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Mirror worlds

This thesis is a thesis on the world of twin buildings, an extension of the

former building theory.

Building theory was orginally developed by J. Tits to give a geometrical in-

terpretation of the theory of semi-simple linear algebraic groups. Implicitely

buildings were born in 1965, in the famous paper [28]. Although at that

time the geometries which J. Tits constructed were not called buildings yet.

Buildings where oÆcially established in the mathematical landscape in '74,

with the appearence of the standard reference [29]. In this work J. Tits gives

a complete classi�cation of spherical buildings (i.e. buildings of �nite diame-

ter) of rank bigger than 3. Important in this classi�cation was the fact that

every spherical building of rank bigger than 3 is a Moufang building. (Mo-

ufang buildings can best be seen as buildings with a high degree of symmetry.)

A lot of techniques used in this work found their inspiration in algebraic

group theory. Especially J. Tits succeeded in generalizing the concept of a

root datum, the Galois cohomology of algebraic groups and relative algebraic

group theory.

During the 90 new developments in physics (i.e. quantum gravity, super

string theory) led to an interest of mathematicians into a new algebraic struc-

ture, namely Kac-Moody algebras. These structures arose as generalization

of the former will known Lie algebras, symmetry groups of certain physical

systems. Lie algebras are always de�ned in �nite dimensional vector spaces.

The di�erence in Kac-Moody theory is that Kac-Moody algebras can be de-
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�ned in in�nite dimensional vector spaces, making the theory in a lot aspects

quite di�erent from Lie algebra theory.

Every Lie algebra corresponds to an algebraic group and conversily every

algebraic group induces a Lie algebra. As J. Tits already succeeded in giv-

ing a geometrical interpretation to linear algebraic groups he and M. Ronan

started to think how a geometry associated to a Kac-Moody algebra would

look like. As a result they introduced the concept of a twin building. One way

to see twin buildings is as a couple of buildings, endowed with an opposition

relation between them. This opposition relation is in fact a generalization

from the fact that the diameter of a spherical building is �nite. Intuitively

this opposition relation is as if one would consider a building, put it before

a mirror and consider the re
ected building as its twin.

In the standard reference [32] J. Tits describes a possible classi�cation pro-

gram for twin buildings. The techniques he proposes hereby are quit related

to the ones used in [29]. Having made a phd on a part of building theory

that has strong connections with twin building theory, Bernhard M�uhlherr

got interested in this classi�cation. In particular he wanted to get a classi-

�cation of 2-spherical twin buildings, i.e. twin buildings where the diameter

is locally �nite.

A �rst major result needed to start the classi�cation was proved in '92 by

Bernhard M�uhlherr and M. Ronan in [18]. Using this result they could prove

that the two parts of a twin building are in the 2-spherical case Moufang

buildings and that a twin building is completely determined by its local da-

tum, namely a Moufang foundation.

The next important steps towards a classi�cation were taken in [21] and [20].

In [21] Bernhard M�uhlherr succeeded in extending the relative theory of alge-

braic groups and the Galois cohomology to the �eld of twin buildings. This

led to [20] where the classi�cation of 2-spherical twin buildings is reduced to

a classi�cation of three types of geometries. Namely twin buildings of type
~A2, ~B2 and 443.

As buildings of ~A2 where studied before thoroughly (cfr. [35, 36]) this left

to problem of classifying twin buildings of type ~B2 and 443. This was the

starting point of writing this thesis. In the end I got a classi�cation of ~B2

twin buildings where the geometries are locally classical or indi�erent and a

integrability criterion for twin buildings of type 443. During the process of
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�nding the right tecniques the theory developed could in some cases also be

used to solve other non related problems.

The thesis is organised in four Chapters.

Chapter 1 gives an overview of the de�nitions and notations used in the

thesis.

Chapter 2 consists of the proofs of two theorems. The �rst theorem was

a problem known to be true but no real formal proof was written down. It

concerns the fact that every Moufoufang building can be seen as half of a

twin building. This problem was stated in [29] with a strategy of a proof.

But J. Tits mentions that the proof is not straightforward and some new

concepts should be introduced. In order to get familiar with twin building

theory, I had to solve this problem. At this point I have to mention this

result was found independantly by P. Abramenko and I should thank him

for the mathematical discussions and suggestions conderning this problem.

The second theorem deals with a local characterization criterion for twin

buildings which was also found independantly by P. Abramenko and H. Van

Maldeghem.

In the setup of [29] and [20] a classi�cation of 2-spherical twin buildings

relies heavily on a carefull study of Moufang sets. Moufang sets are in fact

the smallest twin buildings and form the building blocks of every twin build-

ings. Therefore we give in this chapter a classi�cation of the Moufang sets

needed to classify ~B2 twin buildings which are locally classical of indi�er-

ent. The problems which arose here are quit related to Borel Tits theory

(cfr. [2]), classical theory on orthogonal, hermitian and unitary groups of

Witt index 1 (cfr. [6, 7]) and algebraic group theory (cfr. [27]). But as all

these theories only work under restrictions, which had to be avoided for the

classi�cation, a completely new setup was developed and some new results

on classical groups came out. (cfr. Theorem 127) As a byproduct of the

theory developed in Chapter3, a local characterization of classical Moufang

sets could be proved (cfr. Theorem 132).

The �nal chapter deals with classi�cation and integrability conditions.

As already mentioned by the results in [18], twin buildings are completely

determined by their local data which are called Moufang foundations. Hence
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to classi�y twin buildings one has to give a list of existing Moufang foun-

dations, and then try to see which Moufang foundations are integrable (i.e.

isomorphic to the local data of a Moufang building).

As in almost all cases (by the results of Chapter 2 and [18]) twin buildings

and Moufang buildings of type ~B2 are the same objects we preferred working

in this chapter with Moufang buildings instead of twin buildings. In particu-

lar we give a classi�cation of ~B2 Moufang buildings which are locally classical

or indi�erent and prove integrability conditions for Moufang foundations in

Moufang buildings of type 443.

To give a list of existing foundations of type ~B2 we rely heavily on the re-

sults of Chapter 3. To prove integrability we again rely on Chapter 3 and

the results proved in [23]. Moreover to complete the classication we prove

a theorem (cfr. Theorem 151) which uses representations of Moufang sets

and properties of the geometry. Similar techniques could be used to prove

a integrability criterion for Moufang foundations of type 443 (cfr. Theorem

158).
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12 CHAPTER 1. PRELIMINARIES

1.1 Conventions and notations

jXj cardinality of a set X

coX(Y ) complement of a set Y in X
N natural numbers

Z integers

R real numbers

H generalized quaternion algebra

� standard involution of a certain

generalized quaternion algebra H
k division ring

char(k) characteristic of a division ring k

V , E vector spaces

dim(V )jk dimension of a k-vector space
if k is clear from the context this is also

denoted by dim(V )
PG(E) projective space associated to a vector space E.
GLn(k) general linear group acting on a n-dimensional

right k-vector space
G group

ord(g) order of an element g of a group

Z(G) center of a group G
[g1; g2] commutator of two elements g1 and g2 of a group G
FixG(Y ) fg 2 Gjg(y) = y;8y 2 Y g, where G acts on a set Y

StabG(Y ) fg 2 Gjg(Y ) = Y g, where G acts on a set Y
Id identity map

�m
j=1�j �1�2 : : : �mPm
j=1 �1;j : : : �i(j);j �1;1�2;1 : : : �1;i(1) + : : : +�1;m�2;m : : : �i(m);m

1.2 De�nitions

In this section we list the most frequently used de�nitions in the sequel. Mo-

tivation of concepts will be indicated where it is possible.



1.2. DEFINITIONS 13

1.2.1 Coxeter systems

De�nition 1 Let I be a set. A Coxeter matrix M over I is a symmetric

matrix M = (mij)i;j2I with mij 2 N [ 1 such that mij � 2, i 6= j and

mii = 2.

Given a Coxeter matrix M over I we denote by E(M) the set ffi; jg jmij �
3g.

De�nition 2 Let M be a Coxeter matrix over a set I . Then we denote by

G(M) the graph whose vertices are the elements of i and where i, j 2 I are

adjacent whenever fi; jg 2 E(M).

For a J � I we set MJ = (mij)i;j2J .

Notice that by the above de�nition MJ is a Coxeter matrix over J .

De�nition 3 Let M = (mij)i;j2I be a Coxeter over I and �M = ( �mk;l)k;l2K
be a Coxeter matrix overK. An isomorphism betweenM and �M is de�ned as

a bijection ' from I to K such that mij = �m'(i)'(j), 8 i; j 2 I . A embedding
from M to �M is an isomorphism from M to a Coxeter matrix of the form
�MK0 where K 0 � K

De�nition 4 A Coxeter matrix M = (mij)i;j2I will be called 2-spherical

whenever mij is �nite 8 i; j 2 I .

De�nition 5 Given a Coxeter matrix M , a Coxeter system of type M is a

couple (W; (si)i2I) where W is a group with presentation W = hsij(sisj)
miji.

The rank of a Coxeter system is the cardinality of I . A Coxeter system

(W; (si)i2I) is called spherical if the group W is �nite.

The set (si)i2I will also be denoted as S. The group W is called a Coxeter

group of typeM . Using standard theory as exposed in [14] and [3] one shows

that if (W; (si)i2I) is a Coxeter system of type M and J � I , (W; (si)i2J) is

a Coxeter system of type MJ .

De�nition 6 Given a Coxeter matrix M and a Coxeter system (W;S) of
type M we de�ne for w 2 W :

l(w) = minfn jw = s1s2 : : : sn; sj 2 S; 1 � j � ng:
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An expression of the form s1s2 : : : sm, sj 2 S, 1 � j � m, will be called

reduced whenever l(s1s2 : : : sm) = m.

Given w 2 W , i; j 2 I such that mij <1, we call w right fi; jg-anti-reduced
if l(wsi) < l(w) and l(wsj) < l(w).

A standard example of a Coxeter group is provided by Euclidean re
ection

groups. Namely, consider a �nite subgroup G of GLn(R) generated by m re-


ections (ri)1�i�m. Then one can show that the group G has a presentation

of the form G = hsij(sisj)
miji. For more information about re
ection groups

we refer to [14].

1.2.2 Root systems

Let M = (mij)i;j2I be a Coxeter matrix over I and (W; (si)i2I) a Coxeter

system of type M = (mij)i;j2I . Remark that every element z 2 W de�nes

an permutation (also denoted by z) W if we set :

z(x) = zx:

In this action we call elements of the form wsiw
�1, i 2 I , re
ections.

De�nition 7 Let M = (mij)i;j2I be a Coxeter matrix over I . Consider a

Coxeter system (W;S) of type M with S = (si)i2I . Let si 2 S. The root

de�ned by si (in W ) is de�ned as the set �i = fw 2 W jl(siw) > l(w)g.
All other roots in W are subsets of the form w(�s) = fwv j v 2 �sg for

some w 2 W . The opposite root of a root � is de�ned as coW (�). Given a

root � of the form w(�i) we denote the re
ection wsiw
�1 by s�. For every

root � the boundary of � denoted by @�, is the set of pairs fx; yg such that

s�(x) = y. Moreover given a root �, the interior of � is de�ned as the

set Int(�) = f� n @�g. Roots are called positive or negative according to

whether they contain 1 or not. If a root � is positive, this is denoted by

� > 0. Similarly � < 0 means that the root � is a negative root. Remark

that if � is a root in W then s�(�) = coW (�).

De�nition 8 LetM = (mij)i;j2I be a Coxeter matrix over I and (W; (si)i2I)
be a Coxeter system of type M = (mij)i;j2I . Then we call the set of roots �

a the root system.
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De�nition 9 Let � be a root system such that � consists of the roots in W
where (W;S) is a Coxeter system of type M . Then we say that � is of type
M 0 if and only if M �= M 0.

De�nition 10 LetM = (mij)i;j2I be a Coxeter matrix over I . Given a root

system � of type M such that (W; (si)i2) is the Coxeter system with � the

set of roots in W . A root base or � is then de�nes as a set fw�i ji 2 Ig,
where w 2 W and �i is the root belonging to the re
ection si.

De�nition 11 Given a root system �, such that � consists of the roots in

W , where (W;S) is a Coxeter system. Let � be a root base for �. Denote

then the Coxeter matrix �M� = ( �m��)��2� where �m�� = ord(s�s�).

The de�nition of root base implies that � is of type �M� for every root base

� 2 �.

