
ITERATION-FREE COMPUTATION OF GAUSS-LEGENDRE

QUADRATURE NODES AND WEIGHTS∗

I. BOGAERT†

Abstract. Gauss-Legendre quadrature rules are of considerable theoretical and practical interest
because of their role in numerical integration and interpolation. In this paper, a series expansion for
the zeros of the Legendre polynomials is constructed. In addition, a series expansion useful for the
computation of the Gauss-Legendre weights is derived. Together, these two expansions provide a
practical and fast iteration-free method to compute individual Gauss-Legendre node-weight pairs in
O (1) complexity and with double precision accuracy. An expansion for the barycentric interpolation
weights for the Gauss-Legendre nodes is also derived. A C++ implementation is available on line.

Key words. Legendre polynomial, Gauss-Legendre quadrature, asymptotic series, parallel com-
puting.

1. Introduction. The zeros of the Legendre polynomials [1] are of fundamen-
tal importance because they constitute the nodes of Gauss-Legendre (GL) quadrature
rules, which are optimal integration rules for polynomial functions [2, 3, 4]. Tabulated
GL rules with a small number of points are routinely used for the numerical approx-
imation of integrals. However, applications using GL rules with many (hundreds,
thousands or even more) points are becoming more widespread. For example, GL
quadrature rules are useful for the computation of weights occurring in the barycen-
tric Lagrange interpolation formula [5, 6] on the GL nodes. Also, many-point GL
quadrature rules are used in spectral methods and to discretize integrals in the 3-D
multilevel fast multipole method (see [7], p. 81). For such applications, tabulation of
the GL rules may no longer be practical and their computation becomes necessary.

Because of the lack of closed-form analytical formulas for the nodes, many differ-
ent methods have been proposed to numerically compute GL quadrature nodes. An
excellent overview of these methods has been given in [8]. For example, the Golub-
Welsch algorithm [9] can be used for general Gaussian quadrature rules. However, for
the specific case of GL quadrature, the current state of the art is to use asymptotic
expansions of the Legendre polynomials together with local zero finding algorithms to
find the GL nodes. The asymptotic expansions are then once again used to compute
the GL weights. Both in [10] (for Gauss-Legendre quadrature) and [8] (for the more
general Gauss-Jacobi quadrature), this approach was used to allow the computation
of individual GL nodes and weights in O (1) complexity. This implies an O (n) com-
plexity for the entire n-point GL rule, which is on par with the algorithm by Glasier,
Liu and Rohklin [11]. The advantage of the asymptotic expansion methods is that
the node-weight pairs can be computed independently from each other, which is crit-
ical for parallelization purposes. In fact, the part of [10] that is concerned with the
computation of the Legendre polynomials was specifically motivated by such a paral-
lelization effort: the scalable parallel computation of the translation operator in the
3-D multilevel fast multipole method [12, 13]. With current hardware becoming faster
mainly by adding more CPU cores, it is clear that parallelization potential becomes
ever more important. This also holds true for GL quadrature rules.

∗This work was supported by a postdoctoral grant from the Fund for Scientific Research Flanders
(FWO-Vlaanderen).

†Ghent University, Dept. of Information Technology (INTEC), Sint-Pietersnieuwstraat 41, 9000
Gent, Belgium

1

2

In this work, these asymptotic expansion methods will be developed further by
providing expansions for the computation of the GL nodes and weights themselves,
instead of for the Legendre polynomials. Clearly, this avoids the use of a zero find-
ing algorithm, resulting in an iteration-free computation of the GL nodes. For the
weights, no iterations were needed in the first place, but special attention was re-
quired for the computation of the derivative of the Legendre polynomials, especially
near the boundaries of the domain [8]. The expansion proposed in this work passes
through the same computations but, because these are done symbolically, nearly all
the cancelations and other numerical difficulties are removed from the final expansion.
Finally, an expansion is derived for the barycentric interpolation weights associated
with the Legendre nodes.

Remarkably simple expansions are obtained, allowing for a very fast and accurate
evaluation, as will be evidenced by the numerical results. An added advantage is that
the proposed expansions are uniform, i.e. the same code runs for all relevant nodes
and weights in a GL quadrature rule. This is in contrast with [10] and [8], where
two separate expansions for the Legendre polynomials were used to cover the full
range [−1, 1]. In a parallel computing environment, this can be very advantageous
for achieving a good load balancing. Indeed, in [8] it was reported that the boundary
expansion is three orders of magnitude slower than the internal expansion. When the
GL nodes are uniformly divided over P parallel processes, this will lead to some of
them requiring more time than others, therefore making poor use of computational
resources. This issue is solved by the expansions proposed in this paper. A final
advantage is that the evaluation of Bessel functions, necessary to evaluate the Leg-
endre polynomials near the edges of the domain [−1, 1], is no longer required in the
expansions provided here. A C++ code implementing the formulas from this paper
is available online [14].

The paper is organized as follows: in Section 2, the expansion for the GL nodes
will be derived, followed be the expansion for the weights in Section 3. In Section
4, auxiliary asymptotic expansions related to the Bessel functions are derived, along
with a brief discussion of the numerical handling of the node and weight expansions.
Subsequently, Section 5 shows the accuracy and speed of the proposed approach by
means of numerical examples in a double precision C++ implementation. Finally,
Section 6 details how the techniques proposed in this paper are extended to the
computation of barycentric interpolation weights for the GL nodes.

2. Expansion for the GL nodes. The GL nodes will be denoted as xn,k, ∀k ∈
[1, n], ordered such that xn,k+1 < xn,k, ∀k ∈ [1, n−1]. Due to the even/odd symmetry
of the Legendre polynomials of even/odd degree respectively, the following reflection
property holds:

xn,n−k+1 = −xn,k. (2.1)

A corollary is

x2n−1,n = 0. (2.2)

Properties (2.1) and (2.2) ensure that all GL nodes can be computed from those with
k ∈ [1, ⌊n

2 ⌋].
As explained in [10], the nodes exhibit quadratic clustering near the points ±1 for

large n. This leads to the conclusion that, in a fixed-precision floating point format,
it is numerically advantageous to compute not xn,k but rather θn,k such that

xn,k = cos θn,k. (2.3)

3

In addition to having numerical advantages, using the θn,k form of the GL nodes fits
more closely with the asymptotic series that will be leveraged, which is why the rest
of this paper will be focused on computing θn,k. If needed, the node xn,k can be
cheaply obtained by means of (2.3).

