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Abstract

In this paper we present two applications of the adjoint variable method (AVM). First
we consider a design optimization problem in magnetic shielding. The objective is to reduce
the magnetic stray field of an axisymmetric induction heating device for the heat treatment
of aluminum discs. We involve two types of shielding, the passive and the active shielding.
In the former, one needs to optimize the geometry of the passive shield. In the latter, the
position of all coils and the real and imaginary components of the currents (when working in
the frequency domain) must be determined.

Second application involves determination of the dissipation parameter in micromagnetic
model of ferromagnetism. The micromagnetic model governed by the Landau-Lifshitz equa-
tion includes the dissipation parameter α that in some cases can be a space dependent func-
tion. The actual distribution of α however can be unknown and must be determined by
measurements of the magnetization in the workpiece.

Using AVM method, one obtains the derivative of cost functional in terms of an adjoint
variable. The main advantage is that the number of direct problem simulations needed to
evaluate the derivative is independent of the number of parameters.

1 Introduction

From the point of view of accuracy and time-efficiency in finding the optimum solution in design
space, the design sensitivity analysis (DSA) appears to be very competitive compared with other
optimization methods. We can distinguish between two types according to the technique used
to compute the derivative of an objective function [1]: the discrete DSA, where the gradient
information is obtained from direct differentiation of the discretized algebraic system matrix, and
the continuum DSA, where an analytically derived sensitivity formula is used for the gradient
information. This formula uses the adjoint variable. We exploit both methods.

Direct differentiation method. Derivatives of the state variables with respect to the design
variables are predicted by introducing small variation of the design variable, re-evaluating
the cost and approximating the derivative by dividing the subtraction of both cost values by
the perturbation step. Then design variables are properly updated and process simulation
is performed again. The procedure is repeated until an optimal design is achieved. The
method is ideal for dealing with a general class of optimal design problems.

Adjoint variable method. The method differs from the direct differentiation method in that
it calculates the design sensitivity by introducing adjoint variables, to avoid calculating the
derivatives of the state variables with respect to the design variables. The method becomes
computationally more efficient than the direct differentiation method as the number of design
variables is increased.
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2 Simple example of AVM

In order to understand the meaning of the adjoint system, we briefly describe the key ingredients
of the derivation and of the use of such an adjoint system. We demonstrate the use of AVM on a
simple example:

Example 1. For an insulated metal rod with conductivity coefficient k consider the following

Neumann problem of the heat conduction

At − kAxx = f, for (x, t) ∈ ΩT := (0, 1) × (0, 10)
Ax(0, t) = Ax(1, t) = 0, for t ∈ I := (0, 10)
A(x, 0) = A0, for x ∈ Ω := (0, 1),







(1)

where k, f are constant functions. For a given function Af determine two scalar values k, f in

order to minimize the cost functional 1
2

∫

ΩT
(A − Af )2dxdt.

In this example the design space is a vector P = (k, f) and the cost functional takes the
form F (A, P ) = 1

2

∫

ΩT
(A − Af )2dxdt. We denote by δ a formal derivative of a function with

respect to P in direction µ, namely δu = ∂u
∂P

µ. Differentiation of F with respect to P gives
δF =

∫

ΩT
δA(A − Af )dxdt.

We derive the so called sensitivity equation by formal differentiation of (1) with respect to P
in direction µ

δAt − kδAxx − δkAxx = δf, for (x, t) ∈ ΩT

δAx(0, t) = δAx(1, t) = 0, for t ∈ I and δA(x, 0) = 0, for x ∈ Ω.

}

(2)

The adjoint system looks like

−ϕt − kϕxx = A − Af , for (x, t) ∈ ΩT

ϕx(0, t) = ϕx(1, t) = 0, for t ∈ I and ϕ(x, 10) = 0, for x ∈ Ω.

