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Abstract 

Executive attention and its relationship with effortful control (EC) were investigated in 

children with ADHD (n = 24), autism spectrum disorder (ASD; n = 20), and controls (n = 21).  

Executive attention measures included flanker-performance and event-related potentials (N2, 

P3, and ERN).  EC was assessed using questionnaires.  Only the ERN was found to be 

robustly related to EC across groups.  N2 did not differ between groups and only children 

with ADHD+ODD showed diminished executive attention as expressed in RT and P3.  In 

ADHD, monitoring of incorrect (ERN) and correct (CRN) responses was diminished.  

Overall, the link between EC and executive attention was less strong as expected and varied 

depending on group and measure considered.  All groups were able to detect conflict (N2) and 

all but ADHD+ODD were able to allocate extra attention in order to respond correctly (P3). 

Findings indicate a general reduced response monitoring in ADHD.  

Key words: executive attention; flanker task; ERP; ERN; effortful control; ADHD; autism 

spectrum disorder. 
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Highlights 

- Executive attention and its link with EC in ADHD, ASD, and controls. 

- Correlations were often weak and varied depending on group and measure considered. 

- Most robust relationship was found with the ERN. 

- ADHD+ODD showed diminished executive attention, reflected in RT and P3. 

- ERN and CRN were smaller in ADHD, suggesting reduced response monitoring. 
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1. Introduction 

The ability to adjust or regulate behavior in accordance with situational demands is a 

crucial part of adequate daily functioning.  In temperament literature, this self-regulation 

component is referred to as ‘effortful control’ (EC; Rothbart & Bates, 2006, p. 109).  EC 

involves both a behavioral (i.e., the ability to inhibit or activate behavior) and an attentional 

aspect (i.e., the ability to focus or shift attention when needed) and is traditionally measured 

using questionnaires (e.g., Ellis & Rothbart, 2001; Rothbart, 1989).  Most of the early work 

on self-regulation and EC had a predominantly behavioral focus. However, together with the 

development of appropriate methods to investigate brain systems involved in higher level 

cognitive functioning (e.g., non-invasive brain imaging methods), an increased interest 

emerged in the underlying mechanisms of self-regulation (Posner & Rothbart, 2000).  Given 

that attention to and processing of information from the environment are believed to be 

essential for adequately regulating behavior (Posner & Rothbart, 2000), a specific focus has 

been put on attentional networks underlying EC (Rothbart, Ellis, Rueda, & Posner, 2003).  

Posner and Petersen (1990) have distinguished three attentional networks, each having a 

different function and corresponding to separable brain regions and neurochemical circuits.  

The first two networks involve achieving and maintaining an alert state (i.e., the alerting 

network; Fan, McCandliss, Sommer, Raz, & Posner, 2002) and orienting attention towards a 

potentially relevant area of the visual field (i.e., the orienting network; Fan et al., 2002; 

Greenwood, Fossella, & Parasuraman, 2005).  A third network, the executive attention 

network, involves the monitoring and resolving of conflict among thoughts, feelings, and 

responses.  The efficiency of executive attention is traditionally measured using a flanker task 

(Fan et al., 2002).  However, different tasks involving conflict have been used in combination 

with neuroimaging techniques to identify brain regions related to executive attention.  Based 
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on these studies, executive attention has been linked to a neural network that includes the 

anterior cingulate cortex (ACC) and the lateral prefrontal cortex (LPFC; e.g., Fan, Flombaum, 

McCandliss, Thomas, & Posner, 2003; Posner & Fan, 2004).  According to Posner and 

Rothbart (2000), the executive attention network forms the key underlying mechanism of EC.  

This theoretical link has been stressed by Rothbart and colleagues through the inclusion of 

executive attention in the broader definition of EC as “the efficiency of executive attention, 

including the ability to inhibit a dominant response and/or to activate a subdominant response, 

to plan, and to detect errors” (Rothbart & Bates, 2006, p. 128).  Despite the clear theoretical 

link between both constructs, few studies have focused on the empirical relationship between 

EC and executive attention.  The studies that did try to relate both constructs to each other, 

yielded inconsistent findings with some studies reporting a significant relationship between 

EC reports and executive attention performance and others not (e.g., Ellis, Rothbart, & 

Posner, 2004; Gerardi-Coulton, 2000; Samyn et al., 2013; Simonds, Kieras, Rueda, & 

Rothbart, 2007).  Overall, there is supporting evidence for a relationship between the 

constructs, but findings are equivocal and vary strongly depending on the measures used.  In 

all, the most robust relationship is found between parent-reported EC and executive attention 

performance.  However, additional research is needed in order to disentangle the 

interrelationship between executive attention and EC.   

Given the importance of the executive attention network in self-regulation, it has also 

been proposed to be of particular interest in disorders characterized by problems with self-

regulation (e.g., Posner & Petersen, 1990).  One disorder known to be typified by difficulties 

in self-regulation and/or attentional regulation is ADHD (Konrad, Neufang, Hanisch, fink, & 

Herpertz-Dahlmann, 2006).  Berger and Posner (2000) have argued that three major 

theoretical accounts on ADHD (i.e., Barkley, 1998; Sergeant, Oosterlaan, & van der Meere, 
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1999; Swanson et al., 2000) can actually be reconceptualized in terms of attentional networks 

and that all of the accounts implicate the executive attention network.  Furthermore, 

functional magnetic resonance imaging (fMRI) studies have identified an ACC dysfunction as 

an important contributor to inattention and impulsivity (e.g., Bush et al., 1999; Pliszka et al., 

2006) and neurochemical studies have identified dopamine (involved in the executive 

attention network; Bush, Luu, & Posner, 2000) as a major player in the pathophysiology of 

ADHD (e.g., Sengupta et al., 2002).  Another disorder characterized by difficulties in 

monitoring, self-initiation and modification of behavior, is autism spectrum disorder (ASD; 

for a review, see Mundy, 2003).  It is hypothesized that there is a functional involvement of 

the ACC and executive attention in social impairments as well as repetitive behavior in ASD 

(Doyle-Thomas et al., 2013; Mundy, 2003).  This hypothesis is in line with findings of 

decreased metabolism (Haznedar et al., 1997) and activation (Chan et al., 2011) of the ACC 

in ASD.  With the above-mentioned conceptualizations in mind, an increasing number of 

studies have focused on EC and executive attention in children with ADHD or ASD.  

Whereas studies on EC have been relatively consistent in showing lower levels of EC in both 

groups as compared to typically developing (TD) children (e.g., Martel & Nigg, 2006; 

Konstantareas & Stewart, 2006; Samyn, Roeyers, & Bijttebier, 2011; Samyn, Roeyers, 

Bijttebier, & Wiersema, 2013), empirical findings on executive attention are inconsistent.  

Some studies show impairments on flanker task performance in ADHD or ASD (e.g., Adams 

& Jarrold, 2012; Burack, 1994; Christ, Kester, Bodner, & Miles, 2011; Konrad et al., 2006; 

Mullane, Corkum, Klein, McLaughlin, & Lawrence, 2011), whereas others do not (e.g., 

Adólfsdóttir, Sørensen, & Lundervold, 2008; Booth, Carlson, & Tucker, 2007; Henderson et 

al., 2006; Keehn, Lincoln, Müller, & Townsend, 2010; Samyn et al., 2013).   
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In all, studies focusing solely on EC reports and executive attention performance have 

been proven to be limited in their ability to: (a) clarify the relationship between EC and 

executive attention, and (b) lead to a better understanding of executive attention processes in 

ADHD and ASD.  Therefore, we suggest that it may be useful to also include physiological 

indices of executive attention, in specific event related potentials (ERPs).  This would enable 

us to move beyond the mere interpretation of behavioral outcome (i.e., RT, errors) and look at 

specific self-regulatory processing stages leading to that final product (i.e., how children 

suppress irrelevant information, control irrelevant responses, and process their mistakes; 

Wild-Wall, Oades, Schmidt-Wessels, Christiansen, & Falkenstein, 2009).  Several ERP 

components have been clearly linked to the ACC, making them particularly relevant in the 

context of studying EC and the efficiency of executive attention.   

Three ERP components that are elicited during flanker performance are of particular 

interest for the present study, namely the N2, the P3 and the error related negativity (ERN).  

The N2 is a fronto-central negative-going waveform that peaks between 200 and 400 ms post 

stimulus, which is believed to reflect response inhibition, conflict monitoring or both (e.g., 

Jackson, Jackson, & Roberts, 1999; Kopp, Rist, & Mattler, 1996; Nieuwenhuis et al., 2003; 

Van Veen & Carter, 2002).  The flanker P3 is a slightly more posterior positive displacement 

between 300 and 500 ms after the stimulus onset and is hypothesized to reflect response 

inhibition (e.g., Herrmann, Jacob, Unterecker, & Fallgatter, 2003) or the monitoring of the 

successful outcome of the inhibitory process (e.g., Liotti, Pliszka, Perez, Kothmann, & 

Woldorff, 2005).  In line with the fact that the ability to ‘detect errors’ is considered to be an 

important part of EC (Rothbart & Bates, 2006, p. 128), a third relevant component is the 

ERN.  The ERN is a fronto-central negative voltage deflection peaking within 160 ms after an 

error is made (Falkenstein, Hoormann, Christ, & Hohnsbein, 2000). It is hypothesized to 
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reflect the activation of an error detection system (Falkenstein et al., 2000; Overbeek, 

Nieuwenhuis, & Ridderinkhof, 2005; Van Veen & Carter, 2002).  Despite debate on the exact 

functional meanings of these components, they all are clearly related to important aspects of 

self-regulation and source localized to the ACC (e.g., Bekker, Kenemans, & Verbaten, 2005; 

Bokura, Yamaguchi, & Kobayashi, 2001; Herrmann, Römmler, Ehlis, Heidrich, & Fallgatter, 

2004; Jonkman, Sniedt, & Kemner, 2007a; Neuhaus et al., 2007).   

Up till now, few studies included ERP measures of executive attention while 

investigating the relationship with EC.  Also, comparison between studies is being hampered 

because of differences in (1) administered task (e.g., flanker task, go/no go), (2) measures of 

EC (e.g., the effortful control scale, the child behavior questionnaire), (3) ERP components 

(e.g., N2, P3), and (4) participants (e.g., age ranges, different clinical groups).  Overall, there 

seems to be evidence for a relationship between N2 and P3 amplitudes and EC in children, 

although findings on the direction of the relationship are inconsistent (e.g., Buss, Dennis, 

Brooker, & Sippel, 2011; Rueda, Rothbart, McCandliss, Saccomanno, & Posner, 2005; 

Wiersema & Roeyers, 2009).  Despite the potential pertinence of error-related ERPs in EC 

(i.e., the inclusion of the ability to ‘detect errors’ in the definition of EC), to our knowledge, 

no study so far investigated the relationship between the ERN and EC reports. 

