− ϑδ,ω(x) ;

(iii”) for any x > 1/2, it holds that

δ′(x) ≤ ϑδ,ω(x) + ψδ,ω(x) , ω′(x) ≥ ψδ,ω(1− x)− ϑδ,ω(x) .

Example 6.1. Consider the diagonal function δ(x) = x2 and the opposite diagonal

function ω(x) = (1/2) min(x, 1 − x). Note that δ(1/2) = ω(1/2) = 1/4. Clearly,

the functions ϑδ,ω and ψδ,ω are increasing on the intervals [0, 1/2[ and ]1/2, 1]. For
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any 0 ≤ x < x′ ≤ 1/2, it holds that

ϑδ,ω(x) + ψδ,ω(x) = x < x+ x′ =
δ(x′)− δ(x)

x′ − x

and

ψδ,ω(1− x)− ϑδ,ω(x) = 1− x > 1

2
=
ω(x′)− ω(x)

x′ − x
,

whence condition (ii’) is satisfied. Similarly, condition (iii’) is satisfied, and

therefore the function Coδ,ω defined in (6.9) is the orbital semilinear copula with

diagonal section δ and opposite diagonal section ω.

Next, we consider the construction of the horizontal (resp. vertical) semilinear

copula with given diagonal and opposite diagonal sections. It is constructed by

interpolating in the x-direction (resp. y-direction). As it is again possible to connect

the two types by means of a transformation, we will make explicit the conditions

to be fulfilled by δ and ω for just one type.

Proposition 6.10. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). The function Chδ,ω : [0, 1]2 → [0, 1], defined by Chδ,ω(x, y) =

x+ y − 1

2y − 1
δ(y) +

y − x
2y − 1

ω(1− y) , if (x, y) ∈ T1 ∪ T3 and (x, y) 6= (1/2, 1/2) ,

x

y
δ(y) , if (x, y) ∈ T2 and y ≤ 1/2 ,

x

1− y
ω(1− y) , if (x, y) ∈ T2 and y ≥ 1/2 ,

x+ y − 1 +
1− x
y

ω(1− y) , if (x, y) ∈ T4 and y ≤ 1/2 ,

y − 1− x
1− y

(y − δ(y)) , if (x, y) ∈ T4 and y ≥ 1/2 ,

(6.10)

where the convention 0
0 := 0 is adopted, is a copula with diagonal section δ and

opposite diagonal section ω, called horizontal semilinear copula with diagonal section

δ and opposite diagonal section ω, if and only if:

(i) the function ψδ,ω is increasing on the interval [0, 1/2[ and on the inter-

val ]1/2, 1];

(ii) the function λδ is increasing on the interval ]0, 1/2] and the function λωis

decreasing on the interval [1/2, 1];

(iii) the function µδ is increasing on the interval [1/2, 1[ and the function µω is

increasing on the interval [0, 1/2];

(iv) for any x ∈ [0, 1/2], it holds that

min[(1− x)δ(x)− xω(1− x) , xδ(1− x)− (1− x)ω(x)] ≥ 0 ;
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(v) for any x ∈ [1/2, 1], it holds that

min[x(1−2x)−(1−x)ω(1−x)+xδ(x) , (δ(1−x)+2x−1)(1−x)−xω(x)] ≥ 0 .

Proof. The proof is similar to that of Proposition 6.9.

Example 6.2. Consider the diagonal function δ(x) = x
2−x and the opposite di-

agonal function ω(x) = 2
3 min(x, 1 − x). Note that δ(1/2) = ω(1/2) = 1/3. The

first three conditions of Proposition 6.10 are trivially fulfilled. Moreover, for any

x ∈ [0, 1/2], it holds that

(1− x)δ(x)− xω(1− x) =
x(3− x)(1− 2x)

3(2− x)
≥ 0

and

xδ(1− x)− (1− x)ω(x) =
x(1− x)(1− 2x)

3(1 + x)
≥ 0 ,

which implies condition (iv). Condition (v) holds similarly. Therefore the function

Chδ,ω is the horizontal semilinear copula with diagonal section δ and opposite diagonal

section ω.

The vertical semilinear copula Cvδ,ω with diagonal section δ and opposite diagonal

section ω is defined by

Cvδ,ω = π(Chδ,ω̂) , (6.11)

with ω̂ the opposite diagonal function defined by ω̂(x) = ω(1 − x) and Chδ,ω̂ the

horizontal semilinear copula with diagonal section δ and opposite diagonal section

ω̂, provided the latter is properly defined. In fact, the conditions on δ and ω are

exactly conditions (i)–(v) of Proposition 6.10.

Finally, we consider the case where the interpolation is done on segments connecting

points on the diagonal or opposite diagonal and points on the sides of the unit

square. We call a semilinear copula that results from this interpolation scheme a

radial semilinear copula.
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Proposition 6.11. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). The function Crδ,ω : [0, 1]2 → [0, 1], defined by

Crδ,ω(x, y) =



y

x
δ(x) , if (x, y) ∈ T1 and x ≤ 1/2 ,

y

1− x
ω(x) , if (x, y) ∈ T1 and x ≥ 1/2 ,

x

y
δ(y) , if (x, y) ∈ T2 and y ≤ 1/2 ,

x

1− y
ω(1− y) , if (x, y) ∈ T2 and y ≥ 1/2 ,

x+ y − 1 +
1− y
x

ω(x) , if (x, y) ∈ T3 and x ≤ 1/2 ,

x− 1− y
1− x

(x− δ(x)) , if (x, y) ∈ T3 and x ≥ 1/2 ,

y − 1− x
1− y

(y − δ(y)) , if (x, y) ∈ T4 and y ≥ 1/2 ,

x+ y − 1 +
1− x
y

ω(1− y) , if (x, y) ∈ T4 and y ≤ 1/2 ,

(6.12)

where the convention 0
0 := 0 is adopted, is a copula with diagonal section δ and

opposite diagonal section ω, called radial semilinear copula with diagonal section δ

and opposite diagonal section ω, if and only if

(i) the function λδ is increasing on ]0, 1/2], the function ρδ is decreasing on

]0, 1/2], the function λω is decreasing on ]0, 1/2] and the function ηω is

decreasing on ]0, 1/2];

(ii) the function µδ is increasing on [1/2, 1[ , the function σδ is increasing on

[1/2, 1[ , the function µω is increasing on [1/2, 1[ and the function ζω is

increasing on [1/2, 1[ .

Note that M, Π and W are examples of copulas that are at the same time orbital,

vertical, horizontal and radial semilinear copulas with given diagonal and opposite

diagonal sections.

6.5. Properties of orbital semilinear copulas with

a given diagonal or opposite diagonal section

In this section we will further study the family of orbital semilinear copulas. It is

the only family for which the interpolation in all the triangular parts of the unit

square occurs between points on the diagonal and points on the opposite diagonal,

and therefore it has no counterpart at all in the families of semilinear copulas which

were constructed before by giving either a diagonal or an opposite diagonal section.
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It is well known that M (resp. W) is the only copula with diagonal section δM (resp.

opposite diagonal section ωW ). As these copulas are orbital semilinear copulas,

they are obviously the only such copulas with that given behaviour. In general,

however, M (resp. W) is not the only copula with opposite diagonal section ωM
(resp. diagonal section δW ). For instance, the copula FδW defined in (1.13) differs

from W.

In the context of orbital semilinear copulas, however, M and W take up a unique

role again.

Proposition 6.12.

(i) M is the only orbital semilinear copula which has ωM as opposite diagonal

section;

(ii) W is the only orbital semilinear copula which has δW as diagonal section.

Proof. We will prove (ii), the proof of (i) being similar. Suppose that CoδW ,ω is

the orbital semilinear copula with diagonal section δW and a not yet specified

opposite diagonal section ω. Note that ω(1/2) = δW (1/2) = 0. From condition

(ii) of Proposition 6.9, it follows that for any x ∈ [0, 1/2[ , it must hold that

ω(x)+ω(1−x) = 0, which implies that ω = ωW . Hence, CoδW ,ω = CoδW ,ωW = W .

We now investigate the situation where either the given diagonal function is the

diagonal section δΠ of the product copula Π, or the given opposite diagonal function

ω is the opposite diagonal section ωΠ of Π. In fact, we will prove a more general

statement by introducing parametrized families of diagonal (resp. opposite diagonal)

functions that contain δΠ (resp. ωΠ).

Proposition 6.13. Let δ and ω be differentiable diagonal and opposite diagonal

functions such that δ(1/2) = ω(1/2).

(i) If δ(x) = αx2 + (1 − α)x for arbitrary α ∈ ]0, 1], then the function Coδ,ω
given by (6.9) is an orbital semilinear copula if and only if the function

φω : [0, 1/2[ ∪ ]1/2, 1]→ [−1, 1], defined by

φω(x) =
2ω(x) + α(2x2 − x+ 1/2)− 1

2(1− 2x)
,

is decreasing and α-Lipschitz continuous on both intervals [0, 1/2[ and ]1/2, 1].

(ii) If ω(x) = αx(1 − x) for arbitrary α ∈ ]0, 1], then the function Coδ,ω given

by (6.9) is an orbital semilinear copula if and only if the function φδ :

[0, 1/2[ ∪ ]1/2, 1]→ [−1, 1], defined by

φδ(x) =
δ(x)− αx2

1− 2x
,
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is increasing and α-Lipschitz continuous on both intervals [0, 1/2[ and ]1/2, 1].

Proof. We will prove (ii). The proof of (i) is analogous. Let Coδ,ω be the function

defined in (6.9) with ω(x) = αx(1 − x). Note that the functions ϑδ,ω and ψδ,ω
coincide. This function is an orbital semilinear copula if and only if conditions (i)–

(iii) of Proposition 6.9 are satisfied. Since δ is differentiable, we use the equivalent

conditions (ii’) and (iii’). In the case x ∈ [0, 1/2[ , it should therefore hold that

δ′(x) ≥ ϑδ,ω(x) + ψδ,ω(x), or

δ′(x) ≥ ω(x) + ω(1− x)− 2δ(x)

1− 2x
,

which is equivalent to the condition that the function φδ is increasing on [0, 1/2[ ,

as can be readily verified by computing the derivative of φδ. Furthermore, it is

required that ϑδ,ω is increasing on [0, 1/2[ , or, equivalently, α − φ′δ(x) ≥ 0. It

follows that φδ must be α-Lipschitz continuous on [0, 1/2[. Since φδ(0) = 0, the

increasingness of φδ implies that δ(x) ≥ αx2 for any x ∈ [0, 1/2[ , whence

δ(x) + δ(1− x) ≥ α(x2 + (1− x)2) = ω′(x)(1− 2x) + 2ω(x) ,

which is equivalent to ω′(x) ≤ ψδ,ω(1 − x) − ϑδ,ω(x) for any x ∈ [0, 1/2[ . Hence,

on the subinterval [0, 1/2[ , all conditions of Proposition 6.9 are satisfied. In case

x ∈ ]1/2, 1], the proof is similar.

Example 6.3.

(i) Let δ(x) = αx2 + (1− α)x, with α ∈ ]0, 1] and consider the opposite diagonal

function

ω(x) =
(

1− α

2

)
min(x, 1− x) .

The function φω is decreasing and α-Lipschitz continuous on [0, 1/2[ and

]1/2, 1], whence for any α ∈ ]0, 1] the functions δ and ω are the diagonal and

opposite diagonal sections of an orbital semilinear copula.

(ii) Let ω(x) = αx(1− x), with α ∈ ]0, 1], and consider the diagonal function

δ(x) =
(

1− α

2

)
max(2x− 1, 0) +

α

2
x .

The function φδ is increasing and α-Lipschitz continuous on [0, 1/2[ and

]1/2, 1], whence for any α ∈ ]0, 1] the functions δ and ω are the diagonal and

opposite diagonal sections of an orbital semilinear copula.

To conclude this section, we lay bare the necessary and sufficient conditions on a

diagonal function δ guaranteeing that the corresponding Bertino copula is an orbital

semilinear copula and we investigate also the symmetry and opposite symmetry

properties of orbital semilinear copulas.
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Proposition 6.14. Let δ be a diagonal function, then the corresponding Bertino

copula Bδ defined in (1.10) is an orbital semilinear copula if and only if for any

x ∈ [0, 1/2] and any t ∈ [x, 1− x], it holds that

t− δ(t) ≥ min(x− δ(x), 1− x− δ(1− x)) . (6.13)

Proof. Let Bδ be the Bertino copula defined (1.10) and suppose that Bδ is an

orbital semilinear copula. The opposite diagonal section ωB of this Bertino copula

is given by

ωB(x) = min(x, 1− x)−min{t− δ(t) | t ∈ [min(x, 1− x),max(x, 1− x)]} .

Let Cδ,ωB be the orbital semilinear copula with diagonal section δ and opposite

diagonal section ωB , then it obviously coincides with Bδ. In the triangular sector

described by x ≤ y ≤ 1− x, it holds that

x+ y − 1

2x− 1
δ(x) +

x− y
2x− 1

ωB(x) = x−min{t− δ(t) | t ∈ [x, y]} .

Now, consider the function f defined by f(t) = t− δ(t), then

(x+ y − 1)δ(x) + (x− y)(x− min
t∈[x,1−x]

f(t)) = (2x− 1)(x− min
t∈[x,y]

f(t)) ,

or equivalently,

(1− 2x) min
t∈[x,y]

f(t) = (1− x− y) min
t∈[x,x]

f(t) + (y − x) min
t∈[x,1−x]

f(t) .

Let t∗ ∈ [x, 1−x] be such that min
t∈[x,1−x]

f(t) = f(t∗) (note that t∗ is not necessarily

unique). The above equality, with y = t∗, reduces to

(1− 2x)f(t∗) = (1− x− t∗)f(x) + (t∗ − x)f(t∗) ,

which implies that either t∗ = 1 − x or f(t∗) = f(x). This means that on the

interval [x, 1− x] the minimal value of f is attained in at least one of the points

t = x or t = 1 − x, whence condition (6.13) follows. The three other triangular

sectors lead to the same condition. The above reasoning can obviously be traversed

in the converse direction.

Corollary 6.1. Let δ be a diagonal function. If

(i) δ is 1-Lipschitz continuous on [0, 1/2] ,

(ii) for every x ∈ [0, 1/2], it holds that δ(1− x) = δ(x) + 1− 2x ,

then the corresponding Bertino copula Bδ is an orbital semilinear copula.
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Proof. Condition (ii) expresses that the function f(t) = t− δ(t) is symmetric w.r.t.

1/2 and it therefore suffices to show that

t− δ(t) ≥ min(x− δ(x), 1− x− δ(1− x)) = x− δ(x) ,

for any x ∈ [0, 1/2] and any t ∈ [x, 1/2]. As condition (i) simply states that the

function f(t) = t− δ(t) is increasing on [0, 1/2], the latter is trivially fulfilled.

Proposition 6.15. Let ω be an opposite diagonal function, then the corresponding

copula Fω defined in (1.13) is an orbital semilinear copula if and only if for any

x ∈ [0, 1/2] and any t ∈ [x, 1− x], it holds that

ω(t) ≥ min(ω(x), ω(1− x)) . (6.14)

Corollary 6.2. Let ω be an opposite diagonal function. If

(i) ω is increasing on [0, 1/2] ,

(ii) for every x ∈ [0, 1/2] it holds that ω(1− x) = ω(x) ,

then the corresponding copula Fω is an orbital semilinear copula.

Conditions (6.13) and (6.14) respectively express that the function f(t) = t− δ(t)
and the function ω satisfy a restricted form of convexity by considering only

intervals symmetric w.r.t. the point 1/2. Note that δW satisfies the conditions of

Corollary 6.1, while ωM satisfies the conditions of Corollary 6.2. This confirms

that BδW = W and FωM = M are orbital semilinear copulas.

Proposition 6.16. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2).

(i) Let δ(x) = αx2 + (1−α)x for arbitrary α ∈ ]0, 1] (see Proposition 6.13), then

the smallest orbital semilinear copula with diagonal section δ is the Bertino

copula Bδ defined in (1.10).

(ii) Let ω(x) = αx(1 − x) for arbitrary α ∈ ]0, 1] (see Proposition 6.13), then

the greatest orbital semilinear copula with opposite diagonal section ω is the

copula Fω defined in (3).

Proof. One easily verifies that the given diagonal function satisfies the sufficient

conditions of Corollary 6.1. Hence, the Bertino copula is an orbital semilinear

copula. As it is the smallest copula with diagonal section δ, it is obviously also the

smallest orbital semilinear copula with this diagonal section. The same reasoning

applies to Fω.
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The following proposition is a matter of direct verification.

Proposition 6.17. An orbital (resp. radial) semilinear copula Coδ,ω (resp. Crδ,ω) is

(i) opposite symmetric if and only if the function f(x) = x− δ(x) is symmetric

w.r.t. x = 1/2, i.e. δ(1− x) = δ(x) + 1− 2x for any x ∈ [0, 1/2] ;

(ii) symmetric if and only if ω is symmetric w.r.t. x = 1/2, i.e. ω(x) = ω(1− x)

for any x ∈ [0, 1/2] .

