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Abstract. Fuzzy Answer Set Programming (FASP) is a declarative
programming paradigm which extends the flexibility and expressive-
ness of classical Answer Set Programming (ASP), with the aim of
modeling continuous application domains. In contrast to the avail-
ability of efficient ASP solvers, there have been few attempts at im-
plementing FASP solvers. In this paper, we propose an implemen-
tation of FASP based on a reduction to classical ASP. We also de-
velop a prototype implementation of this method. To the best of our
knowledge, this is the first solver for disjunctive FASP programs.
Moreover, we experimentally show that our solver performs well in
comparison to an existing solver (under reasonable assumptions) for
the more restrictive class of normal FASP programs.

1 Introduction

Answer Set Programming (ASP) has become one of the most pop-
ular declarative/logic programming paradigms in recent years [3].
The popularity of ASP has been driven, in part, by the availability
of competitive answer set solvers, such as the Potassco suite [10],
DLV [14], ASSAT [16], etc. This has enabled a wide variety of prac-
tical applications (see e.g., [15], [8], [9] and [7]). Although ASP is
well suited for modeling combinatorial search problems [8], it is less
suitable for continuous domains. Fuzzy Answer Set Programming
(FASP) [20] is a generalization of classical ASP where atoms are
allowed to have a graded level of truth (usually between 0 and 1).
A general formulation of FASP has been given in [12]. Despite the
promising theoretical power of FASP, research on the implementa-
tion of FASP solvers has not reached the maturity level of classical
ASP solvers. Previous research results related to the implementation
of FASP solvers include: (1) a reduction of FASP programs to sets
of fuzzy propositional formulas [13], (2) a reduction to bilevel lin-
ear programming [5] and (3) a meta-programming approach using
HEX-programs [21]. Furthermore, a set of operators for approximat-
ing fuzzy answer sets have been proposed [2], which can improve the
efficiency of answer set computation using mixed integer or bilevel
linear programming. Unfortunately, these existing solutions are con-
cerned with only a limited subset of the full FASP language as de-
fined in [12]. Our aim is to introduce a new method to evaluate FASP
programs from a larger fragment, while at the same time being com-
petitive on classes of programs that are already covered by the current
methods.
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Although fuzzy logic is based on continuous connectives and has
a semantics based on infinitely many truth values, satisfiability in
many types of fuzzy logics can be checked using finite methods. For
example, in [17] and [1], the authors showed that checking valid-
ity and satisfiability in infinite-valued Lukasiewicz logic can be re-
duced to checking validity and satisfiability in suitably chosen sets
of finite-valued Lukasiewicz logic. In particular, the satisfiability of
a Lukasiewicz formula ¢ can be checked by checking its satisfiability
in a k-valued Lukasiewicz logic, where k is an integer which is ex-
ponentially bounded by the number of variable occurrences in ¢. In
other words, for each satisfiable formula ¢, there exists a satisfying
truth assignment of ¢ such that each variable has a truth value taken
from the set Qp = {%, %, e, %, %}, for a certain k. However,
there is currently no known method to efficiently determine the ap-
propriate k for a given ¢. In [19] this analysis is extended to obtain
a smaller bound for £ on many practical instances of Lukasiewicz
formulas, by looking at the structure of the formulae, instead of just
the number of occurrences of their variables.

In [18], a similar result for fuzzy answer set programming was ob-
tained through the use of the so-called fuzzy equilibrium logic. The
result essentially states that every FASP program that has an answer
set must have at least one answer set having the truth value of each
literal taken from the set Q for a certain k£ bounded exponentially
by the number of atoms in the program. Thus, in principle, one may
need to check exponentially many possible values of k to find an an-
swer set. However, as the result in [19] suggested, in many practical
cases, fuzzy answer sets may be found after checking only a small
number of values of k.

In this paper, we implement a solver based on this idea of looking
for finite fuzzy answer sets. In particular, we will show how classical
ASP can be used to find finite-valued answer sets of FASP programs.
The main idea is to encode the particular semantics of the FASP pro-
gram into an ASP program (parameterized by the choice of k), in
such a way that every answer set of the ASP program corresponds
to an answer set of the original FASP program whose truth values
are taken from Q. We will also discuss a prototype implementation
of a FASP solver using this method and experimentally assess its ef-
fectiveness. We consider only FASP under Lukasiewicz semantics.
However, the main ideas presented here can, in-principle, be adapted
to other fuzzy logic semantics.

