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Abstract. In the context of new-generation ISOL facilities, liquid-metal loop targets are 

proposed to deal with the high driver-beam power on target. In this framework, the circulating 

liquid Lead Bismuth Eutectic (LBE) target is of interest for high-power facilities like 

ISOL@MYRRHA
1
 [1] and EURISOL

2
[2]. When developing this proof-of-concept target, one 

of the important challenges is to design the shape of the irradiation container so that, once 

irradiated, the LBE is immediately evacuated into a shower of very small droplets. This is 

necessary in order to enhance the diffusion of isotopes formed during irradiation, especially 

important for isotopes with short half-lives.  

This study deals with the optimization of the flow of a heavy liquid metal in a compact and 

complex geometry. The full target geometry and its dimensions have been set as design 

variables.  

Three-dimensional (3-D) computer simulations of the LBE flow have been used for the 

evaluation of design modifications. Starting from the initial design, the flow features in the 

target geometry as well as the evolution of these features with the design changes have been 

computed with the CFD tool FLUENT (Ansys Inc.) [3]. At each step of the target 

optimization, insight was gained into the influence of different parameters on the flow 

features. Different improved target geometries were eventually obtained. Each of them 

showcases a different way to deal with the jet effect initially observed due to the high-

momentum inlet liquid stream. Full-scale prototyping and testing of the optimized geometries 

is ongoing (February 2014). 
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1 INTRODUCTION 

Applications of Radioactive Ion Beams (RIBs) are found in several fields of science, 

among which nuclear physics, fundamental interactions, nuclear astrophysics [4]... Because of 

their short half-lives, the only way to produce beams of exotic nuclei is using on-line 

methods: either in-flight separation (IFS), or the isotope separation on-line (ISOL) [4]. For 

RIBs of exotic nuclei, the main advantage of the ISOL technique comes from the higher 

achievable purities, since the study of exotic nuclei is often hindered by the fact that they are 

submerged in the high background of more stable nuclei also produced in the target. 

However, it should be noted that decay losses during the isotope-release, ionization and 

transport processes are an important drawback for the production of very-short lived isotopes 

(half-lives in the millisecond range). 

Worldwide efforts are currently devoted to prepare the new generation of RIB facilities, 

with the aim of improving by orders of magnitude their general performance compared to 

presently running facilities. High-power targets development is a major part of this 

preparation. Different concepts of high-power solid targets have been proposed and studied. 

However, the primary-beam power at which these targets can be operated is still limited to 

several tens of kW [5-7]. Moreover, these solid targets are characterized by relatively low 

thickness in order to radiatively dissipate high power deposition. 

An alternative approach is the recently-proposed liquid-metal-loop target [8], which is 

expected to handle much higher primary-beam power because the target material flows in a 

loop equipped with a heat exchanger. Additionally, liquid targets offer the highest thickness 

of any material (~200 g/cm2 for Lead Bismuth Eutectic - LBE).Concerns for the design of 

these targets include effects such as pressure drop, cavitation, liquid-metal recirculation, 

instabilities, non-uniform flows etc…[9-11] Studies conducted in the past highlight the 

importance of these effects on the target system[12, 13]. 

The study reported here aims at providing solutions to specific hydrodynamics issues of 

concern for the design of this high-power liquid-metal-loop target. The target design 

optimization based on criteria detailed in section 2 is also presented, followed by presentation 

and discussion of different improved concepts. 

2 THE CONCEPT OF A LIQUID-METAL-LOOP TARGET 

Molten-lead targets have been studied and operated at ISOLDE with 600-MeV protons 

from the Synchrocyclotron (SC) and later on with 1- to 1.4-GeV protons from the Proton-

Synchrotron-Booster (PS-Booster) [14]. These targets were 20-cm long cylinders with a 1-cm 

radius, partially filled with molten lead. With these targets, the time necessary to release half 

of the isotopes (T50) from the molten-metal target ranged from 30 - 120 s (SC) to 10 ± 5 s at 

PS-Booster [15]. Important decay losses are therefore suffered when trying to produce RIBs 

of short-lived isotopes like 
178

Hg (T1/2 = 0.26 s) and 
177

Hg (T1/2 = 0.17 s). 

In order to achieve higher release efficiencies, especially important for short-lived isotopes 

in the current liquid-metal-loop target, the liquid metal is spread into a shower of small 

droplets immediately after irradiation (see fig 1). We aimed here at a complete evacuation of 

the irradiated LBE from the irradiation volume within 100 ms after a proton pulse impact. 

