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1. Introduction on mycotoxins 

1.1. Definition and general background of mycotoxins 

Mycotoxins are fungal secondary metabolites which are toxic to humans and other 

animals. Fungal secondary metabolites which are mainly toxic to bacteria (antibiotics) and 

plants (phytotoxins), which are toxic only at high concentrations (e.g. ethanol), and which are 

produced by macrofungi (mushroom poisons) are not considered mycotoxins (Bennett and 

Klich, 2003). Fungi can produce mycotoxins in a variety of natural and artificial environments 

(Elmholt, 2008; Hoerger et al., 2009; Mayer et al., 2008; Smoragiewicz et al., 1993; Tuomi et 

al., 2000), and typically in agricultural crops, food and feed stuffs (Monbaliu, 2011). The 

most prevalent mycotoxins include Alternaria toxins, fumonisins, ochratoxins, zearalenone, 

aflatoxins and trichothecenes, which are classified by the chemical structures and producers 

(Logrieco et al., 2003; Njumbe Ediage et al., 2011). Surveys on the yearly occurrence of 

mycotoxins in food and feed materials showed that mycotoxin levels are generally low (Table 

1), but levels and prevalence can vary greatly every year due to the influence of weather 

conditions, so high concentrations can readily occur due to climatic aberrations. Constant 

monitoring and effort on prevention and minimization of mycotoxin contamination are 

therefore necessary (Garrido et al., 2012; Streit et al., 2013). Because of the safety risk caused 

by mycotoxins, the European Commission (EC) has regulated and recommended maximum 

levels of some mycotoxins in animal feeds (Table 2).  

 

Table 1. Overall results of the mycotoxin survey from 2004 to 2011 (Streit et al., 2013). 

 Aflatoxins Zearalenone Deoxynivalenol Fumonisins Ochratoxin A 
Number of tested samples 10172 13578 15549 9682 6053 

Number of positive samples (%)a 2757 (27) 4932 (36) 8608 (55) 5239 (54) 1502 (25) 

Average (μg/kg) 16 101 535 914 4 

Average positives (μg/kg) 58 277 967 1689 16 

Median positives (μg/kg) 12 87 462 750 3 

1st quartile positives (μg/kg) 4 46 250 332 1 

3rd quartile positives (μg/kg) 43 215 960 1828 7 

Maximum (μg/kg) 6105 26728 50289 77502 1589 

Sample originb Vietnam Australia Central Europe China China 

Sample type (year of analysis)b,c Corn (2009) Silage (2007) Wheat (2007) Finished feed (2011) Finished feed (2011)

a Values in parentheses specify the percentage of samples testing positive for each mycotoxin. 
b Referring to the samples containing the highest detected concentration of the respective mycotoxin. 
c Values in parentheses specify the year of analysis. 
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Table 2. Overview of the current European regulatory limits for mycotoxins in animal feeds 

Mycotoxin Products intended for animal feed Max. level d

All feed materials 0.02 
Complete feedingstuffs for cattle, sheep and goats with the exception 
for: 

0.02 

- Dairy animals 0.005 
- Calves and lambs 0.01 

Complete feedingstuffs for pigs and poultry (except young animals) 0.02 
Other complete feedingstuffs 0.01 
Complementary feedingstuffs for cattle, sheep and goats (except for 
dairy animals, calves and lambs) 

0.02 

Complementary feedingstuffs for pigs and poultry (except young 
animals) 

0.02 

Aflatoxin B1a 

Other complementary feedingstuffs 0.005 
Cereals and cereal products with the exception of maize by-products 8 
Maize by-products 12 
Complementary and complete feedingstuffs with the exception for: 5 

- Pigs 0.9 
Deoxynivalenolb 

- Calves (<4 months), lambs and kids 2 
Cereals and cereal products with the exception of maize by-products 2 
Maize by-products 3 
Complementary and complete feedingstuffs for:  

- Piglets and gilts (young sows) 0.1 
- Sows and fattening pigs 0.25 

Zearalenoneb 

- Calves, dairy cattle, sheep (including lamb) and goats (including kids) 0.5 
Cereals and cereal products 0.25 
Complementary and complete feedingstuffs for:  

- Pigs 0.05 
Ochratoxin Ab 

- Poultry 0.1 
Maize and maize products 60 
Complementary and complete feedingstuffs for:  

- Pigs, horses (Equidae), rabbits and pet animals 5 
- Fish 10 
- Poultry, calves (< 4 months), lambs and kids 20 

Fumonisin B1 + B2b 

- Adult ruminants (> 4 months) and mink 50 
Unprocessed barley (including malting barley) and maize 0.2 
Unprocessed oats (with husk) 1 
Unprocessed wheat, rye and other cereals 0.1 
Oat milling products (husks) 2 
Other cereal products 0.5 

T-2 + HT-2 toxinsc 

Compound feed, with the exception of feed for cats 0.25 

a Regulated by EC (2003); b Recommended by EC (2006); c Recommended by EC (2013); d mg/kg. 

 

1.2. Types of mycotoxins 

1.2.1. Alternaria toxins 

Alternaria toxins, represented by alternariol (AOH), alternariol methylether (AME), 

tenuazonic acid (TeA) and altenuene (ALT), are produced by Alternaria spp. Their chemical 

structures are shown in Figure 1. These mycotoxins have been detected in raw agricultural 

products such as grains, sunflower seeds, apples, tomatoes, grapes as well as in processed 
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products like apple juice and tomato products. Alternaria spp. are characterized by their 

ability to grow at low temperatures, therefore food and feedstuffs are subject to contamination 

by Alternaria toxins even in refrigerated storage conditions (EFSA, 2011a). Vegetables, nuts 

and oilseeds are particularly vulnerable to Alternaria toxin contamination, and AOH 

concentration can reach up to 1200 μg/kg (EFSA, 2011a). Alternaria toxins show 

genotoxicity, cytotoxicity, reproductive and developmental toxicity (fetotoxicity and 

teratogenicity) (EFSA, 2011a). AOH is an inhibitor of DNA topoisomerases, which are 

essential in DNA replication, transcription, and repair (Fehr et al., 2009). TeA is thought to 

inhibit protein synthesis by suppressing the release of newly synthesized proteins from the 

ribosomes (Davis et al., 1977). The LD50 values for ALT, AOH and AME in mice are 50, 

400 and 400 mg/kg b.w., respectively (Pero et al., 1973). The reported LD50 of TeA is 37.5 

mg/kg b.w. for day-old chicks (Giambrone et al., 1978) and 548 μg per egg for chicken 

embryos (Griffin and Chu, 1983). Daily dosed AOH and AME at 100 to 200 mg/kg b.w. was 

reported to increase the fatality and malformation of rodent fetus (Pero et al., 1973; Pollock et 

al., 1982). Chicks fed a diet supplemented with AME, AOH and ALT (24, 39 and 10 μg/g 

respectively) or AME (100 mg/kg) did not show any toxicological effects, suggesting the low 

toxicity of these mycotoxins in poultry (Griffin and Chu, 1983; Sauer et al., 1978). Feeding a 

diet with 10 mg TeA/kg feed or daily oesophageal intubation of 1.25 or 2.5 mg TeA/kg b.w. 

to 3-week old broilers for 3 weeks resulted in decreased weight gain, lowered feed efficiency, 

enlarged and mottled spleen, haemorrhage in the intestinal lumen and in thigh muscle, but no 

mortality or morbidity was noted (Giambrone et al., 1978). 

  
Figure 1. Chemical structures of AOH (A), AME (B), ALT (C) and TeA (D) (Monbaliu, 2011). 

 

1.2.2. Aflatoxins and sterigmatocystin 

Aflatoxins (AFs) are a group of mycotoxins produced by Aspergillus spp., primarily A. 

flavus and A. parasiticus. Among the approximately 20 currently known AFs, aflatoxin B1 

(AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) are the most 

common, and sterigmatocystin (ST) is a biogenic precursor of AFB1 (Figure 2). AFs 

contamination mainly occurs in agricultural products in tropical and subtropical regions. AFs 
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have been detected in pistachio, almond, hazelnut, Brazil nut, peanut, spice, fig, cashew, 

maize, fruits, sunflower seed, and other cereals (EFSA, 2007; EC, multiple years). The 

highest AFs concentration detected was 3337 μg/kg in Brazil nuts. AFB1 took the majority of 

total aflatoxins in all samples. AFB1 is converted by cytochrome P450 enzymes to the toxic 

8,9-epoxide form, which can bind to the guanine residues of nucleic acids, inducing 

genotoxicity, and to proteins inducing cytotoxicity (Diaz et al., 2010a; Diaz et al., 2010b; Doi 

et al., 2002). The main toxic effects of AFs include carcinogenicity, hepatotoxicity, and 

immunotoxicity (EFSA, 2007). AFs are classified in Group 1 (carcinogenic to humans) by the 

International Agency for Research on Cancer (IARC), and their carcinogenicity targets 

particularly the liver. ST has similar toxicological effects but is less potent than AFs so it is 

classified in Group 2B (possibly carcinogenic to humans) (Monbaliu, 2011). The most 

susceptible species are rabbits and ducks, while chickens and rats are more tolerant. Studies in 

poultry, pigs, and rats showed that exposure to AFs suppresses cell-mediated immune 

response (EFSA, 2007). 

 
Figure 2. Chemical structures of AFB1 (A), AFB2 (B), AFG1 (C), AFG2 (D) and ST (E) 
(Monbaliu, 2011). 

 

1.2.3. Ochratoxin A 

Ochratoxin A (OTA) is a mycotoxin produced by several species of Aspergillus and 

Penicillium, including A. ochraceus, A. niger, A. sulphureus, A. carbonarius, P. verrucosum 

(formerly named to as P. viridicatum II), and P. nordicum (formerly named P. viridicatum III). 

The chemical structure of OTA is represented in Figure 3. Agricultural crops such as maize, 

wheat, barley, oats, triticale, rye, soybean and sunflower are all subject to contamination by 

OTA, and the levels of OTA can occasionally exceed 1850 μg/kg. The biochemical mode of 
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action of OTA is not well illustrated but it is thought to inhibit the enzymes associated with 

the synthesis of phenylalanine tRNA-complex (Bennett and Klich, 2003). Nephrotoxicity, 

immunotoxicity, reproductive and developmental toxicity (teratogenicity) have been reported 

in poultry, pigs, dogs, and ruminants. Chickens are considered less sensitive to OTA than pigs. 

Broiler chickens given a diet containing OTA at 2.5 mg/kg diet showed reduced weight gain 

and increased kidney weight, and egg production decreased dose-dependently when laying 

hens were given feed with OTA at 1.3 to 5.2 mg/kg in feed (EFSA, 2004b). 

 
Figure 3. Chemical structure of OTA (Monbaliu, 2011). 

 

1.2.4. Fumonisins 

Fumonisins are produced by Fusarium spp., particularly by F. verticillioides (formerly 

named F. moniliforme). In total 28 different fumonisins have been identified and classified 

into 4 main groups, i.e. fumonisins A (FA), B (FB), C (FC) and P (FP) (Rheeder et al., 2002), 

among which FB is the most prevalent group and can be further divided into fumonisin B1 

(FB1), fumonisin B2 (FB2) and fumonisin B3 (FB3) (Figure 4), with FB1 as the most 

important representative of fumonisins (Arranz et al., 2004). Fumonisins occur mainly in 

maize (Bullerman and Tsai, 1994), and incidentally in wheat, asparagus, tea and cowpea 

(Trucksess, 2003). The level of FB1 can reach up to 87 mg/kg in maize, but is mostly lower 

than 10 mg/kg (EFSA, 2005). Fumonisins show nephrotoxicity, hepatotoxicity, 

immunotoxicity, foetal toxicity and cardiovascular toxicity (EFSA, 2005). Fumonisins disrupt 

the ceramide and sphingolipid metabolism by inhibiting the ceramide synthase, resulting in an 

increase of free sphinganine (Sa) level and sphingosine (So) level (to a lesser extent), and a 

decrease of complex sphingolipids formation (Devreese, 2013). The increased Sa:So ratio in 

body fluids and tissues serves as a sensitive biomarker of fumonisin intoxication. Toxic 

effects of FB1, which included reduced weight gain and feed conversion, increased weight of 

organs (liver, kidney, proventriculus and gizzard), immunosuppression, and histological 

lesions in liver, were mostly observed in chickens, turkeys, and Pekin ducklings when its 

level exceeded 100 mg FB1/kg feed (EFSA, 2005). 
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Figure 4. Chemical structures of fumonisins (Monbaliu, 2011). 

 

1.2.5. Zearalenone 

Zearalenone (ZEA) is a mycotoxin produced by Fusarium spp., particularly F. 

graminearum (formerly known as F. roseum) and also F. culmorum, F. equiseti and F. 

verticillioides. The chemical structure of ZEA is represented in Figure 5. It is commonly 

found in maize but can be found also in other crops such as wheat, oat, rice, barley, sorghum 

and rye, most frequently in moist cool conditions. The level of ZEA in unprocessed wheat 

was reported to reach up to 2969 μg/kg (EFSA, 2011c). Studies have shown that ZEA binds 

to estrogen receptors α and β, inducing oestrogenic-like effects by activating gene 

transcription via oestrogen-responsive elements (Metzler et al., 2010). ZEA also shows 

genotoxicity, apoptogenicity, immunotoxicity, reproductive and developmental toxicity. Signs 

of ZEA intoxication include haematological changes, hepatic disturbances and oestrogenic 

effects in orally dosed rodents. Pigs are considered the most sensitive animal species to ZEA, 

but poultry is more tolerant to ZEA. It was reported that chickens dieted with 50 mg ZEA/kg 

b.w. per day for 7 days showed no signs of intoxication (EFSA, 2011c). 

 
Figure 5. Chemical structure of ZEA (Monbaliu, 2011). 

 

1.2.6. Trichothecenes 

Trichothecenes are structurally related mycotoxins mainly produced by Fusarium spp., 

and are classified into type-A, type-B, type-C and type-D based on their molecular structures 

(Figure 6). Type-A and type-B trichothecenes are the dominant types in cereals and feeds 
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(Krska et al., 2001; Monbaliu, 2011). Type-A trichothecenes are represented by T-2 toxin (T-

2), HT-2 toxin (HT-2), diacetoxyscirpenol (DAS) and neosolaniol (NEO), while Type-B 

trichothecenes are represented by nivalenol (NIV), deoxynivalenol (DON), 3-

acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON) and fusarenon-X 

(FUS-X) (Monbaliu, 2011). Trichothecenes occur in a variety of agricultural commodities 

such as wheat, maize, oat, barley, rye, rice, and other processed products, and the detected 

levels of T-2, HT-2, DON, and NIV can reportedly reach 6 mg/kg, 24 mg/kg, 927 mg/kg, and 

7 mg/kg respectively (EFSA, 2011b; Placinta et al., 1999). DON is the most frequently 

occurring trichothecene, and T-2 is considered to have the most potent acute toxicity (Krska et 

al., 2001). The primary biochemical modes of action of trichothecenes are inhibition of 

protein synthesis and apoptogenesis, and the inhibition of DNA and RNA synthesis is 

possibly a secondary effect (Eriksen and Pettersson, 2004). Besides, trichothecenes also show 

cytotoxicity, haematotoxicity/myelotoxicity, immunotoxicity, and developmental and 

reproductive toxicity. DON stimulates pro-inflammatory response of immunocytes at low 

concentrations by upregulating the production of pro-inflammatory cytokines. Pigs exposed to 

DON showed decreased feed consumption and weight gain, lesions in the digestive tract and 

kidneys, but cattle, sheep and poultry are thought to be less sensitive to DON than pigs. Feed 

refusal and reduced weight gain were found in chickens only when DON concentrations 

exceeded 16 mg/kg in feed, and DON up to 83 mg/kg in feed did not affect the egg production 

in laying hens (EFSA, 2004a). 

 
Figure 6. Chemical structures of trichothecenes (Monbaliu, 2011). 
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1.3. T-2 toxin 

1.3.1. Occurrence of T-2 toxin 

T-2 toxin is a type-A trichothecene mycotoxin mostly produced by F. langsethiae, F. 

poae and F. sporotrichioides, and it is typically detected in agricultural products such as rice, 

maize, wheat, barley, oat (EFSA, 2011b). As an environmental mycotoxin, T-2 and its 

derivatives have also been found in the dust of indoor ventilation systems (Smoragiewicz et 

al., 1993), crude building materials (Tuomi et al., 2000), and grain dust (Nordby et al., 2004). 

Levels of T-2 can reach 1200 μg/kg in grain dust (Nordby et al., 2004), and thousands of 

μg/kg in agricultural products. Table 3 summarizes the analytical results of T-2 concentrations 

across different feed groups (EFSA, 2011b).  

 

Table 3. Concentrations (μg/kg) of T-2 toxin across feed groups (EFSA, 2011b). 

Concentration (μg/kg) 
Feed group Na LC (%) LB/UB

Mean P50 P75 P95 Max. 
34 71 LB 40 0 38 351 559 Undefined cereal grains, their 

products and by-products   UB 51 20 38 351 559 
164 62 LB 24 0 37 107 268 Oats 

  UB 40 30 37 107 268 
220 3.20 LB 114 51 145 470 825 Oat middlings 

  UB 114 51 145 470 825 
242 91 LB 4.2 0 0 25 221 Barley 

  UB 23 20 30 30 221 
3 100 LB 0 NC NC NC 0 Sorghum 
  UB 15 NC NC NC 20c 

237 100 LB 0.1 NC NC NC 14 Wheat 
  UB 14 NC NC NC 35c 
8 100 LB 0 NC NC NC 0 Wheat middlings 
  UB 4 NC NC NC 4.0c 
9 89 LB 2.4 NC NC NC 22 Wheat bran 
  UB 10 NC NC NC 22 

72 5.60 LB 85 72 115 184 199 Wheat gluten 
  UB 86 72 115 184 199 

41 95 LB 1.4 0 0 0 38 Triticale 
  UB 6.9 5 5 19 38 

231 79 LB 13 0 0 72 415 Maize 
  UB 18 4 13 75 415 

33 82 LB 15 0 0 120 171 Maize middlings 
  UB 18 4 4 120 171 

18 61 LB 13 NC NC NC 109 Maize gluten feed 
  UB 15 NC NC NC 109 

15 100 LB 0 NC NC NC 0 Soya (bean), toasted 
  UB 4.4 NC NC NC 10c 

20 100 LB 0 NC NC NC 0 Sunflower seed 
  UB 5.3 NC NC NC 10c 
3 100 LB 0 NC NC NC 0 Lucerne meal 
  UB 4 NC NC NC 4c 

Grass meal 3 100 LB 0 NC NC NC 0 
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  UB 9.3 NC NC NC 20c 
129 99 LB 1.8 0 0 0 206 Maize silageb 

  UB 20 20 20 20 206 
895 85 LB 3.3 0 0 20 321 Compound feedingstuffs 

(undefined)   UB 7 4 4 20 321 
10 100 LB 0 NC NC NC 0 Compound feedingstuffs for calves 

  UB 19 NC NC NC 20c 
42 64 LB 9.3 0 25 25 38 Compound feedingstuffs for cattle 

  UB 21 20 25 25 38 
36 100 LB 0 0 0 0 0 Compound feedingstuffs for piglets 

  UB 17 20 20 20 20c 
33 88 LB 3 0 0 25 25 Compound feedingstuffs for pigs 

  UB 20 20 20 25 25 
17 100 LB 0 NC NC NC 0 Compound feedingstuffs for sows 

  UB 18 NC NC NC 20c 
18 78 LB 5.6 NC NC NC 25 Compound feedingstuffs for poultry 

  UB 18 NC NC NC 25 
180 90 LB 9.1 0 0 69 352 Other feed 

  UB 24 20 20 69 352 

N, number of samples; LC, left censored data (values below the limit of detection or limit of 
quantification); LB, lowerbound; UB, upper-bound; P50, 50th percentile; P75, 75th percentile; P95, 
95th percentile; NC, not calculated; a If N < 60 then the calculated P95 should be considered as an 
indicative value only due to the limited number of data; b concentration reported as μg/kg 88 % dry 
matter;  c value represents the left-censoring limit. 
 

1.3.2. Absorption, distribution, metabolism and excretion of T-2 toxin in animal body 

Toxicokinetic studies in broiler chickens showed that an oral bolus of T-2 at 0.02 mg/kg 

b.w. has an unquantifiably low bioavailability. An intravenous administration of the same 

dose showed that T-2 has a very short elimination half-life of 3.9 min, a volume of 

distribution of 0.14 L/kg, and a total body clearance of 0.03 L/min/kg (Osselaere et al., 2013). 

T-2 orally administered in chickens and ducks is distributed widely and quickly to muscle, 

liver, and kidney (Giroir et al., 1991) (Table 4). T-2 toxin is rapidly metabolized by 

hydroxylations, deacetylation, acetylation, de-epoxidation and glucuronide conjugations 

(Figure 7), yielding more than 20 metabolites such as HT-2 toxin, T-2 triol, T-2 tetraol, 

neosolaniol, 3’-hydroxy HT-2 toxin, 3’-hydroxy T-2 toxin, 3’-hydroxy T-2 triol, dihydroxy 

HT-2 toxin, de-epoxy-3’-hydroxy T-2 toxin and de-epoxy-3’-hydroxy HT-2 toxin. The de-

epoxidation of T-2 toxin and its metabolites is considered an important detoxification 

mechanism (Wu et al., 2010). T-2 toxin is eliminated rapidly mainly through feces, and about 

80% of T-2 orally administered by broiler chickens was metabolized and eliminated in the 

excreta within 48 hours (Yoshizawa et al., 1980). 
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Figure 7. Proposed metabolic pathways of T-2 in animals (Wu et al., 2010). 
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Table 4. T-2 toxin and its metabolites expressed as T-2 equivalents after single oral 
administration of 0.5 mg/kg b.w. of T-2 in chickens and ducks (Giroir et al., 1991). 

T-2 equivalents (μg/kg) 
Organ or tissue 6 hours 12 hours 24 hours 48 hours 
 Chicken Duck Chicken Duck Chicken Duck Chicken Duck 
Kidney 30 30 20 20 <10 <10 <10 <10 
Liver 130 90 30 40 10 <10 <10 <10 
Muscle         

Breast 30 50 40 40 <10 10 <10 <10 
Thigh 30 30 20 10 <10 <10 <10 <10 
Gizzard 40 40 30 20 <10 <10 <10 <10 

 

1.3.3. T-2 toxicosis in animals 

The 12,13-epoxide ring of T-2 is responsible for its toxic activity and de-epoxidation 

results in the loss of toxicity. In poultry, the toxic effects of T-2 can be classified as genotoxic 

and cytotoxic, immunomodulatory effects, effects on the digestive system and liver, effects on 

the nervous system and skin, and impairment of poultry performance (Sokolovic et al., 2008). 

The oral LD50 of T-2 for broiler chickens and quails is 4.97 and 14.7 mg/kg b.w., 

respectively (Sokolovic et al., 2008; Grizzle et al., 2004). 

 

1.3.3.1. Genotoxicity and cytotoxicity 

Inhibition of protein synthesis is the primary effect of T-2 in eukaryotic cells. It also 

inhibits DNA and RNA synthesis, affects the cell cycle, and induces apoptosis (Sokolovic et 

al., 2008; EFSA, 2011b). T-2 interacts with peptidyl transferase of the 60S ribosomal subunit, 

thus inhibiting the transpeptidation of peptide-bond formation. This results in the inhibition of 

prolongation and termination of protein synthesis (Jaradat, 2005; Liao et al., 1976). T-2 and 

other trichothecenes are widely reported to be ribotoxic in different tissues (Rocha et al., 

2005). Inhibition of nucleic acid synthesis by T-2 has been reported in cells of the spleen, 

thymus, and bone marrow of treated mice, and in lymphocytes and thymus cells of humans by 

an unclear mechanism (Cooray, 1984; Munsch and Mueller, 1980; Rosenstein and Lafarge-

Frayssinet, 1983). Dietary T-2 was found to significantly induce DNA damage in chickens 

(Frankic et al., 2006; Rezar et al., 2007; Sokolovic et al., 2007). Toxic effects of T-2 on 

cellular membrane have been demonstrated in a variety of cell lines. As an amphophilic 

molecule, T-2 is taken up into the cellular bilayer membrane and damages it by producing 

reactive oxygen species (free radicals) and inducing lipid peroxidation (EFSA, 2011b). 

