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In this paper, we study a new retrial queueing system with N classes of customers, where
a class-i blocked customer joins orbit i. Orbit i works like a single-server queueing system

with (exponential) constant retrial time (with rate µ
(i)
0 ) regardless of the orbit size. Such

a system is motivated by multiple telecommunication applications, for instance wireless
multi-access systems, and transmission control protocols. First, we present a review of
some corresponding recent results related to a single-orbit retrial system. Then, using a
regenerative approach, we deduce a set of necessary stability conditions for such a system.
We will show that these conditions have a very clear probabilistic interpretation. We
also performed a number of simulations to show that the obtained conditions delimit the
stability domain with a remarkable accuracy, being in fact the (necessary and sufficient)
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stability criteria, at the very least for the 2-orbit M/M/1/1-type and M/Pareto/1/1-
type retrial systems that we focus on.

Keywords: Retrial system; constant retrial rate; stability condition; regenerative
approach; busy probability; multi-class system.

1. Introduction

In this paper, we first consider the single-class GI /G/m/K-type retrial queueing
system with a constant retrial rate µ0. The external (primary) arrivals follow a
renewal input with arrival epochs {tn} and rate λ. The system has m identical
servers, and customers have i.i.d. service times {Sn}, with a generic element S

and rate µ := 1/ES. If a customer finds all m servers busy and the buffer (of size
K − m < ∞) full, it joins an infinite-capacity orbit, where only one orbit customer
attempts to rejoin the primary queue after exponentially distributed time intervals
with rate µ0 (if the orbit is not empty). Such a model is referred to as a retrial
model with constant retrial rate. It then follows that the orbit can be interpreted
as a single-server ·/M/1-type queue with service rate µ0, and with the jobs rejected
from the primary queue as input. We stress that the merged stream to the orbit
is in general not a GI -type arrival stream, since it is a combination of the rejected
part of the primary customers and the secondary customers returning to the orbit
after unsuccessful attempts to enter the primary queue. Note that the only possible
source of instability of such system is an infinite growth of the orbit size.

Second, we consider a multi-class extension of the single-class model where each
class has its own orbit. As is typically the case, the stability analysis of a multi-class
system is much more challenging than that of the single-class variant. In the present
work, we conjecture a necessary and sufficient stability condition for the multi-class
multi-orbit retrial system with one server and constant retrial rates. We prove that
the condition is necessary, and we provide strong indications by simulation that the
condition is also sufficient.

Single-class retrial systems with constant retrial rate have been investigated
in a large number of contributions. Not pretending to be exhaustive, let us men-
tion some relevant articles. Fayolle (1986) introduced a retrial system with con-
stant retrial rate, and derived stability conditions for the case of an M/G/1/1
primary queue. Artalejo (1996) has obtained stability conditions for the Markovian
M/M/2/2 case. Ramalhoto and Gómez-Corral (1998) have deduced stability condi-
tions for the M/M/1/2 case. For the general Markovian M/M/c/K case, Ramalhoto
and Gómez-Corral (1998) have obtained decomposition results assuming ergodicity
(stability). The ergodicity conditions for the multiserver Markovian M/M/c/c case
with recovery probability have been derived by Artalejo et al. (2001). Finally, a
sufficient stability condition of the general single-class retrial system with constant
retrial rate described above is obtained by Avrachenkov and Morozov (2010), which
also turns out to be a necessary one for Markovian systems.

Retrial systems with constant retrial rate can be adopted to model a range of
telecommunication systems, such as a telephone exchange system (Fayolle, 1986),
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multiple access systems (Choi et al., 1992, 1993), short TCP transfers (Avrachenkov
and Yechiali, 2008, 2010), as well as logistic systems (Lillo, 1996). Multi-class multi-
orbit retrial systems are natural extensions of these applications for customers with
different quality of service requirements.

The paper is organized as follows: in Sec. 2 we give a review of some related
previous results (obtained mainly by the authors) concerning the analysis of a one-
class (one-orbit) system. In Sec. 3, we develop the stability analysis of a multi-orbit
system, and deduce necessary stability conditions for such a system. Finally, in
Sec. 4, we present simulation results which demonstrate a remarkable consistency
with the theoretical results, and show that the observed conditions are very likely
to be necessary and sufficient stability criteria (at least for the considered systems).

