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Mirror worlds

This thesis is a thesis on the world of twin buildings, an extension of the
former building theory.

Building theory was orginally developed by J. Tits to give a geometrical in-
terpretation of the theory of semi-simple linear algebraic groups. Implicitely
buildings were born in 1965, in the famous paper [28]. Although at that
time the geometries which J. Tits constructed were not called buildings yet.
Buildings where officially established in the mathematical landscape in 74,
with the appearence of the standard reference [29]. In this work J. Tits gives
a complete classification of spherical buildings (i.e. buildings of finite diame-
ter) of rank bigger than 3. Important in this classification was the fact that
every spherical building of rank bigger than 3 is a Moufang building. (Mo-
ufang buildings can best be seen as buildings with a high degree of symmetry.)

A lot of techniques used in this work found their inspiration in algebraic
group theory. Especially J. Tits succeeded in generalizing the concept of a
root datum, the Galois cohomology of algebraic groups and relative algebraic
group theory.

During the 90 new developments in physics (i.e. quantum gravity, super
string theory) led to an interest of mathematicians into a new algebraic struc-
ture, namely Kac-Moody algebras. These structures arose as generalization
of the former will known Lie algebras, symmetry groups of certain physical
systems. Lie algebras are always defined in finite dimensional vector spaces.
The difference in Kac-Moody theory is that Kac-Moody algebras can be de-
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fined in infinite dimensional vector spaces, making the theory in a lot aspects
quite different from Lie algebra theory.

Every Lie algebra corresponds to an algebraic group and conversily every
algebraic group induces a Lie algebra. As J. Tits already succeeded in giv-
ing a geometrical interpretation to linear algebraic groups he and M. Ronan
started to think how a geometry associated to a Kac-Moody algebra would
look like. As a result they introduced the concept of a twin building. One way
to see twin buildings is as a couple of buildings, endowed with an opposition
relation between them. This opposition relation is in fact a generalization
from the fact that the diameter of a spherical building is finite. Intuitively
this opposition relation is as if one would consider a building, put it before
a mirror and consider the reflected building as its twin.

In the standard reference [32] J. Tits describes a possible classification pro-
gram for twin buildings. The techniques he proposes hereby are quit related
to the ones used in [29]. Having made a phd on a part of building theory
that has strong connections with twin building theory, Bernhard Miihlherr
got interested in this classification. In particular he wanted to get a classi-
fication of 2-spherical twin buildings, i.e. twin buildings where the diameter
is locally finite.

A first major result needed to start the classification was proved in '92 by
Bernhard Miihlherr and M. Ronan in [18]. Using this result they could prove
that the two parts of a twin building are in the 2-spherical case Moufang
buildings and that a twin building is completely determined by its local da-
tum, namely a Moufang foundation.

The next important steps towards a classification were taken in [21] and [20].
In [21] Bernhard Miihlherr succeeded in extending the relative theory of alge-
braic groups and the Galois cohomology to the field of twin buildings. This
led to [20] where the classification of 2-spherical twin buildings is reduced to
a classification of three types of geometries. Namely twin buildings of type
Ay, B, and 443.

As buildings of A, where studied before thoroughly (cfr. [35, 36]) this left
to problem of classifying twin buildings of type B, and 443. This was the
starting point of writing this thesis. In the end I got a classification of B,
twin buildings where the geometries are locally classical or indifferent and a
integrability criterion for twin buildings of type 443. During the process of



finding the right tecniques the theory developed could in some cases also be
used to solve other non related problems.

The thesis is organised in four Chapters.

Chapter 1 gives an overview of the definitions and notations used in the
thesis.

Chapter 2 consists of the proofs of two theorems. The first theorem was
a problem known to be true but no real formal proof was written down. It
concerns the fact that every Moufoufang building can be seen as half of a
twin building. This problem was stated in [29] with a strategy of a proof.
But J. Tits mentions that the proof is not straightforward and some new
concepts should be introduced. In order to get familiar with twin building
theory, I had to solve this problem. At this point I have to mention this
result was found independantly by P. Abramenko and I should thank him
for the mathematical discussions and suggestions conderning this problem.
The second theorem deals with a local characterization criterion for twin
buildings which was also found independantly by P. Abramenko and H. Van
Maldeghem.

In the setup of [29] and [20] a classification of 2-spherical twin buildings
relies heavily on a carefull study of Moufang sets. Moufang sets are in fact
the smallest twin buildings and form the building blocks of every twin build-
ings. Therefore we give in this chapter a classification of the Moufang sets
needed to classify B, twin buildings which are locally classical of indiffer-
ent. The problems which arose here are quit related to Borel Tits theory
(cfr. [2]), classical theory on orthogonal, hermitian and unitary groups of
Witt index 1 (cfr. [6, 7]) and algebraic group theory (cfr. [27]). But as all
these theories only work under restrictions, which had to be avoided for the
classification, a completely new setup was developed and some new results
on classical groups came out. (cfr. Theorem 127) As a byproduct of the
theory developed in Chapter3, a local characterization of classical Moufang
sets could be proved (cfr. Theorem 132).

The final chapter deals with classification and integrability conditions.
As already mentioned by the results in [18], twin buildings are completely
determined by their local data which are called Moufang foundations. Hence



to classifiy twin buildings one has to give a list of existing Moufang foun-
dations, and then try to see which Moufang foundations are integrable (i.e.
isomorphic to the local data of a Moufang building).

As in almost all cases (by the results of Chapter 2 and [18]) twin buildings
and Moufang buildings of type B, are the same objects we preferred working
in this chapter with Moufang buildings instead of twin buildings. In particu-
lar we give a classification of B, Moufang buildings which are locally classical
or indifferent and prove integrability conditions for Moufang foundations in
Moufang buildings of type 443.

To give a list of existing foundations of type B, we rely heavily on the re-
sults of Chapter 3. To prove integrability we again rely on Chapter 3 and
the results proved in [23]. Moreover to complete the classication we prove
a theorem (cfr. Theorem 151) which uses representations of Moufang sets
and properties of the geometry. Similar techniques could be used to prove
a integrability criterion for Moufang foundations of type 443 (cfr. Theorem
158).
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CHAPTER 1. PRELIMINARIES

1.1 Conventions and notations

X
cox(Y)

PG(E)
GLn (k)

G

ord(g)
Z(G)

[917 92]
Fizg(Y)
Stabg(Y)
Id
H;'n:19j

Dy Oy

i),

cardinality of a set X

complement of a set Y in X

natural numbers

integers

real numbers

generalized quaternion algebra

standard involution of a certain

generalized quaternion algebra H

division ring

characteristic of a division ring k

vector spaces

dimension of a k-vector space

if k is clear from the context this is also
denoted by dim(V)

projective space associated to a vector space E.
general linear group acting on a n-dimensional
right k-vector space

group

order of an element g of a group

center of a group G

commutator of two elements ¢g; and g, of a group G
{9 € Glg(y) =y,Yy € Y}, where G acts on a set ¥
{g € Glg(Y) =Y}, where G acts on a set ¥
identity map

0.0 ... 0,

91’192’1 R 9171-(1) +... +91,m92,m ca Hi(m)’m

1.2 Definitions

In this section we list the most frequently used definitions in the sequel. Mo-
tivation of concepts will be indicated where it is possible.
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1.2.1 Coxeter systems

Definition 1 Let I be a set. A Cozeter matriz M over I is a symmetric
matrix M = (my;);jer with m;; € NU oo such that m;; > 2, i # j and
my;, = 2.

Given a Coxeter matrix M over I we denote by E(M) the set {{, 7} |m;; >

3.

Definition 2 Let M be a Coxeter matrix over a set I. Then we denote by
G(M) the graph whose vertices are the elements of i and where i, j € I are
adjacent whenever {i,j} € E(M).

For a J C I we set MJ = (mU)Z’]E]
Notice that by the above definition M is a Coxeter matrix over J.

Definition 3 Let M = (m;;); jer be a Coxeter over I and M = (1) ek
be a Coxeter matrix over K. An isomorphism between M and M is defined as
a bijection ¢ from I to K such that m;; = my@)e), ¥ 1,7 € 1. A embedding
from M to M is an isomorphism from M to a Coxeter matrix of the form
My where K' ¢ K

Definition 4 A Coxeter matrix M = (m;;); jer will be called 2-spherical
whenever m;; is finite V ¢, 5 € I.

Definition 5 Given a Coxeter matrix M, a Cozeter system of type M is a
couple (W, (s;);er) where W is a group with presentation W = (s;|(s;s;)™%).
The rank of a Coxeter system is the cardinality of I. A Coxeter system
(W, (s4)ier) is called spherical if the group W is finite.

The set (s;)ie; will also be denoted as S. The group W is called a Coxeter
group of type M. Using standard theory as exposed in [14] and [3] one shows
that if (W, (s;)ier) is a Coxeter system of type M and J C I, (W, (s;)ics) is
a Coxeter system of type Mj.

Definition 6 Given a Coxeter matrix M and a Coxeter system (W, S) of
type M we define for w € W :

l(w) =min{n|w = s152...5,, s; € 5,1 < j < n}.
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An expression of the form s1s5...5,, s; € S, 1 < j < m, will be called
reduced whenever [(s183...8,) =m.

Given w € W, 1,j € I such that m;; < oo, we call w right {i, j}-anti-reduced
if I(ws;) < l(w) and l(ws;) < l(w).

A standard example of a Coxeter group is provided by Euclidean reflection
groups. Namely, consider a finite subgroup G of GL,(R) generated by m re-
flections (r;)1<i<m. Then one can show that the group G has a presentation
of the form G = (s;|(s;s;)™). For more information about reflection groups
we refer to [14].

1.2.2 Root systems

Let M = (mj);jer be a Coxeter matrix over I and (W, (s;);cr) a Coxeter
system of type M = (my;); jer. Remark that every element z € W defines
an permutation (also denoted by z) W if we set :

z(x) = zx.
In this action we call elements of the form ws;w™?, i € I, reflections.

Definition 7 Let M = (m;j);jer be a Coxeter matrix over I. Consider a
Coxeter system (W,S) of type M with S = (s;)ie;. Let s; € S. The root
defined by s; (in W) is defined as the set a; = {w € Wll(s;w) > l(w)}.
All other roots in W are subsets of the form w(a;s) = {wv |v € as} for
some w € W. The opposite root of a root av is defined as cow (a). Given a
root a of the form w(a;) we denote the reflection ws;w™! by s,. For every
root a the boundary of a denoted by da, is the set of pairs {z,y} such that
sa(r) = y. Moreover given a root «, the interior of a is defined as the
set Int(a) = {a \ Oa}. Roots are called positive or negative according to
whether they contain 1 or not. If a root « is positive, this is denoted by
a > 0. Similarly a < 0 means that the root « is a negative root. Remark
that if o is a root in W then s, () = cow ().

Definition 8 Let M = (m;;); jer be a Coxeter matrix over I and (W, (s;):er)
be a Coxeter system of type M = (m;;); jer. Then we call the set of roots ®
a the root system.
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Definition 9 Let ® be a root system such that ® consists of the roots in W
where (W, S) is a Coxeter system of type M. Then we say that ® is of type
M' if and only if M = M'.

Definition 10 Let M = (m;;); jer be a Coxeter matrix over I. Given a root
system @ of type M such that (W, (s;);e) is the Coxeter system with ® the
set of roots in W. A root base or ® is then defines as a set {wa; |i € I},
where w € W and q; is the root belonging to the reflection s;.

Definition 11 Given a root system ®, such that ® consists of the roots in
W, where (W,S) is a Coxeter system. Let A be a root base for ®. Denote
then the Coxeter matrix My = (Map)ases Where mas = ord(sasg).

The definition of root base implies that ® is of type M, for every root base
A e d.

1.2.3 Buildings

Definition 12 Let M = (my;); jer be a Coxeter matrix, (W, S) a Coxeter
system of type M. A building of type M is a quadruple (A, W, S, d) where
A is a set whose elements are called chambers and d is a function, called
distance function, going from A x A to W satisfying :

Bul d(z,y)=1lifandonlyif z =y

Bu2 Let x,y € A with d(z,y) = w. If z is a chamber such that d(y,2) = s
with s € S then d(z,z) € {w,ws}. Moreover if I(ws) > [(w) then
d(z,z) = ws.

Bu3 Let as above z,y € A with d(z,y) = w. If s € S then there exists a
chamber z of A such that d(z,2) = ws.

The rank of the building (A, W, S, d) is defined as the rank of (W, S).

Given a Coxeter system (W, S) of type M = (m;); jer, we can view it as a
building in the following way. The chambers are the elements of W. Define
the distance dy on W by dy (x,y) = 27ty for z,y € W. Straightforward
calculations show that (W, W, S, dw) is a building of type M = (m;;); jer-
To simplify notation a building (A, W, S, d) will sometimes be denoted as
(A,d) or even as A when the rest of the data is clear.
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The concept of a building is due to J.Tits as a result of his research to give a
geometrical interpretation of the theory of semi-simple algebraic groups. A
special class is provided by the buildings of spherical type i.e. buildings of the
form (A, W, S,d) where (W, S) is a spherical Coxeter system. They present
in a natural way the geometry associated to a simple algebraic group. More
information about this subject can be found in the standard reference [29]
where of all spherical buildings of rank bigger that 3 are classified.

An alternative way to look at buildings is described in [25]. Buildings are
defined here as chamber systems with certain properties.

1.2.4 Chamber systems and buildings

Definition 13 Given a set I, a chamber system over I is a set C' such that
each element ¢ € I determines a partition of C. The elements of C' are also
called chambers. Two chambers belonging to the same class of the partition
defined by 4, are called i-adjacent.

It is rather natural to consider galleries in chamber systems. Their struc-
ture expresses in some cases important topological invariants and certain
properties.

Definition 14 Let C' be a chamber system defined over a set I. A gallery
in C'is a sequence of chambers I' = cjcy . .. ¢, such that each pair (¢;, ¢iq1)
is l;-adjacent for some [; € I. The gallery T is said to be non stammering if
l; # liyq for 1 < i < m. The type of the gallery I' is defined as the string
(Ily... 1)

Definition 15 Let C be a chamber system defined over a set [ and J C I. A
J-gallery in C is then defined as a gallery T = ¢y¢s ... ¢, with ¢; [;-adjacent
to ¢;y1 such that [; € J, 1 <7 < m.

Definition 16 Consider a chamber system C over a set I. Let J C I. A
J-residue is a set of chambers in C' such that every two chambers of the
set can be joined via a J-gallery. If a J-residue contains a chamber ¢ we
willdenote it by Ry(c). A {i}-residue with is also called i-panel or sometimes
a panel when 7 is clear from the context.
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Given a set I a sequence of the form (fi, f2, ...,fm) with f; € I, 1 <i < m,
will be called word over I or simply word if I is clear from the context. Let
(W, (si)ier) be a Coxeter system of type M = (m;j); jer- If g = (jijo...J¢) is
a sequence of elements of I then we define

Tg = Sj18j2 N Sji'

A word f = (fi, fo, ..., fin) will be called reduced if I(ry) = m.
Let (A,W,(s;)ier,d) be a building of type M = (m;;); jer- Then we call two
chamber z and y i-adjacent whenever d(z,y) € {1,s;}. Set Ca = A. Then
one easily checks that in this way we get a chamber system Cx over I. Thus
every building gives rise to a chamber system. As to the connection between
buildings and chamber systems we have the following theorem.

Theorem 17 Let (W, (s;)icr) be a Cozeter system of type M = (my;); jer, C
a chamber system over I. If every panel contains at least two chambers and
the function d defined by :

dC(xv y) =Tf
where f is a reduced word if and only if there exists a gallery of type f from
x toy is well defined then (C, W, S,d¢) is a building of type M.
Conversely let (A, W, (s;)icr) be a building of type M = (myj);jer and con-
sider the chamber system Ca over I where Cao = A and where chambers x
and y are called i-adjacent if and only if d(z,y) € {1,s;} then the following
condition holds :

d(x’ y) =Trr
where f is a reduced word if an only if there exists a gallery of type f in C
from x toy.

proof :
Can be derive from section 1 of Chapter 3 in [25]. O

In the sequel we will not always explicitly mention whether we view a build-
ing as chamber system or not if this is clear from the context.

Using the chamber system approach of buildings we define the notion of
morphisms between buildings.

Definition 18 Given two buildings (A, W, S, d) and (A", W, S, d') of the same
type with S = (s;)icr, @ morphism from (A, W, S, d) to (A", W, S, d') is a map-
ping ¢ going from A to A’ such that z and y are i-adjacent if and only if
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¢(x) and ¢(y) are i-adjacent for z,y € A. An isomorphism is also called an
1sometry.

If (W, S) is a Coxeter system of certain type M, an isometry of W on itself,
where we consider W as a building, is given by left multiplication with a
fixed element of W.

1.2.5 Generalized n-gons

Let M = (mij)ijer be a spherical Coxeter system of rank 2. Suppose
(A, W, S,d) is a spherical building of type M. Then there is another way of
defining the geometry of (A, W, S, d) using points and lines (cfr [37]). Firstly
we define what is meant by geometry.

Definition 19 A rank 2 geometry T is a triple (P, L, I), where P, L are
two sets, called the point set resp. line set, and I C (P x L)U (L x P ) a
symmetric relation between P and L.

If (P,L,I)is a rank 2 geometry I is called the incindence relation of T'. A
point p and a line [ are called incident whenever (p,l) € I. The point p
is said to lie on [ and the line is said to pass through p. Two points lying
on a line are called collinear and two lines intersecting in a point are called
concurrent. A flag is a pair (p,l) € P x L such that (p,I) € I. The set of all
flags in T is denoted by F. If p is a point of a rank 2 geometry I' = (P, L, I)
we denote I'(p) = {h € L |(p,h) € I}. Similarly I'(l) ={ ¢ € P |(¢,1) € I}.

Definition 20 Given a rank 2 geometry I' = (P, L, I), a subgeometry T is
a rank 2 geometry (P', L', I') where P' C P, L' C Land I' C I.

Definition 21 Let n > 2 and n € N. A generalized n-gon is a rank 2
geometry I' = (P, L, I) such that the following axioms are satisfied :

(i) T contains no ordinary k-gon as subgeometry for 2 < k < n.

(i) Any two elements v,u € P U L are contained in some ordinary n-gon
(viewed as subgeometry of T'), a so called apartment.

(iii) For any element u € P U L, I'(u) contains at least 3 elements.
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Given a generalized n-gon (P, L, I) for some n > 2 we can construct a spher-
ical rank 2 building in the following way. Consider the Coxeter matrix M

(n 1)

Let (W, (5;)icz) be the Coxeter system of type M. Set A = F. Define a dis-
tance function d on A x A in the following way. For two flags Fy = {p,1,} and
Fy = {p,l,} define d(Fy, F;) = 5. Similarly if F| = {p;,1} and F} = {p,,1}
we define d(F}, Fy) = 5,. Let F = {p,1} and G = {q,h} be two flags. Con-
sider a minimal sequence x5 . .. 2, such that z; € PUL, F; = {z;,z;41} €
F,1 < i < m. Define d(F,G) = d(F\, F,).d(Fy, F3)...d(F,,-1,F,). The
following proposition holds.

Proposition 22 With the notation from above the system (F,W,(5;)1<i<2),
d) is a thick spherical building of rank 2. Conversely every thick spherical
building (A, W,S,d) of rank 2 can be obtained in this way i.e. there ewists
a rank two geometry T such that A is the set of all flags of T' and d is as
defined above.

proof :

We refer to [29] and Theorem 1.3.8 in [37]. O

Definition 23 Let I' = (P, £,I) and I' = (P, L', I') be generalized n-gons.
An isomorphism from T to I" is a bijection 8 from P to P’ and from £ to L’
preserving incidence i.e.

(z,y) €I & (B(2),B(y) € T

A duality from T to I is a bijection from P to £’ and from L to P’ preserving
incidence. If there exists a duality from I" to TV we say that I" and T” are
dually isomorphic.

1.2.6 BN-pairs

As already mentioned buildings arose from the geometrical structure of alge-
braic groups. It is therefore not surprising that they have a group theoretical
counterpart.
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Definition 24 Let G be a group with two subgroups B and N. Then
(G,B,N,S) is a Tits system or BN-pair if the following axioms are satis-
fied :

BNO (B,N) =G.

BN1 H =BNN 4 N and N/H is a Coxeter group with generating set
S ={(si)ier}-

BN2 Bs,BwB C Bs;wB U BwB whenever w € W and s; € S.
BN3 s;Bs; # B for s; € S

If G is a group with a BN-pair (B, N) one can show that G = | |, ., BuB
(for a proof we refer to Lemma 5.1. in [25]). This is the so called Bruhat
decomposition of G. Moreover we have the following theorem.

Theorem 25 Every BN-pair (B,N) in o group G defines building, where
chambers are left cosets of B and distance is given by :

d(gB,hB) = w
where w is the unique element of W such that g *h € BwB.

proof :
Follows Theorem 5.1 in [25] and Theorem 17 O

But not every building can be constructed in such a way. There is how-
ever a special condition that ensures a building (A, W, S, d) to come from a
BN-pair. This is the condition of a group G acting strongly transitive on
A (for more information we refer to p57 in [25]). A special condition which
ensures that such a group exists is the Moufang condition. In order to give
a proper definition of the Moufang condition we need some more terminology.

1.2.7 Moufang buildings

Let M = (mj);jer be a Coxeter matrix over I and (W, (s;);cr) a Coxeter
system of type M. Let ® be a root system of type M = (my;); jer-
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Definition 26 Two roots a and § in W are called prenilpotent if and only if
anf # @ and (—a)N(—F) # @. If two roots a and 3 in W are prenilpotent
then the interval [, B] is defined as the set

{yev¥langcyand (—a)n(=F) C (=)}

If {a, 5} is a prenilpotent pair of roots, the set [, ] \{«, 8} will be denoted
by («, B).

Definition 27 An apartment ¥ in a building (A, W,S,d) of type M =
(mj)ijer is an isometric copy of the Coxeter system (W, S), viewed as the
building (W, W, S, dw), in A. A root in A is defined as an isometric copy of a
root a in A. The boundary of a root in A is defined in a similar way. Given
an apartment ¥ in A, and ¢ € 3, we can define positive and negative roots
with respect to this chamber as follows. Positive roots with respect to ¢ are
those containing ¢, while negative roots are those not containing c. When the
chamber c is clear from the context we will also simply speak about positive
and negative roots in X.

One can prove that apartments always exist and that they characterize the
geometry of the building (cfr. Theorem 3.11. in [25]).

Definition 28 Start with a building (A, W, S,d) of a certain type M =
(my;)ijer- Fix an apartment ¥, and denote the set of all roots in Xy by ®.
Then we call the building (A, W, S,d) a Moufang building if there exists a
family of automorphism groups (U, )acs (called root groups) such that :

Mol Every element u € U, fixes all chambers of «. If 7 is a panel on Ja
and c is the chamber of 7 lying in « then U, fixes ¢ and acts regularly
on all the chambers of 7 \ {c}.

Mo2 If {«, 8} is a pair of prenilpotent distinct roots then :

[Ua, Us] C Ua)-

Mo3 For each u, € U, \ {1} there exists an element m(u,) € U_qu U_4
stabilizing X.

Mod4 If n = m(u,) then for every root 5 € ® we have nUsn ! = U, _(a).
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The apartment Xq will also be called the standard apartment of (AW ,S,d).
Given a Moufang building A with root groups (U, )ace, we define the group
G = (Us)aca, N the group generated by all m(u,) with u, € U, for a root
v in ®. If A is a generalized polygon, the group G is also called the little
projective group and the root group elements are called root elations.

Definition 29 Let (A, W,S,d) be a Moufang building with root groups
(Us)ace and standard apartment g and (A', W' S’ d') a Moufang building
with root groups (U, )y es and standard apartment Xj. An isomorphism
from A to A’ seen as Moufang buildings is an isomorphism ¢ from A to A’
such that ¢(Xg) = X and for every o € ®

{99u;199_1|uoc € Ua} = Uzp(oc)-

Remark that general theory as exposed in sections 1-4 in Chapter 6 of [25]
show that if (A, W, S, d) is a spherical Moufang building the root group systen
(Us)o is uniquely determined by A. It follows therefore that every isomor-
phism between two spherical Moufang buildings will define automatically an
isomorphism between those buildings seen as Moufang buildings.

Let (A, W, S, d) be a Moufang building with root groups system (Uy )acs. Fix
a root base in ®, and call it A. Choose for every root 8 € A a fixed element
ug # 1 € Us. Then we define S as the set {m(ug)|3 € A}. Fix a chamber
¢+ € Yo, and use this chamber to call roots positive or negative. Denote the
subgroup of elements of N that fix 3y by H, the torus in the classical sense.
It is easy to check that H C Ng(U,) for all root groups U,. We denote the
group (H,Uy)as0 by By, (H,Ups)a<o by B_ and for a € ® (H,U,) as B,.
The group B, also has a geometrical meaning : it is the full stabilizer in G
of the standard chamber ¢, in A and N is the stabilizer of the apartment ¥,
in G. The first fact is not obvious to show. It follows mainly from Lemma
4 in section 5 in [31]. (In fact this lemma yields that G = U(BywBy)yew).
We have the following theorem.

Theorem 30 Let (A, W, S,d) be a Moufang building with root groups (Uy)acs -
Then the quadruple (G, By, N, S) with notations as above is a BN -pair.

proof :

See Proposition 6.16 of [25]. O
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1.2.8 Twin buildings

After the book [29] appeared in 1974 the classification of spherical buildings
was a fact. A natural question that arose was whether a generalization of
the concept of a spherical building could be found. The answer was given in
the late 80’s. At that time J. Tits and M. Ronan introduced the concept of
a twin building. This definition was motivated by the theory of Kac-Moody
groups. The twin buildings appeared in this theory in a group theoretical
context namely as twin BN-pairs.

We give the formal definitions.

Definition 31 Let (W, S) be a Coxeter system of type M = (m;;); jer with
S = (8i)ier- A twinned pair of buildings or a twin building of type M is a pair
of buildings (A4, W, S,d;) and (A_, W, S,d_) endowed with a codistance
funcion d* going from A, x A_ LI A_ x Ay to W satisfying (e € {—1,1},
r €A,y €A and d*(z,y) = w)

Twl d*(y,z) = w

Tw2 If z € A_, is such that d_.(y,z) = s; € S and l(ws;) < l(w) then
d*(z,z) = ws;.

Tw3 For every s; € S there exists at least one chamber z € A_, with
d*(z,z) = ws;.

The rank of a twin building is defined as the rank of the associated Coxeter
system (W, S).

Given a twin building (A4, W, S,dy), (A_, W, S,d_),d*), two chambers = €
A.and y € A_, are called opposite whenever d*(x,y) = 1. Opposition defines
a symmetric relation on A, x A_, sometimes denoted by O.

Definition 32 Let (A, W,S,dy) and (A_,W,S,d_) be two buildings of
type M and O a symmetric binary relation on A, x A_. Then O is called
a twinning between A, and A _ if there exists a codistance function d* from
(A x A_) U (A- x Ay) to W producing a twin building ((A4, W, S,dy),
(A_,W,S,d_),d*) such that :

O ={(z.y) € (Ap x A)U(A x Ay)|d'(,y) = 1},
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1.2.9 Twin BN-pairs

As in the case of ordinary buildings, certain systems of groups will also yield
twin buildings. As already mentioned these are the twin BN-pairs.

Definition 33 Let (W, S) be a Coxeter system of type M = (m;); jer, G a
group with subgroups B,, B_, N and S a subset of G/N. Then we call the
tuple (G, By, B_,N,S) a twin BN-pair (of type M) if the following axioms
are satisfied (e € {—1,1}):

TBN1 (G,B.,N,S) and (G,B_, N, S) are BN-pairs of type M with W &
N/(ByNN)= N/(B_NN).

TBN2 BwB_.s;B_. = Bws;B_, for all w € W and s; € S such that
l(ws) < l(w).

TBN3 B.s;NB_=0forall s; € S.

In a similar way as for BN-pairs one can prove that every twin BN-pair
has an associated twin building ((Ay, W, S,dy), (A_,W,S,d_),d*). More
precisely firstly one proves that G = || ., BywB_ = B_[] o w By
This is the so called Birkhoff decomposition of G. Using this decomposition
one proves the following theorem.

Theorem 34 Every twin BN -pair (G, By, B_,W, N, S) of type M in a group
G defines a twin building (A4, W, S,dy),(A_ W,
S, d_), d*)) where (Ay, W,S,dy) is the building associated to the BN-
pair (G,B4, N, S), (A_,W,S,d_) is the buildings associated to the BN -pair
(G,B_,N,S) and d* is given by :

d*(9B4+,hB_) = w
where w is the unique element of W such that g 'h € BLwB_.

proof :

We refer to example 6 on p 23 in [1]. O
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1.2.10 Moufang sets

The following concept which will appear frequently in this thesis is the notion
of Moufang set. These objects where formally introduced by J.Tits in the
standard reference [31], though a lot of important examples already existed
in other terminologies. Moufang sets turned out to be of great importance
in the study of twin buildings. In Chapter 2 we show that under some re-
strictions twin buildings and Moufang buildings are the same objects. Given
such a Moufang building the root group structure induces on every panel a
permutation group which turns this panel into a Moufang set. In order to
classify twin buildings it is thus necessary to carefully study the Moufang
sets which arise.

Definition 35 A Moufang set is a set X of points such that | X| > 2 together
with a family of groups U, called root groups satisfying :

Mosl For every x € X the group U, acts regularly on X \ {z}.

Mos2 Every group U, stabilizes the set of groups {U,|y € X} via conjuga-
tion.

Definition 36 Let (X, (U,);cx) be a Moufang set. Then we denote for
x,y,z € X, u(z;y, 2) as the unique element of U, sending y to z. Elements
of root groups are also called root elations and the group (U, |z € X) is
called transvection group and is denoted by TX .

Definition 37 Given a Moufang set (X, (U,),ex) a Moufang subset is a sub
set Y C X such that the system (Y, (Staby,(Y)),ey) forms a Moufang set.

Proposition 38 Assume thatY is a Moufang subset of the set (X, (Uy)zex)-
Then Z CY is a Moufang subset of X if and only if it is a Moufang subset
of Y.

proof :

The proposition follows from the equality

StabgmbUy(y)(Z) = Stabyy(Z), Vy € Z.

Another property of Moufang subsets is the following.
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Proposition 39 Let (X, (U,)zex) be a Moufang set and (Y;)ier o family of

Moufang subsets indexed over the set I. If (),c,Y; #0, and |, Yil > 3, it
is a Moufang subset of (X, (Uy)zex)-

proof :

Follows from similar arguments as above. a

Morphisms are defined in the following way.

Definition 40 Let (X, (U,).ex) and (Y, (U, )yey) be two Moufang sets. An
isomorphism between (X, (U,)zex) and (Y, (Uy) ey ) is defined as a bijection
[ from X to Y such that for every x € X the map

Ug —> 6”16671

defines a group isomorphism of U, onto Up(y).
A morphism between (X, (Uy,)zex) and (Y, (U,)yey) is defined as an isomor-
phism of (X, (Uy;)zecx) onto a Moufang subset of (Y, (Uy)yey)-

Given two Moufang sets (X, (U,)zex) and (Y, (Uy)yey) and a morphism 3
from X to Y, then § induces an injection of TX into TY, which we will
denote in the sequel by superscript 8 and which is defined as :

g’ =Bogop ! VgeTX.

The following condition will in a lot of cases simplify the calculations to prove
that a bijection between point sets defines a isomorphism between Moufang
sets.

Lemma 41 Let (X, (U,)zex) and (X', (Uy)yex) be two Moufang sets. Then
a bijection B from X to X' defines a Moufang set isomorphism if and only if
there exist two points x and y in X such that the mappings B, and B, with :

Bac(ux) = B O Uy 05717 Yu, € U,
By(uy) = Bouy, o7, Vu, € U,

define bijections between U, and Ué(x) and between U, and U[f,y.
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proof :

If B is a Moufang set isomorphism we have by definition that 38, and 3,
define groups isomorphisms.

Conversely suppose (3 is a bijection such that 3, and (3, are bijections between
the groups. Remark that 3, and 3, define by construction group morphisms.
In order to show that [ is a Moufang set isomorphism we have to prove
that for any z € X the map 3, with §8,(u,) = B ou, o 87! defines a group
isomorphism from U, to Up).

Let z € X, then we choose the unique u, € U, with u,(z) = z and u,U,u,*
=U.,.

If @, € U, there thus exists @, € U, such that @, = u,@,u," and we find :

5z(ﬂz) = Boazoﬂ_l
(Bouyof ™) (Bou,oB ) (Bou, of™r)
= By(uy) 0 Ba(@z) 0 By(u, ™).

As 3, and §, are group isomorphisms this shows 3, defines a group isomor-
phism form U, to Ug). O

Definition 42 Let (X, (U,).cx) be a Moufang set. Then it is called abelian
or commutative whenever Z(Fixpx{z,y}) = Firrx{z,y} for any two points
r,y € X.

In the following chapter we will investigate the connection between twin BN-
pairs and twin buildings. It turns out that both objects are equivalent if the
residue’s of the buildings involved are big enough.

1.2.11 Moufang foundations

Motivated by the outline of the classification of twin buildings as described
in [32] and [20] we give the definition of a Moufang foundation in the sense
in [20]. It turns out that a great deal of the classification of twin buildings
depends on a classification of Moufang foundations. Moufang foudations can
best be seen as representations of the local data one can extract given a
Moufang building.
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Definition 43 Let M = (m;;); jer be Coxeter matrix over I. A Moufang
foundation of type M is a triple ((Aij)qijyenm),(Cij) i yerm),
(Big)tigy tikyem) such that :

MoFol For every {i,7} € E(M), A,; is a Moufang building of type My, ;; with
root groups (Uaij)a;cjeq)i]_ where Uaij is the root group acting on the
k-panel in A;; containing c;; and ®;; is a root system of type My jy.

MoFo2 For every {i,j} € E(M), ¢;; is a chamber of A;; and ¢;; = ¢j;, V {7,5}
€ E(M).

MoFo3 For {i,j}, {j,k} € E(M), B;jx defines a Moufang set isomorphism
from the induced Moufang set Mg, (,,)(A;;) to the induced Moufang
set MR]-(c]-k)(Ajk)-

Definition 44 Let ((Ay)gij1enmn,(Cij)igyenon, (Bik)isyGrepan) be a

Moufang foundation of type M and ((A};) i jyemm),(Ch) figyenon,

(Bl{jk){i,j},{j,k}EE(M’)) be a Moufang foundation of type M'. An isomorphism

from ((Aij)igyerany, (Cis)gaveran, (Bijr) gy tikreran) to (A% yeman () igrepan.
(ﬁl{jk){i,j},{j,k}eE(M’)) is defined as a tuple (('Yz’j){i,j}eE(M)a 'y) with + an isomor-

phism from M to M’ such that ;; defines for every {i, j} € E(M) a isomor-

phism from A;; to A, ) seen as Moufang buildings such that v;;(c;;)

= CxnG) 20 VB )y yaa Vg = Biges Wi}, {7k} € B(M).

1.3 Algebraic prerequisites

We recall and prove some lemma’s that will be used in the the sequel.
Throughout this section k£ denotes a division ring endowed with an involution
o i.e. 0 is a permutation of k satisfying :

(x+y)” = 27+y", Yo,y €k
(xy)” = y72°,Vz,y €k
19 = 1°9.
We set Tr(o) = {t+1t7 |t € k}, Fiz(o) = {t € k|t7 =t}, ko) = {t — 7€

|t € k} and k@9 = k/k(, ) where € € k.
Remark that the following holds :

Tr(o) C Fiz(o).
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The following result concerning equality in this equation can be found in
Chapter 8 in [29].

Lemma 45 Let k be a division ring with involution o. If char(k) # 2 or
olzm) # 1 then Fiz(o) = Tr(o).

proof :
We refer to section 8.1.5. on pl120 in [29]. O

Let ¢ € k. Then we will denote by ¢¢ the involution of k£ determined by :
N =X VA ek

We have the following Lemma which can be derived from section 8.2.1 on p
122 of [29].

Lemma 46 For c, € € k we have :
h(,e) = Koo,

where € = c(c™') €. In particular there always exists ¢ € k such that 1
€ Tr(o°).

proof :
The first claim follows from the equality :
ct — cte = (ct) — (ct)” (cc ')%€, Vt € k.

Suppose o is an involution such that 1 ¢ Tr(c). Let 6 € Tr(o). Consider
o', We have setting § = ¢ :

1eTr(c” ) =0 "k, _1 = 0 'Tr(0).

Lemma 47 Let k be a division ring with Z(k) # k, o an involution of k such
that 1 € Tr(o). If k is not generated as a ring by Tr(c) it is a generalized
quaternion algebra with o its standard involution.



30 CHAPTER 1. PRELIMINARIES

proof :
See 8.14 on p 150 in [29]. O

As a corollary one deduces the following result concerning commutativity.

Corollary 48 Let k be a division ring not equal to a generalized quaternion
algebra, o an involution of k with 1 € Tr(c). Then

Z(k) = k if and only if 6,0, = 0261,Y6,,0 € Tr(o).

proof :

Follows from Lemma 47 as T'r(0) generates k unless its a generalized quater-
nion algebra. a

Lemma 49 Let k be a division ring with involution o such that Z(k) # k.
Then k is a generalized quaternion algebra with standard involution o if and
only if :

[91,92] € Z(k), ‘v’91,92 € T’I"(O').

proof :

If £ is a generalized quaternion algebra with standard involution o, the con-
dition on the traces is clearly satisfied as in this case Tr(o) = Z(k).
Conversily suppose that the condition of the Lemma holds.
Choose ¢, € T'r(o).
We find :

06 = 000z9, VO € Tr(0)

where z4 is an element of Z (k) possibly depending on 6. If § € Z(k), we have
zZp = 1.
So suppose 0 ¢ Z(k).
Then :
(1 + 9)90 = 90(1 + 9)21+9
= Ooz149 + 0002149
== 90 + 900
90 + 9092’9
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shows :
2149 + 02149 = 1+ 0z

As 0 ¢ Z(k) this is only possible if 21,9 = 2z = 1.
As g was chosen arbitrarily this implies :

0,0 =1, 0,0 € Tr(o).

Without loss of generality we can assume 1 € Tr(o). (cfr. see Lemma 46).
The Lemma follows from Lemma 47. i

Lemma 50 If k is a division ring then

[z,y] € Z(k), Yo,y € k
if and only if Z(k) = k.
proof :

Complelety analogous as the proof of Lemma 49 |

Lemma 51 Let k be a division ring such that Z(k) # k. If every element of
k satisfies a quadratic equation over Z(k), then k =

proof :

If [k : Z(k)] < oo the proof can be found on p103 in [10]. Choose 6 ¢ Z(k).
Then there exists a 6 € k such that [01,0s] # 1. Let Z(Cy{01,02}) be the
center of the centralizer of #; and 6, in k. Consider the Z(Cy{61, 02})-algebra
generated by #; and 6. Call it L. The condition on k implies that L is a
division ring. We prove that L is generated over Z(k) by {1,6;,0s,6:6>}.
Denote the Z(k)-algebra generated by {1,601, 62, 6; 02} as S. To this end we
show by induction on m that every product IIff; _, 6;(;) with i(j) € {1,2}, V
Jj is inside the S.

Let m = 2.
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By assumption we have that 6%, 62 and 6,0, € S. Consider §; +6,. The
conditions on k implies that there exist zq, 22 € Z(k) such that :

(91 + 92)2 == 9% + 9192 + 0201 + 0%
= (91+92)Zl+22. (].].)

This equation clearly implies that 6, 6; € S.

Suppose that the induction hypthesis is thrue for m. Consider a product
H;’(’j)zl f;(j). Then we have to show that ;1) H%—):lei(j) € S. Without
loss of generality we can assume that 6;.,,+1) = 0. Two cases occurs :

First case : 0;1) = 0;.

Then we find 91 H?(Lj)zl 91(]) = 9% H?g]):QGZ(]) As 9% = 91“1 “+Uo for some
u; € Z(k) we find, the induction hypothesis implies that 6, I 1 0i5)
€S.

Second case ;1) = 0,.
If in this case ;3 = 0, the induction hypothesis implies as in the
foregoing case that 6 I i) €S.
Hence we are left with the case where 6;5) = 6;.
We find using equation (1.1) :
00T 1 0i5)
= 016051175 _50i5)
= (—9201 — 9% — 9% + (01 + 92)21 + ZQ)H;?]-):207;(]')

By what we already proved and the induction hypothesis we find that
(—9291 - 9% - 9% +(91 + 02)2’1 + Zz)H?(Lj)ZQ 92(]) S S
Hence we find that also in this case 0 II;_, ;) € S.

By this we proved that every product IT{; _; 0, i(j) € {1,2} is contained
in S, and hence S = L. As Z(k) C Z(Cy{0:1,0,}), L is a finite dimensional
division ring of dimension n? over Z(L) for a natural number n. We find
Z(L) = Z(Cy{61,62}) = Z(k) and L is a generalized quaternion algebra.
This implies in particular that 6201 = 21+ 6129 + 6223+ 010224, 2; € Z(k),1 <
1 < 4.

Let z be arbitrary in k. If z ¢ L we consider the Z(k)-algebra generated
by z,0, 05. Denote this algebra by R. Due to the properties of L and k
it follows that R is generated over Z(k) by {1,61,60,z,0102,0,2,052,0:652},
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yielding[R : Z(R)] < co. As R is generated over Z(k) C Z(R) by at most 8
elements, [R : Z(R)] is necessarily 4. As the finite dimensional case of the
lemma holds R is a quaternion algebra with standard involution which we
denote by a bar sign.
If x € R it is therefore solution of the quadratic equation 2% —(x+%)r—Zz = 0
with coéfficients in Z(R). But by assumption x is also solution of a quadratic
equation z, 4+ xcy + ¢, = 0 with coéficcients in Z(k). If 2 ¢ Z(R) this implies
that x + Z = ¢; € Z(k) and Tz = ¢, € Z(k). For any quaternion algebra the
map R — Z(R) that sends ¢ to t+¢ is surjective. Hence we find Z(R) = Z(k).
This means that the set {1,0;, 05,616, z} would be linearly dependant over
Z (k) contradicting the choice of z. This shows L = k, and k is a generalized
quaternion algebra.
That the converse holds follows from standard theory of quaternion algebra’s.
O

The strategy of proof above can be used to show the following.

Corollary 52 Let k be a division ring, o an involution of k. Then every
element of Tr(o) is solution of a quadratic equation over Z (k) if and only if
k is a generalized quaternion algebra.

proof :

If k£ is not a generalized quaternion algebra Lemma 47 shows it is gener-
ated as a ring by Tr(c). Following an analogous strategy as the proof of
Lemma 51 where 0;,z € Tr(o) leads to a contradiction. O

Lemma 53 Let k be a generalized quaternion algebra with standard involu-
tion o and a € k. Suppose a satisfies :

NaX =€ (Z(k)(a))

where (Z(k)(a)) is the Z(k)-subalgebra of k generated by a. Then a is an
element of Z(k).

proof :
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Let a be as in the Lemma. Then we find for every A € k, z; and z, € Z(k)
such that :
N al = azy + 2».

Equivalently :
A tad = az (AN T4 (A7) L

Set 27 = 21 (A7 A)7! and 2, = 23(A\7 A\)7L. As A7 X\ € Z(k) we can write for
AEK:
A ta) = az) + 25, with 2}, 25 € Z(k).
Which is equivalent to :
aX+ Xazi + Az =0 € Z(k).
Adding this equation with (A7 + A)a € Z(k)(a) implies :
Ma(l+27) +23) € Z(k)(a) (2).

Suppose 2z # 1. As a ¢ Z(k) equation (2) is only possible if A € Z(k)(a).
But as Z(k)(a) is a field this implies A\a = a A and z} = 1, a contradiction.
This means that :

s=1,YA€kand z,=0

Thus for every \ € k we have :
aX+ \a = zy € Z(k).
As ad+ \a € Z(k) this yields :
A+ X)ae Z(k), VA€ k.
Hence a € Z(k).
O
To end this section we give a usefull Lemma on semi-linear transformations.

Lemma 54 Let k, k' be division rings V' a right k-vector space and V' a
right k'-vector space. Suppse [ is a bijection from V to V' such that :
Blv+w) = Bv)+ B(w), Vo,w eV
B(vA) = Bv)\, Vv e V,VA ek

with N, € k' might depend on v. If dim(V') > 2, B defines a semi-linear
transformation from V to V'.
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proof :

We first show that for A € k, v € V the element A does not depend on
.
Let w € V.

Suppose firstly that 3(w) is linearly independant from §(v).
Then the equation :

Bu)A, + Bw)X, = B((v+w)A)
= ﬁ(v+w))‘v+w
B(U)Avﬂv + ﬁ(w)kvﬂu

shows that A\, = Ay, = Ay

If B(w) is linearly dependant on 3(v) we choose a u € V such that 8(u) is
linearly independant from §(v). By what we already proved we then have
A=A = Ay

By this we can thus write for A € k :

B(vA) = B(v)N, Vv €V,
where A’ does not depend on v. Define the bijcetion « from k to &' by :
B(vA) = B(v)AY, Yu € V.

We check that « determines a field isomorphism from & to &'.
By definition of a we have a(1) = 1 and «(0) = 0. Moreover the equations :

B(v)(A* + %) Blo(A + p))
= BA+np)"

B)A*u® = Bv(\n))

= Bv)(Au)®

show that o defines an isomorphism from % to &' and it follows that 3 deter-
mines a semi-linear transformation from V' to V' with associated isomorphism
o from k to k.

O
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Chapter 2

General theory

2.1 Twin buildings and Moufang buildings

2.1.1 Introduction

Motivation of this section is a remark made by J.Tits in the standard ref-
erence on twin buildings [31]. Paragraph 3 of loc.cit. deals mainly with a
group theoretical approach of twin buildings. In the theory of buildings it is
also well known that every Moufang building A has a natural BN-pair. In
his paper J. Tits gives the description of certain group systems called RD-
systems. When one verifies the axioms of an RD-system it is not hard to
see that from every Moufang building such a system arises. Proposition 4 of
loc. cit. says then that whenever an RD-system is given one can construct a
twin BN-pair. The proof is left over to the reader but the author mentions
this is not easy. This proposition implies in particular that every Moufang
building A has an associated twin BN-pair. Hence in view of the above
remarks we can state that from every Moufang building one can construct a
twin building. Moreover from the calculations it turns out that A is isomor-
phic to one half of the twin building. As there is no real proof written down
yet of this well known fact it will be exposed in this section. We will use a
slightly different approach than the one used in [31]. In this way it is hoped

37
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that the geometry of the twin buildings will become more clear. During the
exposition of the proof it will also be indicated how to extract a concrete
proof of Proposition 4 in section 3.3. in [31].

The converse of the problem namely ”Is every half of a twin building a
Moufang building?” also holds under some mild conditions. This follows
from [18]. Hence it follows that twin buildings and Moufang buildings are
in a lot of situations the same objects. The Moufang condition character-
izes buildings as automorphism groups of certain geometries. The above
result implies that in a lot of cases twin buildings can be seen as couples of
buildings with a well defined opposition relation. Or they are represented
as group geometries defined in the automorphism group of a buildings. The
main theorem of this section will be :

Theorem 55 Every Moufang building (A, W, S,d) is half of a twin building
i.e. there exists a building (A_,W,S,d_) and a codistance function d. from
AxA_UA xA toW such that (A, W,S,d),(A_,W,S,d_),d.) is a twin
building.

Something about the proof. As already mentioned a proof can be extracted
from [29]. Tt essentially boils down to checking that given a Moufang building
(A, W, S, d) with root groups (U,)acse the system (G, (Uy)ace with G (U,
|a € @) forms an RD-system. One has to check the five axioms RD1 up to
RD5. That RD1 till RD4 are satisfied is rather easy. The problem is RD5.
This axiom requires that for every a > 0, with a a fundamental root of a
root system, B, ¢ B_ and B_, ¢ B,. That B_, ¢ B, there holds is rather
easy to check. It follows essentially from the equality B, = Stabg(cy). If
B_,, would be fully contained in B, then every element of B_, has to fix
cy. This contradicts the regular action of B_, on a the s,-panel through
a. To exclude the other inclusion one cannot use the same argument. The
difference here is that B_ has no interpretation in terms of the buildings
geometry. For this we will have to look deeper into the structure of A.

2.1.2 Properties of Moufang buildings

Most of the facts given here can be found in [29]. We list some known prop-
erties and theorems of Moufang buildings and give proofs where necessary.
The notations used here are the ones introduced in Chapter 1. Consider a
Moufang building (A, W, S, d) with a system of root groups U, and B, N and
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S, ¢y as before. We list the axioms for an RD-system as described in section
5.2. in [29].

Definition 56 Let G be a group, M = (m;;); jer a Coxeter matrix and ®
a root system of type M, (B,)ace a generating system of subgroups of G.
Then (G, (Ba)ace) forms an RD-system if the following axioms are satisfied
(where B, stands for (B,|a > 0) and B_ stands for (Bg|3 < 0), H is the
intersection of all B,, and A = {«;|i € I} is a fundamental root system for
® and s; = s, for all ¢ € I)

RD1 If {a, 3} is a prenilpotent pair of roots, there is an order (a = 3y, 32,
... By) on [a, ] starting at a such that Bg Bg, ... Bg,, is a group.

RD2 Fori €1, B, NB_y, = H.

RD3 For: € I, the group B,, has two double cosets in the group it generates
with B_,,.

RD4 For i € I, there exists an element in (B,,, B_,,) which maps B onto
Bsi(g) for all g € ®.

RD5 Foralli € I, B,, ¢ B_ and B_,, ¢ B,.

As already mentioned above a candidate of an RD-system is provided by
every Moufang building.

Lemma 57 Let M = (myj);jer be a Cozeter matriz, ® a root system of
type M and (A, W,S,d) a Moufang building of type M with associated root
groups (Uy)aea. Consider the group system (G, (By)acs). Then (G, (By)acas)
satisfies axioms RD1, RD2, RD3 and RD4.

proof :

1. Axiom RD1.
Consider the set B,Bg, ... Bg, where {a, 3} is a prenilpotent pair of roots.
Using exercise 15 on p82 in [25] there exists an ordering on [«, 3] such that

[aaﬁ] = {617 627 ey Bm} a'nd [Bzaﬁj] C {BivBiJrlv e 5]} fOI‘ Z S .] By the
definition of H it follows that for every h € H and every a € ®

hUh™" = U,,.
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We prove by induction on m, the number of roots in the interval [«, 5] that :

BuBg,...Bs, = HU,Us, ... Us

Pick an arbitrary element ug, of Ug; for some j. Then
ws, BaBg, ... Bs, C Baug, HU,Bs, ... By,

where 7 is one of the roots in {fs, ... 8, }. The induction hypothesis yields :
Baus, HU,Bg, ... Bs, C Boug,Bg, ... Bs,..

m

In a similar way we can switch ug, with Bg, in the product if j < i. From
this it follows that

’U,g].BaBB2 . Bgm = BoéBg2 . Bg

m

hence B,Bg, ... Bg
2. Axiom RD2.
Consider x € B,, N B_,, for some ¢ € I. Then we can write £ = hu_,,. As
x € B, C Stabg(cy) it follows that :

is a group. This proves RD1.

m

U—ai(c+) = Cq.
But then the regular action of U_,, on R;(c,)\{s;(c+)} implies that u_,, = 1.
Hence z € H, showing that B,, NB_,, C H. That the converse inclusion
H C By, N B_,, holds is clear.
3. Axiom RD3.
Choose u,, € U,, such that s; = m(u,,) € S. Then we show that B_,, C
HU B,,s;B_,,. From this inclusion one can deduce easily that

(Ba,B_a.) = B, U By,5;Ba,.

Let # € B_,,. lf x € B_,, then v € H. If v ¢ B,, then z = hu_,, for
U_q, € U_q, and u_o, # 1. But then m(u_,,)s; € H and & = uq,m_q,u,, for
certain u,,, ug,, € Uy, is contained in By, s; B, .

Similar arguments show that

(Ba,B_a,) = B_o, UB_, s;B_,,.

4. Axiom MRA4.
This follows from Mo4. O
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Theorem 58 Given a Moufang building (A, W, S,d) of type M (with nota-
tions as above) then there is a unique homomorphism v : N — W such that
forne N anda € ®

TLBQTL71 = Bu(n)(a)-

The kernel of v is H. This implies that N/H 2 W and N/H is generated by
a set §;H where {3;} is a set of m(uq,) with ug, # 1 and A = {a;|i € I} a
fundamental root system in ®.

proof :

This is a restatement of Lemma 3(¢), (i77) in paragraph 5 in [29]. As the
proof given in loc. cit. follows from axioms (RD2), (RD3) and (RD4) the
proof is still valid. O

Let (A, W, S,d) be a Moufang building with root groups (U, )ace such that
S = (8;)ier and A = {a;|a; € I} a fundamental root system for ®. Choose
for every ¢ € I a fixed u,, # 1. For the sequel we will identify s; with
{m(uy,) using the isomorphism v as in Theorem 58. |i € I'}. Granted this
identification the notation wB,w ™! for w € W makes sense.

Theorem 59 Given a Moufang building (A, W, S,d) of type M then G acts
transitively on A and the system (G, By, N,S), defined as above, forms a
BN -pair.

proof :

Suppose that for some B_,, C By. Then in particular U_,, C B;. This
contradicts the regular action of U_,, on R;(cy) \ {si(cy)}. Hence for all
i € I we find that B_,, ¢ B,. As the axiom (RD1) holds for (G, (B,)acas)
Lemma 4 in paragraph 5 in [30] is still valid. Following the strategy of Propo-
sition 4(¢) one deduces that (G, By, N, S) is a BN-pair . O

The strategy we follow from now on will differ from the one suggested in [31].
We start by constructing a chamber system C~ as in the sense in [25]. It
turns out that C~ is a building on which the group G acts. Then we de-
fine an opposition relation between (A,W,S,d) and C~. Using a result of
B. Miihlherr [19] on twin buildings we deduce that the opposition relation
defines a twinning. This implies that (A, W, S, d) is half of a twin building.
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2.1.3 The chamber system C~

In this paragraph we construct a chamber system C~ using the groups. First
we need some lemma’s.

Lemma 60 Given a negative root a; with ¢ € I then
B,B,.5,B_ C B,,5,B_
for every negative root o € P.

proof :

The proof is completely analogous to Lemma 4 in section 5 in [31]. One
replaces all positive roots by negative roots. a

Lemma 61 Let w € W (with (W,S) a Cozeter group) , and s;, ...si, a
reduced expression of w. Set for j € {1,...,m} w; = 54, ...8;;, wo = 1 and
B; = wj—1(aj) then {B1,...,Bn} is the set of all positive roots sent by w"

to a negative root.

proof :

This lemma is a restatement of Proposition 3(¢) in [31] section 5. The proof
can be found there. O

Lemma 62 Given any w € W and a reduced expression s;, ...s;, of w then

the set

m

U ... U.s,

is a group U_,, only depending on w. The group B_,, satisfies B_,wB_ =
B_wB_. The same statements hold for U, and B,wB, .

proof :

The statement of this lemma is analogous to the statement of Proposition
3(i1), (tv) in section 5 in [31]. The only difference is that the groups here are
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parametrized by negative roots. One can easily check that the proof given in
loc.cit. remains valid if positive roots are replaced by negative roots. That
the same statements hold if all roots are positive follows from Proposition 3
of in section 5 of [31]. O

Using the groups U_,, we construct the following chamber system C~. Let
U_- = (U_y)a>0- For a given w € W the group U_,, defines a coset structure
on U_. We define C as the set of all right cosets of U_,, in U_. The set of
chambers of C~ is the disjoint union LIC,. As we want the chamber system
C~ to be defined over the set I we have to define an ¢-adjacency relation for
every i € I. To do this we first fix some terminology which is used in [31] in
section 5.11.

Given J C I such that W; = (s;|¢ € J) is finite and an element w € W, then
w is called right J-anti-reduced if l(w) = max{l(u)|u € wW;}. For w € W
and i € I, w' stands for the unique right {i}-anti-reduced element in the
i-panel in W containing w. For adjacency we state the following rule :

two chambers 2U_,, and yU_, are i-adjacent if and only if

(2) :L‘U_wi = yU_wi.

It is easily checked that C~ equipped with this adjacency relation is indeed
a chamber system over [ in the sense in [25] chapter 1.

We also remark that the group U_ acts on the chamber system C~ by left
multiplication. It is easily checked that under this action z-adjacent chambers
are send to ¢-adjacent chambers. This means that the group U_ acts as a
group of type preserving automorphisms of the chamber system C~.

The next step is to construct a chamber systems morphism between C~ and

(A, W, S, d).

Lemma 63 The map k between C~ and (A, W, S, d) that sends U, to zw(cy)
is a type preserving morphism between the chamber systems C~ and (A, W, S, d)
(i.e. it sends i-adjacent chambers to i-adjacent chambers).

proof :

We have to check that x is well defined and that, if zU_,, and yU_, are
i-adjacent, then also k(zU_,) and k(yU_,) are i-adjacent. To see this we
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rely on the following property :
U_, C Stabg(w(cy)). (2.1)

Let’s first check this property. By Theorem 58 and Lemma 60 the group
w™'U_,w is contained in By. As Stabg(c;) = By formula (3.15.1) is clear.
Because of property (3.15.1) the map « is well defined, i.e. if zU_,, = 2'U_,,
then z(w(cy)) = z'(w(cy)).

Suppose that zU_,, and yU_, are i-adjacent, i.e. w’ = v’ and 2U_,,; = yU_,;i.
From w' = v it follows that w(c,) and v(c,) are i-adjacent and belong to
the i-panel containing w'. From y~'z € U_,s we deduce that y~'x stabilizes
w'(cy), hence also stabilizes the i-panel through w'(cy). This means that
y~'z(w(cy)) and v(cy) are i-adjacent, hence also z(w(cy)) and y(v(cy)) are
i-adjacent. This completes the proof of the lemma. m|

2.1.4 Properties of

In this paragraph we show that  is a 2-covering from C~ onto (A, W, S, d)
i.e. K sends every spherical rank 2 residue in C~ isomorphically onto a rank
2 residue in (A, W, S,d). We start by showing that & is surjective. For this
we need an additional property of Moufang buildings.

Proposition 64 Given a Moufang building (A, W, S, d) with standard apart-
ment Yo, then the orbit of Lo (as a set of chambers) under B_ is the full
building A, i.e. B_(Xo) = A.

proof :

The proposition follows from the decomposition G = B_W B, regarded the
fact that {w(cy)|w € W} = X,. First we show that G = Uyew(B_wB_).
Using Lemma 62 we write :

B_s;B_wB_ = B_s;B_,wB_.
Two cases occur :
(1) I(s;w) > l(w).
Then s;B_,,s; C B_ and

B_s;B_wB_ = B_(s8;B_ys;)s;wB_ = B_s;wB_.
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(2) l(s;w) < l(w).

Hence

B_s;B_wB_ B_s;B_s;s;wB_
C {B-s;B_,B_}s;wB_
C B_wB_UB_s;wB_.

As for every j € I Uy; = 5o, U_q; 5o, and G = (U, |7 € I) one deduces that
UweW(B_wB_) = G
Subsequently we show that for every w € W and s; € S

B_s;B_ wB; C B_swB,UB_wB,.

As above again two cases can occur :

(1) l(s;w) < l(w).

This means that the root w™'(a;) is negative, hence

B _s;B_ wB, B_s,B_,,wB,
B_s;w(w™'B_,w)B,

= B_s,wBy.

(2) 1(s;w) > l(w).

The we use the above equation and calculate :

B s;B wB, = B_s;B_s;s;wB,
C B_{1,s;}B_s,wB,
= B_s;wB;UB_wB,.

By similar arguments as for U,ew B_wB_ it follows that B_.W B, =G. O

Corollary 65 The morphism k is surjective.

proof :

Consider an arbitrary chamber a in A. Then by Proposition 1 we have
a = b v(cy) for some b € B_ and v € W. As for every root o, H C
Stabg(U,) we can write b_ as u_h for u_ € U_ and h € H. Because H fixes
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every chamber of Xg we can write a = u_v(cy). If we consider the element
u_U_, of C~ then clearly x(u_U_,) = a. |

The only problem that remains to prove is that x maps rank 2 residues
isomorphically onto rank 2 residues.

Theorem 66 The map k is 2-covering from C~ to A i.e. it sends spherical
rank 2 residues isomorphically onto spherical rank 2 residues.

proof :

To prove this we remark that the action of U_ on C_ and A is compatible with
K, i.e. for all zU_,, € C_ and u_ € U_ we have k(u_zU_,) = u_r(zU_,).
In order to prove that k is a 2-covering, it will then be enough to show that
k induces an isomorphism between every {i, j} residue containing a chamber
U_., with w an {7, j}-anti-reduced element in W, and its image in A. To see
this we remark that every rank 2 residue in C_ always contains a chamber
xU_,, where w is {i, j}-anti-reduced and = € U_. The morphism determined
by 2! will then send the given rank 2 residue to another rank 2 residue that
contains U_,,.

Fix a certain rank 2 residue in C_ of spherical type {7, j} (hence m;; < c0).
Call this residue RY. Suppose that RY contains a chamber U_,, with w
{1, j}-anti-reduced. As U_,, € R”, we see that w(cy) € k(RY”). If we denote
by R the {i,j}-residue in A which contains w(c;) then we have to show
that « induces an isomorphism between R and R".

1. The map & induces a surjection between R” and RY.

This will follow from the fact that x induces a surjection between rank 1
residues. Consider a fixed ¢ € I and a chamber a in A. Using Proposition
1 and the action of U_ on A we can assume that a = v(cy), v € W. Then
every chamber of the i-residue containing a can be written under the form
V(g si(cy)) with us, € U,, and a; > 0.

Two cases occur :

(2) l(vs;) < l(v).

Then vu,, = vug, v~ 'v with vu,v™" € Uy(a;)- Granted the condition on v,
one has Uy ;) C U_y:. If we consider in C~ the chamber VU, v tU_,,, then
this chamber is i-adjacent to U_, and k(vua,v U_,) = a.

(it) U(vs;) > l(v).

Using Lemma 1, one starts by rewriting ., as w_q,8;:b_n, with u_,, € U_,,
and b_,, € B_,,. As we also know that s;b_,;s; C B,, the chamber
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a coincides with vu_q,(c;). Because of the condition on v we have that
vu_o vt € U_y(a;) C U_yi. Hence the chamber VU_q, v U_y, is i-adjacent
to U_, and k(vu_n, v 'U_ss,) = a.

This completes the proof that x induces a surjection between rank 1 residues
in C~ and A. Because rank 2 residues are connected it is clear that x induces
a surjection of R” onto RY.

2. The morphism  induces an injection of R™ into RY.

Suppose that we have two chambers u/_U_, and u".U_,» in R such that
k(u_U_y) = k(u”U_yr). This means that v’ w'(cy) = u” w"(cy) and both
w' and w” belong to the {i,j}-residue in W determined by w, where w is
the unique right {7, j}-anti-reduced element of this residue. Because of the
conditions on w it is easy to check that both u" and «” belong to U_,,. We
rewrite the above equality as :

1 1

(w ' wyw ' (cy) = (w v w)w w"(cy).

As both v and u” belong to U_,, the elements w™'u" w and w™'u” w belong
to By. Call the first one ¥/, and the second one 0, then we find :

Vow 'w'(ey) = blw ' (cy).

But this implies by the Bruhat decomposition of the group G (as we have a
BN-pair in G) that w™'w' = w™tw", yielding w' = w".

There remains to show that «' U_,» = uw" U_,».

n_1q

From the equality v’ w'(cy) = u”w'(cy) one deduces that w'tu_'u' w' €

B, . The element u "' is contained in U_, and we call it u_,,. Then u_,,
satisfies w'~'u_,w' € B,. Consider the set of positive roots sent by w™!
into negative roots, namely {v,...,7,}. Because of the properties of w we
can divide this set into two subsets (after possibly reordering) {v1,...y-1}U
{v,---,m}. Here {7,...7_1} is the set of positive roots sent by w' to
a negative root and {v;,...,7,} is the set of remaining roots. With this
notation in mind we write u_,, as u_,u_, with u_,, € U_, and u_, =

U—my ... U_,. We rewrite the formula w'"'u_,w' € By as :

1—1

! —1
w U, =W

-1 17
u_,w by

for a b, € B,. The right hand side of this equation shows that the element

w'~'u_,w' belongs to B;. Suppose that w = w's;s; ... s; with [(w) = l(w') +
N——

m terms
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m.
Then :
Wy, ) = {a,85(cvi), ..., 858 ...8:(aj)}.

Hence we can write w'~'u_,w' as

U Ug(ay) - - - Umsys;.si(ay) Yielding that w™'u_w’ € U- N By. Now we
look at the rank 2 building I';; determined by B, B_q,, Bo; and B_,; (i.e.
the rank 2 building we get by considering the group (By,, Ba,, B_o,, B_a,)
and the induced BN-pair in it.). It follows that w' 'u_,w’ is inside the
group generated by these four groups. But w' 'u_,w' fixes the fundamental
chamber ¢7 in this polygon. Hence this element is inside U” N BY where the
groups Bfg and BY are similarly as above. The proof that  is a 2-covering
will be done if we show the following lemma.