The process of finding the asymptotic expansion for θn,k requires an asymptotic
expansion of the Legendre polynomials. In Subsection 2.1, this expansion will be
discussed. Then, in Subsection 2.2, an initial approximation for θn,k is refined by
means of the Lagrange inversion theorem (see [1], subsection 1.10(vii)). This approach
can be used to get arbitrarily high-order corrections to the initial approximation, such
that the error on the GL nodes can be controlled for n sufficiently large. For small n,
the expansions cannot be used and a tabulation strategy similar to [10] is adopted.

2.1. Expansion for the Legendre Polynomials. The starting point of the
derivation is the following series expansion for the Legendre polynomials:

Pn (cos θ) = q(θ)

∞
∑

ν=0

aν(θ)Jν

(

θ

vn

)

vνn, (2.4)

with Jν (·) the Bessel function of the first kind of order ν and

vn =
1

n+ 1
2

, q(θ) =

√

θ

sin θ
. (2.5)

This expansion was proposed in [15], where the functions aν(θ) are defined as follows:

aν(θ) = (2θ)ν
Γ(ν + 1

2)√
π

ψν(θ). (2.6)

The functions ψν(θ) are the series expansion coefficients of

[

1 +

∞
∑

m=2

tm−1φm(θ)

]− 1

2

=

∞
∑

ν=0

ψν(θ)t
ν , (2.7)

with

φν(θ) =
1

ν!
(2θ)1−ν

Jν− 1

2

(θ)

J 1

2

(θ)
. (2.8)

The first few aν(θ) are given by

a0(θ) = 1,

a1(θ) =
1

8

θ cos θ − sin θ

θ sin θ
,

a2(θ) =
1

128

6θ sin θ cos θ − 15 sin2 θ + θ2(9− sin2 θ)

θ2 sin2 θ
,

a3(θ) =
5

1024

((θ3+21θ) sin2 θ+15θ3) cos θ − ((3θ2+63) sin2 θ−27θ2) sin θ

θ3 sin3 θ
,

(2.9)

and more can be computed with relative ease using computer algebra software. It is
worthwhile to point out the similarities between expansion (2.4) and the boundary

4

expansion used in [8] (equation 3.12):

Pn (cos θ) ≈ q(θ)

[

J0

(

θ

vn

) M
∑

m=0

Am(θ)v2mn + θJ1

(

θ

vn

)M−1
∑

m=0

Bm(θ)v2m+1
n

]

. (2.10)

Indeed, when the Bessel functions in (2.4) are replaced with Bessel functions of zeroth
and first order (by means of the recurrence relation), a form very similar to (2.10) is
obtained. In addition, the coefficients in (2.10) that are known explicitly (i.e. A0(θ),
B0(θ) and A1(θ), see equation 3.13 in [8]) are exactly reproduced. Whether these
expansions are truly identical is beyond the scope of this paper, but it seems likely
that the derivations in the rest of this paper could have also been based on (2.10)
instead of (2.4). The reason for choosing (2.4) is the fact that the functions aν(θ)
are much easier to compute. Indeed, only derivatives are needed to compute aν(θ),
while a complicated recurrence containing indefinite integrations links the coefficients
Am(θ) and Bm(θ).

According to [15], series (2.4) converges uniformly in the usual sense in any inter-
val θ ∈ [0, θ0− ǫ] with θ0 = 2(

√
2−1)π ≈ 2.6026 and 0 < ǫ < θ0. More importantly, it

converges uniformly in the asymptotic sense (for large n) in any interval 0 ≤ θ ≤ π−ǫ′
with 0 < ǫ < π. Crucially, this region contains the closed interval θ ∈ [0, π2]. This is
important because, since k may be restricted to [1, ⌊n

2 ⌋] without loss of functionality,
θn,k will always be in the interval [0, π2]. Therefore, series (2.4) will be uniformly valid
in the neighborhood of all θn,k of interest.

2.2. Lagrange Inversion Theorem. It is clear that, for very large n, only the
first term of (2.4) contributes significantly to the Legendre polynomial:

Pn (cos θ) = q(θ)J0

(

θ

vn

)

+O (vn) . (2.11)

Therefore, it makes sense to approximate the zeros of the Legendre polynomial in
terms of the zeros of the Bessel function:

θn,k ≈ vnj0,k = αn,k. (2.12)

This idea is of course not new. In fact, it was further refined in [16] (p. 469), where
the following result was given:

θn,k = αn,k + v2n
αn,k cotαn,k − 1

8αn,k

+ αn,kO
(

v4n
)

. (2.13)

The goal of this work is to find a version of this expression with an error term con-
taining a higher exponent, such that higher order convergence is achieved. This will
be done by means of the Lagrange inversion theorem (see [1], subsection 1.10(vii)).

To apply the Lagrange inversion theorem, a Taylor series expansion of q−1(θ)
Pn (cos θ) around the point αn,k will be constructed

q−1(θ)Pn (cos θ) =

∞
∑

p=0

fp(αn,k, vn)
(θ − αn,k)

p

p!
, (2.14)

where

fp(θ, vn) =
∂p

∂θp

∞
∑

ν=0

aν(θ)Jν

(

θ

vn

)

vνn. (2.15)

5

The evaluation of these derivatives gives rise to very long expressions containing Bessel
functions of all orders. However, as mentioned before, any Bessel function can be
replaced with a combination of Bessel functions of zeroth and first order by means
of the recurrence relations. Crucially, the expansion point is αn,k = vnj0,k, which
means that the zeroth order Bessel function vanishes. Hence, all Bessel functions can
be replaced with a rational function of αn,k and vn, times Jk = J1 (j0,k):

J2

(

αn,k

vn

)

= Jk

2vn
αn,k

, (2.16)

J3

(

αn,k

vn

)

