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Abstract—This paper investigates the parallel, distributed- In the MLFMA, translation operators with + 1 multipoles
memory computation of the translation operator with L + 1 gre sampled irO(L?) angular points. The direct calculation
multipoles in the three-dimensional Multilevel Fast Multipole of a translation operator using (1) hence requ'(f)éi?’) oper-

Algorithm (MLFMA). A baseline, communication-free parall el . . - -
algorithm can compute such a translation operator in O(L) ations. We refer to this method as the “direct method” (DM).

time, using O(L?) processes. We propose a parallel algorithm In [4], & two-step procedure was introduced to reduce this
that reduces this complexity toO(log L) time. This complexity is  complexity toO(L?) [4], [5]. In the first step, the bandlimited
theoretically supported and experimentally validated up © 16 384 function 7'(d1) is evaluated irO(L) equidistant points in the
parallel processes. For realistic cases, the implementati of the o-dimension, ranging frond to 7, using (1). In the second

proposed algorithm proves to be up to ten times faster than th t | lint ation i dt ludtan th ired
baseline algorithm. For a large-scale parallel MLFMA simulation Step, local interpolation IS used 1o evaludian the require

with 4096 parallel processes, the runtime for the computatn of O(L?) points. Both steps requit@(L?*) time. This method is
all translation operators during the setup stage is reducedrom referred to as the “interpolation method” (IM).

roughly one hour to only a few minutes.

In this paper, we investigate an algorithm for the parallel,

distributed-memory computation of the translation opmrat

Even though this problem is interesting in its own right, the
main motivation for our work is closely related to recent
|. INTRODUCTION advances in the development of distributed-memory, mrall

LECTROMAGNETIC scattering problems involving@lgorithms for the high-frequency MLFMA [6]-{11]. State-
Epiecewise homogeneous objects are often formulat@fithe-art implementations rely on a hierarchical disition
using boundary integral equations. A Method of Momenf radiation p_attern§ in Whlch_ ra_dlatlon patterns, coritajn
(MoM) discretization then yields a dense set df linear O(L?) sampling points, are distributed amorgy = O(L?)
equations andv unknowns. When solving this set of equationgarallel processes [10]-[15]. This way, each process holds
iteratively, the Multilevel Fast Multipole Algorithm (MLRA) ~ Only O(1) sampling points in local memory. Consequently, to
can be used to evaluate the matrix-vector multiplicatiotnai COMPute the translations in the MLFMA, each process require
complexity of onlyO(N log N) [1]-[3], allowing the solution only a corresponding subset of the translation operator.
for large problems. Within the MLFMA, unknowns are hier-
archically organized into an octree of boxes and interastio . S :
between these boxes are evaluated using radiation aMsthe IM. The algorithm does require Inter-process communica

. ISINg T P tion, however, the key result is that the translation opmerat
translation operators. In the three-dimensional MLFMAg th.

. . ) L is computed inO(log L) time using P = O(L?) parallel
translation operator wittl + 1 multipoles is given by [2], [3] processes. For a realistic and P, the proposed algorithm

Lo L ) is roughly 10 times faster than a naive, baseline parallel
T(k, Br) = > (=)' (2L + 1)h{* (kRr)Pi(cosbr) (1) algorithm.
=0

Index Terms—MLFMA, translation operator, parallel comput-
ing, distributed-memory architecture

We propose a novel algorithm based on the parallelization of

. oL - . ] Recently, a method to compute Legendre polynomials in
with cosr = 1x - 1p,, k = k1) @ vector representing thea complexity of O(1), regardless of argument or degree,
angular direction in which the translation operator is t0 bgas peen developed [16], in contrast to routines that are
evaluated the wavenumberR; = Rrlg, the translation pased on the well-known Legendre recursion formulas. As we
direction connegting the centers of the two interactingesox,y explain in this paper, this is essential for our propbse
and P,(.) and h*)(.) the Legendre polynomial and sphericabigorithm to obtain a good scaling behavior.

