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Abstract—The performance of data-intensive applications, when running on modern multi- and many-core processors, is largely
determined by their memory access behavior. Its most important contributors are the frequency and latency of off-chip accesses and
the extent to which long-latency memory accesses can be overlapped with useful computation or with each other.
In this paper we present two methods to better understand application and microarchitectural interactions. An epoch profile is an intuitive
way to understand the relationships between three important characteristics: the on-chip cache size, the size of the reorder window of
an out-of-order processor, and the frequency of processor stalls caused by long-latency, off-chip requests (epochs). By relating these
three quantities one can more easily understand an application’s memory reference behavior and thus significantly reduce the design
space. While epoch profiles help to provide insight into the behavior of a single application, developing an understanding of a number
of applications in the presence of area and core count constraints presents additional challenges. Epoch-based microarchitectural
analysis is presented as a better way to understand the trade-offs for memory-bound applications in the presence of these physical
constraints.
Through epoch profiling and optimization, one can significantly reduce the multidimensional design space for hardware/software
optimization through the use of high-level model-driven techniques.

Index Terms—Microarchitecture analysis, memory-level parallelism, visualization
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Fig. 1. This epoch profile plots the number of non-overlapped
long-latency memory accesses (in epochs per 1,000 instruc-
tions) as a function of a processor’s instruction window size and
cache capacity. Epoch profiles show how long-latency effects
impact overall performance.

1 INTRODUCTION

A S Moore’s Law continues to advance, we are seeing an
increasing amount of computational power on a sin-

gle chip. However, off-chip memory bandwidth is not grow-
ing accordingly, making applications increasingly bandwidth-
constrained. Efficient use of the available on-chip cache ca-
pacity, thus minimizing pressure on off-chip bandwidth, is an
important consideration for the performance of many applica-
tions, including HPC applications.

One key to improving application performance is the ability
to extract as much memory-level parallelism (MLP) as possible.
By exploiting MLP, the microprocessor can overlap off-chip
requests instead of serializing them, which tends to improve
application performance [1].

Although the raw MLP measurement of an application al-
lows us to understand the amount of parallelism that exists (or
can be extracted) over long time scales, this metric does not
allow us to approximate application performance. The epoch
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model [1], on the other hand, directly relates to performance
penalties observed by an out-of-order processor in response
to off-chip accesses. Each epoch is composed of on-chip com-
putation and cache accesses, followed by a potentially long
period where the processor waits for a response from an off-
chip data access. By counting the number of epochs that exist
in an application, one can better understand the penalty caused
by off-chip accesses for a particular hardware/software config-
uration. For memory-dominated applications, as the number of
epochs in an application increases, so does the application run-
time. Therefore, minimizing the epoch count across a selection
of relevant microarchitectural parameters (such as cache and
processor window size, or core count) can allow one to reduce
the overall application runtime.

The goal of this work is to provide a method to better under-
stand the closely-coupled hardware/software interactions that
relate performance through bandwidth (and epochs). To do
this, we abstract a microprocessor into two major performance-
limiting components: the total on-chip cache capacity and the
size of the reorder buffer, or window size, of the processor core.
By comparing the number of epochs present when sweeping
across these microarchitectural values, it becomes possible
to determine which values provide the most benefit for a
particular application. While completing such a study with
detailed processor models is possible, our goal with this work
is to do so without detailed timing simulation, but instead with
microarchitecture analysis coupled with analytical modeling.
This becomes even more important when varying architectural
parameters not changed in this study, such as core frequency,
or taking into account energy consumption, as cycle-level
simulation across a large design space can take a significant
amount of time.

Figure 1 shows an example epoch profile that takes into
account each of these parameters. Considering a vertical slice of
the graph, as the cache capacity (y-axis) increases past 16 KiB,
the epoch frequency visible in the heat map decreases signifi-



cantly (changes from bright yellow and orange to dark purple)
indicating that a cache size of 64 KiB allows for significant off-
chip memory access reductions across small window sizes (x-
axis). Cache capacities above 256 MiB provide another step in
reduction of off-chip accesses across all window sizes. Along
the horizontal axis is the size of the reorder buffer, which affects
the amount of independent memory accesses that can be found.
As the window size increases past 32 and 64 entries to 256,
the off-chip access count drops significantly, indicating that
there can be a significant application performance benefit when
moving past 32 entries.
2 BACKGROUND
2.1 MLP and the Epoch Model
Chou et al. [1] define both MLP and epoch modeling. MLP
is the ability of a microprocessor to extract more than one
outstanding off-chip memory access. As accessing off-chip
memory takes significantly longer than performing a large
number of local computations [1], parallel off-chip accesses
reduce the total amount of time that a processor needs to stall
waiting for long-latency load requests, improving performance.