}

(3)

Notice the pseudosource A − AF appearing in the adjoint system. This term comes from the
expression for δF. Next we integrate over time-space domain the multiplication of the principal
equation, first from (2) with ϕ, and second from (3) with δA. Resulting two equations we subtract
to obtain

∫

ΩT

δkAxxϕdxdt +

∫

ΩT

δFϕ =

∫

ΩT

(A − Af )δAdxdt =
∂F

∂P
µ. (4)

In such a way we obtained an explicit expression for the derivative ∂F
∂P

µ for an arbitrary µ involving
one solution of the adjoint system denoted by ϕ. So if P has 1000 components, only one solution
of an adjoint system is necessary in order to obtain ∂F

∂P
µ. In the case of direct differentiation, it is

necessary to evaluate 1000 times the direct problem. Note, that the direct problem has the same
structure as the adjoint problem, so for the solution of an adjoint system one can use the direct
solver with different pseudo-source and no re-implementation is necessary.

3 Magnetic shielding optimization problem

We applied the above described AVM in the design optimization problem of the magnetic shielding.
The setting is described in Figure 1. We consider the axisymmetric case with the axis of rotation
being the left part pf the boundary Ω. Similar setting was explored in [6].

The governing equations in time harmonic domain read as

∇
[

(µ(P))−1∇A(P)
]

+ ∂/∂r
(

(rµ(P))−1A(P)
)

− jωσ(P)A(P) = −Je(P),

equipped with the following boundary conditions A = 0 on Γ1 and ∇A · n = 0 on Γ2. Further
developments will be done using weak formulation of the above problem.
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Figure 1: Domain Ω. Γ2 is the bottom horizontal boundary of Ω and Γ1 is the rest of the boundary
of Ω; ΩW is the workpiece generating the stray field, ΩP is the passive shield; ΩTA is the target
area that has to be shielded; ΩCi

are the compensation coils of the active shield.

The objective value is a function of the scalar potential A and of ∇A. First of all, it takes
into account the magnetic field in the target area (FB): the main objective is to minimize the
magnetic induction B = ∇×A in the reference region ΩTA which in the axisymmetric case can be
taken as B = ∇A. Other objective values in the multi-objective optimization are the dissipation
in the passive shield (FP ), the dissipation in the active shield (FA), the change of the heating of
the workpiece by the adding of shields (FW ) and the volume of the passive shield as an investment
cost (FV ). The complete cost functional takes the form

F (P) = w1FB + w2FP + w3FA + w4FW + w5FV ,

where wi, i = 1, . . . , 5 are appropriate weights and the corresponding subfunctionals are given by

FB =
1

2
‖∇A‖2

ΩT A
, FP =

1

2
σω2‖A‖2

ΩP
, FA =

πrρ

SA

n
∑

i=1

(I2
r,i + I2

i,i),

FW = PW,0 −
1

2
σω2‖A‖2

ΩW
, FV = 2πrphptp.

Herein, SA is the cross section of an active shield coil and ρ is the resistivity of the coil material. The
constant PW,0 is the power dissipated in the workpiece without shields present. Further, rp is the
position and hp the height of the passive shield with thickness tp in steel, and Ir,i, Ii,i, i = 1, . . . , n
are the (complex) currents of the n active shield coils in the axisymmetric problem.

Following the idea presented in Example 1 one can construct the following adjoint problem
formulated in weak sense: Find θ ∈ H0,Γ1

(Ω) such that for all ϕ ∈ H0,Γ1
(Ω) the following holds

(µ−1∇ϕ,∇ξ) + (jωσϕ, ξ) +
(

(µr)−1ϕ, ∂ξ/∂r
)

= a(ϕ). (5)

Denoting by (u, v)∗ = 1/2[(u∗, v) + (u, v∗)] the complex conjugate product, we define

a(ϕ) = (∇ϕ,∇A)∗ΩT A
+ σω2(ϕ, A)∗ΩP

− σω2(ϕ, A)∗ΩW

The explicit expression using the solution of the adjoint problem reads as

δF = (δJe, ξ) − (δ(µ−1)∇A,∇ξ) − (jωδσA, ξ) −
(

r−1δ(µ−1)A, ∂ξ/∂r
)