Lemma 67 If we are given a spherical rank 2 building with Cozeter group
( 51,82 |(s182)™2 ) then
B.NB_=H

proof :

If we consider a spherical rank 2 Moufang building, the groups B, and B_
both have a geometric meaning. Indeed, in the standard apartment 3 there
will be two chambers c; and c_ such that the I(d(cy, c-)) is maximal in the
Coxeter group. The group By will then be the stabilizer of c; in G, B_ will
be the stabilizer of ¢_ and H will be the stabilizer of the standard apartment
in G. As (G,B4,N,S) and (G,B_,N,S) are both BN-pairs in this case
the Bruhat decompositions G = U,B,wB; = UyewB_wB_ implies that
B NB;y CH. As HC B;NB_ we have :

H=B,NnB._.

a

This lemma implies that w'u_,w'~! lies in H. Moreover by properties of
spherical Moufang buildings explained in [25] on pages 75 and 76 it fol-
lows that w_, = 1. This yields u_ € U_, or u W € U_., hence
uw'U_y = u U_, what we wanted to show. This completes the proof of

Theorem 3. |
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As already mentioned the group U_ acts on both C~ and A in a way compat-
ible with . This implies that Staby_(a) = Staby_(x(a)) with a € C~. If we
do this for ¢4 then k(1) = ¢y and Staby_(1) =1 and Staby_(cy) = U_N By.
This gives us U_ N By = {1}, which is a very strong condition. Consider
B_NB,. Every element in this intersection can be written as hu_ for h € H
and u_ € U_. But then u_ = 1 and the element is contained in H. As also
H C B_N B, we find :
B_NB, = H.

Using the universal properties of buildings we get the following corollary.

Corollary 68 The chamber system C~ is a building of type M isomorphic
to (A, W, S,d) under k.

proof :

This follows from the results in [30]. It is shown in this paper that every
building is a universal object with respect to 2-coverings. This means that if
we have a chamber system X over I and a 2-covering p from X to a building
(A, W, S,d) of type M = (m;;); jer then ¢ is necessarily an isomorphism. O

Corollary 69 The pair (G,B_,N,S) is a BN -pair.
proof :
The proof is similar to the proof of Theorem 2 as B, ¢ B_, Ya > 0. a

Another consequence of the identity 2.1.4 that gives a concrete proof of
Proposition 4 in [32] is the following.

Corollary 70 Given a Moufang building (A, W, S,d) of type M = (m;;); jerwith
root groups (Uy)ace then with the notations as before (G, B, B_,N,S) is a
twin BN -pair.

proof :

This is the same as the proof of Proposition 4 in section 5 in [31]. But
we rephrase it for completeness.
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It follows from the calculations already made that the systems (G, By, N, S)
and (G, B_, N, S) are BN-pairs of type M. Moreover ByNN = B_NN = H.
Hence axiom TBN1 is satisfied.

We prove TBN2.

For given s; with ¢« € I and w € W one has

B, swB_ if l(ws;) < l(w)

BysiBiwB- = { B.wB_UB,siwB_ if l(ws,) > l(w)

Two cases can occur :
l(s;w) < l(w).
The root w™(e;) is a negative root. Using lemma 4 we see that
Bis;BiwB_ = Bys;B, wB_
= BJFSZ‘U)Bw—l(ai)B,
= B,s,wB_.
If I(s;w) > I(w) then by what we just proved
B.s;BywB_ = Bys;B;s;s;jwB_
B+{17 SZ'}B+'LUB,
B, {sw,w}B_.

N

That the symmetric formula :

B_s;wB, if l(ws;) < l(w)

B-siB-wB, = { B_wB; UB_s;wB; if l(ws;) > l(w)

holds follows by similar arguments.

Remains to show that axiom TBIN3 is satisfied.

Ifforiel, Bys;NB_ # () we find b, € B,,b_ € B_ such that s; = b, b_.
But then s;U,,s; = U_,, implies that b_U_oéib:1 C By NB_ = H. Hence
U_,; C b_HbZ'. This contradicts the regular action of U_,, on the i-panel
containing B_ in the building provided by the BN-pair (G,B_,N,S). O

2.1.5 The relation O

We start from a Moufang building (A, W, S,d). Denote the set of all roots
in W by ®. is given by ® = {a}. The root groups are denoted by U,.
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We use notation as before. Then we know that there are two BN-pairs in-
volved, (G, B+, N, S) and (G, B_, N, S). The first BN-pair yields a building
(A4, W, S,d,) isomorphic to (A, W, S,d). From the second one, the building
(A_,W,S,d_) is constructed. As the chambers of A, and A_ correspond
to cosets of B, respectively B_, the group G acts in a natural way on both
buildings. Let ¢, and ¢_ be the chambers of A, and A_ corresponding to
B, and B_. We define the relation O C AL x A_UA_ x A, by the following
rules :

((@4,y-) €AL x A, (y-,z4) € AL x Ay)

('TJrvy*) €0

)

Jg € G such that (g(z4),9(y-)) = (ct,c2)
(y—,z4) €0

(I+, y*) €0
We describe the relation O for rank 2 Moufang buildings.

Theorem 71 Suppose that (A, W,S,d) is a rank 2 Moufang building of
spherical type then the relation O defines a twinning between Ay and A_.

proof :

As the building A is of spherical type there exists a unique element wg in
W such that I(wy) > l(w) Yw € W. We make the following construction.
Set (Al, VV, S, dl) = (A, VV7 S, d)7 (AQ, VV, S, dg) = (A, VV, S, ’LUodwO). Define a
codistance function d* between A; and A, by :

((1}1,1}2) S Al X AQ, (1'2,1}1) S AZ X Al)

d*(ﬁﬂl, SCQ) = ’LUOd(.Tl7 SCQ)

d*(SCQ, 561) = d(ﬁCl, SCQ)IUo.

It follows from Proposition 1 in [31] that the couple ((Ay, W, S, d1), (A2, W,
S, dy)) with the codistance function d* is a twin building. It can be shown
that this is the only possible twinning on A.

We know that two BN-pairs (G, B,,N,S) and (G,B_,N,S) can be con-
structed. Each of these BN-pairs has an associated building. Denote them by
(A4, W,S,d;) and (A_, W, S,d_). We give a short description of (A, W, S, d).
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The set of chambers A, is given by the set {gB,|g € G}. Let s € S then
g1By is s-adjacent to g, B, if and only if B, g7 'g.B, = BysB,. To define
the distance between two chambers one uses the Bruhat decomposition of
the group G. This means that the group G has a decomposition :

Moreover if Byw'By = B,w"B, then it follows that w' = w". For two
chambers ¢; By and g By of A, the distance d(g; B+, g2By) is defined as the
unique element v € W such that :

Bigi'9:By = ByvBy.

Using standard arguments it follows that (A, W, S,d,) is a building. The
same can be done for (G,B_, N,S). This gives the building (A_W,S,d_).
From the construction of (A, W, S,d,) it can be proved that it is isomorphic
to (A, W, S,d). The isomorphism is given by :

(Y25 A+ - A

p1(9B1) = glcy).

Consider the map ¢, from (A_, W, S,d_) to (A2, W, S,dy) determined by :

pa(gB_) = gwo(cy).

One checks that s defines an isomorphism from (A_, W, S,d_) to (As, W, S, d5).
To finish the proof we show the following equivalence :
((z4,y-) €Ay x AL)

(z+,y-) € O & d"(p1(z4),92(y-)) = L.

(1) If (x4,y-) € O then xy = ¢gB; and y_ = ¢gB_, with ¢ € G. Hence
o1(zy) = g(cq) and @so(y—) = gwp(cy). We calculate :

d(g(cs), gwolcy)) = d(cq,wolcy))
= d(cy,wocy)

= Wop.

This implies that d*(p1(24), pa(y—)) = 1.
(2) Suppose gB, and hB_ are such that d*(¢;(g9B+), p2(hB-)) = 1. This
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means that d(g(c), hwo(cy)) = wy. Using the isomorphism ¢; and the
Bruhat decomposition of G it follows that :

hb_ = gb,

for appropriate b_ € B_ and b, € B,. This means that (¢B,,hB_) € O.
O

Remains to prove the same result for non-spherical rank 2 Moufang build-
ings. Let (I', W, S,d) be such a building. We consider a graph whose vertex
set V' is the set of all residues in I'. Two vertices are joined by an edge if and
only if they lie in a chamber. In this way we get a bipartite graph (V| E),
which turns out to be a tree. It can also be easily checked that every isomor-
phisms of T" as building induces an isomorphism of the tree (V, E). For more
information about non-spherical rank 2 Moufang building we refer to [26].
The result we will prove is :

Theorem 72 Given a non-spherical rank 2 Moufang building (T', W, S, d)
then the relation O defines the opposition relation of a twinning between A
and A_.

proof :

First we fix some notations and terminologies.
Denote W = {s,t}. The chambers of I will be considered as pairs {z,z'},
where z and 2’ stand for the simplices in the chamber {z,2'}. We as-

sume that the standard chamber is given by ¢y = {zo,z;} and the stan-
t

dard apartment ¥, is the sequence ...c_y ~ c_; ~ ¢ e €1~ cy.... Write
0 0

¢; = {x;,xiy1}, Vi. Then the standard apartment ¥, corresponds to a se-
qQUeNCe ...T 9 ~ T |~ Tg~ Ty ~ Ty...Iin the tree (V, E).

As to the Moufang structure on I we keep the notations from above.

Let ;" be the positive root of £y such that z; lies on it’s boundary. Similarly
a; is the negative root of Xy such that z; lies on Ja;; . By calculations already
made there are two BN-pairs involved ; (G, B4, N, S) and (G,B_,N,S).
They give rise to two buildings (A4, W, S,d;) and (A_, W, S,d_). To prove
that O is the opposition relation of a twinning between A+ and A_ we refer
to Proposition 5.4. in [18]. In order to use this proposition we show the
following :

(¢) The relation O defines a 1-twinning between Ay and A_.
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(i1) For any four chambers y_,c! and ¢% in A_ and ey € A, such that
(eq,ct) € O, (e4,c%) € O and :

l(d-(cl,y-)) = Ud-(c,y-))
= min{l(d—(a—’y—))|(e+7a’—) € O}

we have d_(ct,y_ ) =d_(,y_).
(¢47) For any four chambersy_ € A_, y} 4% e, € A suchthat (yt,y_) € O,
(y2,y-) € O and :

(di(er,yy)) = Udi(es,3))
= min{l(d;(a+,ci))|(as,y-) € O}

we have dy (y},ey) = di(y3, eq).
(iv) Given chambers y_,a_ € A_, ey and by € A such that a_ is as in (i),
I(d(a—,y_)) is minimal, by is as in (i77) and {(d(e,b;)) is minimal then

dy(es,by) = di(a,y-).

If (@), (#7), (4i7) and (iv) are satisfied we define for every z € A, (e € {1,—1})
a codistance function d, : A_ — W in the following way. For every z € A_,
d,(2) equals d_.(z_, z) with (z,2_.) € O such that [(d(x_, z) is minimal as
in (i) or (i77). One easily checks this defines a codistance function for every
x.

Remains to check these 4 properties :

(7) Because of the definition of O it suffices to check that O defines a 1
twinning between the s-residue R in A, containing c; and the s-residue
R’ in A_ containing c_. We check that for all the chambers z_ of R’ satisfy
(x_,cq) € O except s(c_).

Every element of R® has the form u_, s(c_) for u_o, € U_,,. Suppose
that u_,, # 1. Granted the properties of the BN-pair (G,B_,N,S) we
can write u_q,sc_ = uq,su;, sc_ for appropriate u,, and u, € U,,. But
then u_qy, s(c—) = uqg,(c=). And (cq,u_q,(c=)) = (Ua,(c4), ua,(c-)). Hence
(4, t_afc_) €O.

Consider the chamber s(c_). If (cy,s(c_)) € O then there would exist a
g € G such that g(cy) = ¢y and g(s(c_)) = ¢_. But then g € B, and
gs € B_or s =0b,b_ for by € B, and b_ € B_. This contradicts the fact
that s stabilizes the standard apartment ¥, as we are working in a tree.
Hence (s(c_),cq) € O.
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Granted the action of G on A, and A_ we may assume that d. = ¢4 in
(i1), (4i7) and (iv).

(#4) Suppose that y_, c¢& and ¢2 are chambers as in (1) with (c;,y-) ¢ O.
Then y_ = gB_, ¢! = b}B_ and ¢* = b2B_ for g € G,b", € B,. Let
d_(ct,y ) =w; and d_(c®,y_) = wsy. It follows from the assumptions that
l(wl) = l(’LUQ)

Assume w; # ws.

Because we work in a non spherical Coxeter group two possibilities occur.
Namely w? = w? = 1 or w? # 1 and w3 # 1.

Expressing that the distances from ¢! and ¢® to y_ are w; and w, gives :

gB_ = bibl_wlB_
= bﬁ_bZ_U)QB_
for ¥ € B_.
Hence
bibiwl = bibz’wgb,
forb_ € B_.

Using the properties of the BN-pair (G, B_, N, S) we find :

(B2)710L = 0 wsb_wp (b)),
If w} = w2 =1 then

b2 wob wi (b))t = b_wywb”
for o' 0" € B_.
If w? # 1 and w2 # 1 then wyw, = 1 and the properties of the BN-pair
(G,B_,N,S) yield :

b2 wob_wi ' (bL)™" = bwib”

for o' 0" € B_.
In all cases we find that if w; # w, then for a v # 1, ' and b” € B_

b’_UbZ (S B_;,_7

with [(v) = 0mod 2. This means that " vd” has to fix the chamber c;. Write
b vb” = u_vu”h for h € H. Then u” vu” has to fix c,.
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Two cases occur :

(a) u” =1.

Then we have v’ (v(xg) = xp and v’ (v(z1)) = ;. This is only possible if

v=1and v =1

(b) The element u” # 1.

Suppose that W = {s,t}, da, = xo, Oy = z1.

Ifu” € U_,, we find that u”_vu” (z9) = 2. Granted the condition on u” this

implies that v’ (v(z9)) = zo. Again a contradiction.

Hence there u” ¢ U_,, and there exists an index j such that z; ~ y; ~ yo ~
.~ u (zg) ~ u’ (z1) is the gallery in T from X4 to u” (z1).

Suppose that 7 < 0 (we already excluded the case where j = 0).

Because [(v) = 0mod 2, v acts as a translation of Xy i.e. :

v(2)) = Tigpy, VI

for a fixed ky € Z.
Let v(z;) = xy,.
If m < 0 then dy(zj,u” (x0)) # dy(Tm,xo). One easily checks that there
cannot exist a v’ € U_ with u’_(vu” (z9)) = wo.
If m > 1 then :
dy (2, vu” (20)) < dy (T, vu” (1))
One checks that for no v’ € U_ we can have v’ (vu” (z9)) = o.

If j > 0 one uses similar arguments to deduce a contradiction.
(3) If (y},y-) and (y3,y—) € O then

y- = g(co)
yh

vi = gb (cy)

Il
Q
—_

o
+
N

forge Gand b_ € B_.

A symmetric proof completely analogous to (2) gives dy (v}, ct) = di(y3, c4).
(4) Let y_ and c. be chambers of A_ with (cy,ct) € O and d(ct,y_)
is minimal as in (i7). Then we look for a chamber y, in A, such that
(y4,y-) € O and dy(cy,yy) = d_(cL,y—). This will imply (iv). Without
loss of generality we can assume that ¢! = c_.

Let the minimal gallery in A between c_ and y_ be :
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If y! = u_q,s(c_) let y} be u_g s(cy). If 2 = u_g,tu_g s(c_) let y3 be
U g, tU_g,8(Cq ). A
If we do this for all y* we get a gallery :

W=y Ayl tyl A Ay
from ¢ to y'. One shows with a proof similar as in (2) that for no
v €W and b_,b" € B_ we can have that b_vb € B,. This ensures us
that all the yﬁr are different. The gallery is therefore non-stammering and
di(cq,yT) = d_(ct,y_). By construction we have (y;,y_) € O.
This completes the proof that (7),(i7),(i77) and (iv) are satisfied for O. Hence
O is the opposition relation of a twinning between Ay and A_. a

2.1.6 Constructing a 2-twinning

In this paragraph we will show that the building (A, W, S, d) is half of a twin
building using a result of B. Miihlherr in [18]. We restate the main result of
loc. cit.

Theorem 73 Let M be a Cozeter matriz over I, let (A, W, S,dy) and
(A_,W,S,d_) be two thick buildings of type M and let O C (AL x A_) U
(A_ x Ay) be a non-empty symmetric relation. Then O is the opposition
relation of a twinning between (A, W, S,6,) and (A_,W,S,6_) if and only
if the following condition is satisfied :

If J C I is of cardinality at most 2 and if Ry C A, and R_ C A_ are
J-residues, then either ON ((Ry X R_)U (R- x Ry)) =@ or ON ((Ry x
R )U(R_ x Ry)) is the opposition relation of a twinning between R, and

We now have :

Theorem 74 Given a Moufang building (A, W, S, d) with root groups (Uy)ace
then A is half of a twin building i.e. there exists a building (A_, W, S,d_)
and a codistance function d, such that (A, W,S,d),(A_,W,S,d_),d*) is a
twin building.

proof :
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By Theorem 2 and Corollary 3 we know that there are two B N-pairs involved.
Namely (G, B, N, S) and (G,B_, N, S). The building (A, W, S,d,) asso-
ciated to (G, By, N, S) is by construction isomorphic to A. We define the
symmetric relation O between A, and A_ as before. Consider s;,s; € S.
Let R, and R, be the {s;,s;}-residues in Ay and A_ containing c;
and c_ respectively. Then it follows from Theorem 4 and Theorem 5 that
O defines the opposition relation of a twinning between Rjis]_ and R, By
construction this implies that O satisfies the conditions of Theorem 6. Hence
O defines a twinning between A, and A_. This means that A &2 A, is half
of a twin building,. |

2.2 Characterization

2.2.1 Introduction

As usual M = (m;;); jer stands for a certain Coxeter matrix and € is an
element of the set {1,—1}. When considering buildings we will not always
explicitly mention the type if this is not relevant in the context. The following
definition can be found in [19]

Definition 75 A (thick) 1-twinning between a pair of (thick) buildings
(A+,W,S,dy), (A=, W,S,d_) of the same type is a symmetric binary rela-
tion O C Ay x A_UA_ x A, satisfying :

if (cc,c_) € O, every panel in A, through c. contains exactly one chamber
z with (z,c_.) ¢ O.

Given the notion of a 1-twinning, galleries between chambers of A, and A _,
can be introduced.

Definition 76 Let O be a (thick) 1-twinning between (Ay, W, S,d;) and
(A_,W,S,d_). A gallery between ¢y € A, and ¢, € A_, is a sequence of
chambers (co, ¢y, - .., ¢,) such that :

(i) (c1,c2,--.,cn) € A is a gallery in A and (cg,c1) € O or
(i))(co, €1, --cn1) € A is a gallery in A, and (¢, 1,¢,) € O. I T =
(co,c1,...,Cm) denotes a gallery, its length is defined as m.
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As a consequence of the connectedness of A, and A_ every chamber of A,
can be joined via a gallery to every chamber of A_.. It thus makes sense to
consider minimal galleries between chambers of A, and A_. (i.e. galleries
of minimal length).

Let x € A, then we denote :

2> ={y e A_|(z,y) € O}.

2.2.2 First result

Theorem 77 A thick 1-twinning O between two buildings (A, W,S,dy)
and (A_, W, S,d_) of type M defines a twinning if and only if :

(i) Given z € A, and y € A_, then d_.(x,,y) = d_.(z,,y) whenever z, and
Z, are two chambers in x° satisfying :

Ud-c(zy,y)) = l(d-e(2y,y)) = min{l(d_(z,y)|z € 2°}.

(it) If y, € y° such that the distance d(y,,x) is minimal, and z, € z° such
that the distance d_.(x,,y) is minimal then :

d(xyv y) = (d(yxv x))il-

Under these conditions we can define a function d* from Ay and A_ to W.
Namely for x € A, and y € A., we set d*(x,y) as d(z,,y) where z,, a cham-
ber of x° at minimal distance from y. Under these conditions d* defines a
codistance function of a twinning between (A, W, S,dy) and (A_, W, S,d_).

proof :

Suppose that O is a twinning between (A, W,S,d,) and (A_,W,S,d_).
This means that there exists a codistance function d* going from A, U A_
such that O = {(z,y) € Ay x A_U A_ x A |d*(z,y) = 1}. Let z,z,,7,
and y, be as in the theorem. Set w = d*(z,y). It is a general observation
that for z,,z,,y,, w = d_(z,,y) = d_(z,,y) = dc(z,y,). Hence conditions
(i) and (i) are satisfied form every z € A.

We check axioms (Twl), (Tw2) and (Tw3) for d*.

Conversily let O be as in the thoerem. Then we check that it defines a twin-
ning between A, and A_. (Twl).
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This follows from property (ii).

(Tw2).

Suppose d*(z,y) = w, x € A,y € A_., s; € S such that [(ws;) < [(w). Let

z be any chamber of A_. s;-adjacent to y.

The definition of d* implies that we can choose a chamber x, € 2° such that

d_c(zy,y) = w. Consider in A_, a minimal gallery T',, = y°(= z,) ~ y' ~
.~y ~ Yy (= y) of type w from z, to y. Without loss of generality

we can assume that d*(z,y™™ ") = o', w's; = w and [(w') < l(w). It is not

hard to check that there exists a gallery I',} = y™ ! ~ 2! ~ ... ~ z of

type b’ with rp = w1 in A, with (z1,y™!) € O. But then d*(x,,y) = s

and granted the condition of a 1-twinning we find d*(zy,z) = 1. This yields

I(d*(z,x)) <m—1. As l(d*(z,y)) = m we find I(d*(z,z)) = m — 1. Hence

d*(z,z) = w'™" and d*(x,z) = w' = ws.

(Tw3).

Consider two chambers z € A, and y € A_, with d*(z,y) = w. Two cases

occur.

First case : [(ws;) < l(w).

As we saw in the proof for (Tw2) every chamber z in A ., s;-adjacent to y

satisfies d*(z, z) = ws;.

Second case : l(ws;) > [(w).

Choose a chamber y, € y° such that d(z,y,) = d*(z,y). There exists in the

s;-residue containing y exactly one chamber, call it p with d*(y,,p) = s;. We

show that d*(z,p) = ws;.

Set @ = d*(z,p). The hypothesis on w implies that (@) = I(w) or I(w) =

l(w) + 1.

Suppose that [(w) = l(w).

Choose p, € p° such that d(z,p,) = d*(z,p).

We have two possibilities.

(1) d*(ps,y) = 1. Granted the condition on the opposition relation we de-
duce w = w.

(2) d*(ps,y) = si-
Choose a third chamber ¢ of the s;-panel through y. (Such a cham-
ber always exists as the buildings under consideration are thick.) As
d*(pz,y) = si, q lies opposite p,. Choose a minimal gallery T'y in A, of
type l~1, with r; = from z to p,.
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Consider I(d*(z,q)).

Then I(w) — 1 < I(d*(z,q)) < l(w). If I(d*(z,q)) = I(®) — 1, there
exists a gallery from x to p of type h's such that r;,s = W. But then
I(ws) = I(w) — 1. This in turn implies that there exists a gallery I'; of
type g with ry = from z, to y.

Hence w = w.

If I(d*(z, q)) = l(w) we have d*(z,q) = .

Completely similar arguments for z, y,., v, ¢, p imply d*(z, ¢) = d*(x,y) =
d*(z, p).

Putting these two equalities together gives d*(x, q) = d*(z,p) = d*(z,y) =
w = w.

In any case we find that if [() = [(w), then w = w. Consider a mini-
mal gallery I’y = 2g(=2) ~ 21 ~ ... ~ (= y,) in A¢ of from z to
Yoo If d(x;, 241) = 8;41 it follows d*(z;,p) = ws182 ... s;. In particular
d*(xy,p) =1 a contradiction.

We conclude [(w) = [(w) + 1 and d*(x,p) = ws = w.

2.2.3 The local approach

In what follows we prove a local condition on a thick 1-twinning sufficient
and necessary for a the 1-twinning to be a twinning.

Definition 78 Given a thick 1-twinning O between (A4, W, S, d;) and
(A_W,S,d_) we say it satisfies condition Ptw for a chamber c € A, if :

Vy € A_. Ve, ¢y € ¢ such thatl(d_c(cy,y)) = 1(d_c(¢y,y)) = min{l(d_(z,y))|z €
'},

Vy. € y° with I(d(c,y.) = min{l(d.(v, c)|v € c°}

d_c(cy,y) = d_.(¢y,y) = de(c, ye).

Under these conditions we can define a function f going from {c} x A_, to
W. Ify € A_, then f(c,y) = d_c(cy,y) for a chamber ¢, € ¢ at minimal
distance from y.

Let ¢ be as in the definition. Then we denote in the sequel the induced
function f also by d¢. A first observation is :
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Lemma 79 A thick Ll-twinning O between (A4, W, S,d,) and (A_, W, S,d_)
is a twinning if and only if condition Ptw is satisfied for every chamber
ce € A..

As before O is a 1-twinning between (A, W, S,d) and (A_, W, S,d_). Next
step is to impose condition Ptw on one chamber ¢ € A.. Then we want to
prove that condition Ptw is valid for every chamber z € A, LA _..

Lemma 80 Let O be a 1-twinning between (A, W, S,dy) and (A_, W, S,d_).
Suppose condition Ptw is satisfied for some chamber x € Ay, If d*(z,y) =
w, z is s;-adjacent to y and l(ws;) < l(w) we have d¥(z,z) = ws;.

proof :

As l(ws;) < l(w) the w equals wys with [(wys) = I(w;) + 1. Hence ev-
ery minimal gallery T, of type h (r, = w) from z to y via z° can be replaced
by a gallery I'y,,s = ~ y1 ~ ...Yym—1 ~ y of type h't with r, = w; and
(x,yl) € 0.

Two cases occur.

First case : z = y,,,_1.

Then we have d*(z, z) = d*(z, ym_1) = ws;.

Second case : z # Ym_1.

Consider a chamber y, € y%_, at minimal distance from z. There ex-
ists a minimal gallery wal in 64 of type hy with r,, = w; from z to y,.
The chamber z should satisfy (y,,z) € O. Otherwise (y,,y) € O and
d*(z,y) = w; = w a contradiction. It follows that d*(x,z) = w;. O

Lemma 81 Suppose we are given o l-twinning between (A, W, S,dy) and
(A_,W,S,d_) such that condition Ptw is satisfied for x € A.. Let d%(z,y) =
w fory € A_. If z is a chamber of A ., s;-adjacent to y then d*(z,z) €
{w,ws;}.

proof :
Set I(w) = m. There are two possibilities.

First case [(ws) = m — 1.
Then the claim follows from Lemma 80



2.2. CHARACTERIZATION 63

Second case l(ws) = m + 1.

If [(d¥(z,z)) = m + 1 then we know as there is a gallery of type hi with
rps; = w from x to z that d*(z,z) = ws.

Remains to prove the lemma if I(d?(x,z)) = m.

(Remark that these are the only possible values for I(d*(x,z)) granted the
condition on w.)

Let d¥(z,z) be w. Consider elements z,,y, € A, z,,z, € A_, such that
de(z,y;) = d_(zy,y) = w and d(z, z,) = d_.(x,, z) = W. As we are working
with a 1-twinning there are two possibilities :

1. First possibility : (2,,y) € O or (y,,2) € O.
Then it is clear that d¥(z,z) = d%(z,y).

2. Second possibility whenever (z,,y) and (y,,z) # O.

Consider a third chamber r which is s-adjacent to both z and y. It
follows that (z;,7) € O. Hence [(d*(z,r)) € {m,m — 1}.

Suppose that {(d*(z;,7)) = m—1). Then [(ws) = m—1 as there would
be a gallery I'yry = 2 ~ 2° ~ 2! ~ ... ~ r ~ y of length m with
(z,2°) € O. The type of Ty, is h'i. Thus d*(z,y) = rps; = w with
l(rp) < l(w).

We conclude that I(d%(x,r)) = m and thus d*(z,r) = @. An analogous
reasoning gives d*(z,r) = w. Hence @ = w and d%(z,2) € {w,ws}. O

Before proving the main theorem we give an important lemma.

Lemma 82 Let O is a 1-twinning between (AL, W, S,d) and (A_, W, S,d_).
Suppose x € A, y € A, and Ty, a minimal gallery from x to y via x° of
type h = (hiha ... hy,). Then every chamber z € A_, joined by a gallery T,
of type h to y lies opposite x.

proof :

Set 'y, = 2y - - - ym(= y). Construct a special gallery I'§ in A.. Denote
by xo. Consider the s;,, panel through z. Then there is a unique chamber in
this panel not opposite yg. This is the chamber z;. Suppose we already con-
structed a gallery zozy ... xz; of type (hihs ... h;) with (z;,y;) € 0,0<j <1
and (z;,yj41) € O for 0 < j < i — 1. Then we choose as z;;; the unique
chamber of the s;,,, panel through x; not opposite y;. Proceeding in this
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way we end up with a gallery I', = oz ...z, in A, of type h such that
(zj,y;) € 0,0 < j <m,and (zj,y;+1) ¢ O for 0 < j < m — 1. Let z be
another chamber of A_, joined to y by a gallery I', € = 292 ... 2, of type h.
Then it one easily deduces using the properties of 1-twinnings and the fact
that zyoy: . .. ym is minimal that (z;,z;) € O for 0 < j < m. This implies in
particular that (x,2) € O. O

Theorem 83 Given a thick 1-twinning O between (A, W, S,dy) and
(A_,W,S,d_). Then O defines a twinning if and only if condition Ptw is
satisfied for some element © € A..

proof :
That this condition is necessary is follows theorem 79.

To show the converse we use the following strategy.

Fix a chamber 2’ of A, s;-adjacent to x for s; € S. Then we prove the
chamber z' obeys condition Ptw.

As buildings are connected chamber systems this implies that every chamber
of A, satisfies condition Ptw. From this we deduce then that also all cham-
bers of A_, satsisfy condition Ptw. Theorem 79 implies then that O defines
a twinning between A, and A_.

Consider y’ € A,G. Let FE = l"gogl N gm,1 gm(: y) and F}‘l =a gogl N gm,1
Um (= y) be two minimal galleries from 2’ to y via (z')°. Suppose the type of
I; is h = (hyhy ... hy,) and the type of T'; is b = (hyhy. .. h,,). Let r; = @
and rj = w. Then [(@) = I(w) = m. Remains to show that @& = w.

Two cases occur :

1. First case : there exists no minimal gallery from z' to y of type g, such
that (s;rg) < (rg).
According to the length of the distance between x and y tree sub cases
occur.

First subcase : {(d*(z,y)) = m

We assume that d*(z,y) = s182...8, = w. Next thing to do is calcu-
late the relation between z and g, and between x and . As a generic
case we consider x and .
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Suppose d*(x, §o) ¢ O. On going down from y t0 go via Jpm—1 ~ Gm—a ~
.~ fo we get (use Lemma 80) :

dy (2, Jm) = w
d (2, Ym-1) = w or w§;,

df(ib',go) = wéim...gi

P Sil

where the hat stands for possible omitting a certain generator.

This means w = s§;... §;, ...8,. Thus there is a minimal gallery
L2021 ... Zy Of type ((i1...0p—1lpy1...0p) = §, (r; = W), from z to
y via z°. But as this type starts with ; and we are working with a
1-twinning, ' lies opposite z;. Thus there is a gallery z'z; ...y from
x' to y of length m — 1. A contradiction to the minimality of m. This
implies (z, 7o) € O. In a completely analogous way we find (z,9,) € O.
As the chamber z satisfies condition Ptw we deduce the equality @ = w.

Second subcase : I(d*(x,y)) = m+1

Suppose d*(z,9) = 1 or d%(z,%) = 1 We get a contradiction with
I(d®(x,y)) =m+ 1.

Hence :

di(z,%) = si
df(l’,go) = S

Consider arbitrary chambers lets call them §_; and y_; in A_, s;-
adjacent to gy and gy respectively.
We have :

df(xvgfl) = df(ﬁﬂ,g,l) =1

The hypothesis = yields s = sw or equivalently @ = w.

Third subcase : I(d*(z,y)) =m — 1

Then there exists a minimal gallery I' of length m — 1 from z to y via
z° namely zyoy;...y. Then d*(z',yo) equals s;. Let y_; be an arbi-
trary chamber in A_| s;-adjacent to yo. Then z’ lies opposite y_; and
thus the sequence x'y_1%oy1 . .. Ym_1 is @ minimal gallery from ' to y
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of a certain type go such that I(s;ry,) < I(go), a contradiction with the
hypothesis.

. Second case : there exists a minimal gallery from z' to y of type u with

l(s;ry) < U(ry).

Notations are as above. Without loss of generality we may assume
that I'; is a gallery of type u = h = (ihy...hy). Under these as-
sumptions it follows that df(x,y) = sj,...s; . As before we denote
d*(z,y) by w. We claim all minimal galleries from z’ to y via z° have
type v such that with r, = r;. Consider as above the other mini-
mal gallery I'; = 2'%o¥1 ... Um_1 Ym = y. Assume that the type of
First possibility : I(s;3) < I(r3).

Without loss of generality we can assume in this case that 35 =
s;.  We have that z lies opposite ; and the hypothesis on = gives
7,57y - Sk, = Sk, Shy - - - Sk, Hence rj =rj.

The second case occurs when [(s;r;) > (ry).

Consider d*(z, 3).

Suppose that d*(z, 7o) = s;. On going down from y to 7o the distance
d? should stutter two times. (Remember that d?(z,y) = §233...5,,).
Two posshilities occur.

There exists p, 1 < p < m such that :

or there exist p{, po with 1 < py, ps such that :

W = S$iSf, - Sk, -+ Spp - - Sk,
The second possibility cannot occur as we have that I(s;w) > [(w). If
p # m we can replace the gallery I'; by a gallery I'y; = $ot1 - . - Yip—1Yp - - - ¥
of type h. We can restrict ourselves in particular to the galleries
YoU1 - - - Yp and Yo - . . Jp and we have reduced the situation to the case
where p = m.

So we can assume without loss of generality that p = m.

From the calculation from above gives :
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To proceed we construct a special gallery in A, starting in x.
Consider a chamber x, € A, with d.(z,25) = s5,. Then (25,7%,) € O.
Choose a chamber z3 € A., sj,-adjacent to x,. As before we find
d*(z3,93) € O. Continuing in this way we build up a gallery T' =
TTT3 ... Ty in A, such that d(z;,zi41) = s5, and (z;,7;) € O for
1<i<m.

Choose a third chamber 2, € A_, of the s; -panel through y, not
opposite x,,. As we know d?(z,y) = w we have using Lemma 81 that
di(z, z) € {w,wsy, }.

Suppose that d*(z, zp) = w.

This yields (2, 20) € O as w = s3, 8, - - - S, _,» a contradiction.

It follows that d*(z, zp) = wsj, .

Suppose zg = ¥m—1. On going down from g,,_1 to g we get granted
the assumption d?(z,go) = s; that :

ws,;mw’1 =5

or equivalently :

Sk Shy - - - SR, = SiW.
This contradicts the assumption [(s;r;) > I(rj). Therefore zy # yp,—1.
But then d_.(yo, z0) = wsy,, and granted Lemma 80 we find d¥(z, yy) =
1, contradicting the hypothesis that d*(z,9g) = s;.
The initial assumption that d*(z,3s) = 1 is false and the only possi-
bility is that di(z, %) = s;. We saw d}(z,y) = s;,55, - -5, - Hence
[(d*(x,y)) equals m — 1. As d_.(Jo,y) = Si, Sk, - -- Sp,, and two possi-
bities occur on going down from y to ¥o.
First posshilitie :

There exists pi, p2, 1 < p; < 2 such that :
WS, S, Sy - Sy = Si
(Remark that in this case p; # m as d%(x,y) = s;.) or :
WSh, Shy_1 +++Shy — Si-

The first possibility contradicts the fact that [(wsj; ) = m and. If the
second possbilitye would occur we have I(s;(wsj, ) = U(sirp) < (1)
contradicting the initial assumption on rj.

This means that the possbility that [(s;r;) > I(r;) is thus excluded.
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The above discussion shows the following property. If 2" € A, is s;-adjacent
to v and y € A_.. Consider two minimal galleries ['; and I'; of types
(hyhy ... hy) and (hyhy ... h,,) respectively. Then r; = rj. This is one half
of condition Ptw for z’.

We show that the other half of condition Ptw for x’ also holds. This follows
from the following observation. Let y € A_, and I'y = yxox; ... 2" be a min-
imal gallery from y to a' via y° of type (fif2 ... fn). Using Lemma 2.2.3 one
can easily construct a gallery I'y—1 = 2'yoys ...y of type (f, fu=1... fi) from
' to y. As we know that all minimal galleries from 2’ to y have the same
type up to homotopies we're done.

By the connectedness of the buildings A, and A_, condition Ptw is valid
for all chambers of A..

Let z € A_. and v € A.. As every minimal galery from z to u defines a
minimal galery from u to z, one easily checks that z also satisfies condition
Ptw. Hence O defines a twinning between A, and A_ by Theorem 79. O
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Chapter 3

Moufang sets

3.1 Introduction

In the standard reference [32] J. Tits introduces the basic concepts to be used
in a possible classification program for twin buildings. Of major importance
here is the notion of Moufang set. Loc. cit. is the first place where a formal
definition appears. In view of the work of B. Miihlherr [20] the class of the
so called induced Moufang sets need special attention. Induced Moufang
sets are obtained as local data derived from the global geometry of Moufang
buildings. In order to carry out the classification program for the B, case
in the spirit in [20] one needs to solve the following question. ”Suppose we
are given two Moufang quadrangles I'; and 'y having isomorphic induced
Moufang sets. Does this yield any relation between I'y and 'y 77

In this chapter we will develop an alternative setup concerning induced Mo-
ufang sets which emphasizes less the quadrangle. As a consequence the ques-
tion above is translated to a more algebraic one. Namely in a lot of cases the
Moufang sets we consider are closely related to the endomorphism groups of
a certain vector space endowed with a quadratic form of Witt index 1. Using
the geometry provided by the form one could also view these endomorphism
groups as auto-morphism groups of this geometry.

71
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Hence the question concerning isomorphic induced Moufang sets is translated
to a question concerning isomorphic linear groups preserving a form of Witt
index 1 or to a question of isomorphisms of the related geometries.

As the groups and geometries which arise here are in some cases classical,
some work is already done concerning isomorphisms.

Nevertheless most of the theorems we find in the literature provide partial
answers that are valid under restrictions which we had to overcome.

In a lot of cases one could use Borel-Tits theory [2]. One disadvantage is
that this works only if the groups are algebraic ones. This yields in par-
ticular that the vector space in which the form is defined should be finite
dimensional over a field of characteristic not 2. As the induced Moufang sets
we consider do not always arise from algebraic groups (e.g. if characteristic
of ground field is 2) this still leaves a gap.

Classical theory (cfr. e.g. [6], [7], [8], [12], [11], [17], [24]) also gives an-
swers in some cases. As above these results mostly work only if the vector
space is finite dimensional, the form is non-degenerate, and the groups are
of the same type. Especially the question concerning isomorphic orthogonal
Moufang sets in characteristic 2 was problematic. (cfr. Proposition 127)
A partial answer was given in [5] but the result only holds under a certain
non degeneracy condition. The alternative approach developed in this chap-
ter was very useful here. Using this setup the question was solved completely.

In Chapter 8 in [29] one can also find some theorems which handle with
questions related to isomorphisms between Moufang sets (e.g. Lemma 8.18).
Nevertheless one verifies that the heart of the problem cannot be solved using
this theory. It is in fact translated in another setup.

Moreover as the classification program of B, buildings requires a comparison
of Moufang sets of different nature we followed a more elementary strategy.
In this way we could compare indifferent Moufang sets with other ones, solve
a lot of question even if the characteristic of the ground fields is 2 and the
groups are not algebraic groups and ultimately give an theorem which char-
acterizes classical Moufang sets in some sense

Moreover most of the results proved in this chapter will find application in
Chapter 4 dealing with existence and non-existence of certain B, Moufang
buildings.
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3.2 Projective Moufang sets

We start the discussion on Moufang sets by considering the family of pro-
jective ones. Implicitly these sets were studied before under other names
and with other terminology. Ome of the first to investigate isomorphisms
between two such Moufang sets was L.K. Hua. (cfr. [12]). A version of his
description of all possible isomorphisms can be found in section 8.12.3 on
ppl47-149 in [29]. Moreover the techniques used in loc. cit. will enable us
to compute in this section all Moufang subsets in a special case. We give a
formal description of what is meant by projective Moufang set and prove a
first proposition.

Let k be a division ring, E a 2-dimensional right k-vector space and X be the
set of all vector lines in E. To simplify the calculations we use a coordinate
system. Choose a base {ej,e>} of E. Denote (e1z + e2) as (z) and (e;) as
(00). This means we can write X = {(z)|z € k} U {(c0)}.

Choose as point set the set X.

As to the root group structure we start by giving descriptions of U and
Uio)- In classical terms Uy and Uy coincide with transvection groups with
centers ey, ey respectively. A typical example of a root elation u((oo0); (0), (x))
€ Uy has matrix representation with respect to the ordered base {ey, e} :

(07

whereas an element of the form u((0); (00), (z)) € Up) has matrix represen-
tation with respect to the ordered base {ey, €3} :

(1)

All other root groups are conjugates of Uiy under appropriate elements of
U). Namely if (z) € X, we define U, = gUcg™", where g = u((0); (c0), (z)).
We check that (X, (U,)zex) defines a Moufang set.

1. Condition MoS1.
We first prove that Ui acts regularly on X \{(co)}. Let (z), (y) € X\
{(o0)}. Then the root elation with matrix representation with respect to the

ordered base {ey, es} :
1l y—x
01
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is the unique element of U, sending () to (y).

By similar arguments one checks that also U acts regularly on X \ {(0)}.
As the other root groups are defined as conjugates of U, condition MoS1
is clearly satisfied.

2. Condition MoS2.

As Ulsy and Uyg) coincide with the transvection groups with centers e; and
ez, a root group U, corresponds to the group of transvections of center x.
Hence the set {U,| * € X} is stabilized by GLy(k) and condition MoS2
holds.

In this way we obtain a Moufang set (X, (U,)zex) which is denoted by P (k)
and is called a projective Moufang set defined over the division ring k. As
already mentioned we prove the following proposition.

Proposition 84 Consider a projective Moufang set P(k) defined over the
field k.

(i) If char(k) # 2 every Moufang subset Y of P(k) corresponds to a subfield
of k.

(i1) If char(k) = 2 every Moufang subsetY of P(k) corresponds after a right
choice of coordinate system to a subset l of k

satisfying : (k is the field generated by 1)

(i) =11

(i) L el )

(iit) The set 1 is a vectorspace over a subfield k' of k containing k*.

proof :

Suppose as above that the point set of P(k) is defined as the set of all
vectorlines of a 2 dimensional right k-vectorspace E. Choose an ordered
base {e1, ez} of E such that with notations as above P(k) = (X = ({(z)|z €
k} U {oo}, (Us)rex)-

Let Y be a Moufang subset of P(k). Set [ = {t € k|(t) € Y'}. Without loss
of generality we can assume that (0), (c0) € Y and (1) € Y as Y contains
by definition at least 3 elements.

We show that (I, +) is a subgroup of (k,+).

Let s,t € I. As (Y, (Staby,(Y))yey) is a Moufang set, u((oc0); (0), (¢)) stabi-
lizes Y. This means that u(oco0;0,t)(s) = (s +t) € Y and hence s + ¢ € [.
By similar arguments one deduces that if ¢t € [ also —t € [. Hence (I, +) is a



3.2. PROJECTIVE MOUFANG SETS 75

subgroup of (k, +).

To proceed we restate a formula used on p148 in [29].

It is based on the following general observation. Let (A, W, S, d) be a Mo-
ufang building with root groups (Us)ses. Then there exist for every u, € U,
unique u_, and u’, € U_, such that u_ju,u’ , interchanges a and —a in
the standard apartment.

As Moufang sets are 1 dimensional Moufang buildings we can specialize this
property. Chambers are points of the Moufang sets and apartments are pairs
of chambers. The above observation means that every u((o0);(0), (a)) €
U(s), determines unique 61,6, € Ug) with :

f1u((00); (0), (a))02((0)) = (o0)
01u((00); (0), (a))82((c0)) = (0).

«@

The only possible choice for §; and 6, is 6; = 0 = u((0); (o0), (—a)) and
1u((00); (0), (a))fs has a matrix representation with respect to the ordered
base {ey, es} :

(L D)o 0) (L 1) = (L 8):

Hence for (z) € X\ {(0), (c0)} we find :

01u((00); (0), (a))ba((2)) = (—az""a).

As u((0); (00), (—a)) € Staby,(Y), we find 61 u((c0);(0), (a)) 62(Y) =Y.
This means in particular that if a, b € I, b # 0 also ab~'a € [. Setting a = 1
or b= 1 this shows that if y € [ also y~ ! and 3 € [.

According to the characteristic we distinguish two cases.

(1) Char(k) # 2.

Let a,b € [, then (a + b)? € [. But (a +b)? = a® + 2ab + b* with a? b* € [.
This implies 2ab € [. Hence also ((2ab)™' + (2ab)™")"' = ab € I.

This proves that [ is a subfield of k.

(2) Char(k) = 2.

Denote the field generated by [ as k. We see that [ has the following proper-
ties :

()t =1

(i)l el



76 CHAPTER 3. MOUFANG SETS

(i4i) The set [ is a vector space over k2.

Remains to check the converse.

Let P(k) be as in the beginning of the proof. This means P (k) is defined
using the a two dimensional right k-vector space E with base {ej,es} used
to coordinatize the Moufang set. Suppose [ is a subset of & such that [ is
a subfield of k if char(k) # 2 and [ satisfies conditions (¢), (i) and (zié) of
the proposition if char(k) = 2. Let Y = {(z)|z € I} U {(c0)}. We show
that Y is a Moufang subset of P (k). This will be done if we prove that for
any three points (a), (b), (¢) € Y, the element u((a); (b), (c)) stabilizes Y.
If (a),(b) and (c) are not mutually different we have wu(a;b,c) = 1, so we
can suppose a # b,b # ¢ and a # c. One calculates that u((a); (b), (c)) has
matrix representation with respect to the ordered base {e;, es} :

a®+b
a*+a2b2+a2c2+b2c2  a*+a?b?+a2c2+b2c2

a’+bc a?(b+c)
at+a2b2+a2c2+b2c2  a*+a?b?4a3c2+b2c2
b+c 2+be

Let (z) # (00) € Y. Then u((a); (b), (¢)) (z) = (((a® + bc)x + a*b+ a’c)(bx +
cx + a® + be)™h).

If (z) = (00) we find u((a); (b), (c)) (00) = (a® +be)(b+c)™t = (a®*(b+c) +
bc? + b2c).

Let char(k) # 2.

Then the condition on ! implies u((a); (b), (c))(z) € Y if (z) € Y.

Let char(k) = 2.

Conditions (i) and (iii) on [ yield that (a® + bc)(b+ ¢)™' = a*(b+ ¢)™!
+b '+ )t ey.

By the same conditions the element ((a®+bc)z+a®b+a’c)(bx+cx+a’+bc) ™!
belongs to [ if and only if ((a® 4 bc)x + a®b + a’c)(bx + cx + a® + be) belongs
to I. Now ((a® + bc)x + a®b + a’*c)(bx + cx + a® + be) = (a’b + b*c + a’c +
be?)z? + (a0 + a’c* + a* + b*c?)z + (a*h + a*c + a*b*c + a*bc?). By Prop-
erty (ii1) one finds ((a* +bc)z + a’b +a’c) (bx +cx +a* +bc) = b(a* +a’c?
+a’z? +c22?) +c(at +a?b? +a’x? +b%2?) +x(at +a?b? +aP? +b3?) € 1.
This proves u((a); (b), (¢))(xz) € Y, V(z) € Y and Y is a Moufang subset of
P(k). O

Motivated by this proposition we give the following definition.

Definition 85 Let k be a field of characteristic 2, k' a subfield of & contain-
ing k% and [ a subset of k satisfying :
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(v) 1 is a vectorspace over k'

By an indifferent Moufang set P(k',[; k) we mean a Moufang subset Y of a
projective Moufang set P(k) such that after the right choice of coordinate
system Y = {(z)|z € [}U{(00)}. If for an indifferent Moufang set P(k’,[; k),
k' = k* we will denote it shortly as P(I; k).

Remark that if P(k',[; k) is an indifferent Moufang set then identity map from
points of P(k’,[; k) to points of P(k?,1; k) defines a Moufang set isomorphism.
Hence P(K',1; k) = P(k*,1; k).

3.3 Induced Moufang sets in generalized poly-
gons.

In this section we explain the well known procedure to construct Moufang
sets given a Moufang polygon. It is not hard to see how this procedure can
be generalized to the tree case.

Let I' = (P, L,I) be a generalized Moufang n-gon such that n < oo. Con-
sider x € T. If z € T'(z), choose a root a, with z € Int(a) and z € Ja.
The group U, induces on I'(z) \ {z} a regular permutation group. It can
be shown that the action of U,, is independent of the initial choice of a,.
Therefore we can identify U,, with a permutation group U, < Sym(I['(z)).
Repeating this procedure for every y € I'(x) we get a pair (I'(z), (U.).er@))-
As for every z € I'(z), U, acts regularly on I'(z) \ {z}, condition MoS1 is
satisfied for (', (U.).er@))-

By assumption on I', u,, Uazu;y1 = Uiy (a) AS Ug, (a,) is aroot such that z is
contained in Oy, (2) and ua, (2) € T'(2) N Int(uq, (az)), ta,Us.uy) € {U.]2 €
['(x)}. This means condition MoS2 is also satisfied and (I'(x),(U.).cr(s)) is
a Moufang set. We call it an induced Moufang set on I'(z) in T', and denote
it by Mr()(I"). Using the transitive action of the little projective group on
points and lines (for a proof of this fact we refer to Theorem 64 of Chapter
2 taking into account that the group N acts transitively on the chambers of
the standard apartment ) it is not hard to show that Mp,)(I") depends
up to isomorphism only on the type of z. In other words if x and 2z’ are two
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points in I', Mp)(I') and Mp(I') will be isomorphic. Hence we can talk
about the isomorphism class of induced Moufang sets on a line pencil or a
point row of I'. The isomorphism class of induced Moufang sets on a line
pencil is denoted by M;(T'). Similarly M, (T") stands for the isomorphism
class of induced Moufang sets on a point row in T'.

3.4 Desarguesian projective planes and
Moufang sets

In this section we give a description of the induced Moufang sets on the point
rows and line pencils of a Desarguesian projective plane. The terminology
and notation will be used in Chapter 4 dealing with existence and non-
existence of certain Moufang buildings.

Throughout this section II denotes a Desarguesian projective plane. Using
classical theory (cfr [13]) we know that there exists a division ring k and a
3-dimensional right k-vector space E such that II =2 PG(E). For the sequel
we will identify in most cases IT and PG(E). We state the following Lemma
which will be used in Chapter 4.

Lemma 86 If Il be a Desarguesian projective plane defined over a division

ring k then M,(I1) = P(k) and M,(IT) = P (k).
proof :

By assumption we have II = PG(FE), where E is a 3-dimensional right k-
vector space. Choose a base B = {ey, ez, e2} of E. Let E* be the dual vector
space of E and denote the dual base of B as B* = {e}, €}, e3} with e} (e;)
= 0;;. As usual we will consider E* as a right k°PP-vector space.

Every point of IT corresponds then to a vector line of the form (e;x; +esws
+ezx3) and every line of II corresponds to a vector line in E* of the form
(elyr +e3y2 +ezys ).

Denote by g be the standard apartment {{e1), (e2), (e3)}.

As a generic point row to calculate M,(II) we choose (ey,es). Write the
point set of I' ((e1, e2)) as {(e;v+ez)|v € k}, U{(e1)}. A typical root elation
of the induced Moufang set Mpy, c,)) With fixed point (e;), which sends (e,)
to (eit + e2) has as matrix representation with respect to the base ordered
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B :
1 ¢t 0
010
000

)

whereas a root elation fixing (e;) and sending (e;) to (e1t +e2) has as matrix
representation with respect to the base ordered base B :

1 00
tL 10
0 01

Consider the projective Moufang set P(k) coordinatized in a canonical way.
Define the map £ from P(k) to Mp((e, e,)) by :

Bv) = (ew+ez)
B(oo) = (er).

We check that § defines a Moufang set isomorphism. Using Lemma 41 of
Chapter 1 this will be done if we check that the maps 3() from Uy and
U(el) and B(g) from U(o) to U(ez) with :

Booy (ul(00); (0), (1)) = Bou((00);(0),(t) o571
Bioy (u((0); (00), () = Bou((0);(c0), () o B~

define bijections.
Let (v) € P(k).
We have :

Bu((00); (0),(H)B7B((v)) = B((v+1))
= (ea(v+1)+em)
= u({e1); (e2), (ert + €2))((e1v + €2)).

This shows B0y (u((00); (0), (1)) = u({e1); (e2), (ert + e2)). In a similar way
one checks that o) defines a bijection from U to Uye,). Therefore 3 defines
a Moufang set isomorphism from P (k) to M, es))-

The Moufang set M, (II) can be calculated in a similar way as M, (II) using
the dual projective plane PG(E*). For sake of completeness and for applica-
tion in Chapter 4 we give the explicit calculations. As generic line pencil to
calculate M, (II) we choose I'({e>)). Using the dual base B* the elements of



80 CHAPTER 3. MOUFANG SETS

['({e2)) can be written as {{ejv* +e3) |v* € kPP} U {(e})}. Let t* € kPP. A
typical root elation of My, (II) fixing (e}) and sending (e3) to (ejt* +e3)
has as matrix representation with respect to the ordered base { e}, e}, e3} :

t*

1
0 0
0 1

o = O

Similarly the root elation fixing (e}) sending (e}) to (ejt* + €3) has as matrix
representation with respect to the base { e}, e3, €3} :

1 00
0 10
701

Let P(k°PP) be the projective Moufang set defined over k°” coordinatized in
a canonical way. Define the map 5* from P (k%) to My((,y) by :

Br(v) = (elv" +€k)

Bloo) = (en).
Using similar arguments as for M, .,)) one easily checks that 5* defines a
Moufang set isomorphism. This completes the proof. |

3.5 Classical generalized quadrangles

In this section we introduce two classes of generalized quadrangles which
will be called classical. In order to make calculations on the quadrangles we
will use a coordinatization similar to the one introduced in [37]. For more
information on the quadrangles and coordinate systems we refer the reader
to chapter 2 and 3 of loc. cit.

3.5.1 Symplectic quadrangles

Let k be a field, E a k-vector space and f a non-degenerate symplectic
bilinear form on F i.e. f is a function from E x E to k satisfying :

faX+yp,z) = Mf(x,2)+pf(y, 2)
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flz,z) = 0
Rad(f) = 0

where z,y,z € E, A\, u,v € k arbitrary and Rad(f) = {v € E| f(v,u) =
0,Yu € E}. Remark that the equality f(x + y,z + y) = 0 implies f(x,y) =
—f(y,x), allowing us to define orthogonality (denoted by L) according to
the formula :

zlys f(z,y) =0.

Orthogonality is clearly a symmetric binary relation on F x F.
For a subspace X of E one defines :

Xt ={yeE|f(z,y) =0,Vz e X}.

A subspace X is called isotropic if X N X+ # {0} and totally isotropic if
X C X*. Amongst the totally isotropic subspaces there are maximal ones
all having the same dimension. This number is called the Witt index of f
and denoted by v(f). If the form f is non-degenerate and dim(E) < oo
then necessarily dim(E) = 2m with v(f) = m. Under these conditions one
can choose a base {e;}1<i<on satistying f(e;, €i4,) = 1 and f(e;,e;) = 0 if
J # 1+ m. Such a base is also called a symplectic base. (For exact proofs of
these facts we refer to the classical theory for example [6], [7] or Chapter 8
in [29].)

To construct a generalized quadrangle we start with a 4 dimensional right
k-vector space E and a non-degenerate symplectic form f of Witt index 2.
With respect to a symplectic base {e;}1<;<4, f is represented by the form :

T1Y3 — T3Y1 + T2Ys — T4Y2-

Call points P all totally isotropic 1 spaces i.e. all projective points of PG(E).
Lines L are all totally isotropic 2-spaces in E i.e. projective lines of PG(E)
on which f vanishes. An easy calculation shows that (x) is collinear with
(y) if and only if f(x,y) = 0. We leave it to the reader to check that the
rank 2 geometry (P, L, I) with I the natural incidence defines a generalized
quadrangle. This quadrangle is denoted by W (k) and is called a symplectic
quadrangle.



82 CHAPTER 3. MOUFANG SETS

3.5.2 Coordinatization of W (k)

Choose {e; }1<i<4 such that the ordered set {eq, e3, €2, €4} is a symplectic base
Le. :

flere) =0, #2
f(eg,ej) = 07 ] 7é 4.

A straightforward check shows that the following table written down with
respect to this base exhausts all points and lines of W (k). Hence it provides
a coordinate system for the generalized quadrangle. Round brackets denote
points and square brackets indicate lines.

Points

Coordinates in W (k) | elements in PG3(k)

(00) (1,0,0,0)

(z) (x,0,1,0)

(0,9) (—9,0,0,1)

(x,w,z") (w —zx' 1, -2, —x)
Lines

Coordinates in W (k) | elements in PG3(k)

[00] ((1,0,0,0), (0,0, 1,0))

[ ] <(1’0’0’0)’(0’ U, >
[I7 ] ((x,O,l,O),(w,l,O, )>
[U Yy, v ] ((—v,O,y,l),(v',l,—y,0)>

3.5.3 Generalized quadrangles defined by (o, €)-quadratic
forms

In this section we will use notations and definitions concerning division rings
with involutions as introduced in Chapter 1. For more information we refer
consequently to this chapter. The following definitions and notations are
mainly based on Chapter 8 in [29], section 2.3. in [37] and Chapter 10 in [4].
To construct quadrangles we first discuss some definitions and basic prop-
erties. Throughout this paragraph we will use the definitions and notations
introduced in section 1.3 of Chapterl.

Definition 87 Let k& be a division ring with involution ¢ and E a right k-
vectorspace. A function f going from E x E to k is a o-sequilinear form
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(or shortly sesquilinear form if o is clear from the context) if it is biadditive
and :

f(@Xyp) = N7 f(2,y)p, Yo,y € EVA € k.

Definition 88 A o-sesquilinear form f is called reflexive if there exists a
constant € € k such that :

f(x,y) = f(y,CC)UQ Ve,y € E

A form satisfying this equation is also called (o, €)-hermitian form. In par-
ticular a (o, 1)-hermitian form is indicated as hermitian and a (o, —1)-form
as anti-hermitian.

Definition 89 A reflexive (o, €)-hermitian form f is called trace valued if
there exists a o-sesquilinear form g such that :

f(z,y) = g(x,y) + (9(y, x))7%€, Yz, y € E.

Definition 90 A function ¢ from E to k(®9 is called (o, €)-quadratic if the
following conditions hold :

(1) g(zX) = Ag(x)\°, VA e k,x € E.

(#7) There exists a trace valued (o, €)-hermitian form f on F x FE such that :

q(z +y) = q(x) + q(y) + f(z,y), Y,y € E.

or equivalently to (i) and (i7)
(i)' There exists a g-sesquilinear form g with :

(I(I) = g(I7I) + k(a,s)y Vr e E.

For the proof of the equivalence of (i), (i¢) and (i)’ we refer to 8.2.1. on
pp121-122 in [29]. To simplify notation in most of the cases the coset k(s ¢
will be omitted. This means that we write for example ¢(z) = g(z, z) instead
of q(x) = g(z,x) + k(). In the sequel we will call in a lot of cases a (o, €)-
quadratic form a pseudo-quadratic form if o and € are of no importance and
a (o, 1)-quadratic form simply a o-quadratic form.

Given any (o, €)-sesquilinear f on a space E we can introduce orthogonality
on E x E, (denoted with the symbol 1) defined by :

rlye f(x,y) =0.
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The conditions on f ensure that L is well defined i.e. L is a symmetric
binary relation on E.
Given any subspace X C E we set :

Xt={reE|f(r,y) =0 Vye X}

In particular E* is denoted by Rad(f), and the form f is called non-degenerate
if Rad(f) =0. A subspace X C E is called isotropic of X N X+ # {0}, non-
isotropic if X N X+ = {0} and totally isotropic if X C X*. Using Zorns
Lemma it can be shown that amongst the totally isotropic subspaces there
are maximal ones sharing the same dimension called the Witt index of f,
denoted by v(f).

Due to the properties of ¢, one easily checks ¢~*(0) is a union of 1-dimensional
subspaces of E. A subspace X of E is called totally singular if X C ¢~*(0).
Similarly as above one can show that amongst the totally singular subspaces
there are maximal one’s all having the same dimension called the Witt index
of q, denoted by v(q). If ¢1(0) = 0, ¢ is called anisotropic. A straightfor-
ward calculation (see 8.2.3. on p123 in [29]) shows that any (o, €)-quadratic
form ¢, determines uniquely the (o, €)-hermitian form f as above. The set
¢ ' (0)NRad(f) is thus a well defined subspace of E. If ¢~*(0)NRad(f) = {0},
q will be called non-degenerate.

In order to construct a generalized quadrangle we start with a division ring
k endowed with an involution o, E a right k-vector space and ¢ a (o, ¢)-
quadratic form of Witt index 2. Define the following incidence structure
(P,L,I), where P is the point set, £ the line set and I the incidence re-
lation. Points are all totally singular vector lines in F, while lines are the
totally singular planes in E. When working in the projective space PG(E)
associated to E this means that points and lines correspond to projective
points and projective lines on which ¢ vanishes. Incidence is the one induced
by PG(E). A straightforward check shows that if s = (z) and t = (y) in P, s
and t are collinear if and only if f(z,y) = 0. We leave it as an exercise to the
reader to check that (P, L, I) is a generalized quadrangle. In the following we
will denote it by Q(E, ¢, k, o). To end this section we mention the following
useful observations as explained in 8.2.1 and 8.2.2 in [29].

Suppose ¢ is a (o, €)-quadratic form on a vector space E, and let ¢ € k*.
Then the form cq defined by cq(v) = c.g(v) defines a (o’,€¢') quadratic form
where t7 = ct7c¢ ! and € = ¢(¢”) 'e. Under these conditions the forms ¢
and cq are said to be proportional to one another.

Important for further calculations is the following lemma (Lemma in section
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8.2.2 in [29]).

Let Q(E,q,k,0) be generalized quadrangle defined by the (o, €)-quadratic
form ¢ and ¢ € k. Then clearly cq defines a non-degenerate (o', €')-quadratic
form on E of Witt index 2 with ¢ = ct” ¢! and € = ¢(c¢”) 'e. Hence we
can consider the quadrangle Q(F,cq,k,c"). We have the following lemma
concerning Q(E, cq, k, ')

Lemma 91 Let Q(FE,q,k,0) be a generalized quadrangle defined by a (o, ¢€)-
quadratic form q. Then for ¢ € k the quadrangle Q(E, q,k, o) is isomorphic
to Q(E,cq,k,0') with t” = ct?c™', ¥V t € k.

proof :

Let Q(E, q,k,0) and Q(F, cq, k, ') be as in the Lemma. Define the bijection
B from Q(E,q,k,0) to Q(E,cq,k,0') as :

B(e)) = {c)-

One easily checks then that 8 defines an isomorphism from Q(FE,q,k, o) to
Q(E7ank70’)' o

Lemma 92 Every pseudo-quadratic form is proportional to a o'-quadratic
form, for suitable o'. Every pseudo-quadratic form which is not quadratic is
proportional to a (o, —1)-quadratic form, where o can be chosen in such a
way that 1 € k,_y =Tr(o).

proof :

See 8.2.2. on pl23 in [29]. O

3.5.4 Coordinatization of Q(F,q,k,0)

In this section we will introduce a coordinate system for quadrangles of
the form Q(F,q,k,o) based on the coordinatization described in Chapter
3 in [37]. The following proposition, which is analogous to the Proposition
2.3.4 in [37], is of crucial importance.
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Proposition 93 Let g be a non-degenerate (o, €)-quadratic form of Witt in-
dex 2 on E a right k-vector space. Then there exist four vectors e;, i €
{-2,-1,1,2}, a direct sum decomposition :

E = 67218 D 67118 D Eg D elk D 62]6

with f(e_2,e2) = €, fle—1,e1) =1, f(e;,e;) =0, if i +j # 0 and a non-
degenerate anisotropic form qo on Ey such that for v = e_sx_o +e_1x_; +
€0+ e1x1 + exxy with v; € k and eg € Ey -

q(v) = x%,exs + 27,21 + qoleo)-
proof :
The proof is similar to the proof of Proposition 2.3.4. in [37]. O

As to the coordinates we explain how to handle points. For the lines analo-
gous calculations hold.