The epoch model divides application execution into a num-
ber of time periods, or intervals, consisting of a period of active
program execution (consisting of both instruction execution
and local cache accesses), followed by a period of delay caused
by a number of different factors, such as off-chip long-latency
load requests blocking the reorder buffer (ROB) or serializing
instructions. One can construct epochs by recording the time
when these factors occur, and beginning a new epoch following
each event. Due to the overlapping of events, like long-latency
load accesses, each epoch will incur a single end-to-end latency
for all overlapped requests. This differentiates epoch counts
from miss rates because each epoch represents a known stall
point for a processor core, while each miss can potentially be
overlapped by the out-of-order core itself and is difficult to
attribute to processor stalls without detailed simulation.

The epoch model effectively separates the off-chip CPI com-
ponent from the rest of the CPI of an application. We can
therefore approximate the off-chip CPI component as the num-
ber of epochs times the memory access latency (See Table 1).
Higher epoch frequencies indicate larger memory penalties,
and therefore a slower overall application.

2.2 Hardware Abstractions
One key component of the epoch profile is the size of the
reorder buffer, or window size. Larger windows allow a proces-
sor to extract additional independent operations and memory
accesses, reducing overall runtime.

In addition to the window size of the processor, the to-
tal amount of on-chip and relatively fast cache is the other
major micro-architectural component under consideration. We
abstract the amount of on-chip cache that is accessible by
an application by monitoring the stack distance of memory
accesses. By using stack distances, we emulate a single, fully-
associative cache with LRU replacement. Accesses with a stack
distance that is greater than the size of the cache will be long-
latency misses. Hence, increasing cache capacity reduces the
number of off-chip accesses required by the application.

3 APPLICATION EPOCH PROFILING

As described in Section 2.1, the epoch frequency provides a
direct way to measure application performance when off-chip
memory accesses dominate the time spent in the application.
We have observed that application epoch frequency tends to
decrease as window size or on-chip cache capacity increases.

Nevertheless, we would like to better understand application
characteristics and trends. Which combination of window size
and cache capacity will benefit a particular application the
most? When will application performance no longer improve
as we increase core and cache resources? In this work we
describe application analysis through epoch profiles as a way
to more easily answer these questions. In addition to single-
application epoch analysis, we also present a microarchitectural
analysis based on epochs to aid in early microarchitectural
design-space exploration.
3.1 Epoch Profiles
The application epoch profile is a method to determine in-
herent application performance characteristics with respect to
cache size and the ability of the microarchitecture to extract
MLP from the application. It consists of a heat map (See
Figure 1) measuring the epochs per 1000 instructions (EPKI)
that represent the frequency of long-latency, off-chip memory
requests that stall the microprocessor. On the x-axis is the
window size, and on the y-axis, the total capacity of the on-
chip cache hierarchy of the processor. The benefit of measuring
the epoch frequency instead of the MLP of an application is
that it directly relates to application performance. The epoch
profile, therefore, provides a method to compare the resulting
performance of a number of different microarchitectural trade-
offs.
3.2 Epoch-based Microarchitectural Analysis
While viewing a single application’s epoch profile can be help-
ful to determine how it responds to a number of performance-
critical microarchitectural changes, there is an additional need
to understand how both single applications and classes of
applications respond to the question: do we want additional
cores or larger cache capacity for future processor designs?

For a given set of applications, there exists an opti-
mal hardware-software configuration where an application
achieves its highest performance. Unfortunately, there are a
large number of parameters to consider that complicate this
search. Naturally, as the cache size grows, so does its average
latency. But, more complex relationships exist that require
additional insight and knowledge about both the application
as well as the interactions with the microarchitecture itself. The
performance of bandwidth-bound applications on a particular
microarchitecture, for example, depend both on the available
bandwidth and frequency of off-chip memory accesses made
by the application.

We identify three primary, but interdependent factors that
contribute to determining aggregate application performance
(which we define as the sum of the IPCs that contribute to
useful work over all cores).