With regards to differences between TD children, children with ADHD, and children 

with ASD in terms of ERP measures of executive attention, only a limited number of studies 

focused on the flanker N2, P3 and/or ERN.  Some studies showed no differences in N2 

amplitudes in children with ADHD or ASD as compared to TD peers (Johnstone & Galletta, 

2013; Tsai, Pan, Wang, Tseng, & Hsieh, 2011), whereas others do (e.g., Albrecht et al., 2008; 

Johnstone, Barry, Markovska, Dimoska, & Clarke, 2009; Johnstone, Watt, & Dimoska, 2010; 

Jonkman, van Melis, Kemner, & Markus, 2007b; Kratz et al., 2011; Wild-Wall et al., 2009).  
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Findings on the flanker P3 in ADHD or ASD are inconsistent with some studies showing 

reduced P3 (e.g., Kratz et al., 2011) and others finding no amplitude differences compared to 

TD peers (e.g., Johnstone et al., 2010; Tsai et al., 2011).  Similar heterogeneous results have 

been found for the ERN.  Some studies showed an unaffected ERN (e.g., Jonkman et al., 

2007b; Wild-Wall et al., 2009), whereas others found reduced or even enhanced ERN 

compared to TD peers (e.g., Albrecht et al., 2008; Henderson et al., 2006; Santesso et al., 

2011; South, Larson, Krauskopf, & Clawson, 2010; Van Meel et al., 2007;).  In sum, studies 

comparing children with ADHD or ASD and TD children on these flanker ERPs are rather 

scarce and have yielded mixed results.  Furthermore, to the best of our knowledge, no study 

so far has directly compared ADHD and ASD in terms of the flanker N2, P3, and ERN 

despite the fact that this could provide us with valuable information.  Several studies have 

shown that children with ADHD and children with ASD share many symptoms, including 

inattention and hyperactivity (e.g., Mayes, Calhoun, Mayes, & Molitoris, 2012), which 

complicates differentiating between the disorders and may result in an overestimation of 

comorbid ADHD in ASD, up to 78% (for a review, see Gargaro, Rinehart, Bradshaw, Tonge, 

& Sheppard, 2011).  Examining differences in the efficiency of executive attention processes 

by means of ERPs may identify cognitive markers that can help differentiate between ADHD 

and ASD and identify false cases of comorbidity. 

The first aim was to investigate the relationship between EC and ERP-based measures 

of executive attention.  Based on previous findings and on the theoretical link between both 

constructs, we expected to find significant relationships between reports on EC and the N2, 

the P3, and the ERN.  In specific, we expected higher levels of EC to be associated with 

smaller N2 difference scores (and thus with a lesser amount of flanker-induced conflict-effect 

(e.g., Jonkman et al., 2007b), with smaller P3 difference scores (and thus with a lesser amount 
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of effort allocation), and with larger ERN/CRN differences (and thus with better error 

monitoring).  The second aim of the present study was to investigate whether TD children, 

children with ADHD and children with ASD differ from each other based on performance 

measures and ERP indices of executive attention.  Given the equivocal results concerning 

group differences on executive attention performance and related ERPs (N2, P3, and ERN), it 

was difficult to put forward specific hypotheses as to potential differences between the three 

groups.  However, based on the abovementioned theoretical conceptualizations, we expected 

the clinical groups to show less efficient executive attention performance (i.e., larger 

congruency effect based on RTs and/or errors of commission) on the flanker task in 

comparison with TD children.  Also, we expected to find reduced N2 and P3 congruency-

effects, and a reduced ERN accuracy-effect in the clinical groups.  Additionally, we evaluated 

the impact of comorbid Oppositional-Defiant Disorder (ODD) on our findings given that an 

increasing number of studies suggest that the presence of comorbid ODD or CD can account 

for some effects presumably caused by ADHD (e.g., Kuntsi, Oosterlaan, & Stevenson, 2001). 

2. Method 

2.1. Participants 

 65 children aged 10-15 years with an estimated full scale IQ (FSIQ) of 80 or higher 

participated in our study.  21 children were TD (66% boys; age: M = 13.58, SD = 1.66; 

estimated FSIQ: M = 110.00, SD = 9.45), 20 children had a formal diagnosis of ASD (75% 

boys; age: M = 12.61, SD = 1.83; estimated FSIQ: M = 104.35, SD = 16.63), and 24 children 

had a formal diagnosis of ADHD (63% boys; age: M = 12.82, SD = 1.64; estimated FSIQ: M 

= 101.13, SD = 10.79).  All children with ASD or ADHD were previously diagnosed by a 

multidisciplinary team using established criteria, as specified in DSM-IV-TR (APA, 2000).  

Diagnosis of ASD was confirmed by the Dutch translation of the SRS (Constantino & Gruber, 

2005; Roeyers, Thys, Druart, De Schryver, & Schittekatte, 2011).  30 percent of the boys in 
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the ASD group had an SRS Total T-score between 60 and 75, indicating the presence of mild 

ASD or high functioning autism.  70 percent of the boys had a T-score of over 75, indicating 

the presence of severe autism.  All children with ASD were free of medication.  Diagnosis of 

ADHD was verified using the disruptive behavior module of the Diagnostic Interview 

Schedule for Children for DSM-IV (DISC-IV; Shaffer, Fisher, Lucas, Dulcan, & Schwab-

Stone, 2000).  The DISC-IV was also used for establishing the presence of comorbid ODD 

and/or Conduct Disorder (CD).  The ADHD group included 9 children with primarily 

Inattentive subtype, three with primarily Hyperactive/Impulsive subtype and 12 with the 

Combined subtype.  Ten boys also met criteria for ODD, none of the children met criteria for 

CD.  Given that several studies suggest that the presence of comorbid ODD/CD can account 

for some effects presumably caused by ADHD (e.g., Kuntsi, Oosterlaan, & Stevenson, 2001) 

and given that several children in our ADHD-sample had comorbid ODD, we performed 

additional analyses to evaluate whether or not this influenced the findings.  However, we want 

to stress that these findings have to be interpreted with caution because of the limited size of 

the ADHD-only (n = 14) and the ADHD+ODD (n = 10) samples.  18 children took 

medication for ADHD symptoms on a regular basis, which was discontinued at least 48 hours 

prior to the testing.  Groups did not differ significantly in age (F(2, 62) = 2.80, p = .068, η
2
 = 

.08) or estimated full scale IQ (FSIQ; F(2, 62) = 2.85, p = .065, η
2
 = .08). 

2.2. Instruments 

2.2.1. EC questionnaires 

The Effortful Control Scale (ECS), the Attentional Control Scale (ACS) and the self- 

and parent-report of the Early Adolescent Temperament Questionnaire-Revised (EATQ-R-s 

and EATQ-R-p, respectively) were used to tap EC.  The ECS (Lonigan & Phillips, 2001) 

measures behavioral and attentional aspects of EC and consists of 24 self-report items to be 
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rated on a 5-point Likert scale.  It yields a total score (α = .85
1
) and two subscale scores, 

namely Persistence/Low Distractibility (12 items; e.g., “I have a hard time concentrating on 

my work because I’m always thinking about other things” and “I have difficulty completing 

assignments on time”; α = .81) and Impulsivity (12 items; e.g., “I can easily stop an activity 

when told to do so”; α = .74).  Lower scores on the Impulsivity subscale indicate higher levels 

of impulsivity.  The ECS shows acceptable psychometric properties (e.g., Verstraeten, Vasey, 

Claes, & Bijttebier, 2010). 

The ACS (Derryberry & Reed, 2002) measures the ability to focus and shift attention 

by means of 20 self-report items to be rated on a 4-point Likert scale.  It yields a total score (α 

= .83) and two subscale scores, namely Attention Focusing (nine items; e.g., “My 

concentration is good even if there is music in the room around me”; α = .71) and Attention 

Shifting (11 items; e.g., “I can quickly switch from one task to another”; α = .77).  The ACS 

shows acceptable psychometric properties (e.g., Verstraeten et al., 2010). 

The EATQ-R (Ellis & Rothbart, 2001) self-report consists of 65 items, the parent-

report version consists of 62 items.  Items are grouped into 12 clusters and four higher-order 

scales (Positive Reactivity, Negative Affectivity, Affiliativeness and Effortful Control) and 

have to be rated on a 5-point Likert scale.  For the purpose of this study, only the EC scale (α 

= .90 for the EATQ-R-p, α = .81 for the EATQ-R-s), consisting of the item clusters Inhibitory 

Control (e.g., “When someone tells me to stop doing something, it is easy for me to stop”), 

Attentional Control (e.g., “I pay close attention when someone tells me how to do 

something”) and Activation Control (e.g., “I put off working on projects until right before 

they’re due”), was included.  The EATQ-R shows acceptable psychometric properties (e.g., 

Muris & Meesters, 2009). 

2.2.2. Neuropsychological measure of executive attention 

                                                           
1
 All reported alphas refer to inter-item correlations in the present study. 
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Executive attention was measured using a modification of the Eriksen flanker 

paradigm (Eriksen & Eriksen, 1974).  The flanker task administered in the present study was 

very comparable to the one Jonkman and colleagues (2007b) and van Meel and colleagues 

(2007) used to study the N2 and the ERN in school-aged children.  Participants had to 

evaluate whether the middle arrow of five horizontally arranged arrows is pointing left or 

right by pressing one of two possible keys in the keyboard.  The efficiency of executive 

attention was assessed by measuring the impact of flankers on RT and accuracy.  Flankers 

could be either congruent (i.e., target and flankers pointed in the same direction) or 

incongruent (i.e., flankers pointed in the opposite direction to the target).  Each trial began 

with the presentation of a fixation cross at the center of the screen for the duration of 500 ms. 

Then, target and flankers were displayed for 200 ms, followed by a fixation cross of variable 

duration (1,100-1,300 ms).  The task consisted of a practice block (20 trials), followed by 4 

blocks of 100 test trials.  Within each block, trials were presented randomly.  Executive 

attention scores were calculated by subtracting mean RT in the congruent flanker condition 

from the incongruent flanker condition.  The underlying idea is that in the congruent 

condition, flankers and target point in the same direction and will elicit the same response 

whereas in the incongruent condition, flankers provide conflicting information and conflict 

resolution will be needed in order to be able to respond correctly to the target.  Therefore, the 

flanker interference effect (i.e., RT difference between congruent and incongruent conditions) 

should provide a measure of executive attention with larger interference scores reflecting less 

efficient executive attention. 

2.3. Procedure 

The study was approved by the Ethical Committee of Ghent University.  Once parents 

were informed about the aims of the study and written consents were obtained, we first asked 

parents and children to complete a set of questionnaires.  Next, parents and children visited 
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the laboratory on two occasions.  During the first session the DISC-IV was administered to 

the parents (only for the ADHD group) and IQ of children was estimated based on four 

subtests (Vocabulary, Similarities, Picture Arrangement and Block Design) of the Wechsler 

Intelligence Scale for Children III (WISC-III; Kort et al., 2002).  The estimated FSIQ 

correlates strongly with FSIQ (Grégoire, 2005).  During the second session the flanker task 

combined with the EEG measurement was administered.  Upon arrival in the laboratory, the 

child was familiarized with the procedure.  After attachment of the electrode cap, task 

instructions were given and practice trials were performed.  Test blocks were started once 

participant thoroughly understood the task.  Between blocks, breaks were provided to 

minimize the effects of fatigue. 