+
1

2
δσω2‖A‖2

ΩP
+

1

2
σω2

∫

δΩP

A · A∗d(δΩ) +
1

2
δσω2‖A‖2

ΩW
+ 2πrptpδhp

+
2πrρ

SA

n
∑

i=1

(

(δIr,i)Ir,i + (δIi,i)Ii,i

)

+ δr
πρ

SA

n
∑

i=1

(I2
r,i + I2

i,i).
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Optimized parameters Conv. DDM Grad+AVM

Pas. Act. CPU Fmin CPU Fmin

1 hp - 6’ 28” 2.9562 9’ 24” 3.1376

2 hp Ir1, Ii1, r1 8’ 13” 2.9100 8’ 15” 2.9681

3 - Iri, Iii, ri, i = 1, 2, 3 1h 16’ 54” 3.0523 16’ 13” 2.9832

Table 1: Comparison of optimization techniques concerning calculation time and optimal cost
value Fmin for several shielding problems

For more details on derivation of this formula we refer to [5].

Numerical study

We performed a numerical study aiming at the comparison of direct differentiation method (DDM)
and adjoint variable method. We carried out three cases. We optimize:

The height of the passive shield. In optimization 1, the passive shield has conductivity
5.9 × 106S/m and permeability of µr = 372. Table 1 shows that the optimum at 100.1 mm with
its cost 2.9562 is found by the conventional gradient DDM only. The adjoint method finds an
approximation 71.7 of the optimum and a slightly higher objective value.

For such a high value of µ the AVM is very sensible on numerical errors because of the term
δµ. The computed gradients are less accurate for AVM then for DDM. This explains, why AVM
does not find the optimum. However, the costs differ only slightly, so that the solution obtained
by the adjoint method is still an acceptable solution.

Both the passive and the active shield with one coil. In optimization 2, the complex cur-
rent Ir1+jIi1, the horizontal position r1 and the height of the passive shield is optimized (4 param-
eters in total). The following starting value was chosen: [hp, Ir1, Ii1, r1] = [0.060, 200,−121, 0.300].
The gradient method using the adjoint system ends up with a higher cost, because the gradient of
the adjoint method crosses zero and since the gradient is less accurate than in DDM case, the AV
method does not move anymore from the approximated solution. The calculation time of both
gradient algorithms has the same magnitude.

An active shield consisting of 3 coils. Optimization 3 results in 9 optimization parameters
(three times real part of the current, imaginary part of the current and horizontal position).
The starting positions were 0.3, 0.4 and 0.6m, the starting values for the currents were Ir =
[300,−100, 50] and Ii = −Ir/1.65. For 9 variables, the approach using the adjoint variable is much
faster than the conventional DDM algorithm. Moreover, it finds a lower cost value although the
gradients don’t deviate much from the conventional ones.

The detailed results can be found in Table 1. One can clearly see that as soon as the number of
optimized parameters growth, AVM method becomes much more effective in computational costs
and even gives better results then conventional DDM.

4 Determination of micromagnetic parameters

In the micromagnetics, AVM was already successfully used in the design optimization of the
ferromagnetic core in MRAM memories [3]. We applied AVM in the case of determination of a
dissipation parameter in micromagnetics. The micromagnetic model described by the Landau-
Lifshitz equation models the electromagnetic behaviour on very small time and space scales. The
governing equation reads as

∂m/∂t = −γ (m × Heff + αm × (m × Heff)) , in Ω (6)
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(a) exact (b) 0% noise (c) 1% noise (d) 10%noise

Figure 2: Results for smooth exact solution.

