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Abstract—This paper investigates the parallel, distributed-
memory computation of the translation operator with L + 1
multipoles in the three-dimensional Multilevel Fast Multipole
Algorithm (MLFMA). A baseline, communication-free parall el
algorithm can compute such a translation operator in O(L)
time, using O(L2) processes. We propose a parallel algorithm
that reduces this complexity toO(log L) time. This complexity is
theoretically supported and experimentally validated up to 16 384
parallel processes. For realistic cases, the implementation of the
proposed algorithm proves to be up to ten times faster than the
baseline algorithm. For a large-scale parallel MLFMA simulation
with 4096 parallel processes, the runtime for the computation of
all translation operators during the setup stage is reducedfrom
roughly one hour to only a few minutes.

Index Terms—MLFMA, translation operator, parallel comput-
ing, distributed-memory architecture

I. I NTRODUCTION

ELECTROMAGNETIC scattering problems involving
piecewise homogeneous objects are often formulated

using boundary integral equations. A Method of Moments
(MoM) discretization then yields a dense set ofN linear
equations andN unknowns. When solving this set of equations
iteratively, the Multilevel Fast Multipole Algorithm (MLFMA)
can be used to evaluate the matrix-vector multiplication with a
complexity of onlyO(N logN) [1]–[3], allowing the solution
for large problems. Within the MLFMA, unknowns are hier-
archically organized into an octree of boxes and interactions
between these boxes are evaluated using radiation patternsand
translation operators. In the three-dimensional MLFMA, the
translation operator withL+ 1 multipoles is given by [2], [3]

T (~k, ~RT ) =

L
∑

l=0

(−j)l(2l + 1)h
(2)
l (kRT )Pl(cos θT ) (1)

with cos θT = ~1k · ~1RT
, ~k = k~1k a vector representing the

angular direction in which the translation operator is to be
evaluated,k the wavenumber,~RT = RT~1RT

the translation
direction connecting the centers of the two interacting boxes
andPl(.) andh(2)

l (.) the Legendre polynomial and spherical
Hankel function of the second kind of orderl respectively.
Given a fixedk and ~RT , the translation operatorT is a one-
dimensional function ofθT .
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In the MLFMA, translation operators withL+1 multipoles
are sampled inO(L2) angular points. The direct calculation
of a translation operator using (1) hence requiresO(L3) oper-
ations. We refer to this method as the “direct method” (DM).
In [4], a two-step procedure was introduced to reduce this
complexity toO(L2) [4], [5]. In the first step, the bandlimited
functionT (θT ) is evaluated inO(L) equidistant points in the
θT -dimension, ranging from0 to π, using (1). In the second
step, local interpolation is used to evaluateT in the required
O(L2) points. Both steps requireO(L2) time. This method is
referred to as the “interpolation method” (IM).

In this paper, we investigate an algorithm for the parallel,
distributed-memory computation of the translation operator.
Even though this problem is interesting in its own right, the
main motivation for our work is closely related to recent
advances in the development of distributed-memory, parallel
algorithms for the high-frequency MLFMA [6]–[11]. State-
of-the-art implementations rely on a hierarchical distribution
of radiation patterns in which radiation patterns, containing
O(L2) sampling points, are distributed amongP = O(L2)
parallel processes [10]–[15]. This way, each process holds
only O(1) sampling points in local memory. Consequently, to
compute the translations in the MLFMA, each process requires
only a corresponding subset of the translation operator.

We propose a novel algorithm based on the parallelization of
the IM. The algorithm does require inter-process communica-
tion, however, the key result is that the translation operator
is computed inO(logL) time usingP = O(L2) parallel
processes. For a realisticL and P , the proposed algorithm
is roughly 10 times faster than a naive, baseline parallel
algorithm.

Recently, a method to compute Legendre polynomials in
a complexity of O(1), regardless of argument or degree,
has been developed [16], in contrast to routines that are
based on the well-known Legendre recursion formulas. As we
will explain in this paper, this is essential for our proposed
algorithm to obtain a good scaling behavior.