2. Preliminary Results

First, we introduce a more precise notion of stability, by means of the regenerative
property of the system. For the GI /G/m/K-type retrial system mentioned above,
we consider the (right-continuous) process X = {X(t) := N(t)+ ν(t), t ≥ 0}, where
at instant t, N(t) is the number of customers in the orbit (the orbit size), and ν(t)
represents the total number of customers in the servers/buffer. Of course, ν(t) ≤ K,
while the orbit size N(t) can be unlimited. Denote by Xn = X(t−n ) the total num-
ber of customers just before the nth primary arrival, n ≥ 1. Then regeneration
epochs {Tn} of the processes {X(t)}, {Xk} (and other processes describing the sys-
tem) occur when a primary arrival meets an empty system. Therefore, regeneration
epochs can be defined recursively by the following standard way:

Tn+1 = inf
k

(tk > Tn : Xk = 0), n ≥ 0 (inf ∅ = ∞). (1)

Let T be a generic regeneration period under a zero initial state, i.e., T = inf(tk >

0 : Xk = 0 |X1 = 0) provided t1 = 0. The process X is called positive recurrent if
(Morozov, 2004; Sigman, 1990)

ET < ∞. (2)

If (2) holds, then under mild regularity assumptions (say, if the input is Poisson)
the stationary distribution of {X(t)} (and other related processes) exists as t → ∞
(Asmussen, 2003).

Let us now consider the basic bufferless M/M/1/1-type retrial system (denoted
as Σ). In this case the pair Y (t) := (N(t), ν(t)) is an irreducible Markov process
with state space S = Z+ × {0, 1}. We denote by

Pij = lim
t→∞ P{N(t) = i; ν(t) = j}, (i, j) ∈ S, (3)

its stationary distribution, when it exists. The total number of unsuccessful attempts
to enter the server is a superposition of the blocked (primary) λ-customers and
the unsuccessful attempts of the secondary (orbit) customers. Denote by Pbusy =
limt→∞ P(ν(t) = 1) the stationary busy probability of the server. It follows from
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the explicit form of the distribution (3) by Artalejo et al. (2001) that the stability
criterion of this Markovian system is given by

(λ + µ0)Pbusy < µ0, (4)

where Pbusy :=
∑

i Pi1. To give an intuitive explanation of this result, we consider
a more general M/G/1/1-type retrial system (again denoted as Σ), and also an
associated auxiliary system (denoted as Σ̂) which consists of a first M/G/1/1 system
where the input is a superposition of the same λ-input and a Poisson input with
rate µ0, and a second ·/M/1 system (the virtual orbit) whose input is the stream
of jobs blocked at the first system. Because the server in the first system of Σ̂ is
more loaded, one expects that the rate of blocked jobs in Σ̂ is larger than the rate
of unsuccessful attempts in the original system Σ. Then it is easy to see that the
following condition must imply the stability of the virtual orbit, and hence, as shown
by Avrachenkov and Morozov (2010), the stability of the real orbit in the original
system Σ

(λ + µ0)Ploss < µ0, (5)

where Ploss is the stationary loss probability in the first system of Σ̂. It is proved
by Avrachenkov and Morozov (2010) that even a general GI /G/m/K-type retrial
system is indeed stable under condition (5). Moreover, condition (5) is in particular
also the stability criterion for a system with Poisson λ-input. On the other hand, it
is proved by Morozov and Nekrasova (2012) for a bufferless M/G/1/1-type retrial
system (also see Theorem 1 below) that

Pbusy = λES := ρ. (6)

(Note that by the PASTA property, Pbusy is also the stationary blocking probability
Porb of primary customers.) Finally, using Erlang’s formula for the first loss system
of Σ̂, we have

Ploss =
(λ + µ0)/µ

1 + (λ + µ0)/µ
=

λ + µ0

µ + λ + µ0
. (7)

A bit surprising but easy to check is that for the M/G/1/1-type retrial system,
conditions (4) and (5) are in fact equivalent and can be written in the form (setting
λ = 1 without loss of generality)

1
µ0

+ 1 < µ, (8)

which is easily adopted to numerical investigation of the stability region, by varying
the two parameters µ0 and µ (see Fig. 1). Again, using Erlang’s formula and stability
condition (5), it is shown by Morozov and Nekrasova (2012) that the M/G/2/2-type
retrial system (with rate λ = 1) is stable if µ > 1/2 and

µ0 >
µ
√

µ2 + 2µ − 1 + 1 − µ2 − µ

2µ − 1
. (9)

Figure 2 illustrates the stability/instability region for such a 2-server system.
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Fig. 1. Stability/instability zone for the M/M/1/1-type system with λ = 1.