Under the conditions of Corollary 6.1, the Bertino copula Bδ is an orbital semilinear

copula that is both symmetric and opposite symmetric. Similarly, under the

conditions of Corollary 6.2, the copula Fω defined in (1.13) is also an orbital

semilinear copula that is both symmetric and opposite symmetric.
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7 Lower semiquadratic copulas with a

given diagonal section

7.1. Introduction

The aim of the present chapter is to propose a method to construct semiquadratic

copulas. In Chapter 6, we have studied families of semilinear copulas with a given

diagonal section and/or opposite diagonal section. A copula constructed by linear

interpolation on segments connecting the diagonal of the unit square to the left

and lower side of the unit square is called a lower semilinear copula [38].

In the present chapter, we construct semiquadratic copulas by quadratic interpola-

tion on segments connecting the diagonal of the unit square to the left and lower

side of the unit square, and call them lower semiquadratic copulas. We unveil

the conditions on a diagonal function δ that guarantee the existence of a lower

semiquadratic copula with diagonal section δ. Unlike lower semilinear copulas,

lower semiquadratic copulas can be not symmetric. Next, we characterize the

smallest and the greatest symmetric lower semiquadratic copulas with a given

diagonal section. We also characterize the class of continuous differentiable (resp.

absolutely continuous) lower semiquadratic copulas. Finally, we provide expressions

for the degree of non-exchangeability and the measures of association for various

families of lower semiquadratic copulas.

7.2. Lower semiquadratic copulas

For any two ]0, 1]→ R functions u and v that are absolutely continuous and satisfy

lim
x→0

0≤y≤x

y(x− y)u(x) = 0 and lim
y→0

0≤x≤y

x(y − x)v(y) = 0 , (7.1)

and any diagonal function δ, the function Cu,vδ : [0, 1]2 → R defined by:

Cu,vδ (x, y) =


x

y
δ(y)− x(y − x)v(y) , if 0 < x ≤ y ,

y

x
δ(x)− y(x− y)u(x) , if 0 < y ≤ x ,

(7.2)

with Cu,vδ (t, 0) = Cu,vδ (0, t) = 0 for any t ∈ [0, 1], is well defined. Note that the

limit conditions on u and v ensure that Cu,vδ is continuous. The function Cu,vδ will
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be called a lower semiquadratic function since it satisfies Cu,vδ (t, t) = δ(t) for any

t ∈ [0, 1], and since it is quadratic in x on 0 ≤ x ≤ y ≤ 1 and quadratic in y on

0 ≤ y ≤ x ≤ 1. Obviously, symmetric functions are obtained when u = v. Note

that for u = v = 0, the definition of a lower semilinear function is retrieved.

In the following lemma, we provide a sufficient condition for limit conditions (7.1).

Lemma 7.1. Let f be a ]0, 1]→ R function. If lim
t→0

t2|f(t)| = 0, then

lim
x→0

0≤y≤x

y(x− y)f(x) = 0 and lim
y→0

0≤x≤y

x(y − x)f(y) = 0 .

We now investigate the conditions to be fulfilled by the functions u, v and δ such

that the lower semiquadratic function Cu,vδ is a copula. Note that u and v, being

absolutely continuous, are differentiable almost everywhere.

Let us consider the subtriangles I1 and I2 of the unit square as in Chapter 3.

Proposition 7.1. Let δ be a diagonal function and let u and v be two absolutely

continuous functions that satisfy conditions (7.1). Then the lower semiquadratic

function Cu,vδ defined in (7.2) is a copula with diagonal section δ if and only if

(i) u(1) = v(1) = 0 , (7.3)

(ii) max (u(t) + t |u′(t)| , v(t) + t |v′(t)|) ≤
(
δ(t)

t

)′
, (7.4)

(iii) u(t) + v(t) ≥ t
(
δ(t)

t2

)′
, (7.5)

for any t ∈ ]0, 1] where the derivatives exist.

Proof. The boundary conditions Cu,vδ (t, 1) = t and Cu,vδ (1, t) = t for any t ∈ [0, 1]

immediately lead to the conditions u(1) = v(1) = 0. Therefore, it suffices to prove

that the 2-increasingness of Cu,vδ is equivalent to conditions (ii) and (iii).

Suppose that Cu,vδ is 2-increasing. For any rectangle R = [x, x′] × [y, y′] ⊆ I2, it

then holds that VCu,vδ
(R) ≥ 0 , i.e.

(x′ − x)

(
δ(y′)

y′
− δ(y)

y
− v(y′)y′ + v(y)y + (x+ x′)(v(y′)− v(y))

)
≥ 0 ,

or, equivalently,

δ(y′)

y′
− δ(y)

y
− v(y′)y′ + v(y)y + (x+ x′)(v(y′)− v(y)) ≥ 0 . (7.6)

Dividing by y′ − y and taking the limits x′ → x and y′ → y, inequality (7.6)
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becomes (
δ(y)

y

)′
− v(y) + (2x− y)v′(y) ≥ 0 . (7.7)

Since the left-hand side of inequality (7.7) is linear in x, this condition is equivalent

to requiring that it holds for x = 0 and x = y, i.e.(
δ(y)

y

)′
− v(y) + yv′(y) ≥ 0 and

(
δ(y)

y

)′
− v(y)− yv′(y) ≥ 0 ,

or, equivalently, to

v(y) + y |v′(y)| ≤
(
δ(y)

y

)′
. (7.8)

Similarly, the fact that VCu,vδ
(R) ≥ 0 for any rectangle located in I1 implies that

inequality (7.8) also holds for the function u. Hence, condition (ii) follows.

Finally, the fact that VCu,vδ
(R) ≥ 0 for any square R = [x, x′] × [x, x′] centered

around the main diagonal is equivalent to

VCu,vδ
([x, x′]× [x, x′]) = Cu,vδ (x, x) + Cu,vδ (x′, x′)− Cu,vδ (x, x′)− Cu,vδ (x′, x)

= δ(x) + δ(x′)− 2
x

x′
δ(x′) + x(x′ − x)(u(x′) + v(x′)) ≥ 0 .

Dividing by x(x′ − x) and taking the limit x′ → x, condition (iii) immediately

follows.

Now suppose that conditions (ii) and (iii) are satisfied. Due to the additivity

of volumes, it suffices to consider a restricted number of cases to prove the 2-

increasingness of Cu,vδ . Let R = [a, b]× [a′, b′] be a rectangle located in I2. Since

condition (ii) is satisfied, inequality (7.7) follows and it holds that∫ b′

a′
dy

∫ b

a

((
δ(y)

y

)′
− v(y) + (2x− y)v′(y)

)
dx ≥ 0 .

Computing the above integral, the latter inequality becomes

(b− a)

(
δ(b′)

b′
− δ(a′)

a′
− b′v(b′) + a′v(a′) + (a+ b)v(b′)− (a+ b)v(a′)

)
≥ 0 ,

or, equivalently, VCu,vδ
(R) ≥ 0 . Similarly, one can verify that VCu,vδ

(R) ≥ 0 for any

rectangle R = [a, b]× [a′, b′] located in I1.

Finally, let S = [a, b]× [a, b] be a square centered around the main diagonal. Due
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to condition (iii), it holds that

x

(
u(x) + v(x)− x

(
δ(x)

x2

)′)
≥ 0 ,

for any x ∈ ]0, 1], which implies that

Ĩ1 =

∫ b

a

x

(
u(x) + v(x)− x

(
δ(x)

x2

)′)
dx ≥ 0 .

Again using inequality (7.7), it follows that

Ĩ2 =

∫ b

a

∫ b

x

((
δ(y)

y

)′
− v(y) + (2x− y)v′(y)

)
dydx ≥ 0 .

As inequality (7.7) also holds for the function u, it follows after exchanging the

variables x and y that

Ĩ3 =

∫ b

a

∫ b

y

((
δ(x)

x

)′
− u(x) + (2y − x)u′(x)

)
dxdy ≥ 0 .

Computing the above integrals and setting I = Ĩ1 + Ĩ2 + Ĩ3, it follows that

I = δ(a) + δ(b)− 2
a

b
δ(b) + a(b− a)(u(b) + v(b)) ≥ 0 ,

or, equivalently,

I = VCu,vδ
(S) ≥ 0 .

Note that if u = v = 0, then we retrieve the necessary and sufficient conditions

from Proposition 6.1 on δ which guarantee that the copula is a lower semilinear

copula (see Chapter 6).

In the next proposition we show an interesting property of lower semiquadratic

copulas.

Proposition 7.2. Let Cu,vδ be a lower semiquadratic copula. Then it holds that

t2 max(|u(t)|, |v(t)|) ≤ min(δ(t), t− δ(t)) , (7.9)

for any t ∈ ]0, 1].

Proof. Since Cu,vδ is a copula, it holds that Cu,vδ is increasing and 1-Lipschitz

continuous in each variable. Let (x, y), (x′, y) ∈ I2 such that x < x′. Expressing
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that Cu,vδ is a 1-Lipschitz continuous increasing function leads to the condition

0 ≤ (x′ − x)

(
δ(y)

y
+ (x′ + x− y)v(y)

)
≤ x′ − x ,

or, equivalently,

0 ≤ δ(y) + y(x+ x′ − y)v(y) ≤ y .

Taking the limit x′ → x, the latter double inequality becomes

0 ≤ δ(y) + y(2x− y)v(y) ≤ y .

For fixed y ∈ ]0, 1], this double inequality should hold for any x ∈ [0, y] and since

the expression is linear in x one can equivalently state that the double inequality

should hold for x = 0 and x = y, leading to

0 ≤ δ(y)− y2v(y) ≤ y and 0 ≤ δ(y) + y2v(y) ≤ y ,

for any y ∈ ]0, 1]. Since 0 ≤ δ(y) ≤ y, it must hold for any y ∈ ]0, 1] that

y2|v(y)| ≤ min(δ(y), y − δ(y)) .

Similarly, expressing that Cu,vδ is a 1-Lipschitz continuous increasing function in

the first variable on I1 implies that

y2|u(y)| ≤ min(δ(y), y − δ(y)) .

Combining the above, condition (7.9) follows.

Example 7.1. Let δM be the diagonal section of the greatest copula M, i.e. δM(t) =

t for any t ∈ [0, 1]. Condition (7.9) on u can be written as

t2|u(t)| ≤ 0 for any t ∈ ]0, 1] ,

from which it follows that u = 0 on ]0, 1]. Similarly, v = 0 on ]0, 1]. Since

lim
t→0

t2 |u(t)| = lim
t→0

t2 |v(t)| = 0, Lemma 7.1 implies that conditions (7.1) hold. There-

fore, the only lower semiquadratic copula with diagonal section δM is the (lower

semilinear) copula M itself. A proper lower semiquadratic copula with diagonal

section δM does not exist.

Example 7.2. Let δΠ be the diagonal section of the product copula Π, i.e. δΠ(t) = t2

for any t ∈ [0, 1]. Condition (7.9) on u can be written as

|u(t)| ≤ 1 for any t ∈ ]0, 1/2] and |u(t)| ≤ 1− t
t

for any t ∈ [1/2, 1] .

Consider the greatest function u that satisfies these conditions, i.e. ug(t) = 1 if

t ∈ ]0, 1/2] and ug(t) = (1 − t)/t if t ∈ [1/2, 1]. One can verify that ug does not
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satisfy differential condition (7.4) on [1/2, 1], since (1−t)/t+t|(−1/t2)| = 2/t−1 > 1

on ]1/2, 1[ . The greatest function u satisfying conditions (7.3) and (7.4) that is

decreasing on ]0, 1] is the solution of the differential equation

u(t)− tu′(t) = 1 ,

with boundary condition u(1) = 0, and is given by u(t) = 1−t. The same observation

holds for v. Since lim
t→0

t2(1− t) = 0, Lemma 7.1 implies that conditions (7.1) hold.

Hence, for Cu,vδΠ to be a lower semiquadratic copula the following conditions on u

and v must be satisfied for any t ∈ ]0, 1]:

max

(
−1, 1− 1

t

)
≤ u(t) ≤ 1− t , max

(
−1, 1− 1

t

)
≤ v(t) ≤ 1− t ,

and

u(t) + v(t) ≥ 0 .

We conclude that the functions u(t) = v(t) = 1− t satisfy conditions (7.3)–(7.5)

for any t ∈ ]0, 1]. Note that for any two lower semiquadratic functions Cu1,v1

δ and

Cu2,v2

δ , it holds that Cu1,v1

δ ≤ Cu2,v2

δ if and only if u1 ≥ u2 and v1 ≥ v2. Thus,

Cu,vδΠ , with u(t) = v(t) = 1− t for any t ∈ ]0, 1], is the smallest lower semiquadratic

copula with diagonal section δΠ. Moreover, it is a symmetric copula. Finally, we

distinguish two special non-symmetric lower semiquadratic copulas with diagonal

section δΠ. They are obtained with u(t) = −v(t) = 1− t and −u(t) = v(t) = 1− t,
respectively. One easily verifies that the degree of non-exchangeability µ+∞ (see

Chapter 1) for both copulas equals 2/9.

For the class of lower semilinear copulas with a given diagonal section, it was shown

that the diagonal section of the product copula is the smallest diagonal function

that can be considered [37]. In the next two examples, we give examples of lower

semiquadratic copulas whose diagonal section is smaller than the diagonal section

of the product copula.

Example 7.3. Let δλ be a convex sum of the diagonal section of the product

copula Π and the diagonal section of the smallest copula W, i.e. δλ(t) = λt2 + (1−
λ) max(2t− 1, 0) for any t ∈ [0, 1], with λ ∈ [0, 1]. Let uλ and vλ be defined by

uλ(t) = vλ(t) =


λ+

1

3
(7− 10λ)t , if 0 < t ≤ 1

2 ,

−(1 + 2λ)
t

3
+ λ+

1− λ
3

1

t2
, if 1

2 ≤ t ≤ 1 .

Since lim
t→0

t2 |uλ(t)| = lim
t→0

t2 |vλ(t)| = 0, Lemma 7.1 implies that conditions (7.1)

hold. One can verify that condition (7.9) holds if and only if λ ∈ [0.7, 1]. The

conditions of Proposition 7.1 are satisfied for any λ ∈ [0.7, 1] and hence, Cuλvλδλ
is

a lower semiquadratic copula for any λ ∈ [0.7, 1].
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Example 7.4. Let δλ be the diagonal section of a Farlie–Gumbel–Morgenstern

copula, i.e. δλ(t) = t2(1 + λ(1− t)2) for any t ∈ [0, 1], with λ ∈ [−1, 1]. The Farlie–

Gumbel–Morgenstern family of copulas contains all copulas that are quadratic in

both variables [88, 96]. Observe that δλ ≤ δΠ if and only if λ ∈ [−1, 0]. Let uλ and

vλ be defined by

uλ(t) = vλ(t) = 2|λ|t(1− t) for any t ∈ ]0, 1] .

Since lim
t→0

t2 |uλ(t)| = lim
t→0

t2 |vλ(t)| = 0, Lemma 7.1 implies that conditions (7.1)

hold. One can verify that condition (7.9) holds if and only if λ ∈ [−1/2, 1/2]. The

conditions of Proposition 7.1 are satisfied for any λ ∈ [−1/2, 1/2] and hence, Cuλvλδλ

is a lower semiquadratic copula for any λ ∈ [−1/2, 1/2]. The corresponding family

of lower semiquadratic copulas is given by

Cuλ,vλδλ
(x, y) = xy(1 + (1−max(x, y))(λ(1−max(x, y))− |2λ(y − x)|)) ,

with λ ∈ [−1/2, 1/2] .

7.3. Extreme lower semiquadratic copulas

We now turn to the problem of identifying for a given diagonal function δ, if

possible, the smallest and the greatest functions u and v such that Cu,vδ defined in

(7.2) is a lower semiquadratic copula.

Proposition 7.3. Let δ be a differentiable diagonal function and let φδ and ψδ be

the ]0, 1]→ R functions defined by

φδ(t) = t

∫ 1

t

1

z2

(
δ(z)

z

)′
dz and ψδ(t) =

δ(t)− t
t2

. (7.10)

Then

(i) φδ is an upper bound for the functions u and v (i.e. Cφδ,φδδ is a lower bound

for the lower semiquadratic copulas with diagonal section δ). Moreover,

Cφδ,φδδ is a copula (i.e. it is the smallest lower semiquadratic copula with

diagonal section δ) if and only if

1

2
t

(
δ(t)

t2

)′
≤ φδ(t) ≤

(
δ(t)

t

)′
for any t ∈ ]0, 1] . (7.11)

(ii) ψδ is a lower bound for the functions u and v (i.e. Cψδ,ψδδ is an upper bound

for the lower semiquadratic copulas with diagonal section δ). Moreover,

Cψδ,ψδδ is a copula (i.e. it is the greatest lower semiquadratic copula with
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diagonal section δ) if and only if

2δ(t)− t ≤ tδ′(t) ≤ 4δ(t)− 2t for any t ∈ ]0, 1] . (7.12)

Proof. (i): Let f be an absolutely continuous function such that f(1) = 0 and

f(t) + t|f ′(t)| ≤
(
δ(t)
t

)′
for any t ∈ ]0, 1]. Since f(t) − tf ′(t) ≤ f(t) + t|f ′(t)| for

any t ∈ ]0, 1] where the derivative exists, we have

f(t)− tf ′(t) ≤
(
δ(t)

t

)′
, (7.13)

for any t ∈ ]0, 1] where the derivatives exist. Since the solution of the initial value

problem over ]0, 1]

y(t)− ty′(t) =

(
δ(t)

t

)′
, y(1) = 0 (7.14)

is given by y = φδ, condition (7.13) yields

f(t)− tf ′(t) ≤ φδ(t)− tφ′δ(t) ,

for any t ∈ ]0, 1] where the derivatives exist. Let ν be the ]0, 1] → R function

defined by ν(t) = f(t)−φδ(t)
t . The function ν is increasing since

ν′(t) =
φδ(t)− f(t)− t(φ′δ(t)− f ′(t))

t2
≥ 0 ,

for any t ∈ ]0, 1] where the derivatives exist. Thus, ν(t) ≤ ν(1) = 0 for any t ∈ ]0, 1],

whence f(t) ≤ φδ(t) for any t ∈ ]0, 1]. In particular, we have that φδ is an upper

bound for u and v. Hence, Cu,vδ ≥ Cφδ,φδδ .