Hankel function of the second kind of ordérrespectively.

Given a fixedk and B, the translation operatdf is a one-  This paper is organized as follows: first, in Section Il the

dimensional function of)r. notation is established and assumptions are stated. 8éttio
describes the actual parallel algorithm and the computatio

The authors are with the Department of Information TechglNTEC),  complexity is derived. This theoretical work is validated b
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TABLE |
Il. PROBLEM DESCRIPTION ANDPRELIMINARIES RUNTIME TO COMPUTE A TRANSLATION OPERATOR FOR AN INCREASING
A. Problem Description L (e = 10~%) FOR THE DIRECT METHOD(DM), INTERPOLATION METHOD
’ ) ) (IM) AND PARALLEL DIRECT METHOD (PDM).
For t_he h|gh-_frequency MI__FM_A, the required value for ka | L | DM(s)|IM(s) | POM(s)| P
to obtain a desired accuraeyis given by [3] 30 170 0.97 057 0.26 1
160 | 316 6.07 2.07 0.41 16
2/3
L ~ V3ka + 1.810g2*(1/€)(v/3ka)'/? ) 320 | 604 | 4191 | 7.37 | 073 | 64
640 | 1171 | 302.5 | 28.6 1.32 256
where a denotes the box edge length.roughly doubles at 1280 | 2295 | 2268 | 106.4 2.57 1024
every next level up in the MLFMA-tree. As radiation patterns 2560 | 4532 | 17422 | 436.6 | 5.04 | 4096

and translation operators are sample@ifi.?) angular points,
their sampling rate increases by a factor of approximataly f
at each higher level. Table I lists the runtime for the setjakn
computation of a single translation operator using botixkk
and IM for different MLFMA-levels. TheO(L?) and O(L?)
time complexities for the DM and IM respectively are clearly
observed.

In the hierarchical parallel MLFMA, the sampling points of
the radiation patterns and translation operators aretipart
in an increasing number df, 4, 16, ...,4™ parallel processes
for every higher level in the MLFMA-tree [12], [13]. Formull o i
stated, theO(L?) angular sampling points are partitioned ® "
amongP = O(L?) parallel processes, such that each process
containsO(1) sampling points in local memory. As both therig. 1.  Left: uniform sampling along thé- and ¢-direction. The dots
prob|em size and the number of processes are proportion&nYeSpond tq the sampling pqints, While_the solid linesotieithe boundarigs
. . e of the blockwise partitions assigned to different paratieEdcesses (16 in this
increased with each MLFMA-level, the parallehzatlon okth example). Right: geometrical representation of the teditsi operator along
computation of the translation operator should be treated athe Ryp-direction. The translation operator is axisymmetric witispect to
weak scalingparallelization problem. Therefore the main focugtr, hence it depends only ofyy and not ongr.
of the parallelization should be the weak scaling behavior
of the algorithm, rather than its strong scaling behavier,, i

the speedup for the computation of a fixed-size translatignand¢ [17]. Another popular sampling scheme is to sample

operator as a function of the _number of processes. ThroughBHiforme in ¢, while the §-dimension is sampled according

the whole paper, the terstalingrefers to weak scaling. 5 5 Gauss-Legendre quadrature rule [18]. Both the uniform
A baseline, communication-free parallel algorithm for thg,q the Gauss-Legendre sampling scheme have the same

di_stributed 9°_mp“ta“°” o_f t_he translation operator iSlg@®-  minimym sampling rate and therefore they are approximately
tained by trivially parallelizing the DM: each of the proses equally efficient to perform the integration on the Ewald