Fig. 2. Stability/instability region for the M/M/2/2-type retrial system with λ = 1.

Condition (5), in turn, can be rewritten as

ρ + ρ
λ

µ0
< 1. (10)

One can check using (3) that in the M/M/1/1-type retrial system the term

ρ
λ

µ0
=
∑
i>0

Pi0 > 0

is the stationary probability that the server is free while the orbit is not (we believe
that this term in (10) has the same sense also in the M/G/1/1-type retrial system).
It means that service discipline in this system is not work-conserving.
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Note that as µ0 → ∞, condition (10) approaches the stability criteria ρ < 1 of
the classical M/G/1/∞ system. If µ0 → 0, then ρ(1 + λ/µ0) → ∞, and thus the
system becomes unstable for any ρ > 0. Both these results are intuitively clear.

As it has been mentioned, retrial systems with renewal input have a regenera-
tive property. Again, consider the general GI /G/m/K-type retrial system, and let
{zn}n≥0 be the instants when all attempts (successful or not) happen (note that the
external renewal input epochs {tn} ⊆ {zn}). Recall that the process X describes the
total number of customers in the system (in servers, buffer and orbit), and denote
X(z−n ) := X̂n, n ≥ 1. It is evident that the process X̂ := {X̂n} regenerates at
the instants when a λ-customer meets an empty system. That is, the regeneration
instants {βn} are defined by the standard recursion

βn+1 = inf{k > βn : X̂k = 0}, n ≥ 0 (β0 := 0). (11)

These regenerations (as well as regenerations (1) in continuous time) allow us to
develop both the stability and performance analysis of the retrial system. Thus,
if the stability condition (5) holds, then the regenerative process X̂ is positive
recurrent; i.e., the mean cycle length Eβ < ∞.

When the opposite condition (λ + µ0)Ploss > µ0 is satisfied, the orbit increases
with no limit as time increases. Thus, after an (finite w.p.1) instant t0, the orbit is
always nonempty and the stream of attempts going from orbit to server is coupled
with the Poisson input with rate µ0. In this case, the process X̂ is not positive
recurrent (in fact, it is strongly unstable), and it is impossible to use the regenerative
methodology. Hopefully, in this case we can use the so-called quasi-regenerations to
evaluate/estimate the blocking probability Porb. Denote νk = ν(t−k ). The quasi-
regenerations are defined as instants when an arriving λ-customer meets an empty
buffer and server(s), while the state of orbit is arbitrary. More precisely, if α0 := 0,
then the quasi-regeneration instants are defined as follows:

αn+1 = inf(k > αn : νk = 0), n ≥ 0. (12)

Applying such quasi-regenerations for a reliable estimation of Porb in the nonsta-
tionary system Σ has been discussed, by Avrachenkov and Morozov (2010) and
Avrachenkov et al. (2011). It was shown that the distribution of the state of server
in the original M/G/1/1-type retrial system approaches that in the associated aux-
iliary system Σ̂ (with two independent Poisson inputs with rates λ and µ0). In other
words, starting from instant t0, quasi-regenerations become classical regenerations
of the process {ν(t), t ≥ 0}, solely describing the state of the server. As shown by
Avrachenkov et al. (2011) and Morozov and Nekrasova (2011), quasi-regenerative
simulation demonstrates a remarkable accuracy of the estimation of blocking prob-
abilities in M/M/1/1-type and M/Pareto/1/1-type retrial systems. We stress that
in the nonstationary regime, Porb = Ploss, and hence we can compare simulation
results with the explicit value of Porb satisfying (7).

We now deduce an expression for the stationary busy probability Pbusy in the
multiserver retrial system in an explicit form. Since the servers are equivalent, we
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use a uniform distribution to assign a server (among the free ones, if any) for an
arriving customer (primary or retrial). Denote by Bi(t) the busy time of server i

in interval (0, t], then from the previous assumptions it follows that the processes
Bi(t) are stochastically equivalent, i = 1, . . . , m. Thus, if the limit exists, we can
write

Pbusy = lim
t→∞

Bi(t)
t

, i = 1, . . . , m. (13)

Note that in all statements below, stability means positive recurrence of the process
X and other related regenerative processes in the system (i.e., positive recurrence of
the system, for short). Because the (short) proof of the following statement obtained
by Morozov and Nekrasova (2012) is very instructive, we reproduce it here.