2.4. Electrophysiological measures 

 EEG activity was recorded with 127 active electrodes, mounted in a customized cap 

(EasyCap Active; EasyCap GmbH) according to the 10/5 International System (Oostenveld & 

Praamstra, 2001).  The ground electrode was placed in the cap at Fpz.  Electro-oculogram 

(EOG) was recorded with electrodes enclosed in the cap near the eyes and an additional 

electrode, placed below the right eye.  Data were digitized with a sampling rate of 500 Hz and 

amplified with an open pass-band from DC to 100 Hz, by means of a Brain Vision Quickamp 

amplifier (Brain Products, Gilching, Germany), which uses an average reference.  All signals 

were offline filtered with a high pass filter of 0.1 Hz (24 dB/octave), a low pass filter of 30 Hz 

(24 dB/octave), and a 50 Hz notch filter.  Eye movement correction was conducted using the 

Gratton and Coles algorithm (Gratton, Coles, & Donchin, 1983), as implemented in Brain 

Vision Analyzer (version 2.0.1). 

2.4.1. Stimulus-locked ERP analyses 

To investigate processing of response conflict by means of the N2 and P3 components, 

stimulus-locked ERP analyses were performed. Signals were segmented into epochs of 200 
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ms before to 1000 ms after stimulus onset for trials to which subjects responded correctly.  

Signals were baseline-corrected to the 200 ms pre-stimulus baseline.  Epochs with 

physiological artefacts in any EEG channel were rejected before averaging.  Criteria for 

artefact rejection were: (1) a voltage step of more than 50 µV between sample points, (2) a 

voltage difference of more than 200 µV within an epoch, and (3) activity lower than 0.5 µV.  

Next, signals were averaged according to congruency to obtain congruent and incongruent 

stimulus-locked ERPs.  Topographical maps showed that N2 was most pronounced at Fz and 

FCz, therefore N2 peak amplitude was determined at these electrode sites in a time window 

from 230 to 370 ms post-stimulus
2
.  The P3 amplitude, maximal at Cz, CPz, and Pz, was 

defined as the mean voltage computed in the time window 400 to 600 ms post-stimulus (all 

relevant electrode sites and boundaries were chosen based on topographical evaluation of the 

ERPs and on visual inspection of the grand average difference wave-forms between congruent 

and incongruent stimuli, respectively). 

2.4.2. Response-locked analyses 

To investigate the ERN, signals were segmented into epochs of 400 ms before to 800 

ms after response onset.  Signals were baseline-corrected to a -400 to -200 ms pre-response 

baseline
3
.  Epochs with physiological artefacts in any EEG channel were rejected in 

accordance with the above mentioned criteria for artefact rejection before averaging.  Then, 

signals were averaged according to accuracy to obtain correct and incorrect response locked 

ERPs.  In order to be sure that our findings were not compromised by some kind of cognitive 

control “carry-over” effect from stimulus related processing, response locked ERPs were 

                                                           
2
 We also performed the analyses using N2 mean amplitudes in a time window from 280 to 330 ms post-

stimulus (based on visual inspection of the grand averages and topographical map of the N2), all results 
remained the same. 
3
 We also performed the analyses using the average voltage of the entire averaging epoch as the baseline 

(Luck, 2005), all results remained the same. 
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obtained from incongruent trials only
4
.  The ERN was most pronounced at Fz and FCz.  Peak 

amplitude of the ERN was determined at these sites in a time window from -25 to 100 ms 

post-response (relevant electrode sites and boundaries were chosen based on topographical 

analysis of the ERP and on visual inspection of the grand average difference wave-forms 

between correct and incorrect responses, respectively).  Due to the absence of a clear ERN-

like negativity from -25 to 100 ms in the correct response-locked ERPs in several participants, 

the correct-related negativity (CRN) was determined in a time window of 16 ms around the 

time point at which the ERN occurred in the individual ERPs for incorrect trials (e.g., 

Jonkman et al., 2007b).   

2.5. Data analysis 

2.5.1. Data trimming and outlier analysis 

For the RT-based measures, all RTs from errors and all RTs shorter than 150 ms were 

eliminated
5
.  To prevent extreme RTs from influencing the means for each participant, we 

applied a within-subject trimming procedure that is robust to non-normality (Wilcox & 

Keselman, 2003; Friedman et al., 2008): for each participant, observations that deviated from 

the median by more than 3.32 times the median absolute deviation in each condition were 

excluded.  For each variable used in the analyses, observations farther than 3 SDs from the 

group means were replaced with values that were 3 SDs from the group mean.  This final 

trimming stage affected no more than 0.6 % of the observations
6
. 

2.5.2. Statistical analyses performance measures 

Performance measures included percentage errors of commission (%EOC; i.e., 

pressing the wrong button), mean reaction time (RT), and efficiency scores of executive 

                                                           
4
 Analyses were repeated using response-locked ERPs to congruent and incongruent trials collapsed, all results 

remained the same. 
5
 An RT of less than 150 ms is taken to indicate that the subject’s response was anticipatory and not an 

authentic response per se.  Such anticipatory RTs are therefore discarded (Jensen, 2006, p. 63). 
6
 Analyses were repeated using the non-trimmed data, all results remained the same. 
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attention (i.e., RT incongruent – RT congruent; %EOC incongruent - %EOC congruent).  Mean error rates 

and RT were entered into a mixed-model repeated-measures ANOVA with group (TD, ASD, 

ADHD) as between-subject factor and flanker (congruent, incongruent) as within-subject 

factor.  To evaluate the relationship between performance and EC reports by means of 

correlational analyses, executive attention efficiency scores were used. 

2.5.3. Statistical analyses ERP measures 

Mean N2, P3, and ERN amplitudes were compared across conditions (congruent vs. 

incongruent for the N2 and P3 and correct vs. incorrect for the ERN) by separate repeated 

measures ANOVAs.  All analyses comprised a between-subjects factor “group” (TD, ASD, 

ADHD).  The N2 and P3 related analyses included “flanker” (congruent, incongruent) and 

“electrode position” (‘Fz, FCz’ and ‘Cz, CPz, and Pz’, respectively) as within-subjects 

factors.  The ERN analyses included “accuracy” (correct, incorrect) and “electrode position” 

(Fz, FCz) as within subjects-factors.  

The average number of segments included in the averaged stimulus-locked ERPs was 

115 (SD 37) for congruent trials and 99 (SD 35) for incongruent trials.  The average number 

of segments in the averaged response-locked ERPs was 214 (SD 67) for correct trials and 30 

(SD 21) for incorrect trials.  Four children (3 TD, 1 ADHD) were omitted from the response-

locked ERP analyses (but not from the behavioral analyses and the stimulus-locked ERP 

analyses) due to an insufficient number of error trials for reliable analyses.   

To address the research question regarding the relationship between EC and the ERPs, 

bivariate correlations were computed between EC scores and N2, P3, and ERN amplitude 

difference scores (N2incongruent – N2congruent; P3incongruent – P3congruent; ERN – CRN, respectively).  

Given that the repeated measures ANOVAs revealed no interaction-effects with electrode site 

(suggesting that neither the congruency- nor the accuracy-effect differed between electrode 
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sites), mean difference scores were calculated for the cluster of relevant electrode sites per 

ERP (Fz and FCz for the N2 and the ERN; Cz, CPz, and Pz for the P3).  

3. Results 

3.1. The relationship between executive attention and EC 

3.1.1. Basic EC findings 

 Groups were compared on the different EC scales by means of ANOVAs and 

Bonferroni post hoc analyses.  Means, standard deviations, and F values are shown in Table 1. 

Significant group differences were found for all scales with the exception of self-reported 

activation control.  Both clinical groups scored significantly lower than the TD group on all 

total scales, parent-reported inhibitory and attentional control and child-reported persistence 

and attentional control. Children with ADHD (but not ASD) showed more impulsivity and 

less inhibitory control compared to TD children. 

3.1.2. Behavioral measures and EC 

Means, standard deviations, and F values are shown in Table 1.  Bivariate correlations 

between executive attention (RT- and %EOC-based) and EC (sub)scales were computed.  For 

the total group, we found no relationship between EC reports and RT-based executive 

attention (rs ranging from -.00 to -.18).  However, we did find a trend for a relationship 

between self-reported attention focusing (ACS) and RT-based executive attention (r = -.23, p 

= .06).  This trend became significant after controlling for FSIQ (r = -.25, p = .045).  In 

specific, higher levels of attention focusing were related to a lower RT-based conflict score.  

We found no relationship between EC reports and error-based executive attention (rs ranging 

from -.06 to -.23), with the exception of the relationship with impulsivity (r = -.25, p = .049).  

In specific, children that reported being less impulsive showed a lower error-based conflict 

score.  All results remained the same after controlling for age and FSIQ. 

3.1.3. ERPs and EC 
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For the total group, we found no relationship between the N2, the P3 and any of the 

EC scales (see Table 2).  The ERN however, was significantly related to (subscales of) each 

of the EC questionnaires.  The significant correlations were small to modest with rs ranging 

from -.27 to -.37.  When correcting for multiple comparisons using the Bonferroni-Holm 

procedure, only the relationship between the ERN and self-reported attention focusing and 

attentional control (ACS) remained significant.  In specific, higher levels of attentional 

control were associated with a larger ERN/CRN difference score (see Figure 1
7
).  All results 

remained the same when controlling for age and gender. 

To get an indication of potential group differences considering the interrelationship 

between EC and executive attention related ERPs, correlations were computed for the three 

groups separately (see Table 3).  Given the relatively small number of participants in the 

separate groups, only the magnitude of the correlation coefficients was interpreted (rs: .30 - 

.50 = moderate; rs ≥ .50 = large; Cohen, 1988).  The N2 was unrelated to EC in TD children, 

but modestly related to attention control (EATQ-R-s and -p) and impulsivity in ADHD.  In 

ASD, the N2 was strongly related to attention shifting (EATQ-R-s and -p) and modestly to 

inhibitory control (EATQ-R-p).  The P3 was unrelated to EC in ASD, but moderately related 

to attentional control (EATQ-R-s), activation control (EATQ-R-p), and impulsivity (ECS) in 

TD children, and with impulsivity in ADHD.  For the ERN, moderate to large correlations 

were present in all three groups.  In TD children, strongest correlations were found for 

attentional (ACS, EATQ-R-s) and inhibitory control (EATQ-R-s), whereas in ASD the 

strongest relationships were found for attentional control (ACS and EATQ-R- p) and 

activation control (EATQ-R-p).  In the ADHD group, activation control (EATQ-R-s) showed 

the highest correlation. 

                                                           
7
 There seemed to be one outlier.  However, additional analyses excluding the outlier did not change our 

findings. 
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3.2. Performance measures 

Means, standard deviations, and F values are shown in Table 1.   