Apoptogenicity of T-2 was demonstrated by the apoptototic cell death in the thymus of broiler 

chickens dieted with 1 mg T-2/kg feed (Venkatesh et al., 2005). T-2 also induced apoptosis in 

lymphoid organs, haematopoietic tissues, intestinal crypt, brain, skin, and cell types such as 
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HL60, Jurkat, U937, Vero cells and hepatoma cells in humans and other animals (Bouaziz et 

al., 2006; Bouaziz et al., 2008; Grizzle et al., 2004; Huang et al., 2007; SCF, 2001; Sehata et 

al., 2004). T-2 toxin induces cell apoptosis by the activation of c-Jun N-terminal kinases 

(JNKs) and p38 mitogen-activated protein kinases (p38 MAP kinases), but the precise 

mechanism has not yet been well elucidated (Sokolovic et al., 2008). 

 

1.3.3.2. Immunomodulatory activity 

The immune system is one of the main targets of T-2, and the immunomodulatory 

activity of T-2 is dose-dependent, e.g. it stimulates the immune response at low doses, and 

suppresses immune responses at high doses in poultry. It is thought that immunosuppression 

at high doses is due to the damage of bone marrow, lymph nodes, spleen, thymus, intestinal 

mucosa, leucopenia and the inhibition of the functions of immune cells, while 

immunostimulation at low doses is thought to be caused by rapid and transient activation of 

the genes responsible for immune responses such as serum antibodies and inflammation. 

Unfortunately, only a limited number of studies have reported the immunostimulatory effects 

of T-2, and possible mechanisms have never been elucidated (EFSA, 2011b; Sokolovic et al., 

2008). Lesions, atrophy, and weight change of immune organs such as thymus, bursa of 

Fabricius, and spleen were found in turkeys, Pekin ducks, and chickens exposed to T-2 

(Nataraja et al., 2003; Rafai et al. 2000; Rajeev et al., 2003; Richard et al., 1978). T-2 and 

HT-2 intoxication can induce alimentary toxic aleukia (ATA) in humans and cats (EFSA, 

2011b; Lutsky et al., 1978). Exposure of chickens to T-2 caused higher mortality due to 

Salmonella infection and lower antibody titres against Newcastle disease and infectious bursal 

disease (Sokolovic et al., 2008). Exposure to T-2 also altered the production of cytokines in 

rodent macrophages (Ahmadi and Riazipour, 2008; Dugyala and Sharma, 1997), suppressed 

the phagocytic activity of rodent macrophages against Staphylococcus aureus (Sorenson et al., 

1986) and Pseudomonas aeruginosa (Vidal and Mavet, 1989) and promoted the susceptibility 

of porcine macrophages to Salmonella Typhimurium invasion (Verbrugghe et al., 2012). The 

immunomodulatory activity of T-2 is also time-dependent. Enhanced resistance to Listeria in 

rodents was observed after short-term preinoculation with T-2, whereas postinoculation 

resulted in immunosuppression (Bondy and Petska, 2000). 

 

1.3.3.3. Toxicity on digestive system and liver 

Digestive disorders in poultry are characterized by diarrhoea, feed and water refusal, 

decreased body weight, increased feed conversion ratio, lesions of the digestive tracts, and 
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impaired resorption of nutrients (EFSA, 2011b; Sokolovic et al., 2008). Lesions in oral cavity, 

tongue, proventriculus, gizzard, intestine and liver, were frequently observed in chickens, 

Pekin ducks and turkeys exposed to dietary T-2 (EFSA, 2011b; Sokolovic et al., 2008) 

(Figure 8). The liver is thought to be the main target of the toxic effects of T-2. Inhibition of 

protein synthesis reduces the activity of the enzymes associated to the metabolism of toxic 

substances, induces lipid peroxidation, and increases the activity of glutathione reductase 

(Sokolovic et al., 2008). 

 

Figure 8. Some T-2-induced lesions in the digestive system of poultry. (a) Oral lesions in a 7-day-
old turkey poult given feed containing 1 mg T-2/kg for 10 days (Shlosberg, 2001); (b) Erosions in the 
proximal esophagus caused by exposure to T-2 (Ruiz, year unknown); (c) Shortening of villi and 
mononuclear cell infiltration in the proventriculus of a 4-week-old broiler chicken with T-2 toxicosis 
(H&E, ×320) (Krishnamoorthy et al., 2007); (d) Oedema and congestion of the gallbladder of a 
chicken given two times daily 2.5 mg/kg doses of T-2 (H&E) (Hoerr et al., 1982). 
 

1.3.3.4. Other toxic effects of T-2 

Developmental toxicity, reproductive toxicity, neurotoxicity, and carcinogenicity of T-2 

have also been reported, but are not considered critical effects of T-2 (EFSA, 2011b). Delay 

of puberty, decreased egg fertility and hatchability, and thinner egg shell were found in laying 

hens, laying geese, and quails exposed to dietary T-2 (Chi et al., 1977; Diaz et al., 1994; 

Grizzle et al., 2005; Vanyi et al., 1994; Wyatt et al., 1975). T-2 also showed effects on 

neurotransmitter levels in chickens and rats, and the neurotoxic effects in rats were seen at 
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levels as low as 0.1 mg/kg b.w. per day (EFSA, 2011b). It was also reported that incidence of 

pulmonary and hepatic adenomas increased in male mice when fed a T-2 containing diet 

(Schiefer et al., 1987). 

 

1.4. Effects of mycotoxins on microorganisms 

Secondary metabolites are not directly essential for fungal growth (Betina, 1994), but 

many studies agree that fungi produce mycotoxins and other secondary metabolites to create 

or maintain a competitive advantage over other organisms, especially under environmental 

stresses (Magan and Aldred, 2007). Besides their toxicity to animals, many mycotoxins are 

toxic to microorganisms as well (Bennett and Klich, 2003). ZEA and its derivatives exerted a 

toxic effect on fungi Sordaria fimicola, Epicoccum purpurascens, Cladosporium herbarum, 

and Alternaria alternata, with the effect declining in the order ZEA>α-ZEL>β-ZEL 

(Utermark and Karlovsky, 2007). The antagonism of Penicillium spp. towards the soil fungus 

Trichoderma sp. and the phytogenic fungus Rhizoctonia solani was thought to be associated 

with the production of the mycotoxin patulin by Penicillium spp. for competition for nutrient 

resources (Nicoletti et al. 2004; Norstadt and McCalla 1969). AFB1 significantly reduced the 

populations of viable bacteria and fungi in agar medium and soil, and showed mutagenicity 

on the bacterium Rhizobium japonicum (Angle and Wagner 1981). The bacterium Bacillus 

brevis was sensitive to AFB1, OTA, citrinin, patulin, penicillic acid, cyclopiazonic acid, 

penitrem A, and ZEA, but not to trichothecenes, e.g. T-2, HT-2, DAS and DON, while the 

yeast Kluyveromyces marxianus was inhibited by all these four trichothecenes but not by the 

other mycotoxins (Madhyastha et al., 1994). DON exhibited weak, but T-2 and DAS showed 

stronger antimicrobial activity against the fungi Penicillium digitatum, Mucor ramannianus, 

and Saccharomyces bayanus, but these 3 trichothecenes showed no antimicrobial activity 

against the gram-positive, gram-negative, or acid-fast bacteria (Vesonder et al., 1981). T-2 

exhibited inhibitory effect on the fungi Penicillium digitatum, Mucor ramannianus, 

Rhodotorula rubra, R. glutinus, Saccharomyces carlsbergensis and S. pastorianus, but not on 

Candida krusei, C. albicans, Cryptococcus albidus, Aureobasidium pullulans, Tremella 

mesenterica, or any of the 54 tested bacterial strains (Burmeister and Hesseltine, 1970). T-2 

did not affect the growth of Salmonella Typhimurium, but reduced its flagella gene 

expression and motility (Verbrugghe et al., 2012). Although intake of Fusarium mycotoxins 

such as DON, T-2 and FB1 have been widely reported to alter the susceptibility of animals to 

pathogens (e.g. Salmonella Typhimurium, Escherichia coli, Clostridium perfringens, 

Edwardsiella ictaluri) (Antonissen et al., 2014), studies have been focused on the effects of 
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mycotoxins on the hosts, while possible effects of mycotoxins on the pathogens have largely 

been neglected and therefore deserve further studying. 
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2. Introduction on avian aspergillosis 

2.1. Aspergillus fumigatus 

2.1.1. Etiology 

Aspergillus fumigatus is the primary pathogen of aspergillosis, an opportunistic 

infectious noncontagious disease that occurs in human and animals. The taxonomic 

classification of A. fumigatus is described in Table 5. A. fumigatus is a ubiquitous saprophytic 

fungus living on organic debris. The conidia of this fungus are produced on the conidial heads 

and released into the air by environmental disturbance and air currents, which makes A. 

fumigatus the most prevalent airborne fungal pathogen (Latgé, 1999). Although other 

Aspergillus species, such as A. flavus, A. niger, A. glaucus, A. nidulans can also cause 

aspergillosis, A. fumigatus is the predominant species of airborne fungal infections because of 

the small size of its conidia (2-3 μm in diameter). Because of their small size, A. fumigatus 

conidia are more likely to escape the mucociliary clearance by the upper respiratory tract, and 

can reach the lungs and air sacs more easily (Richard et al., 1981; Richard and Thurston, 

1983). 

 
Table 5. The taxonomic classification of A. fumigatus (Taylor, 2006). 

Kingdom Phylum Class Order Family Genus Species 

Fungi Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Aspergillus fumigatus 

 

2.1.2. Culture and morphological characteristics of A. fumigatus 

A. fumigatus is a rapidly growing thermophilic fungus. It can grow at temperatures up to 

55°C, and survive at up to 70°C (Latgé, 1999). A young A. fumigatus colony is white but 

turns green to dark blue-green after a few days of growth due to sporulation (Figure 9). A 

colony consists of a dense felt of conidiophores, arising from aerial hyphae (de Hoog et al., 

2000; Oglesbee, 1997). Hyphae are the main mode of vegetative growth and are collectively 

called a mycelium (Klich, 2002). The mycelium cell wall mainly consists of polysaccharides 

such as galactomannan, chitin, α(1,3)-glucans and β(1,3)-glucans (Bernard and Latgé, 2001). 

Conidiophores are specialized hyphae with a swollen end known as vesicle (20-30 μm in 

diameter), from which the green phialides (5-9 by 2-3 μm) directly arise. A chain of green 

smooth-walled conidia (2-3 μm in diameter) emerges from each phialide (Klich, 2002). The 

conidium cell wall is composed of a dense pigmented outer layer and a translucent inner layer 

(Bernard and Latgé, 2001). The vesicle, phialides and the attached conidial chains compose a 
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conidial head (asexual fruiting body), with a “holy water sprinkler” appearance (Oglesbee, 

1997) (Figure 9). 

  
Figure 9. (left) A. fumigatus culture grown on Sabouraud dextrose agar plate. (right) A. 
fumigatus conidiophores, vesicles, phialides and conidia (lactophenol blue staining). 

 

2.1.3. Life cycle of A. fumigatus 

A. fumigatus has both an asexual and sexual life cycle (O’Gorman et al., 2009) (Figure 

10). 

 

2.1.3.1. Asexual life cycle 

The asexual cycle is the primary means of replication for A. fumigatus and protects the 

fungal genome in unfavourable conditions. The A. fumigatus genome remains haploid 

throughout the whole asexual life cycle. Sporulation produces conidia (haploid, uninucleated 

asexual spores) (Ward et al., 2006). Conidiogenesis of A. fumigatus occurs in an enteroblastic 

phialidic manner by which chains are formed by a single element which is pushed out of the 

phialide opening and differentiates into conidia (Reiss et al., 2011) (Figure 11). Vegetative 

growth is initiated by germination of a conidium, with formation of tubular hyphae, growing 

in a polar fashion by apical extension and branching to form a network of mycelium, which 

acquires nutrients from the environment (Ward et al., 2006). 
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Figure 10. The typical life cycle of an ascomycete (Yen and Shen, year unknown). 1. Two parental 
haploid hyphae become intertwined and form an ascogonium (female) and an antheridium (male); 2. 
The ascogonium accepts nuclei from the antheridium through plasmogamy and forms a dikaryon; 3. 
The dikaryotic ascogenous hyphae extend and develop into an ascocarp (a globose and closed type of 
ascocarp (cleistothecia) in case of A. fumigatus); 4. Asci (dikaryotic) are formed in the dikaryotic 
ascogenous hyphae in the ascocarp; 5. Diploid ascus nucleus is formed by karyogamy; 6. The resultant 
diploid ascus nucleus is divided into four genetically distinct haploid nuclei via meiosis; 7. An 
additional round of mitosis yields eight haploid nuclei in the ascus, which then develop into eight 
haploid ascospores (irregularly arranged in case of A. fumigatus); 8. The ascospores are dispersed out 
of the ascocarp; 9. The ascospores germinate and grow into new haploid mycelia, which can start new 
asexual and sexual cycles; 10. Asexual life cycle. Conidiogenesis occurs in the haploid mycelium and 
produces asexual spores (conidia), which germinate and develop into new mecylia. 

 

 
Figure 11. Enteroblastic phialidic conidiogenesis (Moore et al., 2011) 



General Introduction 

 27

2.1.3.2. Sexual life cycle 

The sexual reproduction of A. fumigatus (teleomorph named Neosartorya fumigate) 

occurs only in strictly manipulated growth conditions (O’Gorman et al., 2009). The sexual 

cycle (Figure 10) is initiated when two haploid parental A. fumigatus isolates grow into 

contact. Plasmogamy gives rise to dikaryotic ascogenous hyphae which will form diploid asci 

in cleistothecia, a globose and closed type of ascocarp (sexual fruiting bodies). An ascus 

produces 8 haploid ascospores (sexual spores) by one meiosis and then one mitosis 

(O’Gorman et al., 2009; Ward et al., 2006) (Figure 10). Sexual reproduction allows genetic 

recombination between two parental fungal isolates, and yields progeny genotypes which are 

unique and different from those of the parents (O’Gorman et al., 2009). This increases the 

fitness of this next generation, augmenting adaptation to the changing environment and 

improving their chances for long-term survival (Dyer and O’Gorman, 2012). 

 

2.1.4. Genome and proteome of A. fumigatus 

A study on a virulent clinical A. fumigatus isolate Af293 revealed its haploid genome of 

29.4 million base pairs, which consists of 8 chromosomes containing 9,926 genes (Nierman et 

al., 2005). Many of these genes exhibit extensive similarity with genes from the yeast 

Saccharomyces cerevisiae (Ward et al., 2006) and the most abundant encoded proteins are 

mentioned in Table 6 (Teutschbein et al., 2010). 

 
Table 6. 40 most abundant proteins in A. fumigatus conidial proteome (Teutschbein et al., 2010). 

Protein Protein function a 
Translation elongation factor EF-1 alpha subunit, putative C, M, N 
Spore-specific catalase CatA D, N 
Enolase/allergen Asp F 22 I, K, N 
Conidial hydrophobin Hyp1/RodA S 
Peptidyl-prolyl cis-trans isomerase/cyclophilin, putative C, D, F, L, M, N, P, Q 
Hypothetical protein AFUA_6G12000 S 
Asp hemolysin-like protein S 
Oxidoreductase, zinc-binding dehydrogenase family A, D, K, N 
Mitochondrial aconitate hydratase, putative I, K, N 
Phosphoglycerate kinase PgkA, putative I, K, N 
Mitochondrial Hsp70 chaperone (Ssc70), putative B, K, L, N 
Glyceraldehyde 3-phosphate dehydrogenase GpdA I, J, K, N 
Mannitol-1-phosphate dehydrogenase G, K 
Mitochondrial F1 ATPase subunit alpha, putative F, I, J, N 
NAD-dependent formate dehydrogenase AciA/Fdh I, K 
6-phosphogluconate dehydrogenase Gnd1, putative I, K, N 
Conserved hypothetical protein S 
Citrate synthase (Cit1), putative A, I, K 
Actin Act1 A, B, C, D, E, G, J, L, N, Q 
Aldehyde reductase (AKR1), putative D, I, J, K, N 
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Transaldolase I, K, N 
Glycerol dehydrogenase (GldB), putative D, I, J, K, N 
Aldehyde dehydrogenase AldA, putative A, D, G, I, K, N 
Mitochondrial processing peptidase beta subunit, putative G, I, L, N 
Glucose-6-phosphate 1-dehydrogenase D, I, K, N 
Zinc-binding oxidoreductase, putative G, I, K, N 
Malate dehydrogenase, NAD-dependent A, G, I, K, N 
Cu,Zn superoxide dismutase SOD1 C, D, F, J, N, O 
Transketolase TktA I, K, N 
Triosephosphate isomerase A, I, K 
Hypothetical protein AFUA_4G00740 S 
Zinc-containing alcohol dehydrogenase, putative I, K 
Phosphoglycerate mutase, 2,3-bisphosphoglycerateindependent I, K, N 
Bifunctional catalase-peroxidase Cat2 D 
G-protein complex beta subunit CpcB F, I, K, L, M 
Actin Act1 A, B, C, D, E, G, J, L, N, Q 
Hypothetical protein AFUA_7G04920 S 
Translation elongation factor EF-2 subunit, putative K, M, N, Q 
Malate synthase AcuE I, K 
ThiJ/PfpI family protein D, K, N 

a Protein function: A, biogenesis of cellular components; B, cell cycle and DNA processing; C, cell 
fate; D, cell rescue, defense and virulence; E, cell type differentiation; F, cellular 
communication/signal transduction mechanism; G, cellular transport, transport facilitation and 
transport routes; H, development (systemic); I, energy; J, interaction with the environment; K, 
metabolism; L, protein fate (folding, modification, destination); M, protein synthesis; N, protein with 
binding function or cofactor requirement (structural or catalytic); O, regulation of metabolism and 
protein function; P, systemic interaction with the environment; Q, transcription; R, transposable 
elements, viral and plasmid proteins; S, unknown. 

 

2.2. Avian aspergillosis 

2.2.1. Virulence factors of A. fumigatus 

The genes and molecules involved in the pathogenesis of A. fumigatus infections are 

functionally classified by Abad et al. (2010) into groups involved in thermotolerance, cell 

wall composition, resistance to the immune response, toxins, nutrient uptake, allergen, 

signaling and metabolism regulation (Figure 12). Gliotoxin, phospholipase, protease, and 

elastase were found to be associated with the pathogenesis of aspergillosis in humans 

(Gardiner et al., 2005; Rementeria et al., 2005; Sugui et al., 2007). Gliotoxin is the major and 

the most potent toxin of A. fumigatus (Kwon-Chung and Sugui, 2009) and is thought to be 

involved in the pathogenesis of aspergillosis in turkeys (Richard et al., 1994; Richard et al., 

1996). Gliotoxin modulates the immune response by targeting primarily the activity of 

neutrophils or phagocytes, and induces apoptosis and necrosis in cells and tissues (Scharf et 

al., 2012; Tell, 2005). Different A. fumigatus isolates were found to be remarkably different in 

pathogenicity in turkeys (Peden and Phoades, 1992), suggesting differences in expression of 

virulence factors. 
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Figure 12. Summary of genes and molecules associated with the virulence of A. fumigatus (Abad et al., 2010). 
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2.2.2. Risk factors for birds 

The major risk factors for an Aspergillus infection are an overwhelming number of 

conidia and immunosuppression of the host. An overwhelming amount of spores can rapidly 

develop in a warm humid environment with poor ventilation and poor sanitation (Oglesbee, 

1997; Phalen, 2000; Tell, 2005). Besides, improperly stored feeds can be a source of fungal 

pathogens (A. fumigatus, A. flavus, A. glaucus and A. niger) (Khosravi et al., 2008; Simpson 

and Euden, 1991). In those feeds not only the fungi, but also immunosuppressive mycotoxins, 

e.g. zearalenone, trichothecenes, aflatoxins and/or fumonisins can be present (EFSA, 2004a; 

EFSA, 2005; EFSA, 2007; EFSA, 2011b; EFSA, 2011c; EFSA, 2013). Intensive production 

strategies, severe genetic manipulation, inadequate management and husbandry practices of 

domestic birds may also weaken the immunological defense (Maina, 2002; Nganpiep and 

Maina, 2002). Other immunosuppressive factors that can predispose birds to aspergillosis 

include administration of tetracyclines, vaccination, metabolic bone disease, overcrowding, 

shipping, quarantine or capture of wild birds, starvation, thermal discomfort, migration, 

inbreeding, circovirus infection and lymphoproliferative disorders, toxicosis, traumatic 

injuries and reproductive activity (Beernaert et al., 2010). 

 

2.2.3. Avian susceptibility to aspergillosis 

Birds are considered to be particularly susceptible to aspergillosis (Van Waeyenberghe 

et al., 2012), probably because of the anatomical and physiological characteristics of the avian 

respiratory system as compared to mammals and humans. These characteristics include the 

high average body temperature (38-45°C) favorable for the thermophilic fungus (Tell, 2005), 

the absence of an epiglottis, which otherwise prevents particles from reaching the lower 

respiratory tract, the lack of a diaphragm disabling a strong cough reflex, the limited 

distribution of ciliated epithelium through the respiratory tract (Tell, 2005), a greater 

respiratory surface area and a thinner air-blood capillary barrier (Maina, 2002), and the 

presence of the air sac system, which widely extends throughout most of the body. These 

warm and oxygenated air sacs provide a favorable condition for the vegetative growth and 

even sporulation of Aspergillus (Tell, 2005). In addition, the unidirectional airflow in the 

lungs and the bidirectional airflow in the air sacs hinder the elimination of inhaled particles 

(Toth, 2000) (Figure 13). The paucity of free respiratory macrophages in the avian respiratory 

system (Ficken et al., 1986; Holt, 1979; Maina and Cowley, 1998; Nganpicp and Maina, 2002) 

is also assumed to obstruct the respiratory immunity against respiratory pathogens (Toth and 

Siegel, 1986), but this might be compensated by the phagocytic epithelial cells in the atria and 
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infundibula, the pulmonary intravascular macrophages, and subepithelial macrophages 

(Maina, 2002; Nganpiep and Maina, 2002; Reese et a1., 2006), which can be efficiently 

translocated to the epithelial surface (Kiama et al.. 2008; Mutua et al., 2011). 

 
Figure 13. The pathway of air through the avian respiratory system during inspiration (a) and 
expiration (b). 1: Clavicular air sac, 2: Cranial thoracic air sac, 3: Caudal thoracic air sac, 4: 
Abdominal air sac, 5: Lung (Reese et al., 2006).  

 

2.2.4. Pathogenesis of aspergillosis in birds 

2.2.4.1. Infection route and colonization 

Due to the ubiquitous existence and small size of the airborne A. fumigatus conidia 

(Latgé, 1999), aspergillosis strikes primarily in the respiratory system by inhalation of these 

conidia in humans, mammals and birds (Kousha et al., 2011; Oglesbee, 1997; Tell, 2005), 

although A. fumigatus is occasionally able to infect other body sites, such as the eye or skin 

(Beckman et al., 1994; Hoppes et al., 2000; Suedmeyer et al., 2002; Tsai et al., 1992). Some 

inhaled A. fumigatus conidia are not trapped in the nasal cavity and trachea, and are therefore 

able to colonize the lungs and air sacs (Fedde, 1998), which makes the lungs and air sacs the 

primary sites of Aspergillus infection (Figure 13). The tracheal bifurcation can also be 

infected due to the conidia deposition in the narrow lumen (Xavier, 2008). The consequences 

of colonization of A. fumigatus conidia ultimately depend on the interaction between the host 

immune system and the fungus (Ben-Ami et al., 2010). 

 

2.2.4.2. Tissue invasion in the lung and respiratory tract 

The A. fumigatus conidia which colonize the lung get embedded in the atria and parts of 

the infundibula in the parabronchus, and are first attacked by the phagocytic epithelial cells, 

subepithelial macrophages, and intravascular macrophages (Fedde, 1998; Maina, 2002; 

Nganpiep and Maina, 2002; Reese et al., 2006). If the conidia overwhelm the immune defense 

and reach a favorable environment, they break dormancy and start germinating by mitotic 

divisions (Momany and Taylor, 2000; Oglesbee, 1997). The high body temperature and the 

avian lung-air sacs system provide a warm, oxygen and nutrient rich environment ideal for 

5 
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fungal growth (Tell, 2005). Germination switches the fungal morphotype from unicellular 

conidia to multicellular hyphae, which extend and enable tissue invasion (Ben-Ami et al., 

2010). As the hyphae invade, tissues necrotize and plaques are formed in the lung and 

respiratory tract and obstruct the trachea or bronchi or fill an air sac (Oglesbee, 1997). 