computes its own, local partition of the translation operatsphere. The main motivation for a uniform sampling in the
samplmg“pomts directly, using El)- This a',go‘f'thm s ™€ girection is that the interpolations at the lowest levelstie
to as the “parallel direct method” (PDM). It is "embarragsin  yree of the parallel MLFMA can be performed using FFTs
parallel” and hence it exhibits a very good parallel efficen 107 [17]. These interpolations are fast and accurate up to
the parallel speedup compared to the DM is almost equal ip, chine precision. The choice for a Gauss-Legendre sagplin
the number of parallel processEy(see Table I). However, the i, g \would only have a minor influence on the analysis and
PDM has a time complexity o©(L), which is suboptimal. «,ncepts presented in this paper. The mathematical datadls
Even though the computation time of a single translatiqfyiyations in the Appendix would be more complicated, but
operator using the PDM is relatively modest, several thodsa o analysis of the parallel algorithm would be fundaméptal
of translation operators need to be evaluated during theosefo same. Therefore, the proposed method is still appbcabl
stage, making their calculation a considerable computatio 54 seful for a Gauss-Legendre sampling scheme.
burden that takes hours for large-scale simulations. —  ge06ng we assume that the sampling points are partitioned
We propose an algorithm that is _base(_j on th_e parallehzay thong the parallel processes in both theand ¢-dimension
of the IM. Even _though the glgorlthm is stralgh_tfor_vvard MNsee Fig. 1 left), which is called “blockwise partitioning”
concept and relatively easy to implement, the derivatiothef The main advantage of this way of partitioning is that for

computation.al complexity is intricate. Prior tp descripithe each process its rectangular, blockwise patch on the sphere

actual algonthm, some conceptg and notations used thro tainsg®(1) sampling points [10], [11], [14], [15]. This leads

the remainder of this paper are introduced. to a parallel MLFMA for which the memory requirements,
communication volume and computation time per process are

B. Preliminaries bounded byO(log N) [10].

There are two main assumptions in this work. First, we Fig. 1 (right) depicts a geometrical representation of the
assume that the radiation patterns and translation operate translation operator. From (1), it follows that the tratisia
sampled in a uniform way along the two angular dimensiomperator is axisymmetric with respect to the translatioedi
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9T/7T Fig. 3. Parallelization concept of the first step of the PIMgaaithm: the

O(L) interpolation points are distributed amongP = O(L) groups of
Fig. 2. Density function) () for a number of anglesy = 0 (red dash- parallel processes (horizontal solid lines). The compurtadf each of these
dotted line),a = /4 (green dashed line) andr = 7/2 (blue solid line). interpolation points is further parallelized by splittitige Z + 1 terms between
The black vertical lines denote the logarithmic singulesitatd = a and  the /P processes within each group (vertical solid lines). Eaclegss hence
01 = m — ar for the caseny = /4. computesO(1) terms forO(1) interpolation points. These terms are summed
over all processes in a group using an all-reduce operation.

tion R and hence does not depend on. Because uniform ) N
sampling leads to an accumulation of sampling points at tRgerator and their complexities. The proposed parallehodet

poles of the sphere, the number of sampling points of i essentially a parallel version Qf the twq-step IM and is fu
translation operator that needs to be evaluated is not umifother referred to as the “parallel interpolation method"Mpl

as a function of)-. Clearly, this distribution, referred to as the

density function)(¢7), depends only on the angte- between A. Parallelization concept

the z-axis and the translation directidi; (see Fig. 1). Inthe  |n short one can summarize the workflow of the sequential
Appendix, for the limitL. — +o0, a closed-form expression|M as presented in [4] as follows:

for the density function is derived and the result is « EvaluateT'(fr) in O(L) equidistant points in the interval
. . . Or € 10...7] using (1). We further refer to these points
() = 4sm(9T)K (2 w) 3) as interpolation points.
VB p « Compute the translation operator in the requid.?)
with sampling points by local interpolation using the points

. . 9 ) ‘ 9 from the previous step.

f = (14 sin(ar)sin(@r))” = (cos(ar) cos(®r))" () 10 number of source interpolation points needed to compute
and K (k) the complete elliptic integral of the first kind. Thea single sampling point of the translation operator usiruglo
Appendix also gives a convenient and easy way to numericaifyerpolation isO(1), i.e. independent ok [20]. Consequently,
evaluate this special function. the time complexity for both steps §(L?).