2 Answer set programming

In this section, we consider the syntax and semantics of a commonly
studied class of ASP, namely the disjunctive answer set programs.
As usual, let a = p(t1,t2,...,tn) be an atom with arity n, where
p is the predicate name and each ¢; is either a constant symbol or a



variable. A (classical) literal is an atom q or its classical negation —a ,
with =—a = a. A Negation-As-Failure (NAF) literal is an expression
of the form not a, where a is any classical literal. A NAF literal
intuitively denotes the situation where a is not proved to be true. A
disjunctive ASP rule is an expression of the form
r=a1V...Var b A...AbyAnotci A... Anotc,,

with £ > 0,n > 0,m > 0 and the a;’s, b;’s and ¢;’s are classi-
cal literals. We say that the set {ax, ..., ax} is the head of the rule,
H(r), while BT(r) = {b1,...,by} and B~ (v) = {c1,...,cm}
are the positive and negative body literals, respectively. We denote
B(r) =Bt (r)UuB~(r).

If m = 0, we say that the rule is positive. A rule with k = 0 is
called a constraint rule. A rule with k = 1 is called a normal rule.
If the body is empty (i.e. m = n = 0), the rule is also called a
fact. A positive normal rule is also called a Horn rule. A program is
called [definite, positive, normal] iff it contains only [Horn, positive,
normal] rules, respectively.

A literal is called a ground literal if it contains no variables. The
Herbrand base Bp of a program P is the set of all ground literals that
can be formed using the predicates and constant symbols appearing
in P. An interpretation I of P is a subset of Bp. An interpretation
1 is called consistent iff —a & I whenever a € I, and inconsistent
otherwise. A consistent interpretation I satisfies a rule r iff H(r) N
I # () whenever BY (r) C I and B~ (r) N I = (. In such a case, we
write I = r. An interpretation I satisfies a program P iff I |= r for
every r € P. We then say that [ is a model of P.

For a positive program (i.e. one without NAF literals) P, a model
I of P is called an answer set of P iff it is a minimal model of P
w.r.t. set-inclusion. For programs with negation-as-failure, we follow
the definition of the GL-Reduct from [11]. The reduct of P w.r.t. an
interpretation I is the positive program P’ obtained by: (1) deleting
all the rules r with B~ (r) N I # ), and (2) deleting all the NAF
literals in the remaining rules. Then, a model I of P is an answer set
of P iff it is a minimal model of P”.

The set of answer sets of P is denoted by AN S(P). Definite pro-
grams have exactly one answer set. A positive program without con-
straints has at least one answer set, while a general ASP program may
have zero, one or more answer sets. A program is called consistent
iff it has at least one answer set (i.e. AN'S(P) # (), otherwise it is
inconsistent. Let P be any ASP program, and let P’ be a new ASP
program obtained from P by replacing every occurrence of a (clas-
sically) negated literal —a with a fresh atom symbol a’ and adding
the constraint +— a, a’. Then every answer set A € AN'S(P) can be
obtained from an answer set A’ € ANS(P’) by replacing every oc-
currence of the atoms of the form a’ with a. As a result, we only need
to consider ASP programs without classical negations. The decision
problems associated to ASP programs and their complexity results
are discussed in [6].

3 Fuzzy answer set programming

Here, we adopt the formulation of FASP as described in [5], which
is based on the formulation by [12], but focuses specifically on
Lukasiewicz semantics. Similar to classical ASP programs, in FASP
we assume the availability of a set of predicate symbols from which
we construct atoms. A (classical) literal is either a constant symbol
¢ where ¢ € [0,1] N Q, an atom a or a classical negation literal —a.
An extended literal is a classical literal a or a NAF literal not a. A
head/body expression is a formula defined recursively as follows:

e a constant ¢,c¢ € [0,1] N Q, and a classical literal a are head
expressions.

e aconstant ¢,c € [0,1] N Q, and an extended literal a are body
expressions.

e if @ and (3 are head/body expressions, then « ® B, a ® 5, a VY 3
and a A B are also head/body expressions, respectively.