1.2.3 Buildings

De�nition 12 Let M = (mij)i;j2I be a Coxeter matrix, (W;S) a Coxeter

system of type M . A building of type M is a quadruple (�;W; S; d) where
� is a set whose elements are called chambers and d is a function, called

distance function, going from ��� to W satisfying :

Bu1 d(x; y) = 1 if and only if x = y

Bu2 Let x; y 2 � with d(x; y) = w. If z is a chamber such that d(y; z) = s
with s 2 S then d(x; z) 2 fw;wsg. Moreover if l(ws) > l(w) then
d(x; z) = ws.

Bu3 Let as above x; y 2 � with d(x; y) = w. If s 2 S then there exists a

chamber z of � such that d(x; z) = ws.

The rank of the building (�;W; S; d) is de�ned as the rank of (W;S).

Given a Coxeter system (W;S) of type M = (mij)i;j2I , we can view it as a

building in the following way. The chambers are the elements of W . De�ne

the distance dW on W by dW (x; y) = x�1y for x; y 2 W . Straightforward

calculations show that (W;W;S; dW ) is a building of type M = (mij)i;j2I .

To simplify notation a building (�;W; S; d) will sometimes be denoted as

(�; d) or even as � when the rest of the data is clear.
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The concept of a building is due to J.Tits as a result of his research to give a

geometrical interpretation of the theory of semi-simple algebraic groups. A

special class is provided by the buildings of spherical type i.e. buildings of the

form (�;W; S; d) where (W;S) is a spherical Coxeter system. They present

in a natural way the geometry associated to a simple algebraic group. More

information about this subject can be found in the standard reference [29]

where of all spherical buildings of rank bigger that 3 are classi�ed.

An alternative way to look at buildings is described in [25]. Buildings are

de�ned here as chamber systems with certain properties.

1.2.4 Chamber systems and buildings

De�nition 13 Given a set I , a chamber system over I is a set C such that

each element i 2 I determines a partition of C. The elements of C are also

called chambers. Two chambers belonging to the same class of the partition

de�ned by i, are called i-adjacent.

It is rather natural to consider galleries in chamber systems. Their struc-

ture expresses in some cases important topological invariants and certain

properties.

De�nition 14 Let C be a chamber system de�ned over a set I . A gallery
in C is a sequence of chambers � = c1c2 : : : cm such that each pair (ci; ci+1)

is li-adjacent for some li 2 I . The gallery � is said to be non stammering if

li 6= li+1 for 1 � i � m. The type of the gallery � is de�ned as the string

(l1l2 : : : lm).

De�nition 15 Let C be a chamber system de�ned over a set I and J � I . A

J-gallery in C is then de�ned as a gallery � = c1c2 : : : cm with ci li-adjacent
to ci+1 such that li 2 J , 1 � i � m.

De�nition 16 Consider a chamber system C over a set I . Let J � I . A

J-residue is a set of chambers in C such that every two chambers of the

set can be joined via a J-gallery. If a J-residue contains a chamber c we
willdenote it by RJ(c). A fig-residue with is also called i-panel or sometimes
a panel when i is clear from the context.
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Given a set I a sequence of the form (f1; f2, : : :,fm) with fi 2 I , 1 � i � m,

will be called word over I or simply word if I is clear from the context. Let

(W; (si)i2I) be a Coxeter system of type M = (mij)i;j2I . If g = (j1j2 : : : jt) is

a sequence of elements of I then we de�ne

rg = sj1sj2 : : : sjt :

A word f = (f1; f2; : : : ; fm) will be called reduced if l(rf ) = m.

Let (�,W ,(si)i2I ; d) be a building of type M = (mij)i;j2I . Then we call two

chamber x and y i-adjacent whenever d(x; y) 2 f1; sig. Set C� = �. Then

one easily checks that in this way we get a chamber system C� over I . Thus
every building gives rise to a chamber system. As to the connection between

buildings and chamber systems we have the following theorem.

Theorem 17 Let (W; (si)i2I) be a Coxeter system of type M = (mij)i;j2I , C
a chamber system over I. If every panel contains at least two chambers and

the function d de�ned by :
dC(x; y) = rf

where f is a reduced word if and only if there exists a gallery of type f from
x to y is well de�ned then (C;W; S; dC) is a building of type M .

Conversely let (�;W; (si)i2I) be a building of type M = (mij)i;j2I and con-
sider the chamber system C� over I where C� = � and where chambers x
and y are called i-adjacent if and only if d(x; y) 2 f1; sig then the following

condition holds :
d(x; y) = rf

where f is a reduced word if an only if there exists a gallery of type f in C
from x to y.

proof :

Can be derive from section 1 of Chapter 3 in [25]. 2

In the sequel we will not always explicitly mention whether we view a build-

ing as chamber system or not if this is clear from the context.

Using the chamber system approach of buildings we de�ne the notion of

morphisms between buildings.

De�nition 18 Given two buildings (�;W; S; d) and (�0;W; S; d0) of the same
type with S = (si)i2I , amorphism from (�;W; S; d) to (�0;W; S; d0) is a map-

ping ' going from � to �0 such that x and y are i-adjacent if and only if
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'(x) and '(y) are i-adjacent for x; y 2 �. An isomorphism is also called an

isometry.

If (W;S) is a Coxeter system of certain type M , an isometry of W on itself,

where we consider W as a building, is given by left multiplication with a

�xed element of W .

1.2.5 Generalized n-gons

Let �M = ( �mij)i;j2I be a spherical Coxeter system of rank 2. Suppose

(�;W; S; d) is a spherical building of type �M . Then there is another way of

de�ning the geometry of (�;W; S; d) using points and lines (cfr [37]). Firstly

we de�ne what is meant by geometry.

De�nition 19 A rank 2 geometry � is a triple (P ;L; I), where P , L are

two sets, called the point set resp. line set, and I � (P � L) [ (L � P ) a

symmetric relation between P and L.

If (P ;L; I) is a rank 2 geometry I is called the incindence relation of �. A

point p and a line l are called incident whenever (p; l) 2 I . The point p

is said to lie on l and the line is said to pass through p. Two points lying

on a line are called collinear and two lines intersecting in a point are called

concurrent. A 
ag is a pair (p; l) 2 P �L such that (p; l) 2 I . The set of all

ags in � is denoted by F . If p is a point of a rank 2 geometry � = (P ;L; I)
we denote �(p) = fh 2 L j(p; h) 2 Ig. Similarly �(l) = f q 2 P j(q; l) 2 Ig.

De�nition 20 Given a rank 2 geometry � = (P ;L; I), a subgeometry �0 is

a rank 2 geometry (P 0;L0; I 0) where P 0 � P , L0 � L and I 0 � I .

De�nition 21 Let n � 2 and n 2 N. A generalized n-gon is a rank 2

geometry � = (P ;L; I) such that the following axioms are satis�ed :

(i) � contains no ordinary k-gon as subgeometry for 2 � k < n.

(ii) Any two elements v; u 2 P [ L are contained in some ordinary n-gon
(viewed as subgeometry of �), a so called apartment.

(iii) For any element u 2 P [ L, �(u) contains at least 3 elements.
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Given a generalized n-gon (P ;L; I) for some n � 2 we can construct a spher-

ical rank 2 building in the following way. Consider the Coxeter matrix �M�
1 n

n 1

�
:

Let ( �W; (�si)i2I) be the Coxeter system of type �M . Set �� = F . De�ne a dis-
tance function �d on ��� �� in the following way. For two 
ags F1 = fp; l1g and
F2 = fp; l2g de�ne �d(F1; F2) = �s1. Similarly if F 0

1 = fp1; lg and F
0

2 = fp2; lg
we de�ne �d(F 0

1; F
0

2) = �s2. Let F = fp; lg and G = fq; hg be two 
ags. Con-

sider a minimal sequence x1x2 : : : xm such that xi 2 P [L, Fi = fxi; xi+1g 2
F , 1 � i � m. De�ne �d(F;G) = �d(F1; F2): �d(F2; F3) : : : �d(Fm�1; Fm). The

following proposition holds.

Proposition 22 With the notation from above the system (F , �W ,(�si)1�i�2),
�d) is a thick spherical building of rank 2. Conversely every thick spherical
building ( ��, �W , �S, �d) of rank 2 can be obtained in this way i.e. there exists

a rank two geometry � such that �� is the set of all 
ags of � and �d is as
de�ned above.

proof :

We refer to [29] and Theorem 1:3:8 in [37]. 2

De�nition 23 Let � = (P ;L; I) and �0 = (P 0;L0; I 0) be generalized n-gons.
An isomorphism from � to �0 is a bijection � from P to P 0 and from L to L0

preserving incidence i.e.

(x; y) 2 I , (�(x); �(y)) 2 I 0:

A duality from � to �0 is a bijection from P to L0 and from L to P 0 preserving

incidence. If there exists a duality from � to �0 we say that � and �0 are

dually isomorphic.

1.2.6 BN-pairs

As already mentioned buildings arose from the geometrical structure of alge-

braic groups. It is therefore not surprising that they have a group theoretical

counterpart.
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De�nition 24 Let G be a group with two subgroups B and N . Then

(G;B;N; S) is a Tits system or BN-pair if the following axioms are satis-

�ed :

BN0 hB;Ni = G.

BN1 H = B \ N E N and N=H is a Coxeter group with generating set

S = f(si)i2Ig.

BN2 BsiBwB � BsiwB [ BwB whenever w 2 W and si 2 S.

BN3 siBsi 6= B for si 2 S

If G is a group with a BN -pair (B;N) one can show that G =
F

w2W BwB
(for a proof we refer to Lemma 5.1. in [25]). This is the so called Bruhat

decomposition of G. Moreover we have the following theorem.

Theorem 25 Every BN-pair (B;N) in a group G de�nes building, where
chambers are left cosets of B and distance is given by :

d(gB; hB) = w

where w is the unique element of W such that g�1h 2 BwB.

proof :

Follows Theorem 5.1 in [25] and Theorem 17 2

But not every building can be constructed in such a way. There is how-

ever a special condition that ensures a building (�;W; S; d) to come from a

BN -pair. This is the condition of a group G acting strongly transitive on

� (for more information we refer to p57 in [25]). A special condition which

ensures that such a group exists is the Moufang condition. In order to give

a proper de�nition of the Moufang condition we need some more terminology.

1.2.7 Moufang buildings

Let M = (mij)i;j2I be a Coxeter matrix over I and (W; (si)i2I) a Coxeter

system of type M . Let � be a root system of type M = (mij)i;j2I .
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De�nition 26 Two roots � and � inW are called prenilpotent if and only if

�\� 6= ? and (��)\ (��) 6= ?. If two roots � and � in W are prenilpotent

then the interval [�; �] is de�ned as the set

f
 2 	 j� \ � � 
 and (��) \ (��) � (�
)g

If f�; �g is a prenilpotent pair of roots, the set [�; �] nf�; �g will be denoted
by (�; �).

De�nition 27 An apartment � in a building (�;W; S; d) of type M =

(mij)i;j2I is an isometric copy of the Coxeter system (W;S), viewed as the

building (W;W;S; dW ), in �. A root in � is de�ned as an isometric copy of a

root � in �. The boundary of a root in � is de�ned in a similar way. Given

an apartment � in �, and c 2 �, we can de�ne positive and negative roots

with respect to this chamber as follows. Positive roots with respect to c are
those containing c, while negative roots are those not containing c. When the

chamber c is clear from the context we will also simply speak about positive

and negative roots in �.

One can prove that apartments always exist and that they characterize the

geometry of the building (cfr. Theorem 3:11: in [25]).

De�nition 28 Start with a building (�;W; S; d) of a certain type M =

(mij)i;j2I . Fix an apartment �0 and denote the set of all roots in �0 by �.

Then we call the building (�;W; S; d) a Moufang building if there exists a

family of automorphism groups (U�)�2� (called root groups) such that :

Mo1 Every element u 2 U� �xes all chambers of �. If � is a panel on @�
and c is the chamber of � lying in � then U� �xes c and acts regularly

on all the chambers of � n fcg.

Mo2 If f�; �g is a pair of prenilpotent distinct roots then :

[U�; U� ] � U(�;�):

Mo3 For each u� 2 U� n f1g there exists an element m(u�) 2 U��u�U��
stabilizing �.

Mo4 If n = m(u�) then for every root � 2 � we have nU�n
�1 = Us�(�).
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The apartment �0 will also be called the standard apartment of (�,W ,S,d).
Given a Moufang building � with root groups (U�)�2�, we de�ne the group
G = hU�i�2�, N the group generated by all m(u
) with u
 2 U
 for a root


 in �. If � is a generalized polygon, the group G is also called the little
projective group and the root group elements are called root elations.