The characteristic diffusion length of isotopes is reduced in the present concept by 

decreasing the size of the LBE matrix out of which nuclides have to diffuse. The formation of 
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droplets with radii in the range of a 

diffusion length of isotopes of two orders of magnitude compared to previous ISOLDE 

molten-lead targets.  

  

Figure 1: Conceptual view of the liquid-LBE-loop target 

Each of the small droplets constitutes the matrix out of which the isotopes will diffuse. The 

shape of the droplets also influences the characteristic diffusion length of isotopes, and the 

sphere is the ideal shape for fast release [8, 16]. Therefore, the present target aims at 

producing spherical LBE droplets. Applying the Young-Laplace law [17], we derived that 

spherical droplets of LBE will be produced provided the following condition is met :  

g -
 

(1) 

where  is the spherical-droplet radius,  is the surface tension of LBE,  and  are the 

respective densities of liquid and vapor LBE, while  is the gravity. At the pressure of the 

release chamber (p ~5 10
-7

 mbar), the produced droplets will be spherical if their radii are 

much smaller than 2 mm. This condition is met for 200-µm radii droplets, with a 1% 

maximum deviation of the droplet-surface mean curvature from the ideal spherical curvature. 

LBE droplets form a shower inside the release chamber of the target as illustrated by fig 1. 

They fall under gravity before being collected at the bottom of the release chamber and, 

meanwhile, isotopes diffuse out of these droplets to effuse towards the ion source via the 

transfer tube. The heat exchanger is foreseen upstream to the pump to insure that the LBE 

temperature at the pump inlet does not exceed maximum acceptable values for the magnets of 

the pump (~600 °C). This layout can be afforded since the electromagnetic pump foreseen is 

not prone to cavitation. However, the design needs to ensure that the hydrostatic pressure 

build-up below the release chamber is sufficient to compensate for the pressure drop in the 

heat exchanger. 
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3 METHODOLOGY 

Computational Fluid Dynamics (CFD) tools are commonly utilized for the thermal and 

hydraulic design of facilities operating with liquid-metal [10, 18, 19]. Furthermore, CFD 

analysis has been validated in the framework of thermal-hydraulics design of the MEGAPIE 

LBE target [10, 20]. Indeed, the experimental validation of the optimized design of this target 

has confirmed CFD prediction of important points such as the turbulence modeling, pressure 

field and pressure drop in a liquid-metal flow. Because these tools are less expensive and 

faster to implement for a design optimization procedure than prototyping each optimization 

step, a commercial CFD tool, Fluent (ANSYS, Inc.), has been used for the work reported in 

this article. Full-scale prototyping and tests following the design study are currently underway 

to validate CFD calculations. 

All the modeled CFD geometries comprise a half-symmetry of the target geometry about 

the vertical plane at z=0 on fig 2 (see fig 5 for some half-symmetry views). This assumption is 

explained by the fact that the distributions of evacuation and feeder apertures are symmetric 

with respect to the vertical mid-plane of the flow inlet. The geometries were also restricted to 

the fluid domain for CFD analysis and the fluid-container interaction has been modeled by 

adequate “no slip wall” boundary conditions. About fifteen million cells are required to get 

mesh-independent results in the half-symmetry distributed-inlet concepts. The thermal effects 

of the proton-beam impact have not been taken into account in these calculations. This 

simplifies and speeds-up calculations during the hydro-dynamical optimization process. 

Issues related to LBE temperature profile, heat deposition and dissipation, potential 

occurrence of pressure waves and resonance are treated at a later stage. 

Previous liquid-metal target design calculations with k- -

(SST) turbulence models have shown good agreement with experimental data for average-

flow behavior and mean-velocity fields [21, 22]. Because these models are less computational 

expensive and since no energy-mixing process is accounted for in this design-optimization 

process, the SST k- -state simulations. In 

practice, the steady-state LBE flow would be disturbed by the energy deposition from the 

highly-pulsed beam. However, previous calculations with the ISOLDE [23] proton-beam 

conditions indicate that the flow perturbation and thus the deviation from steady-state flow 

should only last for fractions of ms after a proton-pulse impact [11]. This, in association with 

the fact that thermal effects of the proton-beam impact are not accounted for at this stage, 

explains the use of steady-state simulations. 