= Jk

8v2n − α2
n,k

α2
n,k

, (2.17)

J4

(

αn,k

vn

)

= Jk

48v3n − 8α2
n,kvn

α3
n,k

, (2.18)

J5

(

αn,k

vn

)

= Jk

384v4n − 72α2
n,kv

2
n + α4

n,k

α4
n,k

. (2.19)

For higher-order Bessel functions, similar expressions hold. Using this knowledge, the
Taylor coefficients (2.15) can be evaluated up to any order in vn. For example:

f0(αn,k, vn) = Jk

[

a1(αn,k)vn +

(

2a2(αn,k)

αn,k

− a3(αn,k)

)

v3n +O
(

v5n
)

]

, (2.20)

f1(αn,k, vn) = Jk

[

−a0(αn,k)v
−1
n +

(

a′1(αn,k) + a2(αn,k)−
a1(αn,k)

αn,k

)

v1n +O
(

v3n
)

]

.

(2.21)

Here, a′1(θ) is the derivative of a1(θ) with respect to θ. Now, with the help of the
Lagrange inversion theorem, series (2.14) can be inverted. For example, a third-order
expansion is given by:

θn,k = αn,k − f0

f1
− f2f

2
0

2f3
1

+

(

f3f1 − 3f2
2

)

f3
0

6f5
1

+O
(

f4
0

)

, (2.22)

but higher-order expansions can be generated at will. The arguments of the functions
fp(θ, vn) have been omitted to avoid overburdening the notation. Using only the
first-order term in f0, and the series (2.20) and (2.21), the following is obtained:

θn,k = αn,k + v2n
a1(αn,k)

a0(αn,k)
+O

(

v4n
)

,

= αn,k + v2n
1

8

αn,k cosαn,k − sinαn,k

αn,k sinαn,k

+O
(

v4n
)

. (2.23)

As expected, this result is identical to (2.13).
Now, the main novelty in using the Lagrange inversion theorem (2.22) is that

arbitrary-order expansions can be derived. Though the manipulations are in principle
quite simple, the expressions soon become extremely cumbersome to handle by hand.
Fortunately, modern computer algebra software can be used instead. By these means,
all terms up to eleventh order in vn have been computed, and it turns out that all odd-
order terms in this range are equal to zero. Therefore, the result can be summarized

6

as

θn,k =

5
∑

m=0

Fm

(

αn,k,
cosαn,k

sinαn,k

)

v2mn +O
(

v12n
)

, (2.24)

with the functions Fm explicitly known as

F0(x, u) = x, (2.25)

F1(x, u) =
1

8

ux− 1

x
, (2.26)

F2(x, u) =
1

384

6x2(1 + u2) + 25− u(31u2 + 33)x3

x3
. (2.27)

The functions F3, F4 and F5 are also known explicitly, but these are listed in Appendix
A because of their length.

The relative accuracy of (2.24) was tested in a multiple precision computing en-
vironment, using 100 decimal digits of accuracy. The following error was computed:

∆θ
M (n) = sup

k∈[1,⌊n
2
⌋]

∣

∣

∣

∣

∣

∣

∑M

m=0 Fm

(

αn,k,
cosαn,k

sinαn,k

)

v2mn

θExactn,k

− 1

∣

∣

∣

∣

∣

∣

, (2.28)

where vn brings in the dependence on n through equation (2.5). The results are plotted
in Figure 2.1, along with the machine precision in the IEEE 754 double format, i.e.
ǫmach = 2.2204×10−16. As can be seen, the four-term approximation (M = 3) yields
machine precision from n ≥ 62. Therefore, if the values θn,k have been tabulated for
n ≤ 100, the two highest-order terms of (2.24) can be omitted. If a smaller look-up
table is desired, adding the two highest-order terms can be advantageous because it
increases the convergence rate considerably, as evidenced by the graph for M = 5,
where machine precision is achieved for n ≥ 21.

3. Expansion for the GL weights. As is well known [17, 8], the weights wn,k

of a GL quadrature rule can be directly computed from the nodes:

wn,k =
2

[

d
dθPn (cos θ)

]2

θ=θn,k

. (3.1)

It is clear that an expansion for the derived Legendre polynomial is sufficient to
compute the weight with ease. To get such an expansion, the Taylor series (2.14) will
be used to compute the derivative:

d

dθ
Pn (cos θ) =

d

dθ
q(θ)

∞
∑

p=0

fp(αn,k, vn)
(θ − αn,k)

p

p!
+ q(θ)

∞
∑

p=0

fp+1(αn,k, vn)
(θ − αn,k)

p

p!
.

(3.2)

Now q(θ) as well will be expanded in a Taylor series around αn,k:

q(θ) = q(αn,k)

∞
∑

r=0

Qr(αn,k)(θ − αn,k)
r, (3.3)

7

10 20 30 40 50 60 70 80 90 100

10
−20

10
−15

10
−10

10
−5

10
0

n

R
el
a
ti
v
e
E
rr
o
r

∆θ
1(n)

∆θ
2(n)

∆θ
3(n)

∆θ
4(n)

∆θ
5(n)

ǫmach

Fig. 2.1. The convergence, as a function of the Legendre degree n, of the relative error on
the GL nodes (2.28) for a varying number of terms M . The horizontal black line is the machine
precision in the double format, i.e. 2.2204 × 10−16.

with the first two terms given by

Q0(αn,k) = 1, (3.4)

Q1(αn,k) =
1

2

sinαn,k − αn,k cosαn,k

αn,k sinαn,k

. (3.5)

Again, higher-order terms are omitted for brevity but can be computed easily. Series
(3.3) allows the immediate construction of the series for the derivative of q(θ):

d

dθ
q(θ) = q(αn,k)

∞
∑

r=0

(r + 1)Qr+1(αn,k)(θ − αn,k)
r. (3.6)

Substituting this into (3.2) yields

d

dθ
Pn (cos θ) = q(αn,k)

∞
∑

r=0

∞
∑

p=0

[(r + 1)Qr+1(αn,k)fp(αn,k, vn)+

+Qr(αn,k)fp+1(αn,k, vn)]
(θ − αn,k)

r+p

p!
. (3.7)