Constants and (classical) literals are also called atomic expressions,
as opposed to composite expressions, which are expressions that con-
tain the application of one or more of the logical operators. A FASP
program is a finite set of rules of the form:

r=a<+f

where « is a head expression (called the head of r) and § is a body
expression (called the body of 7). As in classical ASP, we also write
H(r) and B(r) to denote the head and body of a rule 7, respectively.
A FASP rule of the form a <— ¢ for an atom a and a constant c is
called a fact. A FASP rule of the form ¢ <— (3 is called a constraint.
A rule which does not contain any application of the operator not is
called a positive rule. A rule which has only one literal in the head
is called a normal rule. A FASP program is called [positive, normal]
iff it contains only [positive, normal] rules, respectively. A positive
normal program which has no constraints is called a simple program.

The semantics of FASP is traditionally defined on a complete
truth-lattice £ = (L, <p) [4]. In this paper, we consider two types
of truth-lattice: the infinite-valued lattice Loo = ([0, 1], <) and the
finite-valued lattices L = (Qx, <), for integer k& > 1. An interpre-
tation of a FASP program P is a function [ : Bp +— £ which can be
extended to to expressions and rules as follows:

I(¢) = c, for a constant ¢ € L.
I ® B8) = max(I(a) + I(B8) — 1,0).
I(a® B) =min(I(a) + I(8),1).
I(aY B) = max(I(a), 1(B)).
I(a A B) =min(I(a), 1(8)).
I(not ) =1 —I(a).
I(a + B) =min(1 — I(8) + I(a),1).

for appropriate expressions « and (3. Here, the operators not,
®,®D,Y,A and < denote the Lukasiewicz negation, t-norm, t-
conorm, maximum, minimum and implication, respectively.

An interpretation [ is consistent iff I(l) + I(—l) < 1 for each
l € Bp. We say that a consistent interpretation I of P satis-
fies a FASP rule r iff I(r) = 1. This condition is equivalent to
I(H(r)) > I(B(r)). An interpretation is a model of a program P
iff it satisfies every rule of P. For interpretations I1, Iz, we write
11 S IQ iff I1(l) S Iz(l) for each [ c BP, and 11 < ]2 iff 11 S 12
and I; # I>. We call a fuzzy model I of P a minimal model if there
is no other fuzzy model J of P such that J < .

For a positive FASP program P, a fuzzy model I of P is called
a fuzzy answer set of P iff it is a minimal model of P. For a non-
positive FASP program P, a generalization of the GL reduct is de-
fined in [12] as follows: the reduct of a rule r w.r.t. an interpretation
I is the positive rule 77 obtained by replacing each occurrence of
not a by the constant I(not a). The reduct of a FASP program P
w.r.t. a fuzzy interpretation / is then defined as the positive program
PT = {r' | r € P}. A fuzzy model I of P is called a fuzzy answer
set of P iff I is a fuzzy answer set of 7. The set of all the fuzzy
answer sets of a FASP program P is denoted by AN S(P). A simple
FASP program has exactly one fuzzy answer set. A positive FASP
program may have no, one or several fuzzy answer sets. A FASP
program is called consistent iff it has at least one fuzzy answer set,
and inconsistent otherwise.



Example 3.1. Consider the FASP program 7P; which has the follow-
ing rules:
{a + notc,b+ notc,c+ a®b}

One can check that under both the truth-lattice £3 and Lo, the fuzzy
interpretation I; = {(a, 3), (b, ), (¢, 2)} is a minimal model of
77{ t and hence it is an answer set of PP;. However, one can see that
the program admits no answer sets under any L, where k is a posi-

tive integer not divisible by 3.

As noted in [5], one can also “simulate” the classical negation by
replacing every occurrence of a classically negated atom —a with a
fresh atom symbol a’ and adding the constraint 0 < a ® a’. This al-
lows us to focus only on FASP program without classical negations.
In [5], the decision problems associated to FASP programs and their
complexity results under Lukasiewicz semantics are also discussed.
Note that, similar to the case in classical ASP, the decision problems
associated to FASP programs can be reduced to the problem of de-
ciding whether the program has an answer set or not, i.e., deciding
satisfiability. This allows us to focus only on the problem of deciding
satisfiability of FASP programs.