Occasionally, sporulation occurs in the lungs and air sacs (Cacciuttolo et al., 2009; Nardoni et 

al., 2006). 

 

2.2.4.3. Dissemination of infection 

Dissemination of infection can occur in blood vessels and other organs. Hyphae are 

tissue- and angio-invasive (Dahlhausen et al., 2004), and mycosis can be disseminated by 

hyphal extension through the air sacs and lung tissues, causing serositis and superficial 

necrosis in the liver, kidney, intestine and ovary (Tsai et al., 1992). Vascular invasion also 

occurs by hematogenous spreading (Dahlhausen et al., 2004). Conidia can get attached to 

erythrocytes (Richard and Thurston, 1983) or ingested by respiratory macrophages and then 

carried by the blood and lymphatic stream to other organs (Richard and Thurston, 1983; 

Thompson and Patterson. 2008; van Veen, 1999). 

 

2.3. Avian immune response to aspergillosis 

2.3.1. Tissue response against A. fumigatus 

Tissue reactions against A. fumigatus infections in birds can be granulomatous and/or 

infiltrative. The granulomatous form is characterized by a necrotic center containing hyphae 

and/or heterophils surrounded by abundant inflammatory cells including giant cells, 

macrophages and lymphocytes, and encapsulated by an outer layer of fibrous connective 

tissue. Neither exudative inflammation nor vascular lesions are seen in the neighboring tissues 

(Beernaert et al., 2010). The infiltrative type induces an exudative cellular inflammation with 

giant cells, macrophages, heterophils and lymphocytes. In this type, the fungus frequently 

invades blood vessels and forms aggregates of radiating hyphae containing a large number of 

conidiophores and conidia without forming structured granuloma (Beernaert et al., 2010). 

 

2.3.2. Cellular and humoral immunity against A. fumigatus 

Both cellular and humoral immunity are involved in the avian immune response against 

aspergillosis. Macrophages and heterophils play the primary role in phagocytosing the 

invading A. fumigatus conidia and hyphae (Arné et al., 2011), followed by antibody reactions 

for adaptive immunity (Richard et al., 1981). 
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2.3.2.1. Avian respiratory macrophages 

The avian respiratory macrophages form the early immune defense against A. fumigatus 

infection in birds (Arné et al., 2011). Birds lack free respiratory macrophages in the 

respiratory system (Ficken et al., 1986; Holt, 1979; Maina and Cowley, 1998; Nganpiep and 

Maina, 2002). Instead, avian respiratory macrophages are present in the epithelia and the 

subepithelial interatrial septa of the atria and infundibula (Figure 14), and can be reinforced 

by the pulmonary intravascular macrophages (Klika et al., 1996; Maina, 2002; Maina and 

Cowley, 1998; Reese et al., 2006). Avian macrophages can transmigrate from the epithelia 

and the interatrial areas or the vascular system into the air surface (Kiama et al., 2008; Maina, 

2002; Mutua et al., 2011; Nganpiep and Maina, 2002), and play an important role in the 

removal of particles or pathogens from the air (Nganpiep and Maina, 2002; Reese et al., 2006). 

 

Figure 14. Avian respiratory macrophages. (a) Longitudinal section (methylene blue staining) of 
the parabronchus wall of a chicken. 1: Atrium; 2: Interatrial septum; 3: Infundibulum; 4: Air 
capillaries; 5: Interparabronchial septum. (b) Scanning electron micrograph of a parabronchus of a 
chicken cut in longitudinal section. (c) Horizontal section of the atria demonstrating macrophages in 
the interatrial septa by immunohistochemistry (stained with mab Kul01) (Reese et al., 2006). 
 

2.3.2.2. Pathogen recognition and phagocytosis 

As known in humans and other mammals, A. fumigatus conidia are recognized by 

immune cells via two kinds of pattern recognition receptors (PRRs), namely the soluble PRRs 

(e.g., lung surfactant proteins A and D, pentraxin-3, mannan-binding lectin) and cell-bound 

PRRs (e.g., dectin-l receptor and toll like receptors (TLRs)) (Ben-Ami et al., 2010; Park and 

Mehrad, 2009). Soluble PRRs work as opsonins for many microorganisms, and opsonization 

of the A. fumigatus conidia helps their binding to and phagocytosis by alveolar macrophages, 

neutrophils and dendritic cells (Park and Mehrad, 2009). The cell-bound PRRs are found on 

polymorphonuclear leucocytes, alveolar macrophages and dendritic cells (Brown and Gordon, 

2001), and are believed to bind the polysaccharide components (e.g., β-glucan, mannan, chitin 

a c b 
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and galactomannan) of the cell walls of swollen conidia (Hohl et al., 2005; Latgé et al., 2005), 

and facilitate recognition, binding and phagocytosis of these conidia (Ben-Ami et al., 2010; 

Park and Mehrad, 2009). Mannan-binding lectin, lung surfactant proteins, and different TLRs 

have been found in birds (Hughes, 2007; Juul-Madsen et al., 2008; Zeng et al., 1998), but 

their exact role in recognition of Aspergillus conidia is still to be studied. During phagocytosis 

by avian macrophages, particles are ingested to form phagosomes, which then fuse with 

lysosomes to form a phagolysosome. The antimicrobial enzymes in the lysosomes, such as 

acid phosphatase and β-glucuronidase, are responsible for the digestion and destruction of the 

ingested particles (Kaspers et al., 2008). Reactive oxygen and nitrogen intermediates are 

important microbiocidal mechanisms of avian macrophages (Kaspers et al., 2008). 

 

2.3.2.3. Recruitment of leukocytes to the infection site 

The avian immune response is regulated by cytokines, which can be produced by 

virtually every cell type, and chemokines are a group of cytokines which regulate leukocyte 

traffic. The uptake and destruction of fungal pathogens by phagocytes are accompanied by the 

secretion of signaling molecules, such as cytokines and chemokines, to activate additional 

arms of the immune system (Kaspers et al., 2008). During aspergillosis in humans and mice, 

release of IL-10, IL-15, TGF-β1, TNF-α, IFN-γ, IL-18, IL-1β, IL-12, MIP-1α, MIP-2, and 

MCP-1 was induced (Brieland et al., 2001; Sambatakou et al., 2006; Schelenz et al., 1999). 

Recruitment of leukocytes (e.g. macrophages, heterophils, and dendritic cells) to the infection 

site is primarily mediated by the interaction between the circulating leukocytes and the 

chemokines released from the infection site (Kaiser and Stäheli, 2008). In mammals, 

neutrophils are not only responsible for hyphal killing, but also conidial killing (Bonnet et al., 

2006; Levitz and Farrel, 1990; Kozel et al., 1989; Zarember et al.. 2007). Neutrophils kill 

fungi using reactive oxidative intermediary agents (Latgé, 1999), and neutrophil extracellular 

traps (NETs) may form to handle larger fungal amounts, including tissue-invading hyphae 

(Bruns et al., 2010). The heterophil is the avian equivalent to the mammal neutrophil. Instead 

of the oxidative mechanisms used in neutrophils, heterophils use cationic proteins, hydrolases, 

and lysosymes to kill fungal hyphae (Tell, 2005), but more research is needed to elucidate the 

fungal killing mechanisms in avian heterophils. 

 

2.3.2.4. Adaptive immunity activation 

Antigen presentation in birds is primarily carried out by dendritic cells, but also by 

macrophages and other immune cells (Kaspers et al., 2008). In mammals, after the antigen-
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presenting cells (APCs) have phagocytosed and processed the pathogens, they are drained to 

the lymph nodes, where they interact with and activate T helper cells. In birds, they migrate to 

the spleen instead (Gallego et al., 1997; Kaspers et al., 2008). In the Th1/Th2 paradigm for 

mammals, APCs present the processed antigen fragment to T helper cells, which then 

differentiate into T helper cells Type 1 (Th1) or Type 2 (Th2). Th1 in return promotes cellular 

immunity by maximizing the killing efficacy of the macrophages, while Th2 activates the 

development of B cells into plasma cells, which produce antibodies for the original antigens 

(humoral immunity). However, the avian adaptive immune response against aspergillosis is 

poorly known (Kaspers et al., 2008). A study on the humoral response of pigeons to A. 

fumigatus antigens showed an early rise of IgM and a later rise of IgG upon injection of A. 

fumigatus culture filtrate (Martinez-Quesada et al., 1993), and serum Aspergillus antibody 

levels can be used to assist the diagnosis of aspergillosis in birds (Brown and Redig, 1994; 

Davidow et al., 1997; Jones and Orosz, 2000; Redig, 1994). 

 

2.4. Clinical symptoms of aspergillosis in birds 

Clinical manifestations of avian aspergillosis depend on the infection dose, the pathogen 

distribution, pre-existing disease, and the immune response of the host (Dahlhausen et al., 

2004). Avian aspergillosis is distinguished into the acute form and chronic form (Beernaert et 

al., 2010). The acute form is thought to be caused by exposure to an overwhelming number of 

Aspergillus conidia (Vanderheyden, 1993). The acute signs include dyspnea, anorexia, tail 

bobbing, open mouth breathing and gasping. Potential general signs are acute depression, 

inappetence, vomiting, crop stasis, ascites, polydipsia, polyuria and cyanosis. Death usually 

occurs within 7 days (Jenkins, 1991; McMillan and Petrak, 1989; Oglesbee, 1997; 

Vanderheyden, 1993). The chronic form is generally associated with immune suppression as a 

localized or disseminated disease (McMillan and Petrak, 1989). The chronic signs include 

decreased appetite, lethargy, weight loss, change or loss of voice, cough, open beak breathing, 

cyanosis, polyuria, depression and vomiting (Jenkins, 1991; McMillan and Petrak, 1989; 

Vanderheyden, 1993). Lesions frequently observed in lungs include pulmonary hypertension, 

congestion and fibrosis (Hofle et al., 2001; Julian and Goryo, 1990). Dissemination of 

aspergillosis can cause lesions in other organs such as liver and kidney, as well as 

neurological abnormalities (Dahlhausen, 2006; Jensen et al., 1997). Slow reaction, unilateral 

wing drooping, paralysis, ataxia, weakness or general disinclination to move, unsteady gait, 

falling on the side or back, torticollis and tremors are potential neurological signs caused by 

Aspergillus infection (Forbes, 1991; Forbes, 1992; Jensen et al., 1997). 
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Mycotoxins are toxic secondary metabolites produced by fungal genera such as 

Alternaria, Penicillium, Aspergillus and Fusarium. As feed contaminants, dietary mycotoxins 

are known to impair animal health and predispose animals to infectious diseases. One of the 

most prevalent avian respiratory diseases, notably in psittacine birds but also in poultry, is 

aspergillosis, which is mainly caused by Aspergillus fumigatus. On the one hand, 

susceptibility to aspergillosis may be promoted by mycotoxin contamination of the avian diet 

through suppression of avian defence mechanisms. On the other hand, environmental 

mycotoxins may also suppress the fitness of A. fumigatus and thus reduce its impact on avian 

health. Exposure of birds and/or A. fumigatus to mycotoxins may thus alter their susceptibility 

to aspergillosis. 

The general aim of this dissertation was to examine the interactions of mycotoxins in 

avian feed with A. fumigatus infections in birds. 

Because information with regard to mycotoxin contamination of psittacine feeds is 

largely lacking, a first specific aim was to examine the occurrence of mycotoxins in 

commercial pet parrot feeds, and their potential pathological effects using cockatiels as model 

birds. 

The second specific aim was to study the impact of mycotoxins on the antifungal 

activity of the avian macrophage, an important first line of defense against aspergillosis. T-2 

toxin was selected as a model mycotoxin and chickens as model birds. T-2 toxin is a potent 

trichothecene, which has previously been shown to influence the pathogenesis of bacterial 

infections such as Salmonella infections in pigs. 

The third specific aim was to assess the influence of environmental T-2 toxin on the 

virulence of A. fumigatus and the influence of dietary T-2 toxin on the susceptibility of birds 

to A. fumigatus, using the chicken as an animal model. 
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Occurrence and Pathology of Mycotoxins in Commercial Parrot Feeds 
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Abstract 

Mycotoxins are toxic secondary metabolites of fungi. Animal feeds can be easily 

infected by fungi during production and storage, resulting in mycotoxin contamination. This 

study was performed to evaluate the possible health risks of mycotoxin-contaminated feed for 

cockatiels. The occurrence of mycotoxins in commercial parrot feeds (5 seed mixes and 5 

pelleted feeds) was investigated by liquid chromatography tandem mass spectrometry. The 

following 12 mycotoxins were detected: zearalenone, deoxynivalenol, 3-acetyldeoxynivalenol, 

15-acetyldeoxynivalenol, fusarenon-X, aflatoxin B1, sterigmatocystin, alternariol, alternariol 

methylether, fumonisin B1, fumonisin B3, and ochratoxin A. Zearalenone was the most 

prevalent. Pathological effects after 21 days feeding mycotoxin-contaminated diets were 

examined in an in vivo trial with 3 groups of 5 cockatiels: Group 1 (control) was fed a non-

contaminated extruded feed; Group 2 was fed an extruded feed containing zearalenone, 

deoxynivalenol, 15-acetyldeoxynivalenol, and fumonisins; and Group 3 was fed an extruded 

feed containing fumonisins. Average body weight gain and relative organ weight were not 

significantly different between the treatment groups and the control group. Apoptosis of renal 

tubular cells, diarrhoea, reduced appetite, enlargement of liver, kidney and proventriculus 

were occasionally observed in the birds from Groups 2 and 3. In summary, contamination 

with mycotoxins is common in parrot feeds. The mycotoxin levels did not reach toxic levels, 

but might pose a potential threat to some sensitive cockatiels. 
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1. Introduction 

Mycotoxins are toxic secondary metabolites produced by fungi. They pose potential 

threats to human and animal health through the ingestion of contaminated agricultural 

products such as wheat, maize, nut, and rye. Mycotoxins can be oestrogenic, carcinogenic, 

neurotoxic, immunosuppressive or can exhibit other toxic effects on organs such as liver and 

kidney (Turner et al., 2009). Trichothecenes, aflatoxins, fumonisins, ochratoxins, Alternaria 

toxins, and zearalenone (ZEA) are the most well-known mycotoxins; they are widely 

investigated due to their frequent occurrence and severe effects on animal and human health 

(Logrieco et al., 2003; Njumbe Ediage et al., 2011). For animal feed, maximum 

concentrations of aflatoxin B1 are officially regulated (EC, 2003), and those of 

deoxynivalenol (DON), ZEA, ochratoxin A (OTA), and fumonisins are recommended (EC, 

2006) in the European Union. Several studies on mycotoxins in bird feeds only focused on 

aflatoxins, OTA, fumonisins and DON (Henke et al., 2001; Maia and Pereira Bastos de 

Siqueira, 2002; Martins et al., 2003; Scudamore et al., 1997) and, therefore, a more 

comprehensive study on mycotoxins in pet bird feeds and their pathological effects is 

necessary. 

This study includes an investigation on the occurrence of different mycotoxins, i.e. 

trichothecenes, aflatoxins, fumonisins, ochratoxins, Alternaria toxins, and zearalenone, in 

commercial parrot feeds and a subsequent in vivo trial to determine pathological effects on pet 

cockatiels fed extruded feed either contaminated with mycotoxins or uncontaminated. 

 

2. Materials and methods 

2.1. Parrot feeds 

10 commercial parrot feeds, either pelleted feed or seed mixes, were bought from local 

stores in Flanders, Belgium. 

 

2.2. Mycotoxin analysis by LC-MS/MS 

The occurrence of the following 21 mycotoxins in the parrot feeds was analysed by 

liquid chromatography tandem mass spectrometry (LC-MS/MS) as previously described 

(Monbaliu et al., 2010): ZEA, DON, nivalenol, 3-acetyldeoxynivalenol, 15-

acetyldeoxynivalenol (15-ADON), T-2 and HT-2 toxins, fusarenon-X, neosolaniol, 

diacetoxyscirpenol, aflatoxins B1, B2, G1 and G2, sterigmatocystin, OTA, fumonisins B1 and 

B3, alternariol, alternariol methylether, and altenuene. Each time an analysis was performed, a 
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sample spiked at the cut-off value or the third point of the calibration curve was (re)injected at 

the end of the analytical run to control the performance (sensitivity) of the LC-MS/MS 

instrumentation. Matrix-matched calibration plots were constructed by applying the least-

squares method and by plotting the response (peak area of toxin/peak area of internal standard) 

against the spiked concentration of the sample. The limit of detection (LOD) and the limit of 

quantification (LOQ) were calculated as 3 and 6 times, respectively, the standard error of the 

intercept divided by the slope of the calibration curve. 

 

2.3. In vivo trial with cockatiels 

An in vivo trial was performed to examine the possible toxic effects of the contaminated 

feeds on the health of cockatiels (Nymphicus hollandicus). This trial was carried out following 

the guidelines of the Belgian animal welfare regulations regarding animal experiments 

(ethical committee of the Faculty of Veterinary Medicine, Ghent University). Due to the 

limited possibility of using these exotic birds, 15 pet cockatiels were selected. These 

cockatiels, 5- to 6-weeks-old and clinically healthy, were purchased from a local store and 

randomly divided into 3 groups, with 5 birds in each group and each bird individually housed. 

Group 1 was fed an uncontaminated extruded feed and served as a control, whereas Groups 2 

and 3 were fed extruded feed contaminated with different mycotoxins. The average initial 

body weights of Groups 1, 2, and 3 were 82, 85 and 80 g, respectively. Feed and water were 

given ad libitum. Feed intake was monitored and each bird was weighed weekly. 

 

2.4. Histological examination 

After 21 days of feeding, all birds were euthanized and necropsied, and the liver, gizzard, 

spleen, heart, kidney, lung, proventriculus, pancreas and bursa of Fabricius of each bird were 

weighed. Organ samples were fixed in 10% neutral buffered formalin and embedded in 

paraffin. Five μm sections of the paraffined organ samples were stained with haematoxylin 

and eosin (H & E) and then examined microscopically. 

 

2.5. Statistical analysis 

Differences in body weight gain and relative organ weight among the groups were 

assessed by performing ANOVA after determination of normality and variance homogeneity. 

The significance level was set at P<0.05. 
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3. Results and discussion 

The analytical results of mycotoxins in parrot feeds are summarised in Table 1. Nine 

feeds were found to contain mycotoxins, but none of the detected mycotoxins exceeded the 

maximum levels regulated or recommended by the European Commission (EC, 2003; EC 

2006). ZEA was present in nine out of ten feeds. ZEA is one of the most frequently occurring 

mycotoxins in cereal grains (De Smet, 2011). DON and 15-ADON were detected in 4 feeds. 

Interestingly, 15-ADON was detected in two feeds (Feeds 1 and 5), in which DON was not 

found. With some exceptions, DON mostly occurs at a higher level than acetyldeoxynivalenol 

(Monbaliu et al., 2010). OTA, aflatoxins and fumonisins were present in one, one and three 

feeds, respectively, in the present study. Scudamore et al. (1997) have found these mycotoxins 

in one, five and two out of thirty bird feed samples, respectively. In addition, aflatoxins were 

detected in 17% of seed samples for wild birds (Henke et al., 2001) and in 27% of pet bird 

feed samples (Maia and Pereira Bastos de Siqueira, 2002). Alternaria toxins were detected in 

four feeds, but mostly unquantifiable. Alternaria toxins have been detected in grains, 

sunflower seeds, and other raw and processed feed products (Monbaliu, 2011), but their 

specific occurrence in bird feed has not been reported before. 

Feed 1 did not contain any mycotoxins at quantifiable concentrations. Feed 2 contained 

DON, 15-ADON, fumonisins and ZEA, while Feed 3 was mainly contaminated with 

fumonisins (Table 1). These three pelleted feeds, which were all extruded diets and had 

similar energy contents (as described by the manufacturers), were used in the in vivo trial.  

In the in vivo trial, body weight gain as percentage of initial weight (Table 2) and 

relative organ weight as percentage of body weight (Table 3) of Groups 2 and 3 that had 

received mycotoxin contaminated feed (Feeds 2 and 3, respectively) did not differ 

significantly from the control group. The mycotoxins in Feed 2 and 3 did not seem to reach 

any toxic levels; the concentrations of fumonisins and DON were lower than the reported 

toxic levels for turkey and chickens (Ledoux et al., 1996; Weibking et al., 1993). Pathological 

changes were occasionally observed in cockatiels exposed to mycotoxin contaminated feeds, 

e.g. anisokaryosis in hepatocytes in the enlarged liver of one bird in Group 2, apoptosis of 

renal tubular cells, mild urate and mucin retention in the enlarged kidney, and severe secretion 

retention in the glands of the enlarged proventriculus of one bird in Group 3. One bird in 

Group 2 and three birds in Group 3 showed apoptosis of renal tubular cells (Table 3), which 

was previously reported to be induced by higher doses of dietary fumonisin B1 in rats 

(Tolleson et al., 1996). Diarrhoea was observed in one bird in Group 3. One bird in Group 3 
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was found dead during the trial with little feed in its crop found by necropsy, which might 

suggest a reduced appetite. 

Trichothecenes, fumonisins and ZEA have been reported to cause organ enlargement, 

cell apoptosis, diarrhoea, and reduced appetite in other avian species (EFSA, 2004; EFSA, 

2005; Ledoux et al., 1992; Ribeiro et al., 2010; Zhu et al., 2011). Due to the lack of 

significant differences from the control in the present study, it is difficult to conclude whether 

the rather low levels of mycotoxins in the feeds are responsible for the occasionally observed 

pathological changes. 

 

Table 1. Occurrence of mycotoxins (μg/kg) in 10 commercial parrot feeds.  

Pelleted feed Mixed seeds 
Mycotoxins1 LOD2 LOQ2 

1 2 3 4 5 6 7 8 9 10 

Occurrence 
frequency 
(n out of 10)

ZEA 35.99 65.31 NQ3 105 NQ ND 80 NQ 202 127 462 105 9 
15-ADON 5.29 11.24 NQ 23 NQ ND 30 ND ND ND ND ND 4 
FB1 64.34 116.5 NQ 708 1187 ND ND ND ND ND ND ND 3 
AOH 23.23 43.84 ND4 ND ND ND ND ND NQ ND NQ 161 3 
DON 128.29 221.7 ND 326 NQ ND ND ND ND ND ND ND 2 
FB3 42.67 84.81 ND 88 183 ND ND ND ND ND ND ND 2 
AME 39.00 64.96 ND NQ ND ND ND ND ND ND ND NQ 2 
Fus-X 34.62 60.68 ND ND ND ND ND ND ND ND NQ NQ 2 
OTA 8.93 12.6 ND ND ND ND ND ND ND ND ND 13 1 
AFB1 3.20 6.41 ND ND NQ ND ND ND ND ND ND ND 1 
ST 8.99 17.38 NQ ND ND ND ND ND ND ND ND ND 1 
3-ADON 9.80 17.91 ND ND ND ND NQ ND ND ND ND ND 1 
DAS 1.36 2.45 ND ND ND ND ND ND ND ND ND ND 0 
NIV 71.41 132.5 ND ND ND ND ND ND ND ND ND ND 0 
Neo 17.53 31.45 ND ND ND ND ND ND ND ND ND ND 0 
AFG2 4.79 8.74 ND ND ND ND ND ND ND ND ND ND 0 

AFG1 4.19 7.07 ND ND ND ND ND ND ND ND ND ND 0 

AFB2 2.57 5.59 ND ND ND ND ND ND ND ND ND ND 0 
ALT 8.89 16.63 ND ND ND ND ND ND ND ND ND ND 0 
HT-2 19.58 33.79 ND ND ND ND ND ND ND ND ND ND 0 
T-2 19.47 34.31 ND ND ND ND ND ND ND ND ND ND 0 

1 ZEA=zearalenone; 15-ADON=15-acetyldeoxynivalenol; FB1=fumonisin B1; AOH= alternariol; 
DON=deoxynivalenol; FB3=fumonisin B3; AME=alternariol methylether; Fus-X= fusarenon-X; 
OTA=ochratoxin A; AFB1=aflatoxin B1; ST=sterigmatocystin; 3-ADON=3-acetyldeoxynivalenol; 
DAS=diacetoxyscirpenol; NIV=nivalenol; Neo=neosolaniol; AFG2=aflatoxin G2; AFG1=aflatoxin 
G1; aflatoxin B2=aflatoxin B2; ALT=altenuene; HT-2 =HT-2 toxin; T-2=T-2 toxin. 2 LOD=limit of 
detection (µg/kg); LOQ = limit of quantification (µg/kg). 3 NQ=not quantifiable (<LOQ). 4 ND=not 
detected (<LOD). 