Next, we characterize the diagonal functions δ for which the function Cφδ,φδδ is a

copula. Note that lim
t→0

t2(δ(t)/t)′ = 0, and hence lim
t→0

t2|φδ(t)| = 0. Therefore, due

to Lemma 7.1, condition (7.1) holds for u = v = φδ. Thus, Cφδ,φδδ is a copula if

and only if the conditions of Proposition 7.1 hold for the functions u = v = φδ. We

know that condition (7.3) is satisfied. With regard to condition (7.4), observe that

φδ(t) + t |φ′δ(t)| ≤
(
δ(t)

t

)′
(= φδ(t)− tφ′δ(t)) for any t ∈ ]0, 1]

if and only if φ′δ(t) ≤ 0 for any t ∈ ]0, 1]. Since tφ′δ(t) = φδ(t)−
(
δ(t)
t

)′
, we have

that φ′δ(t) ≤ 0 if and only if φδ(t) ≤
(
δ(t)
t

)′
. Thus, we conclude that u = v = φ

satisfy condition (7.4) if and only if the second inequality in (7.11) holds.

Moreover, it is immediate that u = v = φδ satisfy condition (7.5) if and only
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if 2φδ(t) ≥ t
(
δ(t)
t2

)′
for any t ∈ ]0, 1], which is equivalent to the first inequality

in (7.11).

(ii): Let f be an absolutely continuous function such that f(1) = 0 and f(t) +

t|f ′(t)| ≤
(
δ(t)
t

)′
for any t ∈ ]0, 1]. Since f(t) + tf ′(t) ≤ f(t) + t|f ′(t)| for any

t ∈ ]0, 1] where the derivative exists, we have

f(t) + tf ′(t) ≤
(
δ(t)

t

)′
, (7.15)

for any t ∈ ]0, 1] where the derivatives exist. Since the solution of the initial value

problem over ]0, 1]

y(t) + ty′(t) =

(
δ(t)

t

)′
, y(1) = 0 ,

is given by y = ψδ, condition (7.15) yields

f(t) + tf ′(t) ≤ ψδ(t) + tψ′δ(t) ,

for any t ∈ ]0, 1] where the derivatives exist. Let µ be the ]0, 1] → R function

defined by µ(t) = t(f(t)− ψδ(t)). The function µ is decreasing since

µ′(t) = f(t)− ψδ(t) + t(f ′(t)− ψ′δ(t)) ≤ 0 ,

for any t ∈ ]0, 1] where the derivatives exist. Thus, µ(t) ≥ µ(1) = 0 for any t ∈ ]0, 1],

whence f(t) ≥ ψδ(t) for any t ∈ ]0, 1]. In particular, we have that ψδ is a lower

bound for u and v. Hence, Cu,vδ ≤ Cψδ,ψδδ .

Next, we characterize the diagonal functions δ for which the function Cψδ,ψδδ is

a copula. Since lim
t→0

t2|ψδ(t)| = lim
t→0
|δ(t)− t| = 0, Lemma 7.1 implies that condi-

tions (7.1) hold for u = v = ψδ. Thus, Cψδ,ψδδ is a copula if and if the conditions of

Proposition 7.1 hold for the functions u = v = ψδ. We know that condition (7.3) is

satisfied. With regard to condition (7.4), observe that

ψδ(t) + t|ψ′δ(t)| ≤
(
δ(t)

t

)′
(= ψδ(t) + tψ′δ(t)) for any t ∈ ]0, 1]

if and only if ψ′δ(t) ≥ 0 for any t ∈ ]0, 1]. Since tψ′δ(t) =
(
δ(t)
t

)′
− ψδ(t), we have

that ψ′δ(t) ≥ 0 if and only if ψδ(t) ≤
(
δ(t)
t

)′
. Thus, we conclude that u = v = ψ

satisfy condition (7.4) if and only if

δ(t)− t
t2

≤ tδ′(t)− δ(t)
t2

for any t ∈ ]0, 1] ,
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which is equivalent to the first inequality in (7.12).

Moreover, it is immediate that u = v = ψδ satisfy condition (7.5) if and only if

2ψδ(t) ≥ t
(
δ(t)
t2

)′
for any t ∈ ]0, 1], which is equivalent to the second inequality

in (7.12).

Remark 7.1.

(i) Condition (7.12) can also be written as

1

2
t

(
δ(t)

t2

)′
≤ ψδ(t) ≤

(
δ(t)

t

)′
for any t ∈ ]0, 1] , (7.16)

which is the same as condition (7.11), now expressed for the function ψδ.

(ii) Note that ψδ(t) ≤ 0 for any t ∈ ]0, 1].

(iii) Moreover, if φδ satisfies the right inequality in (7.11), i.e. φ′δ(t) ≤ 0 for any

t ∈ ]0, 1], it follows from φδ(1) = 0 that φδ(t) ≥ 0 for any t ∈ ]0, 1].

Corollary 7.1. Let δ be a differentiable diagonal function. Then the functions

Cφδ,φδδ and Cψδ,ψδδ are both copulas if and only if

1

2
t

(
δ(t)

t2

)′
≤ ψδ(t) ≤ φδ(t) ≤

(
δ(t)

t

)′
for any t ∈ ]0, 1] . (7.17)

Moreover, if Cφδ,φδδ and Cψδ,ψδδ are copulas, then the function λδ defined as in

Chapter 3 is increasing, and the function ρδ defined as in Chapter 6 is decreasing.

Corollary 7.1 implies that if Cφδ,φδδ and Cψδ,ψδδ are copulas, then the same diagonal

function can be used to construct a lower semilinear copula.

Example 7.5. Let δλ be a convex sum of the diagonal section of the product copula

Π and the diagonal section of the greatest copula M, i.e. δλ(t) = λt2 + (1− λ)t for

any t ∈ [0, 1], with λ ∈ [0, 1]. Observe that

φδλ(t) = λ(1− t) and ψδλ(t) =
λ(t− 1)

t
for any t ∈ ]0, 1] .

It is immediate that φδλ satisfies condition (7.11). Thus, as Proposition 7.3

establishes, C
φδλ ,φδλ
δλ

is a lower bound for the lower semiquadratic copulas with

diagonal section δλ. Moreover, C
φδλ ,φδλ
δλ

is a copula for any λ ∈ [0, 1]. The function

ψδλ satisfies the second inequality in (7.12) for any λ ∈ [0, 1]. However, ψδλ
satisfies the first inequality in (7.12) if and only if

λ− 1

2
≤ λ(t− 1) for any t ∈ ]0, 1] ,

i.e. if λ ≤ 1/3. Thus, as Proposition 7.3 establishes, C
ψδλ ,ψδλ
δλ

is an upper bound
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for the lower semiquadratic copulas with diagonal section δλ for any λ ∈ [0, 1], but

C
ψδλ ,ψδλ
δλ

is a copula only when λ ∈ [0, 1/3].

The following proposition shows that the function φδ can be used to construct two

non-symmetric lower semiquadratic copulas with diagonal section δ.

Proposition 7.4. Let δ be a differentiable diagonal function. Then Cu,vδ , with

u = −v = φδ or with −u = v = φδ, is a lower semiquadratic copula with diagonal

section δ if and only if(
δ(t)

t2

)′
≤ 0 ≤ φδ(t) ≤

(
δ(t)

t

)′
for any t ∈ ]0, 1] . (7.18)

Proof. Let u = φδ and v = −φδ. Since lim
t→0

t2φδ(t) = lim
t→0
−t2φδ(t) = 0, Lemma 7.1

implies that conditions (7.1) hold. Clearly, u and v satisfy condition (7.3) in

Proposition 7.1. Condition (7.4) in Proposition 7.1 now reads

max (φδ(t) + t |φ′δ(t)| ,−φδ(t) + t |φ′δ(t)|) ≤
(
δ(t)

t

)′
for any t ∈ ]0, 1] ,

which is equivalent to

0 ≤ φδ(t) ≤
(
δ(t)

t

)′
for any t ∈ ]0, 1] .

This follows from the fact that, as in the proof of Proposition 7.3, the condition

φδ(t) + t |φ′δ(t)| ≤
(
δ(t)

t

)′
for any t ∈ ]0, 1]

is equivalent to the second inequality in condition (7.11), and that the latter implies

that φδ(t) ≥ 0 for any t ∈ ]0, 1] .

On the other hand, u = φδ and v = −φδ satisfy condition (7.5) in Proposition 7.1

if and only if

φδ(t)− φδ(t) ≥ t
(
δ(t)

t2

)′
for any t ∈ ]0, 1] .

i.e. (
δ(t)

t2

)′
≤ 0 for any t ∈ ]0, 1] .
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Example 7.6. Let δλ be the diagonal section from Example 7.5. Obviously, δλ
satisfies the first inequality in (7.18). Since φδλ satisfies the third inequality in (7.18)

(see Example 7.5) and the second inequality in (7.18) (see Remark 7.1(iii)), it

follows that Cu,vδλ , with u = −v = φδλ , is a lower semiquadratic copula with diagonal

section δλ.

Example 7.7. Let δα(t) = t1+α be the diagonal function with parameter α ∈ [0, 1].

For values of α outside the unit interval, δα is not a diagonal function. Observe

that (
δα(t)

t

)′
= αtα−1 ≥ 0 , for any t ∈ ]0, 1] ,

(
δα(t)

t2

)′
= (α− 1)tα−2 ≤ 0 , for any t ∈ ]0, 1]

and

φδα(t) = αt

∫ 1

t

zα−1

z2
dz =

α

2− α
[tα−1 − t] for any t ∈ ]0, 1] . (7.19)

Since (δα(t)/t2)′ ≤ 0 and φδα(t) ≥ 0 for any t ∈ ]0, 1], φδα satisfies condition (7.18)

of Proposition 7.4 if and only if the third inequality of condition (7.18) holds, i.e.

α − 1 ≤ t2−α for any t ∈ ]0, 1] and the latter is trivially satisfied when α ≤ 1.

It follows that Cu,vδα , with u = −v = φδα , is a lower semiquadratic copula with

diagonal section δα.

Example 7.8. Let δα,β be the [0, 1] → [0, 1] function defined by δα,β(t) = t2 +

tα(1− t)β with real parameters α ≥ 1 and β ≥ 1. It can be verified that in general

δα,β is not a diagonal function. For instance, δ24,1 does not satisfy δ′24,1(t) ≤ 2 for

any t ∈ ]0, 1]. Note that the first inequality in (7.18) holds if and only if α ≤ 2. We

will only consider the case α = 2 from here on. We compute

φδ2,β (t) = t

∫ 1

t

(
1

z2
+

(1− z)β

z2
− β (1− z)β−1

z

)
dz .

Integrating by parts, we obtain

φδ2,β (t) = t

(
(1− t)β

t
+

∫ 1

t

(
1

z2
− 2β

(1− z)β−1

z

)
dz

)

= 1− t+ (1− t)β − 2βt

∫ 1

t

(1− z)β−1

z
dz

= 1− t+ (1− t)β − 2βt

∫ 1−t

0

uβ−1

1− u
du ,
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which, in terms of the incomplete beta function B, can be written as

φδ2,β (t) = 1− t+ (1− t)β − 2βtB[1− t;β, 0] .

For β = 1, we find

φδ2,1(t) = 2− 2t+ 2t ln t ;

for β = 2, we find

φδ2,2 = 2 + t− 3t2 + 4t ln t ;

and, for β = 3, we find

φδ2,3(t) = 2 + 5t− 9t2 + 2t3 + 6t ln t .

Now, in each case we should investigate whether the second and third inequalities

in condition (7.18) are fulfilled for the functions φδ2,β , with β ∈ {1, 2, 3}. For

φδ2,1 , for instance, this amounts to verifying whether for any t ∈ ]0, 1] it holds that

0 ≤ 2− 2t+ 2t ln(t) ≤ 2− 2t. These inequalities are trivially satisfied. For all cases

under consideration, we find that condition (7.18) is satisfied, and Proposition 7.4

can be applied, i.e. Cu,vδ2,β , with u = −v = φδ2,β , is a lower semiquadratic copula

with diagonal section δ2,β for β ∈ {1, 2, 3}.

In contrast to the fact that under condition (7.18) the lower semiquadratic function

Cu,vδ , with u = −v = φδ or with −u = v = φδ, is a lower semiquadratic copula

with diagonal section δ, the lower semiquadratic function Cu,vδ , with u = −v = ψδ
or with −u = v = ψδ, is a lower semiquadratic copula with diagonal section δ if

and only if Cu,vδ = M.

Proposition 7.5. Let δ be a differentiable diagonal function. Then Cu,vδ , with

u = −v = ψδ or with −u = v = ψδ, is a lower semiquadratic copula with diagonal

section δ if and only if Cu,vδ = M.

Proof. As in the proof of Proposition 7.3, ψδ satisfies condition (7.4) if and only if

the first inequality in condition (7.12) holds. Thus, ψδ must be increasing. The

function −ψδ satisfies condition (7.4) if and only if

−ψδ(t) + tψ′δ(t) ≤
(
δ(t)

t

)′
for any t ∈ ]0, 1] ,

which is equivalent to t− δ(t) ≤ 0 for any t ∈ ]0, 1]. Since δ(t) ≤ t for any t ∈ [0, 1],

it must hold that δ(t) = t for any t ∈ [0, 1]. Since M is the only copula with

diagonal section δM, it must hold that Cu,vδ = M.

Similarly to Proposition 7.4, the functions φδ and ψδ can be used to construct two

non-symmetric lower semiquadratic copulas with diagonal section δ.
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Proposition 7.6. Let δ be a differentiable diagonal function. Then Cu,vδ , with

u = φδ and v = ψδ or with u = ψδ and v = φδ, is a lower semiquadratic copula

with diagonal section δ if and only if

t+ tδ′(t)− 3δ(t)

t2
≤ φδ(t) ≤

(
δ(t)

t

)′
for any t ∈ ]0, 1] . (7.20)

Proof. Let u = φδ and v = ψδ. In Proposition 7.3, it is shown that u and v

satisfy conditions (7.1). Clearly, u and v satisfy condition (7.3) in Proposition 7.1.

Condition (7.4) in Proposition 7.1 is equivalent to the second inequality in condi-

tion (7.11) and the second inequality in condition (7.16) (or the first inequality in

condition (7.12)), i.e.

ψδ(t) ≤ φδ(t) ≤
(
δ(t)

t

)′
for any t ∈ ]0, 1] .

On the other hand, u = φδ and v = ψδ satisfy condition (7.5) in Proposition 7.1 if

and only if

φδ(t) + ψδ(t) ≥ t
(
δ(t)

t2

)′
for any t ∈ ]0, 1] ,

i.e.

φδ(t) ≥ t
(
δ(t)

t2

)′
− ψδ(t) =

t+ tδ′(t)− 3δ(t)

t2
for any t ∈ ]0, 1] .

Example 7.9. Let δλ be the diagonal section from Example 7.5. Clearly, the

function φδ satisfies the second inequality in (7.20) for any λ ∈ [0, 1]. Moreover, it

satisfies the first inequality in (7.20) if and only if

−1 + 2λ− λt
t

≤ λ(1− t) for any t ∈ ]0, 1] ,

i.e. if λ ≤ 1/2. Thus, as Proposition 7.6 establishes, Cφδ,ψδδλ
is a copula for any

λ ∈ [0, 1/2].

7.4. Continuous differentiable lower semiquadratic

copulas

Condition (iii) in Proposition 7.1 expresses that the Cu,vδ -volume of squares centered

around the main diagonal is positive. We now give an alternative interpretation of

that condition.
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Proposition 7.7. Let δ be a differentiable diagonal function and Cu,vδ be a lower

semiquadratic copula. Then it holds that

lim
x→y−

∂Cu,vδ (x, y)

∂x
≥ lim
x→y+

∂Cu,vδ (x, y)

∂x

for any y ∈ ]0, 1[ , and

lim
y→x−

∂Cu,vδ (x, y)

∂y
≥ lim
y→x+

∂Cu,vδ (x, y)

∂y

for any x ∈ ]0, 1[ .

Proof. From (7.2) we compute for x < y that

∂Cu,vδ (x, y)

∂x
=
δ(y)

y
+ (2x− y)v(y) ,

and for x > y that

∂Cu,vδ (x, y)

∂x
= y

(
δ(x)

x

)′
− yu(x)− y(x− y)u′(x) .