Choose a base {e_2,e_1,€e1,€e2} as in Proposition 93.

Consider a arbitrary point (z) of Q(E,q,k,0). Then x = e_sx_s+e_1x_1 +
vo + €121 + eaxs, vg € Ey and x; € k.

Two cases occur :

First case : x5 # 0.
After a possible multiplication we can assume z» = 1. Expressing ¢(z) = 0
gives

7€+ qo(vg) + 27,21 = 0.

Thus z_s = v; — 27,2y, with v; € k such that g(vg) + v; = 0. This point is
coordinatized as (—z7,, (vo, v1), 7).

Second case : x5 = 0.

If z_; # 0, we can assume without loss of generality x_; = 1. Expressing
that (z) belongs to Q(E,q,k,0) gives 1 + qo(vg) = 0. This point (z) is
coordinatized as ((vg,z1), —2_2).

If z_y = 0, the conditions on ¢y imply that vg has to be 0.

If in this case #; = 0 then (z) is the point {e_5). This point is labelled by
(00).

On the other hand if x; # 0 after an eventual multiplication z; = 1. In
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coordinates (z) is denoted by (r_;). To recapitulate we have the following
table :

Points
Coordinates in Q(E, ¢, k,0) | Points in PG(E)
(50) | (1,0,0,0,0)
(x) | (x,0,0,1,0)
((vo,v1),y) | (—y,1,v9,v1,0)
(x, (wo,wy),x") | (wy + z2'”, —27, wp, 27, 1)

A similar reasoning for lines leads to the following table :

Lines

Coordinates in Q(E, ¢, k,0) | Lines in PG(E)

[><] | ((1,0,0,0,0),(0,0,0,1,0))
[(vo,v1)] | ((1,0,0,0,0),(0,1,vq,vy,0))

[z, (w, wy1)] | ((,0,0,1,0), (wy, —27, wp, 0, 1))
[(v07v1) (1’07”1)] <(—y,1,’1}0,’1}1,0),(U’l,o,’l}[’),yae—f(’l}mvé),l))

There are two labelling sets used for the coordinatization. One is the field k&
and the other one is the Ry, = {(vo,v1) € Ey X k| qo(vo) +v1 = 0}. Denote

Rl = |(’U0,t) € RO,I} and Ro = Eo. As RO,l C RO X R1 we
define projections (denoted by subscripts 0 and 1) by :

(vo,v1)0 = wo € Ry,

(vo,v1)1 = wv1 € Ry.

Given a labelling set of the form Ry, we define the following operation @
by :
(v, v1) ® (wo, w1) = (vo + wo, v1 + w1 — f(vo,wp))

for (vo,v1), (wo, w1) € Ro1. One easily checks that (vg,v1) @ (wo, w1) € Ro 1.
As:

(vo,v1) @ (0,0) = (vg,v1)
(vo,v1) ® (—vo, —v1 — f(vo, v0)) (0,0)
(o, ur) @ ((vo, v1) ® (wo,w1)) = ((uo,ur) ® (vo,v1)) ® (wo, wr)

V (ug,u1), (vo,v1), (wo,wy) € Ro1 we see that @& defines a group structure
on Ry, which we will denote by (Ro 1, ®).



88 CHAPTER 3. MOUFANG SETS

Definition 94 A Moufang set (X, (U,)zex) which is isomorphic to an in-
duced Moufang set M,(Q) or M;(Q), where @ is a classical generalized
quadrangle will be called a classical Moufang set.

3.6 Quadrangles of indifferent type

Let %k be a field of characteristic 2 with subfield k' containing k%, [ C k a
vector space over k' and I’ a vector space over k? i.e. :

Bclckclck.

Suppose [ and I’ meet the following conditions :

(I t=1,r"=r1elnl

(2) I generates k as a ring, I' generates k' as a ring

Consider the geometry obtained by choosing all point rows and line pencils
of W(k) coordinatized over [, I respectively i.e. we restrict in the coordina-
tization table of W (k) as given in section 3.5.2, z,2',y to [ and v, v, w to I.
Incidence is the one induced by W (k). Denote this incidence structure by
Q(k, K 1,l"). A straightforward check shows it is a generalized quadrangle,
called a quadrangle of indifferent type.

3.7 Coordinatization of Q(k,k";1,1)

This is the coordinatization inherited from W (k).

3.8 Moufang structures

As for the coordinatization we follow for to the description of the Moufang
structure of the quadrangles under consideration the approach described in
chapters 4 and 5 in [37].

3.8.1 Moufang structure of W (k)

Consider W (k) with its coordinatization as described in section 3.5.2. Let
Yo be the standard apartment {(oc0), [o0], (0), [0, (0,0)], (0, (0,0),0), [(0,0)
, 0, (0,0)], ((0,0),0),[(0,0)]}. As already mentioned there are two isomor-
phism classes of Moufang sets associated to W (k), namely M, (W (k)) and
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MW (E)).

We start with the description of a representative of M, (W (k)).

Consider as point row ['([0]) = {(0,z)|z € k} U {(c0)}. To describe the root
group Uiy we choose the root a() = {[0,0], (0), [cc], (00), [0]}. As ex-
plained in section 3.3 the root elations with respect to a() induce the root
group Ul). The action of a typical element u((00);(0,0),(0,t)) € Uy is
given by:

Elements of W (k) | Image under u((c0); (0,0), (0,t))
(00) | (0)
(z) | (z)
vy) | (0,9 +1)
(z,w,2') | (z,w+ 2tz, 2" +t)
[00] | [o0]
[v] | [v]
[z,w] | [z, w + xt]
[0, 9,07 | [o,y +1,0]

The formula u((o0); (0, 0), (0,#)) u((c0); (0,0), (0,£2)) = u((o0); (0,0), (0, ¢+
t3)) implies that all root groups are isomorphic to the additive group on
k. Other root groups are calculated by conjugating the group U() with
appropriate elements of the little projective group. This representation of
(X = {(z)|]z € k} U {(c0)}, (U.).ex) shows that it is isomorphic to P(k).
Namely consider P(k) defined in a 2-dimensional k-vector space V. Choose a
coordinate system of P(k). Then a concrete Moufang set isomorphism from
P(k) to Mpo,0))(W(k)) is given by § with :

Boo) = (o0)
(0,2), Ve € k

=
s
I

Leaves us with the description of the induced Moufang set on a line pencil.
Consider as pencil I'((0)) = {[0,¢]|t € k} U {[oo]}. In order to calculate
Ulse) We consider the root aje; = {(0), [00], (00),[0],(0,0)} in Eo. A typical
element of Uy, lets say u([oc]; [0,0], [0,]), acts in the following way :
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Elements of W (k) | Image under u([oo]; [0, 0], [0, ¢])
(00) | (o0)
(x) | (x)
v,y) | (v,y)
(x,w,2") | (x,w+t,2")
[o0] | o]
[v] | [v]
[z, w] | [z, w + ]
[v, 9,0 | [v,y, 0" + ]

As before u([oo]; [0, 0], [0, t]) u([o0]; [0, 0], [0, s]) = u([cc]; [0, 0], [0, s+t]), Vs,t €
k, yielding that Up, is isomorphic to the additive group on k. Other root

groups are computed using the little projective group of W (k). We thus ob-

tain a Moufang set (X = {[0,¢]|t € k} U {(o0)}, (U.).ex). As in the case of

Mo (W (k)) one easily shows that Mrpo) (W (k)) = P(k).

3.8.2 Moufang structure of Q(F,q,k, o).

Similar as for the symplectic quadrangle W (k) we calculate two classes
of induced Moufang sets, namely M,(Q(E,q,k,0)) and M;(Q(E,q,k,0)).
Choose a fixed coordinate system for Q(F, q, k, o)) associated to the decom-
position E = e_sk ® e_1k ® Ey ® e1k ® ek and suppose By is an ordered
base of Ey. Consider the standard apartment Xy = {(c0), [o0], (0), [0, (0,0)],
(0,(0,0),0), [(0,0),0,(0,0)] ,([0,0],0) , [(0,0)]}. As generic point row we
choose T'([(0,0)]) = {((0,0),z) |z € k} U{(co)}. In order to calculate the
root group U, We use the root o) = {[0, (0,0)], (0), [o0], (00), [(0,0)]}.
The action of a typical element u((c0); ((0,0),0),((0,0),t)) € U, is given
by :

Elements of Q(F, q, k,0) | Image under u((c0); ((0,0),0), ((0,0),))

(00) | (00)
() | (z)

((vo,v1),y) | ((vo,v1),y +t)

(x, (wo,wy),x") | (z, (wo,wy) & (0, tx" — xt9), 2")
[00] | [oc]
[(vo, v1)] | [(vo,v1)]
[, (wo, w1)] | [, (wo,wr) & (0,tx7 — xt7)]
[(v()vvl)vyv (’U[’),’Ull) [(Uo,’l)l),y—i-t, (vtl)vvll)]
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This means that u((c0); ((0,0),0),((0,0),¢)) has matrix representation with
respect to the ordered base B = {e_;, By, €1} :

1 —t0 00
01 0 00
00 Ipy 00
00 0 1
00 0 01

The group Ua o) induces by construction the root group Uy of
Mrqo0)(Q(E, ¢, k, o) acting on I'([(0,0)]). Other root groups can be found
by the conjugating U, with appropriate elements of the little projective
group and restricting the action to T'([(0,0)]).

This defines the Moufang set Mpo,0) (Q(E, q,k,0)) = ({((0,0),z)|z € k}
U{(o0)}, (U.).ex). As for the symplectic quadrangle one easily shows that
Mroon = P(k).

Remains to describe M;(Q(E, q,0, K).

As line pencil we choose I'((0)) = {[0, (zo, z1)] |(®0,21) € Ro1} U [00]. To
calculate the root group Ujs we use the root o) = {(0), [00], (00), [(
((0,0),0)}. The action of a typical element of U, _, say u([oo]; [0, (
[0, (o, t1)]) is given by :

0,0)],
0,0)],

Elements of Q(E, ¢, k,0) | Image under u([cc]; [0, (0,0)], [0, (¢, t1)])
(00) | (o0)
(x) | ()
((0,00),3) | (00,00, — £(t0,20)))
(CL‘, (wo’wl)’[x’) ( 7](t0’t1) (w07w1)7rl)

[
[(v, v1)]

['Ta (tovtl) (’LUo,’LUl)]

[(vo,v1),y — f(to, v0), (to, t1 ® (v, v])]
D)

Thus u([oc]; [0, (0,0 has matrix representation with respect to

the ordered base B :

=

]7 [ (tOvtl)

1 0 f(te,By) 0 t
01 0 0 0
00 I‘B|0| 0 ¢t
0 0 0 1 0
0 0 0 0 1
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By construction U, induces the root group Ul acting on I'((0)). As
usual one calculates other root groups after conjugating Uajoo) with appropri-
ate elements of the little projective group.

An easy calculation shows that :

([ ]7 0, (070)] [ (anxl)])u([oo];[Ov (0,0)],[0, (y07y1)])
u([o]; 0, (0,0)], 10, (zo, z1) @ (Yo, y1)])-

One easily deduces from this equation that U, and hence all root groups of

Mr0)(Q(E, q,k, o)) are isomorphic to (Ro;, ®).

3.8.3 Moufang structure of Q(k,k';1,1')

Root groups are induced by the root groups of W (k). As an example we look
at the action of u([oc]; [0, 0], [0,¢]) on I'((0)), with ¢t € I'.

Elements of Q(k, k';1,1") | Image under u([co]; [0, 0], [0, ¢])
(00) | (o0)
(x) | (x)
v,y) | (v,y)
(z,w,2) | (z,w+t2)
[o0] | [o0]
[v] | [v]
[z, w] | [z,w +{]
[y, 0] | [v.y, 0" +1]

Remark that similar calculations as for W (k) yield that M,(Q(k,k';1,1') =
P(l; k) and M (Q(k,E';1,1') =2 P(I'; k'). In the next two sections we will give
alternative descriptions for the induced Moufang sets so far considered. This
will simplify and clarify in a lot of cases notations and calculations. In the
sequel we will work in almost all cases with these alternative descriptions.

3.9 Different types of Moufang quadrangles

In this section we make divide the quadrangles we so far considered in dif-
ferent classes. In the list which we present there will of course be some
overlaps.

Symplectic quandrangles These are quadrangles of the form W (k).
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Orthogonal quadrangles By this we mean quadrangles of the form
Q(E,q,k, o) for which ¢ = 1. In the sequel we will denote them also
by QO(E, k).

Hermitian quadrangles By this we mean quadrangles of the form
Q(E,q,k,0) for which Z(k) = k and 0 # 1. In the sequel we will
denote them also by QH(E, q,k, o).

Unitary quadrangles These are quadrangles of the form Q(F, ¢, k, o)
for which Z(k) # k. In the sequel we will also denote them by
QU(E,q,k, o).

Indifferent quadrangles Quadrangles of the form Q(k, k';1,1") as de-
scribed in section 131.

3.10 An alternative description of
induced Moufang sets of W (k) and

MP(Q(E> q, ka 0))

In sections 3.8.1 and 3.8.2 we saw that M, (W (k)) = M,(W(k)) = P(k) and
also M(Q(E,q,k,0)) = P(k). Hence the alternative description of these
Moufang sets is provided by the description of P(k) given in section 3.2.

3.11 An alternative description of
induced Moufang sets of Q(k,k";[,1')

In section 3.8.3 we already mentioned that M,(Q(k,k";1,1")) = P(l; k) and
M(Q(k, K5 1,1") =2 P(I'; k'). Hence the alternative description we will use
for these Moufang sets is the one induced by the descriptions of P(l; k) and
P(I'; k') as used in section 3.2.
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3.12 An alternative description of
MI(Q(E7 q, k7 0))

We start by giving a general construction of a family of Moufang sets {(X,
(Uz)zex }- Subsequently we show that every M, (Q(E, ¢, k, o)) corresponds to
such a Moufang set and conversely that every element of this family belongs
to the class M;(Q(E, ¢, k, o)) for some generalized quadrangle Q(E, ¢, k, o).

3.12.1 General setup and coordinatization.

Let k be a division ring with involution ¢ and V a right k-vector space.
Suppose ¢ is a non-degenerate (o, €)-quadratic form of Witt index 1. Denote
the set of all totally singular vector lines in V' by X. Inspired by the coordi-
natization of generalized quadrangles we introduce the following coordinate
system.

Using techniques similar as those for proving Proposition 93 it is not hard to
check that V' can be decomposed as :

V = 6_113@‘/0@611\7,

such that g(e;) = 0, i = 1,—1, eX; Ner = Vy, f(er,e1) = 1 and qly,
is anisotropic. Fix such a decomposition and denote Ry; = {(vo,v1) €
‘/0 X ]v|q(’U0) + v = 0}, Ro = VE), R1 = {t S ]v|31,’0 S R0| (Uo,t) S R(),l}.
One checks that X = {(e_1)} U {{e_1v1 +vo +e1) |(vo,v1) € Roy }. In the
sequel we label (e_jv1 +vg +e1) as (vg,v1) and (e_1) as (00). In this way we
obtain a coordinatization. Remark that this coordinatization depends as in
the quadrangle case on the initial decomposition of V. Therefore a label of
the form (vg,v;) will only have meaning if this decomposition is known.

3.12.2 Description of root groups and switching of co-
ordinates.

Consider the set X as in the foregoing section. We define a root group struc-
ture on X. We start by giving a general procedure to calculate root group
elements and give concrete descriptions of Uiy and Ug,)-

Let z,y and z € X. In order to calculate u(z;y,z) we consider a decompo-
sition V = é_1k ® Vy @ &,k such that (¢ ;) = x and (¢,) = y. Suppose that
with respect to the coordinate system associated with this decomposition
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z = (tg,t1). Choose an ordered base By of V;. Then we define u(z;y, 2) as
the linear transformation on V' with matrix representation :
(with respect to the ordered base B = {é_1, By, é:})

]- f(thBO) tl
0 I\Bgl to |- (3.1)
0 0 1

Choose a fixed decomposition of V = e_ik ® Vy @ e1k. Denote the coordi-
nate system associated to this decomposition by superscript 1 i.e. (vo,v;)' =
(e_1v1 + vy + 1) and (00)' = (e_1). Let By be an ordered base of V.
Using the recipe described above we calculate the actions of Uy and Ug ).
By formula (3.1) a typical element u((00);(0,0), (to,¢1)) has matrix repre-
sentation with respect to the ordered base {e_1, By, e1}:

]- f(t07BO) tl
0 ]lBo\ to
0 0 1

In order to calculate a matrix representation of an typical element u((0, 0);(00),
(vo,v1)), (vo # 0), of Ugp,p) we decompose V as V = (ere ')k & Vy @ e_ k.

Coordinates associated with this decomposition will be denoted with a su-

perscript 2 ie. (vg,v1)? = ((ere™")vy + vg + e—;1) and (00)® = (e1). Remark

that the following equalities hold

(UO7U1)1 = (vovfl’evl_l)Za'UO 7é 0
(c0)t = (0,0)
(0,0 = (c0)".

In particular (to, ;)" = (tot; ', et; 1), Formula (3.1)implies that u((0,0);(c0),
(to,t1)) has matrix representation :

1 f(toty", By) ety’
0] ]lBo\ totl_l
0 0 1

with respect to the ordered base {—ey, By,e_1}. Thus with respect to the
ordered base {e_q, By, €1} has matrix representation :

1 0 0
totfl I\Bg| 0
—et;t —f(tot;, By) 1
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If in the sequel we use two coordinate systems to describe X such that the
first is associated to the decomposition V =e_1k @& Vy @ ek and the second
to V = (ere )k ® Vo @ e_1k we say that we use a switch of coordinates.

We check that (X, (U,)zex) is a Moufang set. Choose a coordinate system
associated to the decomposition Ve_1k @ Vy @ eik. Let By be an ordered
base of Vj.

1. Condition MoS1 :

By the matrix description of Uiy, it is clear that it acts regularly on X \
{(00)}. As all root groups have the same matrix representation with respect
to different coordinate systems condition MoS1 is satisfied.

2. Condition MoS2 :

Let u((00);(0,0), (to,t1)) € Uiso) and v € Uy, r € X.

The element vu((c0); (0,0), (tg, t1))v™" is a linear transformation of V' which
sends v((0,0)) to v((to,t1)) and has matrix representation of the form (1)
with respect to the ordered base {v(e_1),v(By),v(e1)}. Hence v u((c0);(0,0),
(to,t1)) v belongs to Uy (o) by the description of the root groups and con-
dition MoS2 is satisfied.

Thus (X, (U,).ex) is a Moufang set. In the sequel we will denote it by
MV, q,k,0).

Remark that by similar arguments to prove condition MoS2 we see that
any linear transformation ¢ that satisfies ¢(z) = q(g(z)), Vo € V, defines a
permutation of the points of M(V, ¢, k, o) such that g u((co); (0,0), (zg,21))
g ' € Uyo). This implies that the transvection group of M(V,q,k, o) is
normalized by the group of linear transformations of V' preserving the form
q.

To end this section we mention a special class of Moufang sets of the form

M(V,q,0,k).

Definition 95 A polar line is a Moufang set M(V, q, o, k) such that dim(V) =
2 and Z(k) # k. If ¢ is a (o, €)-quadratic form we denote it by Pol(k, o, €).
If in particular € = —1 a polar line Pol(k,o,€) will be shortly denoted as
Pol(k,o).

Definition 96 An extended polar line is a Moufang set M(V,q, k, o) with
abelian root groups such that Z(k) # k.

Concerning polar lines we have the following lemma.
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Lemma 97 A polar line of the form Pol(k, o) defined by a (o, —1)-quadratic
form, where k is a generalized quaternion algebra and o its standard involu-
tion, is isomorphic to the projective Moufang set P(Z(k)).

proof :

As the polar line is defined by a (o, —1)-quadratic form it follows that the
points set of Pol(k,o) equals {(0,60)|0 € Tr(o)} U(co). The assumptions
on k and o imply that Tr(c) = Z(k). Consider the projective Moufang
set P(Z(k)) with certain coordinatization. Then one easily shows that the
bijection from Pol(k,o) to P(Z(k))given by :

p5((0,0)) = (0)
B((o0)) = (o0)

defines a Moufang set isomorphism. a

3.12.3 Proportional Moufang sets

Consider a Moufang set of the form M(V,q,k,0) and ¢ € k, ¢ # 0. As
mentioned in section 3.5.3, the form cq is a (0, €')-quadratic form where
7 = ct?c ! and € = ¢(¢” )e. Moreover cq is non-degenerate on V' and
has Witt index 2. By this we can consider the Moufang set M(V, cq, k,o")
which is isomorphic to the original M(V,q,k,o). In order to construct an
isomorphism we consider a decomposition V' = e_1k®VyDek with associated
coordinatization using the labelling set Ro1 = {(vo,v1) € Vo X kl|g(vo) +
vy = 0}. As the (0, €)-sesquilinear form associated to cg is given by cf, a
coordinatization of M(V,cq, k,c') can be obtained using the decomposition
V =6e_1k®V,®ék with &, = e_;c! and & = e;. The labelling set is
given by Ry = {(%0,01) € Vo x k| cq(tp) + 0, = 0}. We will denote this
coordinate system with superscript c.

We find :

(0o, 01)° =
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Using these equations one easily check that the bijection 8 from M(V,q, k, o)
to M(V,cq, k, ') given by :

B(vg,v1) = (vo,cv1)?, Y(vg,v1) € Roa
B(oo) = (o0)

defines a Moufang set isomorphism.

Definition 98 Given a Moufang set of the form M(V,q,k,0) and ¢ € k, we
call the Moufang set M(V, cq, k, o) with t°° = ct?c™', Vt € k proportional
to M(V,q, k, o) with factor ¢. The isomorphism S constructed above will be
denoted in the sequel as ¢).. Moreover suppose we consider a coordinatization
of M(V,q,k,o) associated to the decomposition V = e 1k & Vy + erk. As
explained above we can consider the coordinate system of M(V, cq, k, o) asso-
ciated to the decomposition V =€ 1k® Vo @ ek withé_1 =e_1¢c7!, & = e;.
Under these conditions both coordinate systems will be called proportional.

Using Lemma 92 we see that given a Moufang set of the form M(V, ¢, k, o),
with o # 1 there always exists a constant ¢ € k such that cq is a (o¢, —1)-
quadratic form with t° = ct?c™!. Therefore we will assume in most cases
that for every Moufang set of the form M(V,q,k,0) with ¢ # 1, ¢ is a
(0, —1)-quadratic form. This assumption will simplify in a lot of cases the

notation and calculations.

3.12.4 M(V,q,k,0) and induced Moufang sets.
We prove the following lemma.

Lemma 99 Fvery Moufang set M(V,q, k, o) is isomorphic to a Moufang set
Mr)(Q(E, q,k,0)), where x is an arbitrary point in the generalized quad-
rangle of the form Q(E,q,k,0), and conversely every Mrpu)(Q(E,q,k,0))
where Q(E,q,k,0) is a generalized quadrangle defined by a (o, €)-quadratic
form and x an arbitrary point in Q(E,q,k,0), is isomorphic to a Moufang

set M(V,q,k, o).
proof :
Consider a Moufang set M(V, q, k,0). Choose a decomposition V =e_sk ®

Vo @ eok with associated coordinate system using the label set Ry ;. Let ¢ be
a (o, €)-quadratic form and suppose the (o, €)-hermitian form associated to
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q is given by f. Let E = e_1k ®V @ ek, where e_; and e, are free vectors
independant of V. Define f and ¢ by :

flv = f
fle,Vo) = 0
.f(elyvb) =0
flees) = bij i, j€{-2,-1,1,2}
v = q
gle1) = 0
gler) = 0.

Extend f and ¢ such that they define a (o, €)-quadratic and (o, €)-hermitian
form on E. Using a coordinatization induced by the decomposition E =
e_skde_q k_EB Vo ® eq @ ey as described in section 3.5.4 one easily checks that
Mro)(Q(E, ¢, k,0)) is isomorphic to M(V,q, k,o) under the bijection
given by :
B([0, (zo, 21)]) = (0, 21), Y(20,71) € Ro
B((00)) = (o0).
As to the converse we consider a generalized quadrangle of the form Q(F, q,
k, o). Choose a coordinatization with associated decomposition F = e ok @
e,lk@Eo @elk @62]\7 and labelhng set R()’l = {(Uo, ’Ul) € EO X k| q(’l)o) +uv =
0}. Set V = e_sk @ Ey @ exk. Then ¢ is a non-degenerate (o, €)-quadratic
form of Witt index 1 on V and we can consider M(V,q,k,0). Consider
the coordinatization of M(V,q,k, o) associated to the decomposition V' =
e_ok® Ey D ek, ie. :
(vo,v1) = e_ovy + vy + ez, Y(vg,v1) € Ry
(00) = f(e-a).
Then one checks that the map 8 defined by :
B([0, (vo, v1)]) = (vo,v1), Y(vo,v1) € Roa
affoo]) = (o0)

defines a Moufang set isomorphism from Mr o)) (Q(E, ¢, k,0)) to M(V, q, k,0).
O
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3.13 The automorphisms s, and r,.

In the calculations that follow an important role is played by the special
automorphisms s, and r, of the Moufang sets under consideration. We start
by giving a short motivation and calculate in some special cases the exact
action of these automorphisms.

The automorphisms s, and r, are a special case of the following lemma.

Lemma 100 Given a Moufang set (X, (Uy)zex). If ug € U, ug # 1 and
a # b, there exist unique elements uy, uy, € Uy, such that uyug,uy interchanges
a and b.

proof :

Consider the equations

wpuguy(a) = b

wpuauy(b) = a.

Using the conditions of Moufang sets one easily checks that this has unique
solutions u;, and wj. O
Using Lemma 100 we give definitions of s, and r,.

Let P(k) be projective Moufang set. Choose a fixed coordinatization. By
Lemma 100 every u((00);(0),(v)), v # 0, determines unique w,w’ € U
such that wu((00);(0), (v))w" interchanges (0) and (c0). In the sequel we
will denote this element by s,).

One easily checks that w = w' = u((0); (00), (—v)) and hence :

sw) = u((0); (00), (=v))u((00); (0), (v))u((0); (00), (=v)).

Let M(V, q,k,0) be a Moufang set as in section 3.12. Choose a fixed coor-
dinatization of the set, associated to a decomposition V =e_1k ® Vy ® e k.
Then Lemma 100 implies that every u((c0);(0,0), (vo,v1)), vo # 0, deter-
mines unique w,w’ € U such that wu((o0); (0,0), (vg,v1))w" interchanges
(0,0) and (co). In the sequel we will denote this element by s(y.,)-

One easily checks that w = w' = u((0,0);(c0), (—vo, —v1 + f(vo, vo))-

Hence :

Swowy) = u((0,0);(00), (=g, —v1 + f(vo,v0))u((c0); (0,0), (vo,v1))
u((0,0); (00), (—vg, —v1 + f(vo,v0)).
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Let Q(E, q, k, o) be a quadrangle as in section 3.5.3. Choos a fixed coordinati-
zation and let Mp(o)) (Q(E, ¢, k, o)) be an induced Moufang set in this quad-
rangle. Given u([oc]; [0, (0,0)], [0, (vo,v1)]) there exist by Lemma 100 unique
elements z, z' € Up,o,0) such that z u([oo]; [0, (0,0)], [0, (vo,v1)]) 2" inter-
changes [oo] and [0, (0,0)]. In the sequel we denote this element by s(o,(vg,0,)]-
As for M(V, q, k, o) one checks that z = 2" = ([0, (0, 0)];[00],[0,(—vo, —v1 +
f(vo,v0)]). Hence :

810,(vo,v1)]
= u([ov (Ov 0)]; OO], [07 (_UOv —v + f('UOv UO)])U([oo]v [07 (Ov 0)]7 [07 (va vl)])
u([ov (07 0)];[00]7 0,(—1)0, —v1 + f('UOv UO)])

As to the definition of r, we make the following conventions.

Let P(k) be a projective Moufang set. Choose a fixed coordinate system as
above. Using Lemma 100 every u((0); (00), (v)) determines unique elements
Y,y € Ul such that yu((0); (c0), (v))y" interchanges (0) and (co). In the
sequel we will denote this element by 7(,). One easily checks that in this case
y =y =u((00);(0),(—v)) and hence :

If M(V,q,k,0) is a Moufang set as in section 3.12 we choose a fixed coor-
dinate system of this set. By Lemma 100 every u((0,0); (00), (vo,v1)) de-
termines a unique elements y and y’ such that yu((0,0); (00), (0,0))y" in-
terchanges (0,0) and (co). For the sequel we will denote this element by
T(vo,01)- One easily checks that y =y = u((00); (0,0), (—vo, —v1 + f(vo, v0))
and hence :

Twow) = u((00);(0,0),(=vg, —v1 + f(vo,v0))u((0,0); (c0), (vo,v1))
u((oo); (Ov 0)7 (_'U07 —v1 + f(Uo, ’Uo)).

—

Let Mpoy(Q(E,q,k,0)) be an induced Moufang set in Q(E,q,k,0) as
above. Lemma 100 shows that every u([0, (0, 0)]; [oo], [0, (vo, v1)]) determines
unique elements ¢, t' € Ul such that ¢ u([0, (0,0)]; [o00], [0, (vg,v1)]) t' in-
terchanges [oo] and [0, (0,0)]. For the sequel we will denote this element by
Toy(won))- One easily checks that ¢ = ¢ = u([oo]; [0, (0,0)], [0, (—vo, —v1 +
f(vo, v0))]).
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Hence :

T'[0,(vo,v1]

= u([ooh [07 (07 0)]’ [07 (_U07 —v; + f(v07 UO))])U([O’ (0’ 0)]7 [00]7 (U07 Ul)])
u([ooh [07 (07 0)]’ [07 (_U07 —v; + f(U07 UO))])

We calculate in some special cases the exact action of s, and r,.

First case : the projective Moufang set P (k).

Choose a coordinatization of the set such that (e;) = (00) and (e2) = (0,0).
Given u((00); (0), (v)) we saw that w = w' = u((0); (c0), (—v)) and the ma-
trix representation of s,y with respect to the ordered base {e, es} becomes :

o= (322
_ (_3_1;;).

In a complete similar way one finds :

0 w
Tw)y = —’U_l 0 .

Second case : S(yy,v;) With (vo,v1) € M(V,q,k, o) with ¢ a (0, —1)-quadratic
form and vy € Rad(f), where f is the form associated to g.

Choose a fixed coordinate system associated to a decomposition V = e_ik &
Vo@®eik. Let By be an ordered base of V. Given u((00); (0,0), (vo, v1) we saw
the elements w and w’ are given by w = w’ = u((0, 0); (c0), (—vg, —v1)). Thus
we find in matrix notation with respect to the ordered base {e_1, By, €1} :

10 0 1 0 1 0 0
Swowy = | vovr' Iigy 0 0 Iigy vo vovy ' Iy 0
ort 01 0 0 1 ot 01

0 0 U1

- 0 Ijpy 0

—vt 01

In a similar way one calculates with respect to the ordered base {e_q, By, €1} :

0 0 (%1

T(vo,01) = S(vowr) = 0 . Iig, 0
—vy 0 0
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Third case : S (v,01)) Where [0, (v, v1)] is a line a generalized quadrangle
Q(E,q,k,0) defined by a (o, —1)-quadratic form ¢ with associated form f
and vy € Rad(f). Suppose Q(E,q,k, o) is coordinatized using the decom-
position F = e_1k ®e_1k DEy ®erk Pesk. Let By be an ordered base of
Ey. Similar calculations as for M(V, ¢, k, o) one shows that sjg,(v,,.,) has as
matrix representation with respect to the ordered base B = {e_s, e_1, By,

€1, 62} :

0 0 0 0 v
0 1 0 00
0 0 Ly 0 0
0 0 0 10
;10 0 00

In a complete similar way one finds that 7o (,,.,)] has as matrix representation
with respect to the ordered base B :

0 0 0 0 v
0 L 0 00
0 0 Ipy 0 0
0 0 0 10
—u;10 0 0 0

3.14 Different types of Moufang sets

In this section we make a division of the Moufang sets under consideration.
Amongst the classical Moufang sets we distinguish 4 classes. Motivation will
become clear when calculating the isomorphism classes. (In this list & stands
for a division ring with involution o, V' is a right k-vector space and ¢ is a
(0, €)-quadratic form.)

Moufang sets of type 1 :
Projective Moufang sets P(k).

Moufang sets of type 2 :
These are Moufang sets of the form Q(V, ¢, k, o) with ¢ = 1. We denote
them by MO(V, q, k) and call them orthogonal Moufang sets.
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Moufang sets of type 3 :

By this we mean Moufang sets of the form M(V, ¢, k, o) with Z(k) =k
and o # 1. We denote them by MH(V, ¢, k, o) and call them hermitian
Moufang sets.

Moufang sets of type 4 :

These are Moufang sets of the form M(V,q,k,o) with Z(k) # k.
We call these Moufang sets unitary Moufang sets and denote them
by MU(V,q,k,)).

Moufang sets of type 5 :
These are the indifferent Moufang sets of the form P(k',[; k') as de-
scribed in section 3.2.

Important to notice as concerns this division is that there is overlap in this
list. As will be seen in the rest of this chapter several Moufang sets belong
to different classes. Furthermore we introduce the following notation. For
a Moufang set of the form M(V,q, k,o) we denote its transvection group
by TM(V,q,k, o). For an orthogonal Moufang set MO(V,q, k), TO(V, q, k)
stands for its transvection group. In a similar way we will denote for Mo-
ufang sets MH(V,q,k,0), MU(V,q,k, o), P(k) and P(I; k) the transvection
groups by TH(V,q,k,0), TU(V,q,k,0), TP(k) and TP(l; k). Finally we re-
mark that for any orthogonal Moufang set MO(V, ¢, k) with char(k) = 2 the
equation q(v+v) =0 = ¢(v) +¢(v) leads to f(v,v) =0, Vv € V.

3.15 Isomorphism problems

3.15.1 General theory

Lemma 101 Let (X,Uy,)zex) and (X', Uy)wex:) be two isomorphic classical
or mized Moufang sets defined over division rings k and k'. Then char(k) =
char(k').

proof :

One easily checks that every root elation u, satisfies :

ord(uy) = char(k).
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As every Moufang set isomorphism induces an isomorphism between root
groups the lemma follows. a

Lemma 102 Consider two Moufang set of the form M(V ,q,k,0) and M
(V', ¢, K, o) where q is a (o,€)-quadratic form and ¢ o (o', €)-quadratic
form. Suppose p is a bijective semi-linear transformation from V' to V' with
associated field isomorphism « such that : for some constant ¢ € k' :

d(q(x)* = {(p(x)), Ve eV
d(f(z,y)* = fle(2),0(y)), Yo,y eV

where ¢ satisfies :

AN = N wa ek

!
! 10 1
de* = ("¢

Then ¢ induces o Moufang set isomorphism B from M(V,q,k, o) to
M(V' ¢ K, ") defined by :

B((x)) = (p(x)), V(z) € M(V,q,k, 0).

proof :

Remark firstly that the conditions on ¢ imply that (c'ky¢)* = k, . This
follows from the equation :

C!(t_tae)a — C!ta_cltaaea
’
C!toc _ oo Creoc
oo’
= o7

(1Y) — (1) €.

This implies that the map 3 is a well defined bijection from points of M(V/,
q, k, o) to M(V',¢',k',c"). We prove that for any (z), € M(V,q,k,o) the
map [y defined by :

Bayu(z); (y), (2)) = Bou((z); (y), (2)) 0 57"
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defines a bijection from Uty t0 Uy(z)). Lemma 41 then implies that § defines
a Moufang set isomorphism.

We use the description of the root groups in M(V,q, k,o) as described in
section 3.12.2. Let (e 1) € M(V,q,k,0). Choose a coordinatization of
M(V,q,k,0) associated to the decomposition V = e 1k ®Vy Perk with
labelling set Ro; = {(vo,v1) |g(vo) + v1 = 0}. Choose a coordinatization
of M(V' ¢,k c') associated to the decomposition V' = e’ k' &V @ €|k’
such that p(e_;) = €_,c and p(e;) = €|. Remark that (co) = (e_;) for
M(V,q,k,0) and (c0) = (e ;) = B((o0)) for M(V', ¢, k',a'). Moreover for
(vo,v1) € M(V,q,k,0) we find :

B((vo,v1)) = (p(e—1v1 +vp +e1))

= (ple-1)vf + p(vo) + p(er))
= (el y(cv]) + p(vo) +€})

= (p(vo), o)

€

Let (vo,v1) € Ro, and (wp, w') € Ry,

Then we have :

Bu((00); (0,0), (vo, v1)) B~ ((wp, wh)) o

= Bu((00); (0,0), (vo, v2)) (¢~ (wp). (¢~ e )

= B((¢™ (wo) + w0, v + (¢ D™ = f(vo, 07 (wp))
= (wp + (vo), it + iy — (f(vo o H(wp)))®)

= (1w + (v0), 0% + w0} — F((v0). w))

= u((00); (0,0), (p(vo), ¢'v7'))((wp, w}))

= u(B((00)); 5((0,0)), B((vo, v1)))((wp, w}))

showing that 3, defines a bijection from U,y to Uiy(eyy. This completes the
proof. a

Lemma 103 Let (X, (U,).ex) be a Moufang set of the form M(V,q,k, o)
which is coordinatized using the decomposition V = e_1k®Vy® ek with asso-
ciated labelling set Ry 1 = {(vg,v1) € Voxk|g(ve)+vy = 0}. Then Z((Roq, ®))
= {(vo,v1) € Roa1 | f(vo,wo) = f(wo,vo), Ywe € Vo}. In particular if o # 1,
Z((Royl, EB) = {(’Ug,vl) € R()’l |’U0 € Rad(f)}

proof :
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Let M(V,q,k,0) and Ry, be as in the theorem.
Suppose (v, v1) € Z((Rp1)). Then this means :

(UO)vl) @ (w[)ywl) = (w())wl) @ (UO)vl)) v(wO)wl) c RO,l-
Equivalently :

f(vo, wo) = f(wo,v0), Ywy € V.

Let o # 1, and suppose f(vg,wq) # 0 for a wg € Vj.
We find that :
f(’l)o,U)O)\) = f(w())\,’l)o), V)\ S k

yielding :
A7 =)\ VA ek,

a contradiction.
Hence in this case we find Z(Ro1,®) = {(vo,v1) € Ro1 |vo € Rad(f)}. O

Lemma 104 A classical Moufang set (X, (U,)zex) has commutative root
groups if and only if:

(i) it is of type 1,
(ii) it is of type 2,
(iii) it is of type 3 and dim(V) =2,
(iv) it is of type 4 and codim(Rad(f)) = 2.
An indifferent Moufang set always has commutative root groups.

proof :

Let (X, (U)zex) be a projective Moufang set P(k). As in this case the
root, groups are isomorphic to the additive group on k the lemma holds.

Suppose (X, (U,)zex) is a Moufang set of the form M(V, ¢, k, o). Choose a
coordinatization of M(V, ¢, k, ) with associated decomposition V =e_1k®
Vo @ erk and labelling set Ry; = {(vo,v1) € Vo X klg(vo) + v1 = 0}. As
we already saw the root groups are isomorphic to (Ro1,®). By Lemma 103
we know that the root groups are commutative if and only if the form f is
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symmetric on Vj.

If M(V,q,k,0) is of type 2, this condition is clearly satisfied.

If M(V,q,k,0) is of type 3 or 4, Lemma 103 yields codim(Rad(f)) = 2.

If M(V,q,k,0) is of type 3, Theorem 8.2.4 of [29] implies that f is non-
degenerate. Hence in this case the root groups are commutative if and only
if V5 =0.

The statement about the indifferent Moufang sets is clear as these are Mo-
ufang subsets of projective ones. a

Corollary 105 Let MU(V, q,k,0) be a unitary Moufang set defined over a
generalized quaternion algebra with standard involution o in characteristic
non 2. Suppose q is a (o, —1) quadratic form and choose a coordinatization
associated to a decomposition V = e_1k @V, Derk with labelling set Ry
= {(vo,v1) € Vo x k |g(vo) +v1 = 0}. Then Z(Ro1,®) = {(0,0)|0 € Tr(o)}.
Therefore MU(V, q, k, o) has commutative root groups if and only if dim (V) =
2 and MU (V,q,k,0) ZP(Z(k)).

Moreover if MU(V,q,k,0) is a unitary Moufang set defined over a general-
ized quaterion algebra k with standard involution o, and dim (V') = 2 we find
in any case that MU(V, q,k,0) = P(Z(k)).

proof :

Let Ry be as in the theorem. By Lemma 103 we have that
Z((R[),l, @)) = {(’U(),Ul) S R071|’U0 S Rad(f)}

But if char(k) # 2 we have ¢ = f/2 showing Rad(f) = {vg € Vb |g(vo) = 0}.
As ¢ is anisotropic on V; we thus find :

Z((Roa,®)) ={(0,0)|0 € Tr(o)}-

This means that if char (k) # 2, Z((Ro.1, ®)) = Ry, if and only if dim (V) =
But then the point set of MU(V,q,k,0) consists of {(0,0) |# € Fixz(o)
Z(k)} Uf(c0)}.

Let MU(V, q, k, o) a unitary Moufang set defined by a (o, —1)-quadratic form
such that dim(V) = 2 defined over generalized quaternion algebra k with
standard involution o. Lemma 97 implies that MU(V, ¢, k,0) = P(Z(k)).

2.
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This implies in particular that if char(k) # 2 MU(V, ¢, k, o) has commuta-
tive root groups if and only if it is isomorphic to P(Z(k)). O

Lemma 106 Let M(O(V,q,k)) be an orthogonal Moufang set coordinatized
with respect to a decomposition V. = e_1k ® Vo @ erk using the labelling set
Ro1 = {(vo,v1) € Vo x klg(vo) +v1 = 0} and suppose By is an ordered base
of V.

Then for (to,t1), (vo,v1) :

S(to,t1) (V0, V1) = (to f(to, vo)vy 4 vovy oy ).

Thus s(,4,) has matriz representation with respect to the
ordered base {e_1, By,e1} :

0 0 ty
0 Iigy tot;'f(Bosto)
tt o0 0

proof :

Consider a decomposition of V as V = e_ik & Vp & e;k with associated
coordinatization with labelling set Ry 1 = {(vo,v1) € Vj X k|g(vo) +v1 = 0}.
Denote this coordinate system with superscript 1 i.e.

(Uoﬂh)l = (e_1v1 +vo +e1), Y(vo,v1) € Ry
(00)' = (e).
Remember that
Soat = u((0,0)%;(00)", (=to, 1) )u((00)'; (0,0)", (o, t1)")
u((0,0)"; (00)', (=to, t1)").
In order to calculate the action of u((0,0)'; (c0)!, (—to, 1)") on the Moufang
set we will make use of a switch of coordinates as explained in section 3.12.2.
This means that besides the first coordinate system we consider a second

system associated to the decomposition V = ek & Vy @ e_1k. Coordinates
with respect to this second system will be denoted by superscript 2 i.e.

(UO,U1)2 = <61’U1 + vy + 6_1>, \7’(’[)07 Ul) S R071)

(00)* = (ex).
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Remark that the following equalities hold :

(vo,v1)' = (vovy ' v1 )2, V(vo, 1) € Rot \ {(0,0)}
(0,0)' = (o0)?
(00)* = (0,0)"

and if MO(V, q, k) is orthogonal then f(vg,vg) = —2¢(vg), Yvg € Vb.
Let (vo,vy)! be any element of MO(V, q, k, o) with vy # 0.
We calculate :

u((ov 0)1§ 0017 (_tOvtl))(v(Jv vl) = ( to + vo, t1 +v1 + f(th'UO))

Set A = tl + V1 + f(to,’l)[)).
We have :

(( ’0)17( ) 7(t0’t11)1)(_t0+U0’A)1

(ool 0,07 (at £ )t + vl A1 A7

(tot7" + (— t0+v0)A VAT 47" — Ftoty ", (—to +v9) A71)?
(totl ( t0+’l)0)A 1 A 1+t ! 2A71 Ailtflf(tg,vo))2
(tot” + (=
(

tot, to 4+ vo) A~ 1 ATVt = AT f(to, v0))?
tg ( — tl) + ’Ugtl’l}l ,Atl’l)fl)l

Moreover:

’U,((OO)I; (0, 0)1, (—to, tl)l)(t(ﬂ);l(A — tl) + ’Uotl’l)fl, Atl’l)fl)l

= ’U,((OO)l; (0, 0)1, (—to, tl)l)(tg(l + U;lf(tg, ’Ug) + ’Ugtl’l)fl, tl’l)fltl
+t1 + tll)l_lf(tm Uo))l

= (toUl_lf(to, Uo) + Uotl’l)l_l, tl’l)l_ltl + tl + tl’l)l_lf(to, ’U[)) + f(t[), to)
+o1 ! f(to, to) f (to, vo) + t1v7 ' f(to, vo) + £1)"

= (tgvflf(to, ’Ug) + ’Ugtl’l);l, tl’l)fltl

+2t1 (1 + vy ' f(to, v0)) + f(to, to) (1 + v " f(to, v0)))*

= (tgvflf(to, ’Ug) + ’Ugtl’l)fl, tl’l)fltl)l

Lemma 107 Let MO(V,q,k) be an orthogonal Moufang set coordinatized
over a labelling set Ry,. Then :

5(1)0)\,1)1)\2)5(1)0,1)1)((w07wl)) = (w0>\2,w1>\4), V(onvl)y (U’o,wl) € RO,ly Aek.
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Hence

S(vg,v1)3(v0)\,v1)\2) € Z(FixTMO(V,q,k:)({(OO)7 (07 0)})7 v(v(]avl) € RO,I, A € k.

proof :

Suppose Ry, is the labelling set of a coordinatization of MO(V,q, k) as-
sociated to the decomposition V = e 1k ©Vy @erk. Let (v, vy), (wo,wy)
€ Ry, A € k. Then we have using Lemma 106 :

S(voAw1)A25 (vo,v1) ((wOv wl))
= Sworwr2)((vof (vo, wo)wy ! + wowy oy, vtw 7))
= (0oA(f(vo, vo f(vo, wo)wy ™" + wowy ~tvy))wyvy 2
+(vo f (vo, wo) w1t + wowy tv1)vr FwivIA?, wivy o ?AY)
= (voA*f(vo, vo) f(vo, wo)v1 ™2 4+ voA? f (vo, wo )y *
+vo.f (vo, W) AN2v7 " + w2, wy A
= (A2 f (vo, wo)vy ' (f (vo, vo)vy " + 2) + w2, wi A*)
= (U)O)\2, w1>\4)

As an arbitrary element of Fizyao(v,qr {(00), (0,0)}) has a matrix repre-
sentation with respect to the ordered base {e_y, By, €1} of the form :

coox-

0 0O

Ay 0

0 put

we see that S(,nm02) Swown) € Z(FiTrmo,gr {(00), (0,0)}). O

Lemma 108 Let MU(V,q,k, o) be a unitary Moufang set defined by a (o, 1)-
quadratic form q where char(k) = 2. Assume that the form associated to q
is given by f. Let (to,t1), (vo,v1) € Roa. If f(to,to) = 0 we have for (vg,v1)
€ RO,I g

s(to,t1)((v0a ’Ul)) = (totl_lf(to, ’l)o)'l)l_ltl + U()'Ul_ltl, tl’l)l_ltl).
proof :

Remark that f(tg,?p) is equivalent to the condition ¢ = ¢;. The Lemma
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then follows by the calculations made in Lemma 106 taking into account
that char(k) =2 and f(ty,t9) = 0. O

Lemma 109 Let MU(V,q,k,0) be a type 4 Moufang set with q a (o, —1)
quadratic form. Suppose that g is the o-sesquilinear form such that q(v)
= g(v) + kye. Then the set {g(w)] w € Rad(f)} is contained in Fiz(o).
Moreover any coordinatization of MU (V,q, k, o) with associated labelling set
Ry satisfies :

{(vo,v1)1|(vo,v1) € Z(Ron,®)} C Fix(o).
and for (to,t1), (vo,v1) € Roa \{(0,0} with (to,t1) € Z(Ro1, D) we have :
S(to,tr) (V0 V1) = (vovy 'y, t1vy '), Y(to, t1), (vo, v1) € Roy \ {(0,0)},
and
T(tot) (00, v1) = (vovy ‘1, tyvy 'ty), V(to, t1), (vo,v1) € Rox \ {(0,0)}.
proof :

Let v € Rad(f) with v # 0. (Remark that this is only possible if char(k) =
2).
The equation :

qA+p)) = (A+p)7gv)(A+ p)

g(A) + X7 g(v)p 4 p7g(v)A + glvp) + kg 2
g(vA) + g(vp) + f(oX, vp) + kg o

= q(v\) +q(op), YA, p € k

implies :

N g(v)u+ p7g(v)X € ks, YA p € k.
Equivalently :

A7(g(v) + g(v)7 ) € kg, YA, 1 € k.

If g(v) # g(v)? this means k = k, a contradiction as k, C Fiz(o) and
o # 1. Hence g(v)” = g(v). Choose a coordinatization of MU(V,q,k,0)
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associated to the decomposition with labelling set Ry = {(vo,v1) € Vp X k|
q(vg) + v1 = 0}. Let By be an ordered base of Vj. If (vg,v1) € Z((Ro1,®))
Lemma 103 shows that vy € Rad(f), but then v; = g(vy) +r for ar € T'r(o).
Hence v; belongs to Fiz(o) as g(vg) € Fiz(o).

Let (to,t1) € Z((Roa,®)), then ty € Rad(f). Using matrix representation of
root elations with respect to the ordered base {e_i, By, e} as explained in
section 3.12.2 we have :

S(tot1) = u((ov 0); (OO), (tOv tl))u((oo); (07 0)7 (tOv tl))u((ov 0); (OO), (tOv tl))

1 0 0 10 ty 1 0 0
= totfl I|BO\ 0 0 I\Bg| to totfl I|BO\ 0
tt 0 0 00 1 tt 0 0
0 0 t
= 0 gy O
7t o0 0
Hence
S(tortn) (V0, v1) = (vovy Ty, trvg ), Y(vg, v1) € Rojy.
The statement for r(, ) follows by similar arguments. a

The following Lemmas are translations of well known isomorphism theo-
rems to the language of Moufang set.

Lemma 110 Let k be a generalized quaternion algebra. Then P(k) is iso-
morphic to a non-commutative orthogonal Moufang set MO(V' ¢, Z(k))
such that dim(V") = 6.

proof :

We use the theory on generalized quaternion algebras as briefly exposed on
p73 and 74 in [6]. This means that we can choose in k elements 7 and j such
that k = Z(k) @ iZ(k) ®jZ(k) ® jiZ (k).

Moreover if char(k) # 2 we can assume

i2:a0

i* = Bo
ij = —ji
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where ag and [y are non squares in € Z(k).
If char(k) = 2 these elements can be assumed to satisfy :

-2

1Y = 14+
7 = Bo
1] = Ji+1t

where g and fy are non squares in Z(k). Let o be the standard involution
in k. Then we denote the norm with respect to o as N, i.e. N(z) = z7z.
Define the orthogonal Moufang set MO(V', ¢', Z(k))) in the following way.
Let V' = ¢ ,Z(k) ®V] @€ Z(k) with V] = €)' Z(k) ®e)*Z(k) @ e)®Z(k)
®eh*Z(k) and define the forms ¢' and f' as follows. Let 2’ = ¢/ o' | +¢h'z
ey oy ey’ zs ey za el and y = eyl eh e us e us e ug
+ely). Set X = zy +izy +jz3 +jizg and p = uy +iug +jug +jiug, with o',
oy, Yz, u € Z(k), 1 <0< 4.

¢, 2') = (&ly)z+ NQ)
fy) = 2l + 295 + A+ oA

One easily checks that f' is a trace valued quadratic form and ¢’ is a quadratic
form such that ¢'(z' +¢') = ¢'(2') +d' (') +f (2, y"), Va',y € V'. As ¢'(€})
=¢'(e_;) = 0 and ¢'|y; is anisotropic since it is the norm function N, ¢ is a
quadratic form on V' of Witt index 1. This means that we can consider the
Moufang set MO(V', ¢, Z(k)). In the sequel we will use the coordinatization
of this set associated to the decomposition V' = €' ; Z(k) @V @®e|Z(k) with
labelling set Rj ;. Consider the projective Moufang set P (k) with canonical
coordinatization as explained in section 3.2. Define the bijection 8 from to
MOWV' ¢, Z(k)) to P (k) in the following way :

B((e0)) = (o)
6((66121 + 66222 + 66323 + 66424, -N(\) = (V).

with A = 27 +i20 4723 +7i2z4. Using Lemma 41 we check that £ defines a
Moufang set isomorphism. It will thus enough to show that the map B
defines as :

6(00)(’“/00) = B O U © 6_1
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defines a map from Uiy to Uiy and similarly show that the map S
defined by :

Bo,0)(wo) = B o ug o Bt

defines a map from Ug) to Ug).

Let (tg,t)), (vp,v}) € Ry with vy = e’ 2y +ehiz 4ehPzs +el 'z, vl = —N(N)
where \ = 2,42, 4525 +jizy, th = €0 uy +eh uy +eh ug +eptug, th = —N ()
if = wuy + tup +juz +J0uy.

We find :

Booy (u((00); (0,0), (t5, 1)) ((A))

(u((00); (0,0), (t6, £1)) (v, v1))

((th + vh, =N(A) = N(u) = A7p = p7 X))
((to +vh, =N (A + p))

=(n+A)

((20); (0), ())(N)

8

|
e /‘\QQQ

showing that S(c) (u((00); (0,0),(t5, 1)) = u((00); (0).5((t5, 11)))-

As to the map (o) we reason as follows. In MO(V', ¢',k') we find that
S(e0,—~1)U(o0) S(_ei,—l) = Uo,0) and in P(k) we have 5(1) Uiso) Sa; = Uq. By
construction of 5 we have §((eg, —1)) = (1). Therefore it will be enough if
we show that o S(e,=1) of~" = s(1y in order to show that S(gg) defines a
map from Uy to Ug). Let (vy,v}) € Ry, with vy = eh'z1 +ep’zy +ep’zg
+ehtzq, v) and v} = —N(\) where we put A\ = z; + iz, +jz5 +jizs.

If char(k) # 2 we have :

Bt (1 1)

= 5 (e N ) 4+ (N

= [(- (eo z1 — ey zg — 66323 — e z4)(
= (=N (NN) L =(N(N) )

==\

=s1((A)

==
Av
|
> |
N—
[
\.H,Z\
=
—
= =
=
Av
|
> -
=
|
N
SN
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and in this case we find thus that 5 o S(e,=1) o™ = ().
If char(k) = 2 we have :

5(3(6'1 1)((”6a”'1)))
= B((f ’(eo ,up) (N
= B(eh! (2 + z2) +ehPzy 4 b’z + b zy) (IV

O N (Y01
= (O (N() )
(

)L IN))TY)
=)
=sm((A)
and thus we find that also in this case 5 o s 1;) of7! = s). The non
commutativity of MO(V', ¢, Z(k)) follows from the non commutativity of
P(k). This completes the proof.
O

Lemma 111 Let MO(V,q,k,0) be an orthogonal Moufang set such that
dim(V) = 3. Then MO(V,q.k) = P(k).

proof :

Choose a coordinatization of MO(V,q, k) associated to the decomposition
V =e_i1k ®Vy ®eik with labelling set Ry = {(vo, v1) |¢(vo) +v1 = 0}. Us-
ing the results of 3.12.3 we can assume without loss of generality that there
exists a vector ey € Vo, with (eg, —1) € Rp ;. Indeed if this is not the case
we choose a (’Ug,’l}l) € Ro1 \{(0,0)}. Consider the proportional Moufang set
MO(V, —v"q) coordinatized using the decomposition V = é_ 1k @V, @ek
with é_; = —e_jv; and é; = e; and labelling set R071 By construction we
find then that (vy, —1) € Ry ,.

Consider the projective Moufang set P (k) coordinatized in the canonical way
as explained in section 3.2. Define the bijection § from P(k) to MO(V,q, k)
by :

B((w)) = (eov,—0v?)
B((00)) = (00).

We show that § defines Moufang set isomorphism. By Lemma 41 it suffices
to show that the two maps () and S, with :

Boo) (ul(00); (0), (1)) = B ou((00);(0),(t) o 57
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Bioy (u((0); (00), () = Bou((0);(c0),(t)) o B~

define bijections from U to Uy and from Uy to Uyo,)-
Let (s), (t) € P(k), with 8(s) = (so,51), B(t) = (to, t1).
Then we find for (vy, vy) with 37 ((vg,v1)) = (v) :

B(u((00); (0), (5))67 (vo,v1) = B((s +v))
= B(s) ®B(v)
= (s0,51) @ (vo,v1)

u((00); (0,0, (50, 51))((vo, v1))

Thus :

Bisy (u((00); (0), (5))) = u((00); (0,0), B(s))-
Remains to show that § defines a bijection from Uy to Upypy. As Uy =
8(1)U(00)8(1), U(o,g) = 8(60,,1)[](00)8(60,,1) and B(l) = (60, —1) it will be enough
to show that :

Bosmof = 51

Let v € k, with v # 0.
We have :

BswB ((eov,v?) = B((v71))
(eov,v7?)
(eo(f(eo,€0) — Lo~ v7?)
(eof (e, ev)v ™ — egv™ ", v7%)
S(eo-1)( (€00, V%))
BswB (o) = (0,0)
S(eo,—1)(20)
BsB71(0,0) = (o)
= 8(60,*1)(()’0)

showing that 3o sy 0 37! = s(,,_1). This completes the proof. o
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Lemma 112 Let MO(V, g, k) be a orthogonal Moufang set with dim(V') = 4

and codim(Rad(f)) # 2. Then MO(V,q,k) = P(k) where k is a quadratic
Galois extension of k.

proof :

Choose a coordinatization of MO(V,q, k) associated to the decomposition
V = e_1k @V, ®eik with labelling set Ry ;. Similar arguments as in the proof
of Lemma 111 show we can assume without loss of generality that there exists
a ey € Vp such that (eg, —1) € Ry;. In particular g(eo) = 1 and f(eq, ) = 2.
Let ag be a second vector such that (eg,aq) = V4. Consider the quadratic
polynomial p(X) = X2+ f(ep, ao)X +q(ag) in k[X]. Let v be a root of p(X)
in an algebraic closure of k. Remark that the other root of p(X) is given
by f(eo, a0) —7v. As fly, # 0, p(X) is a quadratic and separable polynomial
and k(7) is thus a quadratic Galois extension of k. Let a be the non trivial
automorphism of k(v) fixing & which sends v to v+ f(eg, ap). Denote for
x € k, N(z) = za®, Tr(z) = x + 2. Every x € k(v) can thus be written
as A+ ypu, A, p € k. Consider P(k(y)) with canonical coordinatization as
explained in section 3.2. Define the bijection 8 from P(k(v)) to MO(V, q, k)

by :

BA+yp) = (eo)+ aop, \* + 2u\f(eo, ao)y + qlao)i”)
= (eo\ + aopt, N(A + vu))
B(oo) = (00).

We show that § defines Moufang set isomorphism. By Lemma 41 it suffices
to show that the two maps () and B defined by :

Boo) (ul(00); (0), (1)) = B ou((00);(0),(t) o 5~
By (u((0); (00), () = Bou((0);(c0), () o B~

determine bijections from U to Uiy and from Uy to Uje,g).

Let (s), (t) € P(k(y)), with B(s) = (s0,51), B(t) = (to, ta)-
Then we find for (vg, v1) with 37 ((vg,v1)) = (v) :

B(u((00); (0), (5))87 (vo,v1) = B((s +v))
= Bls)®8(v)
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(80, 81) @ (vo, v1)

= u((oo); (0, 0), (807 81))(('007 vl))

Thus :

Bioo) (u((20); (0), (5))) = u((o0); (0,0), 5(s)).
Remains to show that the map (o) defines a bijection from Uy to Up,0). As
U(O) = 5(1)U(oo)5(1) and U(gp) = 8(807_1)U(OO)S(807_1) it will be enough to show
that :

Bosuyo B = s(eq-1).

Let A\, u € k such that A\ +~yu # 0.
We find :

BsayB (€0 + aop, —N (A + vp)))
= Bsw((A+vn)
Bl=A+yu)™")
B(=A+ ) (NX +yp)™))
B(((=(f(eo, aop + X)) +yu)(N(A +yp)) )
= (—eo(A+ fleo, ao)) (NN +vu) ' + aop(N(A + ), =(N(A+yp)) ).

Using Lemma 109 we find :

S(eo,~1)(€0A + aop, =N (A +yp))
= (—eof(eo, €0\ + agp)(N(A +yp)) ™!
+(eoA + aop) (N(X+ 1)) 5 (N(X +yp)) )
= (—eo(f (€0, €0) = DAN(A +y)) ' — eof (€0, ao)u(N(A +yp))
Faop(NX+ )~ (=N(A+yp) )
= (—eo(A+ fleo, ao)p)(N(X +y)) ™" + agu(N(A +yp)) ™" =(N(X + ) ™)
= BsmB~ (e + aop, N(A 4 yp)).

As also :

BswB ™ (00) = (0,0)
= S(eo,—1)(20)
BsnB71(0,0) = (o)
= 5(607—1)(07 0)
we find that 8s(1)8 ' = S(e,,—1). This closes the proof. o
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Lemma 113 Let MO(V,q,k) be an orthogonal Moufang set such that
codim(Rad(f)) = 2. Then MO(V, ¢, k) is isomorphic to an indifferent Mo-
ufang set of the form P(L; k).

proof :

Suppose MO(V, ¢, k) is as in the lemma. Choose a coordinatization of the
set associated to a decomposition V = e_1k ®Vy Peik with labelling set
Rp1. Remark that the assumption on f implies Rad(f) = V, and hence
{q(w) |w € Rad(f)} = {q(wo) |wo € Vo}. Let (eg,c™) € Ryy. Then the set
| = {cqg(w)|w € Rad(f)} clearly satisfies :

() 1 is an additive subgroup of k,

(i) I7' =1 as c7'q(w) ™" = cq(w(g(w)e)™"), Y w € Rad(f),

(iii) 1 € L.

(iv) [ is a vectorspace over k2.

Therefore we can consider the indifferent Moufang set P(I; k') where k' is
the subfield of k generated as a ring by I. We prove that MO(V, q, k) is
isomorphic to P(I; k). Define the bijection 8 from MO(V, q, k) to P(I; k') as
follows :

B((00)) = (o0)
B((vo,v1)) = (cvy).

We use Lemma 41 to show that § defines a Moufang set isomorphism. Let
(to,t1), (vo,v1) € Ro1. Then we find :

Blu((00); (0,0), (to, 1)) (v, 1)) = Bl{to +vo,t1 +v1))
= (C(t1+vl))
= u((00); (0), (ct1))((cv1))
0

= u((00); (0), B((to, t1))((cv1))

hence 3 o u((00);(0,0), (to,t1)) o B~ = u((c0); (0), B((to,t1))). As (to,t1)
was chosen arbitrarily this shows that 8 Uis) 87" = Utee).
Remains to show that the map () defined by :

Bo,0) (o) = o ug o B

determines a bijection from Uy to Up). As before we use the fact that
U0,0) = Steoe) Utoo) Sieg ey Uto) = 801y Uteoy 81y and B((eo, ¢71)) = (1)

(eosc

o0
o0
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This means that if we show § o s¢, 1) © 7' = 50 then the statement
about 3o holds.
Let (vg,v1) € Ry the we find :

B(S(eoe-1)((vo,v1))) = B((vovy et ety te ™)
= su(cv1)

s)B((vo,v1)).