This paper is organized as follows: first, in Section II the
notation is established and assumptions are stated. Section III
describes the actual parallel algorithm and the computational
complexity is derived. This theoretical work is validated by
benchmarking an implementation of the algorithm in Sec-
tion IV. Finally, in Section V, our conclusions are presented.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. ?, NO. ?, ? ? 2

II. PROBLEM DESCRIPTION ANDPRELIMINARIES

A. Problem Description

For the high-frequency MLFMA, the required value forL
to obtain a desired accuracyǫ is given by [3]

L ≈
√

3ka+ 1.8 log
2/3
10 (1/ǫ)(

√
3ka)1/3 (2)

wherea denotes the box edge length.L roughly doubles at
every next level up in the MLFMA-tree. As radiation patterns
and translation operators are sampled inO(L2) angular points,
their sampling rate increases by a factor of approximately four
at each higher level. Table I lists the runtime for the sequential
computation of a single translation operator using both theDM
and IM for different MLFMA-levels. TheO(L3) andO(L2)
time complexities for the DM and IM respectively are clearly
observed.

In the hierarchical parallel MLFMA, the sampling points of
the radiation patterns and translation operators are partitioned
in an increasing number of1, 4, 16, . . . , 4n parallel processes
for every higher level in the MLFMA-tree [12], [13]. Formally
stated, theO(L2) angular sampling points are partitioned
amongP = O(L2) parallel processes, such that each process
containsO(1) sampling points in local memory. As both the
problem size and the number of processes are proportionally
increased with each MLFMA-level, the parallelization of the
computation of the translation operator should be treated as a
weak scalingparallelization problem. Therefore the main focus
of the parallelization should be the weak scaling behavior
of the algorithm, rather than its strong scaling behavior, i.e.,
the speedup for the computation of a fixed-size translation
operator as a function of the number of processes. Throughout
the whole paper, the termscaling refers to weak scaling.

A baseline, communication-free parallel algorithm for the
distributed computation of the translation operator is easily ob-
tained by trivially parallelizing the DM: each of the processes
computes its own, local partition of the translation operator
sampling points directly, using (1). This algorithm is referred
to as the “parallel direct method” (PDM). It is “embarrassingly
parallel” and hence it exhibits a very good parallel efficiency:
the parallel speedup compared to the DM is almost equal to
the number of parallel processesP (see Table I). However, the
PDM has a time complexity ofO(L), which is suboptimal.
Even though the computation time of a single translation
operator using the PDM is relatively modest, several thousands
of translation operators need to be evaluated during the setup
stage, making their calculation a considerable computational
burden that takes hours for large-scale simulations.

We propose an algorithm that is based on the parallelization
of the IM. Even though the algorithm is straightforward in
concept and relatively easy to implement, the derivation ofthe
computational complexity is intricate. Prior to describing the
actual algorithm, some concepts and notations used through
the remainder of this paper are introduced.

B. Preliminaries

There are two main assumptions in this work. First, we
assume that the radiation patterns and translation operators are
sampled in a uniform way along the two angular dimensions

TABLE I
RUNTIME TO COMPUTE A TRANSLATION OPERATOR FOR AN INCREASING

L (ǫ = 10−6) FOR THE DIRECT METHOD(DM), INTERPOLATION METHOD
(IM) AND PARALLEL DIRECT METHOD (PDM).

ka L DM (s) IM (s) PDM (s) P
80 170 0.97 0.57 0.26 4
160 316 6.07 2.07 0.41 16
320 604 41.91 7.37 0.73 64
640 1171 302.5 28.6 1.32 256
1280 2295 2268 106.4 2.57 1024
2560 4532 17422 436.6 5.04 4096

θ
φ

z

~RT

θT φT

z

αT

Fig. 1. Left: uniform sampling along theθ- and φ-direction. The dots
correspond to the sampling points, while the solid lines denote the boundaries
of the blockwise partitions assigned to different parallelprocesses (16 in this
example). Right: geometrical representation of the translation operator along
the ~RT -direction. The translation operator is axisymmetric withrespect to
~RT , hence it depends only onθT and not onφT .

θ andφ [17]. Another popular sampling scheme is to sample
uniformly in φ, while theθ-dimension is sampled according
to a Gauss-Legendre quadrature rule [18]. Both the uniform
and the Gauss-Legendre sampling scheme have the same
minimum sampling rate and therefore they are approximately
equally efficient to perform the integration on the Ewald
sphere. The main motivation for a uniform sampling in the
θ-direction is that the interpolations at the lowest levels in the
tree of the parallel MLFMA can be performed using FFTs
[10], [17]. These interpolations are fast and accurate up to
machine precision. The choice for a Gauss-Legendre sampling
in θ would only have a minor influence on the analysis and
concepts presented in this paper. The mathematical detailsand
derivations in the Appendix would be more complicated, but
the analysis of the parallel algorithm would be fundamentally
the same. Therefore, the proposed method is still applicable
and useful for a Gauss-Legendre sampling scheme.