It follows that

lim
x→y−

∂Cu,vδ (x, y)

∂x
=
δ(y)

y
+ yv(y) ,

and

lim
x→y+

∂Cu,vδ (x, y)

∂x
= y

(
δ(y)

y

)′
− yu(y) ,

from which it follows that

lim
x→y−

∂Cu,vδ (x, y)

∂x
− lim
x→y+

∂Cu,vδ (x, y)

∂x

= y(u(y) + v(y)) +
δ(y)

y
− y

(
δ(y)

y

)′

= y(u(y) + v(y))− y2

(
δ(y)

y2

)′
≥ 0 , (7.21)

where the last inequality follows from condition (7.5), satisfied by any lower

semiquadratic copula. Interchanging the roles of x and y leads to the analogous

result for the partial derivatives w.r.t. y.

Proposition 7.8. Let δ, u and v be continuous differentiable functions such that

Cu,vδ is a lower semiquadratic copula. Then Cu,vδ is continuous differentiable in

both arguments if and only if
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u(t) + v(t) = t

(
δ(t)

t2

)′
holds for any t ∈ ]0, 1].

Proof. From (7.2) it is clear that Cu,vδ is continuous differentiable in both arguments

on [0, 1]2 except possibly on the diagonal of the unit square. Due to inequality (7.21),

it holds that Cu,vδ is in both arguments continuous differentiable on the diagonal if

and only if (7.5) is realized as an equality for any t ∈ ]0, 1] .

Example 7.10. Let δΠ be the diagonal section of the product copula Π. Since

(δΠ(t)/t2)′ = 0, all lower semiquadratic copulas in

{Cu,vδΠ | u = −v, u(t) = λ(1− t), λ ∈ [−1, 1]} ,

are continuous differentiable in both arguments.

The continuous differentiability does not imply that the horizontal or/and vertical

sections of a lower semiquadratic copula are necessarily quadratic functions. The

only lower semiquadratic copulas that have quadratic horizontal sections are the

symmetric copulas with quadratic sections which were already introduced and

characterized in [96].

Proposition 7.9. Let Cu,vδ be a lower semiquadratic copula with quadratic hori-

zontal (resp. vertical) sections. Then Cu,vδ is symmetric and belongs to the Farlie–

Gumbel–Morgenstern family of copulas.

Proof. A lower semiquadratic copula Cu,vδ can only have quadratic horizontal

sections if u is a quadratic function, i.e. if u is of the form

u(t) = u0 + u1t+ u2t
2 ,

and δ is a quartic function without constant term, i.e.

δ(t) = t(δ1 + δ2t+ δ3t
2 + δ4t

3) ,

whence also v must be a quadratic function, i.e.

v(t) = v0 + v1t+ v2t
2 .

Expressing that for any fixed y ∈ [0, 1], Cu,vδ (x, y) should be the same quadratic

function on the intervals [0, y] and [y, 1], immediately leads to the following equali-

ties:

δ1 = u0 = v0 = 0 , u1 + v1 = δ3 , u2 = v2 = δ4 .

Expressing that u(1) = v(1) = 0, it follows that u1 = v1 = −δ4 = δ3/2, whence
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u = v and Cu,vδ is symmetric. Expressing further that δ(1) = 1, leads to δ2 = 1+δ4.

Renaming δ4 as θ, it follows that

δ(t) = t2[1 + θ(1− t)2] and u(t) = v(t) = −θt(1− t) ,

with θ a real constant. Finally, to be a copula, conditions (7.4) and (7.5) need

to be satisfied. The reader can easily verify that such is the case if and only if

|θ| ≤ 1.

7.5. Absolutely continuous lower semiquadratic cop-

ulas

A copula C is absolutely continuous if its density function is given by ∂2C(x,y)
∂x∂y

almost everywhere (see Chapter 1). In the next proposition we characterize the

class of absolutely continuous lower semiquadratic copulas.

Proposition 7.10. Let Cu,vδ be a lower semiquadratic copula. Then it holds that

Cu,vδ is absolutely continuous if and only if

u(t) + v(t)− t
(
δ(t)

t2

)′
= 0 , (7.22)

for any t ∈ ]0, 1].

Proof. Let C = Cu,vδ be a lower semiquadratic copula. Consider a rectangle

R = [x1, x2]× [y1, y2] ⊆ I2. Let us introduce the following notation

I =

x2∫
x1

dx

y2∫
y1

∂2C(x, y)

∂x∂y
dy .

It then holds that

I =

x2∫
x1

dx

y2∫
y1

((
δ(y)

y

)′
− v(y)− (y − 2x)v′(y)

)
dy

= (x2 − x1)

(
δ(y2)

y2
− y2v(y2)− δ(y1)

y1
+ y1v(y1)

)
+(x2 − x1)(x2 + x1)(v(y2)− v(y1))

= C(x2, y2) + C(x1, y1)− C(x1, y2)− C(x2, y1) = VC(R) .
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Similarly, one can verify that

x2∫
x1

dx

y2∫
y1

∂2C(x, y)

∂x∂y
dy = VC(R) ,

for any rectangle R = [x1, x2]× [y1, y2] located in I1. Therefore, C is absolutely

continuous on I1 as well as on I2. Hence, if there exists a singular component, its

support must be spread on the main diagonal. Due to the above, it follows that C

is absolutely continuous if and only if

a∫
0

dx

a∫
0

∂2C(x, y)

∂x∂y
dy = δ(a) ,

for any a ∈ [0, 1]. Computing the above integral, the latter equality becomes

δ(a) =

∫ a

0

(
2
δ(t)

t
+ t(u(t) + v(t))

)
dt , (7.23)

for any a ∈ [0, 1]. Integrating by parts, it holds that∫ a

0

2
δ(t)

t
dt = δ(a)−

∫ a

0

t2
(
δ(t)

t2

)′
dt .

Substituting in Eq. (7.23), it follows that∫ a

0

(
t(u(t) + v(t))− t2

(
δ(t)

t2

)′)
dt = 0 ,

for any a ∈ [0, 1]. Since condition (7.5) is satisfied, the last equality is equivalent

to the condition

u(t) + v(t)− t
(
δ(t)

t2

)′
= 0 ,

for any t ∈ ]0, 1].

Example 7.11. The family of copulas given in Proposition 7.9 is a family of

absolutely continuous lower semiquadratic copulas. One can easily verify condi-

tion (7.22).

Example 7.12. Let δΠ be the diagonal section of the product copula Π. In

Example 2, it was shown that Cu,vδΠ , with u = v = 1 − t for any t ∈ ]0, 1], is the

smallest lower semiquadratic copula with diagonal section δΠ. One can easily verify
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that

u(t) + v(t) = 2(1− t) 6= 0 = t

(
δ(t)

t2

)′
for any t ∈ ]0, 1[ , and therefore, Cu,vδΠ is not absolutely continuous.

Due to Propositions 7.8 and 7.10, the class of continuous differentiable lower semi-

quadratic copulas as well as the class of absolutely continuous lower semiquadratic

copulas are characterized by realizing condition (7.5) as an equality. Consequently, if

u and v are continuous differentiable functions, and Cu,vδ is an absolutely continuous

lower semiquadratic copula, then Cu,vδ is continuous differentiable.

7.6. Degree of non-exchangeability of lower semi-

quadratic copulas

In general, the degree of non-exchangeability of a lower semiquadratic copula does

not lend itself to a simple expression. However, for the non-symmetric copulas

obtained in Propositions 7.4 and 7.6 this is possible.

Proposition 7.11. Let δ be a differentiable diagonal function that satisfies condi-

tion (7.18). Then the degree of non-exchangeability of C = Cu,vδ , with u = −v = φδ
or −u = v = φδ, is given by

µ+∞(C) =
(t∗)2

2

(
δ(t∗)

t∗

)′
, (7.24)

where t∗ is a solution in ]0, 1] of the equation

3φδ(t) =

(
δ(t)

t

)′
. (7.25)

Proof. We consider the case u = −v = φδ, the case −u = v = φδ being simi-

lar. From the definition of µ+∞(C) in (1.5) and the general expression (7.2), it

immediately follows that

µ+∞(Cu,vδ ) = 6 sup
0≤x≤y≤1

x(y − x)φδ(y) .

It follows that for fixed y ∈ ]0, 1] the maximum is attained at the point (y/2, y).

Letting y vary, we need to find the value y∗ ∈ ]0, 1] for which the function y2φδ(y)

attains its maximum on ]0, 1]. Obviously, φδ being a solution of (7.14), it is

differentiable. Hence, y∗ is a solution of the equation

2yφδ(y) + y2φ′δ(y) = 0 ,
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or, equivalently, of the equation

3φδ(y)−
(
δ(y)

y

)′
= 0 .

The stated result immediately follows.

Example 7.13. Let δλ be the diagonal function from Example 7.5 and Cλ = Cu,vδλ
with u = −v = φδλ . Equation (7.25) reads

3λ(1− t) = λ

and has t∗ = 2/3 as solution. It follows that

µ+∞(Cλ) =
2λ

9
.

Example 7.14. Let δα be the diagonal function from Example 7.7 and Cα = Cu,vδα
with u = −v = φδα . Equation (7.25) reads

α

2− α
[tα−1 − t] =

α

3
tα−1

and has t∗ = ((1 + α)/3)1/(2−α) as solution. It follows that

µ+∞(Cα) =
α

2

(
1 + α

3

) 1+α
2−α

.

In particular, µ+∞(C0) = 0, µ+∞(C1) = 2/9 and µ+∞(C1/2) = 1/8.

Example 7.15. Let δ2,1, δ2,2 and δ2,3 be the diagonal functions from Example 7.8.

The results obtained from (7.24) and (7.25) are summarized in Table 1.

Table 7.1: Degree of non-exchangeability of the lower semiquadratic copulas Cu,vδ2,β with

diagonal section δ2,β = t2 + t2(1 − t)β , where u = −v = φδ2,β .

β δ2,β φδ2,β t∗ µ+∞

1 t2 + t2(1− t) 2− 2t+ 2t ln t 0.466411 0.116076

2 t2 + t2(1− t)2 2 + t− 3t2 + 4t ln t 0.711292 0.170157

3 t2 + t2(1− t)3 2 + 5t− 9t2 + 2t3 + 6t ln t 0.698683 0.204307

As Proposition 7.3 establishes, the functions φδ and ψδ characterize the smallest

and the greatest lower semiquadratic copulas with diagonal section δ, respectively.

Clearly, under condition (7.20) a lower semiquadratic copula Cu,vδ with maximal
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degree of non-exchangeability is obtained when u = φδ and v = ψδ or when u = ψδ
and v = φδ.

Proposition 7.12. Let δ be a differentiable diagonal function that satisfies condi-

tion (7.20). Then the degree of non-exchangeability of C = Cu,vδ , with u = φδ and

v = ψδ or with u = ψδ and v = φδ, is given by

µ+∞(C) =
(t∗)3

2
ψ′δ(t

∗) , (7.26)

where t∗ is a solution in ]0, 1] of the equation

3φδ(t) = ψδ(t) + 2

(
δ(t)

t

)′
. (7.27)

Proof. We consider the case u = φδ and v = ψδ, the case u = ψδ and v = φδ being

similar. From the definition of µ+∞(C) in (1.5) and the general expression (7.2), it

immediately follows that

µ+∞(Cu,vδ ) = 3 sup
0≤x≤y≤1

x(y − x)(φδ(y)− ψδ(y)) .

It follows that for fixed y ∈ ]0, 1] the maximum is attained at the point (y/2, y).

Letting y vary, we need to find the value y∗ ∈ ]0, 1] for which the function y2(φδ(y)−
ψδ(y)) attains its maximum on ]0, 1]. Since φδ is a solution of (7.14) and δ is

differentiable, the function φδ − ψδ is differentiable. Hence, y∗ is a solution of the

equation

2y(φδ(y)− ψδ(y)) + y2(φ′δ(y)− ψ′δ(y)) = 0 ,

or, equivalently, of the equation

3φδ(y)− ψδ(y)− 2

(
δ(y)

y

)′
= 0 .

The stated result immediately follows.

Example 7.16. Let δλ be the diagonal function from Example 7.5 and Cλ = Cu,vδλ
with u = φδλ and v = ψδλ . It was shown in Example 7.9 that Cu,vδλ is a copula for

any λ ∈ [0, 1/2]. Equation (7.27) reads

3λ(1− t) =
λ(t− 1)

t
+ 2λ

and has t∗ = 1/
√

3 as solution. It follows that

µ+∞(Cλ) =
λ

2
√

3
.
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Note that for any λ ∈ [0, 1/2], it holds that

µ+∞(Cλ) =
λ

2
√

3
≥ 2λ

9
= µ+∞(C

φδλ ,−φδλ
λ ) .

7.7. Measuring the dependence of random vari-

ables coupled by a lower semiquadratic cop-

ula

We finally want to compute Spearman’s rho and Kendall’s tau for two continuous

random variables whose dependence is modelled by a lower semiquadratic copula.

Proposition 7.13. Let C = Cu,vδ be a lower semiquadratic copula. Then the

measures of association ρC and τC are given by

ρC = 2

∫ 1

0

(6tδ(t)− t3(u(t) + v(t))) dt− 3

and

τC = 1− 2

∫ 1

0

(
2tδ(t)

(
δ(t)

t

)′
− tδ(t)(u(t) + v(t))

)
dt

+
2

3

∫ 1

0

(
t2δ(t)((u′(t)) + v′(t))− t3

(
δ(t)

t

)′
(u(t) + v(t))

)
dt

+
2

3

∫ 1

0

t3(u2(t) + v2(t)) dt .

Proof. In order to find ρC and τC , we need to compute

Ĩρ =

1∫
0

1∫
0

C(x, y) dxdy and Ĩτ =

1∫
0

1∫
0

∂C(x, y)

∂x

∂C(x, y)

∂y
dxdy .

Decomposing the integrals Ĩρ and Ĩτ , it holds that

Ĩρ =

1∫
0

x∫
0

C(x, y) dydx+

1∫
0

1∫
x

C(x, y) dydx
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and

Ĩτ =

1∫
0

x∫
0

∂C(x, y)

∂x

∂C(x, y)

∂y
dydx+

1∫
0

1∫
x

∂C(x, y)

∂x

∂C(x, y)

∂y
dydx .

Computing the above integrals and substituting in the expressions for ρC and τC ,

the desired result follows.

Corollary 7.2. Let δ be a differentiable diagonal function. If δ satisfies con-

dition (7.11), then the measures of association ρC and τC of C = Cu,vδ , with

u = v = φδ, are given by

ρC =
72

5

∫ 1

0

tδ(t)dt− 19

5
(7.28)

and

τC = 1 +
80

9

∫ 1

0

tδ(t)φδ(t)dt−
56

9

∫ 1

0

tδ(t)

(
δ(t)

t

)′
dt . (7.29)

If δ satisfies condition (7.12), then the measures of association ρC and τC of

C = Cu,vδ , with u = v = ψδ, are given by

ρC = 8

∫ 1

0

tδ(t) dt− 5

3
(7.30)

and

τC = 1 + 8

∫ 1

0

tδ(t)ψδ(t) dt . (7.31)

If δ satisfies condition (7.18), then the measures of association ρC and τC of

C = Cu,vδ , with u = −v = φδ or −u = v = φδ, are given by

ρC = 12

∫ 1

0

tδ(t) dt− 3 (7.32)

and

τC = 1− 16

9

∫ 1

0

tδ(t)φδ(t) dt− 32

9

∫ 1

0

tδ(t)

(
δ(t)

t

)′
dt . (7.33)

If δ satisfies condition (7.20), then the measures of association ρC and τC of

C = Cu,vδ , with u = φδ and v = ψδ or with u = ψδ and v = φδ, are given by

ρC =
56

5

∫ 1

0

tδ(t) dt− 41

15
(7.34)

and

τC = 1+
40

9

∫ 1

0

tδ(t)φδ(t) dt+ 4

∫ 1

0

tδ(t)ψδ(t) dt− 28

9

∫ 1

0

tδ(t)

(
δ(t)

t

)′
dt . (7.35)
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Proof. Expressions (7.28), (7.30), (7.32) and (7.34) are obtained by substituting

expression (7.2) in the expression for ρδ in Proposition 7.13 and using expression

(7.10) of φδ and ψδ. The computation is straightforward. To obtain (7.29), (7.31),

(7.33) and (7.35) we have used the expression for τδ in Proposition 7.13, and also

for (7.33) and (7.35) the following equalities between integrals containing φδ and δ,

which can be proven by means of partial integration:∫ 1

0

t3(φδ(t))
2 dt =

1

3

∫ 1

0

t3φδ(t)

(
δ(t)

t

)′
dt ,

∫ 1

0

t3φδ(t)

(
δ(t)

t

)′
dt =

∫ 1

0

tδ(t)

(
δ(t)

t

)′
dt− 4

∫ 1

0

tδ(t)φδ(t) dt .