Hence 3 0 $(¢, 01y © 87" = 51y and (3 defines a Moufang set isomorphism.
O

Lemma 114 Every unitary Moufang set MU(V, q, k, o) with non-
commutative root groups where k is a generalized quaternion algebra with
standard involution o and dim(V') = 3 is isomorphic to a hermitian Moufang
set MH(V',q', k', 0") with dim(V') =4 and k' isomorphic to a quadratic Ga-
lois extension of Z (k). Conversely every hermitian Moufang set MH(V,q, k, o)
with dim(V') = 4 is isomorphic to a unitary Moufang set MU(V', ¢, k', o)
with non-commutative root groups, where dim(V') = 3, k' a generalized
quaternion algebra with standard involution o', and k isomorphic to a quadratic
Galois extension of Z(k').

proof :

Let MU(V,q,0) be unitary Moufang set defined over a generalized quater-
nion algebra with standard involution o such that dim(V') = 3. Without loss
of generality we can assume that ¢ is a (o, —1)-quadratic form. Assume ¢(v)
= g(v,v) + Tr(o) and ¢(v + w) = q(v) + ¢(w) +f(v,w) with f a (o, —-1)-
hermitian form and g a o-sesquilinear form. Choose a coordinatization of
MU(V, q,k,0) associated to a decomposition V = e_1k &V, Dek with la-
belling set Ry;. As k is a generalized quaternion algebra there exist (cfr [6]
p73) aw, 8 € k, with k = Z(k) ® wZ(k) ® 0Z(k) @wbZ(k) such that :

char(k) =2 and :
w? =w+ag, 02 = By, ap, Bo € Z(k) \ Z(k)* and fw = wb + 6, 0° =0
and w? =w+1
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char(k) # 2 and :
w? = ag, 02 = By, g, Bo € Z(k) \ Z(k)?, wh = —bw, w” = —w and 67
)

Denote the norm function for k with NV i.e. for A = z; + wzy +0z5 +0wzy
we have N(A) = A?X. Without loss of generality we can assume that 7, =
(vo ) with g(vo,vy) = —v1 = —w (use Lemma 3.12.3 and section 3.12.3). Let
L, = Z(k(v1) = Z(k)w. Then L,, is a separable quadratic Galois extension
of Z(k) on which o acts non trivially with Fiz|, (o) = Z(k). Remark that
Vo = voLy, ® (vof) Ly,. Therefore we can define a hermitian Moufang set
MHV',¢',K' o) in the following way. Set V' = €' |L,, ®Vy ®e|L,,. Let
o =€ 2, +ay +eix) and ¥ = €1y, +yh +ely) with zp = vo(z1 + wza)
+(v90) (23 + wzs) and yy = vo(lh + low) +(veb) (I3 + wly), 2, I; € Z(k). Call
A =21+ wz +0z3 +0wzy. and p =1y + wly +613 +0wly.

Define the forms ¢’ and f' on V' in the following way :

JEa’) =~ + Ny £ Tr(o)
f'(@,y) = N pvy — o\ p.

One easily checks that f' defines a trace valued (o, 1)-hermitian form on V'
and ¢' a (o, 1)-quadratic form on V' such that ¢'(z' + ¢') = ¢'(2') +¢'(v')
+f(z',y"), Vo', y € V'. Moreover by construction one checks that ¢’ is
anisotropic on Vy. As ¢'(¢’ ;) = ¢'(e]) = 0, ¢' defines a (¢’, —1)-quadratic
form on V' of Witt index 1. Put &' = L,,. We can thus consider the hermi-
tian Moufang set MH (V' ¢, k',0'). When working with MH(V', ¢, k', o)
we will use in the sequel its coordinatization associated to the decomposition
V'=e L, ®Vy @€ Ly,,. The labelling set is denoted as Ry, ;. We show that
MHV', ¢, k', ¢') is isomorphic to MU(V, —q, k, o), which is a Moufang set
proportional and hence isomorhphic to MU(V, q, k, ). When working with
MU(V, —q,k, o) we will use the coordinatization associated to the decom-
position V' = (—e_1)k & Vy & e k. Define the map 3 from MH(V', ¢, k', o)
to MU(V, —q, k, o) in the following way :

B((vo(z1 + wza) + vob(23 + wz4), N(A)vy + u))
= (vpA7, M A7 + u)

B((o0))
= (00).
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where u € Z(k) and X\ = z1+2zw+230 +2z40w. The construction of MH(V”,
¢, k', o') implies that 8 defines a bijection from MH (V' ¢, k', o') to
MU(V,q,k,0). We check that 3 defines a Moufang set isomorphism us-
ing Lemma 41. Therefore it will be enough if we show that the map B,
determined by :

Biooy (too) = B0 U 0 B, Vi € Ueo)
defines a map from U,y to Ui and similarly that the map 5,0y determined
by :
Bo,0) (o) = Bougo B, Yug € Uo,0)
defines a map from Ujog) to Uy). Firstly we show the claim for 5.
Let u, z;, l; € Z(k), 1 <i <4
We calculate :

B((UO(Zl + OJZZ), N(Zl + OJZZ)’Ul) D (UO(ll + CLJlQ), N(ll + u}lg)Ul))
= B((’Ug((zl + ll) + LU(ZQ + lg), N(Zl + LUZQ) + N(ll + ng)
—f’(’Ug(Zl + 0.)22), Ug(l1 + ng)))

= B((vo((z1 + 1) + w(ze +12)), N((21 + 11) + w(22 + 1))

—(l1 + wla)7 (21 + wz2)vr — (21 + w22) (I; + wlx)vy)

= (vo((z1 + 1) +w(zz + )7, N((21 + 1) + w(z2 + )]

—(l1 + wl2)7 (21 + wz2)v1 — (21 + w22)7 (I + wl)v]))

= (vo((z1 + l1) + w(z2 +12))7, N(z1 + wze)v]

+N(l1 + ng)’l}f + f(’l)o(Zl + WZQ)J, ’Uo(ll + WIQ)J))

= (vo(z1 + w22)?, N(z1 + wz2)vd) P (vo(ly + wls)?, N(ly + wlz)vy)
= B((UO(Zl + OJZZ), N(Zl + WZZ)’Ul)) D ﬁ((Uo(ll + CLJlQ), N(ll + u}lg)Ul))

where we used the fact that v; = w and thus B(vo(z1 + wz2),N (21 + wzs)vy)
(vo(21 + wz2)?,N(21 + wzz)vy) and similarly S(vo(ly + wiz), N(I; + wlz)vy)
= (’Uo(ll + CUlQ)J,N(ll + CL)lg)Ul).

By similar calculations one checks that :

B((voB(23 + wzq), N(z3 + wzg)vy) @ (vo8(l3 + wly), N(I3 + wly)vy))
= B((vof(23 + wzq), N(23 + wzq)v1)) & B((vef(l3 + wly), N(l3 + wly)vy)).

Call A\ = z1 + wze + Oz5 + Owzy.
We find :

B((vo(z1 + wza), N(z1 + wz2)v1) @ (vob (23 + wza), N(0(23 + wzy4)vy))
= B((vo(z1 + wzz) + vo8(23 + wz4), N(21 + w2s) + N(0(z3 + wzy))))
= B((vo(z1 + wzz) + vo8(23 + wz4)), N(21 + wza + 023 + whzy))

= (vp(z1 + wzz + 023 + Bwzy), AT XY)
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and :

N(z1 +wz2)v1)) ® B((vof(23 + wzy), N(0(23 + wzy))vy))
(21 + wze)vi (21 + w22)7) ® (vo((23 + wz4)7,

3 -

B((vo(z1 + wzs)
= (vo(21 + w22)7,
N(0(z3 + wzy)v])
= (vo(21 + w2z + 023 + Bwzq)7, (21 + wz2)v] (21 + w2z2)°
+(0(23 + wzq)) 0] (0(23 + w24))” + f(vo(21 + wz2)7, vo(B(23 + wz4))7).

Let char(k) = 2 then we find :

AVTAT + (21 + wze)vd (21 + w2e)? + (0(23 + wza) )0 (0(23 + wzq))°
+f(vo(z1 + wz2)7, v9(0(23 + wz4)”)
= (21 + w2)v](0(23 + wz4))” + (0(23 + wz4))0] (21 + w22)7
+f(vo(21 + wz2)7,v0(6(23 + wz4))7)
= (21 + wzo)(w + 1)(0(23 + wz4))” + (0(23 + wza)) (w + 1) (21 + w22)”
+(21 + wz2)(0(23 + 24w))7
= (21 + wz)w(zz + 24 + w24)0 + 0(z3 + wzq) (W + 1) (21 + 22 + w2z2)
= (21 + w22) (23w + z400) + O(23 + 23w + 24000) (21 + 22 + W22)
(zl + w29)0(z3w + 23 + z400) + 0(23 + w23 + z400) (21 + 22 + w22)

This means that A v{ A7 = (21 + w22)v] (21 + wz2)” +(0(23 + wz4))v]
(0(z3 + wz4))” +f(vo(z1 + w22)7,v0(0(23 + wz4))7).
If char(k) # 2 we have for A\ = z; + w2z + 6(z3 + wzy) that the equation :

AT A7
= (21 + w22)v{ (21 + wz2)”

+(0(23 + wzq))v] (0(23 + wz4))”
+f(vo(21 + w22)7, vo(23 4+ wz4)7)

is equivalent to the equation :

—(21 + w22) f(vo, v0) (23 + wz4))
= (21 + w29)70] (0(23 + wz4))
+(0(23 + wzq))7 05 (21 + wza).

We find :

(21 + w22) 0] (0(23 + wzq)) + (0(23 + wzq)) v1(21 + w22)
=(—21+ w22)v1( (23 + wzy) + (21 + w2o)vy(23 + wzyg)
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and :
—(21 + wza) f(vo,v0)(A(23 + wz4))

= (21 + w29)vy(0(23 + wzq)) + 21+ w29)(23 + wzy),

0(—
showing that also in this case M\ = (21 + wz)v](z1 + wz2) +(0(z3 +
wza)v] (0(2z3 +wz4))” +f(vo(21 +w2z2)7, vo(0(23 + wz4))7). We thus find that
in any case :

B((vo(z1 + wza), N(21 + wz2)v1) @ (ve8(23 + wza), N(0(23 + wzy))v1))
= B((vo(z1 + wzs), N(z1 + wz2)v1)) D ((vof(23 + wzq), N(0(23 + wzq))vy1)).

Moreover one easily checks that :

B((vo(z1 + wza) + vobl(23 + wza), N(Nv1) @ (0, u))
= B((vo(21 + wza) + vof(23 + wz4), N(N)vy1)) ® 5((0, u)).

As every element (wp, w) € Ryp; can be written in a form (vo(z1+wz2),N (214

wzo)vr) B (veb(z3+wzs),N(2z5+wzs)v1) @ (0,u), with u, z; € Z(k) the above
equations show that for (wp,w!), (up,uy) € Ry,, B((wp,wy) ® (ug, uy) =

B((wh, w4)) & B(u, u)). For {1y wh). (1 u5) € R, the clement u((50)5(0,0), 1y )
acts in the following way :

u((00); (0,0), (g, u))((wp, wh)) = (ug, uy) & (wp, wy).

It therefore follows that 3() defines a mapping from Us) to Uts).

We finally prove that (o) defines a map from Uy to U,g). Suppose that
we show that 3 o S(0,1) B71 = 8(0,1)- As 8(0,1)U(00) S(0,1) = U(g’o) we find for
Uy € Uo,0) @ Uso With 5(0,1) Uso S(0,1) = uo and we have :

Bougo B~ = Bospiuson B’
= S0oB0uUxo 5718(0,1)
= 500,)8(00) (Us0)5(0,1)

S U(gp)

and hence the proof that 5 defines an isomorphism is complete.
Remains to show that 8 s@1) 37! = s0,1). Let u, z; € Z(k), 1 <i < 4. Call
A =21 +wzy +023 +0wzy.
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We find :

B(s0,1)((vo(2z1 + wz2) + vof(23 + wz4) NNy +u))

= B((vo(z1 + oJZz)( (N (N1 +u) ™+ vof (23 + wze) (—(N(N)or +u)) 7
(=(N(Nvr +u) )

= B((vo(21 +wz2) (=(N(Nor +u)) ! + 008 (23 + w2g) (= (N (v +u)) 7,
NN o1 +u)) ™t = NA) (01 + 0] )N(N (Ao + ) = u(N(N)or +u)) ™))
= (=vo(A(N(N)v1 +u) )7 AN (N v + w)) "] (AN (Avr +u))~H)7

=N (o1 + o] )N(N(Nvy +u))™" = U(N(A)Ul +u))7h)

We have :

AN (Nor +u) ) N(A )v1 +u) TN
()~ ()U1+u(>‘a)_1)_l
Ay +u(N7)7 )

(
(
(Av
A (ATAT +u)

implying that :

~(AWNNvr +u))™!
N(N(Avy + u))

NN )
N(Avi A + u).

Moreover :
AN (N1 +u))~of AN (Nvr +u)71)7
NN (1 +e)(N(NNor + )~ u(N(N Moy +u)) ™!
= MNA)of + w)of (N(Mor + w)(N(N(Nvr + u))~
—NA)(v1 + o7)(N ( (A )v1 + )™ = u(N(N(Noy +u)) ™"
= Af (N(N(A)on +u))™! = N + o] )(N (N (Ve + )™
—u(N(N(Nvi +u))~!
= —(A A7 +u)(N(N(A)vy +u)) ™t
= —(Av; A7 + u)(N(/\le’ +u))t
= —(AfXN +u)t

where we used the identity Av; + v{A? = N(A)(v; + vf) and the fact that
N(N(A)vy +u)) = N(Avi A7 + u).
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Thus we find that :

B(so,1((vo(z1 + wze) + v90(025 + Bwzg), N(N)vy + u)))
= (—vg(ANT (AT 4+ u)™ (= AI N7 +u)™h)

= 5(0,1) (VoA7, AVJ AT + u)

= 500,y ((vo(21 + wz2) + vob (023 + Owzs), N(N)vy + u))).

This proves that 5 s 1) 87 = $(0,1). By Lemma 41 we find that (3 defines
a Moufang set isomorphism from MH (V' q', Z(k),c") to MU(V, —q, k, o).
As MU(V, —q, k, o) is isomorphic to MU(V, q,k,o) (cfr. see section 3.12.3)
under ¥_; with :

Y-1((00)) = (00)
Y-1((vo,v1)) = (v, —v1)

we find that 8* = 118 defines an isomorphism from MH (V' ¢, k', ¢') to
MU(V,q,k,0).

Conversely let MH(V,q,k,0) be hermitian Moufang set with dim(V') = 4.
As usual we assume that ¢ is a (o, —1)-quadratic form. Choose a coor-
dinatization of MH(V,q,k, o) associated to the decomposition V = e 1k
®Vp derk. Assume that g is a o sesquilinear form such that ¢(v) = g(v,v)
+Fiz(o) and f the (o, —1)-hermitian form satisfying ¢(v+w) = ¢(v)+q(w)+
f(v,w), Yo, w € V. Let vy be a vector of Vg \ {0} and put g(vg,ve) = v1.
As ¢ is anisotropic on Vg we find that v; ¢ Fiz(s). Hence Fix(o)(v1) = k.
Without loss of generality we can assume that v} = vy + ay, if char(k) = 2
and v? = qp if char(k) # 2 with ag € Fiz(o) \(Fiz(c))?. Let wy be a vector
in Vp such that f(vg, wp) = 0. Then we have Vi = vok @ wok. Put g(wy, wp)
= wy. As wy = vy2; + 23 for some z; € Fiz(o) and Fiz(c) = Tr(o) we can
assume without loss of generality that w,vy' = 8y € Fiz(o). As vy & (wp)
and f(vo,wp) = 0 we find that Sy ¢ (Fiz(c))?. (Otherwise we would have
q(vop +wg) = 0 for a pp € k and vou = wy). Let k' be the generalized quater-
nion algebras with center Fiz(o) constructed in the following way. Put &'
= Fiz(o) ®v Fiz(c) &0 Fix(c) ® 0'viFiz(o) with :

char(k') =2 and :
(0')%= Sy, and O'vy = v,0" + 6.

char(k) # 2 and :
0% = By, 1 = —0'v;.
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Denote the standard involution of &' by ¢’ and let N' be the norm function
on k'. Remark that every element of MH(V,q,k,o) can then be written as
((vo(z1 + v122) +wo(z3 +v124), N'(21 + v1220+0 23 + 0'v124) + 1), u € Fiz(o).
By the construction of k' we see that k is embedded in k' and o'|;, = o.
Define the unitary Moufang set MU(V', ¢, k', ') in the following way. We
set V' = e k" @uok’ @eik'. Let ' =€’ o’ | +vg\ +eja] and y' =€ 1y,
+oop' +eiyy, with 2"y, 2, v, vy, N, p' € K.

Then we set :

d(@,a) = —(a )72} = NN + Tr(o’)
fidy) = =@ )7+ ()72 + N7 (= + 0] )

!

Then one easily checks that ¢’ defines a (¢, —1)-quadratic form on V' of Witt
index 1 with associated trace valued (o', —1)-hermitian form f’. Therefore
we can consider the Moufang set MU (V' ¢, k',0'). Coordinatize this set
using the decomposition V' = e’ k' +Vj +e\ k" where V = vjk.
Define the map 8 from MH(V,q,k,0) to MU(V', ¢, k',a') by :

B(EOO;)
B((vo(z1 —i—’ Ulzg),—i- wol(zz +v124), N'(21 + v129 + 0'23 + 0'v124))
= (vo(N)7, Nof (X)7).

The calculations used to prove the first part of the Lemma show that 8 de-
fines a Moufang set isomorphism from MH(V, q,k,c) to MU(V', ¢, K',d").
This completes the proof. a

Lemma 115 Let k be a generalized quaternion algebra in characteristic non
2 and o a non standard involution Then every polar line Pol(k, o) is isomor-
phic to an non commutative orthogonal Moufang set MO(V',q', Z(k)) with
dim(V') = 5.

Without loss of generality we can choose i, j and € k with 2 = ay, 72 = By,
ij =—ji, k= Z(k) ®iZ(k) ®jZ(k) ®jiZ(k) such that o is given by :

(z1+ iz + jzg+ jiza)? = 21 — iza + jz3 + Jizy, V2 € Z(E),1 <i < 4.
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Denote the standard involution in £ by 7 and the norm function in k& by N.
Let Pol(k,o) be a polar line defined by a (o, —1) quadratic form. Choose a
coordinatization of Pol(k, o) associated to a decomposition V' = e’k e k.
Then we find that the point set of Pol(k,o) is given by {(0,%)|t € Fiz(o)}
= {(0, 21+j23+Jiz4) |2; € Z(k). In order to construct an orthogonal Moufang
set MOV’ ¢, Z(k)) we proceed as follows. Let V' be the 5-dimensional
vectorspace €', Z(k) @Vy @, Z(k) with V! = e' Z(k) @ €,* Z(k) ®e)* Z (k).
Define the forms ¢', f' and ¢' on V' as follows. Let 2’ =€’ 2", 4z +eiz}
with zl) = e}'2! +e®2) +el’24 and put X' = 2} + jz +jizh. Let y' =€ o',
+yh +ehy, with v = e}'ul 4€)%ul, +eb’ul and put g =l + jul +jiu.

g, o) = 2L\ + N(X)

filaty) =yl 42l + N+ N

¢(@) = ¢

One easily checks that ¢' defines a quadratic form on V' of Witt index
1. Therefore we can consider the Moufang set MO(V', ¢, Z(k)). Coor-
dinatize MO(V',¢', Z(k)) using the decomposition V' = e, Z(k) &V &
1Z(k) with labelling set Rj;. Define the bijection 3 from the point set of
MO(V' ¢, Z(k)) to Pol(k,o) in the following way :

B((00)) = (o)
6((66121 + 66222 + 66323, —N(\)) = (0,))

where we put X' = z]+jzy +jizi. We check that 3 defines a Moufang set
isomorphism using Lemma 41. It will thus be enough to prove that the map

B0y given by :
Booy (Uos) = 0 s © B Vus € Uloo)
defines a map from Us) to Uiy and similarly that the map 5oy given by :
Bo,0)(wo) = B o ug o gt

defines a map from Uog) to U ).
Let (vg,v}), (to,t)) € Ry, with vy = ehtz e’z 4eh’zg and v = —N(N)
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where we put N = 2y 425+ jizs, th = e} 'uy +ejuy +eh>ug and ), = —N(u')
where we put u' = uy +jus +jius.
We calculate :

B(ul(0); (0,0), (ty, 1)) (v, v1)))
B((th +vo, =N (') = N(p') = X" = p"" X))
(B((t’ o+ 0o, =N\ +4))

)\l l)
((00); (0,0), (0, ")) ((0, X))
(

showing that 8 o u((00); (0,0), (ty,t})) o8 = u((00); (0,0), B((ty,t}))). As
for u(o,0) we reason as follows. For MO(V',¢', Z(k)) we have that 5.1

Utse) S(eyt,—1) = Uln,0) and similarly for MU', ¢, K, 0") we find s(,1) Ut
s(0.1) = Ulo,0)- Moreover by construction of 8 we find 3((e}', —1))) = (0, 1).
In order to show that () defines a map from Uyg ) to U it will therefore
be enough if we show that o 5.1 _) o7t = 5(0,1). Let (v),v}) be as above

ie. v =eh'z +e)’z 4e)’23 and v) = —N(X') where we put X = z; + j2,
We have :
5(5(6 1)((1)0,1)1))
A=e [t} O 4 V0 -0
— B((~(eh' =1 - 66223 €’z )( DL =)
= (=N (V)T = (N ( N

proving that 3 o S(ept —1) © B~ = 5(0,1). That MO(V',¢', Z(k)) is non com-
mutative follows from the fact that it is isomorphic to M(V, ¢, k, o) which is

non commutative.
O

As to orthogonal Moufang sets over small fields we have the following lemma.

Lemma 116 Let MO(V,q, k) be an orthogonal Moufang set such that k
=, or s, then one of the following possibilities occurs :

(i) k =T, dim(V) =3 and MO(V,q, k) =2 P(F,),
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(ii) k =Fy, dim(V) =4 and MO(V,q, k) = P(Fy),
(iii) k =TFs, dim(V) =3 and MO(V,q,k) = P(F3),
(iv) k =F;, dim(V) =4 and MO(V,q,k) = P(Fy).

proof :

Let MO(V, ¢, k) be ain the lemma and choose a coordinatization of MO(V, ¢, k)
associated to the decomposition V' = e_1k @V @e kb with labelling set Ry .
Suppose firstly that k& = ;.

We first show that if dim (V) > 4, codim(Rad(f)) # 2. If this where the
case we would find at least two vectors vy and wy € V with vy # wp such
that f(vo, wp) =0 and ¢(vo) = g(wp) = 1. But then the equation g(vy + wy)
= ¢(vg) +¢(w) = 0 implies vy = wy a contradiction. Suppose dim (V') # 5.
Let vg. As dim(Vp) > 3, dim(vi- NVy) > 2. This means that there exists a
wo # vp such that f(vy, wp) = 0. But then the equation g(vy + wq) = q(vo)
+q(wy) = 0 leads to vy = wyp, a contradiction. Therefore the only possi-
blities left are dim(V) = 3 and by Lemma 111, MO(V, ¢, k) = P(F,) or
codim(Rad(f)) # 2, dim(V) = 4 and MO(V, ¢, k) = P(Fy) by Lemma 112.
Subsequently we assume that k = F;.

Suppose dim (V) > 5. Let vy, wg € Vj such that f(vg, wp) = 0. Without loss
of generality we can assume that g(vg) = 1 and g(wy) = —1. As dim(Vp)
> 3, we find that dim(vy Nwg NVp) = 1. Let ty € v Nwg NV;. Then there
are two possible choices for g(ty). If q(ty) = 1 the equation g(ty + wp) = 0
leads to ty = wy, a contradiction. And if ¢(tg) = —1, we have g(vg + tp) =0
and hence a vyg = #g, a contradiction. This shows that dim (V) < 4. Thus
we have two possibilities. Or dim(V') = 3, and MO(V, ¢, k) = F3 by Lemma
111, or dim(V') = 4 and MO(V, ¢, k) = Fy. ]

Lemma 117 Consider a orthogonal Moufang set M(O(V,q,k)). Suppose
[ is the form associated to q. Assume 5 < dim(V) < oo if Rad(f) =
0, codim(Rad(f)) > 4 if Rad(f) # 0 and k # F,. Then TO(V,q, k) =
[PGO(V, q, k), PGO(V, ¢, k)].

proof :
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Choose a decomposition of V' such that V = e_1k ® V ek, with as-
sociated coordinatization over the labelling set Ro; = {(vo,v1) € Vo x k
|g(vo) +v1 = 0}. In particular this means that the point set of MO(V, ¢, k)
can be written as {(vo,v1)|(vo,v1) € Ro1} U {(0c0)} with :

(’Ug,vl) = <6,1’U1 + vy + 61>, V(Uo, ’Ul) € R()’l

(00) = {e-1).
Suppose firstly that char(k) # 2.
As every u((00);(0,0) ,(vo, v1)) with vy # 0 equals u((00);(0,0), (v9l/2,
v11/4))?, Proposition 10 in [7] implies Uy C [PGO(V, ¢, k), PGO(V, q, k)].
Similar calculations yield U C [PGO(V,q,k), PGO(V,q,k)]. Theorem 2
of loc. cit. states [PGO(V,q, k), PGO(V,q,k)] is simple. As TO(V,q,k) is
generated by Ui and Uy and is normalized by PGO(V, ¢, k) (cfr section
3.12.2) it follows that [PGO(V, q, k), PGO(V,q, k)] = TO(V,q, k).
Suppose char(k) = 2.
Choose (vg,v1) € Ry \ {(0,0)} arbitrarily.
By Lemma 107 we find that ()81 -1 has as matrix representation
with respect to the ordered base {e_1, By, €1}

v 0 0
0 lgy 0 .
0 0 wv?

As in the non characteristic 2 case [O(V, ¢, k), O(V, q, k)] contains all squares
of linear transformations preserving the form ¢ (see Proposition 15 in [6],
for the degenerate case a similar proof holds). In particular S (vo,01)S (vouy L)
€ [PGO(V,q,k), PGO(V, ¢, k)].
By the definition of s, we find :

u((00); (0,0), (vo, Ul))S(vo,vl)s(vovl’l,vfl)u((oo); (0,0), (UOU;17 Ufl))

= [u(((00); (0,0), (vo, v1), u((0, 0); (o0), (vo, v1))]

[((0,0); (00), (vovy ', vy 1)), u((00); (0,0), (vovy vy H))]

€ [PGO(V,q,k), PGO(V, q, k)].
Multiplication of u((00); (0,0), (vo, v1)) S(wo) S(ueur?wrt)
u((0), (0,0); (vovy !, v")) on the right with (s(,u,) S(Uovl_l,vl_l))71 implies :

u((00); (0,0), (vo, v1))u((c0); (0,0), (vovy, v}))

= u((00); (0,0), (vo(1 4+ v1),v1(1 + v%))) (3.2)
€ [PGO(V,q,k), PGO(V, q, k)] (3.3)



3.15. ISOMORPHISM PROBLEMS 133

Two cases occur.

1. (%1 ?é 1.

Applying formula (3.3) for u((00); (0,0), (apay,a})) gives u((00);(0,0), (vovy (1+
vi),vi(1+17))) € [PGO(V,q,k), PGO(V, ¢, k)].

This yields :

u((00); (0,0), (vo (1 + v1), va(1 + vf))u((00); (0,0), (vova(1 + v7), v7(1 + v7)))
= u((50): (0,0), (v0(1 + v2)*. vs(1 + v1)") € [PGO(V.q, )PGO(V 7, k)]-

Conjugating u((00); (0,0), (vo(1 + v1)*,v1(L + v1)®) with the transformation
with matrix representation :

(1 ~|—’U1)74 0 0
0 1\30\ 0
0 0 (]. +’U1)4

belonging to [PGO(V, q, k), PGO(V, q, k)] gives u(oo; (0,0), (vg,v1)) € [PGO(V, q, k),
PGO(V,q,k)].

2. v = 1.

Granted the conditions on k there is at least one A € k such that A\* # 1.
Consider (agA\? a;\*) € Rp;. By what is already proved we find u(oo
(0,0), (apA?,a1\?)) € [PGO(V, q, k), PGO(V, q, k)]. Conjugating u(oo; (0,0),
(aoA?, a;\Y)) with the matrix :

A0 0
0 lgy O
0 0 A7?

of [PGO(V,q,k),PGO(V,q, k)] yields u(oo; (0,0), (ap,a1)) €

[PGO(V,q, k),PGO(V, q,k)]. It follows that Uy C [PGO(V,q,k),PGO(V, q,k)).
Complete analogously one deduces U o) C [PGO(V, q,k),PGO(V, ¢, k)], hence
TO(V,q, k) C

[PGO(V,q, k), PGO(V,q,k)]. Finally the simplicity of [PGO(V, ¢, k), PGO(V, ¢, k)]
(cfr Theorem 3 and Theorem 4 in [6]) shows TO(V,q,k) = [PGO(V,q, k),
PGO(V, ¢, k)]. 0
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Lemma 118 A hermitian Moufang set MH(V, q, k, o) has commutative root
groups if and only if dim(V) =2 and MH(V,q,k,0) = P(Fix(0)).

proof :

Let MH(V, q, k, o) be a hermitian Moufang set with commutative root groups.
Choose a coordinatization of MH(V, q, k, o) associated to the decomposition
V = e_1k ® Vy @eik with labelling set Ro1 {(vo,v1) € Vo x k |g(vo) + 1
= 0}. Lemma 104 shows that in this case dim(V) = 2. But this means
that the point set of M H(V, ¢, k, o) is given by {(0,t) |t € Fiz(o)} U{(c0)}.
Consider the Moufang set P(Fiz (o)) labelled in a canonical way. Define the
bijection § from P(Fiz(c)) to MH(V,q,k,0) by :
B(t) = (0,t), Vt € Fiz(o)
Boo) = (o0).

Using Lemma 41 one easily checks that § defines a Moufang set isomorphism.
That the converse holds i.e. if MH(V,q,k, o) is isomorphic to P(Fiz(o))
then it has commutative root groups is clear. a

Lemma 119 Let P(k) be a projective Moufang set. Then Z(k) = k if and
only if P(k) is commutative.

proof :

Coordinatize P(k) in a canonical way. Without loss of generality we can
assume = = (o0) and y = (0). Every element of Fizpppy{z,y} has matrix

representation :
ty 0
0 t

with tl, t2 S Z(k) and tltz S [k,lu]

If Z(k) = k then clearly Z(Fizrpky{z,y}) = Fixpp){z,y}.

As to the converse, the conditions of the lemma yield that Z(Fizrp@{z,y})
= Fizppry{z,y}. This means that for every r ¢,z € k, with r # 0 and

t#0:

(rtztr) = (smsw)(swsm)((2))
(s51))(()5(1))((2))
(trzrt).
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Or equivalently :
r % rtztrt Ty = 2, V2 € .

If 2 = 1 this implies trt~'r~' = (r~'t~'rt)~! and hence r~'t~'rt = [r~ t7Y]
€ Z(k),V r, t € k. Lemma 50 implies that Z(k) = k. m|

Lemma 120 An orthogonal Moufang set M(O(V, q, k)) with associated bi-
linear form f is commutative if and only if dim(V) = 3, dim(V) = 4 or
codim(Rad(f)) = 2.

proof :

Choose a coordinatization of the Moufang set associated to the decomposition
V = e_1k®Vy@erk with labelling set Ro; = {(vo,v1) € Vo xk|g(vg)+v1 = 0}.
Suppose dim (V) > 5 and codim(Rad(f)) # 2.

Remark that then Lemma 116 implies that & # Fy or F;. This implies
that there exists at least one subspace V' C V such that dim(V) = 5 and
codimy (Rad(f)) # 2. Consider the Moufang subset M(V, ¢, k). As this is a
Moufang subset of a commutative Moufang set it should itself be a commu-
tative Moufang set. This means that we can reduce the situation to the case
where dim (V) = 5, and codim(Rad(f)) # 2. We prove that the commuta-
tivity of the Moufang set leads to a contradiction.

Two cases occur.

First case : Rad(f) # 0

This means dim(Rad(f)) = 1 and there exist at two points (ag,a1) and
(bo,bl) € R()’l such that aok @Rad(f) @bok = Vb Let Rad(f) = <7“0>. Set
es = ag, €2 = by and €5 = ry and denote the ordered base {e}, €2, 3} of
Vo as By. Using Lemma 106 the automorphism s(,,q,)5(b06,) has a matrix
representation with respect to the ordered base {e_;, By, e;} of the form :

ab;® 0 0 00
0 Z1 %o 0 0
0 z3 z4 0 0
0 00 10
0 0 0 0 a;'b

with Zi € ]\7,1 S ] S 4. Choose (Co,Cl)7 (do,dl) € RO,l with Co ¢ Rad(f) and
dy € Rad(f).
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Then 5(cq,c;)5(do,d;) has a matrix representation of the form with respect to

the base B = {e_q, By, e1} :

Cldl_l 0
0 T
0 i)
0 T3
0 0

0 00
yr 00
y2 00
y3 1 0
0 0 ¢ dy

with u,z;,y; € k, 1 <@ < 3. Expressing that s(ag,0,)S(b0,61) a0 S(cg,e1)S(do,dr)
commute in their action on the Moufang set translates in the following set

of equations :

T321 + Y323 = T3

T3Za +Y3ze = Y3

Let cp = S2°_, elcl. We calculate 5 and ys :

j=1

Using Lemma 106 we find :

1 —
8(00761)8(110,051)(60) =
_ 2.3, ~lg 1 2
Thus z3 = cjcger fep, ed)-
In a similar way one calculates :
2y
8(00761)8(110411)(60) =

and ys = coeie; * f(eg, €f)-

cof(eh, co)ert + e
3

> eaflen,e)cicoer’ + ey

J=1

2

n

eof (e, €5)cpcacr* + €5

1

.
Il

(3.4)
(3.5)

Filling in these two expressions in the formula concerning commutativity

gives :

Hence :

2 1 2

2 1, _ 2
CoZ1 + Coz3 = ¢

cocaer fleg, €5)z1 + cocger ' f(en €g)zs = f(ep, €5)coeper
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where we used the fact that by the choice of e and ef, f(ej,ef) # 0. As
{e})|1 < j < m} forms a base, we can choose c§ and ¢} to be arbitrary
elements of k. This means in particular that :

xz1 +yzzg =z, Ve,y €k

Thus z; =1 and z3 = 0.

In a completely analogous way one deduces from equation (3.5) that zo = 0
and z4 = 1.

Thus 5(44,a1)5(bo,p:) has matrix representation of the form :

A0 0
0 I 0
0 0 X!

This means:
S(aoﬂl)s(bo,bﬂ(vm vl) = ('UO/\v vl)‘Q)v V(’Uo, vl) € Ry,

In concrete terms :

ao f (o, vo)ay by + bo(f(ao, bo) f(vo, ag)ar® + f(ve, bo)ar") + voai by
= ’Uo/\7 V’Uo € Vb (36)

Let Uy € Vb \ <a0,b0>.
Then equation (3.6) yields :

ao f (vo, ag)ai by + bo(f(ao, bo) f(ag, vo)ai> + f(bo,vo)a;') = 0.

And as ay and by are linearly independent :

f(aoyvo) =
flao,bo) f(ao, vo)ai® + f(bo,vo)ay' = 0.

But then we find that for every vy € V5 \ {ag, bo), f(ao,vo) = 0, which is only
possible if ag € Rad(f), contradicting the initial assumption on ag.

Second case : Rad(f) = {0}.
Remark that in this case if char(k) = 2, dim(V) = 2n, n € N as f
is a symplectic form on V. As dim(V) = 5 this case can only occur if
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char(k) # 2. Choose a coordinatization of the set associated to the decom-
position V' = e_1k @V, ®eik with labelling set Ry, = {(vo,v1) € Vo x k
lg(vo) +v1 = 0} and let By be an ordered base of V. As dim(Vp) = 3 and
k # F; Lemma 1.29 in [24] implies that every element of Z(Fizrarowv,gr
({(00), (0,0)})) has a matrix representation with respect to the ordered base
{e_1, By, e1} of the form :

w0 0
0 I3 0
00 pt

with p € k. But then we find for (ao, aq

~

» (bo, 1), (vo,v1) € Roa
5(a0,a1)5(b0,b1)(v07vl) = (UOV) vl’/Z)

for some v € k. By similar arguments as in the case where Rad(f) # {0}
the implies f(ag,vo) = 0, Yy € Vp, a contradiction.

This means that if MO(V,q,k,0) is commutative, dim(V) = 3 or 4 or
codim(Rad(f)) = 2.

That the converse holds if dim(V) = 3 or 4 follows from Lemmas 111 and
112.

Suppose codim(Rad(f)) = 2. Choose as usual a coordinatization associ-
ated to the decomposition V = e_1k ®Vy ®erk and with labelling set Ry
= {(vo,v1) € Vo x k |q(vo) +v1 = 0}. Let By be an ordered base of ;. Then
we find in this case that f|y, = 0. Let g € Fizramow,gr ({(00) (0,0)}). Asyg
preserves the forms ¢ and f this implies that g defines a linear transformation
of V preserving V;.

Moreover :

a(g(vo)) = q(vo), Yvo € Vo
yields :
q(g(vo) +v9) =0, Yoy € Vj.
As g(vy) € Vp and q is anisotropic on Vj this shows :
g(vg) = vy, Yoo € Vp.
This means that g has a matrix representation of the form :

w0 0
0 I, 0O
00 ut
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with respect to the ordered base {e_y, By, e1}. Hence we find Z(Fizramow,g )
({(20) (0,0)})) = Fizrpmowam ({(00) (0,0)}). O

Lemma 121 A polar line Pol(k,o) with 1 € Tr(o) is commutative if and
only if k is a generalized quaternion algebra and o its standard involution
and Pol(k,0) = P(Z(k)).

proof :

Fix a coordinatization for Pol(k,c). By Lemma 92 and section 3.12.2 we
can assume that the point set is given by {(0,0)|6 € Tr(o)} with 1 €
Tr(o). As Pol(k,o) is assumed to be commutative Z(Fizrpoke) {(),
(y)}) = Fizrpoky) for any two points (z), (y) € Pol(k;o). In particu-
lar Z(Fizrpoi(k;e) = Fixrpo(ke) and the following equation should hold for
any 6, 0" € T'r(o) :

(sps1)(sers1)(v) = (sgs1)(se81)(v), Vv € Tr(o).

Suppose that if k£ is a generalized quaternion algebra o is not its standard
involution. Lemma 47 implies then that Tr(c) generates k as a ring. But
then the above equation yields that [0,0'] € Z(k), V0,6" € Tr(c). By Lemma
49 we find that k is a generalized quaternion algebra and o is its standard
involution a contradiction. Hence the only possibility left is that £ is a gen-
eralized quaternion algebra with standard involution o. That the converse
of the Lemma holds is a straightforward check. a

Corollary 122 Let MU(V,q,k,0) be a unitary Moufang set defined by a
(0, —1) quadratic form q such that 1 € Tr(c). If MU(V,q,k, o) is commu-
tative, k is a generalized quaternion algebra with standard involution o.

proof :

Choose a coordinatization of MU(V, q, k, o) associated to the decomposition
V =e_1k ® Vh ®eik with labelling set Ro;. Then the set Y = {(0,0)] 6 €
Tr(o)} defines a Moufang subset of MU(V, q, k, ) isomorphic to Pol(k, ).
But as MU(V,q,k,o0) is commutative, Pol(k,o) should be commutative.
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Using Lemma 121 we find that %k is a generalized quaternion algebra with
standard involution o. O

For an extended polar line (cfr. p96) defined over a generalized quaternion
algebra we can be more precise.

Lemma 123 Let MU(V,q,k,0) be an extended polar line defined by a (o, —1)-
quadratic form q with 1 € Tr(c). Suppose that k is a generalized quaternion

algebra k with standard involution o. Then MUV, q,k, o) is commutative if
and only if dim(V') =2, and M(V,q,k,0) = P(Z(k)).

proof :

Choose a coordinatization of the Moufang set associated to the decomposition
V = e_1k &V, ®eik with labelling set Ry = (vo, v1) € Voxk |q(vo)+v1 = 0}.
Suppose V # 0. The assumption on MU(V, ¢, k, o) implies that f|y, = 0
and by Lemma 109 R, C Fiz(o).

Let (vg,v1), (wo,w1) € Ry. Due to the commutativity of Fizrmu(vigk.e)
{(0), (0,0) } we find :

(8(wo w1 $(0.)) (S(wo.wn) S(0.1)) (w0, 1))

= (S(wown)50,1) (Swo.wn) S0,1)) (o, u1)), V(uo, u1) € Roy
Using the matrix representations of s, as explained in section 3.12.2 one
easily checks that this yields :

VW = w1y, Vvl,wl € Rl (37)

Choose (ag,a1) € Ry1 such that ag # 0. Remark that as Tr(o) = Z(k),
ay ¢ Z(k)
We find by (3.7) :

a1>\aa1/\ = AUCH)\al, VA€ L.

Put {A\a A A € k} = A,,. Clearly A,, C Cy{a1}. Suppose A,, C Z(k)(aq).
This means that for all A € k :

N agA = a2y + 22, for z1, 22 € Z(k).

But then Lemma 53 implies that a; € Z(k) = Tr(o) a contradiction as q is
anisotropic on Vj.
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The only possibility left is that V5 = 0. This means that the point set of
MU(V,q,k,0) is given by {(0,0) |# € Tr(o) = Z(k)} U{(c0)}. Consider the
projective Moufang set P(Z(k)) Coordinatize in a canonical way. Then one
easily checks that the map S give by :

p((0) = (0,0),V0 € Z(k)
B((o0)) = (o0)

defines a Moufang set isomorphism.
Conversely if dim(V) = 2 we find that MU(V,q,k,0) is isomorphic to
P(Z(k)) by Lemma 97. Therefore it defines in this case a commutative
Moufang set.

O

3.15.2 The isomorphism problem for projective Mo-
ufang sets.

In this section we investigate all possible Moufang sets under consideration
isomorphic to a projective one.

The proof given below can be found on ppl47-150 of [29]. One of the first
to prove it with other notations was L. K. Hua in [12]. We restate it here
for the sake of completeness and as the techniques used in it illustrate some
basic strategies which will be used later on.

Proposition 124 Consider two projective Moufang sets P(k) and P (k') de-
fined over division rings k and k' then :

Pk) = P(K) & k=K or k 2 K.
proof :

Let P(k) and P(k') be isomorphic under 5. Without loss of generality we can
coordinatize P(k) and P (k') in such a way that 5((0)) = (0),8((o0)) = (00)
and 3((1)) = (1). The map J induces a bijection between k and k' also
denoted by £ and defined by :

B((z)) = (B(x)), = € k.
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Translating the fact that g is a Moufang set isomorphism yields :
for v, w € k :

Bu((o0); (0), (v))(w) = B((v+w))

(B(v +w))
Bu(00;0,v)5 B (w
u((00); (0), (B(v))(B(w))
(B(v) + B(w))

Hence (3 defines an isomorphism between the additive groups on k and &'.
To derive further properties of 5 we use the automorphisms sy, for v # 0.
From section 3.12.2 we know that s(,) has matrix representation with respect
to the base used for coordinatization :

()

Hence s,(w) = (—vw™"v), Yw #0 € k.
Applying 8 we obtain :

B(—vw™v) = (=B(v)B(w™)B(v)).
In particular if v = 1
Blw™) = (B(w))™", Yw #£€ k, Yw # 0

and if w =1
B(v?) = (B(v))?, Yv € k.

For v,w € k one deduces :

B(v?) + Bow) + B(wo) + B(w?) = B
(
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Or f(vw + wv) = f(v)B(w) + B(w)B(v).
The properties of 8 deduced so far yield for v, w € k\ {0} :

For any fixed vy € k\ {0}, the additive group on k is thus union of two
subgroups L; = {w € k|B(vow) = B(vg)f(w)} and Ly = {w € k|f(vow) =
B(w)B(vg)}. Thisis only possible if Ly = k or Ly, = k. Analogously £ is union
of the two additive subgroups R; = {v € k|B(vw) = S(v)B(w), Vw € k} and
Ry = {v € k|f(vw) = B(w)B(v), YVw € k}. This implies that R; = k and
B(vw) = B(v)B(w), Yv,w € kor k = Ry and B(vw) = B(w)B(v), Yv,w € k.
Hence (8 defines a field isomorphism or anti-isomorphism between k and k.
Conversely suppose k 2 k' or k = k'° under 5. Choose coordinate systems
for both P (k) and P(k') and define the bijection (also denoted by /) between
both point sets by :

Blv) = (B(v))
Boo) = (o0)

It is an easy exercise to check § defines a Moufang set isomorphism between

P(k) and P(K"). O

Proposition 125 A non-commutative projective Moufang set P(k) is iso-
morphic to a Moufang set M(V',¢' o', k") if and only if k is a general-
ized quaternion algebra and M(V', ¢’ o' k') is an orthogonal Moufang set
MO(V', ¢, k') with dim(V") =6 and k' = Z(k).

proof :

Suppose the form associated to ¢’ is given by f’. Remark that by Lemma
119 Z(k) # k.

Lemma 104 shows that M (V' ¢, k', ") is of type 2, of type 3 with dim(V"') =
2 or of type 4 with codim(Rad(f")) = 2
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Let P(k) be defined in the 2 dimensional right k-vector space E. Choose a
base {e1, e2} of E inducing a coordinatization of P (k) such that (e;) = (c0)

and (e;) = (0).

First case : M(V' ¢, k',0') is an orthogonal Moufang set MOV’ ¢, k').
As usual we suppose that the Moufang set isomorphism between MO(V' ¢, k')
and P(k) is given by . Suppose P(k) is defined in the 2-dimensional right
k-vector space E. Let e, e; be a base of E inducing a coordinatization of
P(k) such that (0o) = (e1), and (0) = (es). Choose a coordinatization of
MO(V', ¢, k') associated to the decomposition V' =¢' |k &V @ ek’ with
labelling set R ; = {(vp,v}) € Vg x k" |q(vp) +v; = 0}. Let By be an ordered
base of Vj. Without loss of generality we can assume §((c0)) = (00) and
B((0)) = (0,0).

Consider the Moufang subset Yy .,y = {(vh2",v}2") |2 € K'} U {(c0)}.
Clearly this determines a Moufang subset of MO(V',¢',k"). Let P(k') be
the projective Moufang set with &" as ground field coordinatized in a canon-
ical way. Define the bijection vy 1) from P(E') to Y, .1y as follows :

aw ) (2) = (vpev1z"), 2 € R

Ay (00) = (00).
Using Lemma 41 one checks that a, ;) defines a Moufang set isomorphism.
Let (v) € P(k). Denote the set {(vz) |z € Z(k)} U {(c0)} as ¥{,). One easily
shows that this set determines a Moufang subset of P (k). Let P(Z(k)) be

the projective Moufang set defined over Z(k) coordinatized in a canonical
way. Then one checks that the bijection a(,) from P(Z(k)) to Y,) given by :

ap(z) = (vz2), z€k
a(v)(oo) = (OO)

induces a Moufang set isomorphism.

Let (v) € P(k) such that 5(v) = (vj,v]) with v ¢ Rad(f'). We show that
B(Yt) = Y-

If (vz) € Y, we find that s, s has matrix representation with respect

to the base {ey, e2} :
-z 0
0 —z1 )

Hence s(yz)sw) € Z(Fizrpw) ({(00), (0)})). Let f(vz) = (wj, w}). We thus
find Squpw) Seyey) € Z(FiTsmow g 1) {(00), (0,0)}).
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Remark that as P (k) is not commutative, dim(V') > 5 and codim(Rad(f")) >
2 and by Lemma 116, k& # [, or F3. The techniques used in the proof of
Lemma 120 show that s(u; w1) Sy 1) has a matrix representation with respect
to the ordered base {e_1, B, €]} :

w0 0
0 Iigy 0
0 0 w!

where ' € k.
Thus we find in any case for a y' € k' :

2
s(wéywﬁ)s(v&vi)(u{)’u’l) = (uéu,’ul ull)7 V(ug,u’l) € RE),l' (38)
By Lemma 106 we find for (up, uj) € Ry :
(8 (wp ) S(op .t (U, u7)) o
= wp ' (wh, up)wy v} + v (f (wh, vp) f' (u, wh)wi * + f(up, vh)wi ")
Fuhw!, ")
= ugp’
Hence by (3.8) we find for uy € Vj\ (v}, wj) (remark that such uj exist as
dim(V') > 5) :
w f' (wh, up)ewy 0 v (f (wh, v) f (uy, wo)wy~ + f'(up, vp)wy ) = 0.(3.9)

Suppose that v{ and wj are linearly independent. Then the above equation
implies that :
f(wp, up) =0, Yug € Vg

hence w{, € Rad(f'). Equation (3.9) therefore becomes :
oo (uy, vh)wy ™ = 0, Yugy € Vi \ (v, wp)
and thus :
f'(vg, up) = 0, Vug € Vg

contradicting the assumption on vy.

Therefore the only possibility left is that wj € (v}) and hence §(vz) = (wy, w})
€Yy,
Conversely let (v)z',v}2%) € Y- By (1) we find sy 002y Sy €

! !
0:Y1)"
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Z(Fizrpmow g x {(00), (0,0)}). Hence if 571 (vh2',v}2"?) = (w), also s()
S@w) € Z(Fizepu {(00),(0)}). In the proof of Lemma 119 we saw that every
element of Z(Fizrp(y) {(00), (0)}) has as matrix representation with respect

to the ordered base {e;, e} :
ty 0
0 ¢t

with ¢y, to € Z(k) and tity € [k, k]. As s(,) S has matrix representation
with respect to the base {ey, ez} of the form :

0 w 0 v . —wvl 0
—w™t 0 —v7 1 0 o 0 —w o

this means that there exists a z € Z(k) such that w = vz and thus w
B~ vy, v}2"%) € Y.

Thus we proved so far that 5(Y(,)) = Ya(w) if (8((v)))o & Rad(f").

Remark that this property is equivalent to the statement that if (5((v)))o
¢ Rad(f') then for z € Z(k) :

(B(vz))o = (B(v))o2', for a 2’ € k.

As a next step we show that there exists a field isomorphism « from Z(k) to
k' such that :

(B(vz2))o = (B(v)oz*), Vz € k. (3.10)

Choose a fixed v € k such that (3(0))o € Rad(f). Then we prove that /5 in-
duces a Moufang set isomorphism from Y3 to Yj3((5)). Hence a(g0 8 oag(my))
induces a Moufang set isomorphism from P(Z(k)) to P(k'). By Proposition
124 we know that this isomorphism is induced by a field isomorphism « from
Z(k) to k'. By the construction of a(z and ags) it follows that :

(B((72)))o = (B((©)))oz".

Let u € k such that (5((u)))o is linearly independent from (5((7)))o. Two
cases occur :

L. (8((w))))o € Rad(f")-

Consider the equations :

B(((u+2)2))o =

))oz°. (3.11)
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for appropriate 2" € k. If (8((u)z)))o would be not contained in Rad(f'),
we find by what is already proved (8((uzz7")))o = (B((u)))o & Rad(f') a
contradiction. Hence (5((uz)))o € Rad(f') and equation (3.11) shows that :

and :

2. (B((u))))o & Rad(f").

The equations :

B((u+0)2)o =

for appropriate 2, 2" € k' show that 2/ = 2" = 2% and (8((u2)))y =

(B((w)))o=".

If (B((w)))o is linearly dependent on (8((7)))o we choose a w € k such that

(B((w)))o is linearly independent on (5((?)))o-
The equations :

B((u+w)2)))o = (B((u)))oz" + (B((w)))oz"

[
=
s
&
E
+
=

show (3((u2))))o = (3((u)))o="
Therefore we proved property (3.10).

But this means that dim(V") = dim/(k|z))-

Let 5((1)) = (e, €y). If (vg,vy) € Ry, \{(0,0)} we consider the Moufang
subset of MO(V', ¢, k') determined by the set Yo .ry = {(e2] + vj23, eh’?
vl 2% — f'(eh, vhz,2h) |24, 2, € k'} U{(o0)}. Using property (?7) we see that
B (Yieruny) = {(21 + v22) |21, 22 € k} U{(00)}. Call this set Y3 ,. Because
§ is a Moufang set isomorphism Y7, is a Moufang subset of P(k). As (c0),
(1), (0) € Y1, sa1y should stabilize Y7, and (—v™') = s1)((v)) € Yi,.

This means that there exist z} and z3 € Z(k) with :

-1 _ v v
v =2z vz,
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equivalently :
vl + vzl +1=0.

As v was chosen arbitrarily this shows that every element of k is solution of
a quadratic equation over Z(k). Lemma 51 implies that k is a generalized
quaternion algebra. That conversely every Moufang set of the form P(k)
where £ is a generalized quaternion algebra is isomorphic to some orthogo-
nal Moufang set of the form MO(V', ¢, k') with dim (V') = 6 follows from
Lemma 110.

Second case : M(V',¢',k',c") is a hermitian Moufang set.

In this case Lemma 104 implies dim (V") = 2 and M(V', ¢, k', o') £ P(Fiz(c")).
Using Proposition 124 we have k = Fiz(o'), contradicting the fact that & is
non-commutative.

Third case: M(V', ¢, k', 0') is a unitary Moufang set.

By Lemma 104 codim(Rad(f')) = 2. Choose a decomposition of V' as
V' =€ k' & Vy @ ek with associated coordinatization over the labelling set
Ry, = {(vg, vh) € Vg x kl¢'(vy) + vy = 0}. Let By be an ordered base of Vj.
By Lemma 92 and section 3.12.2 we can assume that ¢' is a (o, —1)-quadratic
form, Ry, N {0} xk" = {(0,2")|z" € Tr(0)}, 1 € Tr(o’) and B((1)) = (0,1).
Consider the Moufang subset of M (V' ¢, k', 0') determined by the subspace
e k' @ ek of V'. Call this subset Y. Clearly Yy & Pol(k',0'). Let 6] and
0, be two elements of Tr(c'). Denote by v; and v, the elements of k such
that 5(v;) = (0,6;), 1 < i < 2. By assumption on 3, 55,516~ = $(0,6)5(0,1)-
Moreover as §,,518u,51 = Sy,0,51 We find:

5015150,51 = SB(vivz)S1

89',51

with 5(1}1’02) = é’.
This implies :
sors150,51(0') = sgs1(0'), VO' € Tr(o)

or equivalently :
0,0,0'0,0, = 06’0 V0" € Tr(o).
This means that there exists a X' € Cp(Tr(c)) with:

0,0, = O\
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From #0,%0, = 6'0" it follows '\ = 1 and :
0,0,0'0,0, = 0,0,0'6,6,, ¥0' € Tr(o).

Lemma 49 shows that k' is a generalized quaternion algebra with standard
involution o'.
If char(k) # 2, Corollary 105 shows that MU(V',¢',k',0") = P(Z(k')). As
P(k) was assumed to be non-commutative this leads to a contradiction.
Let char(k) = 2. Suppose dim(Vy) > 1. Remember that as P(k) has
commutative root groups the same should hold for MU (V' ¢, k'). Remark
that by Lemmas 103 and 109 Ry C Fiz(o'). Let (u), (v) € P(k) such that
Blw) = (uy, 1}) and B(v) = (v}, v))
As:

BswswswsmB " = BsunswB
we find :

S(uf ) S(0,1) S (wh,07)5(0,1) = S(wh,wh)S(0,1)
with (wf, w}) = B(uv).
Using the results of section 3.13 we know that with respect to the ordered
base the element {€_,, By, €1} Sw.u) 50,1) S(wju!) S(0,1) has as matrix repre-

’ ’
. 0V1
sentation :
o0

ujvy 0 0
0 I|B/‘ 0

0 r—1 -1

0 0 uy vy

and S( ) S(0,1) has matrix representation :

wy 0 0
0 Iy 0

-1
0 0 wh

Because these two matrices should act in a same way on MU(V', ¢, k', o)
we find ujv] = w). We already remarked that R} € Fiz(o'), in particular
uy, v}, w) € Fiz(o'). But then

(o)™ = uyoy
viuy
(w})

_ ’

’
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o r,.0 : :
shows vjuy = ujvy. The automorphism s(0,1) S(0,1) S(u ) S0,1) has a matrix

representation with respect to the ordered base {e’;, B}, €} } of the form :

viuy 0 0
0 Iigy 0O
0 0 viug
Thus we see S(v[)’vrl) 5(0,1) 8(%71/1) S(0,1) = S(%,ull) S(0,1) S(v[)’vrl) 5(0,1)- Sending

this equation over to P(k) via 37! yields :
Sw)S(1)S(w)S(1) = S(v)S(1)5(u)S(1)

equivalently :

S(uv)S(1) = S(vu)S(1)-
This is only possible if uv = vuz, for an element z € Z(k). As u and v where
chosen arbitrarily we find

[u,v] € Z(k), Yu,v € k.

Lemma 50 shows that this is only possible if Z(k) = k. But then Lemma
119 implies that P (k) is commutative, a contradiction. O

Proposition 126 A commutative projective Moufang set P(k) is isomor-
phic to a Moufang set (X', (Uy)wext) isomorphic to M(Q(V',q',a',k')) or
to P(K',U'; k') if and only if -

(1) (X', (Uy)wex) is an orthogonal Moufang set MO(V', ¢, k") and one
of the following possibilities occurs :
(i.a) dim(V') =3 and k 2 ¥/,
(i.b) dim(V") = 4, codim(Rad(f)) # 2 and k = k", where k" is a
quadratic Galois extension of k',
(i.c) char(k) = 2, codim(Rad(f")) = 2 and there exists a constant
c" € k' such that the subset {c'¢'(w')|w' € Rad(f)} of k' is a subfield of
k' isomorphic to k,

(ii) (X', (Up)wrex:) is a hermitian Moufang set MH(V', ¢, K, o), dim(V') =
2 and k = Fiz(o),
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(1ii) (X', (Uy)wex) is a unitary Moufang set MU(V',¢', k', o) defined over
a generalized quaternion algebra k' with standard involution o', dim(V")
=2and k= Z(K),

(i) (X', (Uy)wex) is an indifferent Moufang set of the form P(K' I’} k'),
and k=21 =F.

Choose a coordinatization of M(V’ ¢, k', o) with associated decomposition
V' = el K'®Vyde| k' and labelling set R, = {(vg, v}) € Vyxklg(vg)+v) = 0}
If 8 denotes the isomorphism from P(k) to M(V',¢',0', k") we can assume
without loss of generality that 5(0) = (0,0) and §(o0) = (00).

First case : (X', (Uy)wex) is an orthogonal Moufang set of the form
MOWV' ¢ k).

As P(k) is commutative Lemma 120 implies that dim(Vy) = 1, dim(V{) = 2
or f |V0’ = 0. We investigate these cases separately.

1. dim(Vy) =1

Lemma 111 shows that MO(V',¢', k') = P(k'). Hence by Proposition 124
we see that MO(V’,¢', k') is isomorphic to P(k) if and only if k¥ = £’

2. dim(Vy) = 2.

Lemma 112 shows that MO(V', ¢, k") = k", where k" is a quadratic Galois
extension of £'. Hence Proposition 124 implies that in this case MO(V', ¢, k")
is isomorphic to P(k) if and only if k = E".

3. fllyy=0

Without loss of generality we can assume that after an possible multiplica-
tion of ¢ with a constant ¢/, we can work in the proportional Moufang set
MOV, eq', k'), with proportional coordinate system associated to the de-
composition €', k' @Vy @ e}k’ (cfr. section 3.12.2) with labelling set Ry ;.
Denote c¢' = Gand ¢'f' = f. As MO(V', ¢, k') is isomorphic to MO(V, q, k')
in a canonical way under 1.,  induced an isomorphism 3 = v o 3 between
P(k) and MO(V',q, k') satisfying :

B(O) = (070)
Bloo) = (o)
B(1) = (e1).

We show Ry is a subfield of ',
As Rad(f) =0, R, is an additive subgroup of k.
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Let uy, v; € Rl_. This means that there exists @, 7y € Vg such that (i, ;)
and (vg,01) € Rp1. Suppose u,v € k with f(u)(ug, 1), f(v) = (0, 01) and
B(uv) = (wp, w) then :

5(1707171)5(5071)5(1107111)5(50,1)(éOa1) = (éoﬂlf)l,(ﬂl@ly)

Bswyswswsa(l))

= B(s@nsm(l)
S(Tﬂoﬂm)(éov 1)

(eowy, w?).

Thus we have : .
111’[71 == 1171 S R071~
If 4, € Ry, also ﬁl_l € R, This shows that R; is a subf}eld of k.
Hence we can consider the projective Moufang set P(R;) with a coordinati-

zation.
Consider the bijection v from MO(V', G, k') to P(R;) determined by :

Y((00, 1)) = (1)

7((00)) = (o0).

Then one easily checks that v defines a Moufang set isomorphism. As P (k)
is isomorphic to MO(V", G, k') we deduce using Proposition 124 that k = R;.

Second case: (X', (Uy)wex) is a hermitian Moufang set M H(V',¢' k' ,0").
Using Lemma 104 we find dim(V") = 2 and M(V’, ¢, k', 0") is isomorphic to
P(Fiz(o)). Hence P(k) = P(Fiz(o')) and k = Fiz(o') by Proposition 124.

Third case: (X', (Uy)wex) is a unitary Moufang set MU (V' ¢, K, o").

As P(k) is commutative and has commutative root groups. Lemma 104 im-
plies that MU(V', ¢',k',¢") is a polar line or extended polar line. Moreover
by Lemma 123 we see that dim(V') =2 and MU(V', ¢, k', 0") = P(Z(F')).
Proposition 124 implies that in this case thus P(k) = MUV’ ¢, K, 0o') if
and only if k£ = Z(E').

Fourth case : (X', (Uy )arexr) is of the form P(K,I'; k')
Suppose P(k) = P(k',I'; k') under 8. After coordinatization of both Mo-
ufang sets, # induces a map from & to I’, also denoted by 3, and defined by
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B(v) = (B(v)), Vv € k. Without loss of generality we can assume 5(0) = (0),

B(00) = (00) and (1) = (1).

Let vy, v € k and w},w) € I' with §(v;) = w] and B(vs) = w). Then :
Blswasm(l) = s@ewansm(l)

(B(v1v2)?)

((B(v1)B(v2))?)

= ((wjwy)?)

Swh sy s (1)
= Blswnsmseasm(l)-

This implies that wjw)y € I'. As w| and wj where chosen arbitrarily and
k" is generated by I’ as a ring it follows that I’ = k'. But in this case
Pk U E) = P(E'), and hence k = [' by Proposition 124.

That the converse of the proposition holds in the cases (7).a, (4).b, (i7) and
(i4) is an easy consequence of Proposition 124.

Remains to check that whenever (X', (Uy )y exs) is an orthogonal Moufang
set of the form MO(V', ¢, k") with codim(Rad(f')) = 2 such that for some
constant ¢ € k' the set{c'¢'(w') |w' € Rad(f')} is a field isomorphic to k
then P(k) = (le (Ux’)z’GX’)'

Under the conditions we coordinatize MO(V', ¢, k') associated to the decom-
position V' = ¢’ |k @V ®e}k with labelling set Rf, ; = {(vg, v}) q(vp) + v =
0}. We have {c'¢'(vp) |v§ € Vi} = {dd(w')| w' € Rad(f")}. Denote this
set as k. By the assumptions we have that £” is a field such that & & k",
hence P(k) =2 P(k"). Let MO(V',c'¢', k') be the Moufang set proportional to
MO(V, q, k) with factor ¢’ coordinatized using the decomposition V' = ¢’ k'
DV] @ k' with ¢y = ¢’ ¢ 7" and ¢'; = €.

Consider a canonical coordinatization of P(k"). Remark that for any ¢'q'(vf),
vp is the unique vector wf of Vy such that '¢'(wj) = ¢'¢'(vg). Therefore we
can define the bijection « from P (k") to MO(V',c'¢, k') by :

a() = (vy,0)
afoo) = (00)
where for v' € k", vf is the unique vector of Vj such that '¢'(v)) = v'. Us-

ing Lemma 41 one easily checks that o defines a Moufang set isomorphism.
Hence MO(V', ¢, k') 2 MO(V',d¢, k') =2 P(k"). This shows that P(k) =
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P(k") = MOV, ¢, k). =

3.15.3 The isomorphism problem for orthogonal Mo-
ufang sets.

In this section we investigate possible isomorphisms between orthogonal Mo-
ufang sets and other Moufang sets mentioned in the list of section 3.14

Proposition 127 An orthogonal Moufang set MO(V,q, k) is isomorphic to
a classical or indifferent Moufang set (X', (Uy)wex:) if and only if one of
the following holds :

(i) (X', (Up)wex) is a projective Moufang set P(k') and one of the fol-
lowing subcases occurs :
(i.a) Z(K') # K, k' is a generalized quaternion algebra, dim(V) = 6
and k=2 Z(k'),
(i.b) dim(V) =3, Z(K') =k and k = F',
(i.c) dim(V) = 4, codim(Rad(f)) # 2, Z(k') = k' and k = k', where k
is the quadratic Galois extension of k determined by MO(V,q, k),
(i.d) codim(Rad(f)) = 2, there exists a constant ¢ such that the set
{cg(w)|w € Rad(f)} is a field isomorphic to k',

(ii) (X', (Uy)wex) is an orthogonal Moufang set MO(V', ¢’ k', c") and one
of the following subcases occurs :
(it.a) dim(V) = dim(V') =3, and k 2 ¥/,
(i3.b) dim(V) = 3, dim(V") = 4, codim(Rad(f') # 2 and k = k', where
k' is the quadratic Galois extension of k' determined by MO(V' ¢, k'),
(ii.c) dim(V') = 3, dim(V) = 4, codim(Rad(f) # 2 and k' = k, where
k is the quadratic Galois extension of k determined by MO(V,q, k),
(it.d) dim(V') = dim(V') = 4, codim(Rad(f)) # 2, codim(Rad(f")) #
2 and k = k', where k is the quadratic Galois extension of k deter-
mined by MO(V,q,k) and k' is the quadratic Galois extension of k'
determined by MOV’ ¢, k'),
(it.d) codim(Rad(f)) = 2, dim(V') = 3, there exists a constant ¢ € k
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such that the set {cq(w) |w € Rad(f)} is a subfield of k isomorphic to
(ii.e) codim(Rad(f)) = 2, dim(V') = 4, codim(Rad(f")) # 2 and
there exists a constant ¢ € k such that the set {cq(w) |w € Rad(f)}
is a field isomorphic to a quadratic Galois extension k' determined by
MOV ¢ k),

(ii.f) codim(Rad(f')) =2, dim(V') = 3, there ezists a constant ¢’ € k
such that the set {c'¢'(w') |w' € Rad(f")} is a subfield of k' isomorphic
to k,

(i1.9) codim(Rad(f")) =2, dim(V') = 4, codim(Rad(f)) # 2 and there
exists a constant ¢ € k' such that the set {c'¢'(w') |w" € Rad(f")} is
a field isomorphic to the quadratic Galois extension k determined by
MO(V,q, k),

(ii.h) codim(Rad(f)) = codim(Rad(f') = 2, § induces a bijection from
o from {q(w) |w € Rad(f)} to {¢'(w")| w' € Rad(f")}, there exist
constants ¢ € k, ¢, d € k' such that 1 € {cq(w) |[w € Rad(f)},
1 e {ddW) |w' € Rad(f")} and an isomorphism « from the field
generated by {cq(w) |w € Rad(f)} to the field generated by {c'q'(w")
|w' € Rad(f")} such that :

d'p(q(w)) = (c(q(w)))*, Yw € Rad(f).