Finally, θ has to be replaced with the series for the nodes (2.24). Not surprisingly, this
again leads to very lengthy expressions that can in practice only be handled by means
of computer algebra software. In addition, it is advantageous to directly compute an
expansion for the square of (3.7) to avoid computing the square root in q(αn,k). This
leads to even longer expressions. Nevertheless, these computations can all be carried

8

out, leading to the following result:

2

wn,k

=
J 2
k

v2n

αn,k

sinαn,k

[

5
∑

m=0

Wm

(

αn,k,
cosαn,k

sinαn,k

)

v2mn +O
(

v12n
)

]

, (3.8)

with

W0 (x, u) = 1, (3.9)

W1 (x, u) =
1

8

ux+ x2 − 1

x2
, (3.10)

W2 (x, u) =
1

384

81− 31ux− (3 − 6u2)x2 + 6ux3 − (27 + 84u2 + 56u4)x4

x4
. (3.11)

Again, the functionsW3,W4 andW5 are also known, but listed in Appendix B because
of their length.

In a way similar to the nodes, the relative accuracy of the weights (3.8) was tested
using 100 decimal digits of accuracy. The following error was computed:

∆w
M (n) = sup

k∈[1,⌊n
2
⌋]

∣

∣

∣

∣

∣

∣

J 2

k

v2
n

αn,k

sinαn,k

∑M

m=0Wm

(

αn,k,
cosαn,k

sinαn,k

)

v2mn

wExact
n,k

− 1

∣

∣

∣

∣

∣

∣

. (3.12)

Figure 3.1 shows the obtained convergence results. It can be seen that, using an
identicalM , the convergence for the weights is only slightly slower than for the nodes.

10 20 30 40 50 60 70 80 90 100

10
−20

10
−15

10
−10

10
−5

10
0

n

R
el
a
ti
v
e
E
rr
o
r

∆w
1 (n)

∆w
2 (n)

∆w
3 (n)

∆w
4 (n)

∆w
5 (n)

ǫmach

Fig. 3.1. The convergence, as a function of the Legendre degree n, of the relative error on
the GL weights (3.12) for a varying number of terms M . The horizontal black line is the machine
precision in the double format.

9

4. Auxiliary Expansions. To be able to use expansions (2.24) and (3.8), it is
necessary to compute the zeros j0,k of the zeroth-order Bessel function. Also, Jk, i.e.
the first-order Bessel function evaluated in this zero, has to be computed. Asymptotic
expansions for both these quantities will be given. Finally, it will also be explained
how the functions Fm and Wm are computed in practice.

4.1. Computing j0,k and Jk. For the computation of j0,k, McMahon’s asymp-
totic expansion for large zeros (equation (10.21.19) in [1]) is used

j0,k = ak +
1

8ak
− 124

3(8ak)3
+

120928

15(8ak)5
− 401743168

105(8ak)7
+

1071187749376

315(8ak)9
+ ... (4.1)

with ak = π(k − 1
4). Since (4.1) is an asymptotic expansion, it can only be used for

sufficiently large k. For this paper, j0,k is tabulated for k ∈ [1, 20] and computed by
means of (4.1) if k > 20.

To compute Jk, another asymptotic expansion is used, i.e. the large argument
expansion for the Bessel function (equation (10.17.3) in [1]) itself:

J1 (x) = −
√

2

πx

[

cos(x +
π

4
)− 3

8x
cos(x − π

4
) +

15

128x2
cos(x+

π

4
) + ...

]

. (4.2)

Each separate term of this asymptotic expansion can be expanded into a Taylor series
around the point x = ak. For example, the first term leads to:

√

2

πx
cos(x+

π

4
) =

√

2

πak
(−1)k

[

1− (x− ak)

2ak
+ (3− 4a2k)

(x − ak)
2

8a2k
+ ...

]

. (4.3)

The advantage of specifically choosing ak as the expansion point is that all the trigono-
metric functions from (4.2) can be replaced with either zero or a power of minus one.
Finally, McMahon’s expansion for the zero (4.1) can be substituted in the Taylor
series-expanded (4.2), yielding an expansion for Jk = J1 (j0,k):

Jk = (−1)k+1

√

2

πak

[

1− 7

96a4k
+

151

320a6k
− 230665

43008a8k
+

9239111

92160a10k
+ ...

]

. (4.4)

Finally, it should be noted that only J 2
k appears in the expansion for the weights

(3.8). Therefore, it is possible to avoid the square root and the factor (−1)k+1 by
immediately expanding J 2

k :

J 2
k =

1

πak

[

2− 7

24a4k
+

151

80a6k
− 172913

8064a8k
+

461797

1152a10k
− 171497088497

15206400a12k
+ ...

]

. (4.5)

Using (4.1) and (4.5), it becomes possible to evaluate expansions (2.24) and (3.8)
without the need for explicitly evaluating Bessel functions. Because evaluating Bessel
functions is computationally expensive [18], this presents a significant advantage.

4.2. Computing Fm and Wm. The functions Fm and Wm occurring in expan-
sions (2.24) and (3.8) can be problematic to evaluate numerically because of significant
numerical cancelation occurring for αn,k near zero. Therefore, special care must be
taken to avoid this problem. In the following, the focus will be on the functions Fm,
but Wm can be treated in a very similar way.

As can be seen from (2.25) through (2.27) and (A.2) through (A.4), the functions
Fm(φ, cotφ) are analytic for φ ∈]−π, π[. Because these functions need only be

10

evaluated in the range φ ∈ [0, π2], they are good candidates to be approximated by
means of Chebyshev interpolants [19, 20]. However, the presence of a singularity at
φ = rπ, ∀r ∈ {±1,±2,±3, ...} slows down the convergence of the Chebyshev series.
This is why it was chosen to instead construct a Chebyshev series for the functions

Gm(φ) =
1

φ

[

sinφ

φ

]2m−1

Fm(φ, cotφ), ∀m ∈ {1, 2, 3, 4, 5}, (4.6)

which are analytic on the entire complex plane. Additionally, it turns out that Gm(φ)
is an even function of φ. Therefore, the interpolant was constructed for Gm(

√
φ).