Second, we assume that the sampling points are partitioned
among the parallel processes in both theθ- andφ-dimension
(see Fig. 1 left), which is called “blockwise partitioning”.
The main advantage of this way of partitioning is that for
each process its rectangular, blockwise patch on the sphere
containsO(1) sampling points [10], [11], [14], [15]. This leads
to a parallel MLFMA for which the memory requirements,
communication volume and computation time per process are
bounded byO(logN) [10].

Fig. 1 (right) depicts a geometrical representation of the
translation operator. From (1), it follows that the translation
operator is axisymmetric with respect to the translation direc-
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Fig. 2. Density functionψ(θT ) for a number of angles:αT = 0 (red dash-
dotted line),αT = π/4 (green dashed line) andαT = π/2 (blue solid line).
The black vertical lines denote the logarithmic singularities atθT = αT and
θT = π − αT for the caseαT = π/4.

tion ~RT and hence does not depend onφT . Because uniform
sampling leads to an accumulation of sampling points at the
poles of the sphere, the number of sampling points of the
translation operator that needs to be evaluated is not uniform
as a function ofθT . Clearly, this distribution, referred to as the
density functionψ(θT ), depends only on the angleαT between
thez-axis and the translation direction~RT (see Fig. 1). In the
Appendix, for the limitL → +∞, a closed-form expression
for the density function is derived and the result is

ψ(θT ) = 4
sin(θT )√

β
K

(

2

√

sin(θT ) sin(αT )

β

)

(3)

with

β = (1 + sin(αT ) sin(θT ))2 − (cos(αT ) cos(θT ))2 (4)

andK(k) the complete elliptic integral of the first kind. The
Appendix also gives a convenient and easy way to numerically
evaluate this special function.

The density functionψ(θT ) is proportional to the number
of sampling points of a translation operator that need to be
evaluated in a particularθT -point. Expression (3) can be seen
as the continuous approximation of the histogram that would
represent this information for a finiteL [19].

In Fig. 2,ψ(θT ) is plotted for a number of different angles
αT . In the Appendix it is proven that, for all generic angles
(αT 6= 0, αT 6= π

2 andαT 6= π), ψ(θT ) has two logarithmic
singularities atθT = αT and θT = π − αT . For αT = 0 or
αT = π, the translation operator direction~RT is parallel to
thez-axis and, consequently,ψ(θT ) is the uniform distribution.
For αT = π

2 , the translation direction~RT is perpendicular to
the z-axis, resulting a single logarithmic singularity ofψ(θT )
at θT = αT = π − αT = π

2 .

III. PARALLEL ALGORITHM

This section discusses the different steps in the distributed-
memory parallelization of the computation of the translation

L+ 1 terms in (1)
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Fig. 3. Parallelization concept of the first step of the PIM algorithm: the
O(L) interpolation points are distributed among

√
P = O(L) groups of

parallel processes (horizontal solid lines). The computation of each of these
interpolation points is further parallelized by splittingtheL+1 terms between
the

√
P processes within each group (vertical solid lines). Each process hence

computesO(1) terms forO(1) interpolation points. These terms are summed
over all processes in a group using an all-reduce operation.

operator and their complexities. The proposed parallel method
is essentially a parallel version of the two-step IM and is fur-
ther referred to as the “parallel interpolation method” (PIM).

A. Parallelization concept

In short one can summarize the workflow of the sequential
IM as presented in [4] as follows:

• EvaluateT (θT ) in O(L) equidistant points in the interval
θT ∈ [0 . . . π] using (1). We further refer to these points
as interpolation points.

• Compute the translation operator in the requiredO(L2)
sampling points by local interpolation using the points
from the previous step.

The number of source interpolation points needed to compute
a single sampling point of the translation operator using local
interpolation isO(1), i.e. independent ofL [20]. Consequently,
the time complexity for both steps isO(L2).