The density function)(fr) is proportional to the number  The first step of the IM can be parallelized in a straight-
of sampling points of a translation operator that need to ferward way. First, theP processes are subdivided AP
evaluated in a particulat;-point. Expression (3) can be seemyroups, each consisting af P processes. As we are using
as the continuous approximation of the histogram that would = O(L?) parallel processes, this corresponds@L)
represent this information for a finite [19]. groups, where each group contafiéL) processes. Th@(L)

In Fig. 2,4 (0r) is plotted for a number of different anglesinterpolation points in the interval0... x| are uniformly
ar. In the Appendix it is proven that, for all generic anglepartitioned among thes@(L) groups such that each group is
(ar # 0, ar # 5 andar # ), 1(07) has two logarithmic responsible for the computation 6¥(1) interpolation points.
singularities at)r = ar andfr = m — ar. Forar = 0 or  Explicitly, 67, the left boundary point of process gropp
ar = m, the translation operator directiofir is parallel to is determined byd;, = %ﬂ' (with p = 0...vV/P —1).
the z-axis and, consequently,6) is the uniform distribution. For this step no communication is requirbdtweengroups.
For ar = 7, the translation directioir is perpendicular to The computationsvithin a group can be further parallelized:
the z-axis, resulting a single logarithmic singularity 9f67) each process evaluates and sums only a subset of the

atlr =ar =m—ar = 3. terms in (1) for each interpolation point in the group. This
partitioning scheme is depicted in Fig. 3. The computations
I1l. PARALLEL ALGORITHM take O(1) time and there are no overlapping computations

This section discusses the different steps in the disgtbut between processes. It is important to remark that we assume
memory parallelization of the computation of the transiati that spherical Hankel functions and Legendre polynomiais ¢
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be effectively evaluated i®(1) time, regardless of the order
l, ranging from0 to L. For the spherical Hankel functions, the
Amos library [21] can be used. For the Legendre polynomia
such a method was recently developed in [16].

To complete the first step, the partial results need to
summed over all processes within a group. This summatic
which of course does require communication, is perform
in such a way that the resulting sum for each interpolati
point in the group is present in each process of the groi P
In parallel computing, this operation is referred to as ¢ n "\/ \,
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all-reduce operation, which can be performed (ilog L) o | '/ NG

time [22]. As this is the dominating complexity, the firstste 1.7 1T
of the PIM also require®(log L) time. At the end of the first o 7/ \“\ N
step, each process contains the evaluated interpolatiowspc '/ ‘ ‘ ‘ ‘ ‘ ‘ \\
that correspond to the group to which the process belongs © 01 02 03 04 05 06 07 08 09 1
other words, the calculated interpolation points are reldntly Or /7

stored in each process of a group, however, the computations

; Fig. 4. Uniform partitioning of the interpolation points asfunction ofo
themselves are not dUphcated between ProCESSES. among+/P process groups (16 in this example). The vertical lines tetie

Conceptually, the parallelization of the second step of th@rition boundaries. Additionally, the density functigr(f7) is shown for
IM is trivial: each process computes the translation operater = /2 (blue solid line),ar = /3 (green dashed line) andy = =/7

in the required®(1) sampling points of its local blockwise ("éd dot-dashed line).
partition by local interpolation using the points genedaile

step 1. As each of th€&(1) sampling points of a process ar—Abr ... ar+Afr], with Agr = —=_. The total number

requiresO(1) interpolation points, it follows that each proces f translation operator sampling poin%gtiﬁ;a\t corresporitidee

needs onlyO(1) mterpolatlor_l points in total to per_form th'SGT-values is proportional to
second step. No dependencies between computations edist an