(ii.i) MO(V, q, k) is not commutative and there exists a bijective semi-
linear transformation ¢ from V to V' and a constant ¢’ € k' such that :

B((x)) (p(2)), Vo € V with (x) € MO(V, g, k),
(flx,y)* = [(B(x),8y)), Y,y eV,
(g(x)) ¢(8(x)), Ve €V,

where f and f' are the forms associated to q and ¢,

(iii) (X', (Uy)wex: is a hermitian Moufang set of the form MH (V' ¢, k', c")
with dim(V') =2 and MO(V,q,k)) = P(Fiz(o)), £ M(V', ¢, K, 0'),

(iv) (X"(Uy)wex) is an extended polar line MUV’ ¢’ k', 0") defined over a
generalized quaternion algebra k' isomorphic to MO(V, q, k). If char(k) #
2, dim(V') =2 and one of the following subcases occurs :
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(iv.a) dim (V) =3, o' is the standard involution and k = Z(k'),
(iv.b) dim(V) = 4, o' is the standard involution and k = Z(K'), where
k is the quadratic Galois extension determined by MO(V,q, k),
(iv.c) dim(V') = 3, o' is not the standard involution and MO(V,q, k) is

isomorphic to the orthogonal Moufang set determined by M(V', ¢, k', c").

(v) X', (Uy)wex) is an indifferent Moufang set P(K',I'; k') and one of the
following subcases occurs :
(v.a) dim(V)=3 and k =1 =F,
(v.b) dim(V) = 4, codim(Rad(f')) # 2 and k = 1" = k', where k is the
quadratic Galois extension of k determined by MO(V, q, k),
(v.c) codim(Rad(f)) = 2, [ induces a bijection ¢ from {q(w) |w €
Rad(f)} tol', there exist constants c € k, ¢ € k' such that 1 € {cq(w)
|w € Rad(f)} and an isomorphism o from the field generated by {cq(w)

|w € Rad(f)} to k' such that :

proof :

First case : (X', (Uy)wex) is a projective Moufang set of the form P(k').
If Z(K') # k" we refer to Proposition 125. If Z(k') = k" we refer to Proposi-
tion 126.

Second case: (X', (Uy)wex) is a non commutative orthogonal Moufang set
of the form MOV’ ¢, k).

Remark that this implies that dim(V) > 5 and dim(V') > 5 and k #
or F3 by Lemma 116. Choose coordinatizations of both Moufang sets with
associated decompositions V = e_1k®Vperk and V' = €'k’ @ Ve k. and la-
belling sets Ro,1 = {(vo,v1) € Vo x klg(vo) +v1 = 0} and Ry, = {(vy,v}) € V§
xk|q' (vg) + v} = 0}. Let By and B} be ordered bases of V; and V. Without
loss of generality we can assume £((0,0)) = (0,0) and §((o0)) = (00). Using
the results of section 3.12.3 we can assume (0,1) € Ry, (0,1) € Ry, and
£((0,1)) = (0,1). As for any coordinate (vo,v1) € Ro1, v1 is completely
determined by vp, £ induces a bijection from V; to Vj also denoted by 5 and
defined by :

B(vo,v1) = (B(vo),v})
The element v{ will be denoted in the sequel by 5 (v,).
Expressing that £ is a Moufang set isomorphism implies that
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for (vg,v1), (wo,w1) € Ry :

v, v1) @ (wo, w1)

Vg + wy), BT (v +wy — f(vg, wp))

vo) + B(wo), B (v1) + B (w1) — f'(B(vo), B(wo))
B((vo, v1)) ® B((wo, w1)).

—~—
r\m QA
_ ===

This means that 5 defines an additive bijection from V; to Vj.

Our next claim is that # induces a semi-linear transformation from V4 to Vj.
We give different proofs depending on char (k).

1. First case : char(k) # 2.

Let (vg,v1) € Ro1 and X € k.

Using Lemma 107 we find that s(u,) Sworenz) € Z(Fizramow,er {(00),
(0,0)}). Namely for (wg,w1) € Ro1 we have :

8(1)0,1)1)8(1)0/\,1)1)\2) ('LU(], wl) = (UJOA727 UJ1A74).

Thus it follows that S(B(v0),8% (v1)) S(B(vo)),B%0* (v122)) € Z(FZ.SCTMO(V/’(I!’W) {(OO),
(0,0)}. Suppose B(vg) and B(veA) are linearly independent. As dim(V') >
we can choose an af, € Vj, such that a) & (8(vo), B(voA) ). Denote W} = (
ay, B(vg), B(voA) ) and W' = e\ k" ®@W] ®eik’. As ¢ is a non degenerate
quadratic form of Witt index 1 on W' we can consider the Moufang subset
MOW', ¢ k') of MO(V',q',k'). We find that s(zus),58%0(v1)) S(8(002),870* (v12))
€ Z(Fi-rTMO(W’,q’,k’) {(OO), (0, 0)}) But as dzm(Wé) Z 3and k 7é Fg,, Theo-
rem 1.29 in [24] implies that the restriction of s(a(s,),5%(w1)) S(8wen)50* w122))
on W' has a matrix representation with respect to the ordered base {e' ,,
B(vo), B(voN), af, €; } of the form :

N 0 0
0 I, 0
0 0 \N!

This yields for wj € Wy that :

(8(B(vo),8v0 (vl))S(B(vo)\),ﬁvo’\(v1>\2))) ((wp, ¢'(wp)))o

= B(vo) f'(w, B(vo)) (B (v1)) 2B (11 1?)
+8(vo ) (f'(B(vo), B(voN)) f'(B(vo), wp) (B (v1))
+F'(B(vo)), wp) (87 (v1)) 1) +wp (8% (v1)) 757N (01A?)

— r\/
= wWHA
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This means that for every wj € W \ (B(vo), B(voA)) :

(
B(vo) f'(w, B(vo)) (8 (v1)) 2B (01 1)
+B(voA) (f'(B(vo), B(vod)) f'(B(vo), wp) (B (v1)) =
J_rJ;’(ﬁ(voA) »wp) (B (v1)) ™)

And as f(vg), B(voA) are linearly independent this shows :

f'(wo, B(wo)) = 0, Vwg € Wy \ (B(vo), B(vo))

yielding that 8(vy) € Rad(f'|w'), a contradiction as f’ is not degenerate on
w'.

This shows that 3(vg) and S(vgA) are linearly dependent.

And in this way we find :

B(voA) = Bvo)N, X' € K'Y\ € k,vo € V.

As dim(Vy) > 3 we can use Lemma 54 to see that 3 defines a bijective semi-
linear transformation with an associated field isomorphism a such that :

B(voA) = B(vo) A, YA € k, vy € V).

2. Second case char(k) = 2.

Let (vo,v1) € Rop with S(vg) ¢ Rad(f') and A\ € k. Then we show that
ﬁ(’l)o)\) = B(’Ug)A’, AN EeFE.

By Lemma 107 we have :

S(vo,m)s(vg)\,vl)\z)(wOawl) = (w0A27w1)\4), V(wo,wl) S R0,17

and $(uo,01)S(wor1x?) € Z(Fizrmowar {(0,0),(00)}) and also s(a(we),7 (w1))

S(3uon) 300 win2) € Z(Fizrmo g n{(0,0), (00)}.

To simplify notations and calculations we reduce the situation to the case

where dim(V') = 5 to prove that if 5(vy) & Rad(f'), B(vo) and 3(veA) are lin-

early dependent. Indeed, due to the conditions on MO(V, ¢, k) and 5(vg) we

can choose a subspace W C Vj containing 5(vg) and 3(voA) sucht that 3(v)

¢ Rad(f'|w;) and such that the Moufang subset MO(W’,¢', k') is not com-

mutative with W’ = e’ | k' @W ©ei k" and dim(W') = 5. As 55,0500 (1112))

€ Z(FiSCTMO(Vr’q ,k/){(O 0) ( )} we also find that S (B(voN),80* (v1A2)) € Z(FZ.TTMo(Wr rk/){(o 0) ( )}
Hence we are reduced to the case where dim(V") = 5.
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Suppose [(vp) and [(voA) are linearly independent.

We give matrix representations of s(s(v,),5% (v1))S(8(vo0),8%0* (v122)) With respect
to certain bases.

Suppose firstly that 3(voA) € Rad(f").

Then we choose an ordered base Bj) = {e}", €}, eh®} such that e}' = 5(vo)
and e)® = B(vp)). Using Lemma 106 one we find that with respect to the
ordered base {€_;, By, €|}, S(g(uon),5%07(n122)) has a matrix representation of
the form :

N 0O 00
0 12 00
0 01 00
0 00 10
0 00 0 XNt

Consider an arbitrary element ¢ of Fizpamor,g1{(0,0),(00)}. Then this
has a general matrix representation with respect to the ordered base {e’ ;, By,
e} } of the form :

W 0 0 00
0 ¢ h 00
0 g, h, 0 0
0 g5 hy 10
00 0 0 p "

Expressing that ¢ and s(s(,),8%0(01)) S(8(wer),5%0 vy 22)) cOmmute translates in
the following set of equations :

g’ = 0,2<i<3.

Using Lemma 106 one can choose a t such that for some ¢, 2 <1 < n — 2,
g; # 0. Then the above equations show 2’ = 0.
Hence $(5(v),6% (11)) S(5(vo0),5%0 (1 12)) NS matrix representation of the form :

N 0 0
0 I, 0
0 0 X\t

Suppose B(vpA) € Rad(f).
If f'(B(vo), B(voX) # 0 we let Bl = {eh", e}?, €,*} be an ordered base of V{
with eh' = B(vo), eh? = B(vo)) and €)” the vector which spans Rad(f").
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By Lemma 106 one checks that s(sw),%0 (1)) S(5(s0),8%0 (01 22)) 1as a matrix
representation with respect to the ordered base {e’;, B}, €} } of the form :

A0 0 00
0 2, z, 0 0
0 zy 2, 00
0 0 0 10
00 0 0 (V)

If #'(B(vo), B(voA) = 0 we choose the base By = { €)', e}?, b} of V{ such
that €, = B(vy) and (e}’ = Rad(f'). Remark that by choice of e)°, e}
€ B(vo)t N = (B(voA))*t = { B(wo), B(vo)). Using Lemma 106 we find as
matrix representation of s(s(wg),5% (1)) S(awen),5v0(w122)) With respect to the
ordered base {¢' |, By, €}

XN 0O 000
0 1 000
0 2, 100
0 2, 0 1 0
00 00 (Nt

We set as general matrix representation of an element ¢ of Fizparom: g k)
{(0,0), (c0)} with respect to the ordered bases {e’,, Bj,¢€}} the following
form :

W 0 0 ... 0
0 ¢, B, 0 0
0 g, B, 0 0O
0 gy hy 1 0
00 0 0 pt.

Let f'(B(vo), B(vo)) = 0.
Translating the fact that £ and s(s(ug),6%0 (01)) S(5(0),8700* (01 A2)) COMmMute yields
the following set of equations :

P /
g1ty = Iy
ror

1 = 0
P 1
J1Ts = Tg

hlzy = 0.
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As a next step we calculate ¢ and b} for a special case. Let b and c
E V with f(eo .¢p) =0, and f(e0 7b’) # 0 (remark that this is possible as
0" € Rad(f')). Write b, = E elbJ. Using Lemma 106 we calculate :

sy Serc(en) = Uof(eg, bp)by ' + e
3
= Zeojbojf(eo Jbo)by ! e
j=1
Thus in partlcular for v e e, 91 = (1 + b fleg, b ) 7Y and gh =
b2 f(est, )b, and the equation from above becomes :

I1+I(b f(eOa )bl_l) = 7.

Equivalently :

Zhby = 0.
As f'(ept bh) = f'(eh’, E?:z e’ b’ ) we can choose bj," arbitrarily in the above
formula. Hence z{ = 0. In a completely similar way one shows a% = 0. Thus
in this case s(5(u5),6%(01)) S(5(vo)),5v00 (01 12)) NS @ matrix representation of the
form (with respect to the base B = { ¢ ;, B, €}}) :

N 0 0
0 I, 0
0 0 XNt

Suppose finally that f'(8(vo), B(voA)) # 0. Expressing in this case that
S(B(v0),80(11)) S(B(uoN),3v0 (v 22)) COMmMutes with an arbitrary element ¢ of Fixyo(v,q,k)
{(0,0), (00)} with matrix representation with respect to the ordered base

{6’_1, B(’Ja ell} :

w 0 0 00
0 ¢, By, 00
0 g5, Ry, 0 0
0 ¢y Ay 1 0
0 0 0 0 g™
yields the following set of equations :
g5y + hyry = gy (3.12)

g5y + hyry = hi. (3.13)
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We calculate in some special cases g and hjy. Let ¢, € VI with f'(e}', ¢h) = 0
and f'(eh’ ¢h) = 0 and b = E] L e’b. Choose ¢, b’ € k with (b, b)),
(co,c1) € Ry,

Then we find :

3
1 2,71 —1 1
swhSeren(es) = > et by fleh eh”)b b + €
=1
3
2 1 71 2
sohaSenen(eh’) = > e b Fleh’eb? )b b + ey
j=1

Consequently we have in this case :

fi = 00 f (e e

T
But then equations (3.12) and (3.13) become :
b62b63f’( )b’71 o b/lbIQf(

)brfl ’ brlb/2f( 6 6
D = B

)bl—l I_I_bllb/?f(

7 7

bl

11 r rl r
€ s € € 5 €
/ l 11 l
€ »€o € »€o

After simplification :

b12 l+blll _ b12
Ty - 0
ety =

As bl was chosen arbitrarily, these equations should hold for all )" and b}’
in k. This is only possible if 24, = 25 = 0 and 2} = 2}, = L.

This means that also in this case s((g),5v (1)) S((oN),5%0* vy a2)) has @ matrix
representation of the form :

N0 0
0 I, 0
0 0 M\t

In any case we thus find that for every (vg,vy) € Rp,

2
S(8(10),8%0 (11)) S(B(vo)),8*0 (w1 A2)) (V0 V1) = (Vo A, V) A).
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Using Lemma 106 and projecting on the first coordinate gives that this is
equivalent to :

(o) (v, Blen)) (3" (11)) 5" (w1 )?)
(00 £ (B(tn), B0 ) (B(un). o) (57 (1))
(B, 16)(3" () ) 4 057 (00)) 75 oY

As dim(Vy) > 3, (B(vo), B(voM)) # Vg and this implies that for every v} ¢
(B(vo) B(woA) :
f'(B(vo), v) = 0.

or equivalently 3(vg) € Rad(f'), contradicting the assumption on 3(vg). This
proves (3(vp) and (vgA) are linearly dependent.
So far we thus showed the following property : if for wy € Vo, B(wo) & Rad(f")
then :

BwoX) = B(wh)X, A € K'Y\ € K.

Suppose wg € Vo with 3(wg) € Rad(f') and A € k. Then we choose a uy € V;
such that §(ug) & Rad(f").
Let S(upA) = B(ug)N'. We have S(wo + ug) ¢ Rad(f").

Hence :

5((’(1}0 + U0)>\) = ﬁ(’wo + U0)>\”, >\” S k’
5(’(1}0)\) + ﬁ(U[))\)
ﬁ(’ng) + B(’Ujo))\’.

If B(wo) € Rad(f'), B(wo) = B((weA)A™!) implies B(wo) ¢ Rad(f') a con-
tradiction. Hence 3(woA) € Rad(f").
Then the equation from above implies :

B(woX) = B(wg)N'.

We find in all cases for A € k and vy € Vj :

B(vod) = Bvo) N, \' € K.

Thus 3 defines in all cases an additive map from Vj to V preserving vector
lines. As dim(Vp) > 3 Lemma 54 implies that § is a semi-linear transforma-
tion from Vj to Vy with an associated isomorphism a.
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This shows that in all cases # defines a semi-linear transformation from Vj
to V with an associated field isomorphism o.
Let (vo,v1) € Rp1. Then the equation :

Bson(ve,v1) = Blvovy,vrt)
= (B(vo)(v")", 8" (v1))
= (B(vo)(B™(v1)) ™, (8™ (v1)) )
shows that :
B (vy) = vf.
This implies that 8% (v;) is independent of .
Define the semi-linear transformation ¢ from V' to V' in the following way.
fzx=e_1x_1+x0+ek eV weset
p(z) = €12 + B(xo) + €27
By the definition of ¢ we have :

B((x)) = (#(x)), ¥(z) € MOV, q, k).

We check that ¢ preserves the forms f and q.
Let (’Uo,’Ul), (’LUO,’LUl) € Rg’l.
Then B3(vg,v1) = (B(vo), v§) implies :

q'(B(vo)) = (a(v0))®, Yvo € Vp.
From :

(B(vo + wo), (v1 + wy — f(vo, wp))™)
= (B(vo) + B(wo), v +wi — f'(B(vo), B(wy))
= B((vo,v1)) ® B((wo, wr))

B((vo, v1) ® (wo,wy))

we deduce :

(f (vo, wo))* = f'(B(v0), B(wo)), Yvo, wo € Vo.

Let z=e_1x_1+xo+em,y=e1y1+y +ey €V.
We have :

qg(x) = x_1z1+ q(x0)
flz,y) = 2oy +xy—1 + f(zo, yo)-
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Applying a to this formulas yields :

(a(@))* = @27 + (a(w0))*
= 22,77 + ¢(B(m))
= q(p(7)

and :

(f(:r, y))a = 2%y + 27y + (f(%, yo))a
= 2%y + 27y + F(B(20), B(yo))
= fllp(x), ¢(y)).

This proves ¢ meets the conditions of the theorem.

Throughout the proof we assumed (0,1) € Ry1, (0,1) € Ry, and 5((0,1))
= (0,1). In general this is not always the case and we have to use a pos-
sible multiplication of the forms. Namely suppose ((vg,v1) = (vg,v]) for
(vo,v1) € Ry and (vp,v;) € Ry ;. Then we can consider the forms vy tq and

v’lflq’. Using proportional coordinate systems for the sets MO(V, vy 'q, k)
and MO(V’ v, '¢' k') as explained in section 3.12.3 we see that the isomor-

phism P10 Boc,o 1 satisfies 3((0,0)) = (0,0), B((00)) = (o0) and B((0,1))
=(0,1).

Therefore we find a bijective semi-linear transformation ¢ such that :

porrofopy,-((x) = (p(x)), V(z) € MO(V,q, k)

(a(2))* = i} ' (pl2)), Vo €V

(f@y)™ = ofo (@), e(y)), Yo,y € V.

As one easily checks that ¢,—1 0 o p,-1((z)) = B((r)) and ¢ meets the

conditions of the theorem.

Conversely let ¢ be a bijective semi-linear transformation meeting the re-
quirements of the Proposition. Then Lemma 102 shows that § defined by :

B(e)(p(2)), (x) € MOV, ¢, k)
determines a Moufang set isomorphism form MO(V,q, k) to MO(V' ¢, k).

Third case : dim(V) < 4, codim(Rad(f)) # 2 and (X', (Uy)yex’) is an
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orthogonal Moufang set.

If dim(V') > 5 the proof of the second case implies that S~ induces a semi-
linear transformation from V' to V. It follows that then dim(V) = dim(V"),
a contradiction as dim(V') < 4 by assumption. Hence we have dim(V") < 4.
Four cases occur :

1. dim(V) = dim(V') = 3.

Lemma 111 implies MO(V, ¢, k) = P(k) and MO(V',¢', k") = P(k'). Hence
by Proposition 124 we see that MO(V, ¢, k) 2 MO(V', ¢, k') if and only if
=N

2. d&im(V) =3, dim(V') = 4 and codim(Rad(f")) # 2.

Using Lemmas 111 and 112 we see that MO(V, ¢, k) =Z P(k) and MO(V', ¢, k')
= P(k"), where k" is the quadratic Galois extension of k' determined by &'.
Hence by Proposition 124 we have that MO(V,q, k) 2 MO(V', ¢, k') if and
only if k 2 £".

3. dim(V') =3, dim(V') = 4 and codim(Rad(f")) = 2.

We refer to the proof of the sixth case.

4. dim(V) =4 and dim(V') = 3.

The situation is similar as when dim(V') = 3 and dim(V") = 4.

5. dim(V) = dim(V') = 4 and codim(Rad(f)) = 2.

By Lemma 120 we then know that MO(V,q, k) is commutative. Hence
MOV’ ¢, k') is commutative and codim(Rad(f')) = 2 by the same Lemma.
We refer to the proof of the sixth case.

6. dim(V) = dim(V') = 4 and codim(Rad(f)) # 2. By Lemma 120 we have
codim(Rad(f")) # 2. Lemma 112 implies that MO(V, ¢, k) = P(k), where k
is the quadratic Galois extension of k determined by MO(V, ¢, k) and sim-
ilarly MO(V',¢', k") = P (k') where k' is the quadratic Galois extension of
E' determined by MO(V', ¢, k"). Proposition 124 shows that in this case
MOV, q, k) = MO(V', ¢, k') if and only if k = &'.

Fourth case: M(V',¢',k',d") is of type 4.

Denote the isomorphism from MO(V, q,k) to M(V' ¢, k', ¢") by 5. With-
out loss of generality we can assume that ¢’ is a (o, —1)-quadratic form and
1 € Tr(o') (cfr. see Lemma 92 and section 3.12.2). Choose decompositions
V=e1k@dVyDekand V' =€ k' &V @ e}k’ with associated coordinati-
zations over the labelling sets Ro; = {(vo,v1) € Vo % k|g(vo) + v = 0} and
Ry, = {(vg,v}) € Vg x k' |¢'(vh) + vy = 0}. Remark that the assumptions on
q yield Ry ;N {0} xk = {(0,2")[2" € Tr(¢')} and (0,1) € Ry .

As MO(V,q,k) has commutative root groups the same should hold for
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MV ¢, K, o"). Lemma 109 shows that f"vo, =0 and R] C Fiz(d').
Suppose that if k' is a generalized quaternion algebra, ¢’ is not the stan-
dard involution. Then Lemma 47 implies that &' is generated as a ring by
Tr(c'). Let o' € Tr(c'). By assumption there exists a (vp,v1) € Rp; with
B((vo,v1)) = (0,v"). Let X € k. Set B(vo\, v1A?) = (w),w}). By Lemma
107 we have s(yg,) Sworwinz) € Z(Fixrpmow,grni(0,0),(00)}). Hence after
applying 8 we get :

S(O,v’)s(w(’),w’l) (S Z(FiITM(V/’qr’k/’Jr){(O, 0)7 (OO)})

Using the matrix representations of section 3.13 this means :

0 0 0 0w A0 0
0 I, O 0 I, O = 0 Igy O
o100 w00 0 0 X,
Hence v'w! ™" = X, and v'"'w! = \,.
By assumption we have :
A0 0
0 Ligy 0| € Z(Fizramuw g w.0{(20),(0,0)}).
0 0 AL

This means that in particular for every §' € Tr(c') the automorphism with
matrix representation with respect to the ordered base {¢";, B, €]} :

.3 0 0
0 Ly 0
0 0 [0\

should act as the identity on MU (V' ¢, k', 0'). As Tr(c") generates k' as a
ring we find that [0, \]] = [0, \y] = 2z with z; € Z(F') with 2,7 z; = 1.
This means that there exists for every 0" € Tr(o') a zp € Z(k') such that :

O'N = N6z
Let 0" ¢ Z(k'). Then :

(T+0)N, = 1 +0)N 2140
= N + N0z,
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shows :
Zu4ey + 020110y = 14029

and thus :
Zé/ == Z£1+9;) = ].

This means \] € Z(k'). In a similar one shows that X, € Z (k).
Set z' = A} then we thus find :

B(vo, v1A?) = (wp,v'2'), 2" € Z(K) (3.14)

By assumption there exists a (ep,e1) € Rp1 such that 3((ep,e1)) =(0,1).
Call the Moufang subset of MO(V,q,k) determined by the set {(eop1 +
vopte, €14 + vips + papaf(€o, yo)) i € k1 < i < 2} as Y. Formula
(3.14) yields that for every (ug,u)) € B(Y), u} can be written as u}j + v'ub,
with pf € Z(k'), 1 < ¢ < 2. In particular 3(s(eye,)(vo,v1)) € B(Y') and thus
s0o1(0,0') = (0,0 ") € B(Y). But then v'~" can be written as v/} + v'v}, for
Ve Z(k),1<i<2.
Equivalently :
Vvl 4+ o' +1=0.

As o' was chosen arbitrarily we conclude that every element of Tr(c’) is so-
lution of a quadratic equation with coéfficients in Z(%').
Lemma 52 shows that £’ is a generalized quaternion algebra.
But then we find by Lemma, 47 that in &’ is in any case a generalized quater-
nion algebra.
Let char(k) # 2. As MO(V, ¢, k) has commutative root groups Lemma 104
implies that dim(V') = 2. Two cases occur according if ¢’ is the standard
involution in &’ or not.
If o' is the standard involution in &’ Lemma 105 implies that MU (V', ¢, k', o")
~ P(Z(k'")). Therefore Proposition 125 implies that or dim(V) = 3 and
k= Z(K) or dim(V) = 4 and k = Z(K') where k is the quadratic Galois
extension of £ determined by MO(V, g, k).
If o' is not the standard involution Lemma 115 shows that MU (V', ¢, k', ")
is isomorphic to a non commutative orthogonal Moufang set MO(V", ¢", Z(E'))
with dim(V") = 5. In this case we thus find that MO(V, ¢, k) should be iso-
morphic to MO(V",q", Z(K')).

Fifth case : (X', (Uy)wex:) is an indifferent Moufang set of the form
Pk, L k).

Choose a coordinate system for MO(V, ¢, k) with associated decomposition
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V =e_1k ®Vy @eik and labelling set Ry1 = {(vo,v1) € Vo X Elg(vy) + v1 =
0} and a coordinate system for P(k,l;k). Let By be an ordered base of
Vo. Without loss of generality we can assume 3((0,0)) = (0) and 3((00))
= (00). As P(K',I'; k') is a commutative Moufang set the same should hold
for MO(V, q, k).

Hence Lemma 120 implies that dim(V) = 3, dim(V') = 4 or codim(Rad(f)) =
2.

1. dim(V) = 3.

Lemma 111 shows that MO(V, ¢, k) = P(k). By Proposition 126 we see that
MOV, q, k) = P(k',I'; k') if and only if k = 1" = k.

2.dim(V) = 4 and codim(Rad(f)) # 2.

Lemma 112 shows MO(V, ¢, k) =& P(k), where k is a quadratic Galois exten-
sion of k determined by MO(V, ¢, k). Proposition 126 yields MO(V, ¢, k) =
P(K',I';K') if and only if & 21" = k.

3. codim(Rad(f)) = 2.

Remark that in this case f|y, = 0 and Rad(f) = Vj. Let eg € V with g(eo)
# 0. Set ¢ = g(ep) L. Denote | = {cq(w) |w € Rad(f)} = {cq(vo) |vo € Vo}.
We check that [ meets the requirements of Proposition 84.

(a) If cq(vo) € I we have :

™ (q(v0))™" = cq(vo(q(vo) "¢ ™)) €1

and hence [ = [7L.
(b) By construction we have 1 € [.
(c) If cq(vy) € l and X € k we find :

(cq(vo))A? = cq(vo) €1

and thus [ is a vector space over k2.

Denote the field generated by [ in £ as h. But then Proposition 84 shows
that [ determines a Moufang subset of A namely the indifferent Moufang set
P(l; h).

We show that P(I; h) is isomorphic to MO(V, q, k).

Choose a coordinatization of P(l;h) and let v be the bijection from P(I;h)
to MO(V, q, k) defined by :

Y(cq(vo)) = (vo,v1)
Y(00) = (o0).
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Remark that as f|y, = 0, for (vg,v1) € Ry, vp is completely determined by
v1. Therefore we see that v is well defined.

We use Lemma 41 to show that v defines a Moufang set isomorphism. It will
be enough if we prove that the mappings .y and () defined by :

Yooy (u((00); (0), (2))) = you((co0);(0),(x)) oy !, z €l
Yoy (w((0); (00), (2))) = you((0);(0),(x)) oy, z €l
define bijections from Ujg) to Ug,g) and from U to Us).
Let cq(vo) € I with g(vp) = vy then we find for (wp,w;) € Ry :

yu((00), (0), (cq(vo))y ™ ((wo, wy)) Yu((00); (0), (cq(vo))((cq(wo)))
v((eq(vo + wo)))
(vo + wo, v1 + w1)

u((00);(0,0), (vo, v1))((wo, wr)).

Moreover as (wp, wy) was chosen arbitrarily and yu((co); (0), (cq(vo))) ((00))
= (00) we see that :

Vo) (u((00); (0), (eq(vo)))) = u((20); (0,0), v((cq(vo))))-
Thus () bijection from U to Uis). Remark that for P(l'k), 51y Utoso)
s(ﬁ = Ulp) and similarly for MO(V,q, k), Scp,ey) U(Oo) e(60 oy = = Uop). As
Y((1)) = (ep,q(vp)) it suffices to show that vy o s1)Y™" = S(ege,) In order to

prove that -y« defines a bijection from Uy to Uy ).
We find for (vg,v1) € Ro :
sy H((vo,v1)) = vsy((ca(vo)))
(e a(vo) ™))
(’U()’Ul ¢ 170 2Ul_l)
(vovy 'aleo), aleo)*vr ")

= 3(60,61)((1)07 'Ul))-

and :

vsayy H((00)) = (0,0)
8(60y61)((oo))
(00)
= S(eo,e)((0,0)).

Y57~ 1((0,0))
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This proves 70 $(1y 0y ™" = §(¢y ;) and y defines a Moufang set isomorphism.
As Vo = Rad(f) we find {q(vo) |vo € Vo} = {¢(w) |w € Rad(f)}. Moreover
as for any vy € Vg, vg is completely determined by ¢(vp), 8 induces a bijection
¢ from {q(w) |w € Rad(f)} to " if we set :

©(q(vo)) = B(vo,v1), Yvg € Rad(f) = V.

_ Proposition 131 implies that MO(V, g, k) = P(I; h) is isomorphic to P(
E'U'; k') if and only if there exists a constant ¢ € £’ and a field isomorphism
a h to k' such that :

c'Bv((cq(vo))) = (cq(vo))*
or equivalently :
(¢(g(v0))) = (cq(wo)))*.

This closes the fifth case.

Sixth case : codim(Rad(f)) = 2 and (X', (Uy )wex) is an orthogonal Mo-
ufang set MOV’ ¢, k).

Choose a coordinatization of MO(V, ¢, k) associated to the decomposition V'
=e_1k ®Vy @ ek with labelling set Ry, = {(vo,v1) € Vo x k|q(vo) +v1 = 0}.
Choose as in proof of the fifth case a constant ¢ € k, such that P(l,h) is
isomorphic under vy to MO(V, q, k) where [ = {cq(vo) |vo € Vo} and h is the
field generated by [. As in this case MO(V, g, k) is commutative Lemma 120
shows that dim(V") = 2, dim(V") = 3 or codim(Def(f")) = 2.

We distinguish three cases :

1. dim(V') = 3.

Using Lemmas 111 and 131 we see that in this case MO(V, ¢, k) 2 MO(V', ¢, k')
if and only if h =1 = k'

2. dim(V") = 4 and codim(Rad(f")) # 2.

Using Lemmas 112 and 131 we see that MO(V, ¢, k) £ MO(V', ¢, k') if and
only if h = | 2 k" where k' is the quadratic Galois extension of &’ determined
by MO(V', ¢, k).

3. codim(Rad(f'")) = 2.

Choose a coordinatization of MO(V', ¢, k") associated to the decomposi-
tion V' = ¢ k' @& Vj @ejk" with labelling set Ry, = {(vp,vy) € Vg x &'
|¢'(v5) 4 vy = 0}

In view of the conditions on f and f' we have Rad(f) = V and Rad(f') = Vj.
This means that for vy € Vj, vy is completely determined by ¢(vp). Similarly
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for vy € Vi, vy is completely determined by ¢'(vj)). Therefore 3 induces a bi-
jection from {q(w) |w € Rad(f)} = {q(vo) |vo € Vi } to {¢'(w') |w'" € Rad(f")}
={¢'(v})) vy € Vy} is we set :

¢(g(vo)) = (B((vo, 4(v0))))1, Yoo € Rad(f).

Similarly as for MO(V, q, k) we know that there exists a indifferent Moufang
set P(I'; h') and an isomorphism «' from P(I'; b') to MO(V"', ¢, k') such that
I'={c¢(w'") |w" € Rad(f")} and h' is the field generated by I’. Remember
that +' is given by :
7((¢q' () = (vp, 4 (vg))
7((00)) = ((00))-

But then v/~ 3  defines a Moufang set isomorphism from P(I; k) to P(I'; h').
Proposition 131 shows that MO(V,q,k) = P(l;h) is thus isomorphic to
MO(V' ¢ k') =2 P(I'; ') if and only if there exists an isomorphism from h
to A" and a constant a’ € h' such that

7' Bv(ca(vo)) = (@' (cq(w0)*)), Yoo € Rad(f) =V
The is clearly equivalent to :
(¢(a(vo))) = a'(cq(vo))™, Voo € Rad(f) = Vp,
or if we set '’ = d' ;
d'(p(a(vo))) = (ca(vo))™, Yo € Rad(f).

This closes the sixth case.

3.15.4 The isomorphism problem for hermitian Mo-
ufang sets.

In this section we will investigate the possible isomorphisms between a her-
mitian Moufang set and the other Moufang sets in the list of section 3.14.
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Proposition 128 A hermitian Moufang set MH(V,q,k, o) with associated
form f is isomorphic under 8 to a classical or indifferent Moufang set
(X', (Up)wrexr) if and only if one of the following holds :

(i) (X', (Uy)wexr) is a projective Moufang set of the form P(k'"), dim(V') =
2 and Fiz(o) 2 ¥,

(ii) (X', (Uy)wrexr) s an orthogonal Moufang set MO(V' ¢, k"), dim(V') =
2 and P(Fiz(o')) 2 MOV', ¢, k'),

(i) (X', (Uy)wex) is a hermitian Moufang set M(H(V',q',K',0")) and one
of the following subcases occurs:
(it.a) dim(V) = dim(V') = 2 and Fiz(o) = Fiz(d'),
(i1.0) dim(V) = dim(V') = 3, Fiz(o) & Fiz(o') and MH(V,q,k,0)
~ MHI(VI7qI’kI7O_I),
(ii.c) dim(V') > 3 and § induces a bijective semi-linear transformation
from V' to V' preserving the forms i.e. there exists a collineation @
(with associated field isomorphism «) from V to V' and a constant
c' € Fix(a') such that :

B(x) = (o(x)), V(z) € M(H(V,q,k,0))
c(f(x,y)* = fe(), o)), Yo,y eV
clg(@)* = d'(e(x)), Vo €V,

(iv) (X', (Uy)wex) is a unitary Moufang set MU(V',q', k', ¢") defined over
a quaternion algebra k' with standard involution o', dim(V') = 2 and

MH(V,q,k,0) = Fiz(o) 2 Z(K) = MUV', ¢, K, o").

(v) (X', (Uy)wex) is a unitary Moufang set MU V', ¢’ k', ") with dim (V")
3, k' is a generalized quaternion algebra with standard involution o’
which determines a hermitian Moufang set MH(V | q, k, ) with dim (V')
=4 and isomorphic to MH(V,q,k, o).

(vi) (X', (Uy)wrexr) is an indifferent Moufang set P(k',I'; k'), dim(V) = 2
and Fiz(o) 21" =F,

proof :
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First case :(X', (Uy)wex) is a projective Moufang set P(k').
We refer to Proposition 125.

Second case : (X', (Uy)wex') is an orthogonal Moufang set MO(V', ¢, k).
We refer to Proposition 127.

Third case : (X', (Uy)wexr) is a hermitian Moufang set MH(V', ¢, k', o).

Using Lemma 92 and section 3.12.2 we can assume ¢ is a (o, —1)-quadratic
and ¢’ is a (o', —1)- quadratic form. We have T'r(0) = Fiz(o) and Tr(c)
= Fiz(o'). Choose coordinatizations of both Moufang sets associated to the
decompositions V = e 1k ® Vo @ erk and V' = €' k' @ V) @ e} k' with la-
belling sets Roy = {(vo,v1) € Vo X k|g(vo) +v1 = 0} and Rf,; = {(vf,v]) €
Vo % kl¢'(vy) + v} = 0}. Without loss of generality we can assume that
£((0,0)) = (0,0) and S((c0)) = (00). Let g and f be the forms on V' such
that ¢(z) = g(z,z) +ky—1, Vo € V and q(z + y) = q(z) + q(y) + f(z,v),
Vr,y € k. Similarly ¢’ and f’ denote the forms on V' such that ¢'(z')
_ 91(5617501)7 Ve € V' and ql(xl +yl) — ql(xl) _I_ql(y/) +f'(x',y'), v xl’ yl
€ V'. By the proof of Lemma 104 we have for M H(V, q,k, o) that Z(U()) =
{ u((00);(0,0),(0,%))| t € Fiz(o)} and similarly for MH(V',¢',k',0") that
Z(Uisy) = { u((00);(0,0),(0,t) |t € Fiz(o')}. As 3 induces an isomorphism
between root groups and Su((c0); (0,0), (0,¢))37! = u((c0); (0,0),3((0,)))
we find that 8{(0,¢)|t € Fiz(o)} = {(0,t')|t' € Fiz(c')}. This means that 3
induces a bijection (also denoted by 3) from Fiz(c) to Fiz(c') defined by :

B((0,t)) = (0,8(t)), Vt € Fiz(o) (3.15)

Upon a possible multiplication of ¢’ with a certain constant we can thus
also assume that 5((0,1)) = (0,1). Denote Y = { (0,¢)|t € Fiz(o)} and
Y’ = {(0,¢) | € Fiz(c')}. Lemma 118 implies that ¥ U{(co0)} and Y’
U{(00)} define Moufang subsets of £ and &' which are isomorphic to Fiz(o)
and Fiz(o'). In view of the isomorphism from P(Fiz(c)) to Y and from
P(Fiz(c')) to Y’ Proposition 124 implies that the map § from Y to Y’ de-
fines a field isomorphism from Fiz(o) to Fiz(o').

Using property (3.15) one shows that § is independent of the first coordi-
nate i.e. if (vg,v1) € Ro; and (vg,01) € Ry with S(vo,v1) = (vp,v]) then
B(vo, 1) = (v, v'1).-

Namely if (vp,v1) and (vo,01) € Ry, then (vg,v1) © (v, 1) = (0,¢) for
some t € Fiz(o). Hence B((vo,v1) © (vo,v1)) = (0,t') ,t' € Fiz(o'), and
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B(vg,01) = (vg,v)) ®(0,¢") = (vy,v] + t'). This implies that § induces a
bijection from V; to Vj (which we also denote by ) defined by :

(B(vo,v1))o = B(v0), Y(vo,v1) € Ry 1.

To simplify the calculations we introduce following notation.
If (’Ug,vl) € RO,I we set :

ﬂ(“oy Ul) = (ﬂ(“o),ﬁvo(vl)),

where the superscript stresses a possible dependence on vy.
Remark that 3(t) = 3°(t) Vt € Fiz(o).
If t € Fiz(o)) we define the transformation m; by :

My = 5(0,t)5(0,1)-

Note that the action of m; is given by :

my(oo) = (o0)
mi(vo,v1) = (vot,vit”), V(vg,v1) € Ro1.

We show the following property :
For every vy # 0 there exists at least one &,, ¢ Fiz(o) with

B(vosv,) = B(v0)&,, &y & Fix(a"). (3.16)

For vy # 0 € Vy we choose a v; € k with (vg,v1) € Rp; and consider
s(,1)(vo, v1) = (vovy ', v1"). Sending this equation over to MH (v, ¢, k', o)
via § implies :

Blvovy ™) = B(vo) (B (v1)) ™"
As the form ¢ is anisotropic on Vj, vy is not contained in Fiz(s), and as
B{(0,t)|t € Fiz(o)} = {(0,t")|t' € Fiz(o')} it follows that 3" (vy) & Fiz(o').
This means we can set &,, = v; ' and (3.16) holds.
As every s € k can be written as a + §,,b, a,b € Fiz(o) we calculate :

(B((vos,s7sv)))o = (B(ma((vo,v1))) & mu((v0€us» Eryue1)))o
(ma@B((v0, v1)))o + (MaeyB((10)Eh,, (€1,)7 0o)))o
B(vo)(B(a) + &,B(b))
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where we used the fact that 3(voly,,) = B(vo) &, and B(my((wo,wr))) =

(B(wo)B(t), B (w1)(B(t))?), ¥V (wo,w1) € Roa, Vt € Fiz(s). Thus we find
forvg € Vpand A € k :

B(voA) = B(vo) Ny (3.17)

where the subscript vy denotes a possible dependence on vg. By symmetrical
arguments we find for X' € &' and v} € Vj that :

B Hwp\) = B (vg) Ay, (3.18)

where the subscript v; denotes a possible dependence on vy. We distinguish
two cases :

1. First case : dim(Vp) = 1.

If in this case dim(Vy) > 2, formula (3.17) and Lemma 54 imply that (3
defines a semi-linear transformation from Vj to Vj a contradiction. Hence
dim(Vy) = 1. And thus we find that for A € k, vy € Vj :

B(vo) = 5(”0))‘2;0

where \ might depend on vp.
2. Second case : dim(Vp) = 2.
In this case formula (4) and Lemma 54 imply that 57! induces a semi-linear
transformation from V to V; with an associated field isomorphism a™'.
Hence § induces a semi-linear transformation of V4 to V{ with associated
field isomorphism «a.
The relation :

s, (vo, v1) = (vovy 't, tuy 't)

gives after applying 3 :

B(vo)B™(v1)'B(t) = Blvo)(vy")*t™
gret oty = BB (v1) ()

As t* = B(t), Vt € Fiz(o) the first of these equations implies that :
B (v1) =of,

proving that § is independent from its second coordinate. Therefore we can
drop the superscript vg in §°(v;) and simply write §(v;) instead of 3% (vy).
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Let (vo,v1), (wo, w1) € Ry then the equation :

B(vo,v1) ® Blwo, w1) = (B(vo+ wo), Blvr +wi — f(vo, wo))
= (B(vo) + B(wo), (v1 + w1 — f(vo, wo))")
= (B(vo) + B(wo), B(v1) + B(wr) — f'(B(vo), B(wo)))

yields :
f(vo,wo)® = f'(B(vo), B(wo)), Yo, wo € Vp.

As (vo, —g(wo,0))) € Ro1 and (B(vo), —g'(B(vo, B(w0)))) € Ry, we have :
9'(B(vo), B(wo)) = (9(vo, 9(v0)))* + kv _1, Yoo € V.

Consider vy, wy € Vp such that f(vy, wp) # 0 (such a pair of vectors always
exists as Rad(f) = 0). Then we find for every A € k :

(f(voX, wo))™ = f(B(vo)), B(wo)).

Yielding : ,
X7 (£ (o, wo))™ = (A)* (B (vo), B(wo))-

This shows :
N =\ Y\ € k.

Let (e_ix_1 + 29 + e121) € MH(V,q,0,k) ie.
—z7 21 + q(xg) = 0.
Applying « to this equation gives :
22728 + ¢/(B(x0)) = 0. (3.19)
Define the semi-linear transformation ¢ from Vg to Vg by :
ole 1z 1+ xo+exy) =€ 2% + B(xg) + €}, x_1,21 € k5 € V}.

Then equation (3.19) implies that ¢ induces a bijection from the points of
MH(V,q,k,o) to the points of MH (V' ¢, k', o') such that

B((2)) = (p(2)), ¥(z) € MH(V, ¢k, 0).

Remains to check that ¢ preserves the forms ¢ and f. Let x = e 1z 1+ 29+
e1x; € V then :
q(z) = =27 21 + q(z0).
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Applying a to this expression gives :

(—aZi71 + q(20))" = —J?‘”iﬁv? +¢'(B(20))
= _x—l 2§ +¢'(B(zo)
= q(p(z)).

Let e_qx_1 4+ xo+eyxy and e_1y_; + yo + e1y; € V then :
fleciz_y + a0+ erwr,e_1y—1 +yo + eryr) = —a7y1 + f(z0,90) + 27y

Let x=e_1z_1+ 29+ ex; and y = e_1y_1 + yo + e1y;. Then :

(flz,y)* = (=279 + f(2o,90) +27y1)"

—2°9 Yy + f'(B(z0), B(yo)) + 257y,

f! ( el 2%, + B(wo) + et eyt + B(yo) + eryt)
f'(eB(x), oB(y))-

Throughout the proof we assumed that 3((0,1)) = (0,1). This might involve
a possible multiplication of ¢’ with a certain element of Fiz(o”).

Namely suppose M(V',¢',k',0")) is coordinatized using a decomposition
e K e Vydek'. Let 8((0,1)) = (0,d), ¢ € Fiz(c'). Then we consider
the proportional Moufang set M(V’,¢'~'q, k', 0") (cfr. section 3.12.3) coor-
dinatized using the decomposition V' = ¢/ k' ® Vj @ €1k, with €’ = ¢’ ;¢
and e/; = ¢|. Using this coordinate system the isomorphism 9.1 o 3 from
MH(V,q,k,0) to MH(V' c™'q k' ,d') clearly satisfies ¢.—1 03((0,0)) =
(0,0), ¥u-1 of((00)) = (00) and -1 08((0,1)) = (0,1) and we can ap-
ply the proof so far developed. This means that there exists a semi-linear
transformation ¢ with associated field isomorphism « from V to V' such
that :

Yo-10B((z)) = (p(x)), V(x) € MH(V,q,k,0)
(q(x))* = ¢ '¢(p(x)), Yz eV
(f(z,m)* = 7 flel@), (), Yo,y € V.

And thus we find that ¢ is a bijective semi-linear transformation from V' to
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V' with associated field isomorphism « such that :

@

(z)) = (p(@)), V(z) € MH(V,q,k,0)
d(q(x))* = d(p(x), Vo eV
d(f(x,y)* = flelx),e(y)), Y,y e V.

Conversely let ¢ be a bijective semi-linear transformation from V to V' sat-
isfying :

d(q(x))* = d(p(x), Yz eV
d(f(x,y)* = flelx),e(y), Yo,y eV

with ¢ € Fiz(o'). Then Lemma 102 implies that the map from MH(V, q, k, o)
to MH(V', ¢, K',0") defined by :

determines a Moufang set isomorphism.
Fourth case : (X', (Uy)wex') is a unitary Moufang set MU (V', ¢, k', o").

Using Lemma 92 and the results from section 3.12.2 we can assume without
loss of generality that ¢’ is a (o', —1)-quadratic form such that 1 € T'r(d").
Choose coordinatizations of both Moufang sets associated to the decomposi-
tions V =e_1k® Vi@ ek and V' = e, k' @V @ e k' with labelling sets Ry ;
= {(vo, v1) € Vo x klq(vo) +v1 = 0 and Ry y = {(vg, v}) € Vg x K'|q'(vp) +vi =
0}. Without loss of generality we can assume that 3((0,0)) = (0,0) and
B((00)) = (00) and 5((0,1)) = (0,1).

By Lemma 103 we know that 5 {(0,t) |t € Fiz(o)} = {(vg, v}) vj € Rad(f")}.
Remark that {(v(, v})| vy € Rad(f")} U {(c0)} determines a Moufang subset
of MU(V', ¢, k', 0') namely M(Rad(f"),q,k',0'). One checks that {(0,¢)|t €
Fiz(o)} U{(c0)} determines a Moufang subset of MH(V, ¢, k, o) isomorphic
to P(Fiz(o)). Moreover in a similar way one checks that the set {(0,6')|0" €
Tr(o)} U{(co0)} determines a Moufang subset of MU (Rad(f'),q',k',0'). As
P(Fixz(o) is a commutative Moufang set Lemma 121 implies that &' is a
generalized quaternion algebra with standard involution o'

For every (vj,v}), the element v is completely determined by vj. Therefore
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we define a bijection (also denoted by ) from Fiz(o) to L' = {t'|[t' = ¢'(v{)
for a v} € Rad(f') if we set :

(8((0,t)))1 = B(t), Vt € Fiz(o).

Remark that Lemma 109 shows that L' C Fiz(¢'). Therefore we find that
L' ¢ K. In the sequel we will denote for ¢t € Fiz(o) the automorphism s
S(0,1) as my and for t' € L' with q(t)) =, St S(0,1) as my. We show that
L' is a field isomorphic to Fiz(o).

By definition 1 € L'. Let af, b € L' with ¢'(ay) = d', ¢'(by) = b}, B(r) = a}
and g(t) = b.

Then the equations :

d(ah+ ) = a+ b
¢(apa ") = ap '

show that o} + b, € I and a}, ™" € L.

Using the matrix representations of s, as explained in section 3.13 we find :

ermt571 = 6m7"t671
= Mp(rt)
= mgymy,

= My

Using the matrix representations this is only possible if 3(rt) = a}b} 2/, with
2" € Z(K') such that 2’2" = 1. But as &’ is a generalized quaternion algebra
with standard involution this implies a}b] = £3(rt) and a}jb} € L'.

This proves that L' is a field and L' is a Moufang subset of MU (V' ¢, k', d").
As 3 induces a bijction from Fiz(o) to L' it determines an isomorphism
from P(Fiz(o)) to P(L'). Proposition 124 shows that # induces a field
isomorphism from Fiz(o) to L'. Suppose Rad(f') # 0.

Then there exists at least one (ap,a}) with aj # 0 and o} € L'. As ¢ is
anisotropic on Vy we find @) ¢ (k') and dim(L')| 74y = 2 as k' is a generalized
quaternion algebra and L' # k. Because L' is 2 dimensional over Z (k') we
find Z(K')(a}) = L'.

Let X' € k' arbitrarily then ¢'(aj\) = X7 a}\ shows :

NN € L' = (Z(K)(d))), VN € K.
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Lemma 53 implies that a} € Z(k') a contradiction as ¢' is anisotropic on
Vy. This shows that for MU(V', ¢, k',0') clearly Rad(f') = 0. But then we
find Z((Ry,,®)) = {(0,0") |6 € Tr(c') and { (0,t) |t € Fiz(o)} = {(0,0")
|¢' € Tr(c'). This implies that § is independent of its second coordinate.
Indeed if (’Ug,’l}l)7 (’Ug,?jl) € RO,I we have :

B((vo,v1) © (vo,71) = B((0,v1 — 1))
= (0,8(v1 — 1)
and hence (8((vo,v1)))o = (8((vo,?1)))o- This implies that we can define a

bijection from V4 to Vg (also denoted by ) in the following way. If vy € Vj
we set :

(B((v0, 4(w0))))o = B(vo)-
Thus we can introduce the following notation. If (vy,v1) € Ro1 we set :

B((vo, v1)) = (B(vo), B (v1))

where the superscript denotes a possible dependence on vy. As for (v, v),
(wo,w1) € Roy

(B((vo,v1) ® (wo,w1)))1 = (B((vo + wo,v1 + w1 — f(vo, wo)))1
= (B((vo,v1)))1 + (B((wo, w1)))1

 is an additive map from V; to Vj. We find for (vg,v1) € Ry 1, vo # 0 and
0 € Fiz(o) :

B(me(ve,v1)) = B((vel 91’19))

= B((voh), 87 (6*01)))
= B((v0)5(8), 5(6)°8" (v1))
= mg(s)(B(vo), 3 (v1))
and thus :
B(vef) = B(vy)3(0) VO € Fix(a'). (3.20)
Moreover :

B((vovy ' v1 1)) = Blswon(vo, v1))
s0,1)(8((v0), 87 (v1)))
= (Beo) (B (vn)) ™, (B (v)) )
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shows :

Bluovy ") = B(vo) (B (v1)) ™" (3.21)

As for every (vg,v1) € Roy with vy # 0, v; & Fiz(o) we have Fiz(o)(vy)
= k, equations (3.20) and (3.21) show :

B(vod) = B(vo) Ay, YA € kv € T, (3.22)
where the superscript denotes a possible dependence on vg.

We distinguish two cases :

1. dim(Vy) > 2.

Equation (3.22) and Lemma 54 imply that 8 induces a semi-linear transfor-
mation from Vj to Vj with a a field isomorphism from £ to &'. But then we
would have that Z(k') = k' a contradiction.

2. dim(Vy) = 1.

In this case Lemma 114 implies that M(V’, ¢, k', o) is isomorphic to M(H,V, q, k)
with Fiz(o) 2 k.

Fifth case : (X', (Uy)wex) is an indifferent Moufang set of the form P(k',I'; k).

If MH(V,q,k,0) = P(k',lI'; k") Lemma 104 implies that dim(V) = 2, and

MH(V,q,k,0) =2 P(Fiz(o)). The result now follows from Proposition 131.
|

3.15.5 The isomorphism problem for unitary Moufang
sets.

In this section we will assume that the all quadratic forms ¢ are (o, —1)-
quadratic forms. Lemma 92 and section 3.12.3 show that this does not put
any restrictions on the forms.

Proposition 129 A unitary Moufang set MU(V, q,k,0)) with non commu-
tative root groups such that Rad(f) = 0 if char(k) = 2 and k is a generalized
quaternion algebra with standard involution o is isomorphic under 8 to a
classical Moufang set (X', (Uy )wex) if and only if one of the following holds
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(i) (X', (Up)wex is a hermitian Moufang set MH(V', ¢, k' o),
with dim(V') = 4, dim(V)) = 3, k is a generalized quaternion algebra
and Fiz(o') =2 Z(k).

(ii) (X', (Uy)wex) is a unitary Moufang set MU(V', ¢, k', ¢") and B in-
duces a bijective semi-linear transformation ¢ satisfying :

B(x)) = (e(x)), V(z) € MU(V,q,k,0)
(f(z,9)* = Cf’(tp(l"),so(y)) Ve,yeV
qg(r)* = dq'(p(x)), Vo €

for some constant ¢ € k" with :

AN =\ YN € k.
proof :

As MU(V,q, k, o) has by assumption non-commutative root groups, the set
(X', (Up)wrexr) can only be a hermitian or unitary Moufang set.

First case : (X', (Uy)yex) is a hermitian Moufang set MH(V', ¢, k', o').
Proposition 128 implies that dim (V') = 3, k is a generalized quaternion alge-
bra with standard involution o, dim(V') = 4. By Lemma 114 MU(V, ¢, k, o)
is isomorphic to a hermitian Moufang set M H (V1, qi, k1,01) with k; a quadratic
Galois extension of Z(k) = Fiz(oq). Therefore Proposition 128 implies thus
that Fiz(o1) = Z(k) = Fiz(o').

Conversely suppose dim (V) = 3, k is a generalized quaternion algebra with
standard involution o and MH (V' ¢',k',¢") is a hermitian Moufang set
such that dim(V') = 4 and Z(k) & Fiz(c'). Lemma 114 implies that
MH(V' ¢, K, ¢') is isomorphic to a unitary Moufang set MU (V/,q}, K}, o})
defines over a generalized quaternion algebra &} with center Fiz(o') and with
dim(V') = 3. As Z(k}) = Z(k) we find k = k. As there is up to isomorphism
only one unitary Moufang set MU(V, ¢, k, o) with dim (V') = 3 we find that
MHWV' ¢, K o) = MUV g,k ,00) 2 MUV, q,k, o).

Second case : (X', (Uy)pexr) is a unitary Moufang set MU (V' ¢, k', o).
Remark as mentioned in the beginning of this section ¢ is assumed to be
a (o, —1)-quadratic form similarly ¢’ is a (¢, —1)-quadratic. Let f be the



184 CHAPTER 3. MOUFANG SETS

(o, —1)-hermitian form associated to ¢, f’ the (¢, —1)—hermitian form asso-
ciated to ¢', ¢(v) = g(v,v) + ks 1, Yo € V and ¢'(v) = ¢'(v',0") + K] _,,
Yv' € V' where ¢ is a o-sesquilinear form and ¢' is a o’ —sesquilinear form. Us-
ing section 3.12.3 we can moreover assume 1 € Tr(c), 1 € Tr(¢’). Choose a
coordinatization M(V, q, k, o) associated to the decomposition V' = e_1k®V}
ek and a coordinatization of M(V', ¢, k', ') with decomposition V' =
e k'®Vj®e k'. Then the labelling sets Ry = {(vo, v1 € Vo xk|q(vo)+v, =0}
and Rp , = { (v, v])|q (vp)+vy = 0} satisty Ro1N {0} xk = {(0,0)|6 € Tr(0)}
and Ry, N{0} x &' = {(0,0")|0" € Tr(o")}. Without loss of generality we can
assume 6((0v 0)) = (Ov 0)7 B((Ov 1)) = (Ov 1) and B((OO)) = (OO)

Let (’1)0,1)1), (’LUO,’LUl) € Rg’l.

The equation :

ﬁ(u((oo);(0,0),(U0,1}1))(w0,w1)) = 6((“0””1
= B((vo,v

— u((oo)

shows that [ induces an isomorphism from
Lemma 103 we have :

Z((R071, EB)) = {(Uo,’l)l) S R071|U0 S Rad(f)}
Z((Rop,®)) = {(vh,vh) € Ryylvp € Rad(f")}-

Thus if (vg,v1) € Ry with vy € Rad(f) we have (5((vo,v1)))o € Rad(f').
Note that for any vector wg € Rad(f) the only vector uy € Vj for which
q(uo) = q(wp) is wp and similarly for any wj € Vj, ¢'(w]) is completely
determined by wf. Therefore we can define a bijection (also denoted by 3)
between the set L = {t € k |¢q(vo) = t, vy € Rad(f)} and the set L' = {t' € ¥
|¢'(vg) =t', vy € Rad(f")} by :

(B(vo,v1))1 = B(vy), Yvo € Rad(f).

Remark that the equation s 1)((ag, @1)) = (aga; ", ai"), ¥(ag, a1) € Z(Ro 1, D)
implies that 8(a7') = (8(a1))~!, Va, € L.

Using this map we show that £ is a quaternion algebra with standard
involution ¢ and if and only if &' is a generalized quaternion algebra with
standard involution ¢’. We show one direction. The other way follows by
symmetric arguments.

One easily checks Y = Z((Ry1,®)) U{(co)} is a Moufang subset of

) ® (wo, wr))
) ® B((wo, w1))
0,0), B((v0,v1)))B((wo, w1)).

1
(
(Ro,®) to (Rpy,,®). Using
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MU(V,q,k,0) and similarly that Y' = Z((Rj,;,®)) U{(c0)} is a Moufang
subset of M U (V',¢',k',0"). As B(Y) =Y, Y is isomorphic as Moufang set
to Y.

The assumptions on Rad(f) in the characteristic 2 case implies that in any
case Z((Ro,1,®)) = {(0,60) |0 € Tr(o)}. Lemma 123 implies that (Y, (Uy),ey)
= P(Z(k)). As (Y, (Uy)yeyr) = (Y, (Uy)yey) Lemma 121 shows that &' is a
generalized quaternion algebra with standard involution.

As a next step we show
Claim 1 :

3{(0,0)[0 € Tr(o)} = {(0,8)]0 € Tr(0")}. (3.23)

If char(k) # 2 then this follows from the fact that Z(Ro:,®) = {(0,1)|t €
Tr(o)} and Z(Ry,, ®) = {(0,t)|t' € Tr(cd")}.

Hence we can assume char(k) = 2.

Suppose that for a (0,6) € Ry we have 5(0,0) = (aj,a}). As (0,0) €
Z((Ro1,®)), clearly aj € Rad(f").

We distinguish two subcases :

1. First subcase : k is a generalized quaternion algebra with standard invo-
lution o.

If char(k) = 2, we have by assumption that Rad(f) = {0}. We already
saw that the Moufang subset determined by Y = Z((Ro1, D)) = {(0,t) |t €
T'r(o)} is isomorphic to the Moufang subset determined by Y’ = Z((Ry ;, ®)).
As Rad(f) = 0 we have that (Y, (Staby,(Y))yey) is isomorphic to P(Z(k)).
But (Y7, (Staby,(Y"))) is an extended polar line defined over a generalized
quaternion algebra with standard involution and Lemma 123 yields that
Rad(f") =0.

And thus we find that (3.23) is also satisfied in this case.

2. Second subcase : if k is a generalized quaternion algebra o is not its
standard involution.

Remark that in this case by Lemma 47, k is generated as a ring by Tr(o).
We write 0 = z + 27, z € k.

Let p € Tr(o) and (v, v1) € Ro. In the sequel we will denote the automor-
phism s ,)8(0,1) as m,, and the group (u((c0); (0,0), (vo, v1), m,| p € Tr(o))
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by S(vo,vl)-

To proceed we first prove a general property :
Consider A in k and (vg,v1) € Ro1 with §(vg,v1) = (vg,v]). Write A as
an expression of elements of Tr(o) i.e. :

A= 291] 0ij),j> Or; € Tr(0)

We show by induction on the number of terms in the expression that
there exists a 1y € S(y;) such that :

(%(vo,vl))o = vpA
(B(¥a(vo,v0))o = o' (3.24)
with )\’ Sumz?:lﬁ(eu) . B(Gi(j)g-).
If there is only one term in the expression i.e. we have for example A =
0105 .. .0, one checks that we can set ¥, = mg,mgp, ... my, .
Suppose the claim is true for any expression of elements of T'r(c) with fewer
terms that in A = Z?:l 1 ... 0, To simplify notation we can assume
that without loss of generality i(n) = 2. Put 0y, 6,1 and 65, = 6,,. Consider
g = Z?:l 91’]‘ N 92‘(]')’]0;19;711. Remark that then (5 + 1) 9n71 Gn =\
By induction we know that there exists a 1) € S(yy,0,) such that :
(¢§(U07 v1))1 = vof
(B(te(vo, v1))1 = €’
with & 37, B(01y) .- B(8i),i)B(0n) " B(0n-1) "
Consider mg, mg, ,u((00); (0,0), (vo, v1)) tbe. We find :
m9nm0n—1u((oo); (07 0)7 (UO’ ’Ul))’(bg(’l)o, Ul)
= mOann_lu((oo); (07 0)7 (UOa vl))(v0£7 Il)
mg,mq, , (vo(§ + 1), 21 + v1 — f(vo, v0))
(v0((§ 4+ 1)6n-104), 0005 1(21 + v1 — f(v0,v0))0n-102)
= (voA, Onby 1 (w1 +v1 — f(vo,v0))0n16n)

and :

B(mg,mq,_,u((00); (0,0)

mga, )mﬁwn pu((00); (0,0),

MB(H,) B0,y (Vo (€ + 1), 0] + 2] — f'(vp, vp))

(vo((€' + 1)B(0n-1)B(01), B(6n)B(0n—1) (v} + x7 — f'(vh,v5))B(0n-1)8(0))
= (v, B(0,)8(0n-1)(vy + 2} = f' (vmvé))ﬁ(%—l)ﬁ(%)))-

, (vo, v1)) e (vo, v1))
0), (vg, v1) (v, 1)
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This shows that we can set 1\ = myg, myg, _, u((00);(0,0), (vg,v1)) ¥ and the
formula (3.24) is proved.

We proceed with the proof of formula (3.23). As the root groups of both
Moufang sets are non commutative we can choose a (wp,w;) € Ry such
that wg & Rad(f) and B(wg, w1) = (wj, w}) where w) &€ Rad(f").