The first step of the IM can be parallelized in a straight-
forward way. First, theP processes are subdivided in

√
P

groups, each consisting of
√
P processes. As we are using

P = O(L2) parallel processes, this corresponds toO(L)
groups, where each group containsO(L) processes. TheO(L)
interpolation points in the interval[0 . . . π] are uniformly
partitioned among theseO(L) groups such that each group is
responsible for the computation ofO(1) interpolation points.
Explicitly, θT,p, the left boundary point of process groupp,
is determined byθT,p = p√

P
π (with p = 0 . . .

√
P − 1).

For this step no communication is requiredbetweengroups.
The computationswithin a group can be further parallelized:
each process evaluates and sums only a subset of theL + 1
terms in (1) for each interpolation point in the group. This
partitioning scheme is depicted in Fig. 3. The computations
take O(1) time and there are no overlapping computations
between processes. It is important to remark that we assume
that spherical Hankel functions and Legendre polynomials can



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. ?, NO. ?, ? ? 4

be effectively evaluated inO(1) time, regardless of the order
l, ranging from0 to L. For the spherical Hankel functions, the
Amos library [21] can be used. For the Legendre polynomials,
such a method was recently developed in [16].

To complete the first step, the partial results need to be
summed over all processes within a group. This summation,
which of course does require communication, is performed
in such a way that the resulting sum for each interpolation
point in the group is present in each process of the group.
In parallel computing, this operation is referred to as an
all-reduce operation, which can be performed inO(logL)
time [22]. As this is the dominating complexity, the first step
of the PIM also requiresO(logL) time. At the end of the first
step, each process contains the evaluated interpolation points
that correspond to the group to which the process belongs. In
other words, the calculated interpolation points are redundantly
stored in each process of a group, however, the computations
themselves are not duplicated between processes.

Conceptually, the parallelization of the second step of the
IM is trivial: each process computes the translation operator
in the requiredO(1) sampling points of its local blockwise
partition by local interpolation using the points generated in
step 1. As each of theO(1) sampling points of a process
requiresO(1) interpolation points, it follows that each process
needs onlyO(1) interpolation points in total to perform this
second step. No dependencies between computations exist and
hence, no communication between processes is required.

However, prior to this second step, a mismatch exists
between the subset of interpolation points that is requiredby
a certain process to perform its computations in step 2 and the
interpolation points that are actually present in local memory
of that process at the end of step 1. Therefore a communication
phase has to take place in between both steps in which the
interpolation points are redistributed among the processes. As
each process requires onlyO(1) interpolation points in step 2,
it follows that the total volume of data received by any process
during this reshuffling phase is also bounded byO(1). In the
next section, we show that the total volume of data to be sent
by a process is bounded byO(logL).

B. Volume of data to be sent during the reshuffling phase

In step 1, theO(L) interpolation points in the interval
[0 . . . π] are uniformly partitioned among the

√
P = O(L)

groups. Fig. 4 illustrates the uniform partitioning for several
density functions corresponding to different values ofαT .

Recall that the density functionψ(θT ) is proportional to
the number of sampling points of the translation operator that
depend on the value ofθT . As the density function is non-
uniform in general, certain interpolation points are required by
more sampling points (and hence more processes) than others,
giving rise to non-uniform communication patterns during the
reshuffling of interpolation points in between steps 1 and 2.
To determine the communication complexity, we consider the
worst-case scenario which occurs at the singularities ofψ(θT ),
i.e. atθT = αT andθT = π − αT .

Consider the process group that contains the interpolation
points around such a singularity, namely the intervalθT =
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Fig. 4. Uniform partitioning of the interpolation points asa function ofθT

among
√
P process groups (16 in this example). The vertical lines denote the

partition boundaries. Additionally, the density functionψ(θT ) is shown for
αT = π/2 (blue solid line),αT = π/3 (green dashed line) andαT = π/7
(red dot-dashed line).