Experimental Study 1 

 61

 

Table 2. Mean body weight gain of cockatiels fed a commercial diet containing DON, 15-ADON, 
ZEA and fumonisins (Feed 2) or a diet containing fumonisins (Feed 3). 

Group 1 (Feed 1; control) Group 2 (Feed 2) Group 3 (Feed 3) 
 

Weight gain1 Weight gain1 P-value Weight gain1 P-value 
Day 8 12.46±7.31 14.02±10.56 0.79 -0.04±18.34 0.19 
Day 15 29.03±8.28 32.49±12.87 0.64 21.35±18.17 0.42 
Day 21 35.02±5.69 31.53±16.09 0.66 21.94±23.25 0.26 

1  % of initial weight ± standard deviation. 

 

Table 3. Mean relative organ weight of cockatiels fed a commercial diet containing DON, 15-
ADON, ZEA and fumonisins (Feed 2) or a diet containing fumonisins (Feed 3). 

Group 1 (Feed 1; control) Group 2 (Feed 2) Group 3 (Feed 3) 
 Weight1 Weight1 P-value Weight1 P-value 
Liver 2.12±0.27 2.07±0.60 0.87 2.08±0.21 0.81 
Gizzard 1.29±0.32 1.01±0.15 0.12 1.61±0.42 0.22 
Spleen 0.05±0.02 0.07±0.03 0.18 0.06±0.02 0.64 
Heart 1.46±0.12 1.56±0.22 0.38 1.61±0.25 0.27 
Kidney2  0.73±0.08 (0/5) 0.66±0.03 (1/5) 0.08 1.03±0.86 (3/5) 0.47 
Lung 1.59±0.14 1.60±0.17 0.94 1.50±0.26 0.51 
Proventriculus 0.39±0.04 0.37±0.09 0.74 0.43±0.20 0.68 
Pancreas 0.27±0.03 0.25±0.06 0.49 0.29±0.05 0.56 
Bursa 0.06±0.02 0.06±0.02 0.88 0.05±0.01 0.46 

1  % of body weight ± standard deviation. 
2  Number of birds with apoptosis of renal tubules shown between brackets. 

 

4. Conclusions 

Contamination with low levels of mycotoxins is common in commercial parrot feeds. 

Although these mycotoxins did not reach toxic levels, they might pose a potential threat to the 

health of some sensitive cockatiels. 
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Abstract 

Aspergillosis is the most common fungal disease of the avian respiratory tract and is 

caused primarily by Aspergillus fumigatus. The respiratory macrophages provide important 

defense against aspergillosis. T-2 toxin (T-2), a trichothecene mycotoxin produced by 

Fusarium spp. in the field and in improperly stored agricultural products, has 

immunomodulatory effects. We studied the impact of T-2 on the antifungal response of the 

chicken macrophage cell line HD-11 against A. fumigatus infection. The macrophages were 

first exposed to 0.5 to 10 ng/ml T-2 for 24 h, and then their viability, antifungal activity, and 

cytokine expression in response to A. fumigatus conidial infection were determined. The 

viability of macrophages decreased when exposed to T-2 at concentrations higher than 1 

ng/ml. One hour after conidial infection, phagocytosed conidia were observed in 30% of the 

non-T-2-exposed macrophages, but in only 5% of the macrophages exposed to 5 ng/ml T-2. 

Seven hour after infection, 24% of the conidia associated with non-T-2-exposed macrophages 

germinated, in contrast to 75% of those with macrophages exposed to 5 ng/ml T-2. A. 

fumigatus infection induced upregulation of interleukin (IL)-1β, CXCLi1, CXCLi2 and IL-

12β, and downregulation of TGF-β4 in macrophages. Exposure of A. fumigatus-infected 

macrophages to T-2 at 1 to 5 ng/ml further upregulated the expression of IL-1β, IL-6, CCLi2, 

CXCLi1, CXCLi2, IL-18 (at 1 and 2 ng/ml) and IL-12β, and further downregulated that of 

transforming growth factor-β4 (at 5 ng/ml). In conclusion, T-2 impaired the antifungal 

activities of chicken macrophages against A. fumigatus conidia, but might stimulate immune 

response by upregulating the expression of pro-inflammatory cytokines, chemokines and T-

helper 1 cytokines. 
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1. Introduction 

Aspergillosis is the most common fungal disease of the avian respiratory tract and is 

caused primarily by Aspergillus fumigatus (Beernaert et al., 2009). A. fumigatus produces 

airborne conidia in huge amounts into the environment, and these conidia are easily inhaled 

by a bird and then colonize the lower respiratory tract (Bain et al., 2007; Tell, 2005). As the 

first line of defense against the inhaled conidia, the respiratory macrophages are responsible 

for phagocytosing and killing the inhaled fungal conidia (Luther et al., 2008; Dagenais and 

Keller, 2009; Van Waeyenberghe et al. 2012). The development of aspergillosis depends on 

the number of conidia inhaled and the host immune status (Alley et al., 1999; Beernaert et al., 

2010). 

T-2 toxin (T-2) is a trichothecene mycotoxin produced by Fusarium spp. and is usually 

detected in the field and in improperly stored agricultural products such as maize, wheat, 

barley, oat and rye, and the detected concentrations can reach up to thousands of μg/kg 

(EFSA, 2011). This mycotoxin is reported to influence the immune system with a time- and 

dose- dependent mode of action. Specifically, T-2 induces immunosuppression at high doses 

and immunostimulation at low doses in poultry (Sokolović et al., 2008), despite a short half-

life of elimination in broiler chicken plasma (Osselaere et al., 2013). The physiological 

concentrations of T-2 in the respiratory tract of chickens have never been reported in 

literatures. 

Treatments of mammalian macrophages with T-2 ranging from 0.47 to 46.7 ng/ml in 

earlier studies showed suppressed phagocytosis of bacterial and fungal pathogens by 

mammalian macrophages (Gerberick et al., 1984; Vidal and Mavet, 1989). On the other hand, 

treatments with T-2 up to 10 ng/ml did not affect the viability or microscopic morphology of 

A. fumigatus K24 (unpublished data). However, there is no information about the effect of T-

2 on the antifungal activities of avian macrophages against A. fumigatus conidia. We 

hypothesize that T-2 modulates the interaction of avian macrophages with A. fumigatus 

conidia, thus influencing the course of infection. 

The inflammatory response against pathogens involves the regulation of multiple 

cytokines. Transcription levels of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, 

CCLi2, CXCLi1, CXCLi2, IL-12β, IL-18, as well as anti-inflammatory cytokine 

transforming growth factor (TGF)-β4 in chicken were found to be altered in bacterial and 

mycoplasmal infections (Hong et al., 2006; Mohammed et al., 2007; Beeckman et al., 2010), 
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but the regulation of these cytokines in A. fumigatus infection, whether or not exposed to T-2, 

has never been studied before.  

The chicken HD-11 cell line is a macrophage-like cell line transformed with avian 

myelocytomatosis virus (MC29). The HD-11 cell line demonstrates the properties of primary 

macrophage, such as phagocytic capacity, cell surface antigens, and Fc receptor expression 

(Beug et al., 1979), despite its nitric oxide production being reported to be different from that 

of chicken primary peripheral blood leukocyte-derived macrophages upon stimulation 

(Lillehoj and Li, 2004). Chicken HD-11 cell line has been used extensively as an in vitro 

model to study pathogenic interactions with chicken macrophages, including those in the 

respiratory system (Beeckman et al., 2010; Hartley et al., 2012; Lyon and Hinshaw, 1991). 

The objective of this study was to evaluate the effects of T-2 on the antifungal responses 

of HD-11 cells against A. fumigatus conidial infection. For this purpose, we examined the 

effect of exposure of HD-11 cells to T-2 on their antifungal activity and cytokine expression 

in response to A. fumigatus conidial infection. 

 

2. Material and methods 

2.1. Aspergillus fumigatus conidia 

The A. fumigatus isolate, K24, used in this study was obtained from a racing pigeon, 

which died from pulmonary aspergillosis (Beernaert et al., 2008). Five day old cultures of this 

isolate on Sabouraud dextrose agar (CM0041, Oxoid Ltd., Basingstoke, England) were 

washed with 5 ml of 0.01% Tween 20 in Dulbecco’s Modified Eagle Medium (DMEM) to 

harvest A. fumigatus conidia. The conidia were washed three times in DMEM containing 

0.01% Tween 20 and the suspension was adjusted by haemocytometer count to the desired 

concentrations in DMEM supplemented with 10% fetal bovine serum, 1% glutamine and 1% 

pyruvate (DMEM+). 

 

2.2. Macrophage cell line 

The avian MC29 virus-transformed macrophage cell line from chicken, HD-11 (Beug et 

al, 1979) was maintained in DMEM containing 10% fetal bovine serum, 1% L-glutamine, 1% 

penicillin/streptomycin, and 1% kanamycin and was incubated at 37°C, 5% CO2, with 

passage every 3 days. For the experiments, 3 days old HD-11 cells were adjusted to the 

desired concentrations in DMEM+ by haemocytometer count. 
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2.3. Cytotoxicity of T-2 on HD-11 macrophages 

The effect of T-2 on the viability of HD-11 macrophages was determined using the 

neutral red (3-amino-7-dimethylamino-2-methyl-phenazine hydrochloride) uptake assay as 

previously described (Borenfreund and Puernen, 1985). Two hundred μl of a HD-11 cell 

suspension of 5×105 cells/ml was seeded per well in a 96 well plate. After incubation at 37 °C, 

5% CO2 for 4 h, the cells in each well were exposed to 200 μl T-2 solution (Sigma-Aldrich, 

Steinheim, Germany) at different  final concentrations (0, 0.5, 1, 2, 5 or 10 ng/ml) in 

DMEM+, with cells exposed to 0 ng/ml T-2 serving as negative control. After 24 h of 

incubation at 37°C, 5% CO2, the medium was removed and the wells were gently rinsed with 

Hank's Buffered Salt Solution + Ca2+ and Mg2+ (HBSS+). The cells in each well were 

incubated with 200 μl of a 33 µg/ml neutral red solution for 2 h at 37°C, 5% CO2. 

Subsequently, the cells were gently rinsed with HBSS+ and the neutral red dye was eluted 

with 200 μl elution mixture (acetic acid/ethanol/water, 1/50/49 v/v/v) by shaking at 550 rpm 

in a MTS 2/4 digital microtiter shaker (IKA, Germany) for 10 min. One hundred and fifty μl 

of the eluate from each well was transferred into a new 96 well plate (IWAKI, Japan) and 

absorbance at 540 nm was read on an ELISA reader. This test was performed in sextuplicate. 

Viability of HD-11 cells was calculated using the following formula: 

Viability= (a-b)/(c-b) ×100% 

In this formula a = OD540 derived from a well incubated with T-2, b = OD540 derived 

from a blank well without cells, c = OD540 derived from a negative control well. 

 

2.4. Phagocytosis of A. fumigatus conidia by T-2-exposed HD-11 macrophages 

Phagocytic ability of HD-11 macrophages either or not exposed to T-2 was assessed by 

fluorescence microscopy as previously described (Van Waeyenberghe et al. 2012). One ml of 

a HD-11 cell suspension of 105 cells/ml was seeded per well on a glass coverslip in a 24 well 

plate and exposed to 1 ml T-2 solution at a final concentration of 0, 0.5, 1, 2, or 5 ng/ml 

respectively for 24 h as described above. The HD-11 cells in each well were then exposed to 

2×105 K24 conidia in DMEM+ with the same concentration of T-2, and conidial exposure 

was synchronized by centrifugation at 1500 rpm at 37 °C for 10 min. Subsequently, the cells 

were allowed to phagocytose the conidia for 1 h at 37 °C, 5% CO2. Medium containing the 

free conidia was removed, and wells were rinsed using HBSS+. Each well was then incubated 

with 1 ml of 25 μM Calcofluor White M2R (Life Technologies Europe BV, Ghent, Belgium) 

for 30 min at 37 °C to stain the extracellular conidia, but not the intracellular conidia. After 

washing with HBSS+ and fixing with 4% paraformaldehyde, the coverslip was mounted on a 
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microscopic slide with DABCO glycerol. The numbers of macrophages with intracellular and 

extracellular conidia in 100 randomly observed cells from each treatment were counted with a 

fluorescence microscope. This test was performed in quadruplicate. 

 

2.5. Germination rate of A. fumigatus conidia associated with T-2-exposed HD-11 

macrophages 

One ml of a HD-11 macrophage suspension of 105 cells/ml was seeded per well in a 24 

well plate and exposed to 1 ml T-2 at a final concentration of 0, 0.5, 1, 2 or 5 ng/ml 

respectively for 24 h as described above. The HD-11 cells in each well were then exposed to 

2×105 K24 conidia in DMEM+ with the same concentration of T-2, and the conidial exposure 

was synchronized by centrifugation at 1500 rpm at 37 °C for 10 min. After 1 h of incubation, 

the free conidia were removed by washing with HBSS+, and the HD-11 cells with conidia 

were incubated in DMEM+ containing T-2 at the same concentrations for another 6 h. After 

washing with HBSS+ and fixed with 4% paraformaldehyde, the cells were covered by a glass 

coverslip with DABCO glycerol. One hundred macrophages with conidia in each treatment 

were randomly observed with a light microscope, and the germination rate of conidia was 

calculated by dividing the number of cell-associated conidia which had germinated by the 

total number of cell-associated conidia. This test was performed in quadruplicate. 

 

2.6. Cytokine mRNA expression in HD-11 macrophages in response to A. fumigatus 

conidial infection 

Cytokine mRNA expression was examined by quantitative reverse transcriptase 

polymerase chain reaction (qRT-PCR), and the fold change in Cytokine Expression per Unit 

Amount of Macrophages (CEUAM) between a treatment and a control was then calculated by 

2-ΔΔCt method (Livak and Schmittgen, 2001). First, kinetic change of cytokines expression in 

HD-11 cells was established during 20 h post A. fumigatus conidial infection. Then, to 

evaluate the effect of T-2 on cytokine expression in A. fumigatus-infected macrophages, 

cytokine expression was examined in A. fumigatus-infected HD-11 cells either or not exposed 

to T-2. 

To establish the kinetic cytokine expression, 1 ml of a HD-11 cell suspension of 5×105 

cells/ml was seeded per well in a 24 well plate as described above. The macrophages were 

then exposed to 106 K24 conidia in 1 ml DMEM+, and the conidial exposure was 

synchronized by centrifugation at 1500 rpm at 37 °C for 10 min. macrophages not exposed to 

conidia served as negative control. At 1, 4, 6, 12 and 20 h post conidial exposure, total RNA 
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from the macrophages was isolated using RNeasy Mini Kit (Qiagen), and reversely 

transcribed using iScript cDNA Synthesis kit (Bio-Rad Laboratories) according to the 

manufacturers’ instructions. Information of the analyzed genes and their primers for qRT-

PCR analysis is given in Table 1. GAPDH and β-actin were used as reference genes. qRT-

PCR reactions were carried out using SensiMix SYBR No-ROX Kit (Bioline) in a C1000 

Thermal Cycler coupled with a CFX96 Real-Time PCR Detection System (Bio-Rad 

Laboratories). The cycle profile was as follows: one cycle of 95 °C for 10 min and 45 cycles 

of 95 °C for 10 sec and 60 °C for 30 sec. The threshold cycle values (Ct) were first 

normalized to the geometric means of reference mRNAs and the fold changes in CEUAM 

between infected macrophages and uninfected macrophages (control) were calculated by the 

2-ΔΔCt method (Livak and Schmittgen, 2001). 

 

Table 1. Genes and sequences of the primers used for qRT-PCR analysis 

Cytokine Primer sequence (5’ to 3’) 
Amplicon size 
(base pairs) 

Accession 
number 

Reference 

forward CAACACAGTGCTGTCTGGTGG 
β-actin 

reverse ATCGTACTCCTGCTTGCTGAT 
205 X00182 Lu et al. (2009) 

forward ATTCTACACACGGACACTTCA 
GAPDH 

reverse CACCAGTGGACTCCACAACATA 
153 K01458 Mohammed et al. (2007)

forward TGGGCATCAAGGGCTACA 
IL-1β 

reverse TCGGGTTGGTTGGTGATG 
244 Y15006 Hong et al. (2006) 

forward GCTCGCCGGCTTCGA 
IL-6 

reverse GGTAGGTCTGAAAGGCGAACAG 
71 AJ309540 Beeckman et al. (2010) 

forward AGGATCTGCAGTGGAAGTGGAT 
TGF-β4 

reverse CCCCGGGTTGTGTTGGT 
137 M31160 Beeckman et al. (2010) 

forward GGCAGACTACTACGAGACCAACAG 
CCLi2 

reverse ACGGCCCTTCCTGGTGAT 
70 AJ243034 Beeckman et al. (2010) 

forward TGGCTCTTCTCCTGATCTCAATG 
CXCLi1 

reverse GCACTGGCATCGGAGTTCA 
527 AF277660 Beeckman et al. (2010) 

forward GCCCTCCTCCTGGTTTCAG 
CXCLi2 

reverse TGGCACCGCAGCTCATT 
923 AJ009800 Beeckman et al. (2010) 

forward TGAAGGAGTTCCCAGATGC 
IL-12β 

reverse CGTCTTGCTTGGCTCTTTATAG 
152 AY262752 Mohammed et al. (2007)

forward AGGTGAAATCTGGCAGTGGAAT 
IL-18 

reverse ACCTGGACGCTGAATGCAA 
94 AJ276026 Beeckman et al. (2010) 

 

To compare cytokine mRNA expression in response to conidial infection between HD-

11 macrophages either or not exposed to T-2, the same assay was used, but the macrophages 

were exposed to T-2 at a final concentration of 0, 1, 2 or 5 ng/ml during 24 h prior to conidial 

exposure as described above. Then, the cells were inoculated with K24 conidia as described 

above and incubated in medium containing the respective concentration of T-2. Total mRNA 

was isolated at 6 h after conidial exposure. By 2-ΔΔCt method (Livak and Schmittgen, 2001), 
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the fold changes in CEUAM between T-2-exposed macrophages and non-T-2-exposed 

macrophages (control) in response to conidial infection were calculated. Both tests were 

performed in triplicate. 

 

2.7. Data analysis 

The differences in cell viability, phagocytic activity, conidial germination and cytokine 

expression among different treatments were assessed by performing one-way ANOVA after 

determination of normality and variance homogeneity. Significance level was set at 0.05. 

 

3. Results 

3.1. Cytotoxicity of T-2 on HD-11 macrophages 

The viability of the HD-11 macrophages significantly decreased when exposed to T-2 at 

concentrations higher than 1 ng/ml, but the cell viability was not affected by T-2 at 0.5 and 1 

ng/ml (Figure 1). No morphological changes were noticed at 0.5 and 1 ng/ml, but the cells at 

T-2 higher than 5 ng/ml seemed to have shrunk somewhat. 

 
Figure 1. Viability of chicken macrophages 24 h after exposure to 0 to 10 ng/ml T-2. Results are 
expressed as mean ± standard deviation of 6 replicates. * Significant difference compared with 
the control (0 ng/ml). 
 

3.2. Phagocytosis and germination of A. fumigatus in T-2-exposed HD-11 macrophages 

In both phagocytosis assay and germination assay, the same number (100) of 

macrophages was counted in different treatments (0, 1, 2, and 5 ng/ml) to calculate the 

phagocytosis and germination rates of conidia. One hour after conidial exposure, 

phagocytosed (intracellular) and cell-associated (intracellular + extracellular) conidia were 
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observed in 30% and 59% of the non-T-2-exposed macrophages (0 ng/ml), respectively, 

while in macrophages exposed to 5 ng/ml T-2, these percentages decreased to 5% and 26% 

respectively (Figure 2). Six hour later, 24% of the conidia associated with non-T-2-exposed 

macrophages germinated, in contrast to 75% in macrophages exposed to 5 ng/ml T-2 (Figure 

3). Phagocytosis and germination rate at high T-2 concentrations (2 and 5 ng/ml) were 

significantly lower and higher than the controls, respectively. 

 
Figure 2. Phagocytosis of A. fumigatus conidia by chicken macrophages exposed to 0 to 5 ng/ml 
T-2 determined 1 h post conidial infection. Results are expressed as mean ± standard deviation of 
four replicates. * Significant difference compared with the control (0 ng/ml). 

 

 
Figure 3. Germination rate of A. fumigatus conidia associated with chicken macrophages 
exposed to 0 to 5 ng/ml T-2 determined 7 h post conidial infection. Results are expressed as mean 
± standard deviation of four replicates. * Significant difference compared with the control (0 ng/ml). 
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3.3. Kinetic cytokine mRNA expression in HD-11 macrophages in response to A. 

fumigatus conidial infection 

Cytokine expression in A. fumigatus-infected HD-11 macrophages was compared to that 

in uninfected controls at 1, 4, 6, 12 and 20 h post infection (p.i.). Significant upregulation of 

IL-1β, CXCLi1, CXCLi2 and IL-12β was noticed from 6, 4, 4 and 12 h p.i., and finally 

increased to 248, 727, 371 and 387 folds of that in uninfected controls at 20 h p.i., 

respectively. Significant downregulation of TGF-β4 was noticed from 12 h p.i., and finally 

decreased to 0.4 fold of that in uninfected controls at 20 h p.i.. A. fumigatus conidial infection 

did not induce any significant change in IL-6 and IL-18 expression throughout the 20 h 

incubation period (Figure 4). 

 
Figure 4. Transcription level of cytokine mRNA in chicken macrophages during 20 h after 
infection with A. fumigatus conidia. Data represent the normalized transcription level of a cytokine 
in the infected macrophages relative to that in the uninfected macrophages (control), which is 
considered one. Results expressed as mean ± standard deviation of three replicates. * Significant 
difference compared with the control. 

 

3.4. Cytokine mRNA expression in T-2-exposed HD-11 macrophages in response to A. 

fumigatus conidial infection 

Compared with the non-T-2-exposed controls, the macrophages exposed to 1 to 5 ng/ml 

T-2 showed significantly upregulated expression of IL-1β, IL-6, CCLi2, CXCLi1, CXCLi2, 

IL-12β and IL-18 (at 1 and 2 ng/ml), and significantly downregulated expression of TGF-β4 

(at 5 ng/ml) 6 h after exposure to A. fumigatus conidia. Expression patterns were dose-

dependent from 1 to 5 ng/ml except for IL-18 (Figure 5). 
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Figure 5. Transcription level of cytokine mRNA in chicken macrophages exposed to T-2 (at 1, 2 
and 5 ng/ml) determined 6 h after infection with A. fumigatus conidia. Data represent the 
normalized transcription level of a cytokine in the T-2-exposed macrophages relative to that in the 
non-T-2-exposed macrophages (control), which is considered one. Results expressed as mean ± 
standard deviation of three replicates. Columns marked 0, 1, 2 and 5 indicate a significant difference 
from control, macrophages exposed to 1 ng/ml, 2 ng/ml, and 5 ng/ml T-2, respectively. 

 

4. Discussion 

T-2 was shown to be highly toxic at very low concentrations (> 1 ng/ml) for chicken 

macrophages. A similar result was observed in a study by Jaradat et al. (2006), where T-2 

inhibited mitogen-stimulated chicken lymphocyte proliferation in vitro at concentrations of 1 

ng/ml or higher, and proliferation was completely abolished at 10 ng/ml. In a study by Kidd 

et al. (1997), 1 h exposure of chicken macrophages to 10 μg/ml and 160 μg/ml T-2 tetraol, a 

T-2 derivative resulted in respectively 83% and 63% viability. The half inhibition 
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concentration (IC50) in this study was approximately 2 ng/ml, while that of human 

macrophages was demonstrated at 10 ng/ml (Hymery et al., 2009). Exposure to similar levels 

of T-2 in vivo may thus be expected to negatively affect macrophage viability and as a 

consequence the first line defense mechanism against aspergillosis. 

Further evidence for impaired macrophage function was the decreased phagocytic 

capacity of the macrophages after exposure to T-2. This result is in agreement with those 

obtained in mammalian macrophages. The phagocytosis of Pseudomonas sp. by mouse 

peritoneal macrophages exposed to 0.47 ng/ml to 46.7 ng/ml T-2 decreased dose-dependently 

(Vidal and Mavet, 1989). T-2 at 4.7 ng/ml and 23.4 ng/ml decreased the phagocytic capacity 

of rat alveolar macrophages for yeast cells to respectively 76.9% and 16.8% of the controls 

(Gerberick et al., 1984), and serum from rabbits treated with 0.5 mg of T-2 per kg of body 

weight per day suppressed the phagocytosis of A. fumigatus conidia by rabbit alveolar 

macrophages (Niyo et al., 1988). Impaired macrophage function by T-2 was further supported 

by the increased germination rate of macrophage-associated A. fumigatus conidia in this study. 