One major objective mentioned earlier is that of evacuating all the irradiated LBE from the 

irradiation volume within 100 ms after a proton pulse. In order to check if this condition was 

met, transient simulations were run with the steady-state results as initial conditions. In these 

transient simulations, we have monitored over time the inflow of non-irradiated LBE in the 

irradiation volume. Thus, the rate of evacuation of the irradiated LBE from the different 

concepts after 100 ms was determined. Since as explained in the previous paragraph, flow 

perturbations resulting from the energy deposition of the proton pulse are not expected to 

sustain for a long period of time, this effect has not been considered either in the transient 

calculations. 
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4 STARTING-CASE GEOMETRIES OF THE TARGET CONTAINER 

4.1 Concept 

Based on the conceptual view presented on fig 1, the starting-case geometry presented on 

fig 2 (left) was used for LBE dynamics simulation inside the target container. In this concept, 

the target container consists of a 20-cm long and 1-cm diameter cylinder. This diameter is 

-beam transverse 

Gaussian profile. The cylindrical container and proton-beam direction (red arrow on fig 2) are 

coaxial and, LBE flows into the target container through its base section (blue arrow on fig 2) 

and flows out through the lower half of its lateral surface. 

Concept 1 features 2500 evacuation apertures of 200-

objectives of having 100-ms fast evacuation and reaching the proper regime of droplet 

formation (the jetting regime [24]).  

  

Figure 2: Target container starting-case geometries : full cylindrical concept 1 with exit apertures on 

lower half of lateral surface and half-cylindrical concept 2 with exit apertures on the flat base surface 

Considering the fact that the manufacturing of the exit apertures on a cylindrical surface is 

quite challenging, an alternative concept featuring the evacuation apertures on a flat surface 

(see fig 2, right) was also initially considered. The geometry of concept 2 consists of the half 

of a 2-cm diameter cylinder i . The cross-

section area and flow rate of the target container in concept 2 are correspondingly twice the 

values in concept 1. Because the flow rate is doubled, 5000 evacuation apertures are required 

in Concept 2, in order to keep the formation of droplets in the same regime.  

4.2 Results & discussion 

The static-pressure distributions of concept 1 and concept 2 (fig 3, a & b), show very low 

pressure levels in the LBE inside the evacuation apertures on the inlet side of the irradiation 

volume. Some of these low-pressure cells have pressure values below experimental values of 

the LBE saturation vapor pressure reported in literature [9, 25] at 500 K, 10
-6

 Pa. This poses 

risks of cavitation. Evidence of typical corrosion pattern caused by cavitation have been 

reported for ISOLDE molten-metal target containers [26]. In addition, cavitation is a greater 

concern for high-power targets, mainly due to the higher intensity of the primary beam. 

Therefore, cavitation risks are to be avoided in this target design, since it is detrimental for the 

target container life time, and can even lead to failure of the latter. 

The low pressure zones in fig 3 are explained by the fact that high-pressure gradients are 

Exit apertures 

r ~ 200 m 

Inlet 

Concept 1 Concept 2 
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required to bend the high-momentum LBE streamlines through the first apertures on the inlet 

side. The low-pressure values computed inside the irradiation volume at the inlet side were 

low enough to induce virtually no flow through the corresponding evacuation apertures, 

which also means no droplet formation through these apertures. 

Pressure progressively builds up inside the irradiation chamber in both concepts 1 and 2 

while the average horizontal velocity decreases (from right to left on fig 3). This is due to the 

fact that part of the inlet LBE flow is progressively lost through the evacuation apertures 

leading to a lower flow rate while the cross section of the flow volume is constant along the 

irradiation volume.  

 

 

Figure 3: Static-pressure contours of (a) concept 1 & (b) concept 2, Velocity vectors for (c) concept 1 & (d) 

concept 2 (note that LBE flows in from right to left) 

The negative values on the pressure scales are not only related to the high-momentum 

streamline bending effect described earlier. Because of the stream-wise pressure build-up 

mentioned in the previous paragraph, an acceleration of LBE at the entrance in evacuation 

apertures mostly on the left-hand side of the plots on fig 3 leads as well to computation of 

negative pressure values in the corresponding cells. Computation of these, however, 

unphysical negative pressure values occurs because cavitation effects were not modeled. 

Modeling these effects is not needed at this stage and would increase computation time.  