[αT −∆θT . . . αT +∆θT ], with ∆θT = π
2
√

P
. The total number

of translation operator sampling points that correspond tothese
θT -values is proportional to

∼L2

∫ αT +∆θT

αT −∆θT

ψ(θT )dθT (5a)

≃L2

∫ αT +∆θT

αT −∆θT

(C1 ln |θT − αT | + C2) dθT (5b)

=2L2∆θT (−2 (ln(∆θT ) − 1) + C2) (5c)

=O(L logL) (5d)

where we used an approximation ofψ(θT ) aroundθT = αT

(derived in the Appendix) in (5b),C1 = −2 in (5c) and the
fact that∆θT = O( 1

L) in (5d). From (5d) one sees that, in
the worst-case scenario, there areO(L logL) sampling points
that depend on theθT -interval of a single process group.As
there are

√
P = O(L) processes in that group that can deliver

this data, no process has to send more thanO(logL) data in
between steps 1 and 2 when these communications are equally
divided among the

√
P processes.

We conclude that the volume of data to be sent by any
process in between the two steps is bounded byO(logL).

C. Summary of the parallel algorithm

The steps of the parallel algorithm to calculate a translation
operator can be summarized as follows:

• Step 1a: Assign interpolation points to each group of
processes. Each process within each group computes only
a subset of the terms of (1) for each of the interpolation
points in the group. Cost:O(1).

• Step 1b: Perform the parallel summation (all-reduce
operation) over all processes within each group. Cost:
O(logL).

• Reshuffling phase: Interpolation points are redistributed
among processes. Cost:O(1) receive volume for each
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process,O(logL) send volume for the processes near
the singularities ofψ(θT ).

• Step 2: Compute the translation operator in its sampling
points using local interpolation. Cost:O(1).

Assuming that all computations and communications by the
different processes can be performed concurrently, the global
complexity of the parallel algorithm isO(logL).

IV. N UMERICAL RESULTS

In this section, the implementation and the scaling behavior
of the proposed PIM is numerically validated. The numerical
data has been obtained using a cluster consisting of256
machines each containing two 8-core Intel Xeon E5-2670
processors (4096 CPU-cores in total). The machines were
connected using an FDR Infiniband network. To produce the
results forP = 16 384, each CPU-core has been oversub-
scribed by4 processes. The calculations were performed in
double-precision.

A. Validation of the implementation

To validate the implementation of the parallel computation
of the proposed PIM algorithm, we consider the plane wave
decomposition of the Green’s function [2], [3]

1

4πr
e−jkr ≃

∫ 2π

0

∫ π

0

T (~RT , θ, φ)e−j~k·~RA sin(θ)dθdφ (6)

with ~k = k(cosφ sin θ~1x + sinφ sin θ~1y + cos θ~1z). The
factor e−j~k·~RA is the aggregation, with||~RT + ~RA|| = r. We
choseRT = 3a and ~RA = a(~1x + ~1y + ~1z). For the target
precisionǫ in (2) we consider three values:10−3, 10−6 and
10−9. The translation operators are calculated for the same
values ofka andP as in Table I, extended withka = 5120
andP = 16 384.
The total number of interpolation points in the interval
[0 . . . π] is set to 4L + 8. The θ- and φ-dimensions are
sampled inL + 1 and 2L + 4 points respectively, and as
a result the translation operators contain a total number of
2L2 + 6L + 4 sampling points. These sampling rates are
realistic, as they correspond to the actual sampling rates that
are used in our MLFMA simulations. The local interpolation
method is based on the product of the Dirichlet kernel and
a Gaussian function [3, p. 65]. The number of neighboring
interpolation points is chosen sufficiently high, so that the
local interpolation is accurate up to machine precision. This
way, the error of the addition theorem is only determined by
the value ofL.

As discussed, the communication of the interpolation points
in the PIM algorithm strongly depends onαT and hence on the
translation direction~RT . Therefore we consider the following
26 translation directions

~RT = RT · x
~1x + y~1y + z~1z
√

x2 + y2 + z2
(7)

wherex, y and z take all combinations of the values−1, 0
and1, except the casex = y = z = 0.
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Fig. 5. Maximum relative error of the addition theorem as a function of
partitionsP .

TABLE II
RUNTIME TO COMPUTE A TRANSLATION OPERATOR FOR AN INCREASING

L (ǫ = 10−6) FOR THE PROPOSEDPIM ALGORITHM .

ka L PIM (s) P
80 170 0.15 4
160 316 0.15 16
320 604 0.16 64
640 1171 0.18 256
1280 2295 0.27 1024
2560 4532 0.62 4096

Fig. 5 shows the maximum relative error of the addition
theorem as a function of the number of partitionsP . As one
can see, the obtained precision of the worst-case translation
direction corresponds well to the target precision. The trans-
lation operators produced by the PIM are identical to the ones
obtained through the sequential IM.