De�nition 29 Let (�;W; S; d) be a Moufang building with root groups

(U�)�2� and standard apartment �0 and (�0;W 0; S 0; d0) a Moufang building

with root groups (U�0)�02�0 and standard apartment �0

0. An isomorphism
from � to �0 seen as Moufang buildings is an isomorphism ' from � to �0

such that '(�0) = �0

0 and for every � 2 �

f'u�1� '�1ju� 2 U�g = U'(�):

Remark that general theory as exposed in sections 1-4 in Chapter 6 of [25]

show that if (�;W; S; d) is a spherical Moufang building the root group systen

(U�)� is uniquely determined by �. It follows therefore that every isomor-

phism between two spherical Moufang buildings will de�ne automatically an

isomorphism between those buildings seen as Moufang buildings.

Let (�;W; S; d) be a Moufang building with root groups system (U�)�2�. Fix
a root base in �, and call it �. Choose for every root � 2 � a �xed element

u� 6= 1 2 U�. Then we de�ne S as the set fm(u�)j� 2 �g. Fix a chamber

c+ 2 �0, and use this chamber to call roots positive or negative. Denote the

subgroup of elements of N that �x �0 by H , the torus in the classical sense.

It is easy to check that H � NG(U�) for all root groups U�. We denote the

group hH;U�i�>0 by B+, hH;U�i�<0 by B� and for � 2 � hH;U�i as B�.

The group B+ also has a geometrical meaning : it is the full stabilizer in G
of the standard chamber c+ in � and N is the stabilizer of the apartment �0

in G. The �rst fact is not obvious to show. It follows mainly from Lemma

4 in section 5 in [31]. (In fact this lemma yields that G = [(B+wB+)w2W ).

We have the following theorem.

Theorem 30 Let (�;W; S; d) be a Moufang building with root groups (U�)�2�.
Then the quadruple (G;B+; N; S) with notations as above is a BN-pair.

proof :

See Proposition 6.16 of [25]. 2
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1.2.8 Twin buildings

After the book [29] appeared in 1974 the classi�cation of spherical buildings

was a fact. A natural question that arose was whether a generalization of

the concept of a spherical building could be found. The answer was given in

the late 80's. At that time J. Tits and M. Ronan introduced the concept of

a twin building. This de�nition was motivated by the theory of Kac-Moody

groups. The twin buildings appeared in this theory in a group theoretical

context namely as twin BN -pairs.

We give the formal de�nitions.

De�nition 31 Let (W;S) be a Coxeter system of type M = (mij)i;j2I with

S = (si)i2I . A twinned pair of buildings or a twin building of type M is a pair

of buildings (�+;W; S; d+) and (��;W; S; d�) endowed with a codistance

funcion d� going from �+ � �� t �� � �+ to W satisfying (� 2 f�1; 1g,
x 2 ��; y 2 ��� and d

�(x; y) = w)

Tw1 d�(y; x) = w�1.

Tw2 If z 2 ��� is such that d��(y; z) = si 2 S and l(wsi) < l(w) then

d�(x; z) = wsi.

Tw3 For every si 2 S there exists at least one chamber z 2 ��� with

d�(x; z) = wsi.

The rank of a twin building is de�ned as the rank of the associated Coxeter

system (W;S).

Given a twin building ((�+;W; S; d+); (��;W; S; d�); d
�), two chambers x 2

�� and y 2 ��� are called opposite whenever d
�(x; y) = 1. Opposition de�nes

a symmetric relation on �+ ���, sometimes denoted by O.

De�nition 32 Let (�+;W; S; d+) and (��;W; S; d�) be two buildings of

type M and O a symmetric binary relation on �+ ���. Then O is called

a twinning between �+ and �� if there exists a codistance function d� from

(�+ � ��) t (�� � �+) to W producing a twin building ((�+;W; S; d+),
(��;W; S; d�); d

�) such that :

O = f(x; y) 2 (�+ ���) t (�� ��+) j d
�(x; y) = 1g:
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1.2.9 Twin BN-pairs

As in the case of ordinary buildings, certain systems of groups will also yield

twin buildings. As already mentioned these are the twin BN -pairs.

De�nition 33 Let (W;S) be a Coxeter system of type M = (mij)i;j2I , G a

group with subgroups B+; B�; N and S a subset of G=N . Then we call the

tuple (G;B+; B�; N; S) a twin BN-pair (of type M) if the following axioms

are satis�ed (� 2 f�1; 1g):

TBN1 (G;B+; N; S) and (G;B�; N; S) are BN -pairs of type M with W �=
N=(B+ \N) �= N=(B� \N).

TBN2 B�wB��siB�� = B�wsiB�� for all w 2 W and si 2 S such that

l(ws) < l(w).

TBN3 B+si \ B� = ; for all si 2 S.

In a similar way as for BN -pairs one can prove that every twin BN -pair

has an associated twin building ((�+;W; S; d+); (��;W; S; d�); d
�). More

precisely �rstly one proves that G =
F

w2W B+wB� = B�

F
w2W w B+.

This is the so called Birkho� decomposition of G. Using this decomposition

one proves the following theorem.

Theorem 34 Every twin BN-pair (G;B+; B�;W;N; S) of typeM in a group
G de�nes a twin building ((�+;W; S; d+),(��,W ,
S, d�), d

�)) where (�+;W; S; d+) is the building associated to the BN-

pair (G;B+; N; S), (��;W; S; d�) is the buildings associated to the BN-pair
(G;B�; N; S) and d

� is given by :

d�(gB+; hB�) = w

where w is the unique element of W such that g�1h 2 B+wB�.

proof :

We refer to example 6 on p 23 in [1]. 2
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1.2.10 Moufang sets

The following concept which will appear frequently in this thesis is the notion

of Moufang set. These objects where formally introduced by J.Tits in the

standard reference [31], though a lot of important examples already existed

in other terminologies. Moufang sets turned out to be of great importance

in the study of twin buildings. In Chapter 2 we show that under some re-

strictions twin buildings and Moufang buildings are the same objects. Given

such a Moufang building the root group structure induces on every panel a

permutation group which turns this panel into a Moufang set. In order to

classify twin buildings it is thus necessary to carefully study the Moufang

sets which arise.

De�nition 35 AMoufang set is a setX of points such that jXj > 2 together

with a family of groups Ux called root groups satisfying :

Mos1 For every x 2 X the group Ux acts regularly on X n fxg.

Mos2 Every group Ux stabilizes the set of groups fUyjy 2 Xg via conjuga-

tion.

De�nition 36 Let (X; (Ux)x2X) be a Moufang set. Then we denote for

x; y; z 2 X , u(x; y; z) as the unique element of Ux sending y to z. Elements

of root groups are also called root elations and the group hUx jx 2 Xi is
called transvection group and is denoted by TX .

De�nition 37 Given a Moufang set (X; (Ux)x2X) a Moufang subset is a sub
set Y � X such that the system (Y; (StabUy(Y ))y2Y ) forms a Moufang set.

Proposition 38 Assume that Y is a Moufang subset of the set (X; (Ux)x2X).
Then Z � Y is a Moufang subset of X if and only if it is a Moufang subset

of Y .

proof :

The proposition follows from the equality

StabStabUy (Y )(Z) = StabUy(Z); 8y 2 Z:

2

Another property of Moufang subsets is the following.
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Proposition 39 Let (X; (Ux)x2X) be a Moufang set and (Yi)i2I a family of
Moufang subsets indexed over the set I. If

T
i2I Yi 6= ;, and j

T
i2I Yij > 3, it

is a Moufang subset of (X; (Ux)x2X).

proof :

Follows from similar arguments as above. 2

Morphisms are de�ned in the following way.

De�nition 40 Let (X; (Ux)x2X) and (Y; (Uy)y2Y ) be two Moufang sets. An

isomorphism between (X; (Ux)x2X) and (Y; (Uy)y2Y ) is de�ned as a bijection

� from X to Y such that for every x 2 X the map

ux 7! �ux�
�1

de�nes a group isomorphism of Ux onto U�(x).
A morphism between (X; (Ux)x2X) and (Y; (Uy)y2Y ) is de�ned as an isomor-

phism of (X; (Ux)x2X) onto a Moufang subset of (Y; (Uy)y2y).

Given two Moufang sets (X; (Ux)x2X) and (Y; (Uy)y2Y ) and a morphism �
from X to Y , then � induces an injection of TX into TY , which we will

denote in the sequel by superscript � and which is de�ned as :

g� = � Æ g Æ ��1; 8g 2 TX:

The following condition will in a lot of cases simplify the calculations to prove

that a bijection between point sets de�nes a isomorphism between Moufang

sets.

Lemma 41 Let (X; (Ux)x2X) and (X
0; (Ux0)x02X0) be two Moufang sets. Then

a bijection � from X to X 0 de�nes a Moufang set isomorphism if and only if
there exist two points x and y in X such that the mappings �x and �y with :

�x(ux) = � Æ ux Æ �
�1; 8ux 2 Ux

�y(uy) = � Æ uy Æ �
�1; 8uy 2 Uy

de�ne bijections between Ux and U 0

�(x) and between Uy and U
0

�y
.
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proof :

If � is a Moufang set isomorphism we have by de�nition that �x and �y
de�ne groups isomorphisms.

Conversely suppose � is a bijection such that �x and �y are bijections between
the groups. Remark that �x and �y de�ne by construction group morphisms.

In order to show that � is a Moufang set isomorphism we have to prove

that for any z 2 X the map �z with �z(uz) = � Æ uz Æ �
�1 de�nes a group

isomorphism from Uz to U�(z).

Let z 2 X , then we choose the unique uy 2 Uy with uy(x) = z and uyUxu
�1
y

= Uz.
If �uz 2 Uz there thus exists �ux 2 Ux such that �uz = uy�uxu

�1
y and we �nd :

�z(�uz) = � Æ �uz Æ �
�1

= (� Æ uy Æ �
�1)(� Æ �ux Æ �

�1)(� Æ u�1y Æ ��1)

= �y(uy) Æ �x(�ux) Æ �y(u
�1
y ):

As �x and �y are group isomorphisms this shows �z de�nes a group isomor-

phism form Uz to U�(z). 2

De�nition 42 Let (X; (Ux)x2X) be a Moufang set. Then it is called abelian

or commutative whenever Z(FixTXfx; yg) = FixTXfx; yg for any two points
x, y 2 X .

In the following chapter we will investigate the connection between twin BN -

pairs and twin buildings. It turns out that both objects are equivalent if the

residue's of the buildings involved are big enough.

1.2.11 Moufang foundations

Motivated by the outline of the classi�cation of twin buildings as described

in [32] and [20] we give the de�nition of a Moufang foundation in the sense

in [20]. It turns out that a great deal of the classi�cation of twin buildings

depends on a classi�cation of Moufang foundations. Moufang foudations can

best be seen as representations of the local data one can extract given a

Moufang building.
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De�nition 43 Let M = (mij)i;j2I be Coxeter matrix over I . A Moufang
foundation of type M is a triple ((�ij)fi;jg2E(M),(cij)fi;jg2E(M),

(�ijk)fi;jg;fj;kg2E(M)) such that :

MoFo1 For every fi; jg 2 E(M), �ij is a Moufang building of type Mfi;jg with

root groups (U
�
ij

k
)
�
ij

k
2�ij

where U
�
ij

k
is the root group acting on the

k-panel in �ij containing cij and �ij is a root system of type Mfi;jg.

MoFo2 For every fi; jg 2 E(M), cij is a chamber of �ij and cij = cji, 8 fi; jg
2 E(M).

MoFo3 For fi; jg, fj; kg 2 E(M), �ijk de�nes a Moufang set isomorphism

from the induced Moufang set MRj(cij)(�ij) to the induced Moufang

set MRj(cjk)(�jk).

De�nition 44 Let ((�ij)fi;jg2E(M),(cij)fi;jg2E(M), (�ijk)fi;jg;fj;kg2E(M)) be a

Moufang foundation of type M and ((�0

ij)fi;jg2E(M 0),(c
0

ij)fi;jg2E(M 0),

(� 0ijk)fi;jg;fj;kg2E(M 0)) be a Moufang foundation of type M 0. An isomorphism
from ((�ij)fi;jg2E(M), (cij)fi;jg2E(M), (�ijk)fi;jg;fj;kg2E(M)) to ((�

0

ij)fi;jg2E(M 0),(c
0

ij)fi;jg2E(M 0),
(� 0ijk)fi;jg;fj;kg2E(M 0)) is de�ned as a tuple ((
ij)fi;jg2E(M); 
) with 
 an isomor-
phism from M to M 0 such that 
ij de�nes for every fi; jg 2 E(M) a isomor-

phism from �ij to �
(i);
(j) seen as Moufang buildings such that 
ij(cij)
= c
(i)
(j) and 


�1
jk �

0


(i)
(j)
(k)
ij = �ijk, 8fi; jg, fj; kg 2 E(M).