Recirculation zones were also noticed at stream-wise end of the irradiation volume in both 

concepts (circled in black on fig 3) because of the direction change and the reduced 

momentum of the flow. When they occur in the irradiation volume, these recirculation zones 

carry produced isotopes for extended periods of time and  therefore lead to significant decay-

losses of short-lived isotopes that are not promptly evacuated in the release chamber. 

Recirculation zones inside the irradiation zone may additionally lead to creation of hot spots. 

  

(a) 

(b) 

(c) 

(d) 
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The effect of recirculation zones was studied by analysing the portion of irradiated LBE 

evacuated from the irradiation volume at 100 ms after the arrival of a proton pulse. The 

irradiated LBE is labelled with the yellow color while the non-irradiated LBE is colored in red 

(fig 4 & 7). It is shown on fig 4 that after 100 ms following the arrival of a proton pulse, 

portions of irradiated LBE in the recirculation zones have not been evacuated from the 

irradiation volume to the release chamber. Recirculation zones in the irradiation volume are 

therefore to be avoided. 

 

Figure 4: Refreshment state of irradiated LBE (yellow) in (a) concept 1 and (b) concept 2 100 ms after 

arrival of a proton pulse. Red color represents non-irradiated LBE.  

In summary, issues detected for concepts 1 and 2 are the presence of very low pressure 

zones, a non-uniform distribution of evacuation velocity vectors along the proton beam 

direction and LBE recirculation inside the irradiation volume. Consequently, these simple 

concepts cannot be used. Therefore, the target-container design-optimization presented in the 

following lines considered successively-improved concepts to overcome these issues.  

From this point on, the half-cylinder design of the target-container in concept 2 has been 

dropped because of three major disadvantages: 

 larger irradiation chamber volume,  

 higher flow rate i.e. it requires more power at the pump (pressure drops being of the 

same order as in concept 1), 

 more evacuation apertures per unit surface, meaning higher cost for manufacturing 

and higher risks of merging between closer LBE jets. 

Different improved concepts are presented and analyzed in the following sections. 

5 IMPROVED TARGET CONTAINERS 

5.1 Concept 

The different target-container concepts presented from this point on feature LBE inlets that 

are perpendicular to the proton-beam axis. This transverse arrangement of inlets was set in 

order to avoid the necessary bending of high-momentum streamlines over the evacuation 

apertures close to the coaxial inlet as we have noticed for concepts 1 and 2. As a result, the 

issue of low-pressure spots observed close to the inlet in concept 1 and concept 2 was solved. 

The inlet velocities are adapted to the available inlet cross-section in each different concept in 

order to compare them based on the same flow rate. 

Specific to these concepts is the insertion of a feeder volume and feeder grids between the 

inlet and the irradiation volume. In combination, the feeder volume and feeder grids are used 

to oppose some inertial and viscous resistance to the inlet jet, thus distributing it over the 

irradiation volume. Besides, by straightening the direction of velocity vectors inside the 

irradiation volume and making them normal to the proton-beam axis, the feeder volume and 

feeder grid combination is useful to prevent occurrence of recirculation inside the irradiation 

volume. This concept is further improved through the use of a large feeder volume. 

(b) (a) 
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By increasing the area of the feeder-volume cross section (normal to the direction of the 

beam on fig 5), the mean horizontal velocity of LBE inside the feeder volume is reduced. This 

decreases the friction effects on LBE flowing along the feeder grid and results in a uniform 

distribution of the LBE velocity through uniformly-distributed feeder-grid apertures (see fig 

6, c & d). Figure 5 presents the geometry of two different large feeder volume concepts used 

to meet the dual objective of a uniform distribution of evacuation velocities as well as vertical 

orientation of velocity vectors inside the irradiation volume. 

 

Figure 5: Half-symmetry view of large feeder volume target containers (concepts 3 & 4) 

In concept 3, smaller feeder-grid apertures (100- oppose 

sufficient resistance to the inlet jets and to get a uniform LBE flow through the irradiation 

volume. In concept 4, a second identical feeder grid was necessary to meet the same goal with 

200- feeder-grid apertures. 

5.2 Results & discussion 

As shown on the plots of velocity vectors (fig 6, c & d), the feeder grids distribute the inlet 

jet flow over the irradiation volume, thereby leading to a more uniform distribution of 

evacuation-velocity vectors at the outlet of the irradiation volume. With a feeder volume 

sufficiently large that reduces friction on the LBE flow along the feeder grid, mostly constant 

pressure differences are obtained vertically across the grids (fig 6, a & b), explaining the 

uniformity of velocity-vectors distribution inside the irradiation chamber and at evacuation. 