3.2.1. Flanker main-analysis: incorrect responses 

There was a main effect of flanker (F(1, 62) = 136.27, p < .001, η
2
 = .69), reflecting 

more errors in the presence of incongruent flankers.  There was a trend (F(2, 62) = 2.92, p = 

.065, η
2
 = .09) for a group difference for mean error rate, with children with ADHD showing 

slightly elevated error levels in comparison with their TD peers (p = .056).  Additional 

analyses show that children with ADHD made significantly more errors than TD children, but 

only in the congruent condition (F(1, 43) = 6.77, p = .013, η
2
 = .14).  There was no interaction 

effect of flanker and group (F(2, 62) = 0.33, p = .718, η
2
 = .01).  Results remained the same 

when controlling for gender and differences in FSIQ.  Given that the %EOC was not 

significantly related to age, requirements for analyses of covariance were not met.  

Consequently, we did not control for age. 

Additional analyses were performed to investigate whether comorbid ODD in ADHD 

influenced these findings.  Results remained the same when excluding children with 

ADHD+ODD.  When excluding children with ADHD-only, the trend for a group difference 

became non-significant (p = .205).  

3.2.2. Flanker main-analysis: RT 

There was a main effect of flanker (F(1, 62) = 152.82, p < .001, η
2
 = .71), all children 

responded slower to the target if it was accompanied by incongruent flankers.  There was no 

main effect of group (F(2, 62) = 1.90, p = .158, η
2
 = .06) nor was there an interaction effect of 

flanker and group (F(2, 62) = 2.36, p = .103, η
2
 = .07).  Results remained the same when 

controlling for gender and age differences.  Given that RT was not significantly related to 

FSIQ, requirements for analyses of covariance were not met.  Hence, we did not control for 

FSIQ. 
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Results remained the same when excluding children with ADHD+ODD.  When 

excluding children with ADHD-only, we found a trend for a main effect of group (F(2, 48) = 

3.06, p = .056, η
2
 = .11) and a significant interaction effect of flanker and group (F(2, 48) = 

6.33, p = .004, η
2
 = .21).  In specific, additional analyses showed that groups did not differ in 

terms of reaction time on congruent trials (F(2, 48) = 1.62, p = .208, η
2
 = .06), whereas groups 

did differ in terms of reaction time on incongruent trials (F(2, 48) = 4.11, p = .022, η
2
 = .15) 

in that children with ADHD+ODD responded slower than TD children (F(1, 29) = 4.57, p = 

.041, η
2
 = .14) and children with ASD (F(1, 28) = 5.17, p = .031, η

2
 = .16), indicating less 

efficient executive attention in ADHD+ODD. 

3.3. Event-related potential measures 

 Grand average waveforms following congruent and incongruent stimuli for each group 

are shown in Figure 2 (N2) and Figure 3 (P3).  Grand average waveforms following correct 

and incorrect responses for each group are depicted in Figure 4. 

3.3.1. Stimulus-locked N2 

There were main effects of flanker (F(1, 62) = 4.83, p = .032, η
2
 = .07) and electrode 

(F(1, 62) = 79.36, p < .001, η
2
 = .56), reflecting more negative N2 amplitudes in the 

incongruent condition than in the congruent condition and more negative N2 amplitudes at Fz 

than at FCz.  There was no significant main effect of group on N2 amplitude (F(2, 62) = 0.65, 

p = .527, η
2
 = .02), nor was there an interaction effect of flanker and group (F(2, 62) = 0.22, p 

= .800, η
2
 = .01) or any other interaction effect.  Requirements for analyses of covariance 

were not met since N2 amplitudes were not significantly related to either age, gender or FSIQ.  

Therefore, we did not control for these factors. 

Results remained the same when excluding children with ADHD+ODD or with 

ADHD-only. 

3.3.2. Stimulus-locked P3 
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There were main effects of flanker (F(1, 62) = 54.18, p < .001, η
2
 = .47) and electrode 

(F(2, 61) = 91.11, p < .001, η
2
 = .75), reflecting larger P3 amplitudes in the incongruent 

condition as compared to the congruent condition and larger P3 amplitudes at CPz than at Cz 

and Pz.  There was no significant main effect of group on P3 amplitude (F(2, 62) = 0.34, p = 

.710, η
2
 = .01).  However, we did find an interaction of group and flanker (F(2, 62) = 3.93, p 

= .025, η
2
 = .11).  In specific, we found that the flanker-effect was present in TD children 

(F(1, 20) = 34.97, p < .001, η
2
 = .64) and in children with ASD (F(1, 19) = 31.34, p < .001, η

2
 

= .62), but not in children with ADHD (F(1, 23) = 3.99, p = .057, η
2
 = .15).  There were no 

other significant interaction effects.  Results remained the same after controlling for age and 

gender.  P3 amplitudes were not significantly related to FSIQ, therefore, we did not control 

for differences in FSIQ. 

Additional analyses were performed in order to investigate the potential influence of 

comorbid ODD in ADHD.   When excluding children with ADHD+ODD all results remained 

the same with the exception that the interaction effect of group and flanker lost significance 

(F(2, 52) = 0.86, p = .428, η
2
 = .03).  When excluding the ADHD-only group, the interaction 

effect of group and flanker remained significant (F(2, 48) = 8.38, p = .001, η
2
 = .26).  

Additional analyses showed that there was a P3 congruency-effect in TD children (F(1, 20) = 

34.97, p < .001, η
2
 = .64) and children with ASD (F(1, 19) = 31.34, p < .001, η

2
 = .62), but 

not in children with ADHD+ODD (F(1, 9) = 0.19, p = .672, η
2
 = .02). 

3.3.3. Response-locked ERN 

We found main effects of accuracy (F(1, 58) = 48.39, p < .001, η
2
 = .46) and electrode 

(F(1, 58) = 29.70, p < .001, η
2
 = .34), reflecting more negative amplitudes after an erroneous 

response (ERN) than after a correct response (CRN) and larger (ERN as well as CRN) 

amplitudes at Fz than at FCz.  We also found a group difference (F(2, 58) = 5.22, p = .008, η
2
 

= .16) in that children with ADHD seemed to show smaller amplitudes in comparison with 
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TD peers (p = .007).  The reduced amplitudes were present for correct (CRN) as well as 

incorrect (ERN) trials as is reflected by the lack of a significant interaction effect of group and 

accuracy (F(2, 58) = 0.79, p = .459, η
2
 = .03).  This result remained the same after controlling 

for age and gender, suggesting that children with ADHD tend to show a general reduction of 

response-related negativity in comparison with TD children.  ERN amplitudes were not 

significantly related to FSIQ, therefore, we did not control for differences in FSIQ. 

Results remained the same when excluding children with ADHD+ODD or ADHD-

only. 

4. Discussion 

The first aim of the present study was to investigate the relationship between 

(performance and ERP measures of) executive attention and EC.  In line with our previous 

findings (e.g., Samyn et al., 2013), we found performance measures of executive attention to 

be mostly unrelated to EC reports.  Two exceptions, higher levels of attention focusing and 

lower levels of impulsivity were associated with more efficient executive attention (RT- and 

error-based, respectively).  However, correlations were small (r < .30).  When looking at the 

relationship between ERPs and EC, results were similar in that we found no relationship 

between the stimulus-locked ERPs (N2, P3) and EC.  The ERN was poorly to modestly 

related to EC reports in that higher levels of attentional control were associated with more 

efficient error monitoring.  Given the strong theoretical link between EC and executive 

attention, we expected to find a stronger relationship between both constructs, especially for 

the ERPs which are believed to be more objective indices of executive attention.  To evaluate 

whether the absence of a strong link between EC and executive attention, as measured with 

ERPs,  may be related to a divergent association between the two constructs within the 

groups, additional correlational analyses were performed for the three groups separately.  

Given the limited number of participants in the three subgroups, only the magnitude of the 
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correlation coefficients was considered (rs from .30 to .50 = moderate, .50 or higher = large; 

Cohen, 1988) and results have to be interpreted with caution.  The N2 seemed to be unrelated 

to EC in TD children, but moderately related to attentional control and impulsivity in ADHD, 

and strongly related to attention shifting in ASD.  Direction of the correlations indicated that 

higher EC scores were associated with smaller N2 difference-scores and thus with a lesser 

amount of flanker-induced conflict-effect (e.g., Jonkman et al., 2007b).  P3 amplitude was 

unrelated to EC in ASD, but moderately related to attentional control, activation control, and 

impulsivity in TD children, and to impulsivity in ADHD.  Direction of the correlations 

indicated that higher EC scores were associated with smaller P3 difference-scores and thus 

with a lesser amount of effort allocation.  For the ERN, findings were more consistent across 

groups in that there were moderate and/or large correlations present in all groups.  In TD 

children, strongest correlations were found for attentional and inhibitory control, whereas in 

children with ASD, the ERN correlated strongly with attentional  and activation control.  In 

children with ADHD, the ERN correlated strongest with activation control.  Direction of the 

correlations suggested that higher EC scores were associated with larger ERN/CRN 

differences and thus with better error monitoring.  Despite decreased power caused by the 

limited number of participants in each group, it is apparent that whether or not we found a 

relationship between EC and executive attention depended on the groups, the EC measures, 

and the ERPs that were considered.  The most robust results were found for the ERN/CRN 

difference-scores which were significantly related to EC, regardless of group. 

The second aim of the present study was to investigate whether there is a difference in 

the efficiency of executive attention between TD children, children with ADHD, and children 

with ASD.  We used flanker-task performance and event-related potentials (ERPs) as 

measures of executive attention.  There were no major group differences in performance on 



25 

 

the flanker task, although children with ADHD did show slightly elevated error levels in 

comparison with TD children.  Given that this increase was not specific for incongruent trials, 

it cannot be attributed to inefficient inhibition of conflicting information.  More likely, this 

reflects an under-aroused response system in ADHD (e.g., Sergeant, 2000), which is in line 

with previous findings (e.g., Johnstone et al., 2010; Van De Voorde, Roeyers, Verté, & 

Wiersema, 2011).  The fact that we did not find group differences for the conflict-effect on a 

behavioral level, is in agreement with some previous flanker studies in children (e.g., 

Adólfsdóttir et al., 2008; Booth et al., 2007; Keehn et al., 2010; Samyn et al., 2013) but in 

contrast to others (e.g., Konrad et al., 2006; Mullane, Corkum, Klein, McLaughlin, & 

Lawrence, 2011).  Nonetheless, this result is not surprising.  Findings based on performance 

measures in general are often inconclusive and vary depending on a multitude of factors 

including, among other things, task characteristics (i.e., presentation rate of the stimuli; 

Wiersema, van der Meere, Roeyers, Van Coster, & Baeyens, 2006), context factors (e.g., 

Sonuga-Barke, Wiersema, van der Meere, & Roeyers, 2010), and sample characteristics (i.e., 

clinical diagnosis, comorbidities, age, intelligence; Nigg, 2001) which are not always taken 

into account when interpreting findings.  Given that an increasing number of studies suggest 

that the presence of comorbid ODD or CD can account for some effects presumably caused 

by ADHD (e.g., Kuntsi, Oosterlaan, & Stevenson, 2001) and given that we allowed comorbid 

ODD in our ADHD-sample, we performed additional analyses to evaluate whether or not this 

influenced our findings.  Although results have to be interpreted with caution because of the 

limited ample size of the ADHD-only (n = 14) and the ADHD+ODD (n = 10) samples, RT-

based findings seem to be influenced by ODD comorbidity.  Children in the ADHD-only 

group did not differ from the other children in terms of the efficiency of executive attention, 

whereas children with comorbid ODD did.  In specific, they showed higher executive 
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attention scores than TD children and children with ASD, reflecting less efficient executive 

attention only in children with ADHD+ODD as compared to other children. 