Numerical experiments have subsequently shown that a Chebyshev interpolant of
degree 6 is sufficient for obtaining approximately double precision on the nodes if
n > 100. For the evaluation of Wm, an analogous approach leads to Chebyshev
interpolants of degree 9 for m = 1 and 8 for m > 1.

5. Numerical Results for Double Precision. The results depicted in Fig-
ures 2.1 and 3.1 have been generated using a floating point format with 100 digits of
precision. Because such formats are not widely used in scientific computing, expan-
sions (2.24) and (3.8) will also be tested when they are implemented in native double
precision. The main difference with the 100-digits-test is that expansions (2.24) and
(3.8) are essentially exact in double precision. Therefore, the main source of error in
the result is due to the effects of rounding error, the magnitude of which will now be
investigated.

As said before, expansions (2.24) and (3.8) are only useful for n sufficiently large,
such that tabulated values should be used for small n. Because the tables from [10] can
be reused here, tabulation has been chosen for all n ≤ 100. With this choice, M = 3
in (2.24) and (3.8) is sufficient for obtaining machine precision. It is worthwhile
to point out that the expansions from this paper can accommodate a considerably
smaller n. In fact, the convergence plots 2.1 and 3.1 indicate that n > 30 is large
enough for machine precision if M = 5. Therefore, the size of the look-up table can
be considerably reduced, though this incurs a cost for evaluating additional terms
in the expansions. Alternatively, an increased number of terms can also be used to
increase the accuracy of the expansion if the implementation is done in a more precise
floating-point format. In such a case, the tabulation may be necessary for larger n.

The expansions for the nodes and weights have been implemented in C++.
Subsequently, for n ∈ [101, 500], the nodes θn,k and weights wn,k were computed
∀k ∈ [1,

⌊

n
2

⌋

]. For comparison, the same values were computed to 30 digit precision
using Maple, and rounded to the nearest double. This double value was henceforth
considered the ’best possible’ double precision value. The error between the C++
and rounded Maple values was subsequently measured as the number of units in the
last place (ulp, see [21]) that the two double values differ. Expressing the error in
ulps is an excellent way to measure the relative error without referring explicitly to
the machine precision. For example 1 and 1 + ǫmach differ by exactly one ulp.

Figures 5.1 and 5.2 graphically show the distribution of the errors on the nodes
and weights for the range n ∈ [101, 200]. The dominance of the colors white and green
means that most of the values are either exactly the best possible double precision
value or differ by at most one ulp.

Tables 5.1 and 5.2 give more quantitative information on how often errors occur
as a function of how large they are, for the entire computed range n ∈ [101, 500]. As
can be seen, all nodes and weights are correct up to at most 3 and 5 ulps respectively

11

0 20 40 60 80 100

100

110

120

130

140

150

160

170

180

190

200

k

n

1 ulp error

2 ulps error

3 ulps error

Fig. 5.1. The error, measured in ulps, on the nodes θn,k in the range n ∈ [101, 200], k ∈ [1,
⌊

n
2

⌋

].
Nodes without error are not shown.

for this range. On average, weights contain around 0.8 ulp of error, while the nodes
contain around 0.5 ulp of error, which is an excellent accuracy.

In addition, the proposed expansions can also be implemented using the 80-bit
extended precision format (sometimes called ’long double’) that is usually available
on x86 processors. Tests for such an implementation have shown that (again for the
range n ∈ [101, 500]) both nodes and weights differ from the Maple result by at most
1 ulp. However, this accuracy gain comes at the cost of a run time that is around 50
percent longer.

Finally, the speed of the C++ implementation has been tested. Table 5.3 lists
the run times to compute all nodes and weights for k ∈ [1,

⌈

n
2

⌉

] and n a power of
ten. The computation was done on a laptop with an Intel(R) Core(TM) i7-2630QM
CPU@2GHz. Parallelization of the computation over the four CPU cores was done
using either four or eight threads. When eight threads are used, hyperthreading al-
lows some performance gains, but not as much as by adding four ’real’ CPU cores.
As can be seen, computing a GL quadrature rule with one million points takes only
a few tens of milliseconds, which is an order of magnitude faster than the iterative
method from [10]. This speed comparison is justified because the exact same hard-
ware, programming language and compiler were used.

6. Expansion for the barycentric interpolation weights. The barycentric
interpolation formula [22], specialized for the case where the interpolation points are

12

0 20 40 60 80 100

100

110

120

130

140

150

160

170

180

190

200

k

n

1 ulp error

2 ulps error

3 ulps error

4 ulps error

Fig. 5.2. The error, measured in ulps, on the weights wn,k in the range n ∈ [101, 200], k ∈
[1,

⌊

n
2

⌋

]. Weights without error are not shown.

n range 0 ulp 1 ulps 2 ulps 3 ulps

101 → 150 1727 1309 110 4
151 → 200 2430 1769 197 4
201 → 250 2850 2576 224 0
251 → 300 3585 3035 267 13
301 → 350 4417 3393 329 11
351 → 400 4667 4268 458 7
401 → 450 5229 4894 522 5
451 → 500 6200 5336 363 1

Table 5.1

The number of times an N-ulp error was encountered for the nodes θn,k, with N ∈ {0, 1, 2, 3}.
No errors larger than three ulps were found.

the GL nodes, is given by

g(x) =

∑n

k=1
λn,kg(xn,k)

x−xn,k

∑n

k=1
λn,k

x−xn,k

, (6.1)

where g(x) is any polynomial of degree n (or lower) that needs to be interpolated.
Each set of interpolation points has its own set of so-called barycentric weights. For

13

n range 0 ulp 1 ulp 2 ulps 3 ulps 4 ulps 5 ulps

101 → 150 1237 1486 366 56 5 0
151 → 200 1864 2056 416 63 1 0
201 → 250 2053 2665 798 110 21 3
251 → 300 2806 3257 738 90 8 1
301 → 350 3616 3726 747 55 5 1
351 → 400 3624 4368 1229 168 11 0
401 → 450 3704 5060 1630 246 10 0
451 → 500 4419 5687 1569 202 20 3

Table 5.2

The number of times an N-ulp error was encountered for the weights wn,k, with N ∈
{0, 1, 2, 3, 4, 5}. No errors larger than five ulps were found.