Using Lemma 108 we calculate :

5(1009,91019) = 58(0,0)8(0,1)(100,101)
= S(apap) S0 (wo, wh)
= (wpay, ywiay),
where 5((0,0)) = (ag, @), aj, € Rad(f'). Write z as an expression of elements
of Tr(o) i.e. for example z = 3", fu1j. .. ti(j),;- This implies :

Hg - By, + Z Hi(j),5 - - - U1,j

J=1

I
NE

~
Il
-

I
NE

(K1 - i) + Ry, - - - 1)
=1

~
Il

Using (3.24) we find a 9y € S(ygw,) such that :

Yg(wo,wr) = (woh, Ow,0)
B (e (wo, w1)) (wht', 0'w'6')

with (wOJI)l) € R()’l and (’LUB,’LD’l) € Rroyl and :
0 =371 (B(pay) - Bigg) + B(ig) - - - Blrag)

The above equation clearly shows that 6" € Tr(o").
Using equation (3.25) we find :

ﬁ((’LUOG, 911)19) ©® (0, 9(’@1 - wl)g) = (wlogl’ ,11)’19’)
But as B(wef, bw,6) = (whay, aj wia}) this yields :
wgay + (8(0,0(w; — wy)0))o = wyb'.

Moreover (0, 6(w; — w1)f) € Z(R;,,, ®) and we have (3(0,8(w; — w1)0))o
€ Rad(f'). As w, ¢ Rad(f') the above equation is only possible if a} = ¢'".
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But then we find as the form ¢’ is anisotropic on Vj that aj = 0. By this the
proof of (3.23) is complete.

As a result of equation (3.23), we have that § is independent of the sec-
ond coordinate i.e. if (vg,v1), (vo,01) € Ro1 with B(vg,v1) = (vf,v}) then

5(’00’ ’Dl) = (U(’)v ’D’l)

Indeed this follows from :

B(vo,v1) = B((vo,v1) ® (0,01 — v1))
= (vp,01) @® (0, 8(71 — v1))
= (vp, 01 + B(01 — v1)).

This means § induces a bijection between Vj and Vj also denoted by 5 and
defined in the following way. If vy € Vy we choose a v; € k such that
(’1)0,7}1) € R()’l and set :

(B(vo, v1))o = B(vo).

It thus makes sense to introduce the following notation. For (vg,v1) € Ry
we write :

B(vo, v1) = (B(vo), 87 (v1))

where the superscript denotes a possible dependence on vy.
Remark that the equation sq1) ((vo,v1)) = (vovy 1,01 1), Y(vo,v1) € Roy
implies that :

s, (B(vo), B (v1)) = (B(vovy L, BT (o).

Hence :

B(vo) B (v1) ™" B(vevrt)
(B (vy)) " = 5”0”1_1(1){1), V(vo,v1) € Ro1

Let (vo,v1), (wo,w1) € Rpy. As [ induces an isomorphism between root
groups we find :

B(vo +wo) = (B((vo,v0) ® (wo, wr)))o
= (B((vo,v1)))o + (B(wo)))o
B(vo) + B(wo).
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This means that 5 defines an additive bijection from Vj to Vj.

Our next goal is to show :
Claim 2 : [ induces a semi-linear transformation from Vg to V{ with certain
associated field isomorphism « and such that for (vg,v1) € Ro1, 8((vo,v1))

= (B(vo), v7).

Remark that the assumptions on MU(V, ¢, k, o) implies dim (V) > 3 and
dim(V') > 3.
We consider two subcases.

1. First subcase : k is a generalized quaternion algebra with standard invo-
lution o.
If dim(V) = 3, Lemma 114 and Proposition 128 show that dim(V') = 3.
This means in particular that we can choose vy, € Vg, v{ € Vg with (vg) = Vg
and (v)) = Vj with 8(vy) = vj. Let i, j and € k such that k = Z(k) ®iZ (k)
JZ(k) +jiZ(k) and :

if char(k) #2:

2 =g, j* =B, ij = —ji

if char(k) =2:

P =i+ ag, j* = Bo, ij = ji+

with ap, By € Z(k) \ Z(k)?. Without loss of generality we can choose 7 such
that g(vg,vo) = —i. Denote the norm function in & by N. Choose similar ', j’
for k' and denote the norm function in &' by N'. We use the notations of the
proof of Lemma 114. Let MH(Vy, q1,k1,01) be the hermitian Moufang set
isomorphic to MU(V, ¢, k,0) and MH (V/,q,, k], 0}) the hermitian Moufang
set isomorphic to MU(V', ¢, k', o') as constructed in the proof of Lemma 114.
Suppose that g; is a oj-sesquilinear on V; such that ¢; (v1) = g(v1) +k,-1),
Vo, € V; and similarly that g} is a of-sesquilinear form on V] with ¢} (v})
= ¢'(v},v]) +(k})o1,—1), Yvy € V], By construction we have ky = Z(k)(i).
Without loss of generality we can moreover assume that &} = Z(k)(¢'). Sup-
pose [ is the isomorphism from MH (Vy,q1, k1, 01) to MU(V, ¢, k, o) and 3]
is the isomorphism from MH (E}, ¢}, k}, 07) to MU (V', ¢, k', ¢") as described
in the proof of Lemma 114. Remark that (; is given by :

Bi((00)) = (o0)
B1((vo(z1 4+ i22) +voj(z3 +i2z4), N(A) +u) = (o7, =M\ — u)
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where A = z; +izy +j2z3 +7124 and similarly :

Bi((o0)) = (o0)
Fr((uh( 4 78) + e 4+ 12, NV ) = (X, XN — )
where \' = 2] +i'zy +j'23 +5'1'z). Consider the isomorphism B, 3B, from
MH V1, q1, k1, 01) to MH(V/,q},k},07) and denote it by 3. By Proposition

128 we know that there exist a constant ¢’ k] and a semi-linear transformation
@ from V] to V] with associated field isomorphism « such that :

B((z1) = (p(x1)), V(z1) € MH(V1,q1, k1, 04)
d(filzr, ) = file(x),(y1)), Va1, y1 € Vi
d(gi(xr,21)* = gi(e(x1), p(21)), Yoy € V.

As « defines an isomorphism from Z(k)(i) to Z(k')(i") we can assume with-
out loss of generality that ¢* = 4" and af = «f. As by assumption 3((0, 1))
= (0,1), we have 3 ((0,1)) = (0,1) and hence the proof of Proposition 128
implies that ¢ = 1. Remark that Brl and (3, induce semi-linear transforma-
tions (also denoted by 3,~' and ;) satisfying :

Bi(vo((21 +iz0) +voj(23 +i2a)) = (vo((21 + 022 + j2z3 + jiza))
Bilvo((z1 +14'20) +vos' (s +'20) = wplay +izp + 42 +5'7'2)

Let B(voj) = ©(vof) = wh, with w) = vh Ay, and Ny = X, +i' Ny +5'\ 451’ N}
Then we have Vy = vj(Z(K')i') ® wy(Z(K')i').

Suppose char(k) # 2.

We find f(vo,vpj) = 0 and g(voj,voj) = Boi-

Hence :
gi(wy,wp) = (g1(vog,vo1))*
— N
filvg,wp) = (fi(vo, veg))”
=0

_ 1t O\
= =X+
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The last equation implies that \j i = —i' Aj and hence A} = 0. This yields
(Ap)? = =), and thus N'(\)) = —3¢ gives (\j)? = 3. This means that we
can extend « to an isomorphism from k to k' if we set (214 iz + jz3 + jizg)®
=20 +d'28 )28 + A 2T

Suppose char (k) = 2.

In this case we have f1(vg,voj) = 0 and g;(voj, voj) = Boi-

Hence :

gi(wp, wp) = Bg7
N'(\g)?'
filvg,wp) =0
= Nt +iA+ A
The first of these equations shows that 3¢ = N'()\;) while the last equation

implies that A =0 and A} = 1.
From :

(1+N'(A)d = (1+55)7
= (N((L+7)))*
= (g1(vo + voj, vo + voj))*
= g1(vg + voAo, v + Vo)
= N'((1+ X))
= (14 + X7+ N

if follows that \) = A7 .
This implies that as in the characteristic non 2 case we can extend the iso-
morphism « to an isomorphism from & to k' if we set :

(21 4 i29 + Jzz + Jizg)® = 27 + 125 + N\pzs + Mot 25
We show that for wg € (vo) and p € k
Blwop) = B(wo) ™.

We have :
' BBy (volur + ius) = vh(uy + dup)®
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Using the explicit expressions of #; and ] this leads to :

B(vo(uy + iuz)?) = B(vo)(uy + ius)™ .

Moreover :

By 881 (v (us + iua)) = vhAy(us + iug)®
shows that :

Blvo(jus + jiug)?) = B(vo)(jus + jiu4)wl.
As:

B(v0j®) = B(vo)Bo = B(vo)(Xp)?

one deduces that for any wy € (vy ) and p as above B(wop) = B(wo) u®.
Hence / defines a semi-linear transformation from Vj to Vi with associated
field isomorphism «a.

This means that we can assume for the rest of this subcase that dim(V)
>4 and dim(V') > 4.

Suppose that char(k) # 2. We present a proof which holds whenever
Tr(o) = Fiz(o), Tr(c') = Fixz(o'") and dim(Vp) > 2.

If £ is a generalized quaternion algebra with standard involution ¢ such that
char(k) # 2 we have Tr(o) = Fiz(c) = Z(k). As we already saw this implies
that k' is a generalized quaternion algebra with standard involution ¢'. As
char(k") # 2 it follows that Tr(c') = Fiz(c') = Z(k'). This shows that if
dim(Vp) > 2 and k is a generalized quaternion algebra with standard invo-
lution & such that char(k) # 2 the proof which we will presents holds.

The first step consists in showing that for any two vy, wg € V4 :

f(vo, wo) =0 & f(B(vo), B(wo)) = 0.

We show one direction (the other direction then follows by symmetric argu-
ments).

Suppose for vy, wy € Vg, f(vo, wp) = 0. As we know that 3(0) = 0 we can
assume v # 0 and wy # 0. Choose vy, wy € k with (vg, v1), (wp,w:1) € Ry 1.
Consider (vpv7",v7") € Ro1.

We find :

Bloerr o) = B(s01)(v0,v1))
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5(0,1)(5(00), B (v1))
(B(vo)(B™ (01)) ™, (8" (v1)) 7).

Moreover f(vovy ", wy) = 0 yields :
[(vaflv vfl)v (wOv wl)] =0.

Sending this equation over to Ry, via (3 gives :

[(B(vo) (8™ (v1)) ™, (8™ (v1)) ™), (B(wo), B (w1))] = 0

and hence :

F'(Bwo) (8™ (v1)) ™", B(wo)) = f'(B(wo), B(vo) (B (v1)) ™).
If f'(B(vg), B(wp)) # 0 this equation implies that :

B (v1) = (B (v1))7.

As by assumption Tr(¢') = Fiz(c') and the form ¢' is anisotropic on Vg we
see that §(vg) = 0 and hence vy = 0, a contradiction.

Remark that Lemma 109 implies Rad(f) = 0 and Rad(f') = 0 as ¢ and ¢’
are forms of Witt index 2 with T'r(0) = Fiz(o) and Tr(c’) = Fiz(o').

Let A € k and vy € V. As vy is sent via 3 to (8(vp))* it follows that

Bvod) = A,

with A} € k" and where the subscript denotes a possible dependence on w.
As dim(Vp) > 2 Lemma 54 implies that 3 defines a semi-linear transformation
from V5 to Vj with an associated field isomorphism a.

Suppose that char(k) = 2.

In this case we know that by assumption Rad(f) = {0} and Rad(f') =
{0}. Denote in the sequel of this proof for = € k, L, = Z(k)(z) ie. L,
is the subfield of k generated over Z(k) by = and similarly for 2’ € &', L,
= Z(Kk')(z"). We show that for any (vo,v1) € Ro1

B(voLy,) = B(vo)Lgvo(ur)- (3.25)

From s(o,1)(vo, v1) = (vovy*,v;") we get after applying 3 that B(vov;') =
B(vo) (B (v1))~". Let z € Z(k) = Tr(c). Then the equation sq.) S(o,1)
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((vo,v1)) = (voz, zv12) gives after applying 3 that S(vez) = B(ve)B(2), Vz €
Z(k). As Ly, = Z(k)(v1) = Z(k)(v7") and Lgwo(,) = Ligrau)-1 we see
that 3(voLy,) C B(vo)Law(w,). The other inclusion B(voLgvo(w,)) C B(voLla,)
follows by similar arguments.

Let vg, wg € V. We prove :

flvo,wp) = 0 f'(B(vo), Bwo)) = 0.

We show one direction. The other direction follows by symmetric arguments.
Let f(vo, wp) = 0 for some vy, wg € V. Firstly we show that :

f'(B(vo), Bwo)) = f'(B(wo), B(vo))- (3.26)

Choose v, W1 € k such that (’Ug, ’1)1)7 (’LUO, ’LUl) € RO,I- We have [(’Uo, ’U1)7 (wo, ’LUl)]
= 0. As [ defines an isomorphism from (R 1, ®) to (R, ®) we have :

[(B(vo), B (v1)), (B(wo), B*°(wy))] = 0O

or equivalently

F'(B(wo), B(wo)) = f'(B(wo), B(vo))-

Suppose firstly that f(vo,wo) = 0 with wy = vo. As also f(vovy',v9) = 0
in this case and 6((1}01)1 o) = B(s0.1)((v0,11))) = 801y (B(v0), 5% (v1))
= (B(vo)(B™(v1)) 7L, (B (v1)) ) we see that :

F'(B(vo) (8™ (v1)) ™, B(vo)) = f'(B(vo), B(vo) (B (v1)) 7).

Equivalently :

(8" (1) )7 f'(B(v0), B(vo)) = f'(B(vo), Bvo)) (B (v1)) ™).
Suppose f'(B(vo), B(vg)) # 0 then we find :

(8" (v1) )7 = f'(B(vo), B(v0))B™ (vy ) (£ (B(vo), B(wo))) - (3.27)

As (B (v1)"1)7 € Lgvo(y) it follows that f'(5(vo), B(vg)) stabilizes Lgva(y,)
under conjugation. If f'(5(vo), B(vo)) € Lgwo(w,) it follows that as Z(k),
3% (vy) also stabilizes Lgvo(y,) and k is a generalized quaternion algebra that
k' stabilizes Lgeo(y,). A similar reasoning as the one used in the proof of
Lemma 123 leads to a contradiction. Therefore we find that f'(5(vo), 5(vo)) €
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Lgeo(vy). As Lgeo () is a commutative field equation (3.27) becomes (3% (v,))

= (% (v1). From ¢'(6(vo)) = ¢'(B(wo), (v
that ¢'(6(vo),B(v)) € Fixz(o'). Hence

195

a

0)) + Z(k) = B (v1) + Z (k) we find
f'(B(vo), B(vo)) = ¢'(B(vo), B(vo))

+(g'(B(vo), B(19)))7) = 0, a contradiction. Therefore we find that

£'(B(vo), B(vo)) = 0.

Remains to consider the case where f(vg,wp) = 0 and vy # wy.
0)) # 0. We find that f(vovy',wo) = f(vo,wowy') =

pose f'(B(vo), B(w

f (v, wowi") = 0. Moreover we have
= (B(vo)B™(v1)~", B(vo)B*™(wi)~" and
(B (w1))~, (B (w
equations hold :

B(wo), B(wo
)7 Blwy
5“’0(101))
B (wy)

owl)

(

0
0

F(B(vo

f'(B(wo) (8
B(
*(v1)) ™ B(

)
)
)
)

vo
w
w

—~ T~ =

1

F'(B(wo) (8

Equivalently :

f’(ﬁ(vo)7
(8% (v1) )7 f' (B (o),

Using formulas (3.28), (3.29) and (3.30),
F'(B(vo), B(wo)) (B (v1)) 71 (B (wr)) ™
It £'(8(vo), B(wo)) # O this implies :

3% (v1) 3" (w1)

Sup-

B((vori ", v7)) = B(s0,1)((vo, v1)))
similarly B((wovy', wi")) (B8(wo)

1))7Y). In view of (3.26) this means that the following

= f(B(wo), B(vo))
= f(B(wo), B(vo) (6 (v1))™")
= f'(B(wo) (B (w1)) ™", B(vo))
= f'(B(wo) (B (w1)) ™", B(vo)
(B* (1) ™).
= f'(B(wo),B(vo)) (3.28)
= f'(B(wo), B(vo)) (B (v1))™"  (3.29)
= (8 (w1) )7 f'(B(wo), B(vo)) (3.30)
= (8" (w1) )7 f'(B(wo), B(vo))B" (v1)
. (3.31)

formula (3.31) yields :

F'(B(vo), B(wo)) (B (w1)) ~H(B™ (v1)) 7"

= " (w1)B" (v1)

If 30 (w1) & Lgg(v,) the above equation implies 3% (v,) € Z(k) a contradiction
as ¢ is anisotropic on Vy. Thus 5¥°(wq) € Lgwo(y,) and we find that Lgwo(y,)

= Lgo(w)-
Equation (3.29) implies :

(8% (v))™)7 = (£'(B(vo), Bw

0)) (8 (v1)) 7 (' (B(vo), B(wo)) ™
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As (B (v1)7")7 € Lgw(,) \ Z(k) this shows that f'(5(vo),(vp)) stabi-
lizes Lgwo(vy) via conjugation. If f'(B(vg),B(wo)) & Lgwo(s,) we find that £’
stabilizes Lguo(y,). A similar reasoning as the one used to prove Lemma
123 leads to a contradiction. Therefore we find that f'(3(vo),8(wp)) €
Lgvo(ny), @ commutative field and hence (8% (v1))” = 8 (v1). As ¢'(8(vo))
= B"(v1) + Tr(0’) = ¢'(B(vo), B(vo)) + Tr(0”) we see that g'(B(vo), B(vo))
€ Fiz(o") and f'(B(v0), B(ww)) = ¢'(B(to), B(t0)) +(g'(B(0), B(w)” = 0.
Similar arguments show that f'(3(wy), 8(wp)) = 0, 8“°(w;) € Fix(c') and
F'(B(vo), B(wy)) € Lagwo(wy)- In particular we find by what is already proved
that f(wg,wp) = 0. Hence wy € Fix(o).

Suppose firstly that wg &€ (vp). Using Lemma 108 we find :

S(wow)S(0,)((v0, 1)) = (vowr, wiviwy).
Applying § to this equation yields :

5(7)0101) 5((7)01017 w1v1w1)))0
B(8wown) ((v0,v1))))o
$(B(wo),8v0(w1))S(0,1) ((B(vo), B (v1))o

B(wo) B (wi) ™" f'(B(vo), Bwo)) B (w1) + B(ve) 3" (wr).

As 3 (wy) f'(B(vo), B(wo)) B (w1) € Lgwo(w,) and 5 (w;) € Lgvo(y,) formula
(3.25) implies that there exist 6 € Lgwo(y,) and 6 € Lgvo(y,) such that :

B(weby) = B(wo) (B (w1))™" f'(B(vo), B(wo)) B ° (wr)
Blvobz) = B(vo)B*° (w1).

(
=
(

We find :
B(Uowl) = 5(10091 + 1)092)

and thus :
VoW = w091 + ’1)092.

As wy & (vp) this is only possible if #; = 0 and (web;) = B(wo) (8“0 (wq))™"
f'(B(vo), B(wp)) £ (wy) = 0. But then it follows that f'(5(vo), 8(ws)) =0,
a contradiction against the assumption on f(3(vo), 5(wp)). Therefore we find
that if wo € (vg) and f(vo, wo) = 0 necessarily also f'(3(vo), B(wp)) = 0.

Remains the case where wy € (vg). This means we can set wy = v,
i € k. Without loss of generality we can thus assume that w; = p% vip.
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Remark that if p € L,, we find S(vop) = B(vg) p' for some p' € Lgeo(yy)
and we find f(8(vo), B(vop)) = f(B(vo), B(vo))p' = 0. Hence we can assume
that u ¢ L,,. Suppose f'(B(vo),B(vop)) # 0. Then we already deduced

that f'(53(vo), B(ve)) = 0, f'(B(vop), B(vop)) = 0, Lgvo(w) = Lgwon(uev, ) and
J'(B(vo), B(vop)) € Lguo(y,). Using Lemma 108 we find :

(S(Uo,vl)s(o,l)(vollﬂ ,u"vlu))o = UpV1-
Applying § to this equation gives :
B(Uogvl)
= (B(swownso.1) (Vopt, H7v112))o

= (8(8(v0),60 (v1)) S(0,1) (B(vop), B (1Tv141)) )o
= B(vo)(6”(v1)) ' f'(B(vo), B(vop)) B (v1) + B(vop) 57 (v1).

Now as 3" (v1) € Lgvon(uru, ) and (87 (v1)) ™! f'(B(vo), B(wo)) B (v1) € Lgrow,)
formula (3.25) implies that there exist ¢, € L,, and 0, € L,0,,, with :

B(vobh) = B(vo)(B”(v1))~" f'(B(vo), B(vop)) 5™ (v1)
Blvopby) = Bluoop) (8" (vr)) "

But this means that we have :

Blvoprr) = B(vobh) + B(vopb2), (3.32)
and :
Hoy = 01 + Mgg
As 0y € Loy, there exist z1, 2o € Z(k) with 6, = z; +p”vipz,. This means

that equation (3.32) becomes :

pvy = 0 + pzy + pp’oipze
or equivalently :

pw(z1 + plopze +v1) = 604

As u & L,, this is only possible if 8; = 0 and B(vgb1) = 0 = B(vg) (8 (v1)) ™"

' (B(vo), B(vop)) B (v1). We find f'(5(vo), B(vop) = 0 contradicting the
assumption on f'(B(vo), B(vop)). Therefore we also find in this case that

f'(B(vo), B(wo)) = 0.
This completes the proof that :

f(vo, wo) =0 & f(B(vo), B(wo)) = 0.
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Now we can proceed as in the case where char(k) # 2 and k is a gener-
alized quaternion algebra with standard involution to see that § induces a
semi-linear transformation with an associated field isomorphism « such that
5(’1)0)\) = B(’Uo))\a, VA € ]\7, VUO € Vb

2. Second subcase : the general case, if k£ is a generalized quaternion al-
gebra o is a non standard involution.

By Lemma 47 we have that k is generated as a ring by T'r(o). Consider
A € k and (vg,v1) € Ro1. Then A can be expressed in terms of elements of
Tr(o) i.e. for there exist 6; € Tr(c), 1 < i < n such that for example :

A= Z 917]' - 92-(]‘)7]', 9197]' S TT(U).
j=1

Denote as before S(,,.,) = (u((00); (0,0), (vo, v1)), m,u|p € Tr(o)).
Using property (3.24) we find a ¢y € S(yy,,) such that :

B(ta((vo,v1))) = 5((7)0)\7/\771)\0)),
(B(wo) N, Aoy A7)
B((vo), A1 A7)
(B(voA), BN (AB1A7))

with (vo, 91) € Ry and (wh, w}) € Ry, and X' = Y-7_, B(6],)... (6] ;)
This implies :

B(voA) = B(vo) XN, Yoo € Vp. (3.33)

Remark that we can not use Lemma 54 in this case to show that 8 induces
a semi-linear transformation from V; to Vj as dim(Vp) can be 1. Therefore
we will have to proceed in another way.

Define the map « from k to k' in the following way. If u € k, we choose an
expression of p in terms of elements of Tr(c) i.e. for example :

n= Zéld .. .9_2-(]‘)7]', ék,j € TT(U).
j=1

Subsequently we define :

m

ut =" B0y) ... 8B,

J=1
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We show that « is well defined i.e. that it is independent of the expression
of p in terms of elements of Tr(c). This will be done is we prove that every
expression of 0 in terms of elements of T'r(o) is sent over by a to 0.
Consider an arbitrary expression of elements of Tr(c) i.e. for example Zé.:l
P1,j - - Pi(G),j> Ph.j S T’I"(O'). Choose Vo 7é 0 in Vb

Then we know that :

l

ﬁ((vo(z pri-Pi))) = Bo) (D Blpry) - Blpiy)-

j=1
Hence : l l

> o pini =0 Blpry) - Blpigys) = 0.

i=1 i=1
This shows that « is a well defined bijection from k to k'. By construction
we see that « defines a field isomorphism from £ to k' satisfying :

B(voX) = B(ve)\Y, Vg € Vo, A € k.
and :
AN =\ Y VYN e k.

This prove that 3 defines a semi-linear transformation from V; to Vy with
associated field isomorphism a.
Let (vg,v1) € Rog.

Then :
Bs0,)(vo, 1) = (—5(1)0”1_1),5_%”;1(_”1_1))
= (=Bl (e )" BT (=)
= (=B(vo)(B"(v1)) 7!, (=B" (1))
= s0(B(vo), B (v1)).
yields :

Bo() " = (ot
—(B7(0))t = BT (o).

The first of these equations shows 5% (v;) is independent of vy and :

B (v1) =y
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Therefore we have :
B(vo, v1) = (B(vg), vy), V(vo,v1) € Ro 1. (3.34)
Let (vp,v1), (wo,w1) € Ro1. As B((vo, —g(vo,v0))) = (B(v0),(—g(vo,v0))%)
and (8(vo),—g'(B(vo), B(vo)) € Ry, we find :
g(vo,v0)* = ¢'(B(vo), B(vo)) + kL _y, Yo € V.

Moreover equation (3.34) implies :

(8(vo) + B(wo), v +wi — (f(vo, wo))*)
B((vo, v1) & (wo, w1))

= B((vo,v1)) ® B((wo, w1))

= (B(vo) + B(wo), vf +wi — f'(B(vo), B(wo))).

Therefore :
(f(vo, wo))* = f'(B(vo), B(wo)), Yvo, wp € Vs
Define the semi-linear transformation ¢ from V' to V' by :

ole_1z_1 + xg 4+ erxy) = €22 + B(xg) + €2, Vo, 21 € k,Vry € V).

We check ¢ preserves the forms.
Forx =e 1o 1+ x9+ e1x1 € V we have :

q(x) = =27 71 + q(xo).-
Applying « to this equation gives :
(g(x))” = —a27927 + (9(x0,20))" + Kk} 4
= —2°af + ¢(B(x0))
= (g Blao) + 1)
= q(p(x)).
Let e yx 1 4+ xo+e1x1, €_1y_1 + Yo +e1y1 € V then :
flz,y) = =27y + 2Ty—1 + flwo, o).
Applying « to this equation gives :
(flz,y)* = (=271 + 2Ty -1 + f(20,90))"
= —227y" + 277 y2, + f(B(20), B(wo)
= f'le(x), (y))-
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Thus ¢ is a semi-linear transformation from Vj to Vj with associated field
isomorphism « satisfying :

=®

((z)) = (p(2), ¥(z) € MU(V,q,k,0)
(a(x))* = d(p(2), Yz eV
(f(z9)* = Fle(@) ey), Yo,y € V.

Throughout the proof we assumed that 3((0,1)) = (0,1). This might in-
volve a possible multiplication of ¢’ with a certain constant. Namely let
MU(V,q,k,0) and MU' (V', ¢, k',0') be two unitary Moufang sets isomor-
phic under 5. Choose coordinatizations of both sets. In order to assure that
B((0,1)) = (0,1) one can choose can choose a € Fiz(s) and a’ € Fiz(c') such
that 1,8 ¥, (0,1) = (0,1), where v, is the isomorphism from MU (V, ¢, k, o)
to MU(V,aq, k,c®) and ¢, the isomorphism from MU(V',¢' k' ,0") to MU(V",
a'q, k', o'") (as defined in section 3.12.3). By what is already proved we find
a bijective semi-linear transformation ¢ with associated field isomorphism «
such that :

U Ba(z)) = (p(2)), V(z) € MU(V,aq,k,0%)
(ag(x))® = d'd(p(x)), Ve eV
(af(z,y)* = df'(p(x),0(y)), Yo,y €V
Ao = e VYA ek,

AA

Let @' 'a® = ¢/. We find :

B(x)) = (p(x)), ¥(z) € MU(V,q,k,0)
) (p(x)), Vo eV

¢(a(x))* = 4
¢(fla.y)* = flol),ely), Yoy eV
AT = N

¢’ meets the requirements of the Proposition.

Conversely suppose ¢ is a bijective semi-linear transformation from V' to
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V' with associated field isomorphism « such that that there exists a constant
c € k' with :

d(q(x))* d(p(x)), Vo eV

d(flz,y)* = fllelx),ey), Ve eV
Ayl = e v ek

Then Lemma 102 shows that the map 3 defined by
B(z)) = (pl@)), ¥(z) € MU(V,q,k,0)

defines a Moufang set isomorphism.

Proposition 130 Let MU(V,q,k,0) be a unitary Moufang set with com-
mautative root groups. Then MU (V,q,k,0) is isomorphic to a projective,
orthogonal, hermitian or indifferent Moufang set (X', (Up)wex:) if and only
if

(1) (X, (Up)wex') is a projective Moufang set of the form P(K'), k is a
generalized quaternion algebra with standard involution o, MU (V,q,k, o)
= P(Z(k)) and Z(k) =k,

(17) (X', (Uy)wexr) is an orthogonal Moufang set of the form MOV’ ¢, k')
and M U(V,q,k,0) is an extended polar line defined over a generalized
quaternion algebra k with standard involution o isomorphic to MOV' k', ¢').
(148) (X', (Up)wex) is a hermitian Moufang set of the form MH(V', ¢, K, o),
k is a generalized quaternion algebra with standard involution o, MU (V, ¢, k, o)
= P(Z(k)), MH(V',¢' K, o') = P(Fiz(c")) and Z(k) = Fiz(o'),

(i) (X', (Up)wex) is an indifferent Moufang set of the form P(K',I';k'),
MU(V,q,k,0) is an extended polar line defined over a generalized quater-
nion algebra isomorhic to P(k',I';k'). Moreover if char(k) # 2, dim(V) = 2
and Z(k) =21l =F.

First case : (X', (Uy)wex) is a projective Moufang set P(k').

We refer to Propositions 125 and 126.

Second case : (X', (Up)wex) is an orthogonal Moufang set MO(V', ¢, k).
In this case we refer to Proposition 127.
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Third case : (X', (Uy)srext) is a hermitian Moufang set MH(V', ¢, k', 0").
For this case we refer to Proposition 128.

Fourth case : (X', (Uy)wex) is an indifferent Moufang set P(k';I', k').

As P(K',I'; k') is commutative and has commutative root groups Lemmas 104
and 123 imply that £ is a generalized quaternion algebra with standard in-
volution o and MU(V,q,k,0) =2 P(Z(k)). Proposition 126 yields then that
MU(V,q,k, o) = P(k', I'; k) if and only if Z(k) = I = k'

3.15.6 The isomorphism problem for indifferent Mo-
ufang sets.

Proposition 131 An indifferent Moufang set P(k,l; k) is isomorphic under
B to a classical or mdzﬁerent Moufang set (X', (Uy)wex) if and only if one
of the following occurs :

(1) (X, (Uy)wex) is a projective Moufang set P(k') with | = k 2 k',

(17) (X', (Up)wrex) is an orthogonal Moufang set MO(V' k', q') and one of
the following subcases occurs :

(it.a) dim(V') =3, l =k =¥,

(i2.b) dim(V") = 4, codzm(Rad( )) #2andl =k =K', with k" the quadratic
Galois extension of k'

determined by MOV', ¢, k).

(ii.c) codim(Rad(f")) = 2, B induces a bijection ¢ from I to {¢'(w') |w" €
Rad(f')}, there exist constants ¢ € k, ¢ € k' such that 1 € d¢'(v') |w' €
Rad(f")} and an isomorphism « from k to the field generated by {c'q'(w")
|w' € Rad(f")} such that :

dp(v) = (cv)®, Yo €,

(178) (X', (Uy)wex') is a hermitian Moufang set M(H(V', ¢, k', o)) with
dim(V') =2 and |l = k = Fiz(o'),

(i) (X', (Uy)wex) is a unitary Moufang set MU(V',¢', k', 0") defined over
a generalized quaternion algebra k' with standard involution o', dim(V') = 2
and k=12 Z(k'),

(v) (X, (Uy)wex) is an indifferent Moufang set P(k',I'; k'), there exists a
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field isomorphism from k to k', a constant ¢ € k' such that :
B((x)) = (c'z%), Y(x) € P(k,1; k).
proof :

First case : (X'(Uy)wexr) is a projective Moufang set P (k).

As P(k,l; k) as commutative Lemma 119 implies that & is a field. Using
Proposition 126 we see that in this case P(k,[; k) is isomorphic to P (k) if
andonly if | = k =k,

Second case : (X'(Uy)wex) is an orthogonal Moufang set MO(V', ¢, k', o).
In this case we refer to Proposition 127.

Third case (X'(Uy)yex) is a hermitian Moufang set MH(V', ¢, k', 0").

As P(k,l; k) has commutative root groups Lemma 118 implies that dim(V")
=2and MH((V',¢',K',0') = P(Fix(o")). Proposition 126 implies then that
P(k,1; k) is isomorphic to MH(V',¢',k',¢') if and only if [ = k = Fiz(d").

Fourth case (X'(Uy )yexr) is a unitary Moufang set MU(V', ¢, k', o").
Without loss of generality we can assume that ¢' is a (o, —1)-quadratic
form such that 1 € Tr(o). As P(k,l;k) is commutative with commuta-
tive root groups Lemma 104 and Corollary 122 imply that MU(V', ¢, k', o")
is an extended polar line defined over a generalized quaternion algebra k'
with standard involution ¢’. Lemma 123 implies that dim(V') = 2, and
MUV ¢ K, 0") = P(Z(K')). Using Proposition 125 we find that P(k,[; k')
= MU(V,q,k,0)) if and only if [ =k = Z(k).

Fifth case: (X'(Uy)wex) is an indifferent Moufang set of the form P(k',I'; k').
choose for both P(k,l;k) and P(K',I'; k') coordinatizations. After a possi-
ble re coordinatization of P(k',I';k') we can assume that 3((0)) = ((0)),
B(o0) = (00) and B((1)) = (1). As 3 defines a bijection between the points
of P(k,l;k) and P(K',I'; k') it induces a bijection from [ to I’ which we also
denote by 3 if we set :

B((v)) = (B(v), Vv € L.

As u((00); (0), (v))((w)) = (v+w) we deduce f(v+w) = f(v)+5(w). Hence
B defines an additive morphism from [ to I’
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The assumptions on [ and I’ show that k* = [? and (k')* = (I')%.

The equations s 1)(v) = (v™') and s, (1) = (v7?) show that B((v™"))
= ((B(v))™Y) and B((v?)) = ((B(v))?), Vv € I. Using these equations one
easily shows that (3 defines a bijection from (2 to (I')? preserving the additive
group structure, squares and inverse. The proof of Proposition 124 yields
that 3 defines an isomorphism from k? to (k')%. Thus if we define the map

a from £ to k' by :
alz) =+/B(x?), Ve ek
we find that « defines a field isomorphism from % to &’ such that

B((v)) = (v%), Vv € L.

Remark that we the assumption that 5((1)) = (1) can require a possible re
coordinatization. This means that with respect to the original coordinate
system we find a ¢ € &’ such that

B((v)) = (dv*), Vv € L.

Conversely let a be a field isomorphism from k to &’ such that there exists a
constant ¢’ such that :

dx® el Vrel

Define the bijection 3 from P(k,[; k) to P(k',l"; k') by :
B((x)) = (d'z%), Yz € L.

Using Lemma 41 we check that § defines a Moufang set isomorphism. In
order to use this lemma we have to show that the map () defined by :

Boo) (U(o0)) = B0 (o) © 57, Vtt(eg) € Ul

defines a bijection from the root elations fixing (co) in P(k,[; k) to the set
of root elations in P(k',l'; k") fixing (c0) and similarly the map () defined
by :

By (o) = B o e B, Vi) € U

defines a bijection from the root elations in P(k,l; k) fixing (0) to the root
elations of P(k',1'; k') fixing (0).
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Let (v') € I' we calculate :

Bu((00): (0), (£)B (V) = Bu((o0); (0),_1(15))(((0’_11}’)“71))

= u((00); (0), B())((v))
Bu((00); (0), ()87 ((00)) = (00)
showing that S(ec)= (u((00); (0), (t))) u((c0); (0), B((?))))-
Let o' €'\ {0}.
We find :

Bu((0); (00), ()87 ((v') = Bul(0); (00), (H)((( ™ o)™ 7))
= B )T +tT)T)
= (" ()™
= u((0); (c0), B(1))((v))
Bu((0); (00), (£))B((0)) = (0)

showing that S (u((0); (00), () = u((0); (00), B((t)))-
Using Lemma 41 we thus find that g defines a Moufang set isomorphism.
O

3.16 Local characterizations of some classical
Moufang sets

Main aim of this section is to generalize the techniques developed in the
previous paragraphs and come to a more abstract theory. To simplify the
notations and calculations we will assume that we always work with (o, —1)-
quadratic forms with 1 € Tr(o) if o # 1. As explained in Corollary 92 and
section 3.12.3 this does not put any restrictions on the forms we consider.

Theorem 132 Let (X, (U,)zex) be a Moufang set with non-commutative
root groups. Then (X, (Uy)zex) is isomorphic to a Moufang set of the form
M(V,q,k, o) where dim(V') > 5, and if k is a generalized quaternion algebra
o is a non standard involution if and only if there exists a family of proper
Moufang subsets (Y;)ier of (X, (Uy)zex) ond two points y; and yy such that :
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(i) For every i € I, Y; is isomorphic to a Moufang set of the form M(V;,
¢i,ki,07) where if k; is a generalized quaternion algebra o; is a non
standard involution. All'Y; have the same type. If the Y; are hermitian
Moufang sets dim(V;) > 4, Vi € I,

(ii) y1, y2 € Y;, V € I and every three points x1, xa and x3 are contained
i some Yy,

(iii) If the Y; are orthogonal Moufang sets the following condition holds :
for every i, j € I the Moufang set Y; NY; is non-commutative with :

Z(FWTYZ{?JLW}) = Z(FZ-TTY]{ylva})a \VIZ,] € I

If char(k;) = 2, Vj € I, ¢;*(Y;) is a Moufang set M(Vij, qij, kj, 0;),
where Vi; is a subspace of V; and q;; = ¢

Vij+

(iv) If the Y; are not orthogonal Moufang sets the following
condition holds :

Z(Staby, (Y;)) = Z(Staby,, (Y;)), Vi, j € I,

(v) If the Y; are hermitian Moufang sets there exists a Moufang subset Yy of
the family such that Yo NY; NY; is a Moufang set with non-commutative
root groups for every couple i, j € I.

proof :

Suppose (X, (Uy)zex) is a Moufang set M(V, ¢, k, o) such that dim(V) > 5
and if k is a generalized quaternion algebra o is a non standard involution.
Choose a coordinatization of M(V,a, k, o) associated to a decomposition V'
=e 1k ®Vy ®erk. Set Hy = { W} | W¢ is a subspace op V and codim(W)
=3 }. By construction we can consider for every Wi € Hy the Moufang set
Y, = M(e_1k®Wideik, q, k, o). One easily checks that if we set the family
(Y;) satisfies the conditions of the Theorem.

Conversely suppose (X, (U,)zex) and Y; are Moufang sets as in the theorem.
If all Moufang sets (Y;) are orthogonal we put € = 1 and in the other cases
we set € = —1. For i € I we will assume that ¢; (o;, €)-quadratic form with
associated sesquilinear form f;. Moreover we will denote the isomorphism
from M(V;, q;, ki, 04) to Y; by ;. Choose for every i € I a coordinatization
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of M(V;,q;,k;, 0;) associated to a decomposition e’ |k &V de} with labelling
set. Ry, = {(v,v}) € Vi x k; |qi(vf) + v} = 0} such that ¢; ((c0)) =y and
¢i((0,0)) = v».

Remark that the conditions (iii), (iv) and (v) of the theorem imply that
Y;NY; #0,V 4, j €l Forielwehave char(k;) = ord(uy,), Yu,, € Uy,
and it follows that char(k;) = char(k;) Vi, j € I.

Throughout this proof we will use the following notation which was intro-
duced in Chapter 1. If (X, (U,)zex) and (Y, (Uy)yey) are two Moufang sets
and ¢ is an injection from (X, (U;)zex) into Y. Then we will denote for u
€ TX, the automorphism g o uo ot of (Y, (U,)yey) as u?.

Also important to mention is that by Lemma 47 the conditions on k; and o;
yield that Tr(c;) generates k; as a ring if Z(k;) # k;.

If o; # 1,V € I we introduce the following notations :

Condition (iv) of the theorem yields that for ¢, j € I :

{pil(ap, a1))|(ap, a1) € Z(Ry 1, @)} = {p;((ag, a}))|(ap, ai) € Z(RG,, ®)3.35)

If i € I we will denote in the sequel L; = {a} € R |a} = q(a}), a}, € Rad(f;)}
= {a} |(ah,a}) € Z (R}, ®) for some af € V'}. Remark that for ai € L; the
element a}) € Vj such that ¢;(a)) = a! is uniquely determined by a}. (If there
would be another b € Rad(f;) with ¢;(b}) = a} the equation g(a} + b)) =0
implies that af = bj.) Moreover as (0,1) € R}, Vi € I, by assumption we
can introduce the following notation. For §° € L; we set :

Mei = S(xf),Gi)S(O,l)a

with z¥ the unique vector in Rad(f;) satisfying q(xf) = 6.

As a first step we show that for every i, j € I the set ¢; *(Y;) is a Moufang
subset of M(V;, ¢;, k;, 0;) of the form M(V;,q;;,k;,0;) where V; is a subspace

of V; and ¢;; = ¢;lv;;-

Remark that if (v}, 1), (1w, w}) € o7 (V7) also (v}, v}) & (wf, i) € o7 (¥))

1. The Y] are orthogonal Moufang sets VI € I.

If char (k) = 2 it follows by assumption that o; ' (Y;) is of the form M(V};, g;;, ki, o)
where V;; is a subspace of V; and ¢;; = ¢;
Remains the case where char(k) # 2.
Let (vf,v}) € @7 '(Y;) and X' € k;. By Lemma 109 we know that s, i i (i)
Swown) € Z(Fixry, {y1, y2}). As Z(Fixry, {yi, y;}) = Z(Fizry; {1, y2})
we find that valg,vg) Swiriwi(viy2) € Stabrx (YiNY;). In particular sq;xi ui(aip)

Vij-
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i oy i\ i \i4 -
Swiwi) (U, 01)) = (vh(N)?, 0iAT) € o (Y)).
Moreover as :

i i i i i PG Qi iy iyid
(U0(1+/\)27v1(1+/\)4) = (%7”1)@2(7)0/\7U1(>\)2)@(v0(>‘)2avl/\)

and (vo(X)2, 0 XY) € 7! (Y]) we see that 2(vi X, vi(X)2) € 7' (Y;). Hence
(V0 A2) € o 1(1;).

2. The Y] are hermitian Moufang sets such that dim(V;) > 4, VI € I.

Let (v, v}) € p; '(Y;). Equation (3.35) shows that {(0,6°) |§* € Fiz(0;)} C
©;'(Y;). Therefore we find for pi' € k; that u((o00); (0,0), (0, ") and m,: sta-
bilize ;' (Y;). This means that {(v§, vt + 0°) |0° € Fiz(o;)} C ¢;'(Y;) and
{(vop®, prorp* + 0) |0, p* € Fix(o;)} = {m:(vh, v} +0) 6", u* € Fiz(o;)}
C ¢; (Y)).

By assumption we have (0,1) € ¢;' (Y;). Hence p;' (Y;) is stabilized
by s(,1). This implies that also the set {(Uévfl/ﬁ it +6%) |08, put
€ Fiz(o;)} is contained in ¢ ' (Y;)}. As v € Fix(o;) = Tr(0;), the field k;
equals Fiiz(o;)(vi~"). We thus find that ¢; *(Y;) is of the form M (V};, gjs, ki, 04),
where Vj; is the space spanned by the vectors in {(; '(y;))o |y; € ¥; N Y;}
and g;; = ¢; Vij-

3. The Y, are unitary Moufang sets with such that if k; is a generalized
quaternion algebra, o; is not its standard involution. # Z(k;), VI € I.

Let (vj,vl) € ¢; '(Y;). Formula (3.35) shows that {(0,6°) |¢® € Tr(o;)} C
¢; *(Y;). Hence u((00);(0,0),(0,6;)) stabilizes ¢; '(Y;), V0; € Tr(o;). This
means that {(v},vi + 09)|6° € Tr(o;) € ; '(Y;)}. Asalso (0,1) € p; ' (Y;)
the elements my, = 5(0,9,) S(0,1) for 0; € k; will stabilize o7 (Y5).

Let A\' € k;. Denote as in the the second subcase of the proof of Theorem 129
Stwi ety (u((00); (0,0), (vg, 1)), me: |6° € Tr(ai)). Then we proved that there
exists a ¥ni € S(ys i) such that pxi((vg,v7)) = (vpX°, 707 ), with (v, 07)
€ R}, By definition of S, ,z) it follows that S, i) € Stab(p; (V). This
means that (vj ', \'70% \Y) € ;1 (Y;) and {(vi\’, X7 viX +6%) |6° € Tr(o;)}
C o7 (Y).

This shows that ;' (Y;) will be the Moufang set of the form M (V;;, ¢i, ki, o)
where V;; is the space spanned by {(¢; ' (y;))o ly; € ¥ NY;} and ¢;; = gilv;,-
As a next step we show that for any every i, ;7 € I there exists a unique
element c; ; € k;, and a unique bijective semi-linear transformation f3;; from
Vi to V§ and a field isomorphism «;; from k; to k; such that :

(v, v1) = (Bij(vg), cijvi™), V(wg, v1) € 97" ()  (3.36)
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Cij(}\i)aiaijci—jl — >\Olijt7]'7 V)\i I ki~ (337)

Firstly we show the unicity of ¢;;, 8;; and a;;. Suppose that there exist d;;
€ Fiz(o) NZ(k), a semi-linear transformation ¢;; with field isomorphism ~;;
such that a formula similar to (3.37) hold. We find :

Bii(vg) = dij(vp)
ey’ = digey”
for (v, vi) € ¢; ' (Y;). The first equation shows that 3;; = &; while the
second equation implies that c;;, = d;;.
If the Y; orthogonal or hermitian Moufang sets the assumptions of the the-
orem imply that there exists at least one (v§,vi) € ;' (Y;) with vy # 0. In
this case the first equation shows a;; = v;;.
If the ¥; are unitary Moufang sets and ¢; *(Y;) = {(0,6°) |¢" € Tr(c*), the
second equation shows that a;; equals v;; as Tr(o%) generates k; as a ring.
Firstly we prove formula (3.37) if ¥; N Y} contains a z € X such that
u(y1; ya, 2) & Z(Staby, (Vi) = Z(Staby, (Y;)).
Remark that this is only possible if all Y, are hermitian or unitary.
If M(V;, ¢;,k;,0;) is hermitian we choose z; € Y;, z; € Y; such that (¢;"(2:))o
and (g; '(2))o are linearly independent and similarly (¢, (z;))o and (¢, (2))o
are linearly independent.
If M(V;,q;, ki, 0;) is unitary we choose z; € Y; and z; € Y; such that :

[U(y1;y2,zi),u(y1;y2,2)] 7é 1 and [U(y1§y272)au(y1§y2vzj] 7é L.

Let Y; be a Moufang set of the family containing z;, z; and z.

The permutation ap[lgoz- of Y; N'Y] defines by assumption an automorphism
of the Moufang set Y; NY;. The Propositions 128 and 129 show that there
exists a constant ¢; € k; and a bijective semi-linear transformation J; from
Vi to V! with associated field isomorphism ay such that :

Cilkiaio‘ilci—ll = )\iailaj, VAZ S ki
e i o))t = (Balvp), cavt™), V(ug, v1) € o; (V)

By similar arguments there exists a constant ¢;; € k; and a semi-linear trans-
formation 3; from V{ to Vy with associated field isomorphism ay; such that :

1915 —1 19105 l A
Cl]')\ ¢y = A , YN EK

w7 te(v,v1)) = (Bvp), i ™), V(v vh) € o ' (Y7).
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In particular :

07 '0i((0,67) = »5 oo il (0,6°))
= 7 @((0,ct™™))

Q15 i Qi
(0, ¢rc; "0 )

= (07 Cijeiaij)

iy —1

. ay; 0
if we set ¢;; = ¢;"¢; and a;; = ayag; we find ¢;; € k; and ¢;; X' >

= N YN € k.

If M(V;, q;, k;, 0;) is unitary we leave it as an exercise for the reader to check
that one can proceed as in the proof of the second subcase of Theorem 129
to see that formula (3.37) holds.

If M(V;, gi, ki, 0;) is hermitian, the assumption that ¥; N Y; has non-commutative
root groups implies dim({ (v; '(y;))o ly; € YiNY;)) > 1. We consider two
subcases.

First subcase : dim(((¢; *(y;))o |y; € ;iNY; )) > 1.

Then one can proceed as in the proof of (ii.c) of Proposition 128 to see that
formula (3.37) holds.

Second subcase : dim({(¢; ' (y;))o ly; € YiNY; ) = 1. In this case we have
Y;NY; C Y. Applying Proposition 128 to ¢; "' ¢; and %_—1 ¢, proves that
also in this case formula (3.37) holds.

Remains to prove formula (3.37) whenever Staby, (Y;NYj}) C Z(Staby, (Yi).
We distinguish three cases.

If the ¥; are orthogonal, ;' (Y;) and ¢;'(Y;) are non-commutative orthog-
onal Moufang sets. As 99;1 ¢; defines an isomorphism from ¢;'(Y;)) to
@7 (Y;) formula (3.37) follows from Proposition 127.

If the Y} are hermitian assumption (v) of the theorem imply that in this case
Staby, (Y;NYj) cannot be contained in Z(Staby, (Y;)). Hence this case can-
not occur.

If the ¥} are unitary Moufang sets the assumption on Staby, implies that ¢
{(ag, a}) |(af,al) € Rad(f;)} =Y:NY; C e Ye- Consider in this case a
Moufang set Y such that ¥; N Y] contains an element z; with u(yi;ys, 2;)
¢ Z(Staby, (Y;) and similarly ¥; N Y; contains a 2z with u(yi;ys, z) ¢
Z(Staby, (Y;). Then we already know that formula (3.37) holds for ¢, 'p;
and 4,9]-_1991. AsY;NY; C Y, formula (3.37) will also holds for 4,9]-_14,92- = (,oj_lcpl
o i

To proceed we choose an initial Moufang subset Yy, where Yj is arbitrarily if
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the Y; are orthogonal or unitary and is as in condition (v) of the theorem if
the Y; are hermitian.

Using Y;, we define the following binary relation (denoted by ~) on X.

Let z, ' € X. We set :

z~ 2 &y, z)(r) = 2, for some z € po{(vo,v1) € RY, N{0} x Ko}

Remark that if all ¥; are orthogonal we find for v, v’ € X, v ~ ¢’ if and only
ifvo="1"
If 0g # 1 we have :

z ~ 2’ & u((00);(0,0),(0,0))° (z) = (2'), for some 6° € Tr(ay).

We check that ~ is an equivalence relation on X.

If the Y; are orthogonal this is clear. Remains to consider the case where o;
#1,Viel

(a) ~ is reflexive.

This is clear as for any z € X, u(y1;y2, y2)(x) = .

and o((0,0)) = yo.

(b) ~ is symmetric.

If 2 X there exists a 0° € Tr(op) with u((c0); (0,0), (0,6°))%°(z) = 2.
Equivalently :

(u((20);(0,0),(0,6%))*) 7 (z') = u((00); (0,0), (0, —6%))** (')

= .T,

and we find 2’ ~ .

(c) ~ is transitive.

Let z ~ 2’ and o' ~ 2.

This means that there exist °, " € T'r(0g) such that :

u((00); (0,0), (0,0%)%°(z) = 2
u((oo);(0,0),(0,9'0))"’0(:6') = 2"

Hence :

u((00); (0,0), (0,6°)*°u((0); (0,0), (0,6”))*(x) = u((00); (0,6° + ")) (x)

I”
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and z ~ z".

In the sequel we will denote for x € X its equivalence class with respect to
X as o and we set V = {xo|z € X}.

As a next step we show that there exists an addition and scalar multiplica-
tion with elements of kg on V4 turning it into a right kq-vector space.

1. Addition :
Let zg, yo € V5. Choose = € xg, y € 1o and set :

zo 4+ Yo = (w(y1; y2, 2)(y))o-

We show that this is well defined i.e. independent of the representatives we
choose for zy and yy. Let 2’ € 5. Then we have to show that :

(u(y1;y2,2)(Y))o = (u(ys; y2, ") (¥))o-

If the Y; are orthogonal Moufang sets this is clear as for every z € X,
xo = {z}. Remains the case where the Y; are not orthogonal.

Let Y; be a Moufang subset as in the theorem containing z and y with
o; Y(z) = (vh,v}) and ¢; Y(y) = (wh,w}). By assumption on z and 2’ there
exists a 8° € Tr(op) such that u((00); (0,0),(0,60°))%°(z) = .

Formula (3.37) shows that ©(0,60°) = ¢;((0,6°)) for some ¢° € Tr(c;). It
follows that z' € Y, u((00);(0,0),(0,6°))?° = wu((c0);(0,0),(0,6%))¥ and
o (@) = (v, 0] + 0.

Therefore we find :

u((00);(0,0), (0, v+ %)
((00); (0,0),(0,6))%u (20): (0,0), (¢, v4))*(v)
((00); 0,0, (0,6°))%(u(y 2, 7)(v))-

Hence (w(y1;92,2")(y))o = (w(y1; y2, ) (y))o-

—~

U(?Jl% Y2, :r')(y)

2

= U

We prove that (5, +) is an abelian group.

+ is associative on V.

Let xq, yo, 20 € Vo, x € 20, ¥ € Yo, 2z € 29 and Y; a Moufang subset as
in the theorem containing z, y and z. Associativity follows from the
associativity of @ on R&l using the isomorphism ¢;.
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(y2)o is neutral element for +.
This follows from the fact that ¢;((0,0)) = y», Vi € I.

Every z( has an inverse for +.
If zy € V; and (np,((vo,vl))g = xo one checks that the inverse if g is

given by (p;((—vp, _Ufl —f(v5,v5)))o-
+ is commutative on V4.
Let xg, yo € Vo, © € xy, y € yo and Y; a Moufang subset as in the

Theorem containing z and y.
Consider the equations :

u(y;y2,9)(x) = u((o0);

( ) '
= @i(u((00); (0,0), (wp, wi))((vp, v1)))
= ¢i((wp, wh) @ (v5,v1))
= ¢i((0, (v, wh) = flws, ) @ (vf, v1) © (wp, wy))
— u((50); 0,0), 0, F(vhywh) ~ Fluwh, o)
u((00);(0,0), (vg, v7))(wp, w}))
= u((oo),(0,0),(O, (vé,wo) f(w(zbv(z)))%
ul(50); 0,0), (1h. 1) (s
= u((oo) (070)7(07 (U(ZhwE)) f(wgvv%)))%
u(y1; Y2, ) (y)

as u((oo); (Ov 0)7 (O,lf(’l}o, wo) - f(wf)v vé))wi = u((oo); (Ov 0)7 (af)v azl)) for
some (ap,a;) € Ry, N{0} x k;. this shows that (u(yi;y2,7)(y))o =
(w(y1;y2,y)(x))o and thus zo + yo = yo + Zo.

2. Scalar multiplication :

Let A € kg and 2y € Vy. Define xpX in the following way. Choose a z € xg

and Y; such that x € Y; then we set :

oA = (p((7 " (2))o X, A7 (7 (2))1A%) )o.

We check that this multiplication is well defined i.e. independent from the
representative x of xy and independent ofthe Y; containing x.
Suppose z' € ry and 2’ # z. This means that there exists a §' € T'r(c) such

that (') = ((¢7(2))o, (" (2))1 +09)
We find :
(05 M (") JoAor, X0 (o7t (') ) A7)
= (i H(@))oA0r, X0 (o ()1 + 0F)A%).



3.16. LOCALLY CLASSICAL MOUFANG SETS 215

Therefore we find that (o;((¢; ' (7))o A%, A2 (7! () A%00))g =
(0i((071(2")0 Aags» A2 (o7 (2"))1 A%i))o. Showing that the definition of
multiplication with elements of k is independant from the representative x
we choose for xg.

Remains to show that the definition of scalar multiplication is independent of
the initial Moufang set Y; containing & we choose. To prove this we suppose
r €Y, NY;.

Let ¢;;, fij and a;; be as in formula (3.37). For the following calculation we
distinguish two cases.

First case : The Y] are hermitian or orthonal Moufang sets.

Conditions (#i¢) and (v) of the theorem imply that there exists a (v}, v?)
€ vy ' (i) Ny () with vf # 0.

Using formula (3.37) we find for A € kg the equations :

990(('03)\7 )\J’Ui)\)) = @ ((ﬁOj (vé))\aoj 7 COj)\aojU’Uiaoj >\a0j))
A, gy
(BB () A0 e P )

This yields :

Co; Gij = Coj

P S I DW= (3.38)

Second case : The Y; are unitary Moufang sets.
The equations :

00((0,6°) = »;((0,c0;6°™))
= 9i((0,c0:8°"))

= (0, ci5c570° )

show that :
Ciicoil = Coj
oo _ 90%]" Ve e TT(UO). (3.39)

As Tr(og) generates ko as a ring this implies :

AP0 — N5 YN\ € k. (3.40)
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We return to the general case.
By formula (3.37) we have :

95 (x) = By (7 (@))o), e (7 (2))1)™)

yielding :

(e ' (@)o = (Bii((e; '(x)))o

(o5 (@ = eylpi' (@
Using equations (3.38), (3.39) and (3.40) we have :
i(((7 1(»”C)) A2i, N0 (o () A7)
(oo, D on g g o)
(

(
(Bis (s
(ﬁm(( ( )) ))\0‘010‘” AQ0i%ii e, (991 (.T) \Q0iij
( l(x)) \o0j )\aomz( - ( )) /\060;

@
= @;
©;
@i ((¥;

J
J
J

In this way we can conclude that the definition of multiplication is indepen-
dent ofthe Y; containing = we choose. Hence the definition of multiplication
of vectors in V; with elements of ky is well defined. By construction one
easily checks that the multiplication determines a scalar multiplication on V;
turning V; into a right kg-vector space.

Remains to define a quadratic form on VO As for i, j € I, ¢;((0,c;)) =
©;((0,¢05)) = ¢0((0,1)) we deduce that S(Oc 0= (oj,co]-)'

Let g € V5. We show that 3(071) defines a permutation on V; sending (zo)
to a vector of (rp). To prove this we choose a representative z € zy and Y;
containing x.

We have :
S((poovl)(r) = Sf()i,coi)(x)
= (= @Nol (o7 (@)1 cors —con (057 (@)1) )
(3.41)

€ ao(—(((p7 " @)) ) ),

As for any ' € Tr(o;) :

5@1)@2‘((0, 0)) = ¢;((0, —coit'coi)),
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we find that :
SL('DO(J,l)(xO) = ToAy,, fOr some A\, € ko depending on z.
Therefore the following definition of ¢ makes sense. For zq we set :
q(xo) = 1;0 , Vo € Vo
Using the form ¢, we define the form f on V{ by :
q(zo + o) = q(x0) + q(vo) + f(20,%0), V0,0 € Vo.

The fact that for i € I, si,) = (., and equation (3.41) show that g(zo)
can be calculated in the following way. Choose a representative x € xg and
a Y; containing x.
We have : ) )

q(z) = (e )™ (@i((7 " (2))o)) ™.
We show that ¢ is an anisotropic (oo, —1) quadratic form on V{ with associ-
ated (o9, —1)-sesquilinear form f.
Let xq, Yo, 20 and XA € kg. Choose representatives x € g, y € Yo, 2 € 2o and
a Moufang subset Y; as in the theorem containing z, y and z.
By definition of addition and scalar multiplication we have ((¢;'(z))o +

(0 ' (W))o, (o (@)1 + (057 ()1 —F((; " (2))o, (05 '(y))o) € zo + yo and
(0 M)A, A2 (o 2(z)); A9 € zoA.
We find :
o) = () e @)
= () AT (g, ((i07 ())o)) 5 A
= A (a((p; 1 (2))0))25 A
A7%g(zo) A

where we used the fact that by formula (3.37), A%i(cg!)o0 = (cg;)°®
X000 Y\ € k.
Moreover the equations :
a(zo+yo) = (o)™ (a:((w; ()0 + (97 (y))o))
= ()™ (@(20))™ + ()™ (a(wo)™ +
(e ) (fil (27 (2))os (07 (4))o)) e
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show that :

F(zo.y0) = (o) (fil(2(2))os (7 (1))0)) % .
As :

ﬂm+%%>=<@Vme;mn + (9 ' (y

= (cp)°0 (fillei: (x))m(%l(zr)) )
oo (fil (@i ()0 (7 1(2))o ))%i

= f($0720)+f(y07 20)

f(zoX, vo) = (Co )%’ (fz((% (37)

A7 (et )2ai (il (7 (%))o ,(sol’l(y))o )%

X’Of(l"ol, Yo)

f (Yo, moX) = (%W“z(ﬁ((% Hy))o, (07 (x))o A%zl))%i

(co )™ (fil (i ()0, (7 (2))o)) %o A

f(yoyl"ol))\

f(zo,90) = (0&1)%15fi((% H@))o, (97 ())o)) 00

e ) (Fi((e7 (0))o, (977 (2))o)) %0

= ‘Ef(y(h 'TO)

1

we conclude that g is a (09, €)-quadratic form with associated (o9, —1) sesquilin-
ear form f. The fact that ¢; is anisotropic on V{ for every i € I yields that
q is anisotropic on Vj.

In order to construct a unitary Moufang set isomorphic to (X, (U, )zex) we
consider the vector space e_1ky ® Vi Pejky where e_; = y; and e; = y».
Define the forms ¢ and f on V by :

qle—1x—1 + 20+ €121)
— ety 4 q(m)

f(6,1$,1 + 9 + €1T1,€_12_1 + 20+ 612’1)
= ex? 121+ 271+ f(xo, 20)-

As ¢ is anisotropic on Vj, ¢ will be a (o9, €)-quadratic form on V' of Witt
index 1 with associated (og, €)-sesquilinear form f. Therefore we can con-
sider the Moufang set MU(V,q, kg, 09). Choose the coordinatization of
MU(V, q, ko, 00) associated to the decomposition V = e_1kg @& Vo ®erko.
Define the map + from (X, (U,),ex) in the following way.

Let x € X. Choose a Y] such that z € Y] and define :

() = (20, () (07 (2))1)* ).
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Using Lemma 41 we check that 5 determines a Moufang set isomorphism.
1. ~y is well defined map from X to MU(V,q,k,0) i.e. y maps elements
of X to points of MU(V, q,k,0) and for z € X, y(z) is independent of the
Moufang subset Y; containing x we choose.

Let € X and choose Y; with x € Y;. Following the definition of ¢ on V; we
find :

1

a(zo) = (M) (a:((p; M (x))o))
—(co)™ (95 (@))1).
This shows that v(z) € MU(V,q,k,0).

Remains to prove that v is well defined. Suppose x € ¥; NY;. Using formulas
(3.38), (3.39) and (3.40) we deduce :

(971 (@) = cojlcp) 0 2 (97 ) (2)1) %0 @0,

Equivalently :

-1

(e )™ (07 (@))% = (c5;)™ (5" (2))1)™r
showing that ~ is well defined.

2. v defines a bijection from X to the points of MU(V, q, k, o).
Let (vg,v1) € MU(V,q,k,0). Choose a v € vy and Y; containing v. Using
the definition of ¢ on V' we find :

a@w) = () (@ (o7 (v)o) ™

V1.

We find that ((; *(v))o, cmvlo‘“’) € v; 1(Y;). Remark that by definition of V;,
(0; 1 (v)o = (¢; 1(v'))o, if v' € vy. This means that (vg,v;) determines the
unique point = = ¢(((¢; " (v))o, covy™)) such that y(x) = (vo,v1).
3. 7 induces bl]eCthHS Yooy from Uy, to Uiy and (o) from Uy, to Uy
defined by :

Voo (W13 92, ) = youlyi;ys, ) 0y

~y
Yo,0 (u(y2; y1, 7)) = vou(yz;yl,x)oy—l,
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Let u(y1;y2,2) € Uy, (20,21) € MU(V,q,k,0). Choose a Y; such that z,
Y7 (20, 21) € Yi with (%o, 71)) = 2, ¢i((Z0, c0i2™)) = 7" (20, 21).