In
le
t 

In
le
t 

In
le
t 

In
le
t 

Concept 3 Concept 4 
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Figure 6: Static-pressure contours of (a) concept 3 & (b) concept 4, Velocity vectors for (c) concept 3 & (d) 

concept 4, recieculation zones (in black boxes) occur out of the irradiation volumes.  

The feeder grids also have the effect of straightening the flow, ensuring that velocity-

vectors inside the irradiation chamber are normal to the beam axis, suppressing the 

recirculation zones inside the irradiation chamber. Recirculation zones are only noticed in the 

feeder volume (see black rounded rectangles on fig 6, c & d). As a result, in both concepts 3 

and 4, all the irradiated LBE (yellow) has been evacuated from the irradiation chamber, 100 

ms after proton-pulse impact (see fig 7). 

 

Figure 7: Refreshment state of the LBE at 100 ms after the proton pulse in (a) concept 3, (b) concept 4. 

The LBE irradiated by this proton pulse would be fully evacuated and only non- irradiated LBE (red 

color) is present in the irradiation volume for both concepts.   

 

7 CONCLUSIONS 

 The CFD simulations presented here have been carried out in support of the design and 

optimization process of a molten-LBE target loop for the production of beams of short-lived 

radioactive ions at high-power ISOL facilities. CFD analysis was used since it has been 

validated in the past with experimental data for LBE. It also allowed us to avoid a lengthy and 

p [Pa] 
 

(a) 

(b) 

(c) 

(d) 

(b) (a) 
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costly process of prototyping and testing every investigated design.  

 The target-design optimization reported here was conducted with the aim of fully 

evacuating the irradiated LBE from the irradiation volume within 100 ms after the impact of a 

proton pulse. Two alternative designs meeting this requirement have been presented. In each 

of these cases the inlet-jet effect was dealt with via a combination of two approaches: (1) 

using two inlets in order to increase the total inlet section and reduce inlet velocities, and (2) 

opposing one or two high-resistance feeder grids to the inlet jet. 

With this strategy, within a compact geometry, the high-momentum inlet-jet flow is 

transformed into a uniform flow in the irradiation volume and at evacuation apertures. Low-

pressure zone issues have been solved by avoiding unnecessary bending of the flow inside the 

compact geometry of the target. In addition, the ideal spherical shape of the LBE droplets is 

ensured by making small droplets (radii << 2 mm). 

The satisfactory concepts are being prototyped within the LIEBE
3
 project and will be 

tested for validation of the computed flow pattern against experimental data. Tests are 

scheduled at CERN-ISOLDE. 

 

ACKNOWLEDGEMENTS 

This work was supported by the Belgian Science Policy Office through the IAP 

programme (BriX network P6/23), We acknowledge discussions with the LIEBE 

collaboration partners.  

 

REFERENCES 

[1] Popescu L. Nuclear-physics applications of MYRRHA.  (in print) accepted for publication in EPJ Web 

of Conferences (2014), issue on the 25th International Nuclear Physics Conference. Firenze, Italy; June 2-7, 

2013. 

[2] Blumenfeld Y, Butler P, Cornell J, Fortuna G, Lindroos M. EURISOL DESIGN STUDY: TOWARDS 

AN ULTIMATE ISOL FACILITY FOR EUROPE. International Journal of Modern Physics E-Nuclear Physics 

2009;18(10):1960-4. 

[3] ANSYS I. ANSYS FLUENT Theory Guide. Southpointe 

275 Technology Drive 

Canonsburg, PA 15317; November 2011. 

[4] Huyse M. The Why and Howof Radioactive-Beam Research. In: Al-Khalili J, Roeckl E, editors. The 

Euroschool Lectures on Physics with Exotic Beams, Vol I: Springer Berlin Heidelberg; 2004. p. 1-32. 

[5] Y. Zhang GDA. Design of high-power ISOL targets for radioactive ion beam generation. Nuclear 

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated 

Equipment 2004;521(1):72–107. 

[6] M. Dombsky PB. High intensity targets for ISOL, historical and practical perspectives. Nuclear 

Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 

2008;266(Issues 19–20):4240–6. 

[7] Bricault P, Dombsky M, Dowling A, Lane M. High power target developments at ISAC. Nuclear 

Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 

2003;204:319-24. 