Theorem 1. Assume that the GI /G/m/K-type retrial system is stable. Then the
following relation holds :

ρ := λES = mPbusy, (14)

where Pbusy is given in (13).

Proof. Denote by V (t) the total workload that has arrived in the system in interval
(0, t], and let W (t) be the remaining workload (in orbit and in servers/buffer) at
instant t. The busy time of all servers, in interval (0, t] is B(t) =

∑m
i=1 Bi(t). Then

we obtain the following balance equation:

V (t) = W (t) + B(t) = W (t) +
m∑

i=1

Bi(t), t ≥ 0. (15)

Let A(t) be the number of arrivals in interval (0, t], and note that

V (t) =
A(t)∑
k=1

Sk, (16)

where Sk is the service time of customer k. By the strong law of large numbers, we
have V (t)/t → λES := ρ. By positive recurrence, W (t)/t → 0 as t → ∞ w.p.1 (or
W (t) = o(t)) (Smith, 1955), and also the following limit limt→∞ Bi(t)/t exists and
is equal to the stationary busy probability of (arbitrary) server i = 1, . . . , m. That
is, formula (13) holds. It then immediately follows from (15) that ρ = mPbusy, and
the proof is completed.

It is interesting to note that the same result (14) holds in stationary regime for
the classical m-server system with no losses. However, its stability condition ρ < m

differs from the necessary stability condition ρ/m < 1 for the retrial system, which
comes from the requirement Pbusy < 1. We stress that our result is independent of
the retrial rate µ0. (But of course, the orbit service rate µ0 plays an important role
to guarantee positive recurrence.)
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3. Multi-Orbit System

This section is devoted to a multi-class multi-orbit retrial system with constant
retrial rates. Extending the analysis of the previous section, we consider now the
m-server retrial system with N classes of customers and N orbits. In general, class-
i customers follow a renewal arrival process with rate λi, have i.i.d. service times
{S(i)

n , n ≥ 1} with rate µi = 1/ESi and, provided the buffer is full upon arrival,
join an i-type orbit, i = 1, . . . , N . Thus, there are N different orbits with retrial
customers, and the i-orbit behaves like the orbit of the single-class system discussed
above, with service rate µ

(i)
0 . Let ρi = λi/µi, i = 1, . . . , N . In order to apply the

previous analysis, we assume that the model has regeneration instants (1) and (11).
In general, there is a difficulty to construct regenerations for a superposition of
renewal processes in continuous time, therefore we will assume that it is nonetheless
possible in our setting, and again denote by T a typical regeneration period. There
are mild assumptions to guarantee the existence of such regenerations (Asmussen,
2003). For instance, note that this is a valid assumption in case of Poisson inputs.

To establish a necessary stability condition for the multi-class system, we first
need the following result.

Theorem 2. If the N -orbit retrial system is stable (positive recurrent) then

N∑
i=1

ρi = mPbusy, (17)

where Pbusy is given by (13).

Proof. Denote by Ai(t) the number of i-class customers that arrived in the interval
(0, t], i = 1, . . . , N . Then, adopting a similar notation as before, we find that

V (t) =
N∑

i=1

Ai(t)∑
n=1

S(i)
n ,

and it follows that w.p.1

lim
t→∞

V (t)
t

=
N∑

i=1

ρi. (18)

Then the balance equation (15) implies (17).

Thus, the basic necessary stability condition of this system is

N∑
i=1

ρi < m, (19)

which is the stability criterion for a classical infinite buffer system with N (Poisson)
inputs and m servers.
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We note that for Poisson arrivals (invoking the PASTA property), the probability
Pbusy is also the stationary blocking probability for arriving primary customers.

We start from the observation that stability condition (4) for a single-class
M/G/1/1-type retrial system can be written as

λPbusy < µ0(1 − Pbusy), (20)

which has a nice intuitive interpretation. Indeed, in a stable regime, the left-hand
side is the rate of the (primary) blocked customers, while the right-hand side is the
rate of the orbit customers which successfully enter the server.