This result is compatible with a report by Verbrugghe et al. (2012) that T-2 at 1 ng/ml 

increased the susceptibility of porcine macrophages to Salmonella Typhimurium invasion. 

Phagocytosis and germination of A. fumigatus conidia in chicken HD-11 cells were similar to 

those in primary respiratory macrophages of pigeons (Van Waeyenberghe et al., 2012), but 

the current study is the first to address the effect of T-2 on the antifungal response of chicken 

macrophages. In conclusion, pronounced cytotoxicity of T-2 for avian macrophages 

coincided with impaired antifungal activity, which would thus facilitate conidial infection in 

the avian respiratory tract. 

In response to A. fumigatus infection, the expression of pro-inflammatory cytokines IL-

1β, IL-12β (T-helper (Th) 1 cytokine), CXCLi1 (chemokine) and CXCLi2 (chemokine) in 

HD-11 macrophages was upregulated, and that of TGF-β4 (anti-inflammatory cytokine) was 

downregulated. These results suggest that A. fumigatus infection promotes inflammatory 

response in chicken macrophages, induces migration of other immunocytes to the infection 

sites, and stimulates Th1 immune responses (Beeckman et al., 2010). The upregulated 

expression of IL-1 and IL-12 in A. fumigatus-infected HD11 cells was compatible with the A. 

fumigatus-induced production of these cytokines in mouse alveolar and peritoneal 

macrophage (Taramelli et al., 1996), equine alveolar macrophages (Laan et al., 2005), and 

mouse bronchoalveolar lavage fluid (Cenci et al., 1998). Apergillosis also induced 

upregulation of IL-6 and IL-18 in dog mucosal tissue (Day, 2009) and mouse bronchoalveolar 

lavage fluid and lung tissue (Brieland et al., 2001), but upregulation of IL-6 and IL-18 did not 
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happen to the chicken HD-11 cells upon conidial infection. Significant changes in cytokine 

expression occurred from around 6 h after exposure to A. fumigatus conidia, which 

corresponded to the time of conidial germination. Therefore the effect of T-2 exposure on 

cytokine expression in A. fumigatus-infected macrophages was subsequently determined at 6 

h p.i. 

In response to A. fumigatus infection, the expression of pro-inflammatory cytokines IL-

1β, IL-6, CCLi2 (chemokine), CXCLi1, CXCLi2, IL-12β and IL-18 (Th1 cytokine) was 

upregulated, and that of TGF-β4 was downregulated in T-2-exposed HD-11 macrophages as 

compared with the non-T-2-exposed macrophages (control). This result suggests that 

exposure of chicken macrophages to T-2 further promotes the pro-inflammatory response, 

immunocyte migration, and Th1 immune response induced solely by A. fumigatus conidia. It 

is interesting that A. fumigatus infection did not induce the expressions of IL-6 and IL-18 

when the HD-11 cells were not exposed to T-2, but both the expression of IL-6 and IL-18 

were upregulated upon A. fumigatus infection when the HD-11 cells were exposed to T-2. 

These findings support the notion that T-2 may enhance the immune response by increasing 

the production of pro-inflammatory cytokines (Kankkunen et al., 2009). No previous study 

has been performed on how T-2 affects cytokine expression in fungus-infected macrophages. 

Production of IL-1β, IL-6 and IL-12 in mammalian macrophages was reduced by T-2 

exposure when the macrophages were uninfected (T-2 at ≤ 1 ng/ml) (Ahmadi and Riazipour, 

2008a) or co-stimulated with bacterial lipopolysaccharide (Dugyala and Sharma, 1997), 

lingzhi (Ganoderma lucidum) extract (Ahmadi and Riazipour, 2008b), or TLR-agonists 

(Seeboth et al., 2012), but upregulation of IL-1β, IL-6 and IL-18 was also reported in 

macrophages stimulated solely with T-2 (Kankkunen et al., 2009), or co-stimulated with 

bacterial lipopolysaccharide (Wang et al., 2012). With these diverse effects of T-2, the co-

effects of T-2 and different pathogens or antigens on macrophages have to be examined 

specifically. T-2 has been reported to have both suppressive and stimulatory effects on 

immunity, and the enhanced immune response was suggested to be associated with the 

increased production of pro-inflammatory cytokines and migration of macrophages (EFSA, 

2011; Kankkunen et al., 2009; Sokolović et al., 2008). The changes in cytokine expression in 

T-2-exposed HD-11 cells seemed to be the result of the immunostimulatory effect of T-2. 

Another study of our group showed that K24 conidia did not secrete any proteins or 

mycotoxins in the non-germination condition (Li et al., unpublished data). The assays on 

phagocytosis, conidial germination, and cytokine expression involving T-2 were performed in 

the non-germination condition or during the early germination stage to avoid potential 
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interferences of other K24 metabolites with the effects of T-2.  In conclusion, T-2 impaired 

the antifungal activity of HD-11 cells against A. fumigatus conidial infection, but promoted a 

pro-inflammatory response in infected macrophages, which might compensate for the 

observed macrophage functional impairment. 
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Abstract 

Aspergillus fumigatus is a ubiquitous airborne pathogen. Saprophytic growth in the 

presence of environmental mycotoxins might affect its fitness and virulence. T-2 toxin (T-2) 

is a trichothecene mycotoxin produced by Fusarium spp. in various substrates. This study 

aimed to evaluate the effects of T-2 on the fitness of A. fumigatus in vitro and its virulence in 

experimentally inoculated chickens. We cultured A. fumigatus on agar media containing T-2, 

and examined the changes in viability, morphology, growth rate, proteome expression, and 

susceptibility to antimycotics and oxidative stress of this fungus. Results showed that 

exposure to 1000 ng/ml T-2 did not reduce the viability of A. fumigatus, but its growth was 

inhibited, with wrinkling and depigmentation of the colonies. Proteomic analysis revealed 21 

upregulated proteins and 33 downregulated proteins, including those involved in stress 

response, pathogenesis, metabolism, transcription and so on. The proteome seems to have 

shifted to enhance the glycolysis, catabolism of lipids, and amino acid conversion. Assays on 

fungal susceptibility to antimycotics and oxidative stress showed that T-2 exposure did not 

affect the minimal inhibitory concentrations of amphotericin B, itraconazole, voriconazole 

and terbinafine against A. fumigatus, but increased the susceptibility of A. fumigatus to H2O2 

and menadione. Experimental inoculation of chickens with A. fumigatus showed that 

exposure of A. fumigatus to T-2 significantly exacerbated aspergillosis in chickens exposed to 

dietary T-2. In conclusion, A. fumigatus is capable of surviving and growing on substrates 

containing levels of T-2 up to 1000 ng/ml. Growth in the presence of T-2 induces a stress 

response in A. fumigatus, which is associated with exacerbation of aspergillosis in vivo. 
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1. Introduction 

The ubiquitous saprophytic fungus Aspergillus fumigatus is an opportunistic human and 

animal pathogen that releases abundant small conidia (2 to 3 μm in diameter) into the air, 

which makes it the most prevalent airborne fungal pathogen (Latgé, 1999; Beernaert et al., 

2010). The respiratory system is the primary target of aspergillosis, and birds are considered 

to be particularly susceptible to aspergillosis (Van Waeyenberghe et al., 2012b). After 

inhalation of conidia, respiratory macrophages form the first line of defence against this 

fungal pathogen by phagocytosis and production of reactive oxygen species (ROS) (Juul-

Madsen et al., 2008; Van Waeyenberghe et al., 2012a). Although A. fumigatus is regarded as 

an opportunistic pathogen, it can be fatal for immunocompromised hosts (Latgé, 1999). 

Mycotoxins are fungal secondary metabolites which are toxic to humans and other 

animals, and they have been detected in samples from a variety of environments (Elmholt, 

2008; Hoerger et al., 2009; Mayer et al., 2008; Smoragiewicz et al., 1993; Tuomi et al., 2000). 

It is very likely that A. fumigatus, as a ubiquitous fungus, lives and grows on mycotoxin-

contaminated substrates in environments such as grain storehouses, livestock farms, 

mushroom farms, sawmills, wood pulp mills, waste treatment plants, and even offices, 

libraries, and museums. Apart from their toxicity to animals, mycotoxins such as T-2 toxin 

(T-2), HT-2 toxin, diacetoxyscirpenol, deoxynivalenol, zearalenone, patulin, aflatoxin B1, 

ochratoxin A, citrinin, penicillic acid, cyclopiazonic acid and penitrem A are known to have 

antimicrobial activity on different fungi and/or bacteria (Elmholt, 2008), but the effects of 

mycotoxins in the substrates on the growth and virulence of A. fumigatus are not known. T-2 

is a trichothecene mycotoxin produced by Fusarium spp. (EFSA, 2011). T-2 and its 

derivatives have been found in the dust of indoor ventilation systems (Smoragiewicz et al., 

1993), crude building materials (Tuomi et al., 2000), and more typically in agricultural 

products (EFSA, 2011) and grain dust (Nordby et al., 2004). Exposure of mice, pigs and 

chickens to T-2 affected these animals’ susceptibility to bacterial infections (Corrier and 

Ziprin, 1987; Verbrugghe et al., 2012; Ziprin and Elissalde, 1990; Kubena et al., 2001), and 

T-2 has been shown to influence the function of chicken macrophages against A. fumigatus 

conidia (Li et al., 2013b). If exposure to T-2 during A. fumigatus growth also alters the 

fungus’ fitness and virulence, this may affect the development of aspergillosis in chickens. 

This study aimed to evaluate the potential effects of T-2 on the fitness of A. fumigatus 

and its virulence in experimentally inoculated chickens. Therefore, we examined the impact 

of exposure to T-2 on the viability, morphology, growth rate and proteome expression of A. 
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fumigatus and on its susceptibility to antimycotics and oxidative stress. An in vivo experiment 

was then performed to examine the virulence of T-2-exposed A. fumigatus in chickens. 

 

2. Material and methods 

2.1. Aspergillus fumigatus strain 

The A. fumigatus isolate, K24, used in this study was obtained from a racing pigeon 

which died from pulmonary aspergillosis (Beernaert et al., 2008), and stored in MicrobankTM 

Bacterial and Fungal Preservation System (Pro-lab Diagnostics, Round Rock, TX, USA) at -

75 °C until use. 

 

2.2. Effect of T-2 on the viability of A. fumigatus 

A 5 days old culture of A. fumigatus K24 on Sabouraud dextrose agar (Oxoid, 

Basingstoke, England) was washed with Hank's Buffered Salt Solution (HBSS) supplemented 

with 0.01% Tween 20 to harvest the conidia. The conidia were washed three times in the 

same buffer and a serial dilution of the conidial suspension was titrated on Sabouraud 

dextrose agar supplemented with 0 (control), 10, 100, or 1000 ng/ml T-2 (Sigma-Aldrich, St. 

Louis, MO, USA). Colony forming units (CFU) were counted after 20 h of growth at 37 °C. 

The viability of conidia was calculated by dividing the CFU recovered from each treatment 

by that from the control. This test was performed in 6 replicates. Differences in viability 

between the control and T-2-exposed conidia were statistically analyzed by t-test, and the 

significance level was set at P < 0.05. 

 

2.3. Effect of T-2 on the growth phenotype of A. fumigatus 

To observe the morphological growth of A. fumigatus, a sample taken from the A. 

fumigatus K24 conidia stock using a 1 μl Ansa Microloop (Biosigma, Cona, Italy) was seeded 

on Sabouraud dextrose agar supplemented with 0 (control), 10, 100, or 1000 ng/ml T-2 and 

cultured at 37°C. Every day, the diameters of the fungal colonies were measured, and the 

morphological characteristics of the colonies were examined macroscopically. To examine 

the microscopic morphological characteristics of the colonies, a small piece of each colony 

was streaked on a microscopic slide, stained with lactophenol cotton blue and observed by 

light microscopy every day. This test was performed in triplicate. Difference in diameter 

between the control and a T-2-exposed culture was statistically analyzed by t-test, and the 

significance level was set at P < 0.05. 
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2.4. Effect of T-2 on conidial proteome A. fumigatus 

A proteomic analysis was performed to investigate how T-2 exposure might affect the 

conidial protein expression of A. fumigatus. Therefore, A. fumigatus K24 was cultured on 

Sabouraud dextrose agar supplemented with 0 (control), 10, 100 or 1000 ng/ml T-2 at 37°C 

for 5 days. The conidia were collected in HBSS with 0.05% Tween 20 and washed 3 times by 

centrifugation and resuspension. The conidial protein sample was prepared as described by 

Asif et al. (2006) with some modifications. In brief, the conidial suspension was first adjusted 

to 1010 conidia/ml in HBSS containing protease inhibitors and nuclease (One Complete Mini 

protease inhibitor cocktail tablet (Roche Diagnostics, Mannheim, Germany) and 10 μl 

Benzonase nuclease (Sigma-Aldrich, St. Louis, MO, USA) were dissolved in 40 ml HBSS 

beforehand). One ml of this conidial suspension was mixed with 0.4 μl silicon beads (0.1 mm 

in diameter) in a 2 ml PP microtube. Conidia were disrupted by 25 cycles of 20 s oscillation 

at the highest speed in a MagNa lyser Instrument (Roche Diagnostics, Rotkreuz, Switzerland) 

with a brief cooling step on ice between every two cycles. After centrifugation at 10,000×g 

for 10 min, the supernatant containing proteins was collected and filtrated through a 

WhatmanTM filter with 0.2 μm pore size (GE Healthcare, Buckinghamshire, UK) to remove 

conidial debris. Samples of each treatment were prepared in triplicate (Samples 1, 2 and 3). 

The protein concentration was then determined by Pierce BCA Protein Assay Kit (Thermo 

Scientific, Rockford, IL, USA) according to the manufacturer’s instructions. 

Each protein sample was then subjected to reduction, cysteine blocking, digestion, and 

labeling using iTRAQ Reagents (AB Sciex, Foster City, CA, USA) according to the 

manufacturer’s guidelines. Analysis was run in triplicate. In each run, 4 samples from 

different treatments were analyzed, with each sample labeled with one of the four-plex labels. 

The labeling of the samples was as follows: 

Run 1 (Sample 1 of control: 114, Sample 1 of 10 ng/ml treatment: 115, Sample 1 of 100 

ng/ml treatment: 116, Sample 1 of 1000 ng/ml treatment: 117); Run 2 (Sample 2 of control: 

115, Sample 2 of 10 ng/ml treatment: 116, Sample 2 of 100 ng/ml treatment: 117, Sample 2 

of 1000 ng/ml treatment: 114); Run 3 (Sample 3 of control: 116, Sample 3 of 10 ng/ml 

treatment: 117, Sample 3 of 100 ng/ml treatment: 114, Sample 3 of 1000 ng/ml treatment: 

115). 

After labeling, 6 μl of a 5% (v/v) hydroxylamine solution was added to hydrolyze 

unreacted labels and after incubation at room temperature for 5 min, the samples were pooled, 

dried and resuspended in 5 mM KH2PO4 (15% (v/v) acetonitrile) (pH 2.7). The combined set 
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of samples was first purified on ICAT SCX (strong cation exchange) cartridges, desalted on a 

C18 trap column and finally fractionated using SCX chromatography. Each fraction was 

analyzed by nano LC-MS/MS as described by Bijttebier et al. (2009). 

With no full A. fumigatus protein database available, different search parameters and 

databases, both EST and protein, were validated to obtain maximum spectrum annotation. 

Best results were obtained when searching UniProtKB/Swiss-Prot database. Significantly 

differentially expressed proteins in each run were isolated using Rover software (Z-score < -

1.96 for downregulated and > 1.96 for upregulated proteins) (Colaert et al., 2011). Only 

proteins that were significantly differentially expressed in at least two samples at the same or 

different T-2 concentrations were retained. In parallel, dose-dependent changes of protein 

expression were analyzed using the software program Qlucore Omics Explorer by means of a 

ranked regression analysis. The functions of proteins were found by searching 

UniProtKB/Swiss-Prot database, and functionally unannotated proteins were subjected to 

BLAST to assess their potential biological function. The proteins were then functionally 

categorized according to Functional Catalogue (Funcat) with minor modifications. To find 

possible changes in the metabolic pathways, homologues of these proteins in the yeast 

Saccharomyces cerevisiae, which is a well studied model of fungus, were found by BLAST 

and then mapped in pathways documented in Reactome database. 

 

2.5. Effect of T-2 on the susceptibility of A. fumigatus to antimycotics 

Since exposure of A. fumigatus to T-2 had a profound effect on conidial protein 

expression, this might alter susceptibility of A. fumigatus conidia to antimycotics. A. 

fumigatus K24 was cultured on Sabouraud dextrose agar supplemented with 0 (control 

conidia) or 1000 ng/ml T-2 (T-2-exposed conidia) at 37°C for 3 days. Conidia were collected 

from these media and suspended in RPMI 1640 or RPMI 1640 supplemented with 1000 

ng/ml T-2. The minimal inhibitory concentrations (MICs) of amphotericin B, itraconazole, 

voriconazole and terbinafine were determined and compared between the control conidia and 

T-2-exposed conidia using the broth microdilution method recommended by the Clinical and 

Laboratory Standard Institute (CLSI) document M38-A2. All antimycotics were purchased 

from Sigma-Aldrich, St. Louis, MO, USA, and stored at 1600 μg/ml in DMSO at -75°C. The 

concentration which gave little or no visible growth as compared to the control was 

considered the MIC. This test was performed in both RPMI-1640 and RPMI-1640 with 1000 

ng/ml T-2, and was performed in triplicate. 
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2.6. Effect of T-2 on susceptibility of A. fumigatus to oxidative agents 

To examine possible effects of T-2 in the substrate on the susceptibility of A. fumigatus 

to oxidative stress, fungal susceptibility to 3 oxidative agents was assayed as described by 

Qiao et al. (2010) with some modifications. Briefly, A. fumigatus K24 was cultured on 

Sabouraud dextrose agar supplemented with 0 (control conidia) or 1000 ng/ml T-2 (T-2-

exposed conidia) at 37°C for 3 days, and the conidia were harvested and suspended in HBSS 

with 0.05% Tween 20. After allowing the heavy particles to settle for 5 min, the upper 

homogenous suspension was taken and adjusted to 6×108 conidia/ml. One μl of this conidial 

suspension was inoculated on Sabouraud dextrose agar supplemented with 1 – 8 mM H2O2 

(Merck, Hohenbrunn, Germany), 80 – 160 μM menadione (Sigma-Aldrich, St. Louis, MO, 

USA), or 2 − 8 mM diamide (Sigma-Aldrich, St. Louis, MO, USA), and blank agar medium 

without any oxidative agent served as negative control. The 1 μl inocula were air-dried 

immediately. The plates were incubated at 37°C for 48 h, and the diameter of growth was 

measured. A diameter was recorded as 0 cm if no growth was observed. This assay was 

performed in 6 replicates. Difference in diameter between a colony formed by T-2-exposed 

conidia and that by control conidia was statistically analyzed by t-test, and the significance 

level was set at P < 0.05. 

 

2.7. Effect of T-2 exposure on the experimental infection of chickens with A. fumigatus 

To examine the effect of exposure to T-2 on avian aspergillosis, chickens (Ross 308) 

which were fed either a blank feed or feed supplemented with T-2, were exposed to A. 

fumigatus that was grown on Sabouraud dextrose agar either or not containing T-2. Ninety 

one day old broiler chickens were divided into 6 groups of 15 birds. Three groups (Groups 1, 

2, 3) were given blank feed (Bro Plus, Versele-Laga, Deinze, Belgium), and the other 3 

groups (Groups 4, 5, 6) were given feed supplemented with 927 μg/kg T-2 (Fermentek, 

Jerusalem, Israel) for 29 days. The feed was spiked with T-2 beforehand based on the 

occurrence levels in previous studies (Binder et al.; 2007; Osselaere et al., 2013), and the final 

T-2 concentration in each feed was analyzed by LC-MS/MS as previously described (Li et al., 

2013a). Feed and water were given ad libitum. A. fumigatus strain K24 was cultured on agar 

media with (T-2-exposed conidia) or without (control conidia) 1000 ng/ml T-2 as described 

above. Conidia were collected and the experimental inocula were prepared at 108 conidia/ml 

in HBSS immediately before inoculation. On Day 15, Groups 2 and 5 were inoculated 

intratracheally with 0.2 ml suspension of control conidia, Groups 3 and 6 were inoculated 

with the same dose of T-2-exposed conidia, and Group 1 (negative control) and Group 4 (T-2 
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control) were sham-inoculated with 0.2 ml HBSS. Clinical signs (ruffled feathers, apathy, 

tracheal reflex, breathing noise, tachypnea, and/or dyspnea) were observed daily. The 

difference between the body weight immediately before inoculation and that at necropsy was 

considered the post-inoculation weight gain. Dead chickens were necropsied immediately, 

and all remaining chickens were euthanized and necropsied on Day 30. Swabs from the lungs 

and airsacs were cultured on Sabouraud dextrose agar to retrieve A. fumigatus. Lungs were 

cut and stored in 10% neutral buffered formalin, and the histological sections were stained 

with Periodic acid-Schiff (PAS) and examined microscopically. Severity of aspergillosis was 

scored for each bird as the sum of the following parameters: 

Presence of clinical sign = 1; Post-inoculation weight gain < (average weight gain of the 

negative control group – 2×SD) = 1; Presence of macroscopic lesions of the respiratory tract 

at necropsy = 1; Presence of histological lesions in the lungs = 1; Retrieval of A. fumigatus 

isolate from lungs and/or airsacs = 1; Death = 1. 

Mann–Whitney U test was performed to compare the aspergillosis scores between 

different groups, and the significance level was set at P < 0.05. This animal experiment was 

approved by the ethics committee of the Faculty of Veterinary Medicine, Ghent University 

(EC2013_101). 

 

3. Results 

3.1. Effect of T-2 on the viability and growth of A. fumigatus 

The viability of the A. fumigatus conidia on media containing 0 to 1000 ng/ml T-2 

ranged between 98.5% and 100%, without any significant difference between T-2-exposed 

conidia and the control (0 ng/ml T-2). However, the growth rates of the colonies were 

significantly lower on media containing 100 and 1000 ng/ml T-2 than those of the control, as 

indicated by the smaller colonial diameters (Table 1). Deep radial wrinkles and lighter 

pigmentation were observed on the colonies exposed to 1000 ng/ml T-2, and the colonies 

exposed to 100 ng/ml T-2 were also slightly wrinkled in the centre (Figure 1). Average 

conidial diameter from 3 days old cultures ranged from 2.5 to 2.6 μm in all control and T-2-

exposed cultures. No morphological differences in phialide, conidial head, conidiophore, or 

hypha were noticed among different treatments when examined by light microscopy. 
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Table 1. Diameter of A. fumigatus colony grown on agar plates containing 0 (control), 10, 100 
and 1000 ng/ml T-2 at 37 °C. 

 Diameter of colony ± SD (cm) 
Culture time 

T-2 concentration 0 ng/ml (control) 10 ng/ml 100 ng/ml 1000 ng/ml 
1 day  1.03 ± 0.10 0.98 ± 0.05 0.83 ± 0.10 * 0.63 ± 0.10 
2 days  3.90 ± 0.12 3.78 ± 0.05 * 3.58 ± 0.10 * 3.15 ± 0.06 
3 days  6.73 ± 0.10 6.68 ± 0.05 * 6.28 ± 0.05 * 5.48 ± 0.05 

The asterisk (*) indicates a significant difference from the control at the same day. 
 

 
Figure 1. Macroscopic morphology of A. fumigatus colonies grown on agar plates containing 0 
(control), 10, 100 and 1000 ng/ml T-2 at 37 °C for 3 days. The marks “C”, “10”, “100” and “1000” 
in the upper left corner of each plate indicate the T-2 concentrations, i.e. 0, 10, 100, 1000 ng/ml in the 
corresponding plate. Note the deep radial wrinkles and the depigmentation of the colony on the plate 
with 1000 ng/ml T-2, and the slight wrinkles at the centre of the colony on the plate with 100 ng/ml T-
2. 
 