1.3 Algebraic prerequisites

We recall and prove some lemma's that will be used in the the sequel.

Throughout this section k denotes a division ring endowed with an involution
� i.e. � is a permutation of k satisfying :

(x + y)� = x� + y�; 8x; y 2 k

(xy)� = y�x�; 8x; y 2 k

1� = 1�:

We set Tr(�) = ft + t� j t 2 kg, Fix(�) = ft 2 k j t� = tg, k(�;�) = ft � t��
jt 2 kg and k(�;�) = k=k(�;�) where � 2 k.
Remark that the following holds :

Tr(�) � Fix(�):



1.3. ALGEBRAIC PREREQUISITES 29

The following result concerning equality in this equation can be found in

Chapter 8 in [29].

Lemma 45 Let k be a division ring with involution �. If char(k) 6= 2 or

�jZ(k) 6= 1 then Fix(�) = Tr(�).

proof :

We refer to section 8.1.5. on p120 in [29]. 2

Let c 2 k. Then we will denote by �c the involution of k determined by :

��
c

= c��c�1; 8� 2 k:

We have the following Lemma which can be derived from section 8.2.1 on p

122 of [29].

Lemma 46 For c, � 2 k we have :

ck(�;�) = k(�c;�0);

where �0 = c(c�1)� �. In particular there always exists c 2 k such that 1

2 Tr(�c).

proof :

The �rst claim follows from the equality :

ct� ct�� = (ct)� (ct)�
c

(cc�1)��; 8t 2 k:

Suppose � is an involution such that 1 62 Tr(�). Let � 2 Tr(�). Consider

��
�1

. We have setting � = c :

1 2 Tr(��
�1

) = ��1k�;�1 = ��1Tr(�):

2

Lemma 47 Let k be a division ring with Z(k) 6= k, � an involution of k such
that 1 2 Tr(�). If k is not generated as a ring by Tr(�) it is a generalized

quaternion algebra with � its standard involution.
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proof :

See 8.14 on p 150 in [29]. 2

As a corollary one deduces the following result concerning commutativity.

Corollary 48 Let k be a division ring not equal to a generalized quaternion

algebra, � an involution of k with 1 2 Tr(�). Then

Z(k) = k if and only if �1�2 = �2�1;8�1; �2 2 Tr(�):

proof :

Follows from Lemma 47 as Tr(�) generates k unless its a generalized quater-

nion algebra. 2

Lemma 49 Let k be a division ring with involution � such that Z(k) 6= k.
Then k is a generalized quaternion algebra with standard involution � if and

only if :
[�1; �2] 2 Z(k); 8�1; �2 2 Tr(�):

proof :

If k is a generalized quaternion algebra with standard involution �, the con-
dition on the traces is clearly satis�ed as in this case Tr(�) = Z(k).

Conversily suppose that the condition of the Lemma holds.

Choose �0 2 Tr(�).
We �nd :

��0 = �0�z�; 8� 2 Tr(�)

where z� is an element of Z(k) possibly depending on �. If � 2 Z(k), we have
z� = 1.

So suppose � 62 Z(k).
Then :

(1 + �)�0 = �0(1 + �)z1+�

= �0z1+� + �0�z1+�

= �0 + ��0

= �0 + �0�z�
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shows :

z1+� + �z1+� = 1 + �z�:

As � 62 Z(k) this is only possible if z1+� = z� = 1.

As �0 was chosen arbitrarily this implies :

[�; �0] = 1; 8�; �0 2 Tr(�):

Without loss of generality we can assume 1 2 Tr(�). (cfr. see Lemma 46).

The Lemma follows from Lemma 47. 2

Lemma 50 If k is a division ring then

[x; y] 2 Z(k); 8x; y 2 k

if and only if Z(k) = k.

proof :

Complelety analogous as the proof of Lemma 49 2

Lemma 51 Let k be a division ring such that Z(k) 6= k. If every element of
k satis�es a quadratic equation over Z(k), then k �= H .

proof :

If [k : Z(k)] <1 the proof can be found on p103 in [10]. Choose �1 62 Z(k).
Then there exists a �2 2 k such that [�1; �2] 6= 1. Let Z(Ckf�1; �2g) be the
center of the centralizer of �1 and �2 in k. Consider the Z(Ckf�1; �2g)-algebra
generated by �1 and �2. Call it L. The condition on k implies that L is a

division ring. We prove that L is generated over Z(k) by f1; �1; �2; �1�2g.
Denote the Z(k)-algebra generated by f1; �1, �2, �1 �2g as S. To this end we

show by induction on m that every product �m
i(j)=1 �i(j) with i(j) 2 f1; 2g, 8

j is inside the S.

Let m = 2.
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By assumption we have that �21, �
2
2 and �1�2 2 S. Consider �1 +�2. The

conditions on k implies that there exist z1, z2 2 Z(k) such that :

(�1 + �2)
2 = �21 + �1�2 + �2�1 + �22

= (�1 + �2)z1 + z2: (1.1)

This equation clearly implies that �2 �1 2 S.
Suppose that the induction hypthesis is thrue for m. Consider a product

�m
i(j)=1 �i(j). Then we have to show that �i(m+1) �

m
i(j)=1�i(j) 2 S. Without

loss of generality we can assume that �i(m+1) = �1. Two cases occurs :

First case : �i(1) = �1.
Then we �nd �1 �

m
i(j)=1 �i(j) = �21 �

m
i(j)=2�i(j). As �

2
1 = �1u1+u2 for some

ui 2 Z(k) we �nd, the induction hypothesis implies that �1 �
m
i(j)=1�i(j)

2 S.

Second case �i(1) = �2.
If in this case �i(2) = �2 the induction hypothesis implies as in the

foregoing case that �1 �
m
i(j)=1 �i(j) 2 S.

Hence we are left with the case where �i(2) = �1.
We �nd using equation (1.1) :

�1�
m
i(j)=1�i(j)

= �1�2�
m
i(j)=2�i(j)

= (��2�1 � �21 � �22 + (�1 + �2)z1 + z2)�
m
i(j)=2

�i(j)

By what we already proved and the induction hypothesis we �nd that

(��2�1 � �21 � �22 +(�1 + �2)z1 + z2)�
m
i(j)=2 �i(j) 2 S.

Hence we �nd that also in this case �1 �
m
i(j)=1 �i(j) 2 S.

By this we proved that every product �m
i(j)=1 �i(j), i(j) 2 f1; 2g is contained

in S, and hence S = L. As Z(k) � Z(Ckf�1; �2g), L is a �nite dimensional

division ring of dimension n2 over Z(L) for a natural number n. We �nd

Z(L) = Z(Ckf�1; �2g) = Z(k) and L is a generalized quaternion algebra.

This implies in particular that �2�1 = z1+ �1z2+ �2z3+ �1�2z4; zi 2 Z(k); 1 �
i � 4.

Let z be arbitrary in k. If z 62 L we consider the Z(k)-algebra generated

by z; �1, �2. Denote this algebra by R. Due to the properties of L and k

it follows that R is generated over Z(k) by f1; �1; �2; z; �1�2; �1z; �2z; �1�2zg,
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yielding[R : Z(R)] < 1. As R is generated over Z(k) � Z(R) by at most 8

elements, [R : Z(R)] is necessarily 4. As the �nite dimensional case of the

lemma holds R is a quaternion algebra with standard involution which we

denote by a bar sign.

If x 2 R it is therefore solution of the quadratic equation x2�(x+�x)x��xx = 0

with co�eÆc��ents in Z(R). But by assumption x is also solution of a quadratic

equation x2+xc1+ c2 = 0 with co�e�cc��ents in Z(k). If x 62 Z(R) this implies
that x+ �x = c1 2 Z(k) and �xx = c2 2 Z(k). For any quaternion algebra the

map R 7! Z(R) that sends t to t+�t is surjective. Hence we �nd Z(R) = Z(k).

This means that the set f1; �1; �2; �1�2; zg would be linearly dependant over

Z(k) contradicting the choice of z. This shows L = k, and k is a generalized

quaternion algebra.

That the converse holds follows from standard theory of quaternion algebra's.

2

The strategy of proof above can be used to show the following.

Corollary 52 Let k be a division ring, � an involution of k. Then every

element of Tr(�) is solution of a quadratic equation over Z(k) if and only if
k is a generalized quaternion algebra.

proof :

If k is not a generalized quaternion algebra Lemma 47 shows it is gener-

ated as a ring by Tr(�). Following an analogous strategy as the proof of

Lemma 51 where �i; z 2 Tr(�) leads to a contradiction. 2

Lemma 53 Let k be a generalized quaternion algebra with standard involu-

tion � and a 2 k. Suppose a satis�es :

��a� =2 (Z(k)(a))

where (Z(k)(a)) is the Z(k)-subalgebra of k generated by a. Then a is an
element of Z(k).

proof :
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Let a be as in the Lemma. Then we �nd for every � 2 k, z1 and z2 2 Z(k)
such that :

��a� = az1 + z2:

Equivalently :

��1a� = az1(�
��)�1 + z2(�

��)�1:

Set z01 = z1(�
� �)�1 and z02 = z2(�

� �)�1. As �� � 2 Z(k) we can write for

� 2 k :

��1a� = az01 + z02; with z
0

1; z
0

2 2 Z(k):

Which is equivalent to :

a�+ �az01 + �z02 = 0 2 Z(k):

Adding this equation with (�� + �)a 2 Z(k)(a) implies :

�(a(1 + z�1 ) + z�2 ) 2 Z(k)(a) (2):

Suppose z01 6= 1. As a 62 Z(k) equation (2) is only possible if � 2 Z(k)(a).

But as Z(k)(a) is a �eld this implies �a = a � and z�1 = 1, a contradiction.

This means that :

z�1 = 1; 8� 2 k and z02 = 0

Thus for every � 2 k we have :

a�+ �a = z�2 2 Z(k):

As a�+ ��a 2 Z(k) this yields :

(� + ��)a 2 Z(k); 8� 2 k:

Hence a 2 Z(k).
2

To end this section we give a usefull Lemma on semi-linear transformations.

Lemma 54 Let k, k0 be division rings V a right k-vector space and V 0 a
right k0-vector space. Suppse � is a bijection from V to V 0 such that :

�(v + w) = �(v) + �(w); 8v; w 2 V

�(v�) = �(v)�0v; 8v 2 V;8� 2 k

with �0v 2 k0 might depend on v. If dim(V 0) � 2, � de�nes a semi-linear

transformation from V to V 0.
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proof :

We �rst show that for � 2 k, v 2 V the element �0v does not depend on

v.
Let w 2 V .
Suppose �rstly that �(w) is linearly independant from �(v).

Then the equation :

�(v)�0v + �(w)�0w = �((v + w)�)

= �(v + w)�v+w

= �(v)�v+w + �(w)�v+w

shows that �v = �w = �v+w.
If �(w) is linearly dependant on �(v) we choose a u 2 V such that �(u) is
linearly independant from �(v). By what we already proved we then have

�u = �v = �w.
By this we can thus write for � 2 k :

�(v�) = �(v)�0; 8v 2 V;

where �0 does not depend on v. De�ne the bijcetion � from k to k0 by :

�(v�) = �(v)��; 8v 2 V:

We check that � determines a �eld isomorphism from k to k0.
By de�nition of � we have �(1) = 1 and �(0) = 0. Moreover the equations :

�(v)(�� + ��) = �(v(�+ �))

= �(�+ �)�

�(v)���� = �(v(��))

= �(v)(��)�

show that � de�nes an isomorphism from k to k0 and it follows that � deter-

mines a semi-linear transformation from V to V 0 with associated isomorphism

� from k to k0.
2
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Chapter 2

General theory

2.1 Twin buildings and Moufang buildings

2.1.1 Introduction

Motivation of this section is a remark made by J.Tits in the standard ref-

erence on twin buildings [31]. Paragraph 3 of loc.cit. deals mainly with a

group theoretical approach of twin buildings. In the theory of buildings it is

also well known that every Moufang building � has a natural BN -pair. In

his paper J. Tits gives the description of certain group systems called RD-

systems. When one veri�es the axioms of an RD-system it is not hard to

see that from every Moufang building such a system arises. Proposition 4 of

loc. cit. says then that whenever an RD-system is given one can construct a

twin BN -pair. The proof is left over to the reader but the author mentions

this is not easy. This proposition implies in particular that every Moufang

building � has an associated twin BN -pair. Hence in view of the above

remarks we can state that from every Moufang building one can construct a

twin building. Moreover from the calculations it turns out that � is isomor-

phic to one half of the twin building. As there is no real proof written down

yet of this well known fact it will be exposed in this section. We will use a

slightly di�erent approach than the one used in [31]. In this way it is hoped

37
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that the geometry of the twin buildings will become more clear. During the

exposition of the proof it will also be indicated how to extract a concrete

proof of Proposition 4 in section 3.3. in [31].