As the following Theorem 3 shows, this result is generalized (as necessary stabil-
ity conditions) to a retrial system with N orbits and N -classes of primary customers,
where the ith class customers are generated by a Poisson arrival stream with rate
λi and have retrial rate µ

(i)
0 , i = 1, . . . , N , in the orbit.

Theorem 3. Assume that the N -class M/G/1/1-type retrial system with N orbits
is positive recurrent. Then the following conditions hold :

λi

N∑
i=1

ρi < µ
(i)
0

(
1 −

N∑
i=1

ρi

)
, i = 1, . . . , N. (21)

Proof. Recall the notation B(t) for the server busy period introduced before, and
note that, in view of the Poisson inputs, the number of the blocked i-class customers
arriving to orbit i in interval (0, t] is stochastically equivalent to Ai(B(t)), i =
1, . . . , N . More precisely, for each t, we couple together all busy (sub)periods of
type i (in interval (0, t]) to obtain a busy time “period” of total length B(t). Then
the Poisson process which is formed by all (blocked) i-class customers arriving
during period (0, B(t)] is equivalent to Ai(B(t)), i = 1, . . . , N . Denote by Di(t)
the number of renewals in the (Poisson) process with rate µ

(i)
0 in interval (0, t],

i = 1, . . . , N . Note that the actual (successful) departures from orbit i happen only
when the server is empty and orbit i is not empty. Hence, the number of departures
from orbit i (in interval (0, t]) is equivalent (again by the PASTA property) to
Di(t − B(t) − Ii(t)), where Ii(t) is the total empty time of orbit i within the empty
periods of the server in interval (0, t], i = 1, . . . , N . Moreover, we have the following
balance equations:

Ai(B(t)) =st Ni(t) + Di(t − B(t) − Ii(t)), (22)

where =st represents stochastic equivalence. Recall that Ni(t) is the size of orbit i

at instant t, i = 1, . . . , N , then from the positive recurrence property (i.e., stability),
Ni(t) = o(t) as t → ∞ w.p.1 for each i (Smith, 1955). Moreover, by the same reason,
it follows from regenerative theory that for each cumulative process {Ii(t), t ≥ 0},
the following limit exists w.p.1:

lim
t→∞

Ii(t)
t

=
EIi

ET
:= γi, (23)
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where Ii is a typical empty period of orbit i within the idle period separating two
adjacent regeneration cycles. We now show that mini γi > 0. Denote by Sj a typical
service time of customer j (with a given distribution function Fj), and select a
constant dj < ∞ in such a way that

Fj(dj) ≡ P(Sj ≤ dj) ≥ σj ,

for arbitrary fixed σj > 0, j = 1, . . . , N . Note that this is possible since maxj ESj <

∞. Denote further Λ =
∑N

i=1 λi as the rate of the merged input, and let τ be a
typical interarrival time of this input. Assume that a regeneration period is started
by a j-class customer which of course enters the server. Note that this happens with
probability

cj =
λj

Λ
, j = 1, . . . , N.

Given this event, the probability that the next customer again meets an empty
system (i.e., starts a new regeneration period), provided that the whole system has
been empty (before his arrival) during a time period not less than some δ > 0,
satisfies the inequality

P(τ − Sj ≥ δ) ≥
∫ ∞

0

e−(x+δ)ΛdFj(x)

≥ e−(dj+δ)Λσj := rj > 0. (24)

It is easy to see that for any i,

EIi ≥ δP(Ii ≥ δ) ≥ δ
∑

i

ciri := r > 0, (25)

and hence, γi ≥ r/ET > 0. Now we apply the strong law of large numbers to obtain
w.p.1, as t → ∞,

Ai(B(t))
t

=
Ai(B(t))

B(t)
B(t)

t
→ λiPbusy,

Di(t − B(t))
t

=
Di(t − B(t))

t − B(t)
(t − B(t))

t
→ (1 − Pbusy)µ

(i)
0 , i = 1, . . . , N. (26)

Moreover,

Di(t − B(t) − Ii(t)) =st Di(t − B(t)) − Di(Ii(t)).

Since Ii(t) → ∞, we then have

lim
t→∞

Di(Ii(t))
t

= lim
t→∞

Di(Ii(t))
Ii(t)

Ii(t)
t

≥ µ
(i)
0 γi > 0, i = 1, . . . , N.