In order to evaluate specific self-regulatory processes preceding and following the 

behavioral outcome in terms of flanker-performance (i.e., RT, %EOC), we included ERP 

measures of executive attention in the present study.  In specific, we focused on the stimulus-

locked N2 and P3 and on the response-locked ERN/CRN.   

As to be expected when it is related to conflict processing, the N2 component was 

enhanced for incongruent trials in comparison with congruent trials (e.g., Van Veen & Carter, 

2002; Yeung, Cohen, & Botvinick, 2004).  This enhancement of the N2 for incongruent trials 

is generally explained in terms of conflict monitoring in that it reflects the process of 

detecting conflict and alerting systems involved in top-down control to resolve the conflict 

(e.g., Van Veen & Carter, 2002).  Given that this N2 congruency-effect did not differ between 

groups, our results seem to suggest that all groups were equally able to successfully attend to 

the target and detect conflicting information provided by the flankers.  This fits well with our 

finding that the groups did not differ in terms of the number of incorrect responses on 

incongruent trials.  Furthermore, this result is in agreement with previous findings on the 

flanker N2 in ASD (Tsai et al., 2011) and in line with some previous studies on the N2 in 

ADHD (e.g., Johnstone & Galletta, 2013; Kratz et al., 2011), but in contrast to others that 

showed either a general (e.g., Wild-Wall et al., 2009) or an incongruency-specific decrease in 

N2 amplitude (e.g., Albrecht et al., 2008; Johnstone et al., 2009; Johnstone et al., 2010) in 

ADHD as compared to TD peers.  A possible explanation for these inconsistent findings may 

lie in sample characteristics and, in specific, in the heterogeneous ADHD sample used in the 

present study.  Whereas most studies that found decreased N2 amplitudes only focused on 

children with ADHD combined type, we also included children with primarily inattentive 
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type (ADHD-IA) and primarily hyperactive/impulsive type (ADHD-HI).  One might argue 

that the decreased N2 is perhaps less present in children with ADHD-IA which may have 

obscured differences that were present in the combined group.   To the best of our knowledge, 

only one study so far compared both subtypes on the flanker N2 (Kratz et al., 2011) and found 

no subtype differences in terms of the N2 conflict-effect.  Additional analyses including only 

children with ADHD-combined type (n = 12) yielded the same results as those obtained for 

the original ADHD-group.  Furthermore, analyses comparing ADHD-IA (n = 9) and ADHD-

combined type for N2 amplitude, revealed no group differences (or group interactions).  

Although results must be interpreted with caution given the limited sample sizes of the 

ADHD-subgroups, they are in agreement with findings of Kratz and colleagues (2011) and 

suggest that the inclusion of different ADHD subtypes does not account for our findings.  Up 

till now, a very limited number of studies have focused on the impact of ODD/CD 

comorbidity on physiological measures in ADHD.  Findings are mixed, but suggest that, in 

some cases, the presence of comorbid ODD/CD may have an influence on ERP findings (e.g., 

Banaschewski et al., 2003; Overtoom et al., 1998; Wiersema et al., 2006).  Additional 

analyses taking comorbid ODD into account yielded identical results in that neither the 

ADHD-only nor the ADHD+ODD subgroup differed from the other groups in terms of the N2 

amplitude.  Therefore, it seems unlikely that allowing comorbid ODD in our ADHD group 

influenced our findings in terms of the N2. 

Although groups did not differ in terms of the N2 amplitude, we did find a group 

difference for the P3 in that the conflict-specific P3 effect (i.e., larger amplitude for 

incongruent trials as compared to congruent trials) was missing in children with ADHD.  In 

the literature, enhanced P3 amplitudes to incongruent stimuli are generally explained as extra 

effort allocation (e.g., Banaschewski et al., 2005; Johnstone et al., 2010) needed to respond 
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correctly to conflicting information.  In terms of the effort allocation theory of the P3 

(Johnstone & Galletta, 2013) and keeping in mind that incorrect responses are not taken into 

consideration when calculating group P3 averages, our findings suggest that TD children and 

children with ASD but not children with ADHD were able to allocate extra effort in order to 

correctly respond to incongruent trials.  The fact that we found no group differences in the P3 

amplitude or the P3 congruency effect between TD children and children with ASD is in line 

with previous findings (Tsai et al., 2011).  Our finding that the P3 congruency effect was 

missing in ADHD is in line with some previous studies (e.g., Wild-Wall et al., 2009), but in 

contrast to others (e.g., Johnstone et al., 2010) that found no group differences in conflict-

effect between TD children and children with ADHD.  Given that stimulus modality has no 

significant effect on P3 amplitude (Szuromi, Czobor, Komlósi, & Bitter, 2011), it appears 

implausible that differences in flanker-stimuli (arrow heads and equals signs in the study of 

Johnstone and colleagues (2010) vs. arrow heads in the current study) account for the mixed 

findings.  An alternative explanation may lie in sample characteristics.  Although our 

participants were older (10-15 years) than the children participating in the study of Johnstone 

and colleagues (2010, 7-14 years), we do not believe that age-differences can account for our 

findings based on previous studies showing that P3 amplitudes increase with age and that this 

developmental change is not significantly affected by the presence of ADHD (e.g. Liotti et al., 

2007).  However, Johnstone and colleagues excluded children with ADHD and comorbid 

behavioural disorders.  Given that we included children with comorbid ODD in our ADHD 

group, we performed additional analyses to evaluate whether or not this influenced our 

findings.  Further analyses showed that our original finding in terms of a missing conflict-

effect for the P3 in ADHD, was entirely attributable to the ADHD+ODD group.  In all, our 

findings show that TD children, children with ASD, and children with ADHD appeared to be 
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able to allocate extra effort in order to respond correctly to incongruent trials whereas 

children with ADHD+ODD were not. 

With respect to response-locked ERPs, children with ADHD tended to show a reduced 

ERN as compared to TD peers.  However, this reduction was also present for correct trials 

(CRN).  The fact that an ERN-like negativity is sometimes observed after a correct response 

is not unusual and it has led Falkenstein and colleagues (2000) to conclude that the ERN in 

fact represents the process of ‘response checking’ (i.e., the comparison between the actual 

response and the required response), rather than error detection.  The CRN would then be 

explained by the fact that on some correct trials, the representation of the required response 

was not present (e.g., there was some uncertainty about which button to press; in this case, the 

correct response would have been a lucky guess), resulting in an ‘ERN’ caused by a mismatch 

between the (correct) response and the incorrect or absent response representation.  In terms 

of this hypothesis, our results seem to suggest that in children with ADHD this process of 

‘response checking’ was less pronounced than in TD children, indicating a general reduction 

of response monitoring in ADHD which could account for the fact that the ADHD group 

made more errors than the TD group.  The lack of a group-effect in terms of ERN/CRN 

difference scores is in line with some previous studies (e.g., Jonkman et al., 2007b; Wild-Wall 

et al., 2009), but in contrast to others (e.g., Albrecht et al., 2008; Van Meel et al., 2007).  

Given that the flanker-task used in the current study was very similar to the one administered 

by Albrecht and colleagues (2008) and van Meel and colleagues (2007), it seems unlikely that 

task characteristics can account for inconsistent findings.  Additional analyses showed that 

ADHD-subtype or ODD-comorbidity had no impact on the results, suggesting that also these 

sample-characteristics cannot account for the mixed findings.  It is possible that ERN/CRN 

differences are simply not universally present in all children with ADHD or that they are 
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influenced by other factors, not included in the present study.  Future studies will have to 

further address this issue. 

An important limitation of the present study needs to be addressed, namely the limited 

(sub)sample sizes.  Our findings illustrated the importance of taking into account ADHD-

comorbidities when interpreting findings on executive attention.  However, the limited 

number of participants in the ADHD-subgroups (ADHD-only vs. ADHD+ODD) made it 

difficult to do an in depth analyses of the exact nature of the effects of comorbid ODD on 

(ERP) findings in ADHD.  Similarly, although our findings clearly illustrated that the 

relationship between EC and executive attention differs between groups, limited group-sizes 

confined us in our ability to fully explore the exact nature of these differences.   

Future research will have to replicate our findings in larger (sub)samples.  

Furthermore, for future work, we would like to stress the importance of taking into account 

comorbidities while interpreting findings on ADHD.  In order to disentangle the 

differential/additive effect of comorbid ODD in ADHD in terms of the efficiency of executive 

attention processes, it will be essential to include ADHD-only, ADHD+ODD as well as 

ODD-only samples. 

To conclude, despite the strong theoretical link between EC and executive attention 

we were unable to find high, consistent correlations between both constructs in our total 

group.  Additional findings suggest that the (magnitude of the) relationship between EC and 

executive attention ERPs differs between groups and depends on the EC scales considered.  

Overall, indices of error monitoring (ERN/CRN difference scores) showed the most robust 

findings across groups and indicate that higher levels of EC were associated with better 

performance monitoring.  In addition, performance-based data revealed that children with 

ADHD+ODD, but not children with ADHD-only, showed less efficient executive attention in 
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comparison with TD children and children with ASD.  The ERP findings suggest that all 

children were equally able to successfully attend to the target and detect conflicting 

information provided by the flankers.  Also, all children except children with ADHD+ODD 

were able to allocate extra effort in order to respond correctly to conflicting information.   

Finally, we found evidence for a general reduction of response monitoring in ADHD as 

compared to TD children.   

Disclosure statement 

No disclosures 

Funding source 

The first author received funding from the research fund of the faculty of Psychology 

and Educational Sciences of the Ghent University. The funding source had no further 

involvement. 

References 

Adams, N. C., & Jarrold, C. (2012). Inhibition in autism: Children with autism have difficulty 

inhibiting irrelevant distractors but not prepotent responses. Journal of Autism and 

Developmental Disorders, 42, 1052-1063. doi:10.1007/s10803-011-1345-3 

Adólfsdóttir, S., Sørensen, L., & Lundervold, A. J. (2008). The attention network test: a 

characteristic pattern of deficits in children with ADHD. Behavioral and Brain 

Functions, 4, 9. doi:10.1186/1744-9081-4-9 

Albrecht, B., Brandeis, D., Uebel, H., Heinrich, H., Mueller, U., Hasselhorn, M., 

…Banaschewski, T. (2008). Action monitoring in boys with attention-

deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: 

Evidence for an endophenotype. Biological Psychiatry, 64, 615-625. 

doi:10.1016/j.biopsych.2007.12.016 

http://dx.doi.org/10.1186%2F1744-9081-4-9


32 

 

American Psychiatric Association (2000). Diagnostic and statistical manual of mental 

disorders (DSM-IV-TR). Washington, DC: Author. 