The converse of the problem namely "Is every half of a twin building a

Moufang building?" also holds under some mild conditions. This follows

from [18]. Hence it follows that twin buildings and Moufang buildings are

in a lot of situations the same objects. The Moufang condition character-

izes buildings as automorphism groups of certain geometries. The above

result implies that in a lot of cases twin buildings can be seen as couples of

buildings with a well de�ned opposition relation. Or they are represented

as group geometries de�ned in the automorphism group of a buildings. The

main theorem of this section will be :

Theorem 55 Every Moufang building (�;W; S; d) is half of a twin building
i.e. there exists a building (��;W; S; d�) and a codistance function d� from

���� t���� to W such that ((�;W; S; d); (��;W; S; d�); d�) is a twin
building.

Something about the proof. As already mentioned a proof can be extracted

from [29]. It essentially boils down to checking that given a Moufang building

(�;W; S; d) with root groups (U�)�2� the system (G; (U�)�2� with G hU�
j� 2 �i forms an RD-system. One has to check the �ve axioms RD1 up to

RD5. That RD1 till RD4 are satis�ed is rather easy. The problem is RD5.
This axiom requires that for every � > 0, with � a fundamental root of a

root system, B� 6� B� and B�� 6� B+. That B�� 6� B+ there holds is rather

easy to check. It follows essentially from the equality B+ = StabB(c+). If

B�� would be fully contained in B+ then every element of B�� has to �x

c+. This contradicts the regular action of B�� on a the s�-panel through

�. To exclude the other inclusion one cannot use the same argument. The

di�erence here is that B� has no interpretation in terms of the buildings

geometry. For this we will have to look deeper into the structure of �.

2.1.2 Properties of Moufang buildings

Most of the facts given here can be found in [29]. We list some known prop-

erties and theorems of Moufang buildings and give proofs where necessary.

The notations used here are the ones introduced in Chapter 1. Consider a

Moufang building (�;W; S; d) with a system of root groups U� and B;N and
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S, c+ as before. We list the axioms for an RD-system as described in section

5.2. in [29].

De�nition 56 Let G be a group, M = (mi;j)i;j2I a Coxeter matrix and �

a root system of type M , (B�)�2� a generating system of subgroups of G.
Then (G; (B�)�2�) forms an RD-system if the following axioms are satis�ed

(where B+ stands for hB�j� > 0i and B� stands for hB�j� < 0i, H is the

intersection of all B�, and � = f�iji 2 Ig is a fundamental root system for

� and si = s�i for all i 2 I)

RD1 If f�; �g is a prenilpotent pair of roots, there is an order (� = �1; �2,

: : : �m) on [�; �] starting at � such that B�1B�2 : : : B�m is a group.

RD2 For i 2 I , B�i \ B��i = H .

RD3 For i 2 I , the group B�i has two double cosets in the group it generates

with B��i.

RD4 For i 2 I , there exists an element in hB�i ; B��ii which maps B� onto

Bsi(�) for all � 2 �.

RD5 For all i 2 I , B�i 6� B� and B��i 6� B+.

As already mentioned above a candidate of an RD-system is provided by

every Moufang building.

Lemma 57 Let M = (mij)i;j2I be a Coxeter matrix, � a root system of
type M and (�;W; S; d) a Moufang building of type M with associated root

groups (U�)�2�. Consider the group system (G; (B�)�2�). Then (G; (B�)�2�)

satis�es axioms RD1, RD2, RD3 and RD4.

proof :

1. Axiom RD1.

Consider the set B�B�2 : : : B�m where f�; �g is a prenilpotent pair of roots.

Using exercise 15 on p82 in [25] there exists an ordering on [�; �] such that

[�; �] = f�1, �2, : : :, �mg and [�i; �j ] � f�i,�i+1, : : :, �jg for i � j. By the

de�nition of H it follows that for every h 2 H and every � 2 �

hU�h
�1 = U�:
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We prove by induction on m, the number of roots in the interval [�; �] that :

B�B�2 : : : B�m = HU�U�2 : : : U�m :

Pick an arbitrary element u�j of U�j for some j. Then

u�jB�B�2 : : : B�m � B�u�jHU
B�2 : : : B�m

where 
 is one of the roots in f�2; : : : �mg. The induction hypothesis yields :

B�u�jHU
B�2 : : : B�m � B�u�jB�2 : : : B�m :

In a similar way we can switch u�j with B�i in the product if j � i. From

this it follows that

u�jB�B�2 : : : B�m = B�B�2 : : : B�m

hence B�B�2 : : : B�m is a group. This proves RD1.

2. Axiom RD2.

Consider x 2 B�i \ B��i for some i 2 I . Then we can write x = hu��i. As
x 2 B�i � StabG(c+) it follows that :

u��i(c+) = c+:

But then the regular action of U��i on Ri(c+)nfsi(c+)g implies that u��i = 1.

Hence x 2 H , showing that B�i \B��i � H . That the converse inclusion

H � B�i \ B��i holds is clear.

3. Axiom RD3.

Choose �u�i 2 U�i such that si = m(�u�i) 2 S. Then we show that B��i �
H [ B�isiB��i. From this inclusion one can deduce easily that

hB�iB��ii = B�i t B�isiB�i:

Let x 2 B��i. If x 2 B��i then x 2 H . If x 62 B�i then x = hu��i for

u��i 2 U��i and u��i 6= 1. But then m(u��i)si 2 H and x = u�im��iu
0

�i
for

certain u�i ; u
0

�i
2 U�i is contained in B�isiB�i .

Similar arguments show that

hB�iB��ii = B��i t B��isiB��i:

4. Axiom MR4.

This follows from Mo4. 2
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Theorem 58 Given a Moufang building (�;W; S; d) of type M (with nota-
tions as above) then there is a unique homomorphism � : N 7! W such that
for n 2 N and � 2 �

nB�n
�1 = B�(n)(�):

The kernel of � is H. This implies that N=H �= W and N=H is generated by

a set ~siH where f~sig is a set of m(u�i) with u�i 6= 1 and � = f�i j i 2 Ig a
fundamental root system in �.

proof :

This is a restatement of Lemma 3(i); (iii) in paragraph 5 in [29]. As the

proof given in loc. cit. follows from axioms (RD2), (RD3) and (RD4) the
proof is still valid. 2

Let (�;W; S; d) be a Moufang building with root groups (U�)�2� such that

S = (si)i2I and � = f�ij�i 2 Ig a fundamental root system for �. Choose

for every i 2 I a �xed u�i 6= 1. For the sequel we will identify si with

fm(u�i) using the isomorphism � as in Theorem 58. ji 2 Ig. Granted this

identi�cation the notation wB�w
�1 for w 2 W makes sense.

Theorem 59 Given a Moufang building (�;W; S; d) of type M then G acts
transitively on � and the system (G;B+; N; S), de�ned as above, forms a

BN-pair.

proof :

Suppose that for some B��i � B+. Then in particular U��i � B+. This

contradicts the regular action of U��i on Ri(c+) n fsi(c+)g. Hence for all

i 2 I we �nd that B��i 6� B+. As the axiom (RD1) holds for (G; (B�)�2�)

Lemma 4 in paragraph 5 in [30] is still valid. Following the strategy of Propo-

sition 4(i) one deduces that (G;B+; N; S) is a BN -pair . 2

The strategy we follow from now on will di�er from the one suggested in [31].

We start by constructing a chamber system C� as in the sense in [25]. It

turns out that C� is a building on which the group G acts. Then we de-

�ne an opposition relation between (�;W; S; d) and C�. Using a result of

B. M�uhlherr [19] on twin buildings we deduce that the opposition relation

de�nes a twinning. This implies that (�;W; S; d) is half of a twin building.
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2.1.3 The chamber system C�

In this paragraph we construct a chamber system C� using the groups. First

we need some lemma's.

Lemma 60 Given a negative root �i with i 2 I then

B�B�i~siB� � B�i~siB�

for every negative root � 2 �.

proof :

The proof is completely analogous to Lemma 4 in section 5 in [31]. One

replaces all positive roots by negative roots. 2

Lemma 61 Let w 2 W (with (W;S) a Coxeter group) , and si1 : : : sim a

reduced expression of w. Set for j 2 f1; : : : ;mg wj = si1 : : : sij , w0 = 1 and
�j = wj�1(�j) then f�1; : : : ; �mg is the set of all positive roots sent by w�1

to a negative root.

proof :

This lemma is a restatement of Proposition 3(i) in [31] section 5. The proof

can be found there. 2

Lemma 62 Given any w 2 W and a reduced expression si1 : : : sim of w then

the set

U��1 : : : U��m

is a group U�w only depending on w. The group B�w satis�es B�wwB� =

B�wB�. The same statements hold for Uw and BwwB+.

proof :

The statement of this lemma is analogous to the statement of Proposition

3(ii); (iv) in section 5 in [31]. The only di�erence is that the groups here are
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parametrized by negative roots. One can easily check that the proof given in

loc.cit. remains valid if positive roots are replaced by negative roots. That

the same statements hold if all roots are positive follows from Proposition 3

of in section 5 of [31]. 2

Using the groups U�w we construct the following chamber system C�. Let

U� = hU��i�>0. For a given w 2 W the group U�w de�nes a coset structure

on U�. We de�ne C�w as the set of all right cosets of U�w in U�. The set of
chambers of C� is the disjoint union tC�w . As we want the chamber system
C� to be de�ned over the set I we have to de�ne an i-adjacency relation for

every i 2 I . To do this we �rst �x some terminology which is used in [31] in

section 5:11.

Given J � I such that WJ = hsiji 2 Ji is �nite and an element w 2 W , then

w is called right J-anti-reduced if l(w) = maxfl(u)ju 2 wWJg. For w 2 W
and i 2 I , wi stands for the unique right fig-anti-reduced element in the

i-panel in W containing w. For adjacency we state the following rule :

two chambers xU�w and yU�v are i-adjacent if and only if

(1) wi = vi,

(2) xU
�wi = yU

�wi .

It is easily checked that C� equipped with this adjacency relation is indeed

a chamber system over I in the sense in [25] chapter 1.

We also remark that the group U� acts on the chamber system C� by left

multiplication. It is easily checked that under this action i-adjacent chambers
are send to i-adjacent chambers. This means that the group U� acts as a

group of type preserving automorphisms of the chamber system C�.
The next step is to construct a chamber systems morphism between C� and

(�;W; S; d).

Lemma 63 The map � between C� and (�;W; S; d) that sends xUw to xw(c+)

is a type preserving morphism between the chamber systems C� and (�;W; S; d)
(i.e. it sends i-adjacent chambers to i-adjacent chambers).

proof :

We have to check that � is well de�ned and that, if xU�w and yU�v are

i-adjacent, then also �(xU�w) and �(yU�v) are i-adjacent. To see this we



44 CHAPTER 2. GENERAL THEORY

rely on the following property :

U�w � StabG(w(c+)): (2.1)

Let's �rst check this property. By Theorem 58 and Lemma 60 the group

w�1U�ww is contained in B+. As StabG(c+) = B+ formula (3.15.1) is clear.

Because of property (3:15:1) the map � is well de�ned, i.e. if xU�w = x0U�w
then x(w(c+)) = x0(w(c+)).
Suppose that xU�w and yU�v are i-adjacent, i.e. w

i = vi and xU�wi = yU�wi .

From wi = vi it follows that w(c+) and v(c+) are i-adjacent and belong to

the i-panel containing wi. From y�1x 2 U�wi we deduce that y�1x stabilizes

wi(c+), hence also stabilizes the i-panel through wi(c+). This means that

y�1x(w(c+)) and v(c+) are i-adjacent, hence also x(w(c+)) and y(v(c+)) are

i-adjacent. This completes the proof of the lemma. 2

2.1.4 Properties of �

In this paragraph we show that � is a 2-covering from C� onto (�;W; S; d)
i.e. � sends every spherical rank 2 residue in C� isomorphically onto a rank

2 residue in (�;W; S; d). We start by showing that � is surjective. For this

we need an additional property of Moufang buildings.