4 Solving finite satisfiability of FASP using ASP

The results in [1] and [19] suggest that solving FASP programs using
finite methods could potentially be useful. Call a fuzzy answer set A
of P a k-answer set of P iff the truth values of the atoms in A are
taken from the set Q. Then it can be seen that every k-answer set
of a FASP program P under the infinite-valued truth-lattice L is
also an answer set of P under the finite-valued truth-lattice L. This
means that we can find every answer set of P under Lo by iteratively
finding its answer sets under L, for k& > 1. A result in [1] shows
that exponentially many k need to be checked to exhaustively find all
answer sets of the program under L. As we will see in Section 5,
however, in practice usually only a small number of values for k
needs to be checked.

We will show how answer sets of FASP programs under a finite-
valued truth lattice £j can be found using a reduction to classical
ASP. In the next sections, we will show how we can rewrite FASP
rules into equivalent forms prior to the translation (to make the trans-
lation process more efficient) as well as the details of the transla-
tion itself. Finally, we will analyse the conditions under which this
approach is also successful for finding answer sets in the infinitely-
valued truth lattice L.

4.1 FASP rule rewriting

Before we perform the translation to ASP, we rewrite the FASP rules
into an equivalent set of rules which follow a certain “standardized
form”, in order to make the translation simpler and more efficient.
First, if arule » € P contains a constant symbol ¢ in the body, replace
r with

H(r) + B(r)[e/p]

where p is a fresh atom symbol. Here, x[y/z] is obtained by replacing
each occurrence of y in « with z. If ¢ > 0, add the rule p < c to the
program. If a rule » € P contains a constant symbol ¢ in the head,
replace r with

H(r)[c/p] « B(r)

where a fresh atom symbol p is used for every constant appearing
in the program. If ¢ < 1, add the rules {p < ¢,¢ + p} to the

program. It is not hard to see that these replacements do not change
the meaning of the program.

Next, we rewrite each rule such that the resulting rules contain
at most one application of the logical operators (B, ®, A, ¥, not ).
The idea is to recursively split each application of the operators on
composite expressions by defining new auxiliary atoms to capture the
truth value of each of the composite expressions, and then replace
the original rule with a set of equivalent rules. For example, for a
rule 7 € P of the form a < (3 * v where * € {®,®,Y, A}, ais a
classical literal and 8 and -y are composite expressions, we replace
r with the following set of rules {a < p * ¢,p < B,q < 7}
where p and ¢ are fresh atom symbols. While, for a rule r € P
of the form o * § < ¢ where x € {®,®,Y, A} and o and 8 are
composite expressions and c is a classical literal, we replace r with
the following rules: {p * ¢ < ¢,p < a,a < p,q < 3,8 < q}
where p and g are fresh atom symbols. Due to space constraints, we
omit the proof that these rewriting steps result in a FASP program
which is equivalent to the original program, in the sense that every
answer set of the original program can be extended to an answer
set of the new program (by assigning a truth value to each of the
newly introduced atoms) and conversely, that the restriction of any
answer set from the new program to the atoms which occur in the
original program is indeed an answer set of the original program.
The following proposition holds.

Proposition 1. Using a finite number of rewriting steps, we can con-
vert any program P into an equivalent program Rw(P) containing
only rules of the following forms:

. A fact a < ¢ for an atom « and a constant ¢, ¢ € (0, 1].

. A constraint ¢ < a for an atom a and a constant ¢, ¢ € [0, 1).

A rule with no operator in the body nor in the head a < b.

. A rule with NAF-literal in the body a <— not b for atoms a and b.

. A rule with a binary operator in the body a < b * ¢, with a, b and
catoms and * € {®,®, Y, A}

6. A rule with a binary operator in the head a * b < ¢, with a, b and

catoms and * € {®, D, YV, A}.