• LLC cache capacity. The total cache capacity affects the
number of long-latency loads (off-chip accesses) seen.

• Number of cores and application threads. Thread count
affects application data partitioning [4] directly, but higher
core counts can provide a way to extract more application
performance.

• Core window size. The window size of an application
determines how many long-latency loads are overlapped,
determining the number of epochs, and therefore the
penalty caused by off-chip memory accesses (CPImem).
It is this CPI component that will determine the access
rate which allows us to compute the amount of requested
off-chip bandwidth per thread.

Each of these three items are linked closely together. A larger
LLC capacity allows for a larger on-chip working set, but
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Fig. 2. Epoch profile comparison for the W (top) and A (bottom)
input sets for the sp application.
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Fig. 3. Epoch microarchitecture analysis for sp, A input.

reduces either the number of cores or the window size of the
cores available. The trade-off between window size and cores is
a complex one, as larger windows (and therefore fewer cores)
can potentially expose additional long-latency misses (reducing
the number of epochs), but having fewer cores also reduces
the amount of bandwidth needed to sustain non-bandwidth-
limited performance.

To better understand these complex relationships, and to
help microarchitects design next generation microprocessors,
we have developed a model that uses the epoch as a perfor-
mance measure to relate each of these primary factors to the
other. For a given configuration (cache size, number of cores
and application configuration), we can solve for the optimal
window size as well as the total aggregate performance of
the application. We partition the computation of maximum
performance into bandwidth and non-bandwidth limited cate-
gories, and approximate performance for these two categories
as defined in Table 1.

4 EXPERIMENTAL SETUP

For this exploration, we provide a number of abstractions to
allow us to relate the three primary variables to each other
over a large sample space. Table 1 describes the constants,
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Fig. 4. Epoch microarchitecture analysis averages for W (top)
and C (bottom) inputs of npb.

application-dependent variables and relationships used in this
study. Base application IPCs are approximated with a power
law: 1.0 for 32-entry window and up to 5.0 for a 1024 entry
window.

In our experiments, we assume that the processor window
size is the limiting factor for being able to extract MLP. There-
fore we do not model the microprocessor’s issue queues or load
and store queues as we would like to determine the upper
bound of how much these windows can extract additional
MLP. We currently do not model a number of effects on epochs,
such as: serializing instructions, instruction fetch misses, unre-
solvable branch mispredictions, memory-based dependencies
and prefetching. These effects can be added to the model to
provide additional fidelity.

We developed a Pintool [6] that monitors application mem-
ory references and register dependencies to track the epoch
frequency. The resulting frequency is saved for each window
size and cache capacity of interest and plotted as a heat map

TABLE 1
Variables and relationships used for modeling.

Variables and constants
Core count N Total area (mm2) Aproc=700
Window size W Frequency (GHz) freq=1
LLC capacity (KiB) CLLC Memory BW (GB/s) BW=32
App insn count I Memory latency (ns) tmem=45
App epoch count e Line size (KiB) L=64
App mem accesses m

Relationships
Core area (mm2) Acore=2.0609 ·W 0.3851

LLC area (mm2) ALLC=CLLC · 3.2305× 10−3

Processor area (mm2) Aproc=Acore +ALLC

Base CPI CPIbase=1/2 ·
√

W/160
Memory CPI CPImem=e · freq/tmem

Core CPI CPIcore=CPIbase + CPImem

Perf (compute-bound) IPCagg=N · 1
CPIcore

Perf (BW-bound) IPCagg=BW ·N · I
m·L·freq



to form the epoch profile. Although the runtime overhead of
this pintool is approximately 100 to 200× slowdown compared
to native execution, a large number of configurations are being
analyzed simultaneously (more than 200 for the experiments
in this paper). An approximate calculation of the stack distance
can reduce the tool runtime [2].