(a) exact (b) 0% noise (c) 1% noise (d) 10%noise

Figure 3: Results for discontinuous piecewise constant exact solution.

where the gyromagnetic factor γ is a space and time constant, α(x) is a space variable and time
constant function, and Heff is effective field including anisotropy, demagnetizing, exchange and
applied field effects. System is completed with the initial and boundary conditions m(x, 0) =
m0(x) and ∂m/∂n = 0 on ∂Ω.

The forward problem has been extensively studied in [4] from the numerical point of view and
in [7] from computational point of view.

The aim is to determine α(x) from the measurements of m available over time and space
domain. First we define a cost functional F (α) =

∫

ΩT
‖m−mmes‖

2−‖αn −αn−1‖
2. First term in

the integral minimizes the difference between the measured data and the computed solution, the
second term serves as a regularization. So we end up with a minimization problem described by
the cost functional F subject to PDE (6) describing the relation between state variable m and the
design variable α. The subscript n in αn refers to the nth iteration of the minimization process.

In this case, we approximate αn by the Lagrange first order finite elements. This however
means, that in the case of a regular triangulation of the unit square in 2D Ω = (0, 1) × (0, 1),
where one side of the square is divided into N segments, we have (N + 1)2 degrees of freedom, so
our design space has dimension (N + 1)2. The direct differentiation method can not be used in
this case, since the computation of one gradient would require (N + 1)2 evaluations of the direct
problem. In this particular example, one can see the strength of the adjoint variable method.

We do not provide the actual form of the adjoint problem, for the details we refer to [2]. We
provide the numerical simulations.

Computations

We set up two scenarios. First we take the exact solution to be a smooth function and then we
test our algorithm on an exact solution with discontinuities.
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Smooth exact solution Take the following exact solution

αexact = 0.02 + 0.01 sin(π2xy), for (x, y) ∈ Ω = (0, 1) × (0, 1)

In Figure 2a the exact solution is depicted. The reconstructed solution can be seen in Figure 2b.
We added noise in order to test the reliability of the algorithm and in Figures 2c and 2d we see
that with 10% noise the results become unreliable.

Piecewise constant exact solution Take the following exact solution

αexact =















0.01 (x, y) ∈ Ω1 = (0.25, 0.5)× (0.25, 5)
0.02 (x, y) ∈ Ω2 = (0.5, 0.75)× (0.25, 5)
0.03 (x, y) ∈ Ω3 = (0.25, 0.5)× (0.5, 0.75)
0 (x, y) ∈ Ω \ (Ω1 ∪ Ω2 ∪ Ω3)

In Figure 3a the exact solution is depicted. The reconstructed solution can be seen in Figure
3b. Comparing the results with noise one can see, that the acceptable noise level is less than 1%.
This is due to the nature of regularization. The L2 regularization used above is more suitable for
smooth functions. In order to obtain better results for discontinuous solution, one need to use
total variation regularization.

5 Conclusions

From our first example, clearly the adjoint variable method is effective for the case when the
design space is higher dimensional. We have seen that optimization using the adjoint variables is
slower than the conventional gradient method in case of less than three parameters to optimize,
comparable in case of three or four parameters and faster in case of more than four parameters.
This is due to the fact that one needs two more additional evaluations of adjoint problem for real
and imaginary part of the unknown.

In our second example we verified that ADV is effective also in the case of inverse problems.
Our design space included 441 degrees of freedom which correspond to the FEM approximation of
the unknown function α(x) on a regular mesh consisting of 2 × 202 triangles. Still, AVM method
was able to capture α(x) acceptably well.
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[6] P. Sergeant, L. Dupré, M. De Wulf, and J. Melkebeek. Optimizing Active and Passive Magnetic
Shields in Induction Heating by a Genetic Algorithm. IEEE Trans.Magn., 39(6):3486–3496,
2003.

[7] D. Suess, J. Fidler, and T. Schrefl. Micromagnetic simulation of magnetic materials. In K.H.J.
Buschow, editor, Handbook of Magnetic Materials, volume 16, pages 41–125. Elsevier, 2006.

6