\oh WD~

and that the size of Rw(P) is O(n - m), where n is the number of
rules in P and m is the maximum number of atom occurrences in the
rules of P.

4.2 Translation to classical ASP

To find the answer sets of P under L, we perform a translation of
each rule of P into ASP rules parametrized by k. Consider a FASP
program P and an integer k. Assume that each rule of P follows the
“standardized” forms as described in Proposition 1. We will trans-
late P into a classical ASP program T'r(P, k). First, we assume the
availability of atom symbols a; foreverya € Bp and 1 < i < kto
be used in Tr(P, k).
We translate each rule of P as follows:

1. For a fact r € P of the form: a + ¢, c € (0,1] we add the fact
aj < toTr(P,k), where j = k * c.

2. For a constraint » € P of the form ¢ < a,c € [0,1) we add a
constraint <— a;11 in T'r(P, k), where j = k * c.

3. A FASP rule of the form: @ < b can be easily translated into
classical ASPas {a; + b; | 1 <i <k}

4. A FASP rule of the form: a <— b ® c is equivalent to saying that
I(a) > max(I(b) + I(c) — 1,0) for every answer set I of P.
This means that to obtain I(a) > % for some 1 < ¢ < k, we can
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choose I(b) = £ forany i < j < k and then I(c) .

This corresponds to the following set of ASP rules:
{ai <= bjAcr—jri | 1<i<k,i<j<k}

A FASP rule of the form: a < b & c is equivalent to saying that
I(a) > min(I(b) + I(c), 1) for every answer set I of P. This
means that to obtain I(a) > i for some 1 < ¢ < k, we can
choose I(b) > % for some 0 < j < 4 and then I(c) > % This
can be translated as the following set of ASP rules:

{ai<—bi,ai<—ci,ai<—bj N Ci—j ‘ 1§i§k’,0<j<i}

A FASP rule of the form a «+ b Y ¢ implies that I(a) >
max(I(b), I(c)) in every answer set I. This can be translated as
the following set of ASP rules

{ai<—bi,a¢<—ci ‘1§Z§k’}
A FASP rule of the form a < b A ¢ can be translated into
{ai%biACi‘lfiSk}

For the FASP rule a & b < ¢ we first create fresh atom sym-
bols ps.¢+, where 0 < s,¢t < ksuchthatl < s+ ¢ < k. Each
Ps,¢ encodes the situation where a and b have truth values 7 and
%, respectively. We then encode the semantics saying that when
c has a truth value of i,‘ then the sum of the truth values of a
and b should be at least . We must also ensure that only “min-
imal choices” are generated in the answer sets. For example, if
I(c) = £ and I(a) = £, we must eliminate the choices which
generate 1(b) > ‘2. We use the following set of ASP rules for
this translation.

{po,i Vp1i-1V...Vpi—11Vpio ¢ |1 <i<k} U

{ai ¢ pij,bj < pij |0<4,j <k} U

{Pit1j-1 < pijNaip1 |0<i<k—-1,1<i+j5j<k} U
{pimtjr1 = pig A1 |0<j<Ek—-1,1<i+j <k}

The first two sets of rules “distribute” the truth value of c to a and
b, while the last two sets of rules ensure that only minimal models
are generated by eliminating the non-minimal ones. For example,

if we also have the fact a + % in P, then the rule
Prk—1,1 < Pro N a1

will eliminate the (otherwise generated) non-minimal answer set
Aof Tr(P, k) containing a; and by, which corresponds to a (non-
minimal) fuzzy model I of P having I(a) = £ and I(b) = 1.

For the FASP rule a ® b <— c a similar construct as the translation
scheme for a®b < ccan be used, as follows: create atom symbols
Ds,t, Where 1 < s,t < k such that s + ¢ > k, with a similar
meaning as before. The rule a ® b <— c can then be translated as:

{pkﬂi\/pk_LH_l\/...Vpi’k<—Ci|1§i§k} @]

{ai < pij,bj < pij |1<i,j <kji+j>k} U

{Pit1j-1 = pigNaipr |1 <i<k,1<j<ki+j>k} U
{Pic1j41 = Pi ANbjp |1 <0<k 1< j<k,i+j>k}
A FASP rule of the form a ¥ b < c states that max (I (a), I(b)) >

I(c) in every answer set I of P. Hence, we can translate it into the
following set of ASP rules: {a; Vb; +¢; |1 <<k}

11. Similar to the previous translation, we can translate the FASP rule
a A b + cinto the following set of ASP rules: {a; + ¢;,b; +
¢ |1<i<k}

For a rule a + not b which states that I(a) > 1 — I(b) for every
answer set I, we use the following set of ASP rules:

12.