3.2. Differential expression of proteins in T-2-exposed A. fumigatus conidia 

Peptides from trypsin digested proteins were labeled with isobaric mass tag labels and 

analyzed by 2-D LC-MS/MS. Collision-induced dissociation resulted in the release of these 

isobaric tags, which allowed relative quantification of the peptides. A broad comparison 

between T-2-exposed and unexposed A. fumigatus conidia yielded the identification of 15 
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proteins significantly upregulated by T-2 (in two or more samples at the same or different 

concentrations) and 7 dose-dependently upregulated, resulting in 21 upregulated proteins in 

total (Table S1), while 19 proteins were found to be significantly downregulated by T-2 (in 

two or more samples at the same or different concentrations) and 16 dose-dependently 

downregulated, resulting in 33 downregulated proteins in total (Table S2). Yeast homologues 

of 8 upregulated proteins and 9 downregulated proteins were successfully mapped in 

metabolic pathways, and they were found to be mostly involved in the citric acid (TCA) cycle, 

DNA replication, the metabolisms of carbohydrates, nucleotides, proteins, lipids, lipoproteins, 

amino acids and derivatives (Table S3). As categorized according to FunCat, among all the 

21 upregulated proteins, 11 were involved in metabolism, 7 were proteins with binding 

function or cofactor requirement (structural or catalytic), 4 were involved in cell surface, 

cellular communication/signal transduction mechanism, and so on. When the upregulated 

proteins were mapped in the metabolic pathways in Reactome database, a shift towards 

catabolism of lipids and amino acids emerged, and an increase in the anaerobic glycolysis 

could be assumed (agmatinase, aminotransferase, triosephosphate isomerase, 15-

hydroxyprostaglandin dehydrogenase, cytochrome P450 monooxygenase). The upregulated 

proteins further include stress regulators such as antigenic mitochondrial protein HSP 60, GPI 

anchored cell wall protein (Dan 4), hydrophobin protein, MFS multidrug transporter, and so 

on. Among all the 33 downregulated proteins, 14 were involved in metabolism, 10 were 

proteins with binding function or cofactor requirement (structural or catalytic), 7 were 

associated with protein synthesis, protein fate and protein turnover, 6 functioned in cell rescue, 

defense and virulence, 5 were involved in energy, 5 were related to transcription, and so on. 

Pathway mapping of the downregulated metabolic proteins suggests a reduction in oxidative 

metabolism and a shift in the pentose phosphate cycle, potentially underlying reduced 

nucleotide synthesis and transcription (dihydrolipoamide succinyltransferase, fumarate 

hydratase, glucose-6-phosphate 1-dehydrogenase, mitochondrial chaperone frataxin, 

adenylosuccinate lyase, proteasome component Pre 4, pre-mRNA splicing factor Prp 8). The 

downregulated proteins further comprise antioxidant protein LsfA, CipC-like antibiotic 

response protein, conidial pigment biosynthesis oxidase Arb 2, BZIP transcription factor 

(LziP), C6 finger domain protein, polyadenylate-binding protein, and so on. 
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3.3. Minimal inhibitory concentration of antimycotics against A. fumigatus grown with 

T-2 

MICs of amphotericin B, itraconazole, voriconazole and terbinafine were respectively 2, 

0.5, 0.125, and 4 μg/ml for both control conidia and T-2-exposed conidia, whether in normal 

RPMI-1640 or in RPMI-1640 supplemented with 1000 ng/ml T-2. No difference was noticed 

in MICs of these antimycotics between control conidia and T-2-exposed conidia. 

 

3.4. Susceptibility of A. fumigatus grown in the presence of T-2 to oxidative stress 

Control conidia and T-2-exposed conidia were inoculated on blank medium and media 

containing oxidative agents, and the colonial diameters at 48 h are presented in Table 2. There 

was no significant difference between the control conidia and T-2-exposed conidia on blank 

medium or on medium with diamide (≤ 8 mM), but the colonies formed by T-2-exposed 

conidia were significantly smaller than those formed by control conidia when exposed to 

H2O2 (4 mM) or menadione (120 and 140 μM). Control conidia germinated in all the 6 

replicates in 4 mM H2O2 or 140 μM menadione, while T-2-exposed conidia germinated 

respectively in only 2 and 1 replicate in the same conditions. 

 

Table 2. Diameter of A. fumigatus colonies formed by control conidia and T-2-exposed conidia 
after 48 h growth on oxidant-containing agar plates at 37 °C. 

Diameter of colony ± SD (cm) at 48 h (number of growth out of 6 replicates) 
Oxidant and concentration 

Control conidia T-2-exposed conidia 
Blank   3.91 ± 0.07 (6/6) 3.93 ± 0.08 (6/6) 
H2O2 1 mM 3.78 ± 0.04 (6/6) 3.73 ± 0.04 (6/6) 
 2 mM 3.63 ± 0.03 (6/6) 3.58 ± 0.08 (6/6) 
 4 mM 2.23 ± 0.44 (6/6) * 0.15 ± 0.37 (2/6) 
  8 mM 0 ± 0 (0/6) 0 ± 0 (0/6) 
Menadione 80 μM 2.27 ± 0.14 (6/6) 2.18 ± 0.11 (6/6) 
 120 μM 1.58 ± 0.05 (6/6) * 1.29 ± 0.12 (6/6) 
 140 μM 0.76 ± 0.41 (6/6) * 0.05 ± 0.12 (1/6) 
  160 μM 0.05 ± 0.12 (1/6) 0 ± 0 (0/6) 
Diamide 2 mM 2.94 ± 0.07 (6/6) 2.95 ± 0.08 (6/6) 
 4 mM 2.11 ± 0.05 (6/6) 2.10 ± 0 (6/6) 
  8 mM 0 ± 0 (0/6) 0.06 ± 0.14 (1/6) 

Control conidia: A. fumigatus conidia harvested from 3 day old culture on Sabouraud dextrose agar 
without T-2; T-2-exposed conidia: A. fumigatus conidia harvested from 3 day old culture on 
Sabouraud dextrose agar with 1000 ng/ml T-2; The asterisk (*) indicates a significant difference from 
the control conidia. 

 

 

 



Experimental Study 3 

94 

3.5. Effect of T-2 exposure on the experimental infection of chickens with A. fumigatus 

The average aspergillosis score per bird of each group is presented in Figure 2. Birds 

exposed to dietary T-2 and inoculated with T-2-exposed conidia (Group 6) had a significantly 

higher aspergillosis score compared to all the other groups. Besides, chickens fed blank feed 

and inoculated with T-2-exposed A. fumigatus conidia (Group 3) and chickens fed a diet 

supplemented with T-2 and inoculated with control conidia (Group 5) both showed a mild 

increase in the development of aspergillosis in comparison with chickens fed the blank feed 

and inoculated with control conidia (Group 2). 

 
Figure 2. Average aspergillosis score per bird (± SD) in differently treated groups of chickens. 
Group 1: given blank feed and sham-inoculated; Group 2: given blank feed and inoculated with A. 
fumigatus conidia grown in absence of T-2; Group 3: given blank feed and inoculated with A. 
fumigatus conidia grown in presence of  1000 ng/ml T-2; Group 4: given feed containing 927 μg/kg 
T-2 and sham-inoculated; Group 5: given feed containing 927 μg/kg T-2 and inoculated with A. 
fumigatus conidia grown in absence of T-2; Group 6: given feed containing 927 μg/kg T-2 and 
inoculated with A. fumigatus conidia grown in presence of 1000 ng/ml T-2. Columns marked with 1, 2, 
3, 4, 5 and/or 6 indicate a significant difference from the corresponding group. 

 

4. Discussion 

Levels of T-2 can reach 1200 μg/kg in grain dust (Nordby et al., 2004), and thousands 

of μg/kg in agricultural products (EFSA, 2011). In this study, the viability of A. fumigatus 

was not affected by the presence of T-2 (up to 1000 ng/ml) in the agar media. This result 

demonstrates that A. fumigatus can grow on substrates contaminated with T-2 even at high 

concentrations, and thus further justifies the necessity to evaluate the effects of T-2 on the 

fitness of A. fumigatus. The smaller colonies formed on media containing 100 and 1000 ng/ml 

suggest that T-2 inhibits the growth of A. fumigatus at these concentrations. This result is 
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compatible with the previously reported inhibitory effect of T-2 and other trichothecenes on 

the fungi Penicillium digitatum, Mucor ramannianus, Kluyveromyces marxianus, 

Saccharomyces bayanus, S. carlsbergensis, S. pastorianus, Rhodotorula rubra and R. 

glutinus (Madhyastha et al., 1994; Vesonder et al., 1981; Burmeister and Hesseltine, 1970). 

This inhibited growth of A. fumigatus probably resulted from the widely reported inhibitory 

effect of T-2 on protein and nucleic acid synthesis (EFSA, 2011). Trichothecene mycotoxins 

inhibit protein synthesis by binding to the ribosomal peptidyltransferase site in animal cells, 

leading to a ribotoxic stress response and as a result modulate a variety of physiological 

processes (Shifrin and Anderson, 1999). Proteome analysis and pathway mapping in this 

study revealed downregulation of dihydrolipoamide succinyltransferase and fumarate 

hydratase in T-2-exposed conidia, which likely hindered the citric acid (TCA) cycle and the 

oxidative metabolism. The downregulation of two transcription factors (i.e. BZIP 

transcription factor (LziP) and C6 finger domain protein), polyadenylate-binding protein, 

proteasome component Pre 4, pre-mRNA splicing factor (Prp 8) and RNA exonuclease Rex 2 

might have interfered intensively with DNA replication, transcription and post-transcriptional 

processing in the T-2-exposed conidia. These changes probably contributed to the observed 

growth inhibition of A. fumigatus in the presence of T-2. As a toxic secondary metabolite 

released by the fungal genus Fusarium, T-2 might serve as an inhibitor against other fungal 

competitors. The radial wrinkles of the A. fumigatus colonies grown on agar medium 

containing T-2 appeared similar to those observed in Aspergillus costaricaensis, A. piperis 

and A. sclerotioniger colonies in the absence of T-2 (Samson et al., 2004), but the mechanism 

for how these wrinkles are formed has never been elucidated. The depigmentation of the A. 

fumigatus colonies exposed to 1000 ng/ml T-2 might play a role in the increased 

susceptibility to oxidative stress observed in this study, as pigment is thought to protect A. 

fumigatus conidia against ROS of the host (Sugareva et al., 2006). It is not sure whether the 

dose-dependent downregulation of conidial pigment biosynthesis oxidase Arb 2, revealed by 

the proteome analysis, contributed to the lightening of the blue-green colour of the colony, 

because deletion of the abr2 gene in A. fumigatus reportedly lead to brown colony 

morphology (Sugareva et al., 2006). 

The response of A. fumigatus to the stress posed by T-2 involved the upregulated 

expression of some anti-stress proteins and changes in metabolic pathways. The expression of 

antigenic mitochondrial protein HSP 60 in A. fumigatus was found to be increased upon T-2 

exposure, and increased expression of heat shock proteins is known as a protective 

mechanism against stresses (Li and Srivastava, 2004). The upregulated GPI anchored cell 
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wall protein (Dan 4) and hydrophobin protein are cell wall structural proteins involved in 

maintenance of fungal cell wall integrity and resistance to environmental stress (Gautam et al., 

2008). MFS multidrug transporter, the expression of which was also upregulated in T-2-

exposed conidia, acts as an efflux pump removing toxic substances. Histones H2A and H3 

were upregulated in T-2-exposed conidia, and histones are believed to play a central role in 

transcription regulation, DNA repair, DNA replication and chromosomal stability. Fifteen-

hydroxyprostaglandin dehydrogenase (NAD(+)) was mapped in the metabolisms of  

peroxisomal lipid, alpha-linolenic acid, bile acids and bile salts, so the upregulated expression 

of this protein suggests the activation of metabolisms of lipids and lipoproteins. The 

upregulation of agmatinase and aminotransferase, and the downregulation of 

adenosylhomocysteinase, dihydrolipoamide succinyltransferase, and ornithine 

carbamoyltransferase also suggest pathway shifts in metabolisms of amino acids and 

derivatives in T-2-exposed A. fumigatus conidia. Taken together, the conidial proteome of the 

T-2-exposed A. fumigatus seems to have shifted away from the conventional oxidative 

metabolism in the mitochondria towards the glycolysis and catabolism of lipids. Both protein 

synthesis and degradation are downregulated, and the conidia have upregulated proteins that 

can convert amino acids. 

In the antimycotic MIC assay, the control conidia and the T-2-exposed conidia did not 

exhibit any difference in MICs of amphotericin B, itraconazole, voriconazole and terbinafine, 

and the MICs were in the ranges reported in earlier studies (Beernaert et al., 2009; Moore et 

al., 2001; Dannaoui et al., 2004). Although expression of CipC-like antibiotic response 

protein was decreased in T-2-exposed conidia, this did not affect the MICs of the four 

antimycotics in the current study, possibly because this protein is not associated with the 

conidial response to these antimycotics. Possibly, the upregulated MFS multidrug transporter 

in T-2-exposed conidia contributes to their sustained resistance, and the upregulated 

expression of cytochrome P450 monooxygenase in T-2-exposed conidia may also promote 

the metabolism of voriconazole (Johnson and Kauffman, 2003). 

When challenged with H2O2 or menadione, the T-2-exposed conidia showed lower 

viability and growth rate than the control conidia, indicating that growth in the presence of T-

2 reduced the tolerance of A. fumigatus conidia to oxidative stress. This result is compatible 

with the decreased expression of the antioxidant protein LsfA and mitochondrial 

peroxiredoxin Prx1 in the proteome analysis. Tolerance to oxidative stress is important to the 

virulence of this fungus, because the host exerts fungicidal effects on the invading A. 

fumigatus conidia by ROS, such as H2O2, hydroxyl radicals, and superoxide anions (Juul-
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Madsen et al., 2008; Xu et al., 2011). H2O2, menadione, and diamide often have been used to 

study the multiple modes of oxidative stress encountered by fungal pathogens (Qiao et al., 

2010; Pócsi et al., 2005). Interestingly, the current study showed that growth with T-2 

increased the susceptibility of A. fumigatus conidia to H2O2 and menadione, but not to 

diamide, which is probably due to the different mechanisms of these three oxidative stress-

inducing agents. H2O2 increases levels of peroxide and hydroxyl radicals, and leads to the 

oxidation of sulfur containing amino acids and damage of the double-stranded super-coiled 

structure of DNA (Toledano et al., 2003; Branco et al., 2004). Menadione generates 

superoxide anions in a redox cycle, which destroys 4Fe-4S proteins, and through the 

consumption of NADPH, menadione also causes the conversion of molecular oxygen to 

superoxide, which is dismutased to H2O2 (Toledano et al., 2003; Sun et al., 1997). As a thiol-

oxidizing agent, diamide affects redox balance of glutathione/glutathione disulfide by fast 

oxidation of glutathione (Toledano et al., 2003). 

The in vivo experiment showed that pre-exposure of A. fumigatus to T-2 mildly and non 

significantly exacerbated aspergillosis in chickens fed the blank feed, but significantly 

exacerbated aspergillosis in chickens exposed to dietary T-2. This exacerbation suggests that 

the T-2 induced stress response in A. fumigatus results in enhanced A. fumigatus virulence, 

which is most noticeable in the T-2-exposed chickens. Immunosuppression caused by T-2 

probably accounts for the observed increase of chicken susceptibility, since T-2 has been 

shown to suppress phagocytosis of A. fumigatus conidia by chicken macrophages (Li et al., 

2013b) and increase Salmonella Typhimurium infection in chickens in previous studies 

(Ziprin and Elissalde, 1990; Kubena et al., 2001). 

In conclusion, A. fumigatus is capable of surviving and growing in substrates containing 

levels of T-2 up to 1000 ng/ml. Growth in presence of T-2 results in a stress response, with 

reduced fitness of A. fumigatus in vitro, as evidenced by growth inhibition, altered colonial 

morphology and conidial proteome, and decreased oxidative stress tolerance, but increased 

virulence in vivo, as evidenced by exacerbation of aspergillosis in chickens. 
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Table S1. Conidial proteins of A. fumigatus upregulated upon T-2 exposure 

Significantly upregulated 
protein (by Rover) 

Dose-dependenct 
upregulation (by 
Qlucore) or not 

Sample and 
concentration of T-2 
treatment (ng/ml) 

Category F Function U 
UniProtKB/Swiss-
Prot ID of yeast 
homologue 

100 (Sample 3) 
15-hydroxyprostaglandin 
dehydrogenase (NAD(+)) 

  
1000 (Sample 3) 

1, 18 
Prostaglandin inactivation. Contributes to the regulation of events that are 
under the control of prostaglandin levels. Catalyzes the NAD-dependent 
dehydrogenation of lipoxin A4 to form 15-oxo-lipoxin A4. 

Q02207 

100 (Sample 1) 
Agmatinase   

1000 (Samples 1, 2) 
18 Catalytic activity: Agmatine + H2O = putrescine + urea.  P00812 

10 (Sample 2) 
Antigenic mitochondrial protein 
HSP 60 

  
1000 (Sample 2) 

32 
Participates in assembly and/or disassembly of proteins imported into the 
mitochondrion. HSP 60 are ATPases and have affinity for unfolded proteins 
By similarity. Involved in osmoadaptation. 

P19882 

C6 finger domain protein   10 (Samples 1, 2) 11, 14 
A transcription factor required for protein utilization and degradation. 
Regulates transcription of major secreted proteases including a serine 
alkaline protease (alp 1) and a metalloprotease (NpI). 

P40467 

10 (Sample 3) 

100 (Sample 3) 
Cytochrome P450 
monooxygenase Sir B-like 

  

1000 (Sample 3) 

1 
Cytochrome P450 superfamily of monooxygenases, involved in metabolism 
of voriconazole (Johnson and Kauffman, 2003). 

P10614 

10 (Sample 2) 

DMRL synthase family protein   

100 (Sample 2) 

1 

Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 
5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2-butanone 4-phosphate. 
This is the penultimate step in the biosynthesis of riboflavin. Catalytic 
activity: 1-deoxy-L-glycero-tetrulose 4-phosphate + 5-amino-6-(D-
ribitylamino)uracil = 6,7-dimethyl-8-(D-ribityl)lumazine + 2 H2O + phosphate. 

P50861 

Glutamate/Leucine/Phenylalani
ne/Valine dehydrogenase 

  1000 (Samples 2, 3) 1, 2, 16, 42 

Catalytic activity: L-glutamate + H2O + NADP+ = 2-oxoglutarate + NH3 + 
NADPH. L-leucine + H2O + NAD+ = 4-methyl-2-oxopentanoate + NH3 + 
NADH. L-phenylalanine + H2O + NAD+ = phenylpyruvate + NH3 + NADH. L-
valine + H2O + NAD+ = 3-methyl-2-oxobutanoate + NH3 + NADH. 

P07262 

100 (Sample 3) GPI anchored cell wall protein 
(Dan 4) 

  
1000 (Sample 3) 

30 
Component of the cell wall. Induced during anaerobic growth and completely 
repressed during aerobic growth. 

P53185 
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Histone H2A   100 (Samples 1, 2) 10, 11, 16, 42 

Core component of nucleosome which plays a central role in DNA double 
strand break (DSB) repair. Histones thereby play a central role in 
transcription regulation, DNA repair, DNA replication and chromosomal 
stability. DNA accessibility is regulated via a complex set of post-
translational modifications of histones, also called histone code, and 
nucleosome remodeling. 

P04912 

10 (Sample 2) 

100 (Sample 2) Histone H3   

1000 (Sample 2) 

10, 11, 16, 42 

Core component of nucleosome.Histones play a central role in transcription 
regulation, DNA repair, DNA replication and chromosomal stability. DNA 
accessibility is regulated via a complex set of post-translational modifications 
of histones, also called histone code, and nucleosome remodeling. 

P61830 

1000 (Samples 1, 3) 

Hydrophobin protein   

100 (Sample 3) 

30 

Cell wall protein regularly arranged in interwoven fascicules of clustered 
proteinaceous microfibrils, or rodlets, to form the outer spore coat protein. 
Involved in resistance to environmental stress and may be associated with 
conidial hydrophobicity. 

not found 

10 (Sample 2) 

100 (Sample 2) MFS multidrug transporter   

1000 (Sample 2) 

20, 30 

Energy-dependent efflux pump responsible for decreased drug accumulation 
in multi-drug-resistant cells. Probably uses a transmembrane proton gradient 
as the energy source. Causes the efflux of a variety of toxic substances, 
including such structurally diverse compounds as ethidium bromide, 
rhodamine and acridine dyes, tetraphenylphosphonium, puromycin, 
chloramphenicol, doxorubicin, and fluoroquinolone antibiotics. 

not found 

10 (Sample 3) Probable aspartic-type 
endopeptidase opsB 

  
100 (Sample 3) 

12, 30, 32 
Probable GPI-anchored aspartic-type endopeptidase which contributes to 
virulence 

Q12303 

100 (Sample 1) 
RNA binding protein   

10 (Sample 2 B) 
16 Not specified in Aspergillus spp. not found 

10 (Sample 2) 
Triosephosphate isomerase Qlucore 

1000 (Sample 2) 
1 Catalytic activity: D-glyceraldehyde 3-phosphate = glycerone phosphate. P00942 

Aminotransferase Qlucore 1000 (Sample 2) 1, 16 not reported P47039 

ATP sulphurylase Qlucore   1 

Catalyzes the first intracellular reaction of sulfate assimilation, forming 
adenosine-5'-phosphosulfate (APS) from inorganic sulfate and ATP. Plays 
an important role in sulfate activation as a component of the biosynthesis 
pathway of sulfur-containing amino acids. Catalytic activity: ATP + sulfate = 
diphosphate + adenylyl sulfate. 

P08536 

Isocitrate dehydrogenase Idp1 Qlucore   1, 2, 4, 16 Catalytic activity: Isocitrate + NADP+ = 2-oxoglutarate + CO2 + NADPH. P21954 
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Oxidoreductase, zinc-binding 
dehydrogenase family 

Qlucore   1 not reported Q03102 

Sorbitol/xylulose reductase 
Sou 1-like 

Qlucore   1 
Xylitol dehydrogenase which catalyzes the conversion of xylitol to D-
xylulose. Xylose is a major component of hemicelluloses such as xylan. 
Catalytic activity: Xylitol + NAD+ = D-xylulose + NADH. 

P32573 

Transaldolase Qlucore   1, 2, 16 
Important for the balance of metabolites in the pentose-phosphate pathway. 
Catalytic activity: Sedoheptulose 7-phosphate + D-glyceraldehyde 3-
phosphate = D-erythrose 4-phosphate + D-fructose 6-phosphate. 

P15019 

B The protein was identified by BLAST in NCBI database. 
U Protein functions were found in UniProtKB/Swiss-Prot database. 
F Proteins were functionally categorized according to FunCat. 1, Metabolism; 2, Energy; 4. Storage protein; 10, Cell cycle and DNA processing; 11, 
Transcription; 12, Protein synthesis, protein fate and protein turnover; 16, Protein with binding function or cofactor requirement (structural or catalytic); 18, 
Regulation of metabolism and protein function; 20, Cellular transport, transport facilities and transport routes; 30, Cell surface, cellular communication/signal 
transduction mechanism; 32, Cell rescue, defense and virulence; 34, Interaction with the environment; 42, Biogenesis of cellular components; 99, Unclassified 
proteins. 
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Table S2. Conidial proteins of A. fumigatus downregulated upon T-2 exposure 

Significantly downregulated 
protein (by Rover) 

Dose-dependent 
downregulation (by 
Qlucore) or not 

Sample and 
concentration of T-2 
treatment (ng/ml) 

Category F Function U 
UniProtKB/Swiss-
Prot ID of yeast 
homologue 

10 (Sample 3) 

100 (Samples 1, 3) Adenosylhomocysteinase   

1000 (Sample 3) 

1, 16 

Adenosylhomocysteine is a competitive inhibitor of S-adenosyl-L-methionine-
dependent methyl transferase reactions; may play a key role in the control of 
methylations via regulation of the intracellular concentration of 
adenosylhomocysteine. 

P39954 

Antioxidant protein LsfA Qlucore 1000 (Samples 1, 3) 32 not reported P34227 

100 (Sample 3) 
BZIP transcription factor 
(LziP) 

  
1000 (Sample 3) 

11, 16 
Transcription factor that mediates sequence specific DNA binding properties and 
the leucine zipper that is required to hold together (dimerize) two DNA binding 
regions (Ellenberger, 1994; Hurst, 1994). 