~

'
)
Y

\4

hence, no communication between processes is required. 12 /aT+A9T D (6r)d8 (58)
However, prior to this second step, a mismatch exists o —AOr e
between the subset of interpolation points that is requined ) ar+A0r
a certain process to perform its computations in step 2 aad th ~L / N (Ciln|0r —ar|[+C2)dor  (5b)
interpolation points that are actually present in local m N
P P yP o —2L2Afr (=2 (In(Abr) — 1) + Cy) (50)

of that process at the end of step 1. Therefore a communicatio
phase has to take place in between both steps in which the =O(LlogL) (5d)

interpolation points are redistributed among the procesas where we used an approximation 0ff) aroundé; = ar
each process requires ord)(1) interpolation points in step 2, (derived in the Appendix) in (5b)(, — —2 in (5c) and the
it follows that the total volume of data received by any PEEE ot that Afy — O(L) in (5d). From (5d) one sees that, in

i i i i L
during this reshuffling phase is also bounded®§i ). In the the worst-case scenario, there &l log I.) sampling points

next section, we show that the total volume of data to be sgpt, depend on thé;-interval of a single process group.As
by a process is bounded t(log L). there arey/P = O(L) processes in that group that can deliver
this data, no process has to send more g L) data in
B. Volume of data to be sent during the reshuffling phase between steps 1 and 2 when these communications are equally
divided among the/P processes.
We conclude that the volume of data to be sent by any
process in between the two steps is boundedilg L).

In step 1, theO(L) interpolation points in the interval
[0...7] are uniformly partitoned among th¢’P = O(L)
groups. Fig. 4 illustrates the uniform partitioning for eesl
density functions corresponding to different values\gf )

Recall that the density functiom(é7) is proportional to C- Summary of the paraliel algorithm
the number of sampling points of the translation operatat th The steps of the parallel algorithm to calculate a trarsfati
depend on the value dfy. As the density function is non- operator can be summarized as follows:
uniform in general, certain interpolation points are regdiby o Step la: Assign interpolation points to each group of
more sampling points (and hence more processes) than others processes. Each process within each group computes only
giving rise to non-uniform communication patterns durihg t a subset of the terms of (1) for each of the interpolation
reshuffling of interpolation points in between steps 1 and 2. points in the group. Costo(1).

To determine the communication complexity, we consider thees Step 1b: Perform the parallel summation (all-reduce
worst-case scenario which occurs at the singularities(6f-), operation) over all processes within each group. Cost:
i.e. atlr = ar and9T =T — or. O(lOgL)

Consider the process group that contains the interpolations Reshuffling phase: Interpolation points are redistributed

points around such a singularity, namely the interal = among processes. Cosf(1) receive volume for each
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process,O(log L) send volume for the processes ne: 102 ‘
the singularities of)(6r). _ R )
o Step 2: Compute the translation operator in its samplii o——o—o—— e )
points using local interpolation. Cosf2(1). 5 e=10"3
Assuming that all computations and communications by t 5 10 |
different processes can be performed concurrently, thieaglo £
complexity of the parallel algorithm i®(log L). %’3 % )
£ 10 <;/e—e———€::’1('ﬁ6—_e—_€
IV. NUMERICAL RESULTS g
In this section, the implementation and the scaling beliav & = _g
of the proposed PIM is numerically validated. The numeric = | |
data has been obtained using a cluster consisting56f 9_._9‘9___9—’-9’9—__9
machines each containing two 8-core Intel Xeon E5-26' 1 e=10""7
processors 4096 CPU-cores in total). The machines wer 10 4 1‘6 6‘4 256 10‘24 40‘96 16384
connected using an FDR Infiniband network. To produce t
results for P = 16 384, each CPU-core has been oversub- Number of processes
scribed by4 processes. The calculations were performed Fg. 5. Maximum relative error of the addition theorem as acfion of

double-precision. partitions P.