This work FastLegendre [10]
n 4 threads 8 threads 4 threads 8 threads

1000 < 0.01s < 0.01s < 0.01s < 0.01s
10000 < 0.01s < 0.01s 0.01s < 0.01s
100000 < 0.01s < 0.01s 0.04s 0.05s
1000000 0.02s 0.02s 0.33s 0.28s
10000000 0.18s 0.14s 2.31s 1.88s
100000000 1.68s 1.11s 21.4s 17.2s
1000000000 16.4s 11.0s 193s 157s

Table 5.3

The run time for computing an n-point Gauss-Legendre quadrature rule, with large n, using
parallelization over four CPU cores. The run times with eight threads are lower because of hyper-
threading. The run times for the FastLegendre package [10] are also displayed.

the GL nodes, these will be denoted as λn,k.
The barycentric interpolation formula is of great practical importance because

it exhibits very advantageous numerical stability properties [23, 22]. In addition,
it allows the interpolation process to be done with an O (n) computational comple-
xity. Therefore, the practical importance of the barycentric interpolation formula
warrants a discussion of how the techniques of this paper can be applied to compute
the barycentric interpolation weights associated with the GL nodes.

It is clear that the barycentric weights λn,k are only determined up to a constant
factor. According to Theorem 3.1 in [6], this factor can be chosen such that the
barycentric interpolation weights are given by:

λn,k =
1

P ′
n (xn,k)

= (−1)k+1

√

(1− x2n,k)wn,k

2
, (6.2)

= (−1)k+1 sin θn,k

√

wn,k

2
. (6.3)

For increasing n, formula (6.2) becomes increasingly numerically unstable for points
xn,k near the edges of the interval [−1, 1]. However, the rewritten form (6.3) is
numerically stable if it is used for k ∈ [1, ⌈n

2 ⌉] and the reflection property

λn,k = (−1)n+1λn,n−k+1, (6.4)

14

is used for the remaining values of k. This method for computing λn,k works, but it re-
quires the evaluation of both the quadrature node and weight before the computation
can be completed.

Alternatively, a series representation for λn,k itself can be derived:

λn,k =
vn

Jk

√

sin3 αn,k

αn,k

[

5
∑

m=0

Λm

(

αn,k,
cosαn,k

sinαn,k

)

v2mn +O
(

v12n
)

]

, (6.5)

with

Λ0 (x, u) = 1, (6.6)

Λ1 (x, u) =
3u2x2 − 3ux− (x2 − 1)(u2 + 1)− u2

16x2
, (6.7)

Λ2 (x, u) =
44ux+4u3x3+22ux3−4u4x4+7u2x2+4u2x4−8x2+21x4−51

512x4
. (6.8)

The functions Λ3, Λ4 and Λ5 are listed in Appendix C because of their length. To
evaluate the factor Jk in (6.5), expansion (4.4) can be used, which nicely takes care
of the sign changes in λn,k. Because the barycentric weights are only determined up
to a factor, one could in principle remove the common factor vn in expansion (6.5),
thereby saving one multiplication for each barycentric weight.

To test the accuracy of expansion (6.5), the following error was computed:

∆λ
M (n) = sup

k∈[1,⌊n
2
⌋]

∣

∣

∣

∣

∣

∣

∣

vn
Jk

√

sin3 αn,k

αn,k

∑M

m=0 Λm

(

αn,k,
cosαn,k

sinαn,k

)

v2mn

λExactn,k

− 1

∣

∣

∣

∣

∣

∣

∣

. (6.9)

Figure 6.1 shows a plot of this error, computed with 100 decimal digits of precision,
as a function of n for various M . The convergence behavior is very similar to that of
the GL nodes (2.24) and weights (3.8). Clearly, when n is large enough, expansion
(6.5) allows the accurate evaluation of λn,k without first calculating both θn,k and
wn,k. Therefore, it replaces two expansions with one, which may make it useful in
certain speed-critical applications.

7. Conclusion. Expansions for the computation of individual Gauss-Legendre
quadrature nodes and weights have been derived. These avoid both iterative zero-
finding methods and the evaluation of Bessel functions. Because of this, the compu-
tation of Gauss-Legendre quadrature rules can be performed an order of magnitude
faster than previously possible without sacrificing accuracy, as shown by the numerical
results. Each Gauss-Legendre node-weight pair is computed independently from the
others, which is required for parallelization purposes. In addition, the same expan-
sion is used for all node-weight pairs, which is expected to be beneficial for the load
balancing in parallel computing. Finally, an expansion is given for the barycentric
interpolation weights associated with the Legendre nodes. A C++ implementation of
the formulas from this paper is available online [14]. Future research may allow similar
results for Gauss-Jacobi, Gauss-Hermite and Gauss-Laguerre quadrature rules.

Appendix A. Here, the functions Fm(x, u) that appear in the expansion (2.24)
will be given for m ∈ {3, 4, 5}. Since the expressions are too long to fit on one line

15

10 20 30 40 50 60 70 80 90 100

10
−20

10
−15

10
−10

10
−5

10
0

n

R
el
a
ti
v
e
E
rr
o
r

∆λ
1 (n)

∆λ
2 (n)

∆λ
3 (n)

∆λ
4 (n)

∆λ
5 (n)

ǫmach

Fig. 6.1. The convergence, as a function of the Legendre degree n, of the relative error on
the barycentric interpolation weights (6.9) for a varying number of terms M . Again, the horizontal
black line is the machine precision in the double format.

they will be represented as follows:

Fm(x, u) = Rm,0(u) + Rm,2m−1(u)x
−(2m−1) + (1 + u2)

2m−3
∑

p=1

Rm,p(u)x
−p. (A.1)

The functions Rm,p(u) are polynomials in u, given by

R3,0(u) =
u(2595 + 6350u2 + 3779u4)

15360
, R3,1(u) = −31u2 + 11

1024
,

R3,2(u) =
u

512
, R3,3(u) = − 25

3072
, R3,5(u) = −1073

5120
,

(A.2)

for F3(x, u). For F4(x, u), the following expressions hold:

R4,0(u) = −6277237u6 + 14682157u4 + 10808595u2 + 2407755

3440640
u,

R4,1(u) =
3779u4 + 3810u2 + 519

24576
, R4,5(u) =

1073

40960
, R4,4(u) = − 25

12288
u,

R4,3(u) =
787u2 + 279

49152
, R4,2(u) = −21 + 31u2

4096
u, R4,7(u) =

375733

229376
.