Banaschewski, T., Brandeis, D., Heinrich, H., Albrecht, B., Brunner, E., & Rothenberger, A. 

(2003). Association of ADHD & conduct disorder & brain electrical evidence for the 

existence of a distinct subtype. Journal of Child Psychology and Psychiatry, 43, 1-21. 

doi:10.1111/1469-7610.00127 

Banaschewski, T., Hollis, C., Oosterlaan, J., Roeyers, H., Rubia, K., Willcutt, E., & Taylor, E. 

(2005). Towards an understanding of unique and shared pathways in the 

psychopathophysiology of ADHD. Developmental Science, 8, 132-140. 

doi:10.1111/j.1467-7687.2005.00400.x 

Barkley, R. A. (1998). Attention-deficit hyperactivity disorder. Scientific American, 279, 66-

71. doi:10.1038/scientificamerican0998-66 

Bekker, E. M., Kenemans, J. L., & Verbaten, M. N. (2005). Source analysis of the N2 in a 

cued Go/NoGo task. Cognitive Brain Research, 22, 221-231. 

doi:10.1016/j.cogbrainres.2004.08.011 

Berger, A., & Posner, M. I. (2000). Pathologies of brain attentional networks. Neuroscience 

and Biobehavioral Reviews, 24, 3-5. doi:10.1016/S0149-7634(99)00046-9 

Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates of 

response inhibition in a Go/NoGo task. Clinical Neurophysiology, 112, 2224–2232. 

doi:10.1016/S1388-2457(01)00691-5. 

Booth, J. E., Carlson, C. L., & Tucker, D. M. (2007). Performance on a neurocognitive 

measure of alerting differentiates ADHD combined and inattentive subtypes: A 

preliminary report. Archives of Clinical Neuropsychology, 22, 423-432. 

doi:10.1016/j.acn.2007.01.017 



33 

 

Burack, J. A. (1994). Selective attention deficits in persons with autism: Preliminary evidence 

of an inefficient attentional lens. Journal of Abnormal Psychology, 103, 535-543. 

doi:10.1037/0021-843x.103.3.535 

Bush, G., Frazier, J., Rauch, S. L., Seidman, L. J., Whalen, P. J., Jenike, M. A., …Biederman, 

J. (1999). Anterior cingulate cortex dysfunction in attention-deficit/hyperacitivy 

disorder revealed by fMRI and the counting stroop. Biological Psychiatry, 45, 1542-

1552. doi:10.1016/S0006-3223(99)00083-9 

Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in the anterior 

cingulate cortex. Trends in Cognitive Science, 4, 215-222. doi:10.1016/S1364-

6613(00)01483-2 

Buss, K. A., Dennis, T. A., Brooker, R. J., & Sippel, L. M. (2011). An ERP study of conflict 

monitoring in 4-8-year old children: Associations with temperament. Developmental 

Cognitive Neuroscience, 1, 131-140. doi:10.1016/j.dcn.2010.12.003 

Chan, A. S., Han, Y. M. Y., Leung, W. W. M., Leung, C., Wong, V. C. N., & Cheung, M. C. 

(2011). Abnormalities in the anterior cingulate cortex associated with attentional and 

inhibitory control deficits: A neurophysiological study on children with autism 

spectrum disorders. Research in Autism Spectrum Disorders, 5, 254-266. doi: 

10.1016/j.rasd.2010.04.007 

Christ, S. E., Kester, L. E., Bodner, K. E., & Miles, J. H. (2011). Evidence for selective 

inhibitory impairment in individuals with autism spectrum disorder. Neuropsychology, 

25, 690-701. doi:10.1037/a0024256 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2
nd

 ed.). Hillsdale, 

New York: Lawrence Erlbaum. 

Constantino, J. N. & Gruber, C. P. (2005). Social responsiveness scale. Manual. LosAngeles, 

Western Psychological Services. 



34 

 

Derryberry, D., & Reed, M. A. (2002). Anxiety-related attentional biases and their regulation 

by attentional control. Journal of Abnormal Psychology, 111, 225-236. 

doi:10.1037//0021-843X.111.2.225 

Doyle-Thomas, K. A. R., Kushki, A., Duerden, E. G., Taylor, J. P., Lerch, L. V., Soorya, A., 

… Evdokia, A. (2013). The effect of diagnosis, age, and symptom severity on cortical 

surface area in the cingulate cortex and insula in autism spectrum disorders. Journal of 

Child Neurology, 28, 729-736. doi:10.1177/0883073812451496 

Ellis, L. K., & Rothbart, M. K. (2001, April). Revision of the early adolescent temperament 

questionnaire. Poster presented at the 2001 Biennial Meeting of the Society for 

Research in Child Development, Minneapolis, Minnesota. 

Ellis, L. K, Rothbart, M. K., & Posner, M.  I. (2004). Individual Differences in Executive 

Attention Predict Self-Regulation and Adolescent Psychosocial Behaviors. Annals of 

the New York Academy of Sciences, 1021, 337-340. doi:10.1196/annals.1308.041 

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a 

target letter in a nonsearch task. Perception and Psychophysics, 16, 143-149. 

doi:10.3758/BF03203267 

Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on 

reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 

87-107. doi:10.1016/S0301-0511(99)00031-9 

Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). 

Cognitive and brain consequences of conflict. Neuroimage, 18, 42-57. 

doi:10.1006/nimg.2002.1319 

Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the 

efficiency and independence of attentional networks. Journal of Cognitive 

Neuroscience, 14, 340-347. doi:10.1162/089892902317361886 

http://dx.doi.org/10.1037%2F%2F0021-843X.111.2.225
http://www.bowdoin.edu/~sputnam/rothbart-temperament-questionnaires/pdf/lesa-ellis-srcd-poster-reprint.pdf
http://www.bowdoin.edu/~sputnam/rothbart-temperament-questionnaires/pdf/lesa-ellis-srcd-poster-reprint.pdf
http://www.bowdoin.edu/~sputnam/rothbart-temperament-questionnaires/pdf/lesa-ellis-srcd-poster-reprint.pdf
http://dx.doi.org/10.1196%2Fannals.1308.041


35 

 

Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. 

(2008). Individual differences in executive functions are almost entirely genetic in 

origin. Journal of Experimental Psychology: General, 137, 201-225. 

doi:10.1037/0096-3445.137.2.201 

Gargaro, B. A., Rinehart, N. J., Bradshaw, J. L., Tonge, B. J., & Sheppard, D. M. (2011). 

Autism and ADHD: How far have we come in the comorbidity debate?, Neuroscience 

and Biobehavioral Review, 35, 1081-1088. doi:10.1016/j.neubiorev.2010.11.002 

Gerardi-Caulton, G. (2000). Sensitivity to spatial conflict and the development of self-

regulation in children 24-36 months of age. Developmental Science, 3, 397-404. 

doi:10.1111/1467-7687.00134 

Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of 

ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468-484. 

doi:10.1016/0013-4694(83)90135-9 

Greenwood, P. M., Fossella, J. A., & Parasuraman, R. (2005). Specificity of the effect of a 

nicotinic receptor polymorphism on individual differences in visuospatial attention. 

Journal of Cognitive Neuroscience, 17, 1611-1620. 

doi:10.1162/089892905774597281 

Grégoire, J. (2005). Clinical evaluation of the intelligence of the child. Theory and practice of 

WISC-III, third edition. Sprimont: Mardaga. 

Haznedar, M. M., Buchsbaum, M. S., Metzger, M., Solimando, A., Spiegel-Cohen, J., & 

Hollander, E. (1997). Anterior cingulate gyrus volume and glucose metabolism in 

autistic disorder. American Journal of Psychiatry, 154, 1047-1050. 

Henderson, H., Schwartz, C., Mundy, P., Burnette, C., Sutton, S., Zahka, N., & Pradella, A. 

(2006). Response monitoring, the error-related negativity, and differences in social 

behavior in autism. Brain and Cognition, 61, 96-109. doi:10.1016/j.bandc.2005.12.009 

http://dx.doi.org/10.1111%2F1467-7687.00134


36 

 

Herrmann, M. J., Jacob, C., Unterecker, S., & Fallgatter, A. J. (2003). Reduced response 

inhibition in obsessive-compulsive disorder measured with topographical evoked 

potential mapping. Psychiatry Research, 120, 265–271. doi:10.1016/S0165-

1781(03)00188-4 

Herrmann, M. J., Römmler, J., Ehlis, A. C., Heidrich, A., & Fallgatter, A. J. (2004). Source 

localization (LORETA) of the error related negativity (ERN/Ne) and positivity (Pe). 

Cognitive Brain Research, 20, 294-299. doi:10.1016/j.cogbrainres.2004.02.013 

Jackson, S. R., Jackson, G. M., & Roberts, M. (1999). The selection and suppression of 

action: ERP correlated of executive control in humans. Neuroreport, 10, 861-865. 

doi:10.1097/00001756 

Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. 

New York: Elsevier. 

Johnstone, S. J., Barry, R. J., Markovska, V., Dimoska, A., & Clarke, A. R. (2009). Response 

inhibition and interference control in children with AD/HD: a visual ERP 

investigation. International Journal of Psychophysiology, 72, 145-153. 

doi:10.1016/j.ijpsycho.2008.11.007 

Johnstone, S. J., & Galletta, D. (2013). Event-rate effects in the flanker task: ERPs and task 

performance in children with and without AD/HD. International Journal of 

Psychophysiology, 87, 340-348. doi:10.1016/j.ijpsycho.2012.07.170 

Johnstone, S. J., Watt, A. J., & Dimoska, A. (2010). Varying required effort during 

interference control in children with AD/HD: task performance and ERPs. 

International Journal of Psychophysiology, 76, 174-185. 

doi:10.1016/j.ijpsycho.2010.03.010 

Jonkman, L. M., Kemner, C., Verbaten, M. N., Van Engeland, H., Kenemans, J. L., 

Camfferman, G., … Koelega, H. S. (1999). Perceptual and response interference in 



37 

 

children with attention-deficit hyperactivity disorder, and the effects of 

methylphenidate. Psychophysiology, 36, 419-429. doi:10.1017/S0048577299971032 

Jonkman, L. M., Sniedt, F. L., & Kemner, C. (2007a). Source localization of the Nogo-N2: a 

developmental study. Clinical Neurophysiology, 118, 1069–1077. 

doi:10.1016/j.clinph.2007.01.017 

Jonkman, L. M., van Melis, J. J. M., Kemner, C., & Markus, C. R. (2007b). Methylphenidate 

improves deficient error evaluation in children with ADHD: An event-related brain 

potential study. Biological Psychology, 76, 217-229. 

doi:10.1016/j.biopsycho.2007.08.004 

Keehn, B., Lincoln, A. J., Müller, R., & Townsend, J. (2010). Attentional networks in 

children and adolescents with autism spectrum disorder. Journal of Child Psychology 

and Psychiatry, 51, 1251-1259. doi:10.1111/j.1469-7610.2010.02257.x 

Konrad, K., Neufang, S., Hanisch, C., Fink, G. R., & Herpertz-Dahlmann, B. (2006). 