TABLE Il
RUNTIME TO COMPUTE A TRANSLATION OPERATOR FOR AN INCREASING

A. Validation of the implementation L (¢ = 1075) FOR THE PROPOSEIPIM ALGORITHM.

To validate the implementation of the parallel computation ka | L |PM(s)| P
of the proposed PIM algorithm, we consider the plane wave 80 170 0.15 1
decomposition of the Green’s function [2], [3] 160 1 316 | 0.15 16

320 604 0.16 64
1 640 1171 0.18 256

27 ™
e = [ [ T 0.0 P @yt (o o | g | oz |
with & = k(cosqﬁsinb‘fm + sin ¢ sin 6 fy + cosf1,). The
factor e=7% £ is the aggregation, With Ry + Ra|| = r. We _ ) ) »
choseRy = 3a and i, = a(fm I Ty +1,). For the target Fig. 5 shows the_ maximum relative error_(_)f the addition
precisione in (2) we consider three valueso—3, 10-¢ and theorem as a func_tlon of thg _number of partitiodRsAs one .
10~°. The translation operators are calculated for the sarfig" See the obtained precision of the worst-case tramslati

values ofka and P as in Table I, extended witha = 5120 dir_ection corresponds well to the target p_recis?on. Thegra
and P — 16 384. lation operators produced by the PIM are identical to thesone

The total number of interpolation points in the intervaPPtaineéd through the sequential IM.

[0...7] is set to4L + 8. The #- and ¢-dimensions are

sampled inL + 1 and 2L + 4 points respectively, and asB. Runtime benchmark

a result the translation operators contain a total number ofTable Il shows the average runtime of the translation op-

2L? + 6L + 4 sampling points. These sampling rates argrators that were computed in the previous section, up to

realistic, as they correspond to the actual sampling réduas tP = 4096. The values for, and P are the same as in Table |,

are used in our MLFMA simulations. The local interpolatiomnd therefore the runtimes can be compared.

method is based on the product of the Dirichlet kernel andFirst, by comparing the values in Tables | and Il, one

a Gaussian function [3, p. 65]. The number of neighboringobserves that for high values bfthe proposed PIM algorithm

interpolation points is chosen sufficiently high, so thag¢ this roughly 10 times faster than the baseline PDM. This is

local interpolation is accurate up to machine precisionisTha manifestation of the fact that the PIM has a lower time

way, the error of the addition theorem is only determined kyomplexity, namelyO(log L), with respect to the)(L) com-

the value ofL. plexity of the PDM. When considering problems with billions

of unknowns, such as the one presented in [11], the runtime fo

As discussed, the communication of the interpolation ointhe computation of all translation operators during theiset

in the PIM algorithm strongly depends an- and hence on the stage is reduced from approximately one hour (PDM) to only

translation direction?;. Therefore we consider the followinga few minutes (PIM). With an overall runtime (setup time

26 translation directions + solution time) for this simulation of about 45 hours, it is
5 al, +yl, +21, clear that even though this reduction is important, thetiveia
Ry = Ry - 5 (7) reduction in overall runtime is modest. However, because
/SC + y2 + 22

the proposed PIM reduces the computational complexity, we
wherex, y and z take all combinations of the valuesl, 0 expect that this gain in performance will become relatively
and1, except the case =y = 2z = 0. more important when even larger simulations are considered
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Fig. 6. Normalized number of interpolation points per pescgroup for Fig. 8. Total number of interpolation points a process grbap to send,
increasingP and L (with L + 1 ~ v/P). normalized byLy and+/P.
10 ‘ ‘ ‘ ‘ ‘ This time, the number of multipolek + 1 is set toLg - v/ P,
95! | with Ly = 100, instead of using (2). This way, a purely
© - © © linear relationship between the number of multipoles g
9t 1 is obtained, which corresponds to the high-frequency limit
(ka > 1). As Lg is purely arbitrary, the resulting number
3 8.5 of interpolation points can be normalized with respectto
E P | By enforcing a purely linear dependency betwden 1 and
VP, the asymptotic behavior of the proposed PIM becomes
7.5f 1 apparent for lower values aof. Note that exactly the same
conclusions will be obtained if (2) is used to calculdte
7t . . ) .
Fig. 6 shows the number of interpolation points per process
6.55 | group as a function oP, normalized byL,. As expected for
uniform partitioning, this value is the same for each grong a
64 1‘6 6‘4 256 10‘24 40‘96 16384  constant for an increasing number Bfand L.
p The maximum normalized number of interpolation points