Proposition 64 Given a Moufang building (�;W; S; d) with standard apart-

ment �0, then the orbit of �0 (as a set of chambers) under B� is the full
building �, i.e. B�(�0) = �.

proof :

The proposition follows from the decomposition G = B�WB+ regarded the

fact that fw(c+)jw 2 Wg = �0. First we show that G = [w2W (B�wB�).

Using Lemma 62 we write :

B�siB�wB� = B�siB�wwB�:

Two cases occur :

(1) l(siw) > l(w).
Then siB�wsi � B� and

B�siB�wB� = B�(siB�wsi)siwB� = B�siwB�:
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(2) l(siw) < l(w).
Hence

B�siB�wB� = B�siB�sisiwB�

� fB�siB�; B�gsiwB�

� B�wB� [ B�siwB�:

As for every j 2 I U�j = s�j U��j s�j and G = hU�i ji 2 Ii one deduces that
[w2W (B�wB�) = G.

Subsequently we show that for every w 2 W and si 2 S

B�siB�wB+ � B�swB+ [ B�wB+:

As above again two cases can occur :

(1) l(siw) < l(w).
This means that the root w�1(�i) is negative, hence

B�siB�wB+ = B�siB��iwB+

= B�siw(w
�1B��iw)B+

= B�siwB+:

(2) l(siw) > l(w).
The we use the above equation and calculate :

B�siB�wB+ = B�siB�sisiwB+

� B�f1; sigB�siwB+

= B�siwB+ [ B�wB+:

By similar arguments as for [w2W B�wB� it follows that B�WB+ = G. 2

Corollary 65 The morphism � is surjective.

proof :

Consider an arbitrary chamber a in �. Then by Proposition 1 we have

a = b�v(c+) for some b� 2 B� and v 2 W . As for every root �, H �
StabG(U�) we can write b� as u�h for u� 2 U� and h 2 H . Because H �xes
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every chamber of �0 we can write a = u�v(c+). If we consider the element
u�U�v of C

� then clearly �(u�U�v) = a. 2

The only problem that remains to prove is that � maps rank 2 residues

isomorphically onto rank 2 residues.

Theorem 66 The map � is 2-covering from C� to � i.e. it sends spherical
rank 2 residues isomorphically onto spherical rank 2 residues.

proof :

To prove this we remark that the action of U� on C� and � is compatible with

�, i.e. for all xU�w 2 C� and u� 2 U� we have �(u�xU�w) = u��(xU�w).

In order to prove that � is a 2-covering, it will then be enough to show that

� induces an isomorphism between every fi; jg residue containing a chamber
U�w, with w an fi; jg-anti-reduced element in W , and its image in �. To see

this we remark that every rank 2 residue in C� always contains a chamber

xU�w where w is fi; jg-anti-reduced and x 2 U�. The morphism determined

by x�1 will then send the given rank 2 residue to another rank 2 residue that

contains U�w.
Fix a certain rank 2 residue in C� of spherical type fi; jg (hence mij < 1).

Call this residue Rij
�
. Suppose that Rij

�
contains a chamber U�w with w

fi; jg-anti-reduced. As U�w 2 R
ij
�
, we see that w(c+) 2 �(R

ij
�
). If we denote

by Rij the fi; jg-residue in � which contains w(c+) then we have to show

that � induces an isomorphism between Rij
�
and Rij .

1. The map � induces a surjection between Rij
�
and Rij .

This will follow from the fact that � induces a surjection between rank 1

residues. Consider a �xed i 2 I and a chamber a in �. Using Proposition

1 and the action of U� on � we can assume that a = v(c+), v 2 W . Then

every chamber of the i-residue containing a can be written under the form

v(u�isi(c+)) with u�i 2 U�i and �i > 0.

Two cases occur :

(i) l(vsi) < l(v).
Then vu�i = vu�iv

�1v with vu�iv
�1 2 Uv(�i). Granted the condition on v,

one has Uv(�i) � U�vi . If we consider in C
� the chamber vu�iv

�1U�vsi , then

this chamber is i-adjacent to U�v and �(vu�iv
�1U�v) = a.

(ii) l(vsi) > l(v).
Using Lemma 1, one starts by rewriting u�i as u��isib��i with u��i 2 U��i
and b��i 2 B��i . As we also know that sib��isi � B�i the chamber
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a coincides with vu��i(c+). Because of the condition on v we have that

vu��iv
�1 2 U�v(�i) � U�vi . Hence the chamber vu��iv

�1U�vsi is i-adjacent
to U�v and �(vu��iv

�1U�vsi) = a.

This completes the proof that � induces a surjection between rank 1 residues

in C� and �. Because rank 2 residues are connected it is clear that � induces
a surjection of Rij

�
onto Rij .

2. The morphism � induces an injection of Ri;j
�

into Rij .

Suppose that we have two chambers u0
�
U�w0 and u00

�
U�w00 in R

ij
�
such that

�(u0
�
U�w0) = �(u00

�
U�w00). This means that u

0

�
w0(c+) = u00

�
w00(c+) and both

w0 and w00 belong to the fi; jg-residue in W determined by w, where w is

the unique right fi; jg-anti-reduced element of this residue. Because of the

conditions on w it is easy to check that both u0
�
and u00

�
belong to U�w. We

rewrite the above equality as :

(w�1u0
�
w)w�1w0(c+) = (w�1u00

�
w)w�1w00(c+):

As both u0
�
and u00

�
belong to U�w the elements w�1u0

�
w and w�1u00

�
w belong

to B+. Call the �rst one b
0

+ and the second one b00+, then we �nd :

b0+w
�1w0(c+) = b00+w

�1w00(c+):

But this implies by the Bruhat decomposition of the group G (as we have a

BN -pair in G) that w�1w0 = w�1w00, yielding w0 = w00.

There remains to show that u0
�
U�w0 = u00

�
U�w00 .

From the equality u0
�
w0(c+) = u00

�
w0(c+) one deduces that w0�1u

00
�1
�

u0
�
w0 2

B+. The element u
00
�1
�

u0
�
is contained in U�w and we call it u�w. Then u�w

satis�es w0�1u�ww
0 2 B+. Consider the set of positive roots sent by w�1

into negative roots, namely f
1; : : : ; 
ng. Because of the properties of w we

can divide this set into two subsets (after possibly reordering) f
1; : : : 
l�1gt
f
l; : : : ; 
ng. Here f
1; : : : 
l�1g is the set of positive roots sent by w0 to
a negative root and f
l; : : : ; 
ng is the set of remaining roots. With this

notation in mind we write u�w as u�w0u�r with u�w0 2 U�w0 and u�r =

u�
l : : : u�
n . We rewrite the formula w0�1u�ww
0 2 B+ as :

w0�1u�rw
0 = w0�1u�1

�w0w
0~b+

for a ~b+ 2 B+. The right hand side of this equation shows that the element

w0�1u�rw
0 belongs to B+. Suppose that w = w0 sjsi : : : sj| {z }

m terms

with l(w) = l(w0) +
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m.

Then :

w0�1f
l; : : : ; 
ng = f�j ; sj(�i); : : : ; sjsi : : : si(�j)g:

Hence we can write w0�1u�rw
0 as

u��ju�sj(�i) : : : u�sjsi:::si(�j) yielding that w�1u�rw
0 2 U� \ B+. Now we

look at the rank 2 building �ij determined by B�i ; B��i; B�j and B��j (i.e.

the rank 2 building we get by considering the group hB�i; B�j ; B��i; B��ji
and the induced BN -pair in it.). It follows that w0�1u�rw

0 is inside the

group generated by these four groups. But w0�1u�rw
0 �xes the fundamental

chamber c
ij
+ in this polygon. Hence this element is inside U

ij
�
\Bij

+ where the

groups Bij
+ and Bij

�
are similarly as above. The proof that � is a 2-covering

will be done if we show the following lemma.

Lemma 67 If we are given a spherical rank 2 building with Coxeter group
h s1; s2 j(s1s2)

m12 i then

B+ \ B� = H

proof :

If we consider a spherical rank 2 Moufang building, the groups B+ and B�

both have a geometric meaning. Indeed, in the standard apartment � there

will be two chambers c+ and c� such that the l(d(c+; c�)) is maximal in the

Coxeter group. The group B+ will then be the stabilizer of c+ in G, B� will

be the stabilizer of c� and H will be the stabilizer of the standard apartment

in G. As (G;B+; N; S) and (G;B�; N; S) are both BN -pairs in this case

the Bruhat decompositions G = [wB+wB+ = [w2WB�wB� implies that

B� \ B+ � H . As H � B+ \ B� we have :

H = B+ \ B�:

2

This lemma implies that w0u�rw
0�1 lies in H . Moreover by properties of

spherical Moufang buildings explained in [25] on pages 75 and 76 it fol-

lows that u�r = 1. This yields u� 2 U�w0 or u
00
�1
�

u0
�
2 U�w0 , hence

u00
�
U�w0 = u0

�
U�w0 what we wanted to show. This completes the proof of

Theorem 3. 2
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As already mentioned the group U� acts on both C� and � in a way compat-

ible with �. This implies that StabU�(a) = StabU�(�(a)) with a 2 C
�. If we

do this for c+ then �(1) = c+ and StabU�(1) = 1 and StabU�(c+) = U�\B+.

This gives us U� \ B+ = f1g, which is a very strong condition. Consider

B�\B+. Every element in this intersection can be written as hu� for h 2 H
and u� 2 U�. But then u� = 1 and the element is contained in H . As also

H � B� \ B+ we �nd :

B� \ B+ = H:

Using the universal properties of buildings we get the following corollary.

Corollary 68 The chamber system C� is a building of type M isomorphic
to (�;W; S; d) under �.

proof :

This follows from the results in [30]. It is shown in this paper that every

building is a universal object with respect to 2-coverings. This means that if

we have a chamber system X over I and a 2-covering ' from X to a building

(�;W; S; d) of type M = (mij)i;j2I then ' is necessarily an isomorphism. 2

Corollary 69 The pair (G;B�; N; S) is a BN-pair.

proof :

The proof is similar to the proof of Theorem 2 as B� 6� B�; 8� > 0. 2

Another consequence of the identity 2.1.4 that gives a concrete proof of

Proposition 4 in [32] is the following.

Corollary 70 Given a Moufang building (�;W; S; d) of typeM = (mij)i;j2Iwith
root groups (U�)�2� then with the notations as before (G;B+; B�; N; S) is a

twin BN-pair.

proof :

This is the same as the proof of Proposition 4 in section 5 in [31]. But

we rephrase it for completeness.
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It follows from the calculations already made that the systems (G;B+; N; S)
and (G;B�; N; S) are BN -pairs of typeM . Moreover B+\N = B�\N = H .

Hence axiom TBN1 is satis�ed.

We prove TBN2.

For given si with i 2 I and w 2 W one has

B+siB+wB� =

�
B+siwB� if l(wsi) < l(w)

B+wB� [ B+siwB� if l(wsi) > l(w)

Two cases can occur :

l(siw) < l(w).
The root w�1(�i) is a negative root. Using lemma 4 we see that

B+siB+wB� = B+siB�iwB�

= B+siwBw�1(�i)B�

= B+siwB�:

If l(siw) > l(w) then by what we just proved

B+siB+wB� = B+siB+sisiwB�

� B+f1; sigB+wB�

= B+fsw;wgB�:

That the symmetric formula :

B�siB�wB+ =

�
B�siwB+ if l(wsi) < l(w)
B�wB+ [ B�siwB+ if l(wsi) > l(w)

holds follows by similar arguments.

Remains to show that axiom TBN3 is satis�ed.

If for i 2 I , B+si \ B� 6= ; we �nd b+ 2 B+, b� 2 B� such that si = b+b�.

But then siU�isi = U��i implies that b�U��ib
�1
�
� B+ \ B� = H . Hence

U��i � b�Hb
�1
�
. This contradicts the regular action of U��i on the i-panel

containing B� in the building provided by the BN -pair (G;B�; N; S). 2

2.1.5 The relation O

We start from a Moufang building (�;W; S; d). Denote the set of all roots

in W by �. is given by � = f�g. The root groups are denoted by U�.