Example 7.17. Let δλ be the diagonal function from Example 7.5. Using (7.28)–

(7.35), we obtain for C = Cu,vδλ , with u = v = φδλ and λ ∈ [0, 1], that the measures

of association are given by

ρC =
5− 6λ

5
, τC =

9 + 2λ(−6 + λ)

9
;

for C = Cu,vδλ , with u = v = ψδλ , and λ ∈ [0, 1/3], they are given by

ρC =
3− 2λ

3
, τC =

3 + 2λ(−2 + λ)

3
;

for C = Cu,vδλ , with u = −v = φδλ or −u = v = φδλ , and λ ∈ [0, 1], they are given

by

ρC = 1− λ , τC =
45 + 4λ(−15 + 4λ)

45
;

and for C = Cu,vδλ , with u = φδλ and v = ψδλ or with u = ψδλ and v = φδλ , and

λ ∈ [0, 1/2], they are given by

ρC =
15− 14λ

15
, τC =

(3− 2λ)2

9
.
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8 Semiquadratic copulas based on

horizontal and vertical interpolation

8.1. Introduction

The aim of this chapter is to complete the results of the previous chapter and

generalize the results of Chapter 6. We first recall lower semiquadratic copulas

(see Chapter 7) and introduce in a similar manner three families of semiquadratic

copulas with a given diagonal section. Analogously, we introduce four families of

semiquadratic copulas with a given opposite diagonal section. There is a great

similarity between the case of a given opposite diagonal section and that of a

given diagonal section (see also [23]), which can be explained by the existence of a

transformation that maps copulas onto copulas in such a way that the diagonal

section is mapped onto the opposite diagonal section and vice versa. In the second

part of this chapter, we consider the construction of semiquadratic copulas with

given diagonal and opposite diagonal sections. Also here, we introduce sixteen

families of semiquadratic copulas and, based on a set of transformations given

in (1.3), we classify them into six classes.

This chapter is organized as follows. In the next section we introduce lower, upper,

horizontal and vertical semiquadratic functions with a given diagonal section and

characterize the corresponding families of copulas. In Section 8.2, we introduce

in a similar way lower-upper, upper-lower, horizontal and vertical semiquadratic

functions with a given opposite diagonal section and characterize the corresponding

families of copulas. In Section 8.3, we introduce six classes of semiquadratic

functions with given diagonal and opposite diagonal sections and characterize the

corresponding classes of copulas.

8.2. Semiquadratic copulas with a given diagonal

section (resp. opposite diagonal section)

8.2.1. Classification procedure

In this section we recall a class of semiquadratic copulas and introduce a new class

as well. The construction of these copulas is based on quadratic interpolation on

segments connecting the diagonal (resp. opposite diagonal) and one of the sides

of the unit square. Since in both of the two triangular parts of the unit square
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1 2 3 4

5 6 7 8

Figure 8.1: Eight possible schemes for horizontal and vertical interpolation when the
diagonal (resp. opposite diagonal) section is given.

delimited by the diagonal (resp. opposite diagonal), we can either interpolate

horizontally or vertically between a point on the diagonal (resp. opposite diagonal)

and a point on the sides of the unit square, there are eight possible interpolation

schemes (see Figure 8.1). This quadratic interpolation requires one or two auxiliary

functions: a function f(y) (resp. g(x)) providing the coefficient of x2 (resp. y2)

in case of horizontal (resp. vertical) interpolation; the coefficients of the linear

terms and the constants are determined by the boundary conditions. We will

restrict our attention when characterizing a class of semiquadratic functions to

such functions f and g that are absolutely continuous. Note that f and g, being

absolutely continuous, are differentiable almost everywhere.

Based on symmetry considerations, we classify the families represented in Figure 8.1

into two classes (see Table 8.1). Using the transformations defined in (1.3), we

Class I Class II

1 3

2 4

5 7

6 8

Table 8.1: Classification of the families in Figure 8.1 into two classes.
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only need to consider one family from each class for characterization. This can be

seen as follows. Let us consider the subtriangles I1 and I2 of the unit square as in

Chapter 3. For a diagonal function δ and two functions f, g : [0, 1]→ R, generic

members of the first and second families in class I are denoted as I
1C

f,g
δ and I

2C
f,g
δ ,

and are given by

I
1C

f,g
δ (x, y) =


y

x
δ(x) + y(y − x)g(x) , if (x, y) ∈ I1 ,

x

y
δ(y) + x(x− y) f(y) , if (x, y) ∈ I2 ,

(8.1)

and

I
2C

f,g
δ (x, y) =


y − y − δ(y)

1− y
(1− x) + (1− x)(y − x)f(x) , if (x, y) ∈ I1 ,

x− x− δ(x)

1− x
(1− y) + (1− y)(x− y)g(x) , if (x, y) ∈ I2 .

Consider a diagonal function δ and let δ1 be the diagonal function defined by

δ1(x) = 2x− 1 + δ(1− x). Consider two functions f, g : [0, 1]→ R and let f̂ and

ĝ be the functions defined by f̂(x) = f(1 − x) and ĝ(x) = g(1 − x). One easily

verifies that
I
2C

f,g
δ = ϕ(I

1C
f̂ ,ĝ
δ1

) .

In Figure 8.2, we illustrate the transformations between the families in the same

class.

1 2

56

ϕ

ϕ1

π

ϕ1

ϕ2

ϕ2

(a) Class I

3 4

78

π

σ1

π

σ2

ϕ1

ϕ2

(b) Class II

Figure 8.2: Transformations between the families from the same class.
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8.2.2. Characterization

Class I

For any diagonal function δ and any two functions f, g : [0, 1]→ R, the function
I
1C

f,g
δ : [0, 1]2 → R defined in (8.1) where the convention 0

0 := 0 is adopted, is a

semiquadratic function with diagonal section δ since it satisfies I
1C

f,g
δ (t, t) = δ(t)

for all t ∈ [0, 1], and it is quadratic in x on I1 and quadratic in y on I2. Obviously,

symmetric functions are obtained when f = g. Note that if the functions f and

g are continuous, then I
1C

f,g
δ is continuous. Note also that for f = g = 0, the

definition of a lower semilinear function [36] is retrieved. In Chapter 7, we have

identified the necessary and sufficient conditions to be fulfilled by the functions δ,

f and g (in a slightly more general setting, i.e. for functions f and g not necessarily

defined in 0, but satisfying some appropriate limit conditions). Let us consider the

function λδ defined as in Chapter 3.

Proposition 8.1. [71] Let δ be a diagonal function and let f, g : [0, 1]→ R be two

absolutely continuous functions. Then the semiquadratic function I
1C

f,g
δ defined in

(8.1) is a copula with diagonal section δ if and only if

(i) f(1) = g(1) = 0 ,

(ii) max(f(t) + t |f ′(t)| , g(t) + t |g′(t)|) ≤ λ′δ(t) ,

(iii) f(t) + g(t) ≥ t
(
δ(t)
t2

)′
,

for all t ∈ ]0, 1] where the derivatives exist.

Example 8.1. Let δΠ be the diagonal section of the product copula Π, i.e. δΠ(t) = t2

for all t ∈ [0, 1]. Let f and g be defined by f(t) = g(t) = 1− t for all t ∈ ]0, 1]. One

easily verifies that the conditions of Proposition 8.1 are satisfied and hence, I
1C

f,g
δΠ

is a semiquadratic copula with diagonal section δΠ.

Class II

For any diagonal function δ and any function f : [0, 1] → R, the function II
3 C

f
δ :

[0, 1]2 → R defined by II
3 C

f
δ (x, y) =

y − 1− x
1− y

(y − δ(y)) + (1− x)(y − x)f(y) , if (x, y) ∈ I1 ,

x

y
δ(y) + x(x− y) f(y) , if (x, y) ∈ I2 ,

(8.2)

where the convention 0
0 := 0 is adopted, is a semiquadratic function with diagonal

section δ since it satisfies II
3 C

f
δ (t, t) = δ(t) for all t ∈ [0, 1], and it is quadratic in x
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on I1 as well as on I2. Note that for f = 0, the definition of a horizontal semilinear

function [20] is retrieved.

We now state the conditions to be fulfilled by the functions δ and f such that II
3 C

f
δ

is a copula. Let us consider the function µδ defined as in Chapter 3.

Proposition 8.2. Let δ be a diagonal function and let f : [0, 1] → R be an

absolutely continuous function. Then the semiquadratic function II
3 C

f
δ defined in

(8.2) is a copula with diagonal section δ if and only if

(i) f(0) = f(1) = 0 ,

(ii) f(t) + t |f ′(t)| ≤ λ′δ(t) ,

(iii) f(t) + (1− t) |f ′(t)| ≤ µ′δ(t) ,

(iv) f(t) ≥ t2−δ(t)
t(1−t) ,

for all t ∈ ]0, 1[ where the derivatives exist.

Proof. Let C = II
3 C

f
δ . The boundary conditions C(t, 0) = 0 and C(t, 1) = t for all

t ∈ [0, 1] immediately lead to the conditions f(0) = f(1) = 0. Therefore, it suffices

to prove that the 2-increasingness of C is equivalent to conditions (ii)–(iv).

Suppose that C is 2-increasing. For any rectangle R = [x1, x2] × [y1, y2] ⊆ I2, it

then holds that VC(R) ≥ 0, i.e.

(x2 − x1) (λδ(y2)− λδ(y1)− f(y2)y2 + f(y1)y1 + (x1 + x2)(f(y2)− f(y1))) ≥ 0 ,

or, equivalently,

λδ(y2)− λδ(y1)− f(y2)y2 + f(y1)y1 + (x1 + x2)(f(y2)− f(y1)) ≥ 0 . (8.3)

Dividing by y2 − y1 and taking the limits x2 → x1 and y2 → y1, inequality (8.3)

becomes

λ′δ(y1)− f(y1) + (2x1 − y1)f ′(y1) ≥ 0 . (8.4)

Since the left-hand side of inequality (8.4) is linear in x1, this condition is equivalent

to requiring that it holds for x1 = 0 and x1 = y1, i.e.

λ′δ(y1)− f(y1) + y1f
′(y1) ≥ 0 and λ′δ(y1)− f(y1)− y1f

′(y1) ≥ 0 ,

or, equivalently, to

f(y1) + y1 |f ′(y1)| ≤ λ′δ(y1) . (8.5)

Hence, condition (ii) follows. Similarly, for any rectangle R = [x1, x2]× [y1, y2] ⊆ I1,

it holds that VC(R) ≥ 0, i.e.

(x2−x1) (µδ(y2)− µδ(y1)− f(y2)y2 + f(y1)y1 + (x1 + x2 − 1)(f(y2)− f(y1))) ≥ 0 ,
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or, equivalently,

µδ(y2)− µδ(y1)− f(y2)y2 + f(y1)y1 + (x1 + x2 − 1)(f(y2)− f(y1)) ≥ 0 . (8.6)

Dividing by y2 − y1 and taking the limits x2 → x1 and y2 → y1, inequality (8.6)

becomes

µ′δ(y1)− f(y1) + (2x1 − y1 − 1)f ′(y1) ≥ 0 . (8.7)

Since the left-hand side of inequality (8.7) is linear in x1, this condition is equivalent

to requiring that it holds for x1 = y1 and x1 = 1, i.e.

µ′δ(y1)− f(y1)− (1− y1)f ′(y1) ≥ 0 and µ′δ(y1)− f(y1) + (1− y1)f ′(y1) ≥ 0 ,

or, equivalently, to

f(y1) + (1− y1) |f ′(y1)| ≤ µ′δ(y1) . (8.8)

Hence, condition (iii) follows.

Finally, the fact that VC(R) ≥ 0 for any square R = [x1, x2] × [x1, x2] centered

around the main diagonal is equivalent to

VC(R) = C(x1, x1) + C(x2, x2)− C(x1, x2)− C(x2, x1)

= (x2 − x1)

(
δ(x1)

1− x1
+
δ(x2)

x2
+ x1f(x2) + (1− x2)f(x1)− x1

1− x1

)
≥ 0 ,

or, equivalently,

λδ(x2)− µδ(x1) + x1f(x2) + (1− x2)f(x1) ≥ 0 .

Taking the limit x2 → x1, condition (iv) immediately follows.

Now suppose that conditions (ii)–(iv) are satisfied. Due to the additivity of volumes,

it suffices to consider a restricted number of cases to prove the 2-increasingness of

C. Let R = [a1, b1]× [a2, b2] be a rectangle located in I1. Since condition (iii) is

satisfied, inequality (8.7) follows and it holds that∫ b2

a2

dy1

∫ b1

a1

(µ′δ(y1)− f(y1) + (2x1 − y1 − 1)f ′(y1)) dx1 ≥ 0 .

Computing the above integral, the latter inequality becomes

(b1−a1) (µδ(b2)− µδ(a2)− b2f(b2) + a2f(a2) + (a1 + b1 − 1)(f(b2)− f(a2))) ≥ 0 ,

or, equivalently, VC(R) ≥ 0 .

Let R = [a1, b1] × [a2, b2] be a rectangle located in I2. Since condition (ii) is
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satisfied, inequality (8.4) follows and it holds that∫ b2

a2

dy1

∫ b1

a1

(λ′δ(y1)− f(y1) + (2x1 − y1)f ′(y1)) dx1 ≥ 0 .

Computing the above integral, the latter inequality becomes

(b1 − a1) (λδ(b2)− λδ(a2)− b2f(b2) + a2f(a2) + (a1 + b1)(f(b2)− f(a2))) ≥ 0 ,

or, equivalently, VC(R) ≥ 0 .

Finally, let S = [a, b]× [a, b] be a square centered around the main diagonal. Due

to condition (iv), it holds that

f(x1)− x2
1 − δ(x1)

x1(1− x1)
≥ 0 ,

for all x1 ∈ ]0, 1], which implies that

Ĩ1 =

∫ b

a

(
f(x1)− x2

1 − δ(x1)

x1(1− x1)

)
dx1 ≥ 0 .

Using inequality (8.4), it follows that

Ĩ2 =

∫ b

a

∫ b

x1

(λ′δ(y1)− f(y1) + (2x1 − y1)f ′(y1)) dy1dx1 ≥ 0 .

Using inequality (8.7), it follows that

Ĩ3 =

∫ b

a

∫ b

y1

(µ′δ(y1)− f(y1) + (2x1 − y1 − 1)f ′(y1)) dx1dy1 ≥ 0 .

Computing the above integrals and setting I = Ĩ1 + Ĩ2 + Ĩ3, it follows that

I = (b− a) (λδ(b)− µδ(a) + af(b) + (1− b)f(a)) ≥ 0 ,

or, equivalently,

I = VC(S) ≥ 0 .

Example 8.2. Let δΠ be the diagonal section of the product copula. Let f be

defined by f(t) = t(1− t) for all t ∈ [0, 1]. One easily verifies that the conditions

of Proposition 8.2 are satisfied and hence, II
3 C

f
δΠ

is a semiquadratic copula with

diagonal section δΠ.
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8.3. Semiquadratic functions with given diagonal

and opposite diagonal sections

8.3.1. Classification procedure

In this section we introduce six new classes of semiquadratic copulas. The construc-

tion of these classes is based on quadratic interpolation on segments connecting the

diagonal and opposite diagonal, or connecting the diagonal or opposite diagonal

and one of the sides of the unit square. Since in any of the four triangular parts

of the unit square delimited by the diagonal and opposite diagonal, we can either

interpolate between a point on the diagonal and a point on the opposite diagonal,

or between a point on the sides of the unit square and a point on the diagonal or

opposite diagonal, there are sixteen possible interpolation schemes (see Figure 8.3).

Based on symmetry considerations, we classify the families represented in Figure 8.3

into six different classes (see Table 8.2).

Class III Class IV Class V Class VI Class VII Class VIII

9 10 14 16 20 24

11 15 17 21

12 18 22

13 19 23

Table 8.2: Classification of the families in Figure 8.3 into six classes.

Using the transformations defined in (1.3), we only need to consider one family

from each class for characterization. This can be seen as follows. Let us consider

the subtriangles T1, T2, T3 and T4 of the unit square as in Chapter 5.

For a diagonal function δ, opposite diagonal function ω and two functions f, g :

[0, 1]→ R, generic members of the first and third families in class IV are denoted
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9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

Figure 8.3: Sixteen possible schemes for horizontal and vertical interpolation when the
diagonal and opposite diagonal sections are given.
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as IV
10C

f,g
δ,ω and IV

12C
f,g
δ,ω , and are given by IV

10C
f,g
δ,ω(x, y) =

x+ y − 1

2y − 1
δ(y) +

y − x
2y − 1

ω(1− y)− (y − x)(x+ y − 1)f(y)

, if (x, y) ∈ T1 ,

x+ y − 1

2x− 1
δ(x)− y − x

2x− 1
ω(x) + (y − x)(x+ y − 1) g(x)

, if (x, y) ∈ T2 ∪ T4 ,

x+ y − 1 +
1− y
x

ω(x)− (1− y)(x+ y − 1)g(x)

, if (x, y) ∈ T3 and x ≤ 1/2 ,

x− 1− y
1− x

(x− δ(x))− (1− y)(y − x)g(x) , if (x, y) ∈ T3 and x ≥ 1/2 ,

(8.9)

and IV
12C

f,g
δ,ω(x, y) =

y

x
δ(x) + y(y − x)g(x) , if (x, y) ∈ T1 and x ≤ 1/2 ,

y

1− x
ω(x) + y (x+ y − 1)g(x) , if (x, y) ∈ T1 and x ≥ 1/2 ,

x+ y − 1

2x− 1
δ(x)− y − x

2x− 1
ω(x) + (y − x)(x+ y − 1)g(x)

, if (x, y) ∈ T2 ∪ T4 ,

x+ y − 1

2y − 1
δ(y) +

y − x
2y − 1

ω(1− y)− (y − x)(x+ y − 1)f(y)

, if (x, y) ∈ T3 .