Q02100 

C6 finger domain protein   100 (Samples 2, 3 B) 11, 14 
Transcription factor required for protein utilization and degradation. Regulates 
transcription of major secreted proteases including a serine alkaline protease (alp 
1) and a metalloprotease (NpI). 

Q12180 

Cell surface protein Qlucore 1000 (Samples 1, 2) 30 not specified not found 

10 (Sample 1) 

100 (Sample 3) 
CipC-like antibiotic response 
protein 

  

1000 (Samples 1, 2, 3) 

32 not reported not found 

10 (Sample 2) 

100 (Samples 2, 3) 
Cytochrome C oxidase 
subunit 5A 

  

1000 (Samples 2, 3) 

1 Catalytic activity: 4 ferrocytochrome C + O2 + 4 H+ = 4 ferricytochrome C + 2H2O. P00427 

100 (Sample 1) 
Dihydrolipoamide 
succinyltransferase 

  

1000 (Sample 1) 

1, 2 

Dihydrolipoamide succinyltransferase component of 2-oxoglutarate 
dehydrogenase complex . The 2-oxoglutarate dehydrogenase complex catalyzes 
the overall conversion of 2-oxoglutarate to succinyl-CoA and CO2. Catalytic 
activity: Succinyl-CoA + enzyme N(6)-(dihydrolipoyl)lysine = CoA + enzyme N(6)-
(S-succinyldihydrolipoyl)lysine. 

P19262 

10 (Sample 3) Fumarate hydratase   

100 (Sample 3) 

1, 2, 42 Catalytic activity: (S)-malate = fumarate + H2O. P08417 
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1000 (Sample 3) 

100 (Sample 2) 
Lipid transfer protein   

1000 (Sample 2) 
16, 20 not reported not found 

10 (Sample 1 B) 
NAD dependent 
epimerase/dehydratase 

  

1000 (Sample 1 B) 

1, 2, 16 

Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form 
of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a 
prerequisite for the S-specific NAD(P)H-hydrate dehydratase to allow the repair of 
both epimers of NAD(P)HX. 

P32527 

100 (Sample 3) Ornithine 
carbamoyltransferase 

  
1000 (Sample 3) 

1 Catalytic activity: Carbamoyl phosphate + L-ornithine = phosphate + L-citrulline. P05150 

1000 (Samples 2 B, 3 B) Peptidase inhibitor I 9, 
partial 

  
100 (Sample 3 B) 

12, 18 not reported P0CT04 

100 (Sample 1) Polyadenylate-binding 
protein, cytoplasmic and 
nuclear 

  
1000 (Sample 1) 

11, 16 
Binds the poly(A) tail of mRNA. Appears to be an important mediator of the 
multiple roles of the poly(A) tail in mRNA biogenesis, stability and translation. 

P04147 

10 (Sample 1) Pre-mRNA splicing factor 
(Prp 8) 

  
1000 (Sample 1) 

10, 11, 12 
Involved in pre-mRNA splicing and cell cycle progression. Required for the 
spliceosome assembly and initiation of the DNA replication. 

P33334 

100 (Sample 3) 
Proteasome component Pre 
4 

  

1000 (Samples 2, 3) 

2, 14, 16, 32 

Degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. 
Essential for the regulated turnover of proteins and for the removal of misfolded 
proteins. Able to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the 
leaving group at neutral or slightly basic pH. Has an ATP-dependent proteolytic 
activity. Necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity. 

P30657 

10 (Sample 1 B) 
Protein pal 1   

1000 (Sample 1 B) 
30 Involved in the early step of endocytosis Q05518 

10 (Sample 2) 

100 (Sample 2) RNA exonuclease Rex 2   

1000 (Sample 2) 

11 

Possesses 5'->3' exoribonuclease activity. Required for the processing of nuclear 
mRNA and rRNA precursors. May promote termination of transcription by RNA 
polymerase II By similarity. 
Catalytic activity Exonucleolytic cleavage in the 5'- to 3'-direction to yield 
nucleoside 5'-phosphates. 

P54964 

10 (Sample 1) Signal transduction protein 
Syg 1 

  
100 (Sample 1) 

30 Functions in G-protein coupled signal transduction P40528 
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Adenylosuccinate lyase Qlucore B 1000 (Sample 1 B) 1 
Catalytic activity: N(6)-(1,2-dicarboxyethyl)AMP = fumarate + AMP. 
(S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate = 
fumarate + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide. 

Q05911 

C2 domain protein Qlucore B 100 (Sample 3) 16 
key membrane-localization modules, in multiple ciliary proteins, including those 
from the NPHP1-4-8 and the MKS complexes (Zhang and Aravind, 2012) 

not found 

HHE domain protein Qlucore 1000 (Sample 1) 99 not reported not found 

FK506-binding protein 1 A Qlucore   12, 16 
PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization 
of proline imidic peptide bonds in oligopeptides. Catalytic activity: Peptidylproline 
(omega=180) = peptidylproline (omega=0). 

P20081 

Mitochondrial chaperone 
Frataxin 

Qlucore   1, 12, 32 

Promotes the biosynthesis of heme as well as the assembly and repair of iron-
sulfur clusters by delivering Fe2+ to proteins involved in these pathways. Plays a 
role in the protection against iron-catalyzed oxidative stress through its ability to 
catalyze the oxidation of Fe2+ to Fe3+. Can store large amounts of the metal in the 
form of a ferrihydrite mineral by oligomerization. May be involved in regulation of 
the mitochondrial electron transport chain. Catalytic activity: 4Fe2+ + 4H+ + O2 = 
4Fe3+ + 2H2O. 

Q07540 

Aldehyde reductase (AKR1) Qlucore   1, 2, 16 

Catalyzes the asymmetric reduction of aliphatic and aromatic aldehydes and 
ketones to an R-enantiomer. Reduces ethyl 4-chloro-3-oxobutanoate to ethyl (R)-
4-chloro-3-hydroxybutanoate. Catalytic activity: An alcohol + NADP+ = an 
aldehyde + NADPH. 

P14065 

Mannitol-1-phosphate 5-
dehydrogenase 

Qlucore   1 

Catalyzes the NAD(H)-dependent interconversion of D-fructose 6-phosphate and 
D-mannitol 1-phosphate in the mannitol metabolic pathway. Has a strong 
preference for NADH over NADPH. Catalytic activity: D-mannitol 1-phosphate + 
NAD+ = D-fructose 6-phosphate + NADH. 

P0CX08 

Metallo-dependent 
phosphatase 

Qlucore B   99 not reported P40002 

Mitochondrial peroxiredoxin 
Prx1 

Qlucore   1, 32 
Has a thioredoxin peroxidase activity with a role in reduction of hydroperoxides. 
Catalytic activity: 2 R'-SH + ROOH = R'-S-S-R' + H2O + ROH. 

P34227 

Glucose-6-phosphate 1-
dehydrogenase 

Qlucore   1 
Catalytic activity: D-glucose 6-phosphate + NADP+ = 6-phospho-D-glucono-1,5-
lactone + NADPH 

P11412 

Eukaryotic translation 
elongation factor 1 subunit 
Eef 1-β 

Qlucore   12, 16, 18 

Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B 
subcomplex) of the eukaryotic elongation factor 1 complex (eEF1). Stimulates the 
exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by 
displacing GDP from the nucleotide binding pocket in eEF1A. The 30-fold higher 
concentration of GTP compared to GDP in cells favors the formation of eEF1A-
GTP, which rapidly forms a ternary complex with aminoacyl-tRNA that in turn 
displaces eEF1B from the complex. 

P32471 
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Dienelactone hydrolase 
family protein 

Qlucore   1 
Catalytic activity: 4-carboxymethylenebut-2-en-4-olide + H2O = 4-oxohex-2-
enedioate 

P39721 

Conidial pigment 
biosynthesis oxidase Arb 2  

Qlucore   1 
A polyketide synthase which condenses acetate units to form a heptaketide 
naphthopyrene YWA 1, via a polyketomethylene intermediate step. YWA 1 is a 
yellow pigment found in mature asexual spores (conidia). 

P38993 

Asp hemolysin-like protein Qlucore   32 
Belongs to aegerolysin family. Expressed during fruiting initiation in primordia and 
immature fruiting bodies. 

not found 

B The protein was identified by BLAST in NCBI database. 
U Protein functions were found in UniProtKB/Swiss-Prot database. 
F Proteins were functionally categorized according to FunCat. 1, Metabolism; 2, Energy; 4. Storage protein; 10, Cell cycle and DNA processing; 11, 
Transcription; 12, Protein synthesis, protein fate and protein turnover; 16, Protein with binding function or cofactor requirement (structural or catalytic); 18, 
Regulation of metabolism and protein function; 20, Cellular transport, transport facilities and transport routes; 30, Cell surface, cellular communication/signal 
transduction mechanism; 32, Cell rescue, defense and virulence; 34, Interaction with the environment; 42, Biogenesis of cellular components; 99, Unclassified 
proteins. 
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Table S3. Pathways involving proteins differentially expressed in A. fumigatus upon T-2 exposure 

UniProtKB/Swiss-Prot ID of yeast 
homologue of involved protein Pathway Sub-pathway Reaction 

upregulated downregulated 

The citric acid (TCA) cycle and 
respiratory electron transport 

Citric acid cycle (TCA cycle) alpha-ketoglutarate + CoASH + NAD+ => succinyl-CoA + CO2 + NADH + H+   P19262 

The citric acid (TCA) cycle and 
respiratory electron transport 

Citric acid cycle (TCA cycle) (S)-Malate <=> Fumarate + H2O    P08417 

The citric acid (TCA) cycle and 
respiratory electron transport 

Citric acid cycle (TCA cycle) Fumarate + H2O <=> (S)-Malate    P08417 

Metabolism of carbohydrates 
Pentose phosphate pathway (hexose 
monophosphate shunt) 

alpha-D-glucose 6-phosphate + NADP+ => D-glucono-1,5-lactone 6-phosphate + 
NADPH + H+ 

  P11412 

Metabolism of carbohydrates 
Pentose phosphate pathway (hexose 
monophosphate shunt) 

D-fructose 6-phosphate + D-erythrose 4-phosphate <=> sedoheptulose 7-
phosphate + D-glyceraldehyde 3-phosphate 

P15019   

Metabolism of carbohydrates 
Pentose phosphate pathway (hexose 
monophosphate shunt) 

sedoheptulose 7-phosphate + D-glyceraldehyde 3-phosphate <=> D-erythrose 4-
phosphate + D-fructose 6-phosphate 

P15019   

Metabolism of carbohydrates Glucose metabolism D-glyceraldehyde 3-phosphate <=> dihydroxyacetone phosphate  P00942   

Metabolism of carbohydrates Glucose metabolism dihydroxyacetone phosphate <=> D-glyceraldehyde 3-phosphate  P00942   

Metabolism of lipids and 
lipoproteins 

Peroxisomal lipid metabolism trans-2,3-dehydropristanoyl-CoA + H2O => 3-hydroxypristanoyl-CoA Q02207   

Metabolism of lipids and 
lipoproteins 

Peroxisomal lipid metabolism 3-hydroxypristanoyl-CoA + NAD+ => 3-ketoxypristanoyl-CoA + NADH + H+ Q02207   

Metabolism of lipids and 
lipoproteins 

Peroxisomal lipid metabolism trans-2,3-dehydrohexacosanoyl-CoA + H2O => 3-hydroxyhexacosanoyl-CoA Q02207   

Metabolism of lipids and 
lipoproteins 

Peroxisomal lipid metabolism 3-hydroxyhexacosanoyl-CoA + NAD+ => 3-ketohexacosanoyl-CoA + NADH + H+ Q02207   

Metabolism of lipids and 
lipoproteins 

alpha-linolenic acid (ALA) metabolism 
Hydration of delta2-tetracosaheptaenoyl-CoA to 3-hydroxy tetracosahexaenoyl-
CoA 

Q02207   

Metabolism of lipids and 
lipoproteins 

alpha-linolenic acid (ALA) metabolism Dehydrogenation of 3-hydroxy tetracosahexaenoyl-CoA Q02207   
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Metabolism of lipids and 
lipoproteins 

Synthesis of bile acids and bile salts 
25(S) 3alpha,7alpha-dihydroxy-5beta-cholest-24-enoyl-CoA is hydrated to (24R, 
25R) 3alpha,7alpha,24-trihydroxy-5beta-cholestanoyl-CoA 

Q02207   

Metabolism of lipids and 
lipoproteins 

Synthesis of bile acids and bile salts 
(24R, 25R) 3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestanoyl-CoA is 
oxidized to 3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA  

Q02207   

Metabolism of lipids and 
lipoproteins 

Synthesis of bile acids and bile salts 
(24R, 25R) 3alpha,7alpha,24-trihydroxy-5beta-cholestanoyl-CoA is oxidized to 
3alpha,7alpha-dihydroxy-5beta-cholest-24-one-CoA 

Q02207   

Metabolism of lipids and 
lipoproteins 

Synthesis of bile acids and bile salts 
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-enoyl-CoA (THCA-CoA) is 
hydrated to (24R, 25R) 3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-
cholestanoyl-CoA  

Q02207   

Metabolism of lipids and 
lipoproteins 

Cholesterol biosynthesis 
Lanosterol is oxidatively demethylated to 4,4-dimethylcholesta-8(9),14,24-trien-
3beta-ol 

P10614   

Metabolism of proteins Mitochondrial Protein Import Precursor Proteins Enter TIM23 PAM Complex  P19882   

Metabolism of proteins Mitochondrial Protein Import TOM40:TOM70 Complex Imports Proteins Across Mitochondrial Outer Membrane P19882   

Metabolism of proteins Mitochondrial Protein Import MPP Cleaves Presequence of Matrix Precursors  P19882 Q07540 

Metabolism of proteins Mitochondrial Protein Import TIM23 PAM Complex Imports Proteins to Mitochondrial Matrix  P19882 Q07540 

Mitochondrial Iron-Sulfur Cluster 
Biogenesis 

  FXN:NFS1:ISD11:ISCU Synthesizes Iron-Sulfur Cluster   Q07540 

Mitochondrial Iron-Sulfur Cluster 
Biogenesis 

  Frataxin Binds Iron   Q07540 

Adaptive Immune System Antigen processing-Cross presentation Proteasomal cleavage of substrate   P30657 

Adaptive Immune System Antigen processing-Cross presentation Proteasomal clevage of exogenous antigen   P30657 

Adaptive Immune System 
Antigen processing: Ubiquitination & 
Proteasome degradation 

Proteasomal cleavage of substrate   P30657 

DNA Repair 
ATM mediated response to DNA double-
strand break 

Phosphorylation of histone H2AX at Serine-139 by ATM at the site of DSB P04912   

Metabolism of nucleotides 
Purine ribonucleoside monophosphate 
biosynthesis 

adenylosuccinate => adenosine 5'-monophosphate + fumarate    Q05911 

Metabolism of nucleotides 
Purine ribonucleoside monophosphate 
biosynthesis 

SAICAR => AICAR + Fumarate    Q05911 
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Cell Cycle, Mitotic / DNA 
replication 

Switching of origins to a post-replicative 
state 

Ubiquitinated Orc1 is degraded by the proteasome   P30657 

Cell Cycle, Mitotic / DNA 
replication 

Switching of origins to a post-replicative 
state 

Ubiquitinated Cdc6 is degraded by the proteasome   P30657 

Cell Cycle, Mitotic / DNA 
replication 

Removal of licensing factors from origins Ubiquitinated Orc1 is degraded by the proteasome   P30657 

Cell Cycle, Mitotic / DNA 
replication 

Removal of licensing factors from origins Ubiquitinated Cdc6 is degraded by the proteasome   P30657 

Regulation of Apoptosis 
Regulation of activated PAK-2p34 by 
proteasome mediated degradation 

Proteasome mediated degradation of PAK-2p34   P30657 

Gene Expression 
Regulation of mRNA Stability by Proteins 
that Bind AU-rich Elements 

Destruction of AUF1 and mRNA   P30657 

Gene Expression mRNA Splicing ATAC spliceosome mediated 3' splice site cleavage, exon ligation    P33334 

Gene Expression mRNA Splicing ATAC spliceosome mediated Lariat formation,5' splice site cleavage     P33334 

Gene Expression mRNA Splicing Formation of AT-AC B Complex    P33334 

Gene Expression mRNA Splicing Formation of AT-AC C complex    P33334 

Metabolism of amino acids and 
derivatives 

Lysine catabolism alpha-ketoadipate + CoASH + NAD+ => glutaryl-CoA + CO2 + NADH + H+   P19262 

Metabolism of amino acids and 
derivatives 

Sulfur amino acid metabolism S-adenoylhomocysteine is hydrolyzed    P39954 

Metabolism of amino acids and 
derivatives 

Urea cycle carbamoyl phosphate + ornithine => citrulline + orthophosphate   P05150 

Metabolism of amino acids and 
derivatives 

Urea cycle arginine + H2O => ornithine + urea [ARG1]  P00812   

Metabolism of amino acids and 
derivatives 

Urea cycle arginine + H2O => ornithine + urea [ARG2]  P00812   

Metabolism of amino acids and 
derivatives 

Amino acid synthesis and 
interconversion (transamination) 

glutamine + pyruvate => 2-oxoglutaramate + alanine P47039   

Metabolism of amino acids and 
derivatives 

Phenylalanine and tyrosine catabolism phenylalanine + pyruvate => 3-(indol-3-yl)pyruvate + alanine P47039   
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Metabolism of amino acids and 
derivatives 

Tryptophan catabolism 
kynurenine + pyruvate => 4-(2-aminophenyl)-2,4-dioxobutanoic acid + alanine 
[CCBL1] 

P47039   

Metabolism of amino acids and 
derivatives 

Tryptophan catabolism 
kynurenine + pyruvate => 4-(2-aminophenyl)-2,4-dioxobutanoic acid + alanine 
[CCBL2]  

P47039   

Abnormal metabolism in 
phenylketonuria  

  
kynurenine + pyruvate => 4-(2-aminophenyl)-2,4-dioxobutanoic acid + alanine 
[CCBL1]  

P47039   

Abnormal metabolism in 
phenylketonuria  

  phenylalanine + oxaloacetate => phenylpyruvate + aspartate [CCBL1]  P47039   
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1. Occurrence and control of mycotoxins in bird feeds 

Mycotoxins occur typically in agricultural products and their derived food- and feed-

stuffs, probably because agricultural products provide nutritional substrates for fungal growth. 

Due to the adverse effects of dietary mycotoxins on humans and other animals, surveys on 

mycotoxin occurrence have been focused on foods and feeds, but only limited studies have 

been carried out on bird feeds. Scudamore et al. (1997) analyzed 15 samples of pet bird feeds 

for aflatoxins, fumonisins and ochratoxin A, and detected ochratoxin A in 4 feed samples. 

Maia and Pereira Bastos de Siqueira (2002) detected aflatoxins in 8 out of 30 pet bird feed 

samples. Martins et al. (2003) analyzed aflatoxins, ochratoxin A, fumonisin B1 and 

deoxynivalenol (DON) in 20 domestic bird feeds but no mycotoxins were detected. In this 

thesis, mycotoxins in 10 commercial parrot feeds (5 seed mixed feeds and 5 pelleted feeds) 

were analyzed by LC-MS/MS. Four pelleted feeds and all the 5 seed mixed feeds were found 

to be contaminated with mycotoxins, and there were more types of mycotoxins in pelleted 

feeds than in seed mixed feeds on average. Low levels of mycotoxins seem to be prevalent in 

bird feeds. Due to the drying process allowing to reduce moisture content, extruded feeds are 

supposed to be less susceptible to mold growth and mycotoxin contamination (Binder et al., 

2007; Bullerman and Bianchini, 2007), but mycotoxin levels in bird feeds are probably more 

related to the quality of the raw materials than to the production process. Although none of the 

detected mycotoxins in our parrot feeds exceeded the maximum levels regulated or 

recommended for poultry and other animals by the European Commission (EC, 2003; EC, 

2006; EC, 2013), the pathological changes that occasionally occurred in cockatiels imply that 

exotic pet birds might be more vulnerable to mycotoxins than domesticated animals, so 

stricter regulations for exotic pet birds might be necessary.  Prevention of fungal growth and 

invasion is primarily important in preventing mycotoxin contamination in agricultural 

commodities (FAO, year unknown). The inhibition of fungal growth can be achieved by 

physical, chemical and biological treatments. Physical treatments include storage at low 

temperature and humidity (FAO, 1979) and application of gamma-irradiation (WHO, 1988). 

Chemical treatments involve the application of synthetic antifungal agents such as sodium 

acetate (Buchanan and Ayres, 1979), malonic acid (Megalla and Hafez, 1982), benzoic acid 

and derivatives (Chipley and Uraih, 1980; Uraih and Offonre, 1981), or natural 

phytochemicals such as allicin (Appleton and Tansey, 1977), cinnamon and clove oils 

(Bullerman et al., 1977). Commercial fungicides containing tebuconazole, prothioconazole or 

prochloraz also showed good efficacy in inhibiting fungal growth and reducing production of 

fumonisins and aflatoxins by Fusarium and Aspergillus (Formenti et al., 2012). Biological 
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control methods involve some bacterial and fungal antagonists of the mycotoxigenic fungi 

(Palumbo et al., 2008). The bacterium Bacillus subtilis has been shown to be effective in 

control of mycotoxin production by Fusarium and Aspergillus (Formenti et al., 2012). 

Another effective biocontrol example is the use of nontoxigenic strains of A. flavus and A. 

parasiticus in fields of cotton, peanut, maize and pistachio to competitively exclude the 

aflatoxin-producing strains (Yin et al., 2008). Foods and feeds contaminated with mycotoxins 

should be disposed, or alternatively decontaminated or detoxified. Heating (particularly under 

pressure) and gamma-irradiation can reduce aflatoxins to some extents (Chipley and Uraih, 

1980; Coomes et al., 1966), and chemicals such as formaldehyde, calcium hydroxide, 

hydrogen peroxide, sodium bisulfite, sodium hydroxide and aqueous ammonia can also 

reduce aflatoxins in peanut and corn in lab settings (Codifier et al., 1976; Moerch et al., 1980; 

Spreenivasamurthy et al., 1967), but the authorization of using chemical additives in feed is 

strictly regulated by EC (2003, 2009). Commercial mycotoxin binders have been developed to 

detoxify mycotoxin-contaminated feeds, and are widely used. Bentonite clays are inorganic 

mycotoxin binders and exhibit a high affinity towards aflatoxins (Diaz-Llano and Smith, 2006; 

Phillips et al., 1988). A commercial glucomannan mycotoxin binder claims to bind T-2 toxin 

(T-2) and DON (Goossens et al., 2012). However, the efficacy of mycotoxin binders seems to 

be inconsistent in different tests, and special attention has to be paid to their interactions with 

other veterinary medicinal products (Devreese et al., 2013; Goossens et al., 2012). Besides the 

binding strategy, biotransformation of mycotoxins is also effective in mycotoxin 

detoxification. For example, fermentation with lactic acid bacteria reduces the toxicity of 

mycotoxins, and Eubacteria spp. can detoxify trichothecenes by cleaving the 12,13-epoxy 

group with de-epoxidases (Kolosova and Stroka, 2011). A fumonisin esterase produced by a 

strain of yeast Komagataella pastoris can partially degrade fumonisins by cleavage of the 

diester bonds (EFSA, 2014). 