We find :

Yu(ys; y2, 2)y (20, 21))

Yu(y; y2, 2)@i((Z0, coiz1™)

Yi(u((00); (0,0), (Zo, 21)))((Z0, coiz1™))
Y2i((To + Zo, T1 + coi21™ — fi(To, Z0)))
(xo + 20, (cail)aaila_?l +5

—(co")° (fi(T0, )"0

(o + 20, (") &1 + 21 — f (o, 20))
u((00); (0,0), (o, (c5") % 1)) (20, 21))
u((00); (0,0), v(x))((20, 21))-

This set of equations clearly yields that (. defines a bijection from U, to

Uoo-

Similar calculations show that 7y defines a bijection from U, to Uy ).
By Lemma 41 it follows that « defines a Moufang set isomorphism. O
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Chapter 4

Existence and non-existence

4.1 Introduction

In the standard reference [32], J. Tits sketches a possible outline leading
to a classification of twin buildings. Having already working with Moufang
buildings in the past B. Mitherr took on the subject with Tits’ approach as
starting point. After a while he managed to write a concrete classification
program for 2-spherical twin buildings down. To this end a lot of techniques
and theorems of algebraic group theory (as described for example in [33]) had
been extended. Especially the theory on Galois cohomology. For a detailed
description we refer to [20] more particularly to Chapter 7 of this work.

To complete the classification program B. Miihlherr still needed a classifica-
tion of 3 types of geometries, namely twin buildings of type As, B, and 443.
One of these types consists of the class of B, twin buildings. The B, case
seemed to be a crucial case where a lot of work was around. One of the main
aims of this thesis was therefore to describe all possible B, twin buildings
where the rank 2 residues are one of the quadrangles as described in Chapter
3.

To simplify notations and theory we will not give a concrete list of all these
buildings as twin buildings. Instead we give give a description of all Moufang

223
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buildings of type B,. As under some restrictions on the residues 2-spherical
twin buildings and Moufang buildings are the same objects we have there-
fore also a classification of B, twin buildings with some restrictions on the
residues. (For a proof of the fact that in almost all cases 2-spherical twin
buildings and Moufang buildings are the same objects we refer to Chapter 2
and [18]). Moreover the techniques used for the B, case also applies to the
443 case leading to existence condition for twin buildings of type 443. We
start by recalling some known theorems and lemmas on isomorphism and
automorphisms which will be useful later on.

4.1.1 TIsomorphism and automorphisms of some quad-
rangles

In this section we rephrase some isomorphism and automorphisms of some of
the quadrangles described in Chapter 3. Most of the result in this paragraph
can be found in or derived from [37] or in Chapter 8 in [29]. For sake of
completeness and as some results are not presented in [37] or [29] in the form
we want, we will give in most cases explicit proofs.

Theorem 133 Let Q(FE, q,k,0) be a quadrangle defined by a (o, €)-quadratic
form q of Witt index 2. Let f be the (o,€)-hermitian form associated to q.
Suppose that dim(E) > 5 if o = 1 and € = 1, and if k is a generalized
quaternion algebra, o is not its standard involution.

A permutation g of points and lines of Q(E,q,k,0) is an automorphism
of Q (E,q,k,0) if and only if there exists a constant ¢ € k, a semi-linear
transformation ¢ with associated field automorphism a such that :

9((z,9)) = (p(z),0(y)), V(z,y) € Q(E, ¢, k,0)

c(g(@)* = qlp(2)), Yz e E

c(f(z,9)* = fle(2) p(y), Yo,y € E.

proof :

Let g be a permutation of the points and lines of Q(F,q,k, o) preserving
incidence. Theorem 8.6 in [29] implies that there exists a constant ¢ € k,

a semi-linear transformation ¢ with associated field automorphism a such
that :

9((z,y)) = (p(x),¢v)), ¥(z,y) € Q(E,q,k,0)
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c(q(z))* = q(e(z)),Vr e E
c(f(z,y)* = fle(),ely)), Vz,y € E.

Conversely let ¢ be a semi-linear transformation with associated field iso-
morphism « such that :

c(q(z))* = qle(z)), Vo€ E
c(f(z,y)* = fle(x),¢(y)), Yo,y € E.

Then we can define the permutation g of Q(E,q, k, o) by :

9((z,y)) = (p(2), 0(y)),Y(z,y) € Q(E,q, k,0).

As incidence in Q(E, ¢, k, o) is completely defined in terms of f one easily
checks that ¢ defines an automorphism of Q(E, ¢, k, o). O

Proposition 134 Let W (k) be a symplectic quadrangle defines over the field
k. Then W (k) is dually isomorphic to an orthogonal quadrangle QO(E, q, k)
with dim(E) = 5. Conversely every orthogonal quadrangle QO(E, q,k) with
dim(E) =5 is dually isomorphic to the symplectic quadrangle W (k).

proof :

Let W (k) be the symplectic quadrangle defined over k. We use the coor-
dinatization of W (k) as described in section 3.5.2. To construct QO(E, g, k)
we reason as follows. Let E = e_ sk ®e_1k Degk Derk Pesk. Define the
forms f and ¢ on E by setting (r = e_ox_s +e_12_1 +eo\ +e1x1 +eaxs and
Y =e_oy_s +e_1y_1 +egp +eryr +eays)

qgz) = N4z sy +a 2
flz,y) = 22 p+2_0ys + Toy_o + x_1y1 + T1Y_1.

One easily checks that ¢ defines a quadratic form on E of Witt index 2 such
that ¢(z + y)= ¢(z) +q(y) +f(z,y), Vo,y € E. We can thus consider the
quadrangle QO(FE, ¢, k). Coordinatize QO(FE, ¢, k) using the decomposition
E =e_2k ®e_1k + ® egk Bek Peyk. With respect to the coordinatization
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we define the bijection 8 from W (k) to QO(E, ¢, k) as follows :
B((e0)) = [od]
B((x) (o, —2?)]
B((v,y) v, (eoy, —y*)]

B((z,w,z") (eoz, —IQ), w, (ep, —55’2)]

[
B([o0] (
Bl = (v)
] ((60'777 _'TQ)vw)
’

B[z,

B(lv,y,v

)
)
)
)
)
)
)

= ( ,(60y, _y2)7vl)'

By construction [ defines a bijection from the point set of W (k) to the
line set of QO(FE,q,k) and from the line set of W (k) to the point set of
QO(E,q,k). As (3 preserves incidence we see that W (k) is dually isomorphic
to QO(E, q, k) under 3.

Conversily let QO(E, ¢, k) be an orthogonal quadrangle defined in the vector
space E such that dim(E) = 5. Choose a coordinatization of QO(E, ¢, k) as-
sociated to a decomposition E = e_sk® e_1k ®Vy Derk ®esk with labelling
set Ro1. Without loss of generalitiy we can then assume that there exists a
vector ey with g(ep) = 1. Remarkt that this implies that Ro; = {(eo), —)\?)
A € k}. Consider the symplectic quadrangle W (k) coordinatizated as ex-
plained in section 3.5.2. Define the bijection 8 from QO(E,q, k) to W (k)

by :

I
=

I
B
E

—_— —= — — — — T
Il
—
<
=
<.
S

B([oc]) = (o0)
B(l(eor, =2?)]) = (x)
B([v, (eoy, —y*)]) = (v,y)

B(l(eor, —22), w, (ez', —2")]) = (w,w,2').

Then one easily checks that 3 defines a duality from QO(E, q, k) to W (k).
O
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Proposition 135 Let QO(E, q,k) be an orthogonal quadrangle with dim(E)
= 6. Then QO(E,q, k) is dually isomorphic to a hermitian quadrangle
QH(E', ¢ K o) where k' is a quadratic Galois extension of k. Conversely
every hermitian quadrangle QH (E, q,k,0) with dim(E) = 5 is dually iso-
morphic to an orthogonal quadrangle QO(E',q', Fiz(o)) with dim(E') = 6.

proof :

We refer to Proposition 3.4.9 of [37]. O

Proposition 136 Let QO(E, q, k) be an orthogonal quadrangle defined by a
quadratic form q with associated linear form f such that codim(Rad(f)) = 2.
Then QO(E, q,k) is isomorphic to an indifferent quadrangle Q(k,k'; k,1').
Conversely every indifferent quadrangle Q(k,k'; k,l') is isomorphic to an or-
thogonal quadrangle Q(E, G, k) and every indifferent quadrangle Q(k,k';1, k')
is dually isomorphic to an orthogonal quadrangle QO(E, q, k).

proof :

Let QO(E,q,k) be as in the proposition. Consider a coordinatization of
the set associated to a decomposition £ = e_sk & e_1k ®Vy ek ® ek
with labelling set Ry ;. Remark that then Rad(f) = Vy. Let (eg,c™) € Ry,
define the set I' by I' = {cq(w) |w € Rad(f)} = {cg(wo) |wy € Vp} and denote
the subfield of k generated as ring by I’ as k'. Clearly I’ satisfies :

(i) 1" is an additive subgroup of &',

(@) It =1

(i) It =1,

(iv) I' generates k' as a ring.

(v) I' is a vector space over k'

Let W (k) be the symplectic quadrangle defined over k coordinatized as ex-
plained in section 3.5.2. The conditions on [’ ensure that we can consider the
indifferent quadrangle Q(k, k'; k,1') by restricting the coordinates in the co-
ordinatization table for W (k) (cfr. section 131). Define the bijection £ from
MOV, q, k) to Q(k,E';E, ') as follows (z, 2', y € k and (vo,v1), (vg,v}),
(’LUo,’LUl) S R(),l) :
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B((x) = (x)
B(((vo,v1),9)) = (cvr,y)
B((z, (wo, w),2")) = (x,cwy,a’)
B([oc]) = [o0]
B([(vo,v1)]) = [ewi]
B[z, (wo, w1)]) = [z, cwi]
B([(vo,v1), 9, (v5,v))]) = [cvr,y, cv]]

Clearly 3 defines in this way an isomorphism from QO(E, ¢, k) to Q(k, k'; k,1").
Conversily consider an indifferent quadrangle Q(k,k';k,l'). Let {e} |i € I}
be a base of I, where I’ is seen as a k2-vector space. Put E = é_,k ®é_, k ®
Vo @ &1k @&, k where V; is a k-vector space with base {e} |i € I'}. Remark
that the construction of V; implies that we can define a bijection v from /'
to Vj in the following way. Let ©p € I". Then ¥y can be written in a unique
way as a sum Ej eér?, xz; € k. In the sequel we put :

() =Y ebuy.
Define the forms ¢ and f on £ in the following way :

q_(é o2 2+é 1T 1+E €0Uj+élﬁﬂl+égl'2)
=T _oTy+x_ 1x1+zeov
fle_sz_o+e_ja_ 1—1—2 eov]—l—elrl—{—egxz,
€2y—o+E_1y_1+ >, u; + 171 + ExTp
=X _oky +T_ 121

In this way we get a quadratic form ¢ on E of Witt index 2 with associated
form f. Therefore we can consider the orthogonal quadrangle QO(E,q, k).
By construction we have clearly that codim(Rad(f)) = 2. Define the bijec-
tion 3 from Q(k,k'; k,I') to QO(E,q, k) in the following way :

3((c0))
B((x))
Blv,y) =
)
)

g

—

=

)

(
(
(
Bl(x,w, ) (

Blle]) = |

2
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B(l) = [(v(w),v)]
Bllz,w]) =z, (v(w), w)]
Bllv,y,0) = [(v(v),0),y, (¥(), )]

Then one easily checks that  defines bijection from points and lines of
Q(k,K'; k,I') to points and lines of QO(E, q, k) preserving incidence. Hence
Q(k,K'; k,I') is isomorphic to QO(E, q, k).

For a indifferent quadrangle of the form Q(k, &';1, k') we find by Proposition
3.4.4 in [37] that Q(k,k';1,k') is dually isomorphic to Q(K',k?*;k',1?). By
what we already proved we know that Q(K', k% k', k?) is isomorphic to an
orthogonal quadrangle QO(E, ¢, k'). Hence Q(k', k;1, k) is dually isomorphic
to QO(E,q, k). O

Corollary 137 If char(k) = 2 the symplectic quadrangle W (k) is isomor-
phic to an orthogonal quadrangle QO(E, q, k).

proof :

Let W (k) be as in the corollary and consider W (k) as an indifferent quadran-
gle Q(k,k; k, k). Proposition 136 shows then that Q(k, k; k, k) is isomorphic
to an orthogonal quadrangle QO(FE, ¢, k). Hence W (k) is also isomorphic to
QO(E,q,k). O

Proposition 138 Let Q(E,q,k,0) be a quadrangle defined by a (o,—1)-
quadratic form such that dim(E) = 4, kis a generalized quaternion alge-
bra with standard involution o. Then Q(FE,q,k,o) is dually isomorphic
to an orthogonal quadrangle QO(E', ', Z(k)) with dim(E') = 8 such that
M(QO(E", ¢, Z(k)) consists of non-commutative orthogonal Moufang sets.

Let Q(E,q,k,0) be as in the theorem. As k is a generalized quaternion
algebra there exist (cfr [7] p73) i, j € k such that k = Z(k) ®iZ(k) ®jZ (k)
®jiZ (k) with if char(k) # 2, i* = ap, j° = B, and if char(k) = 2, i* = i+,
3% = Po, ij = ij + J, with ag, Bo € Z(k) \ Z(k)?. The norm function on k is
denoted by N. Define the 8-dimensionalZ (k)-vector space E' by :

B =, 2(k) @ ¢, Z(K) © V] © &, Z(k) @ &, Z(k),
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with Vi = e}'Z(k) @e,>Z(k) @e)’Z(k) @e)y*Z(k) . Suppose that the forms
g', f' and ¢' on E' are defines as follows. If 2’ = ¢’ ,2’, +€’ 2", +xf +elz)
+ehal, with ) = ez} 4 e}’z) +e{)3z§. +ehtz, Xl =z —i-zzzé +j§:§ +lzfl,4y’
=elyyly +elyyly Fyp +ehyy +ehys with yy = ef uy + ep uy +epus +ep uy
and p' = u) + duy +juy +lu) we set :

g a) = al,wy+al,2) + N(X)

fila'y) = alyyy +abyly + a2l + 2hyl + N N
g(z' 2"y +Tr(o)

= g(a',2") + Z(k)

)

—
H\

~
I

One easily checks that ¢ defines a quadratic form on E’' of Witt index
2. Therefore we can consider the quadrangle QO(E', ¢, Z(k)). Choose a
coordinatization of Q(FE,q,k,o) associated to a decomposition E = e_sk
De_1k®Vy @erk @exk and coordinatize QO(E', ¢, Z(k)) via the decompo-
sition E' = € ,Z(k) @€ Z(k) ®Vy ®e|Z(k) ®eyZ(k). Define the map 3
from Q(E,q,k,0) to QO(E',q', Z(k)) in the following way : (x = x; +ixs
+jxs + jizy, @' = 2 +ixh +jay +jivy and y = y1 +iys +iys +jiya)

B((o0)) = [oo]

B((x)) = [(ep'z} + ep’xh + ep’ws + e 'zy, —N(2))]

B((0,v1),y) = [vr, (eh'y1 + ep’yo + €4 ys + eh'ya, —N(y))]

5((x’ (Ov w1)7 II)) = [ 661I’1 + 662$’2 + 663$3 + 664$4, _N(I))7 wi,
(e y1 + €h’ya + eh yseh ya, —N ()]

B([o0]) = (o0)

B(1(0,v1)]) = (w)

B([z, (0,v1)]) = ((ep'z1 + ep’ma + e w3 + ey 'wg, —N (), v1)

B0, v1),5,(0,v)]) = (v1, (eh'ys + €hye + €p’ys + € 'ya, =N (y)),v})

By construction we see that [ defines a bijection from the point set of
Q(FE,q,k,0) to the line set of QO(FE', ¢, Z(k)) and from the line set of
Q(E, q,k, o) to the point set of QO(E',¢', Z(k)) preserving incidence. This
proves that Q(E, q, k, o) is dually isomorphic to QO(E', ¢, Z(k)). That M,
QO(E', ¢, Z(k)) is not commutative follows from the fact that

M(QO(E', ¢, Z(k)) = M,(Q(E,q,k,0)) where M,(Q(E, q, k, o)) is the iso-
morphism class containing P (k). O
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4.2 Moufang foundations

4.2.1 Integrable Moufang foundations

Let M = (mjj;);jer be a Coxeter matrix and (A,W,S,d) be a Moufang
building of type M with root groups (U,)acs, where ® is a root system
of type M. Suppose the standard apartment in A is given by ¥y and the
isomorphism from W to Xy by 7y. Let 79(1) = ¢y € Xo. Consider the
tuple ((Rij(c+))qigremon, (Ciy)teran, (Bir)iiresan) with (cij)gg
=cy, Bije = 1, YV {i,j}, {j,k} € E(M). It follows by the definition that
((Rij(c+))igyemon, (¢i)gyeman, (Bijk) (. 6reB0n) is a Moufang founda-
tion. As for every Moufang building the automorphism group acts transi-
tively on the chambers (cfr. Proposition 64 of Chapter 2) we see that the
isomorphism class of ((Rij(c+))qiyemm, (¢i)tigrenon, (Bik) i tikreson)
is independent from cy. In the sequel we will therefore denote this isomor-
phism class as MoFo(A).

Definition 139 Let M = (m;;); jer be a Coxeter matrix and ((Ay;) g jyem(m),
(i) ijrennys (Bije)figyiikerer)) @ Moufang foundation of type M. Then

we say that ((Ay)gyeman, (¢5)gnennn, (Bir)iyrenan) is integrable
if there exist a Moufang building (A, W, S,d) such that ((Ay)g yemmn,

(cij)tirerans (Bijr)gijpireron) belongs to MoFo(A).

A first result on the integrability of Moufang foundations is the following
theorem. But first we give a definition.

Definition 140 A generalized Moufang polygon I' is called semi-pappian if
M,(T) or M;(T) is isomorphic to a commutative projective Moufang set.

The question of integrability of Moufang foundations in the case where the
polygons involved are semi-pappian is solved by theorem 7.2.6 of [20]. We
restate this theorem without proof. For the details we refer to [20].

Theorem 141 Let M be an irreducible, 2-spherical, locally finite Coxeter
matriz. Let F' be a Moufang foundation of type M with the property that every
polygons of the Moufang foundation is semi-pappian. Then F is integrable.

proof :

See Theorem 7.2.6 in [20].
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a

4.2.2 Moufang foundations and property (/nd)

The following notion will be useful for proving integrability of Moufang foun-
dations.

Definition 142 Suppose that F = ((Aij){i,j}EE(M)a (Cij){i,j}EE(M)a
(Biji) (i1 ke ) is a Moufang foundation. Let ¢ = (¢ij)1ijyer(m), where
for every {i,j} € E(M), ¢;; defines an isomorphism from A;; to a Moufang
generalized polygon A}; preserving the Moufang structure. Then we denote
the Moufang foundation ((A;]-){Z-,j}eE(M), (@ij(cij)) figyeBMm),
(ikBijees ) iirmreson) as o(F).

An important remark concerning this definition is the following lemma.

Lemma 143 Let F' = ((Ay)ggyenon, (¢ij)igyenan, (Bik)niumenon)
be a Moufang foundation and ¢ = (pij)qijerm)y, where for every {i,j}
€ E(M), ¢i; defines an isomorphism from Ay to a Moufang polygon Al
preserving the Moufang structure. Then @(F) is isomorphic to F.

proof :

If F and ¢ are as in the Lemma an isomorphism from F to ¢(F') is given by
(992']'7 Id) . O

The following definition is motivated by the theory exposed in [22].

Definition 144 Let I = (P, L,I) be a Moufang generalized n-gon with n
< oo and z € PU L. Then we say that I" satisfies condition (Ind) on I'(z)
if every automorphism of the induced Moufang set Mrp(,)(T") extends to an
automorphism of I'. If condition (Ind) is satisfied for every panel of T we
say that I' satisfies condition (Ind).

The importance of condition (Ind) is illustrated in the following lemma.

Lemma 145 Let M be a 2-spherical Cozeter matriz such that G(M) is a
tree. Suppose {A;;|{i,j} € E(M)} is a set of Moufang polygons, ¢;j a cham-
ber in A;;, V{i,j} € E(M). Assume that for every {i,j} € E(M) such that
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there exists a k € I with {j,k} € E(M), A;; satisfies condition (Ind) on
every j-panel. Then all Moufang foundations of the form p((Aij) g yerm),
(i) s.iveran, (Bik)iimyernn) with o = (i) (iepm), where every oy
defines an isomorphism from A;; to a Moufang polygon Al;, are isomorphic.

proof :

As every Moufang foundation F' of the form ((A) g nemmn, (Cij) i yermn,
(Bigr) tiykrenon) and o((Aij) j1enon, (¢i) ieson, (Bik)irenon)
;with ¢ = (4;)i,j1ep(m) as in the lemma, are isomorphic the lemma will be
proved if we show that all Moufang foundations ((A;;) i j1erm), (Cij){ij1eBm),
(Biji)ti.j s krepm)) are isomorphic. Suppose ((Ay)pigyenn, (¢i)iennn,
(Bign) iy i) and ((Aij)gijyeman, (Ci)yeman, (Bije)tiiiiry) are two Mo-
ufang foundations involving A;;. Let v the identity on M. Let ¢, j, k € I
with {i,7} € E(M) and {j,k} € E(M). The conditions on the A;; yield

that every Moufang set isomorphism B{jk_l Bijr can be extended to an iso-
-1
ik
can be extended to an isomorphism of A, which we denote by (5, ij,c_l)*.
If we put (vi5, ) = (Id, (BigBij~)") or (vijsvie) = (Bl ™ Bigw) ™, 1), vi5

and vj; clearly satisfy :

morphism of A;; which we will denote by ( Z(jk_l Bijr)* Similarly 3, 3

Vir BisYis = Biji-
One checks that for every {i, j} {j, k} € E(M) we can choose the 7;; and 7j
out the two possibilities described above in such a way that ((v;;)(ijeman),
7) defines an isomorphism from ((As;)ijyemn), (€i)tgyenan, (Bijk) i)
to ((Ay)tirerans () tgrerans (B tnim)- O

To end this section we give some Proposition concerning property (Ind) in
the generalized quadrangles which were studied in Chapter 3.

Proposition 146 Let W (k) and W (k') be two symplectic quadrangles. Choose
r € W(k), ' € W(K'). Then every isomorphism from Mry(W(k)) to
My (W (E')) extends to an isomorphism from W (k) to W(k'). In particu-
lar W (k) satisfies condition (Ind).

proof :

Let W(k), W(K') be symplectic quadrangle as described in sections 3.5.1
and 3.5.2. Then we saw that for every point P and every line L in W(k),
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Mrpy (W (k) = Mpy(W(k)) = P(k). We prove that the proposition holds
if z and 2" are both point rows. The other cases can be proved in a simi-
lar way. We use the coordinatizations of W (k) and W (k') as described in
section 3.5.2. Choose as generic point rows I'([0]) and I'([0]). Let 5 be an
isomorphism from Mo (W (k)). to Mrpqop(W(E')). By proposition 124
we see that we can assume that without loss of generality 5 induces a field
isomorphism a from & to k' such that 3((0,¢)) = (0,t%), Vt € k. Define the
map [* from W (k) to W (k') by :

Elements of W (k) | Image under 3*
(00) | (o0)
(x) | (%)
v,y) | (0% “)
(x,w, ") | (z% w®, z'%)
[oc] | [oo]
[v] | [0%]
[z, 0] | [2%,w?]
vy, 0] | [,y 0"

Then one easily checks that 3* defines an isomorphism from W (k) to W (k')
which extends £.

This implies in particular that for z € W (k) every automorphism (3 of
Mr)(W(k)) extends to an automorphism of W (k). Thus in this way we
see that W (k) satisfies conidition (Ind). O

We remark that the fact that every symplectic quadrangle satsisfies con-
dition (Ind) can already be found in [22] (cfr. Proposition 1 of loc. cit.). In
fact it is proved in this paper that every finite generalized polygon satisfies
condition (Ind).

Proposition 147 Let Q(E, q,k,0) be a generalized quadrangle defined by a
(0, €)-quadratic form and Q(E', ¢, k',0') be a generalized quadrangle defined
by a (d',€)-quadratic form q' such that of the following occurs :

(i) My(Q(E,q,k,0)) and My(Q(E",q,K',c') consist of non-commutative
orthogonal Moufang sets,
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(ii)) My(Q(E,q,k,0)) and My(Q(E', ¢,k o)) consist of hermitian Mo-
ufang sets and dim(E) > 5,

(iii) My(Q(E,q,k,0)) and My (Q(E', ¢,k ,0")) consist of unitary Moufang
sets with non-commutative root groups such that Rad(f) = 0 if char(k)
= 2, k is a generalized quaternion algebra with standard involution o,
where f is the (o, €)-hermitian the form associated to q.

Suppose p is a point in Q(E,q,k,0)) and p’ a point in Q(E',¢',k',c"). Then
every isomorphism [ from Mrg)(Q(E, q,k,0)) to Mry) (Q(E',¢' K, 0"))
can be extended to an isomorphism from Q(E, q,k,0) to Q(E' ¢ k', o).
In particular under the conditions of the proposition both Q(E,q,k,o) and
Q(E' ¢, K, d'") satisfy condition (Ind) on their line pencils.

proof :

Suppose Q(E, ¢, k, o) and Q(E', ¢, k', o') satisty (i), (ii) or (iii), p a point in
Q(E,q,k,0) and p’ a point in Q(E', ¢, k', 0"). Throughout this proof we will
use the coordinatizations of Q(F, ¢, k,0) and Q(E', ¢, k', c") as described in
section 3.5.4. Assume that these coordinatizations are associated to decom-
positions E = e 2k ® e 1k @ FEy @ ek @ exk and E' = €' k' @ €' k' DE;
©eik' © eyk’ with labelling sets Ro; and Rj ;. Let 3 be an isomorphism
from Mp,)(Q(E,q,k,0)) to M) (Q(E',¢' k' ,0")) Without loss of generality
we can assume p = (0), p' = (0), B([o0]) [o0] and 5(]0, (0,0)]) = [0, (0,0)].
Denote V = e_sk ® Ey ®exk and V' = e k' DE| deyk’. We use the iden-
tification of M(V, ¢, k,0) and Mr0)Q(F,q,k,0) and M(V', ¢, F',0") with
Mroy) Q(E', ¢,k 0') as described in Lemma 99 of Chapter 3. Propositions
127, 128 and 129 show that there exists a semi-linear transformation ¢ from
V to V' with associated field isomorphism « and a constant ¢ € k such that :
B([0, (vo,v1)]) = (ple—av1 +vo +e2)), Y(vo,v1) € Ros
c(q(x))” = alp(z)), Vo eV
c(f(z,y)* = flo(z),0(y)), Yo,y €V,
ATt = XY VAek

ce® = e (4.1)
Define the semi-linear transformation ¢* with associated field isomorphism
a from F to E' in the following way :

O (e_2x s+ e_17_1 + To + €171 + €27)
=e 17% + ercxd + p(e_ax o+ To + €171).
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Let £ = e_ow_s +e_1x_; +x9 +e1x1 +exxe and y = e_sy_s +e_12_1 +yo
+e1y1 +exys.

We find :
c(q(x))*
= c(q(e_az o+ To + €272))* + c(z7 y1)*
= q(ple—2z_2 + T + €222)) + c(2792F)
= q(p(e—a®_s + xg + €322)) + 5 cx$
= q(¢*(7))
and :

c(f(z,y))*

c(f(e 2T o + Lo + €2Ta, €_2y_o + Yo + €2y2))* + (a7 y1 + x]ey_1)*

2

= f(ple—aw 5+ mo + €222), p(e 2y 2 + Yo + €2y2)) + cx?qyf + cx]e*y*,
= fple—om_s + 1o + e222), (e—2y—s + Yo + €212)) + 25 cyy + 277 ey,
= f(ple—om_s + 2o + e22), (e_2y—s + Yo + €2y2)) + 225 cyf + 237" ey®,
= fle(z), ¢(y)),

where we used the properties of ¢ and « and ¢ as described in formula (4.1).
Therefore we can define the bijection 8* from Q(F, q,k,0) to Q(E', ¢,k ,o")
if we set :

B ((z) = (p(x)), Y(z) € Q(E,q,k,0)
B ((z,y)) = (p(2),0(y)),Y(z,y) € Q(E,q,k,0) such that = ¢ (y).

As incidence in Q(FE, ¢, k,0) and Q(E', ¢, k', ") are inherited from their em-
bedding in PG(E) and PG(E’) we see that 3* defines an isomorphism from
Q(E7 q’ k7 U) to Q(E’7 q,’ k’7 U,)'

|

Proposition 148 Let Q(FE, q, k, o) be a quadrangle defined by (o, —1)-quadratic
form of Witt index 2 such that k is a generalized quaternion algebra with stan-
dard involution o and dim(V) = 4. Then Q(E,q,k,0) satisfies condition
(Ind) on its point rows.

Let Q(F,q,k,0) be a quadrangle as in the proposition. By Proposition
138 we know that Q(F, ¢, k, o) is dually isomorphic to an orthogonal quad-
rangle QO(E', ¢, Z(k)) such that M;(QO(E',q',Z(k)) consists of a non-
commutative orthogonal Moufang set.
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Proposition 147 implies that QO(E', ¢, Z(k)) satisfies condition (Ind) on its
line pencils. Hence Q(E,q,k, o) satisfies condition (Ind) on its point rows.
O

Proposition 149 Let Q(FE, q,k, o) be a quadrangle defined by a (o, €)- quadratic
form q of Witt index 2 such that Z(k) # k and if k is a generalized quaternion
algebra o is not the standard involution. Suppose that the (o,€)-hermitian
form associated to q is given by f. If Q(E, q, k, o) satisfies condition (Ind) on
its point rows, k admits no anti-automorphism and for every automorphism

v of k there exists a constant ¢ € k such that :

C,ya'ycfl _ /\’ycr
ce” = ¢

proof :

Choose a coordinatization of Q(F, g, k, o) associated to a decomposition F
= e_sk ® e_1k ®Vy ®erk @ ey k. Suppose Q(E, ¢, k, o) satisfies condition
(Ind) on its point rows. In particular this means that Q(E, ¢, k,o) should
satisfy condition (Ind) on I'((0,0)). Suppose k admits an anti-automorphism
7. Proposition 124 implies then that the permutation 8 of I'([(0, 0)]) defined
by :

B((
B(((0,0)

defines a Moufang set isomorphism. Suppose that 8 can be extended to an
automorphism of Q(F, ¢, k, ). But Theorem 133 implies that there exist an
automorphism a of k such that v = a. This is only possible if Z(k) = k
contradicting the assumption on k. Hence k can only admit automorphisms.
Suppose that 7 is an automorphism of k. Then the permutation of I'([(0,0)])
defined by :

0)) = [o0]

) = [0,0),07)], Vvek

B((e0)) = (o0)
B(((0,0),v)) = [(070)71)7]7\7”6];

determines an automorphism of M) Q(E,q,k,0) (cfr. Proposition
124). As Q(E,q,k,o) satisfies condition (Ind) on its point rows Theorem
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133 implies that there exists a constant ¢ € k and a semi-linear transformation
with associated automorphism « of k such that :

c(f(z,y9)* = flo(®),0(y)), Y,y € E
c(q(x)* = qlp(x)),Vz € E
((0’0)”” ) = ((070)77)7)'

Thus we find a = 4. Let x and y € E such that f(z,y) # 0. Then the first
of these equations implies that for A\ € k :

c(flahy)* = N*(f(z,y))"
= A (e f(x,
= fle(@)A", o(y)
= A f(p(@), oy

v)*)
)
)

and we find :
ATt =\ YA e k.

Moreover we calculate for ¢ :

(f(z,9))*7ce” = ¢

Il
o

Il

Q
~ A~
~~ ~

|
Sk S
—_~
S

implying that ce® = €.

4.3 Integrability conditions for Moufang foun-
dations of type B>

4.3.1 Introduction

Definition 150 Let My, the Coxeter matrix defined over the set I = {1, 2,
3} where mys = mgy3 = 4 and my3 = 2. A Coxeter matrix M isomorphic to
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M, will be said to be of type B,.

A root system of type By is defined as a root system of type Mp , whereas a
building of type By is a building of type Mz . A Moufang foundation is said
to be of type B, if it is of type My, .

Let (A, W, S, d) be a Moufang building of type B, with associated root groups
system (Ua)aebéz) where @5 is a root system of type B,. Choose a root
base Ag, = {1, ag, ag } in @5 With Mg 6, = Mase; = 4 and Mg,0, = 2.
We thus find that :

[U:I:Otu U:I:ag] =1 (42)

Using this equation we deduce the following necessary condition concerning
integrability of Moufang foundations of type B,.

Let ((Aij)tigepon, (€s)inenmn, (Bijk) igpirepon) be a Moufang foun-
dation of type B,. For every {i,j} € E(M) we suppose that the root
group structure on A;; is given by (Uai,cj)a?]_@i]_, where ®;; is a root sys-
tem of type M;;. Without loss of generality we can assume mg1 o1 =

= 4. Suppose that this Moufang foundation is integrable. This

m,2 .3
Qo333

means that there exists a Moufang building (A, W, S,d) of type B, and a
chamber ¢y € A with ((Aj)gigyesan, (¢i)neson, (Bijk)iitrpnesan) =

(Rij(c4), (Cj)iyemany, (Bign) gy imeron if G = ey and By, = Id, ¥ {i, j},
{j, k} € E(M). Then this implies in particular that after identification in A
every element of U1, should commute with every element of Uy, in the action
on A. This means in particular that every g € (U_,1 , U,s ) which stabilized
MRy (c15)(A12) should commute in its action on Mg, (c,,)(A12) with every ¢’
€ (U_o3,Uqz, ) which stabilizes Mg, (c,5)(A23) in its action on Mg, (cp)(Arz)

after identification under (123. Set 81923 = .
We thus find :

[gaﬁglﬁil](z) =z,Vz € MRZ(Cu)(Al?)v (4'3)

Vg € <U,a%2 7Uo¢%2 yn Stab(MR2(cl2)(A12) and ¢' € ( U,agS, Ua% )
N Stab(M g,(css)(A23). We prove the following theorem.

Theorem 151 Let M = (my;);jer be a Cozeter matriz of type B, with
mia = 4, maz = 4 and mz3 = 2 and ® a root system of type Bs with root
base A = {a;|i € I}, such that My, 4y = Mayas = 4 and My, o = 2. Suppose
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that ((Ai)gigyeron, (Ci)tigrennn (Bir)qriresan) is o Moufang founda-
tion of type M such that for every {i,j} € E(M), (Uafj)akjeéai,aj defines a
root group system for N;. If Ais is a unitary quadrangle Q(E, q,k,0) and
Ngs are unitary quadrangle Q(E', ¢ k',0') and the Moufang foundation is
integrable one of the following possibilities occurs :

(i) MRyer2)(A12) and Mpy(c,s)(A2s) are both point rows and one of the
following subcases occurs :
(i.a) B123 induces a field anti-isomorphism from k to k'.
(i.b) k and k' are generalized quaternion algebras with standard invo-
lutions o and o and (123 defines a field isomorphism from k to k',

(1) MRyer)(A12) and Mpy(c,q)(Da3) are both line pencils, k and k' are
generalized quaternion algebras with standard involutions o and o',
dzm(E) = dlm(El) =4 a’ndMRz(Clz)(AU) = P(Z(k)) = MR2(C23)(A23)
= P(Z(K)).

If Ay is a hermitian quadrangle Q(E, q, k,0) and As3 is a unitary quadran-
gle Q(E', ¢, k', c") one of the following possibilities occurs :

(i) MRy(crn)(Ar2) is a point row, Mp,(cys)(Aas) is a line pencil, k' is a gen-
eralized quaternion algebra with standard involution o' and dim(E") = 4
such that k = Z(k'),

(1) MRy (A12) is a line pencil, Mp,(c,s)(Do3) is a line pencil, k' is a
generalized quaternion algebra with standard involution o' such that
Fiz(o) 2 Z(K'),

(i75) M Ry(crs)(Di12) and Mgy (cos)(Da3) are both line pencils, k' is a general-
ized quaternion algebra with standard involution o' such that k = Z (k')
and dim(E) = dim(E") = 4

Without loss of generality we can assume using Corollary 3.12.3 and the
results from section 3.12.2 that ¢ is a (o, —1)-quadratic form such that
1 € Tr(o) and similarly that ¢’ is a (¢', —1)-quadratic form with 1 € T'r(¢”).
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Choose a coordinatization of Q(E,q,k, o) associated to the decomposition
E = e_sk ®e_1k ®Ey ®erk ®esk with labelling set Ry 1 = {(eg, e1) € Ey X k|
q(eo) + e1 = 0}. Choose similarly a coordinatization for Q(E',¢', k', o) as-
sociated to the decomposition E' = €' k' ®e' |k ®E) ®elk’ deyk’ with
labelling set Ry ; = {(eh, €}) € Ey x k' |¢'(ef) +¢€) = 0}. Let By be an ordered
base of Ey and Bj be an ordered base of Ej. For the rest of this proof we
will use the conventions and notations from paragraphs 3.5.4 and 3.8.2 and
denote (193 shortly as (.

First case : Ay and A,z are unitary quadrangles.
Four possibilities occur.

1. Mpy(c1n) and Mg, (c,y) are both point rows.

Without loss of generality we can assume that in this case aj, = {(o0),
[(070)]’ ((0’0)’0)’ [(0’0)’0’ (0’0)]7 (07 (070)70) }7 a12 {[ ( )] (07( 70)70)7
[(0.0),0. (0,0)], ((0,0),0), [(0,0)]}, aky = {(c0). [(0,0)], ((0,0),0), [(0,0),
0,(0,0)]. (0,(0,0),0) }, a3, {[0, (0,0)], (0, (0,0),0), [(0,0).0, (0, 0)] ((0,0),0).
(0,001}, Mrser(A12) = T(0.0)]) and My (Aas) = L([(0,0)]). Re-
mark that by these assumptions § imply that 8 induces a bijection (also
denoted by () from k to k' if we set :

B(((0,0),v)) = ((0,0), 5(v)), Vv € k.

Without loss of generality we can assume that §((1)) = 1. As mentioned
in section 3.8.2 the bijections v from P(k) to Mr(0 Q(E,q,k,0) and ~'
from P(k') to Mr([(070)]) with :

Y((v)) = ((0,0),v), Vv € k
¥(( = (o0)

g

and :

Y((v") = ((0,0),v"), Vo' € K

7((00)) = (00)
define a Moufang set isomorphisms from P(k) to Mr,on@(E,q, k, o) and
from P(E') to Mrqo,0)) Q(E', ¢,k ,0'). Proposition 124 yields then that (

defines a (anti)-isomorphism from & to &'.
Let 0 € T'r(o) and consider the automorphism $jg,(0,6)5)0,(0,1y- Call it this gp.
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One easily checks that gy has as matrix representation with respect to the
ordered base {e_,, e_1, By, e, €2} :

—6 00 00
0 10 00
0 0 Iy 0 0
0 00 10
0 00 0 —f

As:

96((0,0),0) = ((0,0),~6v), Vv € k
g0(00) = (00)

we see that gp € ( U_p1. Uyt ) NStab(Mpy(ey,) Ai2)-

al, Val, 2(c12)
In a complete analogous way we define for 6’ € Tr(o') the automorphism gy
= 5[0,(0,9")] S[0,(0,1)] of QU(E’, q, K, (f’) such that :

90((0,0),0') = ((0,0),—0'0"), Yo' € k'
gor(00) = (00).

We see that g € (U_qz Uas, )N Stab(M g, (cyq) (A23). Equation (4.3) implies
that for # € Tr(o) and ¢ € T'r(o) :

(96, 87" 90:51((0,0),v) = ((0,0),v), Vv € k.
A brief calculation gives :

99699’571((070)71)) = ((070)70571(916(7}))
67199’699((070)71)) = ((0’0)’571(916(9,0))

Hence formula (4.3) is in this case equivalent to :
0871 (0'8(v)) = B~ (0'B(0v)), Yv € k, V0, Tr(o), V0" € Tr(o").

Two cases occur :

(a) B is an anti-isomorphism.



4.3. INTEGRABILITY CONDITIONS 243

In this case we find §371(0'3(x)) = B~H(#'B(Az)) and equation (4.3) is satis-
fied.

(b) 8 is an isomorphism.

In this case the equation (4.3) is equivalent to requirement that :

0371(0') = 5—1(9')9, Vo € Tr(o), 0 € Tr(o'). (4.4)

Suppose that Tr(c) ¢ Z(k). Lemma 8.13 in [29] and Lemma 47 imply that
Tr(o) generates k as a rlng and Tr(o') generates k' as a ring. But then the
equation (4.4) implies that Z(k) = k, and Z(k') = k' a contradiction. Hence
by Lemma 8.13. in [29] the only possibility left is that both & and k' are
generalized quaternion algebra’s with standard involutions ¢ and ¢'.

2. MRy(c12)(Ar2) is a point row and MR2(C23)(A23) is a line pencil
Without loss of generality we can assume that in this case aj, = {[0, (0,0)],
(0,(0,0),0), [(0,0),0,(0,0)], ((0,0),0), [(0,0)] }, o, = {(0), [(0,0)], ((0,0),0),
[(0.0),0, (0,0)) (0, (0,0),0) }, ak, = {(00), [(0.0)], ((0,0),0), [(0,0),0, (0, 0)],
(0,(0,0),0) }, a3, = {[0,(0,0)], (0,(0,0),0), ((0,0),0), [(0,0)], (0. (0,0),0)}
RQ(Clg) = T'([(0,0)]) and Ra(co3) = I'((0)). In section 3.8.2 we saw that
Mrioo)(Q(E, g, k,0) = P(k) and the proof of Lemma 99 shows that Mr (o))
(Q(E', ¢, K, o) is isomorphic to M(V', ¢, k', 0') with V' = ek’ DE} ®ebk'.
As Proposition 125 shows that P (k) cannot be isomorphic to the unitary
Moufang set M(V', k', q', ") we see that this cannot occur.

(0, .0
0) 0

3. Mp,(c10)(Ar2) is a line pencil and Mg, (c,,)(A2s) 18 a point row.
A similar proof as for when Mg, (c,,)(A12) is a point row and M g, (c,)(A2s)
is a line pencil shows that this cannot occur.

4. Mp,(crn)(A12) and Mgy (c,q) (A23) are both line pencils.

Without loss of generality we can assume that in this case ai, = {[0, (0,0)],
(0,(0,0),0), [(0,0),0,(0,0)], ((0,0),0), [(0,0)] }, at, = { (0), [(0,0)], ((0,0),0),
[(0,0),0,(0,0)], (0, (070)70) 1, ags = {[0,(0,0)], (0, (0,0),0), [(0,0),0,(0,0)],
((0,0),0), [(0,0)] }, a3y = { (c0), [(0,0)], ((070)70)7 [(0,0),0,(0,0)], (0 71(07 0),0)

}. Without loss of generality we can assume that 5[0, (0,1)] = [0, (0, 1)].
Denote for z € k the automorphism s ) z)5((0,0),1) as h.. Using the coordi-
natization one calculates :

h.([0, (vo, v1)]) [0, (—vpz7, zv127)], Y(vg, 1) € Ry 1,
h.([oo]) = [oo].
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Hence h, € (U_g1,, Uyt,) NStab(Mp,(ci)(Ai2)). In a complete similar way
we denote for each 2’ € £’ the automorphism s((0,0),.1) 5((0,0),1) of Q(E', ¢, k', ")
by hzr.

We find :

har ([0, (vg, v1)]) = [0, (=vp2', =201 2], V(wg, v1) € Ry,
ha([o0]) = [oo].

Hence we find that h. € (U_a1,, Uyy, ) NStab(M gy (ess) (Q23)).

As 3 defines a Moufang set isomorphism we find that S{[0, (vo, v1)] |(vo,v1) €
Z(Roy®)} = {10, (uh, o)) I(th, ) € Z(R),,®) }. Denote L = Z(Ry,, )
N{0} xk and similarly L' = Z(R;,,®) N{0} x&'. As for every z; € L the
vector zg € Vj such that g(z9) = —z; is uniquely determined by z; we see
that 3 defines a bijection from L to L' (also denoted by ) and a bijection
from Rad(f) to Rad(f') (also denoted by 3) if we set :

B[0, (20, 21)] = [0, (B(20), B(21))], Y(20,21) € Z(Ro,1, D).

If 2y € L we consider z, € Vj such that (zp,21) € Ro1 and denote the
automorphism s (,,2,)] S[o,(0,1)] f Q(E, ¢, k,0) as h.,. Using the descriptions
of the s, as described in section 3.13 shows that :

b, ([0, (v, v1)]) = [0, (—voz1, 210121)].

By construction we have that h., € ( U_q1,, Ust, ) N Stab(Mpy(c1p)(A12).
Moreover applying 5 to the explicit formula for h,, shows that for z; € L

B([0, (=voz1, 21v121)]) = [0, (=B(v0)B(21), B(21)B(v1)B(21))],
Y(vo,v1) € Z(Rp 1, D). (4.5)

Similarly one defines for z; € L' the automorphism k.. as sjo,cs 1) Sjo,0,1)]
with (29, 21) € Ry ;. It follows that h; € (U_gy,, Usy, ) N Stab(M gy (eyq) (A23).
Let z € L, 2’ € L'. Formula (4.3) yields that :

[z, 87 R B]([0, (vo, v1)]) = [0, (vo, v1)], ¥(vo,v1) € Royi, ¥z € L, V2" € L',

Or equivalently :

h.B7" . B([0, (vo,v1)]) = B b Bh.([0, (vo,v1)]), V(vo,v1) € Ry
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We calculate using formula (4.5) for (ag,a1) € Z(Ry1,®) :

h.B""h.B([0, (ag,a1)]) = h.B7([0, (—B(ao)z", 2'B(a1)z")])
= [0,(aoB ()2, 28 (2" )ar B (2')2)]

and by similarly we find :

B et Bh:([0, (a0, ar)]) = [0, (a02B7 ("), B () zarzBH(2"))].
This means that formula (4.3) yields the following condition :

287N BTNz = BTN )2a1287(2'), Yar, 2 € L,V € L', (4.6)

But as 37'(L') = L this shows if the Moufang foundation is integrable the
following should hold :

212202221 = 222192122, Vzl, Z2, 0 e L. (47)

If we set 0 = 1 it follows that :

—1_—1 _ —1,-1y-1
2y 2y 2122 = (212027 25 )

and equation (4.7) becomes :
[21, 20]0[21, 22] 7' = 0, V21,25 € L. (4.8)

Suppose that T'r(o) ¢ Z(k). Then we know by Lemma 8.13 and Lemma
47 that as L contains Tr(o) it generates k as a ring and by the same rea-
soning it follows that L' generates k' as a ring. But then equation (4.6)
shows that [21,29] € Z(k) V 21, 22 € L. By Lemma 49 we see that £ is
a generalized quaternion algebra with standard involution o. Hence T'r(o)
= Z(k) a contradiction with the assumptions. The only possibility left is that
Tr(o) C Z(k). But then Lemma 8.13 in [29] shows that % is a generalized
quaternion algebra with standard involution o.
Similar arguments show that £’ is a generalized quaternion algebra with stan-
dard involution o'.
As a next step we show that Rad(f) = 0 and Rad(f') = 0.
Suppose Rad(f) # 0. Then there exists a & € L \ Tr(o). Consider L;
Z(k)(z). Suppose that there exists a A\g € k with AJZX\g & Lz. Let X\ € k. As
AjzAg € L equation (4.8) implies that [z, AZA] commutes with Z and Ajz .
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The choice of Ay implies that Z and A& Ao generate k seen as a Z(k)-algebra.
But then it follows that [z, \z)] € Z(k) and we find :

NEN € Ly, VA € k.

The same reasoning as the one used to prove Lemma 123 leads to a contra-
diction. Hence Rad(f) = {0}. By similar arguments we find Rad(f') = {0}.
As a next step we show that V5 = 0 and Vj = 0. Using Proposition 129 we
see that (8 is induced by a semi-linear transformation ¢ with associated field
isomorphism « such that :

B0, (vo,v1)] = [0, (v(vo),v1)], Y(vo,v1) € Roa
AT =N

We reconsider for z € k and 2’ € k' the transformations h, and h.. By
formula (4.3 ) we know that

[hz,ﬁilhzfﬁ][o, (’UO7 ’Ul)] = [0, (’1)0,’1)1)], V(’Ug,’l}l) € RO,I-

This leads to :

hzﬁflhz'ﬁ[ov (UOa'UI)] = Bilhz'ﬁhzm, (U07U1)]7 V(Umvl) € Ro,1-

Using ¢ and « we have :

B ha B0, (vo,v1)]) = B0, (—p(vg)2" 205 2")]
= h. ([0, (—Uoz’aa L2 02 o ))

o'at a~?! oo™t
[0, (vo2' 2%, 22" v 2°

Similarly :
B harBh([0, (vo, v1)]) = B ([0, (—p(wo)27*, 2%v5'27%)])
= B0 (o) 2 )

= [0 (002727 L 27T )]

If Vo # we can choose a vg # 0 € V; and the above equation shows that :

rh—1

/A1
277 =27 7 N2ek VS eER.
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As o'a~! defines a field anti-isomorphism from &' to k this equation yields
that 27 € Z(k) ,Vz € k, hence Z(k) = k a contradiction. Thus we find
Vo = 0. In a completely similar way one deduces that also Vj = 0. But
then Lemma 123 shows that Mg, (cp,)(A12) =2 P(Z(k)) and M py(cyq)(Das) =
P(Z(K')) and by Proposition 124 we find Z(k) = Z(k').

Second case : Aj, is hermitian and Ay is unitary :

Let A1y = Q(E, ¢, k,0) and Agz = Q(E', ¢, k', 0'). We distinguish as for the
first case between four possibilities.

1. MRyer,)(A12) and and Mg, (c,y)(A23) are both point rows.

This would imply that P (k) = P (k') and hence by Proposition 124 that k =
k', a contradiction. This situation can thus no occur.

2. MRy(e10)(Ar2) is a point row and M g,(c,s)(Aos) is a line pencil.
Proposition 126 shows that &', is a generalized quaternion algebra with stan-
dard involution ¢’ and dim(E') = 4.

3. Mp,(c10)(Ar2) is a line pencil and Mg, (c,,)(A23) 18 a point row.
Proposition 128 shows that dim(E) = dim(E") = 4, k' is a generalized quater-

~

nion algebra with standard involution ¢’ and Fiz(c) = Z (k')

4. Mp,(crn)(A12) and M py(c,q)(A23) are both line pencils.

Proposition 128 implies that then dim(E') = 6, k" is a generalized quaternion
algebra with standard involution o’.

Suppose dim(E) > 5. Then we find by Propositon ?? that dim(E') = 6.
Moreover we have that Rad(f') = 0 if f' is the form associated to ¢'. Us-
ing the property we can follow the proof from above in the case where Ay
and A,z where both unitary and Mg, (c,,)(A12) and Mg, (c,q)(Azs) are both
line pencils. This then leads to Vj = 0 a contradiction. Hence dim(E) = 4
and as in this case Mpy(c,,)(A12) = P(Fiz(o)) Proposition 126 implies that
dim(E'") = 4. O
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4.4 Existence in B, case

In this section we will give a list of integrable Moufang foundations of type
B, where the quadrangles involved are the ones described in Chapter 3. We
adopt the notations as introduced in section 4.3.1. When working with these
quadrangles we use the coordinatizations as introduced in Chapter 3. This
means that for quadrangles the form Q(E,q, k, o) we fix a coordinatization
associated to a decomposition E = e_sk @e_1k ®Vy ek dexk with labelling
set Ry as described in Chapter 3 section 3.5.4. For symplectic quadrangles
W (k) and indifferent quadrangles Q(k, £';1,1") we use the coordinatization as
described in sections 3.5.2 and 3.7 in Chapter 3. Moreover for quadrangles
of the form Q(F, q,k,0), o # 1 we will assume that ¢ is a (o, —1) quadratic
form. In view of Lemma 92 this will not put any restrictions. To make
the list of integrable Moufang foundations we use the following strategy.
We start with a classical or indifferent Moufang set (X, (U,)zex). Subse-
quently we make a list of all possible Moufang foundations ((Ay;) g jyermm),
(cij) i yeman, (Bign)igigresnn) of type By for which Mp,(c,,)(Ar2) and
MRy (cs5)(A23) are isomorphic to (X, (U,),ex). For every such Moufang
foundation we investigate if condition (Ind) is satisfied on Mp,(cp,)(Ar2)
and M gy (c,q)(A23). If this is the case we know by Lemma 145 that there
is up to isomorphism one Moufang foundation involving A, and Az such
that M pg,(a,,)(A12) and M g, (a,,)(Ass) are isomorphic to (X, (Uy)zex). This
means that if we find a Moufang foundation ((A;) g reman, (¢ij) i ermn,
(@ijk){i’j}{j’k}eE(M)) which is integrable then the original Moufang foundation
((Aij)igyeron (i) iyeran, (Bigk)igyurenan) is also integrable. To con-
struct integrable Moufang foundations we rely on the theory developed by
B. Miihlherr and H. Van Maldeghem as exposed in [22] and [23].

Definition 152 Let ((Aij)gigyeman, (¢ij)gyean, (Bijk)igiimennn) be a
Moufang foundation of type By. If Mg,(c1,)(A12) and M py(cys) (Aaz) are both
point rows we will speak about a gluing of type PP. If Mp,(c,,)(A12) and
M Ry (ca3)(A23) are both line pencils we will speak about a gluing of type LL.
If Mey(e12)(A12) is a point row and Mg, (c,)(Aos) is a line pencil we will
speak about a gluing of type LP. Finally if Mg, (c,,)(A12) is a line pencil and
M Ry (cs9)(A23) is a point row we will speak about a gluing of type PL.

If Ay is W(k) we make the following conventions.
If Mg, (c15)(A12) is point row we assume that it is My (W (k)).



4.4. EXISTENCE IN B, CASE 249

If MR, (ci5)(Ai12) is a line pencil we assume that it equals M) (W (k)).

If Ay, is a generalized quadrangle Q(FE, ¢, k, o) we make the following con-
ventions.

If MR, (c10)(Q(E, g, k, 0) is a point row we assume it is Mp(jo,0)) (Q(E, ¢, k, 0)).
If MR,(c10)(Q(E, q,k,0) is a line pencil we assume it equals

Mroy(Q(E, ¢, k,0)).

Finally for A3 = Q(k, k';1,1") we make the following conventions.

If MRy(c12)(Ar2) is point row we assume that it is Mpop (Q(k, K';1,1").

If MR, (c12)(A12) is a line pencil we assume that it equals Moy (Q(k, K5 1,1').
We make the same conventions for Aas.

Troughout the list we will always start with a Moufang foundation

((Aij)gigyeron, (¢i)agean, (Bir)ireean) of type B, that the Ay
are classical or indifferent quadrangles. The conventions made above on
M Ry(er2) and M gy (cos) imply that we need not explicitely to know ¢, and cp3.
To simplify notations we will therefore denote ((Ay;)ij1eran, (¢ij) e,

(Bijk) i)ty man) in the sequel of the section as (Ay)igyenn: (Gijn) i Gmeson)
or even as F.

We start this section by giving some usefull Propositions concerning integra-

bility.

Proposition 153 Every Moufang foundation F ((Q(E,q,k,0), Q(E', ¢, ¥,
0'),B123) of type PP such that if Z(k) # k, B123 induces an anti-isomorphism
from k to k' is integrable. In particular every Moufang foundation ((W(k),
Q(E' ¢, K, 0"),B123) of type LP is integrable, every Moufang foundation
(W (k),W(K'"), Bra3) of type LL is integrable and if char(k) = 2 every Mo-
ufang foundation (W (k), Q(E, q, k, o), Bia3) of type PP is integrable.

The conventions on Q(E, ¢, k,0) and Q(E', ¢, k',0') show that (153 defines

a Moufang set isomorphism from Mypo,0)) @(E, ¢, k,0) to
Moo Q(E' ¢,k ,0'). Without loss of generality we will assume that ¢
and ¢’ are (o,1)-quadratic forms and S23((0,0),1) = ((0,0),1). If this is

not the case we might have to consider for ¢ € k and ¢’ € k' such that the
quadrangles Q(E, cq, k, 0¢) with \7° = c\?c™ VA € k and Q(E', ¢, K/, O"C’)
with N7 = ¢ N7 ¢7' WX € K are (0°1) and (', 1)-quadratic and
B123((0,0),1) = ((0,0),1). Clearly the map ¢; which induces the identity on
points an lines defines an isomorphism from Q(F, ¢, k,0) to Q(E, cq, k, o) and

a similar bijection defines an isomorphism from Q(E', ¢, k', o") to Q(E', ¢, k', o').
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Set ¢ = (p1,92). As F' = o(F) we can therefore consider ¢(F'). By proposi-
tion 124 we know that there exists a (anti)-isomorphism « from % to &’ such
that :
B123(((0,0),z)) = ((0,0),z%), Vx € k.

Let B, = {e,’ j € J} be a base of V. Define the generalized quadrangle
Q(E,q,k,5) in the following way. If a is an isomorphism we set E = &_k
®é_1k Vo @ é1k ®eéyk where Vp is the right k-vector space spanned by By.
If o defines an automorphism we set £ = é_k @ e_ k" & V, ®e, k”pp
DeokPP where Vj is the right k°PP-vector space spanned by Bj. Define the
(anti)-isomorphism « from k' to k by v = go a™! o ¢'.

Then E’ is clearly isomorphic to E under ¢, if we set :

I] I] ! ! ! !
( o T 2+e 1l 1+Z 60 Yo +elx1—|—e2x2)

=1, +ery +3 e (o) + &2 + eyl

where 2}, v}’ E K.
Define & by 17 = =27 Yz ek
The forms g, f and ¢ are given by :

(7.9) = (99, (@), 05 (@))), ¥,

(, (f'(e3H(x), 03 ()7, vz,
(I(j) = g(i"aj)‘f‘ka,L

Sl
S

)

~ QI
S

@ <
m M
o &=

By construction it follows that g defines a (7, 1)-quadratic form on E of Witt
index 2. This means that we can consider the quadrangle Q(E,q,k,5). Using
Theorem 133 it is clear that ¢, induces an isomorphism from Q(E', ¢, k', ')
to Q(E,q,k,7). In the sequel we will work with the coordinatization of Q(E q,
k,7) associated to the decomposition E=céskdée_1dVyDekdeéy k. Let
¢ = (Id,¢,). Then the Moufang foundation ¢(F') consists of the Moufang
foundation (Q(E,q,k,0), Q(E,q, k,7), Bi23) of type PP where (93 is given
by :
B123((07 0)7 SU) = ((Ov 0)7 xa6)'

We rephrase the proof of [23] of the integrability of ¢(F). Firstly we define
the division ring k(t;0,5) as follows. Its elements are given by the rational
functions with variable ¢. Multiplication is given by :

xy = xy, Ve,y ek
2t = t2°, Vr € k.
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By putting ¢7 = ¢ we extend ¢ to an involution of k(t; o, ). Using Vj and Vo
we set Wy = k(t;0,6) ®@Vy and Wg = k(t;0,0) ® Vo and Wy = W & W3.
Then this means that every element of wy Wy can be written in a unique way
as ) ugt! + 37, 0y t' where vy € Vp and @, € Vy. Extend the forms g and g
to a form ¢g* on Wy by :

9*(2]- Ugtj + E;‘ Tt E]’ Wgtjv Ei_wﬁti)
=3, t'g(vg,wp) + 32, 1 g(vg, wy)t.

If we set ¢*(wo) = g*(wo)+k(t; 0,5 )(5,1), it follows from the results in [23] that
¢* defines an anisotropic (o, 1)-quadratic form on Wy. Set W e* k(t;0,5)
®er, k(t;o,0) @Wy @ ef k(t;0,0) @ e5 k(t;0,0) and extend g* to a form
on W as follows : (u = e*,x_5 +€* 21 +up +efz; +ej xp and w = e*,y_»
+e*y_1 two +eiy; +esys with z;, y; € k(t;0,5) and ug, wo € W)

g (u,w) = 27,ys + 25y _» + 27,91 + 2721 + g" (uo, wo).
Using g* we extend ¢* to W by setting :
¢ (w) = g(w,w) + (k(t;0,5) 51, Yw € W.

In this way we see that ¢* defines a (o, 1)-quadratic form on W of Witt index
2. Hence we can consider the quadrangle Q(W,¢*,k(t;0,5),0). It is proved
in [23] that Q(W ,¢*,k(t; 0,5),0) is the quadrangle at co of an affine Moufang
building (A, W, S, d) of type B, such that o(F) = (Q(E, ¢,k,0),Q(E, ,k, ),
Biaz) € MoFo(A). As ¢(F) is isomorphic to F this proves that F is inte-
grable.

Let F (W(k),Q(E", ¢,k 0"),B123) be a Moufang foundation of type LP.
By Proposition 134 and Lemma 143 we find that F' will be isomorphic to
a Moufang foundation F' = (QO(E, q,k),Q(E',q',k',0"), Pia3) of type PP
where QO(FE, q, k) is the orthogonal quadrangle dually isomorphic to W (k)
as desribed in the proof of Proposition 134. By what we already proved we
know that F is integrable proving the integrability of F.

The integrability of a Moufang foundation (W (k), W (k'), B123) of type LL
follows by similar arguments.

Finally let char(k) = 2. Then we know by Proposition 137 that W (k) is
isomorphic to an orthogonal quadrangle QO(E, q, k). Hence every founda-
tion F = (W(k), (Q(E',q,K,0'),B123) of type is isomorphic to a founda-
tion F = (QO(E,q,k),Q(E', ¢,k ,0"), Biss)) of type PP. As we already
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proved that F is integrable we find that every Moufang foundation (W (k),
Q(E' ¢ K, 0'),B123)) is integrable. O

Proposition 154 Let char(k) # 2 then every Moufang foundation
(W(k),Q(E',q, K, 0'),8123) of type LL is integrable.

Let F be a foundation as in the proposition. By Proposition 126 we can
assume without loss of generality that £33 induces a field isomorphism from
k to k'. Consider the symplectic quadrangle W (k'). Then W (k') is clearly
isomorphic to W (k). Let ¢,-1 be the isomorphism from W (k') to W (k) by
applying a~! to the coordinates of elements of W(E'). Put ¢ = (pa-1,Id).
Let F be the Moufang foundation ((W(k'), Q(E',q',k',0"), Id)). The con-
struction of ¢ ' implies that p(F) = F. As F is integrable by the results
in [23] we find that F' is integrable. O

Proposition 155 Suppose k and k' are fields. Then every Moufang foun-
dation F = (Q(E,q,k,0),Q(E', ¢, k',0"),0123) of type LL such that
Mrop(Q(E, q,k,0)) is not-commutative is integrable. Moreover also ev-
ery Moufang foundation (W (k),Q(E',q',k',c"), B123) of type PL and every
Moufang foundation (W (k),W (K'),B123) of type PP is integrable.

proof :

We start by reducing the three cases to one.

1. Suppose firstly that F = (Q(E, q,k,0),Q(E',¢',k',¢"),8123). The condi-

tions on Mr0y)(Q(F, q, k,0)) yield that by Proposition 147, Q(E,q,k,o)

satsisfies condition (Ind) on T'((0)), Q(E', ¢, k', o') satsisfies condition (Ind)

on I'((0)) and Q(E', ¢, k', ¢') is isomorphic to Q(F, q, k, o). Suppose that the

isomorphism from Q(E,q,k,0) to Q(E',¢,k',0') is given by 3. Put ¢ =

(Id,¢23). Then we find by construction that the foundation ((Q(E, q,k,0),Q(E', ¢, k', 0'),5123))
is isomorphic to ¢(F) = ((Q(E, ¢, k,0),Q(E,q,k,0) 0% Bi2s)). AsQ(E,q,k,0))

satisfies condition (Ind) on I'((0)), ¢(F) is isomorphic to the Moufang foun-

dation F = (Q(E, q,k,0),Q(E,q,k,0),Id)).

2. F'=(W(k),Q(E,q, K, o) of type PL.
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Similar techniques as the ones used in the proof of Proposition 153 show
that F is isomorphic to the foundation F' = (W (k"),Q(E', ¢, k', 0") of type
PL. By Proposition 134 we know that W (k') is dually isomorphic to an
orthogonal quadrangle QO(E',¢,k'). Denote the duality from W (k') to
QO(E', @ k') as vo. Put v = (Id,7;). Then one easily checks that F =

Y(F') = (QO(E',7,K'), Q(E', ¢ K',0"),Id).

3. If F = (W(k),W(k'),P123) we know by Proposition 134 that W (k) is
dually isomorphic to an orthogonal quadrangle QO(E1, ¢, k) and similarly
W (k') is dually isomorphic to an orthogonal quadrangle QO(E}, ¢},k'). Sup-
pose that v is a duality from W (k) to QO (Ey, qi, k) and 7] a duality from
W(K') to QO (Ey, qi, k). Put v = (y1,72). Then we can replace the
F by 2(F) = (QEv, a1, k).Q(E} @, k) 1Buii"), a Moufang foundation
of type LL. Proposition 146 implies that QO(E1, q1,k) and QO(E], ¢,
k') satisfy condition (Ind) on their line pencils and that QO(Ey, q1, k) =
QO(E},q},k"). Suppose that the isomorphism from QO(FEy,qy, k) is given by
3. Set 1 = (Id,1P93). The we find by that F' is isomorphic to ¢y(F) =
(QO(E1, q1, k),QO(EY, q1, k') 033 7i Brasyi V). As QO(Ey q1,k) and QO(E1,q1,k)
satisfy condition (Ind) on their line pencils we find that also in this case F'
is isomorphic to the Moufang foundation F' = (QO(Ey,q, k), QO(Ey, q1, k),
Id).