(A.3)

16

Finally, for F5(x, u), the expressions are

R5,0(u) =
u

82575360
(6282767956u6+ 415542645+

+ 6710945598u4+ 2092163573u8+ 2935744980u2),

R5,1(u) = −6277237u6 + 10487255u4 + 4632255u2 + 343965

3932160
,

R5,2(u) = +
15178u2 + 11337u4 + 4329

196608
u, R5,5(u) = −100539u2 + 35659

1966080
,

R5,3(u) = −96335u4 + 97122u2 + 13227

1179648
, R5,4(u) =

778u2 + 527

98304
u,

R5,6(u) =
41753

5898240
u, R5,7(u) = − 375733

1835008
, R5,9(u) = −55384775

2359296
.

(A.4)

Appendix B. Here, the functions Wm(x, u) that appear in the expansion of the
weights (3.8) will be given for m ∈ {3, 4, 5}. These functions will be represented as

Wm(x, u) =
2m
∑

p=0

Qm,p(u)x
−p. (B.1)

Again, the functions Qm,p(u) are polynomials in u. For W3(x, u), these are given by

Q3,0(u) =
187

96
u4+

295

256
u2 +

151

160
u6 +

153

1024
,

Q3,1(u) = −119

768
u3 − 35

384
u5 − 65

1024
u,

Q3,2(u) =
5

512
+

7

384
u4+

15

512
u2, Q3,3(u) =

1

512
u3 − 13

1536
u,

Q3,4(u) = − 7

384
u2 +

53

3072
, Q3,5(u) =

3749

15360
u, Q3,6(u) = −1125

1024
.

(B.2)

For W4(x, u), the polynomials are

Q4,0(u) = −21429

32768
− 27351

1024
u4 − 3626248438009

338228674560
u8 − 36941

4096
u2 − 669667

23040
u6,

Q4,1(u) =
8639

6144
u3 +

2513

8192
u+

7393

3840
u5 +

997510355

1207959552
u7,

Q4,2(u) = −1483

8192
u2 − 1909

6144
u4 − 1837891769

12079595520
u6 − 371

16384
,

Q4,3(u) =
355532953

6039797760
u5 +

1849

18432
u3 +

675

16384
u,

Q4,4(u) = − 1183

24576
u2 − 147456121

4831838208
u4 − 1565

98304
,

Q4,5(u) = − 19906471

6039797760
u3 +

6823

245760
u, Q4,7(u) = −76749336551

42278584320
u,

Q4,6(u) =
149694043

2415919104
u2 − 156817

1474560
, Q4,8(u) =

568995840001

48318382080
.

(B.3)

17

Finally, for W5(x, u):

Q5,0(u) =
97620617026363819

487049291366400
u10 +

202966472595331

300647710720
u8

+
17266857

20480
u6 +

22973795

49152
u4 +

3401195

32768
u2 +

1268343

262144
,

Q5,1(u) = −65272472659909

5411658792960
u9 − 2717368577869

75161927680
u7

− 4729993

122880
u5 − 548439

32768
u3 − 612485

262144
u,

Q5,2(u) =
26455

262144
+
6324614896949

3607772528640
u8+

45578037433

9663676416
u6+

52739

12288
u4+

93673

65536
u2,

Q5,3(u) = −181651

196608
u3 − 40779010513

32212254720
u5 − 63001776779

115964116992
u7 − 19795

98304
u,

Q5,4(u) =
9477

262144
+

2101713105

4294967296
u4 +

56281

196608
u2 +

184730261873

773094113280
u6,

Q5,5(u) = −29273066033

96636764160
u3 − 488659

3932160
u− 38212677741

214748364800
u5,

Q5,6(u) =
39817

491520
+

370339107271

2319282339840
u4 +

996334037

4026531840
u2,

Q5,7(u) =
16514308061

1352914698240
u3 − 3258170891

15032385536
u,

Q5,8(u) =
3354565639447

2705829396480
− 335149450411

721554505728
u2,

Q5,9(u) =
1230657354291011

48704929136640
u, Q5,10(u) = −553063956480229

2576980377600
.

(B.4)

Appendix C. Here, the functions Λm(x, u) that appear in the expansion of the
barycentric interpolation weights (6.5) will be given for m ∈ {3, 4, 5}. These functions
will be represented as

Λm(x, u) =
2m
∑

p=0

Vm,p(u)x
−p. (C.1)

For Λ3(x, u), these are given by

V3,0(u) = −3353

6144
u4 − 671

8192
− 1663

4096
u2 − 3329

15360
u6,

V3,1(u) = − 5

2048
u5 − 47

8192
u− 7

2048
u3,

V3,2(u) =
1

4096
u4 +

5

8192
u2 +

43

8192
,

V3,3(u) = − 227

12288
u− 85

24576
u3, V3,4(u) = − 149

8192
u2 +

145

8192
,

V3,5(u) = −11861

40960
u, V3,6(u) =

4343

8192
.

(C.2)

18

For Λ4(x, u), the result is

V4,0(u) =
784535322707

225485783040
u8 +

671835

65536
u4 +

254427

65536
u2 +

834761

81920
u6 +

180323

524288
,

V4,1(u) = −163721

491520
u5 − 11291

131072
u− 58637

196608
u3 − 1472643103

12079595520
u7,

V4,2(u) = − 340156231

24159191040
u6 − 6919

196608
u4 − 359

65536
− 6773

262144
u2,

V4,3(u) =
4812749

4026531840
u5 +

665

393216
u3 +

81

32768
u, V4,8(u) = −557722275841

96636764160
,

V4,4(u) = − 5251

786432
+

645241

9663676416
u4 − 89

98304
u2, V4,7(u) =

196876210151

84557168640
u,

V4,5(u) =
143536039

12079595520
u3 +

126871

1966080
u, V4,6(u) = − 18107

245760
+

232305329

2684354560
u2.