B. Runtime benchmark

Table II shows the average runtime of the translation op-
erators that were computed in the previous section, up to
P = 4096. The values forL andP are the same as in Table I,
and therefore the runtimes can be compared.

First, by comparing the values in Tables I and II, one
observes that for high values ofL the proposed PIM algorithm
is roughly 10 times faster than the baseline PDM. This is
a manifestation of the fact that the PIM has a lower time
complexity, namelyO(logL), with respect to theO(L) com-
plexity of the PDM. When considering problems with billions
of unknowns, such as the one presented in [11], the runtime for
the computation of all translation operators during the setup
stage is reduced from approximately one hour (PDM) to only
a few minutes (PIM). With an overall runtime (setup time
+ solution time) for this simulation of about 45 hours, it is
clear that even though this reduction is important, the relative
reduction in overall runtime is modest. However, because
the proposed PIM reduces the computational complexity, we
expect that this gain in performance will become relatively
more important when even larger simulations are considered.
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a process in order to perform the local interpolation of its local translation
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Second, one can see that the runtime of the PIM increases
faster thanO(logL) for a higher number of parallel processes
P . This is caused by a limitation in the interconnection
network of the cluster that was used. Specifically, the network
supports only a limited number of concurrent communications
between processes, which can cause a serialization of the
communication and result in a slowdown of a factor two during
the communication stage. Hence, we obtain runtimes for the
PIM that are higher than expected, when using1024 and4096
processes.

C. Validation of the theoretical complexities

In this section we want to numerically validate the theoret-
ically derived complexities of the PIM. The same translation
directions of (7) are used and the values corresponding to the
worst-case are selected, just as in Section IV-A, in which the
implementation has been validated.
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Fig. 8. Total number of interpolation points a process grouphas to send,
normalized byL0 and

√
P .

This time, the number of multipolesL+ 1 is set toL0 ·
√
P ,

with L0 = 100, instead of using (2). This way, a purely
linear relationship between the number of multipoles and

√
P

is obtained, which corresponds to the high-frequency limit
(ka ≫ 1). As L0 is purely arbitrary, the resulting number
of interpolation points can be normalized with respect toL0.
By enforcing a purely linear dependency betweenL + 1 and√
P , the asymptotic behavior of the proposed PIM becomes

apparent for lower values ofL. Note that exactly the same
conclusions will be obtained if (2) is used to calculateL.

Fig. 6 shows the number of interpolation points per process
group as a function ofP , normalized byL0. As expected for
uniform partitioning, this value is the same for each group and
constant for an increasing number ofP andL.

The maximum normalized number of interpolation points
to be received by a process, in order to compute its local
translation operator sampling points, is shown in Fig. 7. For
increasingP andL it is bounded byO(1), as a result of the
blockwise partitioning of the translation sampling points.

Fig. 8 displays the total number of interpolation points a
process group has to send, divided byL0 and

√
P , i.e. the

number of processes a group contains. In case of uniform
partitioning this is proportional tologP or, equivalently,
log

√
P = logL, which corresponds exactly to the behavior

predicted by the theory.
The results of this section show that the numerically ob-

tained data corresponds very well to the theoretically predicted
scaling behavior of the PIM.

V. CONCLUSION

In this paper the distributed-memory parallelization of the
calculation of the translation operator in the MLFMA by
means of the interpolation method was studied. To calculatea
translation operator withL+ 1 multipoles usingP = O(L2)
processes, our proposed algorithm requires onlyO(logL)
time, which is a clear improvement over theO(L) complex-
ity of the baseline parallel algorithm. The average time to



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. ?, NO. ?, ? ? 7

compute a translation operator using the parallel interpolation
method is measured using4096 CPU-cores and compared
to a parallel implementation of the baseline method. As a
result, a large speedup factor for realistic electromagnetic
problems is achieved, which reduces the time of the setup
stage significantly. Furthermore, the theoretical resultsfor the
parallel interpolation method were numerically verified using
up to 16 384 processes and its scaling behavior corresponded
very well to the theoretical analysis.
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APPENDIX

In this appendix an expression for the density function of
the translation sampling points as a function ofθT is derived.