Consider a diagonal function δ and an opposite diagonal function ω and let δ2 be

the diagonal function defined δ2(x) = x−ω(x) and ω̂ the opposite diagonal function

defined by ω̂(x) = x− δ(x). Consider two functions f, g : [0, 1]→ R and let f̂ and

ĝ be the functions defined by f̂(x) = −f(1 − x) and ĝ(x) = −g(x). One easily

verifies that IV
12C

f,g
δ,ω = ϕ2(IV

10C
f̂ ,ĝ
δ2,ω̂

) . In Figure 8.4, we illustrate the transformations

between the families in the same class.

8.3.2. Characterization

Class III

For any diagonal function δ and opposite diagonal function ω such that δ(1/2) =

ω(1/2), and any two functions f, g : [0, 1] → R, the function III
9 Cf,gδ,ω defined by
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10 11

1213

π

σ2

π

σ2

ϕ2

ϕ

(a) Class IV

14 15
π

(b) Class V

16 17

1819

ϕ2

σ1

ϕ2

σ1

σ

π

(c) Class VI

20 21

2223

σ1

π

σ1

π

ϕ2

ϕ2

(d) Class VII

Figure 8.4: Transformations between the families from the same class.

III
9 Cf,gδ,ω(x, y) =
x+ y − 1

2y − 1
δ(y) +

y − x
2y − 1

ω(1− y)− (y − x)(x+ y − 1)f(y) , if (x, y) ∈ T1 ∪ T3 ,

x+ y − 1

2x− 1
δ(x)− y − x

2x− 1
ω(x) + (y − x)(x+ y − 1)g(x) , if (x, y) ∈ T2 ∪ T4 ,

(8.10)

where the convention 0
0 := δ(1/2) is adopted, is a semiquadratic function with

diagonal section δ and opposite diagonal section ω. Note that if the functions f

and g are continuous, then III
9 Cf,gδ,ω(x, y) is continuous. Note also that for f = g = 0,

the definition of an orbital semilinear function (see Chapter 6).

We now state the conditions to be fulfilled by the functions δ, ω, f and g such that
III
9 Cδ,ωf,g is a copula.

Let us consider the functions ϕδ,ω and ψδ,ω defined as in Chapter 6.
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Proposition 8.3. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). Let f, g : [0, 1]→ R be two absolutely continuous functions.

The function III
9 Cδ,ωf,g defined in (8.10) is a copula with diagonal section δ and

opposite diagonal section ω if and only if

(i) f(0) = g(0) = f(1) = g(1) = 0 ,

(ii) ψ′δ,ω(t)− |(1− 2t)f ′(t)| ≥ 0 ,

(iii) ϕ′δ,ω(t)− |(1− 2t)g′(t)| ≥ 0 , for all t ∈ ]0, 1] where the derivatives exist,

(iv) for all t ∈ ]0, 1/2[ , it holds that

δ′(t) ≥ ϕδ,ω(t) + ψδ,ω(t) + (2t− 1)(f(t) + g(t)) , and

ω′(t) ≤ ψδ,ω(1− t)− ϕδ,ω(t) + (2t− 1)(f(1− t) + g(t)) ,

where the derivatives exist,

(v) for all t ∈ ]1/2, 1], it holds that

δ′(t) ≤ ϕδ,ω(t) + ψδ,ω(t) + (2t− 1)(f(t) + g(t)) , and

ω′(t) ≥ ψδ,ω(1− t)− ϕδ,ω(t) + (2t− 1)(f(1− t) + g(t)) ,

where the derivatives exist.

Proof. Let C = III
9 Cδ,ωf,g . The boundary conditions C(t, 0) = 0, C(0, t) = 0,

C(t, 1) = t and C(1, t) = t for all t ∈ [0, 1] immediately lead to the conditions

f(0) = g(0) = f(1) = g(1) = 0. Therefore, it suffices to prove that the 2-

increasingness of C is equivalent to conditions (ii)–(v).

Suppose that C is 2-increasing. For any rectangle R = [x1, x2]× [y1, y2] ⊆ T1 ∪ T3,

it then holds that VC(R) ≥ 0 , i.e.

(x2 − x1)

(
δ(y1)

2y1 − 1
− ω(1− y1)

2y1 − 1
+ f(y1)(1− x1 − x2)

)

− (x2 − x1)

(
δ(y2)

2y2 − 1
− ω(1− y2)

2y2 − 1
+ f(y2)(1− x1 − x2)

)
≥ 0 ,

or, equivalently,

ψδ,ω(y2)− ψδ,ω(y1) + (f(y1)− f(y2))(1− x1 − x2) ≥ 0 . (8.11)

Dividing by y2 − y1 and taking the limits x2 → x1 and y2 → y1, inequality (8.11)

becomes

ψ′δ,ω(y1)− (1− 2x1)f ′(y1) ≥ 0 . (8.12)
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Since the left-hand side of inequality (8.12) is linear in x1, this condition is equivalent

to requiring that it holds for x1 = y1 and x1 = 1− y1, i.e.

ψ′δ,ω(y1)− (1− 2y1)f ′(y1) ≥ 0 and ψ′δ,ω(y1) + (1− 2y1)f ′(y1) ≥ 0 ,

or, equivalently,

ψ′δ,ω(y1)− |(1− 2y1)f ′(y1)| ≥ 0 . (8.13)

Similarly, the fact that VC(R) ≥ 0 for any rectangle located in T2 ∪ T4 implies that

inequality (8.13) also holds for the functions ϕδ,ω and g. Hence, condition (iii)

follows.

The fact that VC(R) ≥ 0 for any square R = [x1, x2]× [x1, x2] such that x2 ≤ 1/2

is equivalent to

VC(R) = C(x1, x1) + C(x2, x2)− C(x1, x2)− C(x2, x1)

= δ(x1) + δ(x2)− 2
x1 + x2 − 1

2x1 − 1
δ(x1) +

x2 − x1)

2x1 − 1
(ω(x1) + ω(1− x1))

+(x2 − x1)(1− x1 − x2)(f(x1) + g(x1)) ≥ 0 ,

or, equivalently,

δ(x2)−δ(x1)+(x2−x1) (−ϕδ,ω(x1)− ψδ,ω(x1) + (1− x1 − x2)(f(x1) + g(x1))) ≥ 0 .

Dividing by x2 − x1 and taking the limit x2 → x1, it follows that

δ′(x1)− ϕδ,ω(x1)− ψδ,ω(x1) + (1− 2x1)(f(x1) + g(x1)) ≥ 0 .

or, equivalently,

δ′(x1) ≥ ϕδ,ω(x1) + ψδ,ω(x1) + (2x1 − 1)(f(x1) + g(x1)) .

The fact that VC(R) ≥ 0 for any square R = [x1, x2]× [1− x2, 1− x1] such that

x2 ≤ 1/2 is equivalent to

VC(R) = C(x1, 1− x2) + C(x2, 1− x1)− C(x1, 1− x1)− C(x2, 1− x2)

=
x2 − x1

1− 2x1
(δ(x1) + δ(1− x1))− 2

x1 + x2 − 1

1− 2x1
ω(x)

+(x2 − x1)(x1 + x2 − 1)(f(x1) + g(x1))− ω(x1)− ω(x2) ≥ 0 ,

or, equivalently,

ω(x1)− ω(x2)− (x2 − x1) (−ψδ,ω(1− x1) + ϕδ,ω(x1))

+ (x2 − x1)(x1 + x2 − 1)(f(1− x1) + g(x1)) ≥ 0 .
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Dividing by x2 − x1 and taking the limit x2 → x1, it follows that

−ω′(x1) + ψδ,ω(1− x1)− ϕδ,ω(x1)− (1− 2x1)(f(1− x1) + g(x1)) ≥ 0 ,

or, equivalently,

ω′(x1) ≤ ψδ,ω(1− x1)− ϕδ,ω(x1) + (2x1 − 1)(f(1− x1) + g(x1)) .

Thus, condition (iv) follows. Similarly, the fact that VC(R) ≥ 0 for any square

R = [x1, x2] × [x1, x2] (resp. R = [x1, x2] × [1 − x2, 1 − x1]) such that x1 ≥ 1/2

implies condition (v).

Now suppose that conditions (ii)–(v) are satisfied. Due to the additivity of volumes,

it suffices to consider a restricted number of cases to prove the 2-increasingness of

C. Let R = [a1, b1]× [a2, b2] be a rectangle located in T1 ∪ T2. Since condition (ii)

is satisfied, inequality (8.12) follows and it holds that∫ b2

a2

dy1

∫ b1

a1

(
ψ′δ,ω(y1)− (1− 2x1)f ′(y1)

)
dx1 ≥ 0 .

Computing the above integral, the latter inequality becomes

(b1 − a1) (ψδ,ω(b2)− ψδ,ω(a2)− (1− a1 − b1)(f(b2)− f(a2))) ≥ 0 ,

or, equivalently, VC(R) ≥ 0 . Similarly, one can verify that VC(R) ≥ 0 for any

rectangle R = [a1, b1]× [a2, b2] located in T2 ∪T4. Let S = [a, b]× [a, b] be a square

such that b ≤ 1/2. Due to condition (iv), it holds that

δ′(x1)− ϕδ,ω(x1)− ψδ,ω(x1)− (2x1 − 1)(f(x1) + g(x1)) ≥ 0 .

for all x1 ∈ ]0, 1/2], which implies that

Ĩ1 =

∫ b

a

(δ′(x1)− ϕδ,ω(x1)− ψδ,ω(x1)− (2x1 − 1)(f(x1) + g(x1)) dx1 ≥ 0 .

Using inequality (8.12), it follows that

Ĩ2 =

∫ b

a

∫ x1

a

(
ψ′δ,ω(y1)− (1− 2x1)f ′(y1)

)
dy1dx1 ≥ 0 .

As inequality (8.12) also holds for the functions ϕδ,ω and g, it follows after exchang-

ing the variables x1 and y1 that

Ĩ3 =

∫ b

a

∫ x1

a

(
ϕ′δ,ω(x1)− (1− 2y1)g′(x1)

)
dx1dy1 ≥ 0 .
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Computing the above integrals and setting I = Ĩ1 + Ĩ2 + Ĩ3, it follows that

I = δ(b)− δ(a)− (a− b)(ϕδ,ω(a) + ψδ,ω(a)− (1− a− b)(f(a) + g(a))) ≥ 0 ,

or, equivalently,

I = VC(S) ≥ 0 .

Similarly, one can verify that VC(R) ≥ 0 for any rectangle R = [a, b]× [a, b] when

a ≥ 1/2.

Example 8.3. Suppose that the functions f and g are linear. Condition (i) of

Proposition 8.3 implies that f(x) = g(x) = 0 for all x ∈ [0, 1]. The corresponding

family of semiquadratic copulas coincides with the family of orbital semilinear

copulas [65].

Example 8.4. Consider the diagonal section and the opposite diagonal section

of the product copula. Let fλ, gλ : [0, 1] → R be the functions defined by fλ(x) =

−gλ(x) = λmin(x, 1 − x) for all x ∈ [0, 1], with λ ∈ [−1, 1]. One easily verifies

that the conditions of Propositions 8.3 are satisfied and the corresponding family

of semiquadratic functions III
9 Cfλ,gλδΠ,ωΠ

is a family of semiquadratic copulas, and is

given by

III
9 Cfλ,gλδΠ,ωΠ

(x, y) =


xy − λ(y − x)(x+ y − 1) min(y, 1− y) , if (x, y) ∈ T1 ∪ T3 ,

xy − λ(y − x)(x+ y − 1) min(x, 1− x) , otherwise ,

with λ ∈ [−1, 1].

Class IV

For any diagonal function δ and opposite diagonal function ω such that δ(1/2) =

ω(1/2), and any two functions f, g : [0, 1]→ R, the function IV
10C

f,g
δ,ω : [0, 1]2 → [0, 1]

defined in (8.9) where the convention 0
0 := 0 is adopted, is a semiquadratic function

with diagonal section δ and opposite diagonal section ω. Note that if the functions

f and g are continuous, then IV
10C

f,g
δ,ω is continuous.

We now state the conditions to be fulfilled by the functions δ, ω, f and g such

that IV
10C

f,g
δ,ω is a copula. Let us consider the functions λω and µω defined as in

Chapter 3.
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Proposition 8.4. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). Let f, g : [0, 1]→ R be two absolutely continuous functions.

The function IV
10C

f,g
δ,ω defined in (8.9) is a copula with diagonal section δ and opposite

diagonal section ω if and only if

(i) f(0) = g(0) = f(1) = g(1) = 0 ,

(ii) for all t ∈ ]0, 1[ , it holds that

ϕ′δ,ω(t)− |(1− 2t)f ′(t)| ≥ 0 , ψ′δ,ω(t)− |(1− 2t)g′(t)| ≥ 0 ,

where the derivatives exist,

(iii) for all t ∈ ]0, 1/2], it holds that

−µ′ω(t) ≤ g(t)− t |g′(t)| ,

µ′ω(1− t) ≤ f(t)− t |f ′(t)| ,

δ′(t) ≥ ϕδ,ω(t) + ψδ,ω(t) + (2t− 1)(f(t) + g(t)) ,

λω(t) ≤ 1− ϕδ,ω(t)− (1− t)g(t) ,

where the derivatives exist,

(iv) for all t ∈ [1/2, 1[ , it holds that

µ′δ(t) ≥ max(f(t) + (1− t) |f ′(t)| , g(t) + (1− t) |g′(t)|) ,

δ′(t) ≤ ϕδ,ω(t) + ψδ,ω(t) + (2t− 1)(f(t) + g(t)) ,

µδ(t) ≤ ϕδ,ω(t) + tg(t) ,

where the derivatives exist.

Class V

For any diagonal function δ and opposite diagonal function ω such that δ(1/2) =

ω(1/2), and any function f : [0, 1]→ R, the function V
15C

f
δ,ω : [0, 1]2 → [0, 1] defined

202



§8.3. Semiquadratic functions with given diagonal and opposite diagonal sections

by V
15C

f
δ,ω(x, y) =

x+ y − 1

2y − 1
δ(y) +

y − x
2y − 1

ω(1− y)− (y − x)(x+ y − 1)f(y)

, if (x, y) ∈ T1 ∪ T3 ,

x

y
δ(y)− x(y − x)f(y) , if (x, y) ∈ T2 and y ≤ 1/2 ,

x

1− y
ω(1− y) + x(x+ y − 1)f(y) , if (x, y) ∈ T2 and y ≥ 1/2 ,

x+ y − 1 +
1− x
y

ω(1− y)− (1− x)(x+ y − 1)f(y)

, if (x, y) ∈ T4 and y ≤ 1/2 ,

y − 1− x
1− y

(y − δ(y)) + (1− x)(y − x)f(y) , if (x, y) ∈ T4 and y ≥ 1/2 ,

(8.14)

where the convention 0
0 := 0 is adopted, is a semiquadratic function with diagonal

section δ and opposite diagonal section ω. Note that if the function f is continuous,

then V
15C

f
δ,ω is continuous. Note also that for f = 0, the definition of a horizontal

semilinear function (see Chapter 6) is retrieved.

We now state the conditions to be fulfilled by the functions δ, ω and f such that
V
15C

f
δ,ω is a copula.

Proposition 8.5. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). Let f : [0, 1]→ R be an absolutely continuous function. The

function V
15C

f
δ,ω defined in (8.14) is a copula with diagonal section δ and opposite

diagonal section ω if and only if

(i) f(0) = f(1) = 0 ,

(ii) for all t ∈ ]0, 1[ , it holds that

ϕ′δ,ω(t) ≥ |(1− 2t)f ′(t)| ,

where the derivatives exist,

(ii) for all t ∈ ]0, 1/2], it holds that

λ′δ(t) ≥ f(t) + t |f ′(t)| ,

µ′ω(1− t) ≤ f(t)− t |f ′(t)| ,

λδ(t) ≥ ψδ,ω(t)− (1− t)f(t) ,

λω(t) ≤ ψδ,ω(1− t)− (1− t)f(1− t) ,

where the derivatives exist,
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(iii) for all t ∈ [1/2, 1[ , it holds that

µ′δ(t) ≥ f(t) + t |f ′(t)| ,

−λ′ω(1− t) ≤ f(t)− (1− t) |f ′(t)| ,

µδ(t) ≤ ψδ,ω(t) + tf(t) ,

µω(t) ≤ 1− ψδ,ω(1− t)− tf(1− t) ,

where the derivatives exist.

Example 8.5. Suppose that the function f is linear. Condition (i) of Propo-

sition 8.5 implies that f(x) = 0 for all x ∈ [0, 1]. The corresponding family of

semiquadratic copulas coincides with the family of horizontal semilinear copulas (see

Chapter 6).