In all three cases we find that F is integrable if and only if F' is integrable.
We rephrase a proof of the integrability of F' given in [23].

Without loss of generality we will assume here that ¢ is a (o, 1)-quadratic
form. In view of Lemma 92 this puts no restrictions on the form. (If ¢ is
a (o, €)-quadratic form then we can find a constant ¢ € k such that cq is a
(0, 1)-quadratic form. As the foundation F' = (Q(E,q,k,0),Q(E,q,k,0),Id))
is isomorphic to F, = (Q(E,cq, k,c),Q(E, cq, k,c),Id)) we can work with F,
instead of F'.) Firstly we define the division ring k(¢;0,1) in the following
way. The elements of k(t;0,1) are the rational functions in the variable ¢
where multiplication is given by :

a.b = ab, Vtek
a’t = ta,Va €k

We extend o to k(t;0,1) by setting ¢ = ¢. In this way we construct a skew
field k(t; 0, 1) with involution o.
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Subsequently we choose a coordinatization of Q(FE,q,k, o) associated to a
decomposition E = e_sk ®e_ik ®Vy Dek Dexk with labelling set Ry ;.
Suppose that g is a o-sesquilinear form such that ¢(z) = g(z) +k,1, Vo € E.
Let Wy = Vo ® k(t). Then every element of W can be written uniquely as a
sum Y vit', vi € V.

We extend g and ¢ to forms on Wy by setting :

g(Zvéti,ngtj) = tig(vd, w))t’
gD wit') = g bt Y vit) + (k(t 0, 1)) o)

with S vit* and S wit’ € Wy. Then one easily checks that in this way g
defines a o sesquilinear form and ¢ a (o, 1)-quadratic form on Wy. Moreover
it is proved in [23] that ¢ is anisotropic on Wj.

Put W = e_sk(t) De_1k ®W, Deik(t) Gesk(t). We extend g and ¢ to W in
the following way :

gle 2z o +e 1z 1+ Z Vit + e1my + eay
= 2%,m0+ 2721 + g(z vpt'), x; € k(t;o,1),v) € k

q(x)
= g(z) + (k(t;0,1)) o), YV €k

By construction g defines in this way a (o, 1)-quadratic form of with index 2.
Therefore we can consider the quadrangle Q(W, ¢, k(t;0,1),0). It is proved
in [23] that Q(W, ¢, k(t; 0, 1), o) is the quadrangle at oo of an affine Moufang
building (A, W, S,d) of type B, with F = (Q(E,q,k,0),Q(E,q,k,0),1d))
€ MoFo(A). This means that F is integrable and hence F is integrable.

Proposition 156 Every Moufang foundation F= (Q(k,k';1,1'), Qk, k', ;1,
I"), B123) is integrable.

proof :

Let F be a Moufang foundation as in the proposition. As every indifferent
quadrangle is dually isomorphic to an indifferent quadrangle we can assume
without loss of generality that F' is or type PP. Proposition 131 implies that
B123 induces a field isomorphism from & to & such that for some ¢ € k :

Eﬂlgg(l) == l_
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Upon a possible re coordinatization of Q(l_s,l_s’,l_,l_’) we can assume that ¢
= 1. Let Q(k,k";1",1") be the indifferent quadrangle obtained by applying
a~! to the coordinates of Q(k,k;1, I'). Then Q(k,%";1,1") is isomorphic to
Q(k,k";1,I') by applying a to the coordinates of Q(k,k";1,I"). Denote this
isomorphism by ¢,. Put ¢ = (Id,¢,). By construction it then follows that
F = Y(F) = (Q(k,K;1,1"), Q(k,k";1,1"), Id)). As F is integrable by the
results of [23] we find that F is integrable. O

4.4.1 Casel: MRZ(CIZ)(A12) = ’P(]:Z)
Z(k)=k

In this section we assume that M g,,,)(A12) = P(k) with k a field. Remark
that if in this case Ay or Asz is an indifferent quadrangle Q(k, k";1,1') we
find by Proposition 125 that [ = k& = k. But then Proposition 136 shows
that Q(k,k";1,1') is isomorphic to an orthogonal quadrangle. Therefore we
will not explicitly consider the cases where Ay, or A,z are indifferent quad-
rangles.

Case 1.1 Alg = W(k) and Agg = W(k’)

Without loss of generality we can assume that & = k in view of Proposi-
tion 124.

The gluing is of type PP.

By proposition 124 we know that § induces a field isomorphism from
k to k'. As both W (k) and W (k') satisfy condition (Ind) on their
point rows (cfr. Proposition 146) there is up to isomorphism only one
Moufang foundation ((A;)igyeman, (i) igyean, (Bir) iy ireson)
of type PP involving W (k) and W (k'). The integrability of F' follows
from Proposition 155.

The gluing is of type PL, LL or LP.

A similar reasoning as for a gluing of type PP shows that the Mo-
ufang foundation ((Ay)pigyenn, (€)geson: (Biur) giireson) 1s
integrable.
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Case 1.2 Ay = W (k) and Ay = QO(E', ¢, k).

The gluing is of type PP.
Proposition 124 implies that 8 induces a field isomorphism from £ to
E'. The integrability follows from Propositions 153 and 154.

The gluing is of type LP.

By Proposition we know that § induces a field isomorphism from k to
E'. The integrability of the Moufang foundation follows from Proposi-
tion 153.

The gluing is of type PL.

Proposition 127 implies that one of the following cases occurs :
dim(E") =5, k = k'. By Proposition 134 we have that QO(E', ¢, k', ¢")
is dually isomorphic to W(k'). Hence the Moufang foundation F is
isomorphic to a Moufang foundation (W (k),W (k'),B123) of type PP.
Proposition 155 implies thus that in this case F' is integrable.

dim(E") = 6, k 2 k", where k" is the quadratic Galois extension of &'
determined by MO(V', ¢, k'). Proposition 135 shows that QO(E', ¢, k')
is dually isomorphic to QH(E",q",k",0"). Hence F is isomorphic
to a Moufang foundation F = (W(k),QH(E",q", k" ,a") of type PP.
Propositions 153 and 154 yield the integrability of F'.

codim(Rad(f')) = 2, there exists a constant ¢’ € k' such that the set
{dq(w') |[w" € Rad(f")} is isomorphic to k. Proposition 136 implies
that QO(E', ¢, k') is isomorphic to an indifferent quadrangle. Hence F'
is isomorphic to a foundation F involving two indifferent quadrangles
and the integrability of F follows from Proposition 156.

The gluing is of type LL.

Proposition 127 implies that one of the following cases occurs :
dim(E") = 5, k 2 k' and hence QO(E', ¢, k') is dually isomorphic to
W (E'). The integrability of F follows from Proposition 153.

dim(E") = 6 and k = k" with k" the quadratic Galois extension de-
termined by QO(E', ¢, k') as described in Lemma 112. In this case
QO(E', ¢, k') is dually isomorphic to a hermitian Moufang set QH (E",
q", k", ¢"). The integrability of the Moufang foundation follows from
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Proposition 153. codim(Rad(f')) = 2 and there exists a constant ¢’
€ k' such that the set {c'¢'(w') |w' € Rad(f')} is a field isomorphic
to k. Proposition 136 shows that QO(E’, ¢, k') is isomorphic to an
indifferent quadrangle. The integrability of F follows from Proposition
156.

Case 1.3 Alg = W(k) and Agg = Q[‘I(E”7 q’7 ]\7’, O").

The gluing is of type PP.
The integrability of F' follows from Propositions 153 and 154.

The gluing is of type LP.
For the a proof of the integrability of F' we refer to Proposition 153

The gluing is of type PL.
Proposition 155 shows that F' is integrable in this case.

The gluing is of type LL.

Proposition 128 implies that dim(E") = 4 and k = Fiz(o'). Proposi-
tion 135 implies that then QH (E', ¢', k', ¢") is dually isomorphic to an
orthogonal quadrangle QO(E’, 7,k'). Hence F is isomorphic to a Mo-
ufang foundation (W (k), QO(E',q k")) of type LP. Hence Proposition
153 implies that F is integrable.

Case 1.4 Alg = W(k) and Agg = QU(E’, q’, ]\7’, O").
Remark that in this case only gluings of type PL and LL are possible.

The gluing is of type PL.

Proposition 125 implies that dim(E') = 4, k' is a generalized quater-
nion algebra with standard involution ¢'. Proposition 138 implies that
QU(E', ¢, k', ¢") is dually isomorphic to an orthogonal quadrangle
QO(E",q",k"). The integrability of the Moufang foundation follows
thus from the Propositions 153. and 154.

The gluing is of type LL.
The same conclusions holds as for case of a gluing of type PL.

Case 1.5 A12: QO(E, q, k) and Agg = C)O(E”7 q’, k’)



258

CHAPTER 4. EXISTENCE AND NON-EXISTENCE

The gluing is of type PP.

By Proposition we know that § induces a field isomorphism from k to
k" in this case.

For the integrability of F' we refer to Proposition 153.

The gluing is of type PL.

Proposition 125 shows that one of the following cases occurs:

dim(E') =5 and k = k'

Proposition 134 implies that QO(E', ¢', k') dually isomorphic to W (k').
We can therefore refer to case I.2.

dim(E") =6 and k = k" where k" is the quadratic Galois extension of
k" determined by QO(E', ¢, k"). As in this case QO(E', ¢', k') is dually
isomorphic to a hermitian quadrangle QH(E", ¢", k", o") the Moufang
foundation F is isomorphic to a Moufang foundation F' = (QO(E, ¢, k),
QH(E",q" k", 0"),B123) of type PP. The integrability of F follows
from Proposition 153.

codim(Rad(f')) = 2, and there exists a constant ¢ € k' such that the
set {d¢'(w') |w' € Rad(f")} is a field isomorphic to k.

Proposition 136 implies that QO(E’, ¢, k") is isomorphic to an indif-
ferent quadrangle Q(k,k";1,1"). Proposition 3.4.4 in [37] shows that
Q(k,k";1,1") is dually isomorphic to Q(k", (k")%1",(I')?). Hence by
Proposition 136 we see that QO(E',¢', k") is dually isomorphic to an
orthogonal quadrangle Q(E", ¢", k"). This implies that F is isomorphic
to a foundation F of type PP involving two orthogonal quadrangles.
The integrability of F' therefore follows from Propostion 153.

The gluing is of type LL.

In this we find using Proposition 127 that codim(Rad(f))

= codim(Rad(f')) = 2 and that there exist constants ¢ € k£ and ¢
€ k' such that {cq(w) |w € Rad(f)} is a field isomorphic to the field
{c'¢'(w'") |w" € Rad(f")}. Lemma 136 implies that both A, and A,z are
indifferent Moufang sets. The integrability of the Moufang foundation
follows from Proposition 156.

The gluing is of type LP.
This case is can be derived from the case where we consider a gluing of
type PL.

Case 1.6 A1z = QO(E, ¢, k) and Ayz = QH(E', ¢, ).
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The gluing is of type PP.
Proposition 124 yields k = k'
We refer to case I.3.

The gluing is of type LP.

Propositions 125, 134 and 135 imply that there are three possibilities.
dim(FE) =5 and QO(E, q, k) is dually isomorphic to W (k). The inte-
grability follows from Proposition 153.

dim(F) =6 and QO(E, q, k) is dually isomorphic to a hermitian quad-
rangle QH(E",q", k,c"). The integrability follows from Proposition
153.

codim(Rad(f)) = 2, there exists a constant ¢ € k such that the set
{cq(w) |w € Rad(f)} is a field isomorphic to &'. Proposition 136 im-
plies that QO(F, ¢, k) is isomorphic to an indifferent quadrangle. Hence
we refer to case 1.5 for a discussion on the integrability of F'.

The gluing is of type PL or LL.

Propositions 128 and 135imply that dim(E') = 4 and that QH (E', ¢, k', o")
is dually isomorphic to an orthogonal quadrangle QO(E",q", Fiz(o").
Hence we can refer to Case 1.5 for a discussion on the integrability of
F.

Case 1.7 A = QO(E, ¢, k) and Aqs3 = QU(E', ¢, k', 0").

Proposition 125 shows that only gluings of type PL and LL are possible.
But then Proposition 125 shows that dim(E') = 4 and by Proposition 138 we
have that QU (E', ¢', k', ¢") is dually isomorphic to an orthogonal quadrangle
QO(E",q",Z(K')). This means that the Moufang foundation F' is isomorphic
to a Moufang foundation F' = (QO(FE, q,k),QO(E",q", Z(k')),B123). For a
discussion on the integrability of ' we therefore refer to case L.5.

Case 1.8 Ay = QH(E,q,k,0) and QH(E', ¢, K, o").

The gluing is of type PP.

Proposition 124 implies k = k'.

The integrability of the Moufang foundation follows from Proposition
153.

The gluing is of type PL.
Propositions 125 and 135 imply that dim(E') = 4, k = Fiz(o') and
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that QH(E', ¢, k', 0") is dually isomorphic to an orthogonal quadrangle
QO(E",q", Fiz(c")). The integrability of F then follows from Propo-
sition 153.

The gluing is of type LL.

Propositions 125 and 135 shows that dim(E) = dim(E') = 4 and
Fiz(o) & Fiz(d'), QH(E, q, k, o) is dually isomorphic to an orthogonal
quadrangle QO(E,q,Fiz(c)) and QH(E', ¢, k', ¢") is dually isomorphic
to an orthogonal quadrangle QO(E', ¢', Fiz(c')). Hence F is isomor-
phic to a Moufang foundation £ of type PP involving QO(E, q, Fiz (o))
and QO(E',7 ,Fix(o')). The integrability of the Moufang foundation

follows from Propositions 153 and 154.

The gluing is of type LP.
We refer to the case of a gluing of type PL.

Case 1.9 A1 = QH(E,q,k,0) and Ay = QU(E', ¢, K, o").

Remark that Proposition 124 implies that in this case only gluings of type
PL and LL are possible. Propositions 125 implies that dim(E") = 4. There-
fore we have that QU(E',¢',k',0')) is dually isomorphic to an orthogonal
quadrangle QO(E",¢",Z(k')) by Proposition 138. For the integrability of the
Moufang foundation we can thus refer to case I.6.

Case 1.10 A1» = QU(E, ¢, k,0) and As3 = QU(E', ¢, k', 0").

Remark that by Proposition 126 only a gluing of type LL is possible such
that dim(F) = dim(E') = 4. Proposition 138 shows that QU (F,q,k,0)) and
QU(E', ¢ k', " are both dually isomorphic to orthogonal quadrangles. For
the integrability of the Moufang foundation we therefore refer to case 1.5.

Z(k) # k

Case .11 Ajs = QO(E, ¢, k) and A3 = QU(E', ¢, k', 0') Remark that Propo-
sition 125 implies that only a gluing of type LP is possble. For the integra-
bility of F' we refer to the results proved in [23].

Case 1.12 A1, = QU(E, ¢, k,0) and As3 = QU(E', ¢, k', o).
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The gluing is of type PP.

Remark that Theorem 151 implies that if £ is not a generalized quater-
nion algebra with standard involution f123 induces a (anti)-isomorphism
from k to k'. The integrability of the Moufang foundation follows from
Proposition 153.

The gluing is of type PL.
Proposition 130 shows that this case cannot occur unless Z(k) =k a
contradiction.

The gluing is of type LL.

Theorem 151 yields that the foundation can only be integrated if dim(E)
= dim(E') = 4, k is a generalized quaternion algebra with standard
involution and ¢’ is a generalized quaternion algebra with standard
involution o’. But then we find that QU(E,q,k,0) is dually iso-
morphic to an orthogonal quadrangle QO(E,q, Z(k)) and similarly
QU(E', ¢,k ¢') is dually isomorphic to an orthogonal quadrangle
QO(E'.7, Z(k'")) such that dim(E) = dim(E') = 8. Thus F is iso-
morphic to a foundation F = (QO(E, g, k),QO(E",7, k'),B123)) of type
PP. The integrability of F' follows therefore from Proposition 153.

4.4.2 Case IT : Mp,,,)(Ar2) = MOV, q, k)

To avoid unneccesary work we will avoid to rephrase the cases where we a
priori know that Mg, (c,,) (A1) is a projective Moufang set.
Case I1.1 A1y = QO(E, ¢, k) and Ayz = QO(E', ¢, k).

The gluing is of type PP, PL or LP.
As in this case Mpgy(c,,)(A12) is isomorphic to projective Moufang set
we refer to case L.5.

The gluing is of type LL and M g, (c,,)(A12) is not commutative. Propo-
sition 147 implies that QO(E, ¢, k) is isomorphic to QO(E", ¢', k') in this
case. The integrability of the foundation follows from Proposition 155.

The gluing is of type LL and Mgy (c,,)(A12) is commutative.
Remark that in this case Lemma 120 implies that codim(Rad(f)) = 2
and codim(Rad(f')) = 2. Hence A5 and A,y can be seen as indifferent
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quadrangles by Proposition 136. This means that the Moufang foun-
dation F' is isomorphic to a Moufang foundation of type LL involving
two mixed quadrangles. The integrability of F follows from Proposition
156.

Case I1.2 Ay, = QO(FE, ¢, k) and Ayz= QU(E', ¢, k', o).

The gluing is of type PP, PL or LP we refer to case 1.7

The gluing is of type LL and char(k) # 2.

Proposition 127 implies that dim(E') = 4.

We distinguish between two subcases :

o' is the standard involution. Proposition 138 shows that QU(E’,¢', k', o")
is dually isomorphic to an orthogonal quadrangle QO(E',q, Z(k")).

This means that F is isomorphic to a Moufang foundation F’

= (QO(E,q,k),Q(E", 7, Z(k'")),B123) of type LP. For a discussion on
the integrability of F' we can therefore refer to case I.5.

o' is not the standard involution. Lemma 115 implies that M g, (c,)(A2s)
is isomorphic to a non-commutative orthogonal Moufang set

MO(E', ¢, Z(K')) with dim(E') = 7. By Proposition 127 we find that
dim(F) = 7 and that g and ¢’ are proportional up to an isomorphism «
from k to Z(k'). The integrability of F follows from the results in [23].

The gluing is of type LL and char(k) = 2.

By Proposition 127 we find that in this case codim(Rad(f')) = 2, and
k' is a generalized quaternion algebra. This means that Mg, (c,,)(A12)
is an extended polar line. If dim(E') = 4 the integrability of F' can be
proved as above in the characteristic non 2 case. If dim(E") > 4 we the
integrability of F follows from the results in [23].

Case I1.3 Ajs = QO(E, q, k) and Aqyz = QK E";1',1").

The gluing is of type PL or PP.
We refer to case I.

The gluing is of type LP.
Proposition 131 implies that codim(Rad(f)) = 2. Hence QO(E, ¢, k)
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is an indifferent quadrangle by Proposition 136. The integrability of F’
therefore follows from Proposition 156.

Caselld Ay = Q(k, k;1,1) and Ags = Q(K', K1, 1').

The integrability of F' follows in this case from Proposition 156.

4.4.3 Case III : MRZ( )(Alg) = MH(V, q, ];7, 5’).

To avoid unnecessary work we will avoid to rephrase cases where we know a
priori that Mg, (c,,)(A12) is a projective Moufang set.

C12

Case ITII.1 : Ay = QH(FE,q,k,0) and Agyz=QH(E', ¢, K, o).

The gluing is of type PP, PL or LP.
We refer to case 1.8.

The gluing is of type LL.

If dim(F) = 4, Proposition 128 shows that dim(E') = 4. By Proposi-
tion 135 we have that QH(E, ¢, k, o) is dually isomorphic to an orthog-
onal quadrangle QO(FE, g, Fiz(c)) and QH(E',¢',k',0") is dually iso-
morphic to an orthogonal quadrangle QO(E', ¢ ,Fiz(c')). This means
that F is isomorphic to a foundation F = (QO (E, q, Fix(c)), QO
(E', @, Fiz(d')), Bras)) of type PP. The integrability of F follows
then from Proposition 153.

If dim(E) > 5 Proposition 128 implies that dim(E') > 5 and both
MRy (e1)(A12) and M g,y (ess)(A23) have non commutative root groups.
Remark that in this case QH(E, q, k, o) is isomorphic to QH (E', ¢, k', o)
by Proposition 147. The integrability of F' follows from Proposition
155.

Remark that the case where dim(V) = dim(V") =5 is still left open.

Case IT1.2 : Ay = QH(FE,q,k,0) and Agz = QU(E', ¢, K, o).

The gluing is of type PP, PL or LP.
We refer to L.9.

The gluing is of type LL.
Theorem 151 implies that in this case dim(E) = dim(E') =4, k' is a
generalized quaternion algebra with standard involution &' such that
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Z(k') 2 Fix(o). But then Proposition 135 implies that QH (E, ¢, k, o)
is dually isomorphic to an orthogonal quadrangle QO(E, g, Fiz(c)) and
by Proposition 138 we find that QU(E', ¢, k', 0") is dually isomorphic
to an orthogonal quadrangle QO(E', ¢, Z(k')). This means that the
foundation F is isomorphic to a foundation F= (QO(E,q, Fiz(c)),
QO(E',7,Z(K'),0") of type PP. The integrability of F then follows
from Proposition 153

4.4.4 Case IV : My, (Az) = MUV, q,k,7)

By Theorem 151 we can refer to case I for a discussion on the integrability
of F in this case.

4.4.5 Case V : Mpye, (A1) = P(I; k)

As earlier mentioned we will not consider the cases where we a priori know
that M g,(c15)(A12) is isomorphic to a projective Moufang set.

Case V.1 A5 = QO(FE, q, k) and Ayz = QO(E', ¢, k).

The gluing is of type PP, PL or LP. We refer to case .5

The gluing is of type LL.

Propositions 131 and 136 show that QO(E, ¢, k) and QO(E', ¢, k') are
isomorphic to indifferent quadrangles. Thus F’ is isomorphic to a foun-
dation of type LL involving two indifferent quadrangles. The integra-
bility of F' then follows from Proposition 156.

Case V.2 Ay, = QO(FE, ¢, k) and Agy = QK E";1',1").

The gluing is of type PP, PL. We refer to case I.5.

The gluing is of type LP.

Proposition 131 and 136 yield that QO(F,q,k) is isomorphic to an
indifferent quadrangle. Hence F is isomorhpic to a Moufang foundation
of type LL involving two indifferent quadrangles. For the integrability
of F' we refer to Proposition 156.
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The gluing is of type LL.

By Proposition 3.4.4 in [?] we know that Q(k', k";1',1") is dually isomor-
phic to the indifferent quadrangle Q(%”, (k')%;1”, (I')?). Hence F is iso-
morphic to a Moufang foundation F (QO(FE, q,k),Q(k", (K')*;:1", (I')?)
of type LP. The integrability of F' follows then as above.

Case V.3 Ay = Q(k, k;1,1) and Ags = Q(K', k';1',1'). The integrability of F
follows from Proposition 156.

4.5 Non-existence in 443 case

Definition 157 Let Mys be the Coxeter matrix defined over the set I =
{1,2,3} with mys = mao3 =4, m3 = 3. A Coxeter matrix M isomorphic to
Mz is said to be of type 443. A root system of type 443 is defined as a root
system of type Myy3, a building of type 443 is a building of type My3 and a
Moufang foundation of type 443 is defined as a Moufang foundation of type
Muyys.

In this section we will assume that for the (o, €)-quadratic forms with o # 1
involved € = —1. Using Lemma 92 and section 3.12.3 we see that this does
not put any restrictions on the forms.

Using similar reasonings as for the B, case we will show the non-existence of
certain Moufang foundations of type 443.

Theorem 158 Let M = (my;); jer with I = {1,2,3} a Cozeter matriz of
type 443, ® a root system of type 443 with root base A = {a; |i € I} such
that Ma,a, = Maga, = 4 and Mo, 0, = 3. Suppose that ((Aij) e,
(i) ijremmy, (Bijr) iyt krern)) is a Moufang foundation of type 443 where
the for every {i,j} € E(M) the system (Ua;“]-)afje%iaj forms a root groups
system for A;;. Suppose Ay is a unitary quadrangle QU (E,q,k,0), Nag is
a unitary quadrangle the form QU (E',q',K',0') and A3 is a Desarguesion
projective plane defines over a division ring k, Mpyc)(Q(E,q,k,0) and
M) (QE', ' k', 0") are both line pencils, Mg, (c,5)(I1) is a line pencil
and M gy(ci5) (I1) is a point row. Assume moreover that M (Q(E,q,k,0)) and
M(Q(E', ¢ K, ') are Moufang sets with non-commutative root groups such
that if k or k' is a generalized quaternion algebra with standard involution,
Rad(f) =0 or Rad(f") = 0.

If then ((Aij){i,j}EE(M))(Cij){i,j}GE(M); (Bijk){i,j}{j,k}EE(M)) is integrable one of
the following possibilities occurs :
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(i) Bs12 induces an anti-isomorhpism vrom k to k', k is a generalized
quaternion algebra with standard involution o and k' is a generalized
quaternion algebra with standard involution o,

(ii) Ba1z induces an isomorphism from k to k' and both k and k' are gener-
alized quaternion algebras.

proof :

Choose a coordinatization of QU (E,q,k, o) associated to the decomposi-
tion e_sk @ ek ® Ey® e k@ ep. Similarly we choose a coordinatization of QU
(E', ¢, k', o') associated to the decomposition €' ,k'® €' k' DE} Del k' debk’.
The assumptions of the theorem imply that there exists a 3-dimensional right
k-vector space U such that IT & PG(U). Denote the dual space of U by U*,
then U* is a right kP-vector space. Choose a base fixed base {uy, u,, us}
of U with dual base {u}, u}, ui}. For the rest of the proof elements of U
of the form ujw; + usws + uzws will be written as the row (wy, ws, w3) and
similarly every element of U* of the form ujw] +ulw; +ujw; will be denoted
by (’LU;‘,’LU;7 w;)* Call 6312 = Qq, 6132 = Q3 and 6123 = Q3. Then we can as-
sume without loss of generality that : a; defines a Moufang set isomorphism
from Mp(a0,0) (PG(E)) to Mrqoon(Q(E,q,k,0)), as defines a Moufang
set isomorphism from Myp) (Q(E,q,k,0)) to M) (Q(E',¢ K, 0")),
a3 defines a Moufang set isomorphism from Mpo,1,0)1,0,00) (PG(E)) to
Mrqoon(Q(E', ¢, k', d")). ) )

Let P(k) and P(k°) be projective lines defined over k and k. Choose
canonical coordinatizations of both projective Moufang sets. The calcula-
tions in section 3.4 show that the bijection 7 from P (k) to Mp((1,0,0),0,1,0)))
defined by :

() = ((v,1,0)), Yo € k
7((00)) = ((1,0,0))

determines a Moufang set isomorphism and similarly that the bijection
from P(kP) to Mrp(,0,0)) defined by :

(@) = (0,07, 1)7)
7'((20)) = ((0,1,0))

determines a Moufang set isomorphism.
To simplify notations we will identify in the sequel the point set of P (k) with
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the point set of Mp(((1,0,0),0,0,1)) (II) via v and similarly identify the point
set of P(k°PP) with the point set of Mp((1,0,0))(II) via v*. Without loss of
generality we can assume that a;((1)) = ((0,0),1) and a3((1)) = ((0,0),1).
Using Theorem 124 we see that «; defines a field (anti)-isomorphism from
kPP to k which we also denote as a; and is defined by :

oy (7)) = ((8%)*), Vo* € k.

In a similar way as defines a field (anti)-isomorphism from k to &' also de-
noted by as and define by :

as((8)) = (599), Vo € F.

Without loss of generality we can assume that a. ([0, (0,1)]) = [0, (0, 1)].
In this case Theorem 129 implies that the Moufang set isomorphism oy
from M0y (QU(E, ¢, k,0) to Mroy(QU(E', ¢,k ,0") sends {[0, (0,0)]| €
Tr(o)} to {[0,(0,6")]|¢ € Tr(c'} such that :

ax([0, (0,6)]) = [0, (0,67,
with v a field isomorphism from & to &' satisfying :
A7 = X7 VYA€ k.

This implies that if the Moufang foundation ((II, QU(E, ¢, k, ),

QU(E' ¢ k' 0"),(cij)(i.jyepn), (i)i<i<s) is integrable also the Moufang
foundation ((IL, QU(W, ¢, k,0), QU(W', ¢, k', 0"), (cij) tijyeBm)> (@) 1<i<s) will
be integrable where W = (e_s, e_1, €1, e2) and W' = (e’ ,, €', €], e, ).
Thus there exists a Moufang building (A, W, S, d) with root groups (Uy)aecs
of type 443 such that ((II, QU(W, ¢, k,0), QUW', ¢, k', o), (a;, 1 < i < 3))
= (Rij(cr).(ci)igyenan, Bir)gyiumesan) with ¢ € A, cj = cy, Bij
= Id, V{i,j}, {j.k} € E(M). Therefore we can reduce the situation to the
case where Ey = 0, Ej = 0 and a, induces a field isomorphism also denote
by a, from k to k' such that :

a2([07 (07 9)]) = [0’ (0’ 0a2)] V[O’ (0’ 0)] € MF((O)) (QU(‘/a 4k, U)) (49)
and :

A702 = N2 W) e k., (4.10)
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Let (b) € Mup(o10)100y))(II). Consider the automorphism sg)s¢). Clearly
this defines an automorphism of II with matrix representation with respect
to the base {uq, us, us} :

- 0 0

0 bt o0

0 0 1

We have that for (z*) € Mruoo)(PG(E)), sp) say ((z*)) = (=b7'z*) and
Sy S(1) (00) = (00). Clearly s()s(1) defines an automorphism h,) fixing an
aparment in the Moufang building in which the Moufang foundation is inte-
grated. Without loss of generality we can thus assume that A, defines an au-
tomorphism of the Moufang foundation ((II, QU (E, ¢, k,0), QU(E', ¢, k', o),
(i) iy, (@i, 1 <i <))

This means in particular that hj, defines automorphisms g, ) of QU(E, ¢, k, o)
and o, of QU(E' ¢, k', ¢'). In particular go,@;) will define an automor-
phism of Mry) (QU(W,q,k,0)) and g,y and automorphism of My
(QU W', ¢, K',c")). Without loss of generality we can assume that the
apartment given by {[oc], (c0), [(0,0)], ((0,0),0), [(0,0),0, (0,0)], (0, (0,0),0),
[0,(0,0)], (0)} in QU(E, q, k, o) is fixed under gq, ;) and that the same apart-
ment given in QU (E', ¢, k', 0') is fixed by ga,)-

By construction the automorphisms go,) and ga,s) are representations of
the action of h, on the whole building. If the Moufang foundation is inte-
grable this implies that the actions of g,, ) on Mr0)) (QU (W, ¢,k,0)) and
of Gasp) o1 M) (QU(V', ¢, k', ")) should coincide after identification via
as. In other words :

ga1(b)([0a (0,0)]) = aglgaa(b)Oé?([O’ (0,6)])), V6 € Tr(o).
Using formula (4.9) this gives :

9ou () ([0, (0,0)]) = 3 gyt ([0, (0,6°%))), VO € Tr (o). (4.11)

We calculate the action of g, on QU(E',q',k',0"). As h, is the global
action of sg)s(1) on the whole building and ag defines a Moufang set iso-
morphism we have that go,5) = Sas(b)Sass) Where a matrix representation of
Sas(b) With respect to the base {e_,, e_y, ey, €2} is given by :

0 bes () 0
b7l 00 0
0 0 0 poso’

0 0 b
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Thus gq,) has matrix representation :

bes () 0 0
0 bt 0 0
0 0 bs7’ ()
0 0 0 peso !

And thus for [0, (0,6")] € Mry) QU(V',¢',k',0") we have :

ga3(b)([0, (0’ 0’)]) = [07 (07 baaelba?ﬁ’)]'

Remains to calculate the action of g,, () and translate formula (4.9). By
Theorem 133 we know that gq, () is induced by a semi-linear transformation
o with associated field automorphism ~ such that :

Jor () (T p(x)), Y(z) € QU(W, q,k,0)
c(f(z,y)) (@(x),w(y)) Ve,ye W
c(q(x))® = qle(x)), Vo e

where ¢ € k is a constant which satisfies

L
&H/'\

A% =\ VX € k.

This means that with respect to the ordered base {e_,, e_1, €1, €2}, ga, ()
has matrix representation :

A0 0 0

0 X 0 O

0 0 X O

0 0 0 M\
with \; € £ satisfying :

AN\ = —c

A3 = ¢

By construction we know that for ((0,0),z) € Mryo,0(QU(V,q,k,0) :

gal(b)(((070)7r)) = ((0’0)’ (_b_lxal_l)al), Vx e k.
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Two cases occur :
First case : «; defines a field anti-isomorphism.

Then we have :

9or»(((0,0),2)) = ((0,0), (=ab™"™"), Va € k.

This means that g,,() defines a linear transformation with a matrix repre-
sentation of the form :

z 0 0 0
0 zb* 0 0
00 ((zb°)7)"te 0
0 0 0 —(z7Y¢

with 2 € Z(k) and ¢ € k. As c satisfies cA\7c™" = A7, V) € k we find that c €
Z(k). Consequently g, acts on the Moufang set My (QU(W,q,k, o))
by :

9or ([0, (0,0)]) = [0, (0, =227c™'0)], V[0, (0,6)] € Mr(o)(QU(V, ¢k, ).
Using property (4.10) condition (4.11) thus becomes :
—227¢ 1 = b2 9(b™%2 )7, V6 € Tr(o).
As asa, ! defines a bijection from k to & this yields :
0~'NON € Z(k), Y\ € k, V0 € Tr(o).
If we put # = 1 in this equation we get :
A € Z(k), VA e k.

But then we have also that (1 + A)(1 +X)° =1+ M\ +(A + X9) € Z(k).
Therefore we find that Tr(c) C Z(k). Lemma 8.13 in [29] implies that k
is a generalized quaternion algebra and o its standard involution. By sym-
metric arguments one finds that &’ is a generalized quaternion algebra with
standard involution ¢’. As k is isomorphic to k and &' it is also a generalized
quaternion algebra.

Second case : ay is an induces an isomorphism from k to k.
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By similar arguments as for the first case one deduces that g,,(;) has a ma-
trix representation with respect to the ordered base {e_, e_q, e, es} of the
form :

2710 0 0
0 z 0 0
0 0 (7Y% 0 ’
0 00 —(z7)7c”
with 2 € Z(k), and ¢ € Z(k) as c satisfies cA\%c™! = \?. For [0,(0,0)]

€ Mpo)(QU(V,q,k,0)) we thus find :
9o ([0, (0,0)]) = [0, (0, =227 (c™)7(b™)*'0(b™")*')], VO € Tr(0).
In this case condition (4.11) thus becomes :
—227(c )7 MO M = b (102 ), V6 € Tr(o).
Thus we find for every b € k a z, € Z(k) such that :
b OB = pesea (b )7 e € Tr(o), (4.12)

Inserting # = 1 in this equation gives

R L (L
and (4.12) becomes :

6 = 11675 (b2 ), Vb € k., (6)

Suppose that if k is a generalized quaternion algebra, o is not its standard
involution. By Lemma 47 we know that in this case T'r(o) generates k as a
ring. But then (6) yields :

(b)) (b21)or o5 e Z(k), Vb € k.

By assumption o defines an isomorphism from & to k and a;* a3 a,' an

(anti)-automorphism of k. This means that if we put 6 = a7 'as a; ' then :
M € Z(k), VA€ k.

In particular
(L+N)(L+X)° € Z(k)
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leads to (A + X°) € Z(k). By then every A € k is solution of a quadratic
polynomial P (X) with coéfficients in Z(k), namely Py(X) = X% —(A+)\%)X
+AX\°. Lemma 51 implies that this is only possible if k is a generalized quater-
nion algebra.

In any case we thus find that k is a generalized quaternion algebra, hence
the same is valid for k and &'. This completes the proof. m|
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Appendix A

Nederlandstalige samenvatting

A.1 Inleiding en situering

Gebouwen verschenen impliciet het eerst in 1959 toen J. Tits een meetkundige
interpretatie gaf aan een bepaalde veel bestudeerde algebraische groep (cfr.
[28]). In die periode was het woord gebouw echter nog niet officieel
geintroduceerd in de abstracte en algebraische meetkunde. Het zou een 15
tal jaar duren vooraleer gebouwentheorie door het standaard werk van J.
Tits [29] een feit werd. Dit werk heeft als voornaamste doel een volledige
classificatie te geven van sferische gebouwen (gebouwen met eindige diame-
ter) en rang groter dan 3.

Tweeling gebouwen, het vakgebied van deze thesis, dateren van een hele
tijd later. Eind jaren 80 traden nieuwe algebraische structuren op de voor-
grond als gevolg van de ontwikkelingen in de theoretische natuurkunde. Dit
waren de zogenaamde Kac-Moody algebra’s (cfr. [16]). Deze algebra’s kun-
nen het best gezien worden als veralgemeningen van algebraische groepen.
In algebraische groepentheorie gaat men er namelijk vanuit dat de dimen-
sie van de vectorruimten waarin de groepen gedefiniéerd worden eindig is.
Indien men deze veronderstelling laat vallen en oneindig dimensionale vec-
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torruimten toelaat verkrijgt men onder een bepaalde voorwaarde Kac-Moody
algebra’s. Gezien J. Tits er destijds in geslaagd was een succesvolle theorie
te ontwikkelen die algebraische groepen in een meetkundig perspectief stelde,
was men ervan overtuigd dat een gelijkaardige theorie voor Kac-Moody al-
gebra’s diende opgesteld te worden.

Met dit als doeleinde stelden M. Ronan en J. Tits in 1990 het begrip tweeling
gebouw voor. Gezien tweeling gebouwen een veralgemening zijn van sferische
gebouwen gaf J. Tits in de standaard referentie [32], een ruw plan van hoe een
classificatie van tweeling gebouwen eruit zou moeten zien. Deze beschrijving
zette B. Miihlherr er toe aan te beginnen werken aan een classificatie van
2-sferische tweeling gebouwen (2-sferische tweeling gebouwen zijn tweeling
gebouwen met lokaal eindige diameter).

Tijdens het schrijven van zijn proefschrift was B. Miihlherr onrechstreeks
in contact gekomen met technieken die nuttig zouden blijken voor een clas-
sificatie. Het eerste resultaat dat een oplossing gaf voor een probleem dat
cruciaal was om deze classificatie te kunnen aanvatten, werd opgelost door B.
Miihlherr en M. Ronan in [18]. Een ander belangrijke techniek, die volgens J.
Tits zou moeten gebruikt worden, was de techniek van Galois cohomologie.
B. Miihlherr slaagde erin in [21] om deze techniek uit te breiden naar het veld
van tweeling gebouwen. Hierna bleek de theorie van B. Miihlherr krachtig
genoeg ome de klassicatie van 2-sferische tweeling gebouwen te reduceren tot
een classificatie van 3 types tweeling gebouwen : tweeling gebouwen van type
Ay, B, end type 443.

Gezien gebouwen van type A, reeds goed gekend zijn door o.a. het werk
op affiene gebouwen van H. Van Maldeghem en K. Van Steen bleven enkel de
types B, and 443 over als onopgelost. Het voornaamste doel van dit proef-
schrift was dan ook te werken aan deze beide types meetkunden. Naarmate
de theorie vorderde dienden een aantal verwante, vaak algebraisch gerichte
vragen opgelost te worden. Zo was een classificatie van klassieke en gemengde
Moufang verzamelingen noodzakelijk, een probleem dat nauw verwant leek
met Borel-Tits theorie (cfr. [2]) en de theorie van orthogonale, hermitische en
unitaire groepen en algebraische krommen (cfr. [6, 7]). In een aantal gevallen
leidde dit zelf tot een aan aantal karakterisatiestellingen (cfr. Stellingen 74,
101, 132).

Om de uiteindelijk classificatie van B,- tweeling gebouwen te bekomen met
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bepaalde residue’s, werd gekozen om tweeling gebouwen te zien als Moufang
gebouwen. (Moufang gebouwen zijn gebouwen waarvoor aan hoge symmetrie
eisen voldaan is.) Dit had als voordeel dat stellingen en de presentatie kon-
den worden vereenvoudigd. Gezien door het werk van B. Miihlherr (cfr. [18])
en het tweede deel van dit proefschrift de 2-sferische Moufang gebouwen en
tweeling gebouwen bijna altijd equivalente begrippen zijn, legde dit geen ex-
tra beperkingen op.

Dit proefschrift werd verdeeld in vier delen (Chapters).

In het eerste deel worden een aantal definities en notaties gegeven.

Het tweede deel behandelt de oplossing van twee problemen betreffende tweel-
ing gebouwen.

Het derde deel beschrijft een classificatie van gemengde en klassieke Moufang
verzamelingen.

In vierde deel wordt een partiéle classificatie gegeven van tweeling gebouwen
van type B,. Tevens wordt hier een eerste stelling bewezen die het niet
bestaan van een aantal meetkunden van type 443 aantoont.

Definities

We vermelden in deze paragraaf de voornaamste definities en notaties. Als
belangrijkste verwijzingen in deze context vermelden we [1], [20], [29],[32],
[25] en [37].

A.1.1 Coxeter matrices, Coxeter systemen en wortel-
systemen

Definitie 1 Zij I een eindige verzameling. Een Coxeter matrix over I is
een symmetrische matrix M = (my;); jer zodat m;; € N U {oo}, my > 2,
VEk,l €l zodat k#lenm; =1,Vi el

Definitie 2 Een Coxeter matrix M = (m;;); jer noemt men 2-sferisch indien
m;j < 0o, VYi,j € I. Indien M = (m;;); jer een Coxeter matrix is noteert met
E(M) ={i,j} C I waarvoor m;; > 3.

Definitie 3 Zij M = (m;;);; een Coxeter matrix over een eindige verzamel-
ing I. Een Cozeter systeem van type M is een paar (W, (s;);er), waarbij W
een groep is met presentatie W = (s;](s;s;)™ ).
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Stel dat (W, (s;)icr) een Coxeter systeem is. Voor z € W definiéren we I(x)
dan als min{m|z = s;q)si) ... Sigm) |1(j) € I, 1 < j < m}. Bovendien
noemt men elk element van de vorm ws;w ™! een spiegeling. Elke spiegeling
induceert een permutatie van W als men stelt :

ws;w Hz) = ws;w tw, Vo € W.

Men kan nu makkelijk bewijzen dat elke spiegeling ws;w™!, een partitie van
W in twee helften invariant laat. Deze helften noemt men wortels in W
(behorend bij ws;w™!). Deze wortels noteert men met (ys,-1 €0 — Qs -1,
waarbij 1 € as,,-1. Indien a en —a twee wortels zijn noteert men

da = {{z,y}|z,y € W en so () = y}.
Als {z,y} € da, dan noemt men {z,y} ook een paneel dat ligt op Ocv.

Definitie 4 Zij M = (my;);; een Coxeter matrix over I en (W, (s;);cr) een
Coxeter systeem van type M. Dan noemt men de verzameling van alle wortels
in W een wortelsysteem van type M.

Definitie 5 Zij M = (m;;); jer een Coxeter matrix over I en (W, (s;);er een
Coxeter systeem van type M met wortelsysteem ®. Twee wortels a en § van
W worden prenilpotent genoemd indien a N 3 # @ en —a N — B #£ 0.
Indien « en § prenilpotent zijn noteert men :

[a,f]={ye®yCanfand —yC —an—3}.

en :

(@, 8) = [a, B] \ {e, B}.

A.1.2 Gebouwen en Moufang gebouwen

Definitie 6 Zij M = (m;;);; een Coxeter matrix over een verzameling I,
(W, (si)ic1) een Coxeter systeem van type M. Een gebouw (van type M) is
een viertal (A, W, (s;)ier, s) waarbij A een verzameling is, wiens elementen
kamers worden genoemd, en d een functie is van A x A naar W zodat :

Bul d(z,y) =1, als en slechts als z =y, Vz,y € A

Bu2 Stel dat voor z, y € A, d(z,y) = w en z een kamer zodat d(y,z) = s
met s € S dan geldt d(x,z) € {w,ws}. Als in het bijzonder [(ws)
> [(w), dan vinden we d(z,z) = ws.
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Bu3 Stel z, y € A met d(z,y) = w. Dan bestaat er voor elke s; minstens
één kamer z € A zodat d(z,z) = ws

Definitie 7 Als (A, W, (s;)icr, d) een gebouw is en ¢ € A dan noemt men een
verzameling Ry, (c) {z € Ald(z,c) € {1, s;} een s;-paneel of ook wel kortweg
een paneel in A.

Het eenvoudigste voorbeeld van een gebouw van type M = (my;);jer
wordt gegeven door het viertal (W, W, (s;)ser, dw) waarbij (W, (s;)ier) een
Coxeter systeem is van type I en dy wordt gegeven door :

dw(z,y) = 27 'y, Vo, y € W.

Noteer dit gebouw als Ay .

Als (A, W, (8;)ier, d) een gebouw is van type M, dan kan men bewijzen dat
er deelverzamelingen ¥ in A zijn die als gebouw isomorf zijn met Ay, Zulke
verzameling noemt met een appartement van (A). Aangezien elk appart-
ment ¥ isomorf is met Ay, kan men tevens spreken over spiegelingen, wortel,
wortelsysteem prenilpotente wortels in X.

Definitie 8 Zij M = (my;); jer een Coxeter matrix over I, (W, (s;);c) een
Coxeter systeem van type M en (A, W, (s;)ic,d) een gebouw van type M.
Stel dat ¥y een vast appartement in A is. Noteer all wortels in ¥y door
®y. Dan noemen we (A, W, (8;)er,d) een Moufang gebouw als er een familie
(Us)aca, automorfisme groepen van (A, W, (s;)er, d) bestaan (wortelgroepen
genoemd) zodat :

Mol Elk element u, € U, fixeert alle kamers van «. Stel dat 7 een paneel
is gelegen op Oa, en ¢ een kamer van 7 die in « gelegen is. Dan werkt
U, regulier op alle kamers van 7 \ {c}.

Mo2 Als {«, 8} een paar prenilpotente wortels is, geldt :
[Ua, Usl C Uta )
waarbij U, g de groep is voortgebracht door U, met v € (a, ).

Mo3 Voor elk element u, € U, \{1} bestaat er een element m(uy) € U_,
Uy U_q waarvoor geldt m(ug) (Xq) Zo.

Mo4 Stel voor u, € U,, n = m(u,) dan geldt voor elke wortel § € X

nUanl = Un(p)-
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A.1.3 Tweeling gebouwen

Definitie 9 Zij M = (my;); jer een Coxeter matrix over I, en (W, (s;)ier
een Coxeter systeem van type M. Een tweeling gebouw (van type M) is
een paar gebouwen (A, W, (s;)ier,dy), (A_, W, (8;)ier, d_) voorzien van een
complementaire aftandsfunctie d*, gaande van Ay UA_ U A_ UA, naar W
zodat (e € {—1,1}, z € A,y € A_en d*(z,y) = w) :

Twl d*(y,z) = w™'.

Tw2 Als z een kamer is in A_, met d_(y,2z) = s; em [(ws;) < l(w) dan
geldt dat d*(z, z) = ws;.

Tw3 Voor elke s; € S bestaat er ten minste één kamer z € A_, zodanig dat
d*(z,z) = ws;.

A.1.4 Moufang verzamelingen

Moufang verzamelingen werden het eerst formeel geintroduceerd in [32]. Een
aantal gekende Moufang verzamelingen werden reeds voorheen bestudeerd
onder een andere naam en met andere notatie. Ze kunnen het best gezien
worden als de kleinst mogelijke tweeling gebouwen. Bovendien is elk Moufang
gebouw samengesteld uit een groot aantal Moufang verzamelingen.

Definitie 10 Een Moufang verzameling is een verzameling X met ten minste
3 elementen, en een familie groepen (U, ),cx (wortelgroepen genaamd) zodat :

MoS1 Elke groep U, werkt regulier op X \{z}.

MoS2 Elke groep U, stabiliseert de verzameling groepen {U,ly € X} door
conjungatie

Definitie 11 Een isomorfisme tussen twee Moufang verzamelingen
(X, (Uy)wex) en (Y, (Uy)yey) is een bijectie § van X naar Y zodanig dat voor
elke z € X en u, € U, geldt dat :

Bou,oB € Upy
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A.2 Algemene resultaten

A.2.1 Tweeling gebouwen en Moufang gebouwen.

Door het werk van B. Miihlherr en M. Ronan (cfr. [18]) was reeds gekend dat
onder bepaalde lokale voorwaarden elk tweeling gebouw kan gezien worden
als een Moufang gebouw. In het artikel [32] haalt J. Tits aan dat men tevens
het omgekeerde kan bewijzen, en geeft hij een aantal hints. Hij vermeldt
er echter bij dat het geen triviaal resultaat is dat enig werk vereist. Dit
probleem was dan ook een uitdaging om me vertrouwd te maken met de
theorie van tweeling gebouwen. De stelling luidt als volgt :

Stelling 12 (Theorem 74) Zij (A, W, (s;)ic1,d) een Moufang gebouw van
type M dan kan (A, W, (8;)ier,d) gezien worden als de helft van een tweeling
gebouw, i.e. er bestaat een gebouw (A_, W, (8;)icr, d-) en een complementaire
afstandsfunctie d* zodat (A, W, (8;)ie,d), (A=, W, (8i)ie, d-),d*) een tweeling
gebouw is.

A.2.2 Lokale karakterisatie van tweeling gebouwen

De volgende stelling is het resultaat van het onderzoek verricht naar abstracte
voorstellingen van tweeling gebouwen. Dit resultaat werd tevens onafhanke-
lijk gevonden door P. Abramenko en H. Van Maldeghem.

(Doorheen deze paragraaf stelt e telkens een element uit de verzameling
{-1,1} voor.)

De volgende definitie kan tevens teruggevonden worden in [19].

Definitie 13 Een I-koppeling tussen een paar gebouwen (A, W, (s;)ier, d+)
en (A_, W, (si)icr,d-) van hetzelfde type is een symmetrische binaire relatie
O cCc Ay x AL U A_ xA, zodat als voor ¢, € A, en c_, € A_,, geldt
dat (ce,c—.) € O, dan bevat elk paneel van A, waarop c, ligt juist één
kamer z zodanig dat (z,c¢_.) € O. Als O een l-koppeling definieert tussen
(A, W, (8i)ier,d+) en (A_, W, (s;)ier,d—) en ¢, € A,, dan noteren we :

¢ ={yeA_(c,y) € O}.

Stel dat (AL, W, (s)ier,d+), (A, W, (s;)ier,d_) ,d*) een tweeling gebouw
is. Dan definieert de relatie Opp met :

(z,y) € Opp & d*(z,y) =1
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een 1-koppeling tussen (AL, W, (8;)ier, d+) en (A, W, (8;)ier, d—). Men noemt
deze 1-koppeling ook de oppositie relatie tussen Ay en A_ bepaald door d*.
Men kan aantonen dat tweeling gebouwen tevens kunnen gedefinieerd worden
in termen van de oppositie relatie. Met andere woorden, het is voldoende de
relatie Opp te kennen teneinde d* te reconstrueren.

Definitie 14 Stel dat O een 1-koppeling definieert tussen (A, W, (s;)ier, dy)
en (A_ W ,(s;)ier, d_). Dan zeggen we dat O voldoet aan de voorwaarde Ptw
voor een kamer ¢ € € als :
VyeA_, Ve, ¢ €c® zodanig dat I(d_.(c,,y)) = l(d-c(¢,,y))
= min{l(d_c(z,y))|z € ¢}, V y. € y° met I(d(c,y.)) = min{l(d.(v,c))
[v € c°} geldt :

d*f(cyv y) =d_. (Eyv y) =d. (C, ya)'

Het belang van voorwaarde Ptw en tweeling gebouwen wordt gegeven in
volgende stelling :

Stelling 15 (Theorem 101) Stel dat O een 1-koppeling definieert tussen twee
dikke gebouwen (A, W, (8:)ier, ds) en (A_, W, (8;)ier, d-). Dan definieert O
een oppositie relatie tussen Ay en A_ (ie. er bestaat een tweeling gebouw
(AL, W, (81)ier, d+), (A=, W,(8:)ier,d-),d* zodat Opp = O) als en slechts
als voorwaarde Ptw voldaan is voor ten minste één kamer uit A, of A_.

A.3 Resultaten over Moufang verzamelingen

Vooraleer het resultaat neer te schrijven, geven we waar mogelijk een korte
beschrijving van de Moufang sets welke in dit proefschrift beschouwd werden.
Als referentie geven we in dit kader Hoofdstuk 8 op van [29].

Definitie 16 Stel k£ een lichaam met involutie o, € € k en V een rechtse
k-vectorruimte. Een (o, €)-hermitische vorm is een afbeelding f van V' x V
naar k zodat :

fahyp) = N f(z,y)p, Y\ p €k ryeV
fle+y,2) = flz,y) + f(2,2), Vz,y,2 €V
flz,y) = f(y,2)7¢, Yo,y €V

Voorts noteert men k@ k/k, . waarbij k,. = {t — t7¢|t € k}.
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Definitie 17 Stel k£ een lichaam met involutie o, € € k en V een rechtse
k-vectorruimte. Een functie ¢ gaande van V' naar k(> noemt men een (o, €)-
kwadratisch vorm als gq(xX) = XNq(x)A\ + ks, V X € k, x € V en indien er
een (o, €)-hermitische vorm f op V' x V bestaan zodanig dat :

q(r +y) = q(x) +q(y) + (f(z,y) + ko

Indien ¢ een (o, €)-kwadratische vorm is op een rechte k-vectorruimte V', kan
met bewijzen dat ¢~*(0) unie is van deel vectorruimten van V, welke totaal
isotrope deelruimten van V' worden genoemd. Door het gebruik van Zorns
lemma volgt bovendien dat alle maximale deelruimten in ¢~*(0) dezelfde di-
mensie hebben, welke de Witt indez van ¢ wordt genoemd.

Indien ¢ een (o, €)-kwadratische vorm is van Witt index 2 vormen totale
isotrope deelruimten een meetkundige structuur welke bekend staat als
een veralgemeende vierhoek, genoteerd als Q(V, ¢, k, o). We zullen hier
niet nader ingaan op de theorie van veralgemeende vierhoeken. Voor
meer informatie verwijzen we naar het standaard werk [37].

Indien ¢ een (o,€)-kwadratische vorm is van Witt index 1, vormen

de totale isotrope deelruimten een Moufang verzameling, genoteerd
M(V,q,k, o).

De Moufang verzamelingen van de vorm M(V,q, k, o) vormen een grote
klasse van diegene die in dit werk bestudeerd worden. Ze worden in 3 klassen
onderverdeeld

Orthogonale Moufang verzamelingen,
Moufang verzamelingen van de vorm M(V, ¢, k,o) met o = 1.

Hermitische Moufang verzamelingen,
Moufang verzamelingen van de vorm M(V,q,k,0) met Z(k) =k en o

£ 1.

Unitaire Moufang verzamelingen Moufang verzamelingen van de vorm

M(V,q,k,0) met Z(k) # k.
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Naast Moufang verzamelingen geassocieerd met (o, €)-kwadratische vormen
vermelden we nog de twee andere klassen welke in classificatie opgenomen
werden.

Projective Moufang verzamelingen,
genoteerd als P (k). Deze Moufang verzamelingen vertalen in feite alle
bepalende eigenschappen van de projective rechte over een lichaam k.

Gemengde Moufang verzamelingen,

genoteerd als P(k, k';1,1'), waarbij k en k' twee velden in karakteristiek
2 voorstellen met deelverzamelingen [ en [’ die aan bepaalde voorwaar-
den voldoen.

Definitie 18 Een Moufang verzameling (X, (U;)zex) noemt men klassiek
indien (X, (U,)zex) isomorf is met een projectieve Moufang verzameling of
een Moufang verzameling van de vorm M(V,q,k, o)

In Hoofdstuk 3 wordt in het kader van de classificatie van B,- Moufang
gebouwen, een classificatie gegeven van klassieke en gemengde Moufang verza-
melingen. Als belangrijk resultaat dat volgt uit deze classificatie geven we :

Stelling 19 (cfr. Theorems 124, 125,126,127, 128, 129,130 en 131) Indien
de dimensie van V' en V' groter is dan 5, en indien de wortelgroepen van beide
Moufang verzamelingen niet commutatief zijn indien Z(k ) # k, dan bestaat
er voor elk isomorfisme 8 van M(V,q,k,c) naar M(V', ¢, K',0') een semi-
lineare afbeelding ¢ met a een isomorfisme van k naar k' en een constante
c €k zodat :

B(x)) = ( (2)),V(z) € M(V,q,F,0)
(f(2,9))* (), ¢(y), Yo,y €V
)

(q(2))* ' (p(r), Ve eV

Deze stelling vormt een uitbreiding van Borel-Tits theorie in het geval van
een algebraische groep van rang 1.

Als gevolg van de classificatie en gemengde Moufang verzamelingen kon een
lokale karakterisatiestelling voor klassieke Moufang verzamelingen opgesteld
worden.
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ng 20 (cfr. Theorem 132) Een Moufang verzameling (X, (Uy)zex) is

van de vorm M(V,q,k,0), met dim(V) > 5 en als k een veralgemeende
quaternionen algebra is, is o niet de standaard involutie, als en slechts als
er twee punten yy, yo € X en een familie (Y;);er Moufang deelverzamelingen
van (X, (Uy)zex) zodat :

(i)

(i)

(iii)

(iv)

(v)

A4

Stel d
R;(c)

ElkeY; is isomorf onder @; met een Moufang set M(V;, ¢;, ki, o), waar-
bij dim(V;) > 4 als Z(k;) = k; en o; # 1 en o; niet geligk is aan de
standaard involutie als k; een veralgemeende quaternionen algebra is.
Alle Y; zign van hetzelfde type.

Elke Moufang deelverzameling Y; bevat y, en ys en elk drietal punten
T1, T2 en T3 is beval in een Y.

Als de Y; orthogonale Moufang verzamelingen zijn, geldt :
voor elk paar ¢, j € I is de Moufang verzameling Y; N Y; niet kommu-
tatief en :

Z(Fizry{y1,y2}) = Z(Fizry;{y1,y2})-
Als char(k;) = 2, is elke Moufang verzameling ¢; *(Y;) van de vorm
M(Vij, 4ij, kij, 0j) waarbij Vi; een deelruimte van V; wvoorstelt en g;;
=4

Vij -
Als de Y; niet orthogonaal zijn, geldt :

Z(Staby, (Y:)) = Z(Staby, (Y;)), Vi,j € 1.

Als de Y; hermitische Moufang verzamelingen zijn, bestaat er een Y
behorende tot de familie (Y;)ier, zodat voor elk paar i, j € I, Yy NY;
NY; een Moufang verzameling is met niet-kommutatieve wortelgroepen.

classificatie van B,- Moufang gebouwen

en het niet bestaan van Moufang gebouwen

van type 443

at (A, W, (si)ier, d) een Moufang gebouw is van type M = (m;;); jer. Zij
het s;-paneel in A dat ¢ bevat. Dan volgt uit de standaard theorie dat

de Moufang structuur op A een structuur induceert zodat men R;(c) kan zien
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als een Moufang verzameling. Noteer dergelijke Moufang verzameling met
MR;()- We kunnen dan volgend begrip invoeren, waarover meer informatie
kan teruggevonden worden in [32], [20] en [21].

Definitie 21 Zij M = (m;;); jer een Coxeter matrix over een verzameling I.
Een Moufang fundering (van type M) is een drietal ((A;;)ijemr)s
(i) tigyeman) »(Bijk) iy 4ikyeB(an) met :
MoFol Voor elk paar {i,j} € E(M) is A;; een Moufang gebouw van type
(mk,l)k,le{i,j}~

MoFo2 Voor elk paar {i,j} € E(M), stelt ¢;; een kamer van A;; voor en ¢;
= Cji,» \VIZ,] el

MoFo3 Voor elk koppel {i,j} {j,k} € E(M), definieert {3, een isomorfisme
tussen Mg, (c,;) en Mpg;(c;,)-

Men kan aantonen dat indien (A, W, (s;);,d) een Moufang gebouw is van
type M, hiermee een isomorfie klasse van Moufang funderingen van type M
correspondeert die we noteren als MoFo(A). Moufang funderingen bleken
door [32], [20] en [21] essentieel teneinde een classificatie van Moufang gebouwen
te kunnen opstellen. Uit [18] volgde namelijk dat een Moufang gebouw
volledig bepaald wordt door MoFo(A). Er volgde namelijk uit dat in de
meeste gevallen twee Moufang gebouwen A en A’ isomorf zijn als en slechts
als MoFo(A) = MoFo(A'). Een classificatie van Moufang gebouwen diende
dus te beginnen met een classificatie van Moufang funderingen.

Definitie 22 Een Moufang fundering F' = ((Ayj)q1eman, (i) firenan,
(Biji) (i1 4 kye E(vy) van type M noemt men integreerbaar indien F' € MoFo(A)
waarbij A een Moufang gebouw van type M voorstelt.

Definitie 23 Stel My, de Coxeter matrix over {1,2,3} met m;y = my3 = 4
en my3 = 2 en Myq3 de Coxeter matrix over {1,2,3} met mis = mae3 =4 en
mi3 = 3.

Definitie 24 Idien voor een Moufang fundering F' = ((Aj;) i 1eB(m),

(cij) tiayeman, (Bijk)ig) tikyeran), van type My, , Mp, (i) en M, e,y beide
puntenrijen zijn, noemt men F' van type PP, Mpg,(,,) en Mg, (c,,) beide lijnen
penselen, noemt met F' van type LL, Mpgy(,,) een puntenrij en Mg, (c,,) een
lijnenpenseel is, noemt met F' van type PL, Mg,(,,) een lijnenpenseel en
M Ry(cs3) €€n puntenrij is, noemt men F' van type LP.
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A.4.1 Niet integreerbare Moufang funderingen

Volgende twee stellingen zijn cruciaal voor een classificatie van Moufang
gebouwen van types My en Myys.

Stelling 25 (CfT'. Theorem 151) Zig F = ((Aij){i,j}eE(M), (Cij){z',j}eE(M);
(Bijk) iy, (imyeean)) een Moufang fundering van type Mg, .

Stel Ay = Q(E,q,k,0) en Aoz = Q(E', ¢, k', 0'), met Z(k) #k en Z(K') #
k'. Als F integreerbaar is, geldt :

(i) F is van type PP en er geldt:
(i.a) Bia3 induceert een anti-isomorfisme van k naar k'
(i.0) k en k' zijn veralgemeende quaternionen algebra’s met standaard
involutie o en o' en B123 definiecert een isomorfisme van k naar k'

(i) F is van type LL, k en k' zijn veralgemeende quaternionen algebra’s
en dim(E) = dim(E') = 4.

Stelling 26 (cfr. Theorem 158) Zij F' = ((Aij)ijyesmys (Cij)figyeB(M)s
(Biji) (i1 ke amy) een Moufang fundering van type Mgz met mip = mog
=4 en myz3 = 3. Stel dat Az = Q(E,q,k,0), Doz = Q(E', ¢, K ,0'), met
Z(k) # k, Z(K') # k' en Rad(f) = Rad(f') = 0 (waarbij f de vorm is
geassocieerd aan q en f' de vorm geassocieerd met q') als k of k' een veral-
gemeende quaternionen algebra’s is met standaard involutie o of o'. Als F
integreerbaar is, treedt één van volgende gevallen op :

(i) Bias induceert een anti-isomorfisme tussen k en k', k is een veralge-
meende quaternionen algebra met standaard involutie o, k' is een ver-
algemeende quaternionen algebra met standaard involutie o'

(ii) Biaz induceert een isomorfisme tussen k en k', k is een veralgemeende
quaternionen algebra en k' is een veralgemeende quaternionen algebra

A.4.2 Integreerbare Moufang funderingen van type Mp

Gebruik makend van voorgaande stellingen kunnen de problematische gevallen
voor de classificatie van Ba- gebouwen volledig geélimineerd worden. Rest
ons dus nog over een lijst te geven van de integreerbare Moufang funderingen
van type B,. Bij het opstellen van deze lijst werd veelvuldig gebruik gemaakt
van de resultaten van [23]. Gezien de lengte en het technisch karakter van
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de lijst verwijzen we voor een expliciete opsomming naar paragraaf 4.4. We
vermelden echter wel de voornaamste stellingen.

Stelling 27 (cfr. Theorem 153) Elke Moufang fundering F = ((Q(E, q, k, o),
Q(E' ¢ K d"), c12, ca3, B123)) van type PP met Z(k) # k zodanig dat (123
een anti-isomorfisme definieert van k naar k' is integreerbaar.

Stelling 28 (cfr. Theorem 155) Stel k en k' beide velden. Dan is elke

Moufang fundemng F = ((Q(E,q,k,a), Q(E’7q’)k’70’); C12, C23, 6123)) van
type LL, zodat My(Q(E, q,k,0)) niet commutatief is, integreerbaar.
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