2.1. TWIN BUILDINGS AND MOUFANG BUILDINGS 51

We use notation as before. Then we know that there are two BN -pairs in-

volved, (G;B+; N; S) and (G;B�; N; S). The �rst BN -pair yields a building

(�+;W; S; d+) isomorphic to (�;W; S; d). From the second one, the building

(��;W; S; d�) is constructed. As the chambers of �+ and �� correspond

to cosets of B+ respectively B�, the group G acts in a natural way on both

buildings. Let c+ and c� be the chambers of �+ and �� corresponding to

B+ and B�. We de�ne the relation O � �+���[����+ by the following

rules :

( (x+; y�) 2 �+ ���, (y�; x+) 2 �� ��+)

(x+; y�) 2 O
m

9g 2 G such that (g(x+); g(y�)) = (c+; c�)

(y�; x+) 2 O
m

(x+; y�) 2 O

We describe the relation O for rank 2 Moufang buildings.

Theorem 71 Suppose that (�;W; S; d) is a rank 2 Moufang building of

spherical type then the relation O de�nes a twinning between �+ and ��.

proof :

As the building � is of spherical type there exists a unique element w0 in

W such that l(w0) > l(w) 8w 2 W . We make the following construction.

Set (�1;W; S; d1) = (�;W; S; d), (�2;W; S; d2) = (�;W; S; w0dw0). De�ne a

codistance function d� between �1 and �2 by :

((x1; x2) 2 �1 ��2, (x2; x1) 2 �2 ��1)

d�(x1; x2) = w0d(x1; x2)

d�(x2; x1) = d(x1; x2)w0:

It follows from Proposition 1 in [31] that the couple ((�1,W , S, d1), (�2,W ,

S, d2)) with the codistance function d� is a twin building. It can be shown

that this is the only possible twinning on �.

We know that two BN -pairs (G;B+; N; S) and (G;B�; N; S) can be con-

structed. Each of these BN -pairs has an associated building. Denote them by

(�+;W; S; d+) and (��;W; S; d�). We give a short description of (�+;W; S; d+).
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The set of chambers �+ is given by the set fgB+ j g 2 Gg. Let s 2 S then

g1B+ is s-adjacent to g2B+ if and only if B+g
�1
1 g2B+ = B+sB+. To de�ne

the distance between two chambers one uses the Bruhat decomposition of

the group G. This means that the group G has a decomposition :

G = t(B+wB+)w2W :

Moreover if B+w
0B+ = B+w

00B+ then it follows that w0 = w00. For two

chambers g1B+ and g2B+ of �+ the distance d(g1B+; g2B+) is de�ned as the

unique element v 2 W such that :

B+g
�1
1 g2B+ = B+vB+:

Using standard arguments it follows that (�+;W; S; d+) is a building. The

same can be done for (G;B�; N; S). This gives the building (��W;S; d�).
From the construction of (�+;W; S; d+) it can be proved that it is isomorphic

to (�;W; S; d). The isomorphism is given by :

'1 : �+ ! �

'1(gB+) 7! g(c+):

Consider the map '2 from (��;W; S; d�) to (�2;W; S; d2) determined by :

'2(gB�) = gw0(c+):

One checks that '2 de�nes an isomorphism from (��;W; S; d�) to (�2;W; S; d2).

To �nish the proof we show the following equivalence :

((x+; y�) 2 �+ ���)

(x+; y�) 2 O , d�('1(x+); '2(y�)) = 1:

(1) If (x+; y�) 2 O then x+ = gB+ and y� = gB�, with g 2 G. Hence

'1(x+) = g(c+) and '2(y�) = gw0(c+). We calculate :

d(g(c+); gw0(c+)) = d(c+; w0(c+))

= d(c+; w0c+)

= w0:

This implies that d�('1(x+); '2(y�)) = 1.

(2) Suppose gB+ and hB� are such that d�('1(gB+); '2(hB�)) = 1. This
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means that d(g(c+); hw0(c+)) = w0. Using the isomorphism '1 and the

Bruhat decomposition of G it follows that :

hb� = gb+

for appropriate b� 2 B� and b+ 2 B+. This means that (gB+; hB�) 2 O.
2

Remains to prove the same result for non-spherical rank 2 Moufang build-

ings. Let (�;W; S; d) be such a building. We consider a graph whose vertex

set V is the set of all residues in �. Two vertices are joined by an edge if and

only if they lie in a chamber. In this way we get a bipartite graph (V;E),
which turns out to be a tree. It can also be easily checked that every isomor-

phisms of � as building induces an isomorphism of the tree (V;E). For more
information about non-spherical rank 2 Moufang building we refer to [26].

The result we will prove is :

Theorem 72 Given a non-spherical rank 2 Moufang building (�;W; S; d)

then the relation O de�nes the opposition relation of a twinning between �+

and ��.

proof :

First we �x some notations and terminologies.

Denote W = fs; tg. The chambers of � will be considered as pairs fx; x0g,
where x and x0 stand for the simplices in the chamber fx; x0g. We as-

sume that the standard chamber is given by c0 = fx0; x1g and the stan-

dard apartment �0 is the sequence : : : c�2
t
� c�1

s
� c0

t
� c1

s
� c2 : : :. Write

ci = fxi; xi+1g; 8i. Then the standard apartment �0 corresponds to a se-

quence : : : x�2 � x�1 � x0 � x1 � x2 : : : in the tree (V;E).
As to the Moufang structure on � we keep the notations from above.

Let �+
i be the positive root of �0 such that xi lies on it's boundary. Similarly

��i is the negative root of �0 such that xi lies on @�
�

i . By calculations already

made there are two BN -pairs involved ; (G;B+; N; S) and (G;B�; N; S).
They give rise to two buildings (�+;W; S; d+) and (��;W; S; d�). To prove

that O is the opposition relation of a twinning between �+ and �� we refer

to Proposition 5.4. in [18]. In order to use this proposition we show the

following :

(i) The relation O de�nes a 1-twinning between �+ and ��.
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(ii) For any four chambers y�,c
1
�
and c2

�
in �� and e+ 2 �+ such that

(e+; c
1
�
) 2 O, (e+; c

2
�
) 2 O and :

l(d�(c
1
�
; y�)) = l(d�(c

2
�
; y�))

= minfl(d�(a�; y�))j(e+; a�) 2 Og

we have d�(c
1
�
; y�) = d�(c

2
�
; y�).

(iii) For any four chambers y� 2 ��, y
1
+; y

2
+; e+ 2 �+ such that (y1+; y�) 2 O,

(y2+; y�) 2 O and :

l(d+(e+; y
1
+)) = l(d+(e+; y

2
+))

= minfl(d+(a+; c+))j(a+; y�) 2 Og

we have d+(y
1
+; e+) = d+(y

2
+; e+).

(iv) Given chambers y�; a� 2 ��, e+ and b+ 2 � such that a� is as in (ii),

l(d(a�; y�)) is minimal, b+ is as in (iii) and l(d(e+; b+)) is minimal then

d+(e+; b+) = d+(a�; y�):

If (i); (ii); (iii) and (iv) are satis�ed we de�ne for every x 2 �� (� 2 f1;�1g)
a codistance function dx : �� 7!W in the following way. For every z 2 ���,

dx(z) equals d��(x��; z) with (x; x��) 2 O such that l(d(x��; z) is minimal as

in (ii) or (iii). One easily checks this de�nes a codistance function for every

x.
Remains to check these 4 properties :

(i) Because of the de�nition of O it suÆces to check that O de�nes a 1

twinning between the s-residue Rs
+ in �+ containing c+ and the s-residue

Rs
�
in �� containing c�. We check that for all the chambers x� of Rs

�
satisfy

(x�; c+) 2 O except s(c�).
Every element of Rs

�
has the form u��ss(c�) for u��s 2 U��s. Suppose

that u��s 6= 1. Granted the properties of the BN -pair (G;B�; N; S) we

can write u��ssc� = u�ssu
0

�s
sc� for appropriate u�s and u0�s 2 U�s. But

then u��ss(c�) = u�s(c�). And (c+; u��s(c�)) = (u�s(c+); u�s(c�)). Hence

(c+; u��s(c�)) 2 O.
Consider the chamber s(c�). If (c+; s(c�)) 2 O then there would exist a

g 2 G such that g(c+) = c+ and g(s(c�)) = c�. But then g 2 B+ and

gs 2 B� or s = b+b� for b+ 2 B+ and b� 2 B�. This contradicts the fact

that s stabilizes the standard apartment �0 as we are working in a tree.

Hence (s(c�); c+) 62 O.
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Granted the action of G on �+ and �� we may assume that d+ = c+ in

(ii); (iii) and (iv).
(ii) Suppose that y�, c

1
�
and c2

�
are chambers as in (ii) with (c+; y�) 62 O.

Then y� = gB�, c
1
�
= b1+B� and c2

�
= b2+B� for g 2 G; bi+ 2 B+. Let

d�(c
1
�
; y�) = w1 and d�(c

2
�
; y�) = w2. It follows from the assumptions that

l(w1) = l(w2).

Assume w1 6= w2.

Because we work in a non spherical Coxeter group two possibilities occur.

Namely w2
1 = w2

2 = 1 or w2
1 6= 1 and w2

2 6= 1.

Expressing that the distances from c1
�
and c2

�
to y� are w1 and w2 gives :

gB� = b1+b
1
�
w1B�

= b2+b
2
�
w2B�

for bi
�
2 B�.

Hence

b1+b
1
�
w1 = b2+b

2
�
w2b�

for b� 2 B�.

Using the properties of the BN -pair (G;B�; N; S) we �nd :

(b2+)
�1b1+ = b2

�
w2b�w

�1
1 (b1

�
)�1:

If w2
1 = w2

2 = 1 then

b2
�
w2b�w

�1
1 (b1

�
)�1 = b0

�
w2w1b

00

�

for b0
�
; b00
�
2 B�.

If w2
1 6= 1 and w2

2 6= 1 then w1w2 = 1 and the properties of the BN -pair

(G;B�; N; S) yield :

b2
�
w2b�w

�1
1 (b1

�
)�1 = b0

�
w2
2b
00

�

for b0
�
; b00
�
2 B�.

In all cases we �nd that if w1 6= w2 then for a v 6= 1, b0
�
and b00

�
2 B�

b0
�
vb00

�
2 B+;

with l(v) = 0mod 2. This means that b0
�
vb00

�
has to �x the chamber c+. Write

b0
�
vb00

�
= u0

�
vu00

�
h for h 2 H . Then u0

�
vu00

�
has to �x c+.
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Two cases occur :

(a) u00
�
= 1.

Then we have u0
�
(v(x0) = x0 and u0

�
(v(x1)) = x1. This is only possible if

v = 1 and u0
�
= 1.

(b) The element u00
�
6= 1.

Suppose that W = fs; tg, @�s = x0, @�t = x1.

If u00
�
2 U��s we �nd that u0

�
vu00

�
(x0) = x0. Granted the condition on u00

�
this

implies that u0
�
(v(x0)) = x0. Again a contradiction.

Hence there u00
�
62 U��2

and there exists an index j such that xj � y1 � y2 �
: : : � u00

�
(x0) � u00

�
(x1) is the gallery in � from �0 to u

00

�
(x1).

Suppose that j < 0 (we already excluded the case where j = 0).

Because l(v) = 0mod 2, v acts as a translation of �0 i.e. :

v(xl) = xl+k0; 8l

for a �xed k0 2 Z.
Let v(xj) = xm.

If m � 0 then d+(xj ; u
00

�
(x0)) 6= d+(xm; x0). One easily checks that there

cannot exist a u0
�
2 U� with u0

�
(vu00

�
(x0)) = x0.

If m � 1 then :

d+(xm; vu
00

�
(x0)) < d+(xm; vu

00

�
(x1))

One checks that for no u0
�
2 U� we can have u0

�
(vu00

�
(x0)) = x0.

If j > 0 one uses similar arguments to deduce a contradiction.

(3) If (y1+; y�) and (y2+; y�) 2 O then

y� = g(c�)

y1+ = g(c+)

y2+ = gb�(c+)

for g 2 G and b� 2 B�.

A symmetric proof completely analogous to (2) gives d+(y
1
+; c+) = d+(y

2
+; c+).

(4) Let y� and c1
�
be chambers of �� with (c+; c

1
�
) 2 O and d(c1

�
; y�)

is minimal as in (ii). Then we look for a chamber y+ in �+ such that

(y+; y�) 2 O and d+(c+; y+) = d�(c
1
�
; y�). This will imply (iv). Without

loss of generality we can assume that c1
�
= c�.