Class VI

For any diagonal function δ and opposite diagonal function ω such that δ(1/2) =

ω(1/2), and any two functions f, g : [0, 1]→ R, the function VI
16C

f,g
δ,ω : [0, 1]2 → [0, 1]

defined by VI
16C

f,g
δ,ω(x, y) =



x+ y − 1

2y − 1
δ(y) +

y − x
2y − 1

ω(1− y)− (y − x)(x+ y − 1)f(y)

, if (x, y) ∈ T1 ,

x+ y − 1

2x− 1
δ(x)− y − x

2x− 1
ω(x) + (y − x)(x+ y − 1)g(x)

, if (x, y) ∈ T2 ,

x+ y − 1 +
1− y
x

ω(x)− (1− y)(x+ y − 1)g(x)

, if (x, y) ∈ T3 and x ≤ 1/2 ,

x− 1− y
1− x

(x− δ(x))− (1− y)(y − x)g(x) , if (x, y) ∈ T3 and x ≥ 1/2 ,

y − 1− x
1− y

(y − δ(y)) + (1− x)(y − x)f(y) , if (x, y) ∈ T4 and y ≥ 1/2 ,

x+ y − 1 +
1− x
y

ω(1− y)− (1− x)(x+ y − 1)f(y)

, if (x, y) ∈ T4 and y ≤ 1/2 ,

(8.15)

where the convention 0
0 := 0 is adopted, is a semiquadratic function with diagonal

section δ and opposite diagonal section ω. Note that if the functions f and g are

continuous, then VI
16C

f,g
δ,ω is continuous.
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We now state the conditions to be fulfilled by the functions δ, ω, f and g such that
VI
16C

f,g
δ,ω is a copula.

Proposition 8.6. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). Let f, g : [0, 1]→ R be two absolutely continuous functions.

The function VI
16C

f,g
δ,ω defined in (8.15) is a copula with diagonal section δ and

opposite diagonal section ω if and only if

(i) f(0) = g(0) = f(1) = g(1) = 0 ,

(ii) for all t ∈ ]0, 1/2], it holds that

ϕ′δ,ω(t) ≥ |(1− 2t)f ′(t)| ,

ψ′δ,ω(x) ≥ |(1− 2x)g′(x)| ,

λ′ω(t) ≤ g(t)− t |g′(t)| ,

δ′(t) ≥ ϕδ,ω(t) + ψδ,ω(t) + (2t− 1)(f(t) + g(t)) ,

λω(t) ≤ 1− ϕδ,ω(t)− (1− t)g(t) ,

where the derivatives exist,

(iii) for all t ∈ [1/2, 1[ , it holds that

µ′δ(t) ≥ g(x) + (1− x) |g′(x)| ,

δ′(t) ≤ ϕδ,ω(t) + ψδ,ω(t) + (2t− 1)(f(t) + g(t)) ,

(1− t)2

(
2t− 1− δ(t)

(1− t)2

)′
≤ f(t) + g(t) ,

µω(t) ≤ 1− ψδ,ω(1− t)− tf(1− t) ,

where the derivatives exist.

Class VII

For any diagonal function δ and opposite diagonal function ω such that δ(1/2) =

ω(1/2), and any two functions f, g : [0, 1]→ R, the function VII
20 C

f,g
δ,ω : [0, 1]2 → [0, 1]
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defined by VII
20 C

f,g
δ,ω(x, y) =

y

x
δ(x) + y(y − x)g(x) , if (x, y) ∈ T1 and x ≤ 1/2 ,

y

1− x
ω(x) + y(x+ y − 1)g(x) , if (x, y) ∈ T1 and x ≥ 1/2 ,

x+ y − 1

2x− 1
δ(x)− y − x

2x− 1
ω(x) + (y − x)(x+ y − 1)g(x)

, if (x, y) ∈ T2 ,

x+ y − 1 +
1− y
x

ω(x)− (1− y)(x+ y − 1)g(x)

, if (x, y) ∈ T3 and x ≤ 1/2 ,

x− 1− y
1− x

(x− δ(x))− (1− y)(y − x)g(x) , if (x, y) ∈ T3 and x ≥ 1/2 ,

x+ y − 1 +
1− x
y

ω(1− y)− (1− x)(x+ y − 1)f(y)

, if (x, y) ∈ T4 and y ≤ 1/2 ,

y − 1− x
1− y

(y − δ(y)) + (1− x)(y − x)f(y) , if (x, y) ∈ T4 and y ≥ 1/2 ,

(8.16)

where the convention 0
0 := 0 is adopted, is a semiquadratic function with diagonal

section δ and opposite diagonal section ω. Note that if the functions f and g are

continuous, then VII
20 C

f,g
δ,ω(x, y) is continuous.

We now state the conditions to be fulfilled by the functions δ, ω, f and g such that
VII
20 C

f,g
δ,ω is a copula.

Proposition 8.7. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). Let f, g : [0, 1]→ R be two absolutely continuous functions.

The function VII
20 C

f,g
δ,ω defined in (8.16) is a copula with diagonal section δ and

opposite diagonal section ω if and only if

(i) f(0) = g(0) = f(1) = g(1) = 0 ,

(ii) for all t ∈ ]0, 1/2], it holds that

ϕ′δ,ω(t) ≥ |(1− 2t)f ′(t)| ,

λ′δ(t) ≥ g(t) + t |g′(t)| ,

λ′ω(t) ≤ g(t)− t |g′(t)| ,

λδ(t) ≥ ϕδ,ω(t)− (1− t)g(t) ,

λω(t) ≤ 1− ϕδ,ω(t)− (1− t)g(t) ,
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where the derivatives exist,

(iii) for all t ∈ [1/2, 1[ , it holds that

µ′δ(t) ≥ max(f(t) + (1− t) |f ′(t)| , g(t) + (1− t) |g′(t)|) ,

−µ′ω(t) ≤ g(t)− (1− t) |g′(t)| ,

−λ′ω(1− t) ≤ f(t)− (1− t) |f ′(t)| ,

(1− t)2

(
2t− 1− δ(t)

(1− t)2

)′
≤ f(t) + g(t) ,

(1− t)2

(
ω(t)− t
t2

)′
≥ f(1− t) + g(t) ,

where the derivatives exist.

Class VIII

For any diagonal function δ and opposite diagonal function ω such that δ(1/2) =

ω(1/2), and any two functions f, g : [0, 1]→ R, the function VIII
24 Cf,gδ,ω : [0, 1]2 → [0, 1]

defined by VIII
24 Cf,gδ,ω(x, y) =

y

x
δ(x) + y(y − x)g(x) , if (x, y) ∈ T1 and x ≤ 1/2 ,

y

1− x
ω(x) + y(x+ y − 1)g(x) , if (x, y) ∈ T1 and x ≥ 1/2 ,

x

y
δ(y)− x(y − x)f(y) , if (x, y) ∈ T2 and y ≤ 1/2 ,

x

1− y
ω(1− y) + x(x+ y − 1)f(y) , if (x, y) ∈ T2 and y ≥ 1/2 ,

x+ y − 1 +
1− y
x

ω(x)− (1− y)(x+ y − 1)g(x)

, if (x, y) ∈ T3 and x ≤ 1/2 ,

x− 1− y
1− x

(x− δ(x))− (1− y)(y − x)g(x) , if (x, y) ∈ T3 and x ≥ 1/2 ,

y − 1− x
1− y

(y − δ(y)) + (1− x)(y − x)f(y) , if (x, y) ∈ T4 and y ≥ 1/2 ,

x+ y − 1 +
1− x
y

ω(1− y)− (1− x)(x+ y − 1)f(y)

, if (x, y) ∈ T4 and y ≤ 1/2 ,

(8.17)
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where the convention 0
0 := 0 is adopted, is a semiquadratic function with diagonal

section δ and opposite diagonal section ω. Note that if the functions f and g are

continuous, then VIII
24 Cf,gδ,ω is continuous. Note also that for f = g = 0, the definition

of a radial semilinear function (see Chapter 6) is retrieved.

We now state the conditions to be fulfilled by the functions δ, ω, f and g such that
VIII
24 Cf,gδ,ω is a copula.

Proposition 8.8. Let δ and ω be diagonal and opposite diagonal functions such

that δ(1/2) = ω(1/2). Let f, g : [0, 1]→ R be two absolutely continuous functions.

The function VIII
24 Cf,gδ,ω defined in (8.17) is a copula with diagonal section δ and

opposite diagonal section ω if and only if

(i) f(0) = g(0) = f(1) = g(1) = 0 ,

(ii) for all t ∈ ]0, 1/2], it holds that

λ′δ(t) ≥ max(f(t) + t |f ′(t)| , g(t) + t |g′(t)|) ,

λ′ω(t) ≤ g(t)− t |g′(t)| ,

µ′ω(1− t) ≤ f(t)− t |f ′(t)| ,

t2
(
δ(t)

t2

)′
≤ f(t) + g(t) ,

(1− t)2

(
1− t− ω(t)

(1− t)2

)′
≥ f(t) + g(t) ,

where the derivatives exist,

(iii) for all t ∈ [1/2, 1[ , it holds that

µ′δ(t) ≥ max(f(t) + (1− t) |f ′(t)| , g(t) + (1− t) |g′(t)|) ,

−µ′ω(t) ≤ g(t)− (1− t) |g′(t)| ,

−λ′ω(1− t) ≤ f(t)− (1− t) |f ′(t)| ,

(1− t)2

(
2t− 1− δ(t)

(1− t)2

)′
≤ f(t) + g(t) ,

(1− t)2

(
ω(t)− t
t2

)′
≥ f(1− t) + g(t) ,

where the derivatives exist.
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Example 8.6. Suppose that the functions f and g are linear. Condition (i) of

Proposition 8.8 implies that f(x) = g(x) = 0 for all x ∈ [0, 1]. The corresponding

family of semiquadratic copulas coincides with the family of radial semilinear

copulas (see Chapter 6).

Example 8.7. Consider the diagonal section and the opposite diagonal section

of the product copula. Let fλ, gλ : [0, 1] → R be the functions defined by fλ(x) =

−gλ(x) = λx(1 − x) for all x ∈ [0, 1], with λ ∈ [−1, 1]. One easily verifies that

the conditions of Propositions 8.8 are satisfied and the corresponding family of

semiquadratic functions VIII
24 Cfλ,gλδΠ,ωΠ

is a family of semiquadratic copulas.

As the product copula is a typical example of all types of semilinear copulas

based on horizontal and vertical interpolation, we show in the following example

that the Farlie–Gumbel–Morgenstern family of copulas is a typical example of

all types of semiquadratic copulas based on horizontal and vertical interpolation.

Just as the product copula is the only copula that is linear in both variables, the

Farlie–Gumbel–Morgenstern family contains all copulas that are quadratic in both

variables [88, 96] (see also Chapter 1).

Example 8.8. Let δλ and ωλ be the diagonal and opposite sections of a Farlie–

Gumbel–Morgenstern copula, i.e. δλ(t) = x2(1 + λ(1 − x)2) and ωλ(t) = x(1 −
x)(1 + λx(1 − x)) for all t ∈ [0, 1], with λ ∈ [−1, 1]. Let fλ, gλ : [0, 1] → [0, 1] be

defined by fλ(x) = gλ(x) = −λx(1−x) for all x ∈ [0, 1]. One easily verifies that the

conditions of Propositions 8.1–8.8 are satisfied and all corresponding semiquadratic

functions I
1C

fλ,gλ
δλ

– VIII
24 Cfλ,gλδλ,ωλ

coincide with the given Farlie–Gumbel–Morgenstern

copula.
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General conclusions

In this chapter, the main conclusions that can be drawn from the work in this

dissertation are summarized.

We have introduced the class of conic aggregation functions and have characterized

the subsets of [0, 1]n that can be the zero-set of a conic aggregation function. We

have focused our attention on the binary case, and have identified the necessary

and sufficient conditions on the upper boundary curve of the zero-set of a conic

aggregation function in order to have a conic quasi-copula or a (singular) conic

copula. Moreover, we have investigated basic aggregations, such as minimum,

maximum and convex sums, of conic (quasi-)copulas.

We have introduced biconic aggregation functions with a given diagonal (resp.

opposite diagonal) section. We have also characterized the classes of biconic semi-

copulas, quasi-copulas and copulas with a given diagonal (resp. opposite diagonal)

section. The t-norms (resp. copulas) TM and TL turn out to be the only 1-Lipschitz

(resp. associative) biconic t-norms (resp. copulas) with a given diagonal section.

Moreover, a copula that is a biconic copula with a given diagonal section as well as

with a given opposite diagonal section turns out to be a convex sum of TM and TL.

We have introduced upper conic, lower conic and biconic functions with a given

section. We have also characterized the classes of upper conic, lower conic and

biconic (semi-, quasi-)copulas with a given section. Generalized convexity has

played an important role when characterizing upper conic, lower conic and biconic

copulas with a given section.

We have introduced ortholinear (resp. paralinear) functions. We have also char-

acterized the classes of ortholinear (resp. paralinear) (semi- and quasi-)copulas.

Ortholinear copulas supported on a set with Lebesgue measure zero and copulas

that are ortholinear as well as paralinear turn out to be a convex sum of TM and

TL.

We have introduced four new types of semilinear copulas and have derived necessary

and sufficient conditions on given diagonal and opposite diagonal functions such

that a copula of one of the considered types exists that has these functions as

diagonal and opposite diagonal sections. The most interesting new copulas are the

so-called orbital semilinear copulas which are obtained based on linear interpolation

on segments connecting points on the diagonal and opposite diagonal of the unit

square solely. The extreme copulas M and W are both orbital semilinear copulas, as

well as the product copula Π. Moreover, the smallest copula whose diagonal section

coincides with the diagonal section of the product copula and also the greatest

copula whose opposite diagonal section coincides with the opposite diagonal section
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of the product copula turn out to be orbital semilinear copulas different from Π, as

follows from Proposition 6.16.

We have introduced the class of lower semiquadratic functions. Moreover, we have

identified the necessary and sufficient conditions on a diagonal function and two

auxiliary real functions u and v to obtain a copula that has this diagonal function

as diagonal section. The class of lower semilinear copulas turns out to be a subclass

of lower semiquadratic copulas. Also, we have characterized the extreme lower

semiquadratic copulas with a given diagonal section.

We have introduced eight classes of semiquadratic functions with given diagonal

and/or opposite diagonal sections. Moreover, we have identified for each class the

necessary and sufficient conditions on the given diagonal and/or opposite diagonal

functions and two auxiliary real functions f and g to obtain a copula that has

these diagonal and/or opposite diagonal functions as diagonal and/or opposite

diagonal sections. The use of the transformations π, ϕ, ϕ1, ϕ2, σ, σ1 and σ2 has

considerably eased the effort compared to the semilinear case.
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Summary for Dutch translation

Conjunctive aggregation functions have been extensively used in fuzzy logic and

fuzzy set theory. They turn out to be the appropriate operations for modelling the

fuzzy logical connective “and”. Particular subclasses of conjunctive aggregation

functions such as triangular norms (t-norms), semi-copulas, quasi-copulas and

copulas have received ample attention from researchers in reliability theory, fuzzy

set theory, probability theory and statistics.

Several methods to construct conjunctive aggregation functions have been intro-

duced in the literature. Some of these methods are based on linear or quadratic

interpolation on segments connecting lines in the unit square to the sides of the

unit square. Such lines can be the diagonal, the opposite diagonal, a horizontal

straight line, a vertical straight line or the graph that represents a decreasing

function. We introduce the notions of semilinear and semiquadratic aggregation

functions that generalize all aggregation functions that are obtained based on such

methods. More specifically, an aggregation function A is called semilinear (resp.

semi-quadratic) if for any (x, y) ∈ [0, 1]2, A is linear (resp. quadratic) in at least

one direction.

In this dissertation, we introduce several methods to construct semilinear and

semiquadratic aggregation functions.

Conic aggregation functions

Inspired by the notion of conic t-norms, we introduce in this chapter conic aggre-

gation functions. Their construction is based on linear interpolation on segments

connecting the upper boundary curve of the zero-set to the point (1, 1). Such

aggregation functions are completely characterized by their zero-set, in particular

by the upper boundary curve of this zero-set. Special classes of binary conic

aggregation functions such as conic quasi-copulas and conic copulas are considered.

We provide the necessary and sufficient conditions on the function f that represents

the upper boundary curve of the zero-set of a conic aggregation function to obtain

a conic (quasi-)copula and conclude that the class of conic copulas is a proper

subclass of the class of conic quasi-copulas. Moreover, we characterize the class

of conic copulas that are supported on a set with Lebesgue measure zero. The

convexity of f plays a key role in characterizing the class of conic copulas. We
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derive compact formulae for Spearman’s rho, Gini’s gamma and Kendall’s tau of

two continuous random variables whose dependence is modelled by a conic copula.

Biconic aggregation functions

Inspired by the previous chapter, we introduce a new method to construct aggrega-

tion functions. These aggregation functions are called biconic aggregation functions

with a given diagonal (resp. opposite diagonal) section and their construction is

based on linear interpolation on segments connecting the diagonal (resp. opposite

diagonal) of the unit square to the points (0, 1) and (1, 0) (resp. (0, 0) and (1, 1)).

Subclasses of biconic aggregation functions such as biconic semi-copulas, biconic

quasi-copulas and biconic copulas are studied in detail. We provide the necessary

and sufficient conditions on a given diagonal (resp. opposite diagonal) function δ

(resp. ω) to obtain a biconic (semi-, quasi-)copula that has δ (resp. ω) as diagonal

(resp. opposite diagonal) section. We conclude that the class of biconic copulas is a

proper subclass of the class of biconic quasi-copulas. Moreover, the class of biconic

quasi-copulas turns out to be a proper subclass of the class of biconic semi-copulas.

The convexity (resp. concavity) of the diagonal (resp. opposite diagonal) section

plays a key role in characterizing the class of biconic copulas with a given diagonal

(resp. opposite diagonal) section. The piecewise linearity of the diagonal section

of a biconic copula turns out to be the necessary and sufficient condition to be

supported on a set with Lebesgue measure zero. We derive compact formulae

for Spearman’s rho, Gini’s gamma and Kendall’s tau of two continuous random

variables whose dependence is modelled by a biconic copula with a given diagonal

section.