Dysfunctional Attentional Networks in Children with Attention Deficit/Hyperactivity 

Disorder: Evidence from an Event-Related Functional Magnetic Resonance Imaging 

Study. Biological Psychiatry, 59, 643-651. doi:10.1016/j.biopsych.2005.08.013 

Konstantareas, M. M., & Stewart, K. (2006). Affect regulation and temperament in children 

with autism spectrum disorder. Journal of Autism and Developmental Disorders, 36, 

143-153. doi:10.1007/s10803-005-0051-4 

Kopp, B., Rist, F., & Mattler, U. (1996). N200 in the flanker task as a neurobehavioral tool 

for investigating executive control. Psychophysiology, 33, 282-294. 

doi:10.1111/j.1469-8986.1996.tb00145.x 

Kort, W., Schittekatte, M., Compaan, E. L., Bosmans, M., Bleichrodt, N., Vermeir, G., 

Resing, W. C. M. & Verhaeghe, P. (2002). WISC-III-NL: Manual Dutch adaptation. 

London, England: The Psychological Corporation. 



38 

 

Kratz, O., Studer, P., Malcherek, S., Erbe, K., Moll, G. H., & Heinrich, H. (2011). Attentional 

processes in children with ADHD: An event-related potential study using the attention 

network test. International Journal of Psychophysiology, 81, 82-90. 

doi:10.1016/j.ijpsycho.2011.05.008 

Kuntsi, J., Oosterlaan, J., & Stevenson, J. (2001). Psychological mechanisms in hyperactivity: 

I Response inhibition deficit, working memory impairment, delay aversion, or 

something else? Journal of Child Psychology and Psychiatry, 42, 199-210. 

doi:10.1017/S0021963001006709 

Liotti, M., Pliszka, S. R., Perez, R., Kothmann, D., & Woldorff, M. G. (2005). Abnormal 

brain activity related to performance monitoring and error detection in children with 

ADHD. Cortex, 41, 377–388. doi:10.1016/S0010-9452(08)70274-0 

Liotti, M., Pliszka, S. R., Perez, R., Luus, B., Glahn, D., & Semrud-Clikeman, M. (2007). 

Electrophysiological correlates of response inhibition in children and adolescents with 

ADHD: Influence of gender, age, and previous treatment history. Psychophysiology, 

44, 936-948. doi:10.1111/j.1469-8986.2007.00568.x 

Lonigan, C. J., & Phillips, B. M. (2001). Temperamental influences on the development of 

anxiety disorders. In M. W. Vasey & M. R. Dadds (Eds.), The developmental 

psychopathology of anxiety (pp. 60-91). New York: Oxford University Press. 

Luck, S. J. (2005). An introduction to the event-related potential technique. MIT Press, 

Cambridge, MA. 

Martel, M. M., & Nigg, J. T. (2006). Child ADHD and personality/temperament traits of 

reactive and effortful control, resiliency, and emotionality. Journal of Child 

Psychology and Psychiatry, 47, 1175-1183. doi:10.1111/j/1469-7610.2006.01629.x 



39 

 

Mayes, S. D., Calhoun, S. L., Mayes, R. D., & Molitoris, S. (2012). Autism and ADHD: 

Overlapping and discriminating symptoms. Research in Autism Spectrum Disorders, 

6, 277-285. doi:10.1016/j.rasd.2011.05.009 

Mullane, J. C., Corkum, P. V., Klein, R. M., McLaughlin, E. N., & Lawrence, M. A. (2011). 

Alerting, Orienting, and Executive Attention in Children With ADHD. Journal of 

Attention Disorders, 15, 310-320. doi:10.1177/1087054710366384 

Mundy, P. (2003). Annotation: The neural basis of social impairments in autism: The role of 

the dorsal medial-frontal cortex and anterior cingulate system. Journal of Child 

Psychology and Psychiatry, 44, 793-809. doi:10.1111/1469-7610.00165 

Muris, P., & Meesters, C. (2009). Reactive and regulative temperament in youths: 

Psychometric evaluation of the early adolescent temperament questionnaire-revised. 

Journal of Psychopathology and Behavioral Assessment, 31, 7-19. 

doi:10.1007/s10862-008-9089-x 

Neuhaus, A. H., Koehler, S., Opgen-Rhein, C., Urbanek, C., Hahn, E., & Dettling, M. (2007). 

Selective anterior cingulate cortex deficit during conflict solution in schizophrenia: An 

event-related potential study. Journal of Psychiatric Research, 41, 635-644. 

doi:10.1016/j.jpsychires.2006.06.012 

Nieuwenhuis, S., Yeung, N., Van den Wildenberg, W., & Ridderinkhof, K. R. (2003). 

Electrophysiological correlates of anterior cingulate function in a go/no-go task: 

Effects of response conflict and trial type frequency. Cognitive, Affective & 

Behavioral Neuroscience, 3, 17–26. doi:10.3758/CABN.3.17 

Nigg, J. T. (2001). Is ADHD a disinhibitory disorder? Psychological Bulletin, 127, 571-598. 

doi:10.1037//0033-2909.127.5.571 



40 

 

Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution 

EEG and ERP measurements. Clinical Neurophysiology, 112, 713-719. doi: 

10.1016/S1388-2457(00)00527-7 

Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components 

of error processing: On the functional significance of the Pe vis-a-vis the ERN/Ne. 

Journal of Psychophysiology, 19, 319-329. doi:10.1027/0269-8803.29.4.319 

Overtoom, C. C. E., Verbaten, M. N., Kemner, C., Kenemans, J. L., van Engeland, H., 

Buitelaar, J. K., …Koelega, H. S. (1998). Associations between event-related 

potentials and measures of attention and inhibition in the continuous performance task 

in children with ADHD and normal controls. Journal of the American Academy of 

Child and Adolescent Psychiatry, 37, 977-985. doi:10.1097/00004583-199809000-

00018 

Posner, M. I., & Fan, J. (2004). Attention as an organ system. In J. R. Pomerantz, & M. C. 

Crair (Eds.), Topics in integrative neuroscience: From cells to cognition (pp. 31-62). 

Cambridge: Cambridge University Press. 

Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual 

Review of Neuroscience, 13, 25-42. doi:10.1146/annurev.ne.13.030190.000325 

Posner, M. I., & Rothbart, M. K. (2000). Developing mechanisms of self-regulation. 

Development and Psychopathology, 12, 427-441. doi:10.1017/S0954579400003096 

Pliszka, S. R., Glahn, D. C., Semrud-Clikeman, M., Franklin, C., Perez, R., & Xiong, J. J. 

(2006). Neuroimaging of inhibitory control areas in children with attention deficit 

hyperactivity disorder who were treatment naïve or in long-term treatment. American 

Journal of Psychiatry, 163, 1052-1060. doi:10.1176/appi.ajp.163.6.1052 

Roeyers, H., Thys, M., Druart, C., De Schryver, M., & Schittekatte (2011). SRS Screeninglist 

for autism spectrum disorders: Manual. Amsterdam: Hogrefe. 

http://dx.doi.org/10.1146%2Fannurev.ne.13.030190.000325


41 

 

Rothbart, M. K. (1989). Temperament and development. In G. A. Kohnstamm, J. E. Bates, & 

M. K. Rothbart (Eds.), Temperament in childhood (pp. 187-247). New York: Wiley. 

Rothbart, M. K., & Bates, J. E. (2006). Temperament. In W. Damon, R. Lerner, & N. 

Eisenberg (Eds.), Handbook of child psychology (6th ed.): Vol 3. Social, emotional, 

and personality development (pp. 99-166). New York: Wiley. 

Rothbart, M. K., Ellis, L. K., Rueda, M. R., & Posner, M. I. (2003). Developing mechanisms 

of temperamental effortful control. Journal of Personality, 71, 1113-1143. 

doi:10.1111/1467-6494.7106009 

Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). 

Training, maturation, and genetic influences on the development of executive 

attention. Proceedings of the National Academy of Sciences of the United States of 

America, 102, 14931-14936. doi:10.1073/pnas.0506897102 

Samyn, V., Roeyers, H., & Bijttebier, P. (2011). Effortful Control in typically developing 

boys and in boys with ADHD or autism spectrum disorder. Research in 

Developmental Disabilities, 32, 483-490. doi:10.1016/j.ridd.2010.12.038 

Samyn, V., Roeyers, H., Bijttebier, P., & Wiersema, J. R. (2013). Attentional networks in 

boys with ADHD or autism spectrum disorder and the relationship with effortful 

control. Journal of Attention Disorders, XX, 1-12. 

Santesso, D. L., Drmic, I. E., Jetha, M. K., Bryson, S. E., Goldberg, J. O., Hall, G. B., 

Mathewson, K. J., Segalowitz, S. J., & Schmidt, L. A. (2011). An event-related source 

localization study of response monitoring and social impairments in autism spectrum 

disorder. Psychophysiology, 48, 241-251. doi:10.1111/j.1469-8986.2010.01056.x 

Sengupta, S. M., Grizenko, N., Thakur, G. A., Bellingham, J., DeGuzman, R., Robinson, S., 

TerStepanian, M, ... Joober, R. (2012). Differential association between the 



42 

 

norepinephrine transporter gene and ADHD: role of sex and subtype. Journal of 

Psychiatry and Neuroscience, 37, 129-137. doi:10.1503/jpn.110073 

Sergeant, J. (2000). The cognitive-energetic model: an empirical approach to attention-deficit 

Hyperactivity disorder. Neuroscience and Biobehavioral Reviews, 24, 7-12. 

doi:10.1016/S0149-7634(99)00060-3 

Sergeant, J., Oosterlaan, J., & van der Meere, J. (1999). Information processing and energetic 

factors in attention-deficit hyperactivity. In H. C. Quay, & A. E. Hogan (Eds.), 

Handbook of disruptive behavior disorders (pp. 75-104). New York: Plenum Press. 

Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH 

diagnostic interview schedule for children version IV (NIMH DISC-IV): Description, 

differences from previous versions, and reliability of some common diagnoses. 

Journal of the American Academy of Child and Adolescent Psychiatry, 39, 28-38. 

doi:10.1097/00004583-200001000-00014 

Simonds, J., Kieras, J. E., Rueda, M. R., & Rothbart, M. K. (2007). Effortful control, 

executive attention, and emotional regulation in 7-10-year-old children. Cognitive 

Development, 22, 474-488. doi:10.1016/j.cogdev.2007.08.009 

Sonuga-Barke, E. J. S., Wiersema, J. R., van der Meere, J. J., & Roeyers, H. (2010). Context-

dependent dynamic processes in attention-deficit/hyperactivity disorder: 

Differentiating common and unique effects of state regulation deficits and delay 

aversion. Neuropsychology Review, 20, 86-102. doi:10.1007/s.11065-009-9115-0 

South, M., Larson, M. J., Krauskopf, E., & Clawson, A. (2010). Error processing in high-

functioning autism spectrum disorders. Biological Psychology, 85, 242-251. 

doi:10.1016/j.biopsycho.2010.07.009 

Swanson, J., Posner, M. I., Cantwell, D., Wigal, S., Crinella, F., Filipek, P.A., … Nalcioglu, 

O. (2000). Attention-deficit hyperactivity disorder: symptom domain, cognitive 

http://dx.doi.org/10.1097%2F00004583-200001000-00014


43 

 

processes and neural networks. In R. Parasuraman (Ed.), The attentive brain (pp. 445-

461). Cambridge: MIT Press. 