It therefore immediately follows from (19) and (22) that (21) indeed holds.

Remark 1. Note that the basic stability condition (19) with m = 1 follows imme-
diately from the more tight condition (21).
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Remark 2. We have stated above a few times a commonly recognized result, being
that under positive recurrence (stability) conditions, the inequality Pbusy < 1 holds.
Indeed, using the previous proof, one can give strict regenerative arguments to
verify this statement. Namely, the mean empty time of the system (before a new
regeneration cycle starts) is lower bounded by a positive constant r see Eq. (25).
Denote by I(t) an empty time of the system in the interval (0, t]. Then, by positive
recurrence and the property of Poisson inputs, the following limits exist:

lim
t→∞

I(t)
t

=
EI

ET
:= P0 = lim

t→∞P(X(t) = 0),

where I is a typical empty period between two regeneration cycles. On the other
hand, it is easy to see that r ≤ EI. This implies that P0 > 0 and hence, Pbusy < 1.

As the simulation results in Sec. 4 will show, the stability conditions (21) are,
in fact, the (necessary and sufficient) stability criteria, at least for the considered
2-class retrial systems. To support these observations, we note that B(t) ≤ V (t)
and V (t)/t →∑

i ρi regardless of the regime of the system. In particular, this holds
if the system is not positive recurrent, implying ET = ∞. (Note that in this case
we cannot claim that W (t) = o(t), Ni(t) = o(t), t → ∞, and the previous analysis
based on balance equations such as (15) becomes useless.) Nevertheless, we may
deduce from Ai(B(t)) ≤st Ai(V (t)) that the following upper bound for the input
rate to orbit i holds:

lim sup
t→∞

Ai(t)
t

≤ lim
t→∞

Ai(V (t))
V (t)

V (t)
t

= λi

∑
ρi, i = 1, . . . , N. (27)

On the other hand, the maximal long-term output from orbit i, that is, the potential
rate of the (successful) attempts of orbit-i customers from a permanently nonempty
orbit is lower bounded by

lim inf
t→∞

Di(t − B(t))
t

= lim
t→∞

Di(t)
t

− lim sup
t→∞

Di(B(t))
t

= µ
(i)
0 − lim sup

t→∞
Di(B(t))

B(t)
B(t)

t

= µ
(i)
0 − µ

(i)
0 lim sup

t→∞
B(t)

t
≥ µ

(i)
0

(
1 −

∑
i

ρi

)
, i = 1, . . . , N. (28)

To obtain the last equality, we use the convergence w.p.1 B(t) → ∞. Moreover, to
obtain the last inequality in (28), we rely on the following observation. While in the
stable regime, we may write (see, for instance (15)),

lim
t→∞

V (t)
t

= lim
t→∞

B(t)
t

=
∑

i

ρi, (29)
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while in the nonstable regime, we obtain the inequality

lim sup
t→∞

B(t)
t

≤
∑

i

ρi, (30)

because the orbit customers accumulating into an infinitely increasing orbit size
actually cannot reach the server in a finite time, and in fact “disappear” (lost).
Thus, under conditions (21), as follows from (27)–(30), the long-term input rate to
(each) orbit is less than the potential long-term output rate from the (“saturated”)
orbit. This exactly corresponds to what happens in a classical system under the
typical stability (negative drift) condition. It indicates that conditions (21) must
also be sufficient stability conditions. Although we may deduce from this discus-
sion that each orbit does not increase unlimitedly (in a sense), however, increasing
asynchronous oscillations of different orbits are still possible, in principle. This in
turn, does not allow one to uniformly upper bound all orbits sizes and, as a result,
to establish stability.