{ai < not bkfprl | 1 < 7 < k?}

which enforces the constraint [(a) > 1 — I(b) while at the same
time preserving the NAF-semantics.

Finally, we must add the set of rules
{ai<—ai+1 |a€Bp,1§i§k—1}

into T'r(P, k) to ensure that the atoms a; are consistent with the
interpretation that the truth value of a is at least . We can show the
following result.

Proposition 2. The number of rules in Tr(P, k) is O(n - k?), where
n is the number of rules in P.

Now, consider a function M, mapping a classical interpretation
A to a fuzzy interpretation I, defined as follows:

I(a) = My, (A)(a) = max{%|ai € A}
We can show that the following proposition holds:

Proposition 3. A is an answer set of Tr(P, k) iff I = My (A) is
an answer set of P under the truth-lattice £y,.

For the case where the truth-lattice £ is assumed, one must per-
form the translation and find k-answer sets for (possibly exponen-
tially) many values of k. If no constant symbols appear in P, we can
start looking for k-answer sets for k = 1,2, ... and so on. However,
if P contains a constant symbol ¢, where ¢ = ¢ for some integers a
and b with gcd(a, b) = 1, then translating a rule such as a < ¢ into
an ASP rule a; < where j = a/bxk requires k to be a multiple of b.
Therefore, in the search for k-answer sets using the translation above,
one must always choose a value of &£ which is a multiple of every de-
nominator of the constants appearing in the program. In other words,
if there are n constant symbols {a1/b1,...,an/bn} in P, then we
choose values of k£ which are divisible by the least common multiple
of bi,...,by,. The following proposition provides the result for the
infinite-valued truth lattice.

Proposition 4. For every answer set I of a FASP program P under
the truth-lattice Lo, there exists a positive integer k such that I =
M. (A) for some answer set A of T'r(P, k).

For normal programs, we additionally have the following proposi-
tion.

Proposition 5. If P is a normal FASP program and A is answer set
of T'r(P, k), then I = My, (A) is an answer set of P under the L.

Example 4.1. Consider again the program P; from Example 3.1.
Obviously, Rw(P1) = Pi. Furthermore, one can check that
Tr(P1,1) and Tr(P1,2) have no answer sets. However, the ASP
program T'r(P1, 3) containing the following rules:
{ai <+ not C3—i+1 ‘ 1< < 3}U
{bi < not C3—i+1 ‘ 1 S 7 S 3}U
{Ci — a;,C; (*bi,ci eaj/\bi_j | 1 SZ§3,1 Sj <Z}U
{pl <~ Dit1 | 1= 1727]7 S {a7b7 C}}



does have an answer set, namely A, = {a1, b1, ¢1, c2} which corre-
sponds to the only answer set I1 of Py under Lo (i.e. M3(A1) =
Iy).

For disjunctive programs, the result from Proposition 5 does not nec-
essarily follow. Consider the following example.

Example 4.2. Program P has the following rules: {a®b + 1, a +
b,b < a}. Tr(P2,1) has one answer set, namely A; = {a1,b1}.
However, I1 = M1(A1) = {(a, 1), (b, 1)} is not an answer set of
‘P2, whose only answer set is Io = {(a,0.5), (b,0.5)}.

For disjunctive programs, we only have the following weaker re-
sult.

Proposition 6. If P is a disjunctive FASP program and A is an an-
swer set of T'r(P, k), then I = M, (A) is an answer set of P under
the infinitely-valued truth lattice L. iff there is no other model J of
PT such that J < 1.

This means that for disjunctive programs, when our method has
found a k-answer set, we still need to verify whether it is an answer
set under L. This can easily be checked using a mixed integer pro-
gramming solver, or any other method for entailment checking in
Lukasiewicz logic. We omit the details.