(C.3)

Finally, for Λ5(x, u), the result is

V5,0(u) = −72332722205864599

974098582732800
u10 − 2819116250606113

10823317585920
u8 − 8039693539

23592960
u6

− 20898423

8388608
− 199700277

4194304
u2 − 209379309

1048576
u4,

V5,1(u) =
424956643859

150323855360
u9 +

38943483325

4227858432
u7 +

56864403

5242880
u5 +

5629107

1048576
u3 +

7600695

8388608
u,

V5,2(u) =
3800059265783

21646635171840
u8 +

197398703969

386547056640
u6 +

3200215

6291456
u4 +

794451

4194304
u2 +

135159

8388608
,

V5,3(u) =
32340284483

579820584960
u7 +

14729450399

96636764160
u5 +

5152877

37748736
u3 +

82767

2097152
u,

V5,4(u) =
3800093599

171798691840
u6 +

8571856867

154618822656
u4 +

171581

4194304
u2 +

35673

4194304
,

V5,5(u) = − 542701

62914560
u− 264058673

48318382080
u3 − 3753744449

966367641600
u5,

V5,6(u) = − 7512205357

4638564679680
u4 +

354037729

77309411328
u2 +

5843227

188743680
,

V5,7(u) = −356277323747

676457349120
u− 14479810427

150323855360
u3,

V5,8(u) = −19052843388127

21646635171840
u2 +

7340675446247

10823317585920
,

V5,9(u) = −103175042361049

3044058071040
u,

V5,10(u) =
182195245670473

1717986918400
.

(C.4)

REFERENCES

[1] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. C. W., NIST Handbook of Mathematical
Functions. Cambridge University Press, 2010.

[2] C. F. Gauss, “Methodus Nova Integralium Valores per Approximationem Inveniendi,” Gottin-
gen, 1814.

[3] C. G. J. Jacobi, “Über Gauss neue Methode, die Werthe der Integrale näherungsweise zu
finden,” J. Reine Angew. Math., vol. 1, pp. 301–307, 1826.

[4] ——, “Über eine besondere Gattung algebraischer Functionen, die aus der Entwicklung der
Function (1− 2xz + z2)1/2 entstehen,” J. Reine Angew. Math., vol. 2, pp. 223–226, 1827.

19

[5] N. Hale and L. Trefethen, “Chebfun and Numerical Quadrature,” Science China Mathematics,
vol. 55, no. 9, pp. 1749–1760, 2012.

[6] H. Wang and S. Xiang, “On the Convergence Rates of Legendre Approximation,” Mathematics
of Computation, vol. 81, pp. 861–877, 2012.

[7] W.C. Chew, J. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational
Electromagnetics. Artech House, 2001.

[8] N. Hale and A. Townsend, “Fast and Accurate Computation of Gauss-Legendre and Gauss-
Jacobi Quadrature Nodes and Weights,” SIAM Journal on Scientific Computing, vol. 35,
no. 2, pp. A652–A674, 2013.

[9] G. H. Golub and J. H. Welsch, “Calculation of Gauss Quadrature Rules,” Mathematics of
Computation, vol. 23, pp. 221–230, 1969.

[10] I. Bogaert, B. Michiels, and J. Fostier, “O(1) Computation of Legendre Polynomials and Gauss-
Legendre Nodes and Weights for Parallel Computing,” SIAM Journal on Scientific Com-
puting, vol. 34, no. 3, pp. 83–101, 2012.

[11] A. Glaser, X. Liu, and V. Rokhlin, “A Fast Algorithm for the Calculation of the Roots of
Special Functions,” SIAM Journal on Scientific Computing, vol. 29, no. 4, pp. 1420–1438,
2007.

[12] B. Michiels, I. Bogaert, J. Fostier, and D. De Zutter, “A Weak Scalability Study of the Parallel
Computation of the Translation Operator in the MLFMA,” in Proceedings of the Inter-
national Conference on Electromagnetics in Advanced Applications, Turin, Italy, 9–13
September 2013.

[13] ——, “A Well-Scaling Parallel Algorithm for the Computation of the Translation Operator in
the MLFMA,” Accepted for publication in IEEE Transactions on Antennas and Propaga-
tion.

[14] I. Bogaert, “Fast Gauss-Legendre Quadrature Rules,”
http://sourceforge.net/projects/fastgausslegendrequadrature, [Online].

[15] G. Szegö, “Über Einige Asymptotische Entwicklungen der Legendreschen Funktionen,” Proc.
London Math. Soc., vol. s2-36, no. 1, pp. 427–450, 1934.

[16] F. W. J. Olver, Asymptotics and Special Functions. New York: Academic, 1974.
[17] G. Szegö, Orthogonal Polynomials. Providence, Rhode Island: American Mathematical Soci-

ety, 1978.
[18] R. Piessens, “Chebyshev Series Approximations for the Zeros of the Bessel Functions,” Journal

of Computational Physics, vol. 53, no. 1, pp. 188–192, 1984.
[19] R. C. Li, “Near Optimality of Chebyshev Interpolation for Elementary Function Computa-

tions,” Computers, IEEE Transactions on, vol. 53, no. 6, pp. 678–687, june 2004.
[20] L. N. Trefethen, “Computing Numerically with Functions Instead of Numbers,” Mathematics

in Computer Science, vol. 1, pp. 9–19, 2007.
[21] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. SIAM, 2002.
[22] J.-P. Berrut and L. N. Trefethen, “Barycentric Lagrange Interpolation,” SIAM Review, vol. 46,

no. 3, pp. 501–517, 2004.
[23] N. J. Higham, “The Numerical Stability of Barycentric Lagrange Interpolation,” IMA Journal

of Numerical Analysis, vol. 24, pp. 547–556, 2004.