4. Simulation Results

In this section, we present some numerical results which show that conditions (21)
are not only necessary, but in fact are stability criteria, at least for the considered
2-class (2-orbit) M/G/1/1-type retrial systems. This is verified for exponential and
Pareto service time distributions. For such a stationary system, using previous nota-
tions, we have Pbusy = ρ1 + ρ2 and, by Theorem 3, necessary stability conditions
are

λ1Pbusy < (1 − Pbusy)µ
(1)
0 , (31)

λ2Pbusy < (1 − Pbusy)µ
(2)
0 . (32)

We consider a particular case, µ1 = µ2 := µ. The stability/instability region of
such an M/M/1/1-type system with parameters λ1 = 0.5 and λ2 = 4 is plotted
in Fig. 3. The values of parameters (µ, µ

(1)
0 , µ

(2)
0 ), when condition (31) holds, while

condition (32) is violated, is shown by the inclined hatching zone on Fig. 3 (i.e., the
intermediate region between the two full curves). To obtain the opposite case, one
can take, for instance, µ = 15, µ

(1)
0 = 0.01 and µ

(2)
0 = 4. Define the stability measure

of orbit i as [see (32)]

Γ(i) := 1 − Pbusy

(
λi

µ
(i)
0

+ 1

)
, i = 1, 2. (33)

By analogy we can define the corresponding instability measure Γ̂(i) := −Γ(i),

i = 1, 2.
As simulation shows, these measures allow to delimit stability/instability regions

with a remarkable accuracy.
We study the dynamics of the orbits depending on the value of the above intro-

duced measures. Figures 4–7 show the dynamics for the M/M/1/1-type system with
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Fig. 3. Stability/instability region for the 2-class M/M/1/1-type system with λ1 = 0.5 and λ2 = 4.

Fig. 4. Orbit dynamics for the 2-class M/M/1/1-type system with Γ(1) = 0.493, Γ(2) = 0.1 and
µ = 10.
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Fig. 5. Orbit dynamics for the 2-class M/M/1/1-type system with Γ(1) = 0.493, Γ(2) = −0.05 and
µ = 10.

Fig. 6. Orbit dynamics for the 2-class M/M/1/1-type system with Γ(1) = 0.504, Γ(2) = −1.25 and
µ = 10.

Fig. 7. Orbit dynamics for the 2-class M/M/1/1-type system with Γ(1) = −3.05, Γ(2) = −8 and
µ = 2.5.
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λ1 = 0.5, λ2 = 4 and different Γ(i). For instance, as Fig. 4 shows, both orbits are
stable due to Γ(1) > 0, Γ(2) > 0.

Figures 5 and 6 demonstrate the situation when Γ(1) > 0, Γ(2) < 0, that is, when
only the 1st orbit satisfies the stability condition. It is expected that the 1st orbit is
stationary, while the 2nd one will be unstable, and this is confirmed by the results
shown in these figures. Moreover, as Fig. 6 shows, the 2nd orbit evolves faster to
infinity compared to the case presented in Fig. 5. This can be explained by the
larger value of the instability measure Γ̂(2). Finally, as Fig. 7 shows that both orbits
become unstable when both conditions (31) and (32) are violated, that is Γ(1) < 0
and Γ(2) < 0.

In addition, Figs. 8 and 9 demonstrate the dynamics of the orbits for the 2-class
M/Pareto/1/1-type system with Pareto service time complementary cumulative
distribution function P(S ≥ x) = (x/x0)−α, x ≥ x0 (with the scale parameter

Fig. 8. Orbit dynamics for the 2-class M/Pareto/1/1-type system with Γ(1) = 0.04, Γ(2) = −9
and µ = 0.875.

Fig. 9. Orbit dynamics for the 2-class M/Pareto/1/1-type system with Γ(1) = −9, Γ(2) = 0.006
and µ = 0.875.
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x0 = 1 and the shape parameter α = 8) with input rates λ1 := 0.1, λ2 := 0.7 and
service rate µ = (α− 1)/(αx0) = 0.875. Again these results are consistent with the
observed stability conditions.

Thus, as simulations show, conditions (31) and (32) are, in fact, stability criteria
for (at least) the 2-class retrial systems considered here.

5. Conclusion

In this paper, we have considered a retrial queueing system with N classes of cus-
tomers in which a class-i blocked customer joins orbit i. Orbit i operates as a
single-server queueing system with exponential service time with rate µ

(i)
0 , which

is indeed the constant retrial rate of orbit i-class customers in our model. We have
obtained the necessary stability conditions of such a system, expressed in terms of
the system parameters that are given. Interestingly, these conditions have a clear
probabilistic interpretation. Simulations demonstrate that these condition allow to
delimit the stability region with a remarkable accuracy. These results, combined
with some key observations concerning the retrial system, strongly indicate that
these conditions are indeed the stability criteria, at least for the considered 2-orbit
M/M/1/1 and M/Pareto/1/1 systems.
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