Szuromi, B., Czobor, P., Komlósi, S., & Bitter, I. (2011).  P300 deficits in adults with 

attention deficit hyperactivity disorder: a meta-analysis. Psychological Medicine, 41, 

1529-1538. doi:10.1017/S0033291710001996 

Tsai, C., Pan, C., Wang, C., Tseng, Y., & Hsieh, K. (2011). An event-related potential and 

behavioral study of impaired inhibitory control in children with autism spectrum 

disorder. Research in Autism Spectrum Disorders, 5, 1092-1102. 

doi:10.1016/j.rasd.2010.12.004 

Van De Voorde, S., Roeyers, H., Verté, S., & Wiersema, J. R. (2011). The influence of 

working memory load on response inhibition in children with attention-

deficit/hyperactivity disorder or reading disorder. Journal of Clinical and 

Experimental Neuropsychology, 33, 753-764. doi:10.1080/13803395.2011.554385 

Van Meel, C. S., Heslenfeld, D. J., Oosterlaan, J., & Sergeant, J. A. (2007). Adaptive control 

deficits in attention-deficit/hyperactivity disorder (ADHD): The role of error 

processing. Psychiatry Research, 151, 211-220. doi:10.1016/j.psychres.2006.05.011 

Van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and 

ERP studies. Physiology & Behavior, 77, 477-482. doi:10.1016/S0031-

9384(02)00930-7 

Verstraeten, K., Vasey, M. W., Claes, L., & Bijttebier, P. (2010). The assessment of effortful 

control in childhood: Questionnaires and the test of everyday attention for children 

compared. Personality and Individual Differences, 48, 59-65. 

doi:10.1016/j.paid.2009.08.016 



44 

 

Wiersema, J. R., & Roeyers, H. (2009). ERP correlates of effortful control in children with 

varying levels of ADHD symptoms. Journal of Abnormal Child Psychology, 37, 327-

336. doi:10.1007/s10802-008-9288-7 

Wiersema, J. R., van der Meere, J., Roeyers, H., Van Coster, R., & Baeyens, D. (2006). Event 

rate and event-related potentials in ADHD. Journal of Child Psychology and 

Psychiatry, 47, 560-567. doi:10.1111/j.1469-7610.2005.01592.x 

Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: Measures of 

central tendency. Psychological Methods, 8, 254-274. doi:10.1037/1082-989X.8.3.254 

Wild-Wall, N., Oades, R. D., Schmidt-Wessels, M., Christiansen, H., & Falkenstein, M. 

(2009). Neural activity associated with executive functions in adolescents with 

attention-deficit/hyperactivity disorder (ADHD). International Journal of 

Psychophysiology, 74, 19-27. doi:10.1016/j.ijpsycho.2009.06.003 

Yeung, N., Cohen, J. D., & Botvinick, M. M. (2004). The neural basis of error detection: 

conflict monitoring and the error-related negativity. Psychological Review, 111, 931-

959. doi:10.1037/0033-295X.111.4.931 



45 

 

Tables 

Table 1  Descriptive information on the EC questionnaires and the flanker task for the three 

subgroups. 

Table 2  Bivariate correlations between EC scales and amplitude difference scores for the N2, 
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Table 3  Bivariate correlations between EC scales and amplitude difference scores for the N2, 

P3, and ERN for the three subgroups. 

 

 

Figure captions 

Fig. 1.  Scatterplots of the correlation between the ERN and CRN mean amplitude difference 

score and the attention focusing scale of the ACS (a) and between the ERN and CRN mean 

amplitude difference score and the total scale of the ACS (b). 

Fig. 2.  Grand average stimulus-locked ERPs at Fz and FCz for the three groups to congruent 

(full line) and incongruent (dotted line) stimuli. 

Fig. 3.  Grand average stimulus-locked ERPs at Cz, CPz, and Pz for the three groups to 

congruent (full line) and incongruent (dotted line) stimuli. 

Fig. 4.  Grand average response-locked ERPs at Fz and FCz for the three groups to correct 

(full line) and incorrect (dotted line) responses. 
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Table 1  

Descriptive information on the EC questionnaires and the flanker task for the three subgroups. 

Measures TD (n = 21) 

M(SD) 

ASD (n = 20) 

M(SD) 

ADHD (n = 24) 

M(SD) 

Group differences 

F(2,62) 

Parent-rated EC      

EATQ-R Total 3.45(0.57)
a 

2.48(0.60)
b 

2.50(0.53)
b 

     21.01*** 

 Inhibitory control 3.85(0.60)
a 

2.80(0.79)
b 

2.80(0.44)
b 

      20.39*** 

 Activation control 3.01(0.91)
a 

2.24(0.84)
b 

2.46(0.85)
a,b 

4.35* 

 Attentional control 3.65(0.64)
a 

2.48(0.60)
b 

2.29(0.49)
b 

      35.68*** 

Child-rated EC      

ECS Total   85.71(9.92)
a 

  73.55(13.06)
b 

  71.88(12.28)
b 

    8.80*** 

 Pers./low distr. 47.81(5.52)
a 

38.45(6.93)
b 

39.25(7.86)
 b 

      11.99*** 

 Impulsivity 37.90(6.27)
a 

35.10(7.10)
a,b 

32.63(6.73)
b 

 3.48* 

ACS Total 54.19(9.11)
a 

44.85(7.53)
b 

43.46(6.06)
b 

      12.73*** 

 Focusing 24.05(4.18)
a 

21.25(3.48)
a 

17.79(3.50)
b 

      15.93*** 
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 Shifting 30.14(5.94)
a 

23.60(5.17)
b 

25.67(3.84)
b 

     9.27*** 

EATQ-R Total 3.48(0.59)
a 

3.01(0.44)
b 

2.91(0.57)
b 

       6.90** 

 Inhibitory control 3.46(0.59)
a 

3.17(0.66)
a, b 

2.89(0.55)
b 

               4.97** 

 Activation control 3.20(1.01)
a 

2.69(0.88)
a 

2.84(0.91)
a 

1.61 

 Attentional control 3.75(0.57)
a 

3.15 (0.57)
b 

2.99(0.64)
b 

     9.64*** 

Behavioral measure      

Flanker task mRT congruent 450.80(68.56)
a 

450.99(55.48)
a 

485.11(109.08)
a 

1.29 

 mRT incongruent 524.09(73.43)
a 

515.49(71.04)
a 

581.55(160.09)
a 

2.28 

 Executive attention - RT 73.30(24.70)
a 

64.50(26.33)
 a
 96.43(76.45)

 a
 2.36 

 %EOC congruent  3.19(3.33)
a
 7.06(8.04)

a,b 
9.23(10.16)

b 
  3.36* 

 %EOC incongruent 13.26(9.03)
a 

15.70(10.65)
a 

19.33(10.34)
a 

2.09 

 Executive attention - % EOC 10.07(6.52)
 a
 8.64(6.38)

 a
 10.10(6.88)

 a
 0.33 

Note.  Pers./low distr. = Persistence/low distractibility; % EOC = percentage errors of commission.  P-values are derived from one-way ANOVA.  Superscripts reflect subgroup differences 

derived from post-hoc Bonferroni Test; different letters indicate differences between particular groups, identical letters indicate that there were no differences between those particular groups.   

*p < .05. 

**p < .01. 

***p < .001. 
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Table 2  

Bivariate correlations between EC scales and amplitude difference scores for the N2, P3, and ERN for the total group. 

 

Questionnaires 

                                                                                ERPs 

N2 P3 ERN 

Parent-rated    

EATQ-R Total  .003 .085   -.314* 

 Inhibitory control -.019 .197 -.106 

 Activation control  .004 -.049   -.323* 

 Attentional control  .014 .125   -.309* 

Child-rated      

ECS Total  .097 -.021 -.183 

 Pers./low distr.  .014 .042 -.196 

 Impulsivity  .167 -.088 -.118 

ACS Total  .167 .066    -.366** 
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 Focusing  .062 .093    -.333** 

 Shifting  .215 .030   -.304* 

EATQ-R Total  .103 .061    -.379** 

 Inhibitory control  .052 .117   -.305* 

 Activation control  .086 .006   -.312* 

 Attentional control  .095 .042   -.273* 

Note.  Pers./low distr. = Persistence/low distractibility; N2 = mean amplitude difference score (incongruent – congruent) for the cluster Fz and FCz; P3 = mean amplitude difference score 

(incongruent – congruent) for the cluster Cz, CPz, and Pz; ERN = amplitude difference score (incorrect – correct) for the cluster Fz and FCz. 

|r| .01 – 0.3 = small; |r| 0.3 – 0.5 = medium; |r| > 0.5 = large (Cohen, 1988). 

*p < .05. 

**p < .01. 
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Table 3  

Bivariate correlations between EC scales and amplitude difference scores for the N2, P3, and ERN for the three subgroups. 

        ERPs 

N2 P3  ERN 

Questionnaires TD ASD ADHD TD ASD ADHD TD ASD ADHD 

Parent-rated          

EATQ-R Total .081 .019 .110 -.333 -.104 .059 .029 -.619** -.216 

 Inhibitory control -.149 .368 -.122 .049 .210 -.128 .240 -.179 -.089 

 Activation control .201 -.257 .057 -.393 -.247 .141 -.058 -.599** -.271 

 Attentional control -.012 .071 .333 -.271 -.139 -.009 -.002 -.678** -.096 

Child-rated           

ECS Total .180 -.113 .372 -.285 .000 -.250 .031 -.287 -.090 

 Pers./low distr. .092 -.241 .270 -.157 -.071 -.111 -.024 -.240 -.174 

 Impulsivity .203 .027 .363 -.313 .070 -.326 .072 -.294 .040 

ACS Total .201 .326 .276 -.083 .032 -.260 -.497* -.273 -.153 
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 Focusing .187 -.038 .200 -.144 -.140 -.125 -.321 -.302 -.266 

 Shifting .177 .501* .252 -.027 .141 -.296 -.532* -.196 .000 

EATQ-R Total .204 -.05 .225 -.117 -.087 -.041 -.371 -.373 -.335 

 Inhibitory control .143 .152 -.032 .100 .057 -.138 -.395 -.213 -.214 

 Activation control .175 -.099 .176 -.064 -.112 .020 -.225 -.292 -.422* 

 Attentional control .170 -.123 .347 -.313 -.090 -.022 -.372 -.191 -.149 

Note.  Pers./low distr. = Persistence/low distractibility; N2 = mean amplitude difference score (incongruent – congruent) for the cluster Fz and FCz; P3 = mean amplitude difference score 

(incongruent – congruent) for the cluster Cz, CPz, and Pz; ERN = amplitude difference score (incorrect – correct) for the cluster Fz and FCz. 

|r| 0.3 – 0.5 = medium; |r| > 0.5 = large (Cohen, 1988). 

*p < .05. 

**p < .01. 
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