to be received by a process, in order to compute its local
Fig. 7. Maximum normalized number of interpolation poinesjuired by translation operator sampling points, is shown in Fig. 7. Fo
2ar;gﬁggspgn(t)sr(.jer to perform the local interpolation of d@sal translation increasingP and L it is bounded b)@(l), as a result of the

blockwise partitioning of the translation sampling points

Fig. 8 displays the total number of interpolation points a
Second, one can see that the runtime of the PIM increag$gcess group has to send, divided by and VP, i.e. the

faster than®(log L) for a higher number of parallel processe§umber of processes a group contains. In case of uniform
P. This is caused by a limitation in the interconnectiofartitioning this is proportional tdog P or, equivalently,
network of the cluster that was used. Specifically, the netwolog VP = log L, which corresponds exactly to the behavior
supports only a limited number of concurrent communicatioredicted by the theory.
between processes, which can cause a serialization of thdhe results of this section show that the numerically ob-
communication and result in a slowdown of a factor two duringined data corresponds very well to the theoretically isted
the communication stage. Hence, we obtain runtimes for tBealing behavior of the PIM.
PIM that are higher than expected, when using4 and4096

processes. V. CONCLUSION
o . N In this paper the distributed-memory parallelization of th
C. Validation of the theoretical complexities calculation of the translation operator in the MLFMA by

In this section we want to numerically validate the theoretneans of the interpolation method was studied. To calcalate
ically derived complexities of the PIM. The same transiatiotranslation operator witi, + 1 multipoles usingP = O(L?)
directions of (7) are used and the values correspondingeto firocesses, our proposed algorithm requires ofljlog L)
worst-case are selected, just as in Section IV-A, in whieh thime, which is a clear improvement over ti¥ L) complex-
implementation has been validated. ity of the baseline parallel algorithm. The average time to
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compute a translation operator using the parallel integmt ¢ (6,) degenerates to
method is measured using)96 CPU-cores and compared

to a parallel implementation of the baseline method. As a L o

result, a large speedup factor for realistic electromagnet ¥(0r) = Sm(eT)/o w(®,¢)dér (112)
problems is achieved, which reduces the time of the setup . m

stage significantly. Furthermore, the theoretical redoitghe = sin(fr) / md% (11b)
parallel interpolation method were numerically verifiedngs o 0 (110)

up to 16 384 processes and its scaling behavior corresponded
very well to the theoretical analysis.
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As sin(¢) ranges from-1to +1 in the intervalp = —3... 7,
one can write
APPENDIX
In this appendix an expression for the density function of I = 2/2 1 do (13)
the translation sampling points as a functiordgfis derived. ~3 /1 - (asin(¢) +b)2
The key to simplify the integrand is the substitution
A. Density function
From Fig. 1 one sees that there is an accumulation of po LlzbFa 1 _S?n(‘b) (14)
sampling points at the poles of the sphere, due to the uniform 1-b—a 1+sin(¢)
sampling ind and ¢. As a result, one obtains a non-uniform ) ) o
distribution of the sampling points as a function @f that The variablez is a positive real number, as
depends omRr, the direction of the translation.
Consider the asymptotic case with — +oo and b a = cos(ar ¥ 0r) (15)
choose the &¢)-coordinate system so thaifir is smaller thanl whenar # 0r. For¢ = —3 ... 5, z ranges