A. Density function

From Fig. 1 one sees that there is an accumulation of
sampling points at the poles of the sphere, due to the uniform
sampling inθ andφ. As a result, one obtains a non-uniform
distribution of the sampling points as a function ofθT that
depends on~RT , the direction of the translation.

Consider the asymptotic case withL → +∞ and
choose the (θ,φ)-coordinate system so that~RT =
RT (0, sin(αT ), cos(αT )), with αT ∈ [0, π]. As the Jacobian
of a spherical coordinate system on the unit sphere is equal
to sin(θ) and as the sampling points are uniformly sampled in
(θ, φ), the density of the sampling pointsw(θ, φ) is

w(θ, φ) =
1

sin(θ)
(8a)

=
1

√

1 − cos2(θ)
(8b)

Now consider the coordinate system of the translation direc-
tion, where thez-axis is parallel to~RT . Using a rotation over
the angleαT about thex-axis,cos(θ) can be expressed in this
coordinate system as

cos(θ) = sin(αT ) sin(θT ) sin(φT ) + cos(αT ) cos(θT ) (9)

The density function of the translation sampling points as
a function ofθT is equal to

ψ(θT ) = sin(θT )

∫ 2π

0

w(θ, φ)dφT (10)

assin(θT ) is the radius of a circle of latitude in the coordinate
system of~RT . In the special case whenαT = 0 or αT = π,

ψ(θT ) degenerates to

ψ(θT ) = sin(θT )

∫ 2π

0

w(θ, φ)dφT (11a)

= sin(θT )

∫ 2π

0

1

sin(θT )
dφT (11b)

= 2π (11c)

B. Elliptic integral

To find an expression for the density functionψ(θT ) one
has to calculate the integral

I =

∫ 2π

0

1
√

1 − (a sin(φ) + b)2
dφ (12)

with a = sin(αT ) sin(θT ) andb = cos(αT ) cos(θT ).
As sin(φ) ranges from−1 to +1 in the intervalφ = −π

2 . . .
π
2 ,

one can write

I = 2

∫ π

2

−π

2

1
√

1 − (a sin(φ) + b)2
dφ (13)

The key to simplify the integrand is the substitution

x =

√

1 − b+ a

1 − b− a
· 1 − sin(φ)

1 + sin(φ)
(14)

The variablex is a positive real number, as

b± a = cos(αT ∓ θT ) (15)

is smaller than1 whenαT 6= θT . Forφ = −π
2 . . .

π
2 , x ranges

from +∞ to 0.
Finally, after numerous yet straightforward algebraic opera-
tions, one obtains

I = 4

∫ +∞

0

1
√
γ+

· 1
√

(1 + x2)
(

1 + γ
−

γ+
x2
)

dx (16a)

=
4

√
γ+
K

(
√

4a

γ+

)

(16b)

with γ± = (1±a)2−b2 andK(k) the complete elliptic integral
of the first kind [23]. Using (10) and the definitions ofa and
b, one finds the expression of (3).
For the special casesαT = 0 andαT = π one sees that

a = 0 (17a)

b = ± cos(θT ) (17b)

I =
2π

sin(θT )
(17c)

asK(k = 0) = π
2 . This result corresponds to the result of

(11).
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C. Singularities

The complete elliptic integral of the first kind has a loga-
rithmic singularity ink = 1 [23]:

k → 1 : K(k) ≃ ln

(

1√
1 − k2

)

+ 2 ln(2) (18)

From (3) one can derive that the density functionψ(θT ) has a
logarithmic singularity inθT = αT andθT = π − αT , except
for the degenerate casesαT = 0 andαT = π.

Assume thatαT is not very close to0 or π. After a second
order Taylor expansion of the argument of the elliptic integral
aroundθT = αT and substitutingθT = αT in the non-singular
part ofψ(θT ) one obtains

ψ(θT ) ≃ −2 ln

∣

∣

∣

∣

1

2
cot(αT ) (θT − αT )

∣

∣

∣

∣

+ 4 ln(2) (19a)

≃ C1 ln |θT − αT | + C2 (19b)

with

C1 = −2 (20a)

C2 = 2 ln |8 tan(αT )| (20b)

The approximation of (19) is valid as long as|θT −αT | ≪ αT .
For the singularity inθT = π − αT one can derive a similar
expression.