5 RESULTS

5.1 Application Epoch Profile
Figure 2 plots the epoch profile for the sp application from
the NAS Parallel Benchmarks suite [5], both for the class W
input (top) and the larger class A input (bottom). Reading
the epoch profiles in vertical slices, we see a result that is
similar to a miss rate curve. Starting at the bottom of the graph,
cache capacity is very small and most memory accesses result
in off-chip memory requests which end an epoch of in-core
execution. Moving to the top, representing ever larger on-chip
cache capacities, sudden drops in miss rate become apparent.
At these points, the cache had just became large enough to
hold a new working set of the application. For both input sets,
this happens at 4 KiB which is the size of thread-local stacks
and data structures. Further drops are input-set specific. The
class W input has a working set of the application’s inner loop
of less than 256 KiB, while at 8 MiB the complete input set fits
in the cache leaving only very few (cold) cache misses. The
larger A input has an inner loop working set of 512 KiB while
the complete data set is does not fit the largest cache capacity
considered.

Reading the graphs from left to right, we can gauge the
impact of improved MLP extraction by larger out-of-order
cores. Starting from the left, in-order or moderately out-of-
order cores are not able to extract any MLP and hence serialize
all off-chip accesses. Once the window size exceeds 32 in-
structions, however, a continuous decrease in the measured
EPKI can be observed. For this application, the inner loop
contains 146 instructions with three to four independent off-
chip memory accesses, while subsequent loop iterations are
independent of each other and therefore expose additional
memory-level parallelism. Moving further to the right of the
graph, each doubling of the window size also doubles the
number of independent loop iterations that fit inside of it,
further increasing MLP and reducing EPKI.

5.2 Epoch-based Microarchitectural Analysis
Figure 3 is an example the epoch-based microarchitectural anal-
ysis for the sp application. This figure shows the performance
(in normalized aggregate application IPC) on the z-axis of the
heat map for a number of configuration parameters. Across
the core count (x-axis) and cache capacity (y-axis) options, we
also display the largest window size (in text) for the optimal
configurations. The configurations are chosen based on the
best aggregate performance across all window sizes for that
core count. Non-optimal configuration options do not list the
window size, but use the results from the next smallest con-
figuration for ease of viewing. Here we see, counterintuitively,
that the cache capacities above 1 MiB do not perform the best
when considering overall performance for our configuration
parameters. The reason for this is because sp with the A
input set is a bandwidth-bound application that is able to take
advantage of a large number of cores (40) with a large window
size (256 entries) to reduce the number of epochs sufficiently
to exploit the bandwidth available (not shown). Fewer cores
(even with a larger window size) are unable to reach the same
performance. Adding more cores (with a smaller window size)

is also unable to achieve the same level of performance because
of bandwidth limitations. Finally, cache capacity is important
for stack accesses which occur frequently, as memory capacities
below 64 KiB reduce performance.

Figure 4 shows the average performance (normalized ag-
gregate IPC) across all epoch-based microarchitecture analysis
runs for applications found in the NAS Parallel Benchmarks.
Here, the comparison between non-bandwidth-limited (top, W)
and bandwidth limited (bottom, C) input sets becomes clear.
Over a large range of parameters, the W input set shows close to
maximum performance for many options because the working
set fits into the available on-chip cache. Nevertheless, we can
see with the C input set (and also with A, not shown) that there
is a clear winner where MLP is sufficiently exposed with the
relatively large window size (256 entries) to allow for sufficient
forward progress even with a limited number of cores (40).

6 CONCLUSION

Off-chip bandwidth has become the primary factor for deter-
mining next-generation application performance. In this work,
we introduce two new methods to better understand how the
interaction between the microarchitecture and the application
affect performance through the use of epochs, or out-of-order
processor stalls due to long-latency off-chip accesses. We first
describe the epoch profile, a unique, visual way to understand
how much of an effect both larger cache capacity and growing
window sizes have on modern applications. We also introduce
a fast method of early microarchitectural design space explo-
ration through epoch analysis.

While this work focuses on one main cause of epochs,
namely long-latency loads stalling the ROB, taking into account
additional events such as front-end stalls and prefetching, for
example, could provide for better application understanding.
Many of the larger input sizes of the NAS Parallel Benchmarks
tend to be bandwidth bound, and therefore provide a good
initial analysis target. Nevertheless, extending this work to
evaluate additional benchmarks, including those outside of
traditional data-parallel, HPC-style applications, is a next step
required for evaluating the general applicability of this work.

As the microarchitectural design space grows, with param-
eters such as core clock frequencies and off-chip bandwidth,
faster, more insightful means of analysis become increasingly
important. Epoch-driven analysis provides an early, high-level
application understanding, allowing the microarchitect to more
easily compare future architectural options, in a fast, visual
way before moving to detailed cycle-level simulations.
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