5 Implementation and experiments

We have developed a prototype FASP solver (named ffasp) im-
plementing the method described in this paper. The solver reads
a FASP program, performs the rewriting and translation, submits
the translation result to a back-end ASP solver, retrieves the an-
swer sets back (if any) and converts them to a fuzzy answer
set format. We use clingo [10] as the back-end ASP solver for
ffasp. The source code for the implementation is available at
http://code.google.com/p/ffasp.

The syntax of the input language of ffasp is similar to the clas-
sical ASP language syntax, with the addition of the following: (1)
constant atoms, which are numbers between 0 and 1 in either deci-
mal or rational format prefixed with a “#” symbol, (2) the connective
“*#”_denoting the Lukasiewicz t-norm, (3) the connective “+”, denot-
ing the Lukasiewicz t-conorm (4) the connective “v”, denoting the
max operator and 5) the connective “"”, denoting the min operator.
Currently, the solver only allows one type of connective in the head
or the body of the same rule. This does not reduce the expressivity of
the language of the FASP program that can be evaluated using ffasp,
since every FASP rule can be rewritten into this form. The following
is an example of rules accepted by ffasp:

a :— #0.2 v b.
P(X,Y) + s(X) := g(X) * r(Y) * X<Y.
b ~ #0.1 :— ¢ * not a * #1/2.

Given an input program P, ffasp first computes the value | =
lem{b1,...,bn}, where a;/b;, 1 < ¢ < n are the constant atoms
appearing in P. If no constant atom appears in P, then [ = 1. The
ffasp solver iteratively computes 7'r(Rw (P, k)) for each positive
integer k£ which is a multiple of [ and calls clingo to find a k-answer
set. If an answer set is found, ffasp reports it and the computation
stops. Otherwise, the computation is continued until a certain limit
on k is reached, or until a predetermined time limit is reached. For
example, given the program:

a :— not p. b
p :— atbtc. g

:— not p. ¢
:— axbxc.

:— not p.

ffasp checks for k-answer set for k = 1,2, 3, 4, after which the fol-
lowing output is produced:

{af0.25], b[0.25], c[0.25], p[0.75]}

To asses the efficiency of the proposed method, we have compared
the running time of ffasp with a recent implementation of a FASP
solver called fasp, described in [2]. To the best of our knowledge,
it is the only currently available FASP solver. First, we note that the
language accepted by ffasp is strictly more expressive than the lan-
guage accepted by fasp, e.g., disjunctions in the body are not allowed
in fasp. Hence, this experiment is intended to measure the efficiency
of ffasp for the fragment of the input language corresponding to nor-
mal FASP programs, as accepted by fasp.

For this experiment, we use the same instances of the problems
Graph Coloring, Hamiltonian Path, Stratified and Odd Cycle as in
[2], with the following modification. Since ffasp starts the search us-
ing an initial k computed from the least common multiple of all the
denominators of the constants appearing in the program, its perfor-
mance is affected by the number of different constants allowed in the
program. We therefore make the (in practice reasonable) assumption
that the number of different truth values that the constants in the pro-
gram can take is bounded by a certain parameter d (i.e. they are taken
from the set Qg). To this effect, we perform a rounding of the con-
stant atoms appearing in instances of Graph Coloring and Hamilto-
nian Path used in [2] to the nearest value in Q4. For example, a con-
stant atom #0.872 in the original instances is rounded into #0 . 9
in our test instances when d = 10, and to #0.87 when d = 100.
We selected 6 instances from the original instances of Graph Col-
oring, and for each of them, we generated 5 instances according
to the rounding method described previously (with d = 20, 40, 80
and 100), yielding a total of 30 instances. For Hamiltonian Path, we
selected 10 of the original instances and use d = 20,40, ..., 160,
yielding a total of 80 instances.

The experiment was conducted on a Macbook with OS X ver-
sion 10.8.5 running on Intel Core i5 2.4 GHz with 4 GB of memory.
Execution time for each instance is limited to 10 minutes while the
maximum value for k is set to 100 for all instances of Stratified and
0dd Cycle, as well as the instances of Graph Coloring and Hamilto-
nian Path having d < 100, and set to 200 for the instances having
d > 100. Tabel 1 presents the results of the experiment.