D. Numerical evaluation

The appearance of an elliptic integral in the expression of
the density functionψ(θT ) does not pose a problem because
it can be easily and quickly computed using

K(k) =
π

2M(1 − k, 1 + k)
(21)

with M the arithmetic-geometric mean [23].
For completeness we also mention that one should be very
careful when evaluatingK(k) close to its singularity at
k = 1 as the expression of (16b) would lead to numerical
inaccuracies. To understand this we consider

1 − k = 1 −
√

4a

γ+
(22a)

=
1 − 4a

γ+

1 +
√

4a
γ+

(22b)

=
γ−

γ+

(

1 +
√

4a
γ+

) (22c)

with

γ− = (1 − a+ b)(1 − a− b) (23a)

= (1 + cos(αT + θT ))(1 − cos(αT − θT )) (23b)

When θT is close toαT one can use a second order Taylor
expansion

cos(αT − θT ) ≃ 1 − 1

2
(αT − θT )2 (24)

Suppose a machine precisionδ. When θT is in the region
of αT ±

√
δ, the evaluation ofγ− already reaches machine

precision. IfθT comes closer toαT , the second factor of (23b)
will be rounded to0 or δ. This is clearly undesirable for the
computation of the arithmetic-geometric meanM(1−k, 1+k)
and will lead to numerical inaccuracies in the calculation of
the elliptic integralK(k).
Therefore the numerator of (22c) has to be rewritten as

γ− = 4 cos2
(

αT + θT

2

)

sin2

(

αT − θT

2

)

(25)

This expression does not suffer from a numerical breakdown
and it allows to obtain accurate results when computingK(k)
numerically.
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[7] Ö. Ergül and L. Gürel, “Accurate Solutions of Extremely Large Integral-
Equation Problems in Computational Electromagnetics”, Proceedings of
the IEEE, vol. 101, no. 2, pp. 342–349, February 2013.

[8] J.M. Taboada, M.G. Araujo, F. Obelleiro, J.L. Rodriguezand L. Landesa,
“MLFMA-FFT Parallel Algorithm for the Solution of Extremely Large
Problems in Electromagnetics”, Proceedings of the IEEE, vol. 101, no.
2, pp. 350–363, February 2013.

[9] X.M. Pan, W.C. Pi, M.L. Yang, Z. Peng and X.Q. Sheng, “Solving
Problems with over One Billion Unknowns by the MLFMA”, IEEE
Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2571–
2574, May 2012.

[10] B. Michiels, J. Fostier, I. Bogaert and D. De Zutter, “Weak Scalability
Analysis of the Distributed-Memory Parallel MLFMA”, IEEE Transac-
tions on Antennas and Propagation, vol. 61, no. 11, pp. 5567–5574, Nov.
2013.

[11] B. Michiels, J. Fostier, I. Bogaert and D. De Zutter, “Full-wave simula-
tion of electromagnetic scattering problem with more than three billion
unknowns”, IEEE Transactions on Antennas and Propgation, submitted
for publication, 2014.
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[13] Ö. Ergül and L. Gürel, “A Hierarchical Partitioning Strategy for an
Efficient Parallelization of the Multilevel Fast MultipoleAlgorithm”,
IEEE Transactions on Antennas and Propagation, vol. 57, no.6, pp.
1740–1750, June 2009.

[14] J. Fostier and F. Olyslager, “Provably Scalable Parallel Multilevel Fast
Multipole Algorithm”, Electronics Letters vol. 44, no. 19,pp. 1111–
1112, September 2008.

[15] B. Michiels, J. Fostier, I. Bogaert, P. Demeester and D.De Zutter,
“Towards a scalable parallel MLFMA in three dimensions”, Proceedings
of the Computational Electromagnetics International Workshop (CEM
’11), Izmir, pp. 132-135, Izmir, Turkey, August 2011.

[16] I. Bogaert, B. Michiels and J. Fostier, “O(1) Computation Of Legendre
Polynomials And Gauss-Legendre Nodes And Weights For Parallel
Computing”, SIAM Journal on Scientific Computing, vol. 34, no. 3,
pp. C83–C101, 2012.

[17] J. Sarvas, “Performing Interpolation and Anterpolation entirely by Fast
Fourier Transform in the 3-D Multilevel Fast Multipole Algorithm”,
SIAM Journal on Numerical Analysis, 41(6):2180–2196, 2003.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. ?, NO. ?, ? ? 9
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