Upper conic, lower conic and biconic semi-copulas with a

given section

Inspired by the previous two chapters, we introduce upper conic, lower conic and

biconic semi-copulas with a given section. Such semi-copulas are constructed by

linear interpolation on segments connecting the graph of a strict negation operator

to the points (0, 0) and/or (1, 1). Special classes of upper conic, lower conic and

biconic semi-copulas with a given section such as upper conic, lower conic and

biconic (quasi-)copulas with a given section are considered. We recall in this

chapter the notion of generalized convexity (resp. concavity). This notion plays a

key role in characterizing upper conic, lower conic and biconic copulas with a given

section. When the given section is taken from the product copula, the convexity of

the strict negation operator turns out be a sufficient condition to obtain an upper

conic, lower conic or biconic copula with this given section and to conclude that

the resulting upper conic, lower conic and biconic copulas are positive quadrant

dependent.
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Ortholinear and paralinear semi-copulas

Rather than using linear interpolation on segments connecting a line in the unit

square to one point or two points in the unit square as in the above chapters, we

introduce in this chapter a new method to construct semi-copulas based on linear

interpolation on segments that are perpendicular (resp. parallel) to the diagonal of

the unit square. These semi-copulas are called ortholinear (resp. paralinear) semi-

copulas. We provide the necessary and sufficient conditions on a given diagonal

(resp. opposite diagonal) function to obtain an ortholinear (resp. paralinear) (quasi-

)copula. We conclude that the class of ortholinear copulas is a proper subclass of

the class of biconic quasi-copulas. The convexity (resp. concavity) of the diagonal

(resp. opposite diagonal) section plays again a key role in characterizing the class

of ortholinear (resp. paralinear) copulas. Ortholinear copulas have the property of

being Schur-concave. Convex sums of TM and TL are the only ortholinear copulas

that are supported on a set with Lebesgue measure zero. We derive compact

formulae for Spearman’s rho, Gini’s gamma and Kendall’s tau of two continuous

random variables whose dependence is modelled by an ortholinear copula.

Some types of semilinear copulas based on horizontal and

vertical interpolation

We first introduce four families of semilinear copulas with a given opposite diagonal

section, called lower-upper, upper-lower, horizontal and vertical semilinear copulas.

There is a great similarity between the case of a given opposite diagonal section

and that of a given diagonal section, which can be explained by the existence of a

transformation that maps copulas onto copulas in such a way that the diagonal

is mapped onto the opposite diagonal and vice versa. In the second part of this

chapter, we consider the construction of semilinear copulas with given diagonal

and opposite diagonal sections. Also here, four new families of semilinear copulas

are introduced, called orbital, vertical, horizontal and radial semilinear copulas.

For each of these families, we provide necessary and sufficient conditions under

which given diagonal and opposite diagonal functions can be the diagonal and

opposite diagonal sections of a semilinear copula belonging to that family. We

focus particular attention on the family of orbital semilinear copulas, which are

obtained by linear interpolation on segments connecting the diagonal and opposite

diagonal of the unit square.

Lower semiquadratic copulas with a given diagonal section

Inspired by the notion of lower semilinear copulas, introduced by Durante et al.

we introduce a new class of copulas. These copulas, called lower semiquadratic

copulas, are constructed by quadratic interpolation on segments connecting the
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diagonal of the unit square to the lower and left boundary of the unit square.

Moreover, we unveil the necessary and sufficient conditions on a diagonal function

and two auxiliary real functions to obtain a copula that has this diagonal function

as diagonal section. Under some mild assumptions, we characterize the smallest

and the greatest lower semiquadratic copulas with a given diagonal section. Unlike

lower semilinear copulas, lower semiquadratic copulas can be not symmetric. We

also characterize the class of continuous differentiable (resp. absolutely continuous)

lower semiquadratic copulas. Finally, we provide expressions for the degree of

non-exchangeability and the measures of association for various families of lower

semiquadratic copulas.

Semiquadratic copulas based on horizontal and vertical inter-

polation

Generalizing the results in the previous two chapters, we introduce several families

of semiquadratic copulas of which the diagonal and/or opposite diagonal sections

are given functions. These copulas are constructed by quadratic interpolation on

segments connecting the diagonal, opposite diagonal and sides of the unit square;

all interpolations are therefore performed horizontally or vertically. For each family

we provide the necessary and sufficient conditions on the given diagonal and/or

opposite diagonal functions and two auxiliary real functions to obtain a copula that

has these diagonal and/or opposite diagonal functions as diagonal and/or opposite

diagonal sections. Just as the product copula is a central member of all families

of semilinear copulas based on horizontal and vertical interpolation, it turns out

that the Farlie-Gumbel-Morgenstern family of copulas is included in all families of

semiquadratic copulas introduced and characterized here.
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Samenvatting

Conjunctieve aggregatiefuncties worden uitvoerig gebruikt in de vaaglogica (fuzzy

logic) en de vaagverzamelingenleer (fuzzy set theory). Ze blijken geschikte opera-

toren te zijn voor het modelleren van de boolese “en”. Bijzondere subklassen van

conjunctieve aggregatiefuncties zoals t-normen (triangular norms), copulas, semi-

copulas, en quasi-copulas, werden uitgebreid onderzocht door onderzoekers in de

betrouwbaarheidstheorie, de vaagverzamelingenleer, de waarschijnlijkheidstheorie

en de statistiek.

In de literatuur werden verschillende methodes voor de constructie van conjunctieve

aggregatiefuncties gëıntroduceerd. Sommige van deze methodes zijn gebaseerd op

lineaire of kwadratische interpolatie op segmenten die lijnen binnen het eenheids

vierkant met de zijden ervan verbinden. Dergelijke lijnen kunnen de diagonaal,

de nevendiagonaal, een horizontale lijn, een verticale lijn zijn, of een grafiek die

een dalende functie voorstelt. We introduceren de begrippen semi-lineaire en

semi-kwadratische aggregatiefuncties die alle aggregatiefuncties veralgemenen die

bekomen werden gebruikmakend van dergelijke methodes. Meer in het bijzonder

wordt een functie A : [0, 1]2 → [0, 1] semi-lineair (resp. semi-kwadratisch) genoemd

als, voor elke (x, y) ∈ [0, 1]2, A lineair (resp. kwadratisch) is in tenminste één

richting.

In dit proefschrift introduceren we verschillende methodes voor de constructie van

semi-lineaire en semi-kwadratische aggregatiefuncties.

Conische aggegratiefuncties

In dit hoofdstuk introduceren we, gëınspireerd door de notie van t-normen, conische

aggregatiefuncties. De constructie van dergelijke functies steunt op lineaire inter-

polatie op segmenten die de bovenste grenscurve van de nul-set verbinden met het

punt (1, 1). Dergelijke aggregatiefuncties kunnen volledig gekarakteriseerd worden

door hun nul-set, in het bijzonder de bovenste grenscurve van die nul-set. Speciale

klassen van binaire aggregatiefuncties, zoals conische copulas en conische quasi-

copulas, worden behandeld. We voorzien in de nodige en voldoende voorwaarden

waaraan de functie f , die de bovenste grenscurve van de nul-set voorstelt, moet

voldoen om een conische (quasi)-copula te bekomen. De conclusie is dat de klasse

van conische copulas een echte subklasse van de klasse van conische quasi-copulas
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vormt. We karakteriseren bovendien de klasse van conische copulas die gedragen

worden door een set met Lebesguemaat nul. In het karakteriseringsproces van de

klasse van conische copulas speelt de convexiteit van f een sleutelrol. We leiden

compacte formules af voor Spearman’s rangcorrelatiecoëfficiënt ρ, de Gini-coëfficiënt

γ en Kendall’s rangcorrelatiecoëfficiënt τ voor twee continue toevalsveranderlijken

waarvan de onderlinge afhankelijkheid gemodelleerd wordt door een conische copula.

Biconische aggegratiefuncties

Gëınspireerd door het vorige hoofdstuk, introduceren we in dit hoofdstuk een

nieuwe methode voor de constructie van aggregatiefuncties. Deze functies worden

biconische aggregatiefuncties met een gegeven (neven)diagonaal genoemd. Hun

constructie is gebaseerd op lineaire interpolatie op segmenten die, in het eenhei-

dsvierkant, de diagonaal (resp. nevendiagonaal) met de punten (0, 1) en (1, 0)

(resp. (0, 0) en (1, 1)) verbinden. Subklassen van biconische aggregatiefuncties zoals

biconische copulas, biconische semi-copulas en biconische quasi-copulas worden

in detail bestudeerd. We voorzien de nodige en voldoende voorwaarden waaraan

een gegeven diagonaal- (resp. nevendiagonaal-)functie δ (resp. ω) moet voldoen

om een biconische (semi-, quasi-)copula te bekomen die δ (resp. ω) als diagonale

(resp. nevendiagonale) sectie heeft. De conclusie is dat de klasse van biconische

copulas een echte subklasse vormt van de klasse van biconische quasi-copulas. De

convexiteit (resp. concaviteit) van de diagonale (resp. nevendiagonale) sectie speelt

een sleutelrol bij de karakterisering van de klasse van biconische copulas met een

gegeven (neven-)diagonale sectie. Het blijkt dat de stuksgewijze lineariteit van de

diagonale sectie van een biconische copula een nodige en voldoende voorwaarde is

om gedragen te kunnen worden door een set met Lebesguemaat nul. We leiden

compacte formules af voor Spearman’s rangcorrelatiecoëfficiënt ρ, de Gini-coëfficiënt

γ en Kendall’s rangcorrelatiecoëfficiënt τ voor twee continue toevalsveranderlijken

waarvan de onderlinge afhankelijkheid gemodelleerd wordt door een biconische

copula met een gegeven diagonale sectie.

Bovenconische, onderconische en biconische semi-

copulas met een gegeven sectie

In dit hoofdstuk introduceren we, gëınspireerd door de vorige twee hoofdstukken,

bovenconische, onderconische en biconische semi-copulas met een gegeven sectie.

Dergelijke semi-copulas worden geconstrueerd door lineaire interpolatie op seg-

menten die de grafiek van een strikte negatie-operator verbinden met de punten

(0, 0) en/of (1, 1). We behandelen speciale klassen van onderconische en biconische
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semi-copulas met een gegeven sectie, zoals bovenconische, onderconische en biconis-

che (quasi-)copulas met een gegeven sectie. We herhalen in dit hoofdstuk het begrip

veralgemeende convexiteit (resp. concaviteit). Dit speelt een belangrijke rol bij de

karakterisering van bovenconische, onderconische en biconische copulas met een

gegeven sectie. Wanneer de gegeven sectie genomen wordt van de productcopula,

blijkt de convexiteit van de strikte negatie-operator een voldoende voorwaarde te

zijn voor het bekomen van een bovenconische, onderconische of biconische cop-

ula met deze opgegeven sectie. De resulterende bovenconische, onderconische en

biconische copulas blijken positief-kwadrant-afhankelijk te zijn.

Ortholineaire en paralineaire semi-copulas

In plaats van gebruik te maken van lineaire interpolatie op segmenten die, zoals

in de vorige hoofdstukken, een lijn in het eenheidsvierkant verbinden met één

of twee punten in het eenheidsvierkant, introduceren we hier een nieuwe meth-

ode voor de constructie van semi-copulas gebaseerd op lineaire interpolatie op

segmenten die loodrecht (resp. parallel) staan t.o.v. het eenheidsvierkant. Deze

semi-copulas worden ortholineaire (resp. paralineaire) semi-copulas genoemd. We

voorzien de nodige en voldoende voorwaarden waaraan een gegeven diagonaal- (resp.

nevendiagonaal-)functie moet voldoen om een ortholineaire (resp. paralineaire)

(quasi-)copula te bekomen. We vinden dat de klasse van ortholineaire copulas

een echte subklasse is van de klasse van biconische quasi-copulas. The convexiteit

(resp. concaviteit) van de diagonale (resp. nevendiagonale) sectie speelt ook nu een

sleutelrol bij de karakterisering van de klasse van ortholineaire (resp. paralineaire)

copulas. Ortholineaire copulas hebben de eigenschap Schur-concaaf te zijn. De

convexe sommen van TM en TL zijn de enige ortholineaire copulas die gedragen

worden door een set met Lebesgue-maat nul. We leiden compacte formules af voor

Spearman’s rangcorrelatiecoëfficiënt ρ, de Gini-coëfficiënt γ en Kendall’s rangcorre-

latiecoëfficiënt τ voor twee continue toevalsveranderlijken waarvan de onderlinge

afhankelijkheid gemodelleerd wordt door een ortholineaire copula.

Enkele types van semi-lineaire copulas gebaseerd

op horizontale en verticale interpolatie

In het eerste deel van dit hoofdstuk introduceren we vier families van semi-lineaire

copulas met een gegeven nevendiagonale sectie, namelijk boven-onder, onder-boven,

horizontale en verticale semi-lineaire copulas. Er is een grote overeenkomst tussen

de gevallen met een gegeven diagonale of nevendiagonale sectie, hetgeen verklaard

wordt door het bestaan van een transformatie die copulas op copulas afbeeldt

zodanig dat de diagonaal op de nevendiagonaal wordt afgebeeld en omgekeerd.
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In het tweede deel van dit hoofdstuk beschouwen we de constructie van semi-lineaire

copulas met gegeven diagonale en nevendiagonale secties. We introduceren hier ook

vier nieuwe families van semi-lineaire copulas, namelijk orbitale, radiale, verticale en

horizontale semi-lineaire copulas. Voor elk van deze families voorzien we de nodige

en voldoende voorwaarden waaronder gegeven diagonaal en nevendiagonaalfuncties

de diagonale en nevendiagonale secties kunnen zijn van semi-lineaire copula die tot

die families behoren. We schenken bijzondere aandacht aan de familie van orbitale

semi-lineaire copulas die bekomen werden door lineaire interpolatie op segmenten

die de diagonaal met de nevendiagonaal van het eenheidsvierkant verbinden.

Onder semi-kwadratische copulas met een gegeven

diagonale sectie

Gëınspireerd door het begrip semi-lineaire copulas, gëıntroduceerd door Durante

et al. introduceren we in dit hoofdstuk een nieuwe klasse van copulas. Deze

laatste, ondere semi-kwadratische copulas genoemd, worden geconstrueerd door

kwadratische interpolatie op segmenten die, in het eenheidsvierkant, de diagonaal

met de onder- en linkerzijde verbinden. We voorzien bovendien de nodige en

voldoende voorwaarden waaraan de diagonaalfunctie en twee reële hulpfuncties

moet voldoen om een copula te bekomen die de diagonaalfunctie als diagonale

sectie heeft. Onder een aantal milde aannames karakteriseren we de kleinste en

grootste ondere semi-kwadratische copulas met een gegeven diagonale sectie. In

tegenstelling tot semi-lineaire copulas, kunnen ondere semi-kwadratische copulas

asymmetrisch zijn. Verder karakteriseren we ook de klasse van continu-afleidbare

(resp. absoluut continue) ondere semi-kwadratische copulas. We geven tenslotte

uitdrukkingen voor de graad van niet-uitwisselbaarheid en voor de associatiematen

voor verschillende families van semi-kwadratische copulas.

Semi-kwadratische copulas gebaseerd op horizon-

tale en verticale interpolatie

In dit hoofdstuk veralgemenen we de resultaten uit de vorige twee hoofdstukken,

en introduceren we verschillende families van semi-kwadratische copulas waarvan

de diagonale en/of nevendiagonale secties gegeven functies zijn. Deze copulas

worden geconstrueerd door kwadratische interpolatie op segmenten die, in het

eenheidsvierkant, de diagonaal, de nevendiagonaal en de zijden met elkaar verbinden.

Alle interpolaties worden derhalve horizontaal of verticaal uitgevoerd.

Voor elke familie voorzien we de nodige en voldoende voorwaarden waaraan de

gegeven diagonaal- en/of nevendiagonaalfunctie en twee reële hulpfuncties moeten
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voldoen om een copula te bekomen die deze diagonaal- en/of nevendiagonaalfunctie

als diagonale en/of nevendiagonale sectie heeft.

Zoals de productcopula een centraal lid is van de familie van semi-lineaire copulas

gebaseerd op horizontale en verticale interpolatie, blijkt dat de Farli–Gumbel–

Morgenstern familie van copulas vervat is in alle families van semi-kwadratische

copulas die hier gëıntroduceerd en gekarakteriseerd werden.
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[1] I. Aguiló, J. Suñer and J. Torrens, A construction method of semicopulas from

fuzzy negations, Fuzzy Sets and Systems 226 (2013), 99–114.

[2] C. Alsina, M.J. Frank and B. Schweizer, Associative Functions: Triangular

Norms and Copulas, World Scientific, Singapore, 2006.

[3] B. Bassan and F. Spizzichino, Relations among univariate aging, bivariate aging

and dependence for exchangeable lifetimes, Journal of Multivariate Analysis 93

(2005), 313–339.

[4] G. Beliakov, T. Calvo and J. Lazaro, Pointwise construction of Lipschitz aggre-

gation operators with specific properties, Internat. J. of Uncertainty, Fuzziness

and Knowledge-Based Systems 15 (2007), 193–223.

[5] G. Beliakov, B. De Baets, H. De Meyer, R. Nelsen and M. Úbeda-Flores, Best-
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