All instances of Stratified, Odd Cycle and Graph Coloring are sat-
isfiable, and both solvers find an answer set for each instance . Out
of 80 instances of the problem Hamiltonian Path, both solvers agree
in finding that 46 of them are satisfiable (as reported in the column
“Num. of Instances.”) and both produce an answer set for each in-
stance. The fasp solver was furthermore able to prove that the re-
maining 34 instances are unsatisfiable, whereas our solver cannot in
practice prove unsatisfiability (as this would require checking an ex-
ponential number of values for k). No time-outs were observed dur-
ing this experiment. However, as d increases, computation time for
ffasp increases significantly as well (which is to be expected). On the
other hand, fasp does not suffer from the same disadvantage, and for
larger d will eventually take over ffasp in terms of efficiency.

Although we have not provided a benchmark result to test the per-
formance of ffasp for programs with disjunction in the body and for
disjunctive programs (due to time and space constraints), we believe
that the ability of ffasp to handle such classes is a significant advan-
tage. Indeed, it has been observed in [4] that most applications of
FASP require rules with disjunction in the body. Allowing applica-
tions of Lukasiewicz operators in the head and body of the rules can
increase the expressivity of the language. In classical ASP, allowing



Table 1. Experiment results
Problem d Num. of instances Avg. execution time (s)
fasp ffasp
(from [2])  (our solver)
Stratified - 90 2.136 0.527
0Odd Cycle - 90 2.130 0.111
Graph Coloring 20 6 39.224 1.883
Graph Coloring 40 6 38.858 6.247
Graph Coloring 60 6 39.035 13.903
Graph Coloring 80 6 42.563 25.425
Graph Coloring 100 6 42.969 40.177
Hamiltonian Path 20 7 21.382 0.266
Hamiltonian Path 40 6 17.503 1.021
Hamiltonian Path 60 5 22.898 2.451
Hamiltonian Path 80 5 22.806 4.615
Hamiltonian Path 100 6 27.710 7.600
Hamiltonian Path 120 6 33.386 11.684
Hamiltonian Path 140 5 24.416 16.730
Hamiltonian Path 160 6 30.565 22.019

disjunction in the body is redundant, since a rule containing disjunc-
tion in the body, such as: a <— b V ¢, is equivalent to the two rules:
a < band a < c. In contrast, disjunction in the body of a FASP
rule, such as a < b & c cannot be replaced by using two normal
rules, and instead increase the expressiveness of the language. For
example, by allowing Lukasiewicz t-conorm in the body, one can
perform the so-called “saturation technique” to force an atom a to
take only Boolean values by adding the rule a <— a & a. This allows
for the mixing of fuzzy and Boolean predicates in a FASP program.
Similarly, having operators in the head of FASP rules also allow for
a more concise and intuitive encoding of a problem, as it is the case
with having disjunction in the head of classical ASP rules.

6 Conclusion

We have proposed a new method to solve the satisfiability problem in
FASP by using finite methods, and showed how the reasoning tasks
in FASP can be reduced to reasoning tasks in classical ASP. A key
advantage of our approach over other recent proposals, such as the
ones proposed in [13], [5], [21], and more recently, [2], is that our
solver is not restricted to normal programs without disjunction in
the body. Indeed, most interesting problems in FASP require the use
of Lukasiewicz disjunction in the body of rules [5]. Apart from the
bi-level mixed integer programming (biMIP) approach proposed in
[18], which is difficult to use in practice given the lack of scalable
biMIP solvers, our method is the first approach that can handle such
programs.

We have also developed a prototype implementation of this
method, and assessed its efficiency by comparing it with a previous
FASP solver implementation. The benchmark result shows that the
method we propose is efficient for computing answer sets in many
practical instances (given the reasonable assumption that the num-
ber of truth values that constants can take is bounded). In addition,
our solver is also the first implemented FASP solver (to the best of
our knowledge) to offer the ability to solve disjunctive programs, and
programs with disjunctions in the body.
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