R (0, sin(ar), cos(ar)), with ar € [0,7]. As the Jacobian
of a spherical coordinate system on the unit sphere is eq
to sin(#) and as the sampling points are uniformly sampled
(0, ¢), the density of the sampling points(d, ¢) is

from +oo to 0.
ﬁ‘/i:’rhally, after numerous yet straightforward algebraic rape
fibns, one obtains

tee 1
1 _
w(f,$) = — (8a) 1—4/ - dr  (16a)
(0,9) sin(0) 0 V+ \/(1—|—x2) (1+ ;Y—’x?)
+
1- iosz(H) (8b) 4 4
. (1 /-“) (16b)
Now consider the coordinate system of the translation direc VT T+

tion, where thez-axis is parallel toRi . Using a rotation over

the anglens about thez-axis, cos(d) can be expressed in thisWith 7+ = (1_1“)2_1’2 and K (k) the complete elliptic integral
coordinate system as of the first kind [23]. Using (10) and the definitions @fand

b, one finds the expression of (3).
cos(0) = sin(ar) sin(07) sin(¢r) + cos(ar) cos(fr) (9) For the special casesr = 0 andar = 7 one sees that

The _density fgnction of the translation sampling points as a=0 (17a)
a function offr is equal to b= + cos(fr) (17b)
27 27
vlor) =sinr) [ w@o)dor  (20) -2 (170)
0

assin(fr) is the radius of a circle of latitude in the coordinatas K (k = 0) = 7. This result corresponds to the result of
system of Rr. In the special case whewar = 0 or ar = w, (11).

(&)



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. ?, NO,, 2 ?

C. Singularities

precision. Ifdr comes closer tavr, the second factor of (23b)

The complete elliptic integral of the first kind has a logaill be rounded to0 or 4. This is clearly undesirable for the

rithmic singularity ink = 1 [23]:

computation of the arithmetic-geometric mefaf{1—k, 1+ k)

and will lead to numerical inaccuracies in the calculatidn o

k—1: K(k)~In ( +2In(2)  (18)

1
)
From (3) one can derive that the density functiof@,) has a
logarithmic singularity indr = ar andfr = © — ap, except
for the degenerate casas = 0 andar = .

Assume thatvy is not very close td or 7. After a second This expression does not suffer from a numerical breakdown

the elliptic integralK (k).
Therefore the numerator of (22c¢) has to be rewritten as

0 -0
v_ = 4cos? (%) sin? (aTTT> (25)

order Taylor expansion of the argument of the elliptic imag and it allows to obtain accurate results when compufing)
aroundd; = o and substituting, = a7 in the non-singular numerically.

part of v(61) one obtains

P(fr) ~ —21In % cot(ar) (0r —ar)| +4In(2)  (19a) "

~ CiIn |07 — ar| + Cs (19b)
with -
Ci=—2 (20) g

Cy = 2In|8tan(ar)| (20b)

[4]
The approximation of (19) is valid as long s —ar| < ar.
For the singularity irdr = © — ar one can derive a similar
expression.

(5]

(6]
D. Numerical evaluation
The appearance of an elliptic integral in the expression qf;
the density function)(61) does not pose a problem because
it can be easily and quickly computed using 8]
™

TOMQA -k 1+k)

with M the arithmetic-geometric mean [23]. [9]
For completeness we also mention that one should be very
careful when evaluatingk((k) close to its singularity at

k = 1 as the expression of (16b) would lead to numeric&l0]
inaccuracies. To understand this we consider

K (k) (21)

4a

1—k=1- (22a) [11]
Y+
_ 4a
= 7; (22b) 12
L+ /5%
_ = 13]
= (22¢) |
T+ (1 +4/ 3—3)
with [14]
y-=10—-a+b)(l—-a—D>) (23a)
= (1+ cos(ar + 07))(1 — cos(ar — 7)) (23b) 9

When 01 is close toar one can use a second order Taylor
expansion [16]
1
cos(ar —Op) ~1— §(OCT - 9T)2 (24)

Suppose a machine precisian When 6 is in the region 7]
of ap + /3, the evaluation ofy_ already reaches machine
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