 

2. Effects of mycotoxins on microorganisms 

Among different secondary metabolites of fungi, mycotoxins are grouped together only 

because of their toxicities on humans and animals (Bennett and Klich, 2003). In the 

exploration on the nature and biological functions of mycotoxins, it has been found that 

mycotoxins and other secondary metabolites confer a competitive advantage for the producers 

over other competitor organisms (Magan and Aldred, 2007). Therefore, the primary targets of 

mycotoxins seem to be microorganisms instead of animals, although to a broader extent, 

humans and animals can also be considered the fungi’s competitors for food (Janzen, 1977). 
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Indeed, many mycotoxins such as trichothecenes, zearalenone, patulin, aflatoxin B1, 

ochratoxin A, citrinin, penicillic acid, cyclopiazonic acid and penitrem A have shown adverse 

effects on different fungi and/or bacteria (Elmholt, 2008). Other studies also suggested that 

trichothecenes, e.g. T-2, HT-2 toxin, diacetoxyscirpenol (DAS) and DON have stronger 

antimicrobial activity on fungi than on bacteria (Burmeister and Hesseltine, 1970; 

Madhyastha et al., 1994; Vesonder et al., 1981). Interestingly, T-2 and diacetoxyscirpenol 

have stronger antimicrobial activity than DON on fungi (Vesonder et al., 1981), which is 

compatible to the higher toxicity of type-A trichothecenes than type-B trichothecenes on 

humans and animals (Yazar and Omurtag, 2008), and might be associated with the common 

characteristics of eukaryotic cells. Potential effects of T-2, produced by Fusarium spp., on the 

ubiquitous fungal pathogen Aspergillus fumigatus were assessed for the first time in this 

thesis. Both fungal genera live saprophytically in organic debris in nature and share soil as the 

common ecological niche (Latgé, 1999; Smith et al., 2007). The co-occurrence of Fusarium 

and Aspergillus as well as their mycotoxins (e.g. trichothecenes, fumonisins, and aflatoxins) 

in the previous soil, food and feed samples further evidenced the overlapping ecological niche 

of these two fungal genera (Ali et al., 1998; Clarke and Christensen, 1981; Hagler et al., 1984; 

Reddy and Salleh, 2011; Wang et al., 1995). In this thesis, the growth of A. fumigatus was 

inhibited by T-2 exposure, and as responses to the stress of T-2, A. fumigatus modified its 

proteome expression, resulting in changes of colonial morphology, lower resistance against 

oxidative stress, and higher virulence in poultry. Although T-2 exposure reduced the tolerance 

of A. fumigatus conidia against oxidative stress, the upregulated expression of some virulence 

and resistance associated proteins such as heat shock proteins, hydrophobin protein, MFS 

multidrug transporter and cytochrome P450 monooxygenase might have compensated the 

tolerance of A. fumigatus against antifungal agents (amphotericin B, itraconazole, 

voriconazole and terbinafine) and the virulence of A. fumigatus in infected chickens. Previous 

studies also demonstrated that the virulence of insect-pathogenic fungus Metarhizium 

anisopliae was influenced by medium nutrients (Maldonado-Blanco et al., 2014; Shah et al., 

2005), and an unidentified antifungal metabolite of Fusarium chlamydosporum reduced rust 

disease in groundnut by inhibiting the spore germination of the fungal pathogen Puccinia 

arachidis (Mathivanan and Murugesan, 1999). Studies on mycotoxins have largely focused 

on their toxicities to humans and animals. However, considering their toxicities on animals 

and microbes, mycotoxins might have promising potential to be used as pesticides, fungicides, 

antibiotics and preservatives in areas such as agriculture and pharmacy. For example, since 

many fungi are more sensitive to trichothecenes than bacteria, use of trichothecenes or their 



General Discussion 

118 

detoxified derivatives might be a potential option to prevent fungal contamination during 

bacterial fermentation processes. A possible disadvantage of a detoxified mycotoxin may be 

the loss of its antifungal activity, so this is a challenge to solve in the potential application of 

mycotoxins. 

 

3. The impact of dietary T-2 on birds’ health and susceptibility to Aspergillus infection 

Intake of feed containing T-2 has exhibited different adverse effects on chickens. 

Reduced feed consumption and weight gain have been widely reported in poultry exposed to 

0.1 to 20 mg T-2/kg feed for 2 to 7 weeks (Diaz et al., 2005; Osselaere et al., 2013; Rezar et 

al., 2007; Wyatt et al., 1975), and necrosis of mucous membranes of the oral cavity, tongue 

and intestines was also frequently observed (Rafai et al., 2000; Sklan et al., 2001; Weber et al., 

2010). In laying hens, exposure to 0.2 to 20 mg T-2/kg feed for 2 to 4 weeks may reduce egg 

production (Diaz et al., 1994; Ványi et al., 1994; Wyatt et al., 1975). Osselaere et al. (2013) 

studied the responses of enzymes and proteins associated with the metabolism of T-2 in 

chickens. Genes encoding drug-metabolizing enzymes CYP1A4, CYP1A5 and CYP3A37, 

and multidrug resistance-associated protein 2 (MRP2) were downregulated in the liver, and 

the activity of the drug-metabolizing enzyme CYP3A was increased in the ileum and the liver 

after 3 weeks exposure to 752 μg T-2/kg feed (Osselaere et al., 2013). Like other 

trichothecenes, T-2 can affect the course of infectious diseases. Dietary T-2 caused 

immunosuppression against Newcastle disease virus in broiler chickens (Kamalavenkatesh et 

al., 2005; Weber et al, 2006), and also presented a profound negative effect on the ability of 

the chickens to resist Salmonella Typhimurium infection, as indicated by the increased 

mortality of chickens (Ziprin and Elissalde, 1990). This thesis revealed that dietary T-2 

increased aspergillosis development in chickens infected with A. fumigatus conidia, and the 

increase was most noticeable in chickens infected with conidia pre-exposed to T-2. The 

impaired antifungal activities of macrophages seen in this thesis are believed to contribute to 

the increase of aspergillosis in T-2 exposed chickens, as avian macrophages form the first 

immune defense against Aspergillus infection (Arné et al., 2011; Beernaert et al., 2010). This 

thesis demonstrated that exposure to T-2 also stimulated the expression of some pro-

inflammatory cytokines and chemokines in both Aspergillus infected and uninfected chicken 

macrophages. These results therefore support the view that T-2 can both stimulate and 

suppress immunity (Sokolovic et al., 2008). Macrophages sense T-2 and other trichothecenes 

as danger signals, which stimulate the immune response including the activation of genes 

important for the inflammatory response (Kankkunen et al., 2009; Sokolovic et al., 2008). 
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Immunosuppression caused by T-2 is thought to be due to the damage of bone marrow, lymph 

nodes, spleen, thymus, intestinal mucose, leucopenia and the inhibition of the functions of 

immune cells (EFSA, 2011; Sokolovic et al., 2008). For example, exposure to T-2 induced 

apoptosis in thymus (Venkatesh et al., 2005) and increased DNA fragmentation in spleen 

leukocytes in chickens (Frankic et al., 2006; Rezar et al., 2007). Decrease in the size of bursa 

of Fabricius and accelerated thymus involution were observed in turkeys dieted with T-2 

(Richard et al., 1978). Lymphocyte depletion was observed histologically in spleen and bursa 

of Fabricius in Pekin ducks exposed to T-2 (Rafai et al., 2000). However, the specific 

mechanisms by which T-2 influences the avian innate and adaptive immunity against 

Aspergillus need to be studied further. 

 

4. Effects of mycotoxins on the hosts VS effects of mycotoxins on the pathogens 

In contrast with most studies previously conducted, this thesis describes the effects of 

mycotoxins both from a host and pathogen perspective. Pathogen virulence may be altered by 

exposure to mycotoxins either before infection (in the environment) or during infection of an 

intoxicated host. Reports of direct antimicrobial activities of mycotoxins on pathogens are 

scarce. Neither DON, T-2 or DAS exerted any obvious antimicrobial effect on the pathogenic 

bacterium Bordetella bronchiseptica (Vesonder et al., 1981). ZEA proved toxic to the 

opportunistic respiratory fungal pathogen Alternaria alternata (Utermark and Karlovsky, 

2007, Wiest et al., 1987). However, in vivo relevance of this finding was not demonstrated. 

Here, we provide evidence that environmental exposure of A. fumigatus to T-2 levels up to 1 

μg/ml reduces growth, dramatically alters the fungal proteome without affecting fungal 

viability, and increases fungal virulence for the avian host.  

Although exposure of pathogens to these relatively high mycotoxin concentrations in a 

host is not unlikely, the direct toxic effects of these levels on host health, such as reduced 

appetite and weight gain, and lesions in the digestive tract in pigs and poultry (EFSA, 2004; 

EFSA, 2011a; EFSA, 2011b; Fairchild et al., 2005), will probably outweigh the more subtle 

impact they may exert on host-pathogen interactions. However, T-2 exerted a marked 

negative impact on avian macrophage functioning and thus on bird – A. fumigatus interaction 

at concentrations far below those known to directly affect fungal fitness or overall avian 

health. Indeed, very low level exposure of avian macrophages to T-2 reduced their ability to 

limit A. fumigatus growth. Similar effects of low levels of T-2 on a.o. macrophage functioning 

have been demonstrated in pigs (Verbrugghe et al., 2012). These results thus add to the 
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evidence that T-2 already severely affects animal health at concentrations significantly below 

those allowed in animal feed, by interfering with host-pathogen interactions  

 

5. Suggestions for further studies 

Based on the results of this thesis and on literature, the following topics are 

recommended for future studies: 

1. Effects of other mycotoxins and fungal secondary metabolites on the growth and 

virulence of Aspergillus. This thesis initiated this topic with the effect of Fusarium T-2 toxin 

on A. fumigatus. This thesis has shown the influence of T-2 on the fitness and virulence of A. 

fumigatus, but the effects of other frequently detected mycotoxins (e.g. ZEA, DON, and 

fumonisins) and microbial secondary metabolites are not known, so more studies on this topic 

are needed. 

2. The innate and adaptive immunity of avian species in response to fungal infections. 

The immune responses of avian species against fungal infections are not as clear as those of 

humans and mammals. For example, a better understanding of the exact roles of avian 

heterophils and dendritic cells in fungal infection may help to develop better control measures 

for avian mycosis. 

3. The mechanisms by which T-2 and other mycotoxins affect the avian immune 

functions. Many mycotoxins are known to be immunotoxic, but their immunotoxicity has 

mainly been studied in mammals, while birds have largely been neglected. 

4. Potential commercial value of mycotoxins. Antibiotics, the bactericidal secondary 

metabolites of fungi, have been widely used in medication. A question can be asked whether 

environment friendly products can be developed from mycotoxins to control pests, bacteria 

and fungi in agriculture. For example, trichothecenes might get huge commercial value if they 

could be modified in a way that they become non-toxic for humans and animals while keeping 

their antifungal activity. 
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Mycotoxins are toxic secondary metabolites of fungi. They can be produced by fungi in 

a variety of environments, affecting the growth and virulence of other co-inhabiting 

microorganisms. Agricultural products and their derived food- and feed- stuffs can be easily 

invaded by fungi during production and storage, resulting in mycotoxin contamination. 

Mycotoxins can be oestrogenic, carcinogenic, neurotoxic, and immunotoxic. Ingestion of 

mycotoxins from contaminated agricultural products can impair human and animal health. 

Aspergillosis is an opportunistic fungal disease mainly caused by Aspergillus fumigatus. 

Avian species are highly susceptible to aspergillosis, which strikes depending on factors 

including the amount and virulence of inhaled Aspergillus conidia and the immune status of 

the birds. The hypothesis of this thesis was that mycotoxins in avian feed alter the bird’s 

susceptibility to aspergillosis. This thesis thus aimed to assess the effects of mycotoxins on 

avian health and avian aspergillosis. 

The first study investigated the occurrence of mycotoxins in commercial bird feeds, and 

their pathological effects in pet birds. The occurrence of mycotoxins in commercial parrot 

feeds (5 seed mixes and 5 pelleted feeds) was analyzed by liquid chromatography tandem 

mass spectrometry (LC-MS/MS). The following 12 mycotoxins were detected: zearalenone, 

deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenon-X, aflatoxin B1, 

sterigmatocystin, alternariol, alternariol methylether, fumonisin B1, fumonisin B3, and 

ochratoxin A. Zearalenone was found to be the most prevalent. Pathological effects after 21 

days feeding mycotoxin-contaminated diets were examined in an in vivo trial with 3 groups of 

5 cockatiels: Group 1 (control) was fed a non-contaminated extruded feed; Group 2 was fed a 

extruded feed containing zearalenone, deoxynivalenol, 15-acetyldeoxynivalenol, and 

fumonisins; and Group 3 was fed a extruded feed containing fumonisins. Average body 

weight gain and relative organ weight were not significantly different between the treatment 

groups and the control group. Apoptosis of renal tubular cells, diarrhoea, reduced appetite, 

enlargement of liver, kidney and proventriculus were occasionally observed in the birds from 

Groups 2 and 3. In summary, contamination with mycotoxins is common in parrot feeds. The 

mycotoxin levels did not reach toxic levels, but might pose a threat to some cockatiels. 

The respiratory macrophages of birds provide an important first line of defense against 

Aspergillus infection. Therefore, the second study evaluated the impact of T-2 toxin (T-2), a 

potent immunosuppressive mycotoxin produced by Fusarium spp., on the antifungal response 

of chicken macrophages against A. fumigatus. The chicken macrophage cell line HD-11 was 

first exposed to 0.5 to 10 ng/ml T-2 for 24 h, and then the viability, antifungal activity, and 

cytokine expression of the macrophages in response to A. fumigatus conidial infection were 
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determined. Macrophage viability decreased when cells were exposed to T-2 at concentrations 

higher than 1 ng/ml. One hour after conidial infection, phagocytosed conidia were observed in 

30% of the non-T-2-exposed macrophages, but in only 5% of the macrophages exposed to 5 

ng/ml T-2. Seven hours after infection, 24% of the conidia associated with non-T-2-exposed 

macrophages germinated, in contrast to 75% of those with macrophages exposed to 5 ng/ml 

T-2. A. fumigatus infection induced upregulation of interleukin (IL)-1β, CXCLi1, CXCLi2 

and IL-12β, and downregulation of transforming growth factor-β4 (TGF-β4) in chicken 

macrophages. Pre-exposure of A. fumigatus-infected macrophages to T-2 at 1 to 5 ng/ml 

further upregulated the expression of IL-1β, IL-6, CCLi2, CXCLi1, CXCLi2, IL-18 (at 1 and 

2 ng/ml) and IL-12β, and further downregulated that of TGF-β4 (at 5 ng/ml). In summary, T-2 

impaired the antifungal activities of chicken macrophages against A. fumigatus conidia, but 

might stimulate immune response by upregulating the expression of pro-inflammatory 

cytokines, chemokines and T-helper 1 cytokines. 

The third study assessed the influence of environmental T-2 on the fitness and virulence 

of A. fumigatus, and examined the effect of dietary T-2 on the development of aspergillosis in 

experimentally infected chickens. A. fumigatus was first cultured on agar media containing 0 

to 1000 ng/ml of T-2. Viability, morphology, growth rate, proteome expression, and 

susceptibility to antimycotics and oxidative stress were deteremined. Results showed that 

exposure to 1000 ng/ml T-2 did not reduce the viability of A. fumigatus, but inhibited its 

growth, with wrinkling and depigmentation of the colonies. Proteomic analysis revealed 21 

upregulated proteins and 33 downregulated proteins, including those involved in stress 

response, pathogenesis, metabolism, and transcription. The proteome seems to have shifted to 

enhance the glycolysis, catabolism of lipids, and amino acid conversion. Assays on fungal 

susceptibility to antimycotics and oxidative stress showed that T-2 exposure did not affect the 

minimal inhibitory concentrations of amphotericin B, itraconazole, voriconazole and 

terbinafine against A. fumigatus, but increased the susceptibility of A. fumigatus to H2O2 and 

menadione. Experimental inoculation of chickens with A. fumigatus showed that pre-exposure 

of A. fumigatus to T-2 exacerbates aspergillosis, especially when chickens were fed a T-2-

containing diet. In summary, A. fumigatus is capable of surviving and growing in substrates 

containing levels of T-2 up to 1000 ng/ml. Growth in the presence of T-2 induces a stress 

response in A. fumigatus, which is associated with exacerbation of aspergillosis in vivo. 

In conclusion, the impact of T-2 on avian aspergillosis is not unambiguous since the 

toxin exerts negative effects both on innate immune mechanisms of the host and on fungal 

fitness. However, the fungal stress response induced by exposure to T-2 and the suppression 
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of antifungal host macrophage activity appear to outweigh the pro-inflammatory host 

response, resulting in exacerbation of avian aspergillosis if the fungus and/or the birds have 

been exposed to T-2. 
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Mycotoxines zijn secundaire metabolieten van fungi die geproduceerd kunnen worden 

in tal van situaties en omgevingen. Grondstoffen voor voeder- en voedingsproducten zijn vaak 

gecontamineerd met mycotoxines en komen op deze manier in het voedsel en voeder van 

mens en dier terecht. Mycotoxines kunnen onder andere carcinogene, neurotoxische en 

immunotoxische eigenschappen bezitten. Opname ervan kan dan ook zowel bij mens als dier 

nadelige effecten hebben. Anderzijds kunnen ook micro-organismen, zoals andere schimmels, 

beïnvloed worden door mycotoxines. Aspergillus fumigatus is een vaak voorkomende 

omgevingscontaminant. Deze schimmel kan een opportunistische mycose veroorzaken die 

aangeduid wordt als aspergillose en vooral voorkomt bij vogels.  

De hypothese van deze thesis is dat mycotoxines in het voeder van vogels een invloed 

hebben op de gevoeligheid van deze dieren voor aspergillose. Daarom werd nagegaan wat de 

effecten zijn van mycotoxines op de gezondheidsstatus van vogels en op een infectie met A. 

fumigatus. 

In een eerste studie werd nagegaan of commerciële vogelvoeders gecontamineerd zijn 

met mycotoxines en wat de pathologische gevolgen hiervan zijn bij gezelschapsvogels. Tien 

verschillende commerciële voeders voor papegaaien (5 zadenmengsels en 5 gepelleteerde 

voeders) werden via LC-MS/MS onderzocht op de aanwezigheid van mycotoxines. In  totaal 

werden 12 verschillende mycotoxines gedetecteerd, namelijk zearalenone, deoxynivalenol, 3-

acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenone X, aflatoxine B1, 

sterigmatocystine, alternariol, alternariol methylether, fumonisine B1, fumonisine B3 en 

ochtratoxine A. Zearalenone bleek de meest voorkomende contaminant te zijn. Om na te gaan 

wat de pathologische gevolgen zijn van de opname van met mycotoxine gecontamineerd 

voeder, werden 3 geëxtrudeerd voeders van de 5 hierboven vernoemde gepelleteerde voeders 

getest in telkens 5 valkparkieten. Groep 1 (controle groep) kreeg mycotoxine vrij voeder, 

groep 2 kreeg voeder gecontamineerd met zearalenone, deoxynivalenol, 15-

acetyldeoxynivalenol en fumonisines, en het voeder van groep 3 was gecontamineerd met 

fumonisines. Na 21 dagen voederen bleek dat de gemiddelde gewichtstoename en de relatieve 

orgaangewichten in groep 2 en 3 niet significant verschilden van de controle groep. Toch 

werden er in groep 2 en 3 bij enkele dieren abnormaliteiten waargenomen zoals apoptose van 

tubulaire niercellen, diarree, verminderde eetlust en een vergroting van de lever, nier en 

proventriculus. Samengevat kunnen we concluderen dat contaminatie van papegaaienvoer met 

mycotoxines een vaak voorkomend probleem is. Deze contaminatie zou bij langdurig 

voederen gezondheidsproblemen bij gezelschapsvogels kunnen veroorzaken.  
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De alveolaire macrofagen van vogels vormen een belangrijke eerstelijnsdefensie tegen A. 

fumigatus infecties. In een tweede studie werd daarom nagegaan wat de invloed is van T-2 

toxine (T-2), een sterk immunosuppressief mycotoxine, op de antifungale respons van 

kippenmacrofagen tegen A. fumigatus. Hierbij werd gebruik gemaakt van een HD-11 

kippenmacrofagen cellijn. Deze cellen werden eerst gedurende 24 uur blootgesteld aan T-2 

(0.5-10 ng/ml) en daarna geïnoculeerd met A. fumigatus conidia. De antifungale activiteit en 

de cytokine expressie werden vervolgens bepaald. Reeds heel lage concentraties aan T-2 (> 1 

ng/ml) waren toxisch voor de HD-11 cellen. Daarenboven had T-2 een invloed op de 

fagocytose en ontkieming van A. fumigatus conidia. Eén uur na de infectie werden in 30% van 

de onbehandelde macrofagen gefagocyteerde conidia geobserveerd, tegenover slechts in 5% 

van de met T-2 (5 ng/ml) behandelde macrofagen. T-2 heeft dus een negatieve invloed op het 

vermogen van macrofagen om conidia te fagocyteren. Zeven uur na infectie bleek 24% van de 

conidia zich te ontkiemen tot hyfen in de onbehandelde macrofagen, terwijl dit steeg tot 75% 

bij de met T-2 behandelde macrofagen. T-2 zorgt er dus voor dat meer conidia ontkiemen tot 

hyfen, wat erop kan wijzen dat A. fumigatus gemakkelijker kan aanslaan bij vogels die 

blootgesteld zijn aan T-2. Blootstelling van HD-11 cellen aan A. fumigatus conidia 

veroorzaakte een opregulatie van IL-1β, CXCLi1, CXCLi2 en IL-12β, en een downregulatie 

van de TGF- β4. Een voorafgaande blootstelling van de macrofagen aan T-2 (1-5 ng/ml) 

resulteerde na inoculatie met conidia in een verdere stijging van de expressie van IL-1β, IL-6, 

CCLi2, CXCLi1, CXCLi2, IL-18 (bij T-2 concentraties van 1 en 2 ng/ml) en IL-12β. Bij een 

behandeling met 5 ng/ml T-2 werd een verdere daling in de expressie van TGF-β4 

waargenomen. Samengevat kunnen we besluiten dat T-2 een negatieve invloed heeft op de 

antifungale eigenschappen van kippenmacrofagen tegen A. fumigatus conidia, maar ook de 

expressie van pro-inflammatoire cytokines, chemokines en T-helper 1 cytokines stimuleert.  

In een derde studie werd de invloed nagegaan van T-2 als omgevingscontaminant op 

de ”fitness” en virulentie van A. fumigatus. Daarenboven werd in deze studie onderzocht wat 

het effect is van het voorkomen van T-2 in kippenvoeder op de ontwikkeling van aspergillose 

bij experimenteel geïnfecteerde kippen. Om het effect van T-2 op de viabiliteit, morfologie, 

groei, eiwitexpressie en gevoeligheid tegen antimycotica en oxidatieve stress na te gaan, werd 

A. fumigatus gecultiveerd op agar media, al dan niet gesupplementeerd met T-2 (0-1000 

ng/ml). De resultaten tonen aan dat een blootstelling van A. fumigatus aan T-2, tot een 

concentratie van 1000 ng/ml, geen effect heeft op de leefbaarheid van de schimmel, maar wel 

de groei ervan inhibeert. Dit fenomeen ging gepaard met rimpeling en depigmentatie van de 

kolonies. Via een proteoomanalyse werd aangetoond dat T-2 een opregulatie en 
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downregulatie van respectievelijk 21 en 33 eiwitten veroorzaakt, waaronder eiwitten 

betrokken in de stress respons, pathogenese en het transcriptie metabolisme. Er werd een 

verschuiving van het proteoom waargenomen richting een verhoogde glycolyse, katabolisme 

van lipiden en aminozuur metabolisme. Blootstelling van A. fumigatus aan T-2 bleek geen 

invloed te hebben op de minimale inhibitorische concentraties van amfotericine B, 

itraconazole, voriconazole en terbinafine tegen de schimmel, maar het induceerde wel een 

verhoogde gevoeligheid voor H2O2 en menadione. Kippen die experimenteel besmet werden 

met A. fumigatus die opgegroeid werd in aanwezigheid van T-2 ontwikkelden ergere vormen 

van aspergillose dan wanneer de inoculatie gebeurde met A. fumigatus die niet behandeld 

werd met T-2, vooral wanneer de kippen ook T-2 gecontamineerd voeder kregen. Samengevat 

kan gesteld worden dat A. fumigatus in staat is om te overleven en groeien in substraten die 

gecontamineerd zijn met T-2, zelfs wanneer dit mycotoxine in heel hoge concentraties 

aanwezig is (1000 ng/ml). De groei van A. fumigatus in de aanwezigheid van T-2 induceert 

echter een stressrespons in de schimmel, wat gepaard gaat met een ernstiger verloop van de 

infectie bij kippen.  

De resultaten van deze thesis tonen aan dat commerciële vogelvoeders vaak 

gecontamineerd zijn met lage hoeveelheden van verschillende mycotoxines. Dit kan negatieve 

gevolgen hebben op de gezondheid van gevoelige gezelschapsvogels. De impact van T-2 op 

aspergillose bij vogels is echter dubbelzinnig aangezien het toxine zowel negatieve effecten 

uitoefent op de aangeboren afweermechanismen van de gastheer, als op de algemene toestand 

van de schimmel. Toch blijkt de T-2-geïnduceerde stressrespons in de schimmel en de 

suppressie van de antifungale activiteit van gastheermacrofagen een overwicht te hebben. 

Finaal resulteert dit in een ernstiger verloop van de Aspergillus infectie bij vogels als de 

schimmel en/of de vogels blootgesteld zijn aan T-2. 
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