[8] Board EpC. Final report of the EURISOL design study (2005-2009). Cornell, John C edn: GANIL; 

2009. p. 220. 

                                                 

6221



Donald D. HOUNGBO, Jan Vierendeels and Lucia Popescu. 

11 

[9] Dury TV. CFD design support at PSI for the international MEGAPIE liquid-metal spallation target. 

Journal of Nuclear Science and Technology 2004;41(3):285-95. 

[10] -Nik M, Kalt A. Design of a compact high-power 

neutron source—The EURISOL converter target. Nuclear Instruments and Methods in Physics Research Section 

A: Accelerators, Spectrometers, Detectors and Associated Equipment 2009;606(3):281-90. 

[11] Noah E, Bruno L, Catherall R, Lettry J, Stora T. Hydrodynamics of ISOLDE liquid metal targets. 

Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 

2008;266(19-20):4303-7. 

[12] 

results for coupled structural–hydraulic behavior of the EURISOL target mock-up. Nuclear Instruments and 

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 

2009;608(1):175-82. 

[13] Jung P, Koppitz T, Muller G, Weisenburger A, Futakawa M, Ikeda Y. Improved cavitation resistance of 

structural materials in pulsed liquid metal targets by surface hardening. Journal of Nuclear Materials 2005;343(1-

3):92-100. 

[14] Lettry J, Catherall R, Drumm P, Van Duppen P, Evensen AHM, Focker GJ, et al. Pulse shape of the 

ISOLDE radioactive ion beams. Nuclear Instruments and Methods in Physics Research Section B: Beam 

Interactions with Materials and Atoms 1997;126(1–4):130-4. 

[15] Lettry J, Catherall R, Cyvoct G, Drumm P, Evensen AHM, Lindroos M, et al. Release from ISOLDE 

molten metal targets under pulsed proton beam conditions. Nuclear Instruments & Methods in Physics Research 

Section B-Beam Interactions with Materials and Atoms 1997;126(1-4):170-5. 

[16] Fujioka M, Arai Y. Diffusion of radioisotopes from solids in the form of foils, fibers and particles. 

Nuclear Instruments and Methods in Physics Research 1981;186(1–2):409-12. 

[17] Lautrup B. Physics of Continuous Matter, Second Edition: Exotic and Everyday Phenomena in the 

Macroscopic World: Taylor & Francis; 2011. 

[18] Vanderhaegen M, Vierendeels J, Arien B. CFD analysis of the MYRRHA primary cooling system. 

Nuclear Engineering and Design 2011;241(3):775-84. 

[19] Wolters J, Hansen G, J. KEM, F. R. Validation of CFD Models with Respect to the Thermal-Hydraulic 

Design of the ESS target.  IAEA Technical Meeting. Karlsruhe, Germany; 2003. 

[20] Fazio C, Gröschel F, Wagner W, Thomsen K, Smith BL, Stieglitz R, et al. The MEGAPIE-TEST 

project: Supporting research and lessons learned in first-of-a-kind spallation target technology. Nuclear 

Engineering and Design 2008;238(6):1471-95. 

[21] Samec K, Milenkovic RZ, Blumenfeld L, Dementjevs S, Kharoua C, Kadi Y. Measurement and 

analysis of turbulent liquid metal flow in a high-power spallation neutron source-EURISOL. Nuclear 

Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated 

Equipment 2011;638(1):1-10. 

[22] Stieglitz R, Daubner M, Batta A, Lefhalm CH. Turbulent heat mixing of a heavy liquid metal flow in 

the MEGAPIE target geometry—The heated jet experiment. Nuclear Engineering and Design 2007;237(15–

17):1765-85. 

[23] Kugler E. The ISOLDE facility. Hyperfine Interactions 2000;129(1-4):23-42. 

[24] Clanet C, Lasheras JC. Transition from dripping to jetting. Journal of Fluid Mechanics 1999;383:307-

26. 

[25] Agency NE. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, 

Thermal-hydraulics and Technologies. In: OECD, editor.; 2007. 

[26] Lettry J, Arnau G, Benedikt M, Gilardoni S, Catherall R, Georg U, et al. Effects of thermal shocks on 

the release of radioisotopes and on molten metal target vessels. Nuclear Instruments and Methods in Physics 

Research Section B: Beam Interactions with Materials and Atoms 2003;204(0):251-6. 

 

6222