Let the minimal gallery in � between c� and y� be :

y0
�
= c�

s
� y1

�

t
� y2

�

s
� : : :

t
� ym

�
= y�
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If y1
�
= u��ss(c�) let y

1
+ be u��ss(c+). If y2

�
= u��ttu��ss(c�) let y

2
+ be

u��ttu��ss(c+).
If we do this for all yi

�
we get a gallery :

y0+ = c+
s
� y1+

t
� y2+

s
� : : :

t
� ym+

from c+ to ym+ . One shows with a proof similar as in (2) that for no

v 2 W and b�; b
0

�
2 B� we can have that b�vb

0

�
2 B+. This ensures us

that all the yj+ are di�erent. The gallery is therefore non-stammering and

d+(c+; y
m
+ ) = d�(c

1
�
; y�). By construction we have (y+; y�) 2 O.

This completes the proof that (i),(ii),(iii) and (iv) are satis�ed for O. Hence
O is the opposition relation of a twinning between �+ and ��. 2

2.1.6 Constructing a 2-twinning

In this paragraph we will show that the building (�;W; S; d) is half of a twin
building using a result of B. M�uhlherr in [18]. We restate the main result of

loc. cit.

Theorem 73 Let M be a Coxeter matrix over I, let (�+;W; S; d+) and

(��;W; S; d�) be two thick buildings of type M and let O � (�+ � ��) [
(�� � �+) be a non-empty symmetric relation. Then O is the opposition
relation of a twinning between (�+;W; S; Æ+) and (��;W; S; Æ�) if and only

if the following condition is satis�ed :
If J � I is of cardinality at most 2 and if R+ � �+ and R� � �� are
J-residues, then either O \ ((R+ � R�) [ (R� � R+)) = ? or O \ ((R+ �
R�) [ (R� � R+)) is the opposition relation of a twinning between R+ and
R�.

We now have :

Theorem 74 Given a Moufang building (�;W; S; d) with root groups (U�)�2�
then � is half of a twin building i.e. there exists a building (��;W; S; d�)

and a codistance function d� such that ((�;W; S; d); (��;W; S; d�); d
�) is a

twin building.

proof :
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By Theorem 2 and Corollary 3 we know that there are two BN -pairs involved.

Namely (G;B+; N; S) and (G;B�; N; S). The building (�+;W; S; d+) asso-
ciated to (G;B+; N; S) is by construction isomorphic to �. We de�ne the

symmetric relation O between �+ and �� as before. Consider si; sj 2 S.

Let R+
sisj

and R�

sisj
be the fsi; sjg-residues in �+ and �� containing c+

and c� respectively. Then it follows from Theorem 4 and Theorem 5 that

O de�nes the opposition relation of a twinning between R+
sisj

and R�

sisj
. By

construction this implies that O satis�es the conditions of Theorem 6. Hence

O de�nes a twinning between �+ and ��. This means that � �= �+ is half

of a twin building. 2

2.2 Characterization

2.2.1 Introduction

As usual M = (mi;j)i;j2I stands for a certain Coxeter matrix and � is an

element of the set f1;�1g. When considering buildings we will not always

explicitly mention the type if this is not relevant in the context. The following

de�nition can be found in [19]

De�nition 75 A (thick) 1-twinning between a pair of (thick) buildings

(�+;W; S; d+), (��;W; S; d�) of the same type is a symmetric binary rela-

tion O � �+ ��� t�� ��+ satisfying :

if (c�; c��) 2 O, every panel in �� through c� contains exactly one chamber

z with (z; c��) =2 O.

Given the notion of a 1-twinning, galleries between chambers of �� and ���

can be introduced.

De�nition 76 Let O be a (thick) 1-twinning between (�+;W; S; d+) and
(��;W; S; d�). A gallery between c0 2 �� and cn 2 ��� is a sequence of

chambers (c0; c1; : : : ; cn) such that :

(i) (c1; c2; : : : ; cn) 2 ��� is a gallery in ��� and (c0; c1) 2 O or

(ii)(c0; c1; : : : cn�1) 2 �� is a gallery in �� and (cn�1; cn) 2 O. If � =

(c0; c1; : : : ; cm) denotes a gallery, its length is de�ned as m.
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As a consequence of the connectedness of �+ and �� every chamber of ��

can be joined via a gallery to every chamber of ���. It thus makes sense to

consider minimal galleries between chambers of �� and ��� (i.e. galleries

of minimal length).

Let x 2 �� then we denote :

xo = fy 2 ���j(x; y) 2 Og:

2.2.2 First result

Theorem 77 A thick 1-twinning O between two buildings (�+;W; S; d+)
and (��;W; S; d�) of type M de�nes a twinning if and only if :
(i) Given x 2 �� and y 2 ��� then d��(xy; y) = d��(�xy; y) whenever xy and

�xy are two chambers in xo satisfying :

l(d��(xy; y)) = l(d��(�xy; y)) = minfl(d��(z; y)jz 2 x
og:

(ii) If yx 2 yo such that the distance d�(yx; x) is minimal, and xy 2 xo such
that the distance d��(xy; y) is minimal then :

d(xy; y) = (d(yx; x))
�1:

Under these conditions we can de�ne a function d� from �+ and �� to W .
Namely for x 2 �� and y 2 ��, we set d

�(x; y) as d(xy; y) where xy a cham-
ber of xo at minimal distance from y. Under these conditions d� de�nes a

codistance function of a twinning between (�+;W; S; d+) and (��;W; S; d�).

proof :

Suppose that O is a twinning between (�+;W; S; d+) and (��;W; S; d�).
This means that there exists a codistance function d� going from �+ t ��

such that O = f(x; y) 2 �+ � ��t �� � �+ jd�(x; y) = 1g. Let x; xy; �xy
and yx be as in the theorem. Set w = d�(x; y). It is a general observation

that for xy; �xy; yx, w = d��(xy; y) = d��(�xy; y) = d�(x; yx). Hence conditions

(i) and (ii) are satis�ed form every x 2 �.

We check axioms (Tw1); (Tw2) and (Tw3) for d�.
Conversily let O be as in the thoerem. Then we check that it de�nes a twin-

ning between �+ and ��. (Tw1).
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This follows from property (ii).
(Tw2).

Suppose d�(x; y) = w, x 2 ��; y 2 ���, si 2 S such that l(wsi) < l(w). Let

z be any chamber of ��� si-adjacent to y.
The de�nition of d� implies that we can choose a chamber xy 2 x

o such that

d��(xy; y) = w. Consider in ��� a minimal gallery �w = y0(= xy) � y1 �
: : : � ym�1 � ym(= y) of type w from xy to y. Without loss of generality

we can assume that d�(x; ym�1) = w0, w0si = w and l(w0) < l(w). It is not
hard to check that there exists a gallery ��1w0 = ym�1 � x1 � : : : � x of

type h0 with rh0 = w0�1 in �� with (x1; y
m�1) 2 O. But then d�(x1; y) = s

and granted the condition of a 1-twinning we �nd d�(x1; z) = 1. This yields

l(d�(z; x)) � m � 1. As l(d�(x; y)) = m we �nd l(d�(z; x)) = m � 1. Hence

d�(z; x) = w0�1 and d�(x; z) = w0 = ws.
(Tw3).

Consider two chambers x 2 �� and y 2 ��� with d
�(x; y) = w. Two cases

occur.

First case : l(wsi) < l(w).
As we saw in the proof for (Tw2) every chamber z in ���, si-adjacent to y

satis�es d�(x; z) = wsi.
Second case : l(wsi) > l(w).
Choose a chamber yx 2 yo such that d(x; yx) = d�(x; y). There exists in the

si-residue containing y exactly one chamber, call it p with d
�(yx; p) = si. We

show that d�(x; p) = wsi.
Set ~w = d�(x; p). The hypothesis on w implies that l( ~w) = l(w) or l( ~w) =

l(w) + 1.

Suppose that l( ~w) = l(w).
Choose px 2 p

o such that d(x; px) = d�(x; p).

We have two possibilities.

(1) d�(px; y) = 1. Granted the condition on the opposition relation we de-

duce w = ~w.

(2) d�(px; y) = si.

Choose a third chamber q of the si-panel through y. (Such a cham-

ber always exists as the buildings under consideration are thick.) As

d�(px; y) = si, q lies opposite px. Choose a minimal gallery � ~w in �� of

type ~h, with r~h = ~w from x to px.
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Consider l(d�(x; q)).
Then l( ~w) � 1 � l(d�(x; q)) � l( ~w). If l(d�(x; q)) = l( ~w) � 1, there

exists a gallery from x to p of type ~h0s such that r~h0s = ~w. But then

l( ~ws) = l( ~w)� 1. This in turn implies that there exists a gallery � ~w of

type g with rg = ~w from xp to y.
Hence ~w = w.

If l(d�(x; q)) = l( ~w) we have d�(x; q) = ~w.
Completely similar arguments for x; yx; y; q; p imply d

�(x; q) = d�(x; y) =
d�(x; p).

Putting these two equalities together gives d�(x; q) = d�(x; p) = d�(x; y) =
w = ~w.
In any case we �nd that if l( ~w) = l(w), then w = ~w. Consider a mini-

mal gallery �w = x0(= x) � x1 � : : : � xm(= yx) in �� of from x to

yx. If d(xi; xi+1) = si+1 it follows d
�(xi; p) = ws1s2 : : : si. In particular

d�(xm; p) = 1 a contradiction.

We conclude l( ~w) = l(w) + 1 and d�(x; p) = ws = ~w.

2

2.2.3 The local approach

In what follows we prove a local condition on a thick 1-twinning suÆcient

and necessary for a the 1-twinning to be a twinning.

De�nition 78 Given a thick 1-twinning O between (�+;W; S; d+) and

(��,W ,S,d�) we say it satis�es condition Ptw for a chamber c 2 �� if :
8y 2 ���;8cy; �cy 2 c

o such that l(d��(cy; y)) = l(d��(�cy; y)) = minfl(d��(z; y))jz 2
cog,
8yc 2 y

o with l(d�(c; yc) = minfl(d�(v; c)jv 2 c
og

d��(cy; y) = d��(�cy; y) = d�(c; yc):

Under these conditions we can de�ne a function f going from fcg ���� to

W . If y 2 ��� then f(c; y) = d��(cy; y) for a chamber cy 2 co at minimal
distance from y.
Let c be as in the de�nition. Then we denote in the sequel the induced

function f also by dc
�
. A �rst observation is :
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Lemma 79 A thick 1-twinning O between (�+;W; S; d+) and (��;W; S; d�)
is a twinning if and only if condition Ptw is satis�ed for every chamber
c� 2 ��.

As before O is a 1-twinning between (�+;W; S; d+) and (��;W; S; d�). Next
step is to impose condition Ptw on one chamber c 2 ��. Then we want to

prove that condition Ptw is valid for every chamber z 2 �� t���.

Lemma 80 LetO be a 1-twinning between (�+;W; S; d+) and (��;W; S; d�).
Suppose condition Ptw is satis�ed for some chamber x 2 �+. If d

�(x; y) =

w, z is si-adjacent to y and l(wsi) < l(w) we have dx
�
(x; z) = wsi.

proof :

As l(wsi) < l(w) the w equals w1s with l(w1s) = l(w1) + 1. Hence ev-

ery minimal gallery �w of type h (rh = w) from x to y via xo can be replaced

by a gallery �w1s = x � y1 � : : : ym�1 � y of type h0i with rh0 = w1 and

(x; y1) 2 O.
Two cases occur.

First case : z = ym�1.

Then we have dx
�
(x; z) = dx

�
(x; ym�1) = wsi.

Second case : z 6= ym�1.
Consider a chamber yx 2 yom�1 at minimal distance from x. There ex-

ists a minimal gallery �w�1
1

in Æ+ of type h1 with rh1 = w1 from x to yx.

The chamber z should satisfy (yx; z) 2 O. Otherwise (yx; y) 2 O and

dx
�
(x; y) = w1 = w a contradiction. It follows that dx

�
(x; z) = w1. 2

Lemma 81 Suppose we are given a 1-twinning between (�+;W; S; d+) and
(��;W; S; d�) such that condition Ptw is satis�ed for x 2 ��. Let d

x
�
(x; y) =

w for y 2 ��. If z is a chamber of ���, si-adjacent to y then dx
�
(x; z) 2

fw;wsig.

proof :

Set l(w) = m. There are two possibilities.

First case l(ws) = m� 1.

Then the claim follows from Lemma 80
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Second case l(ws) = m+ 1.

If l(dx
�
(x; z)) = m + 1 then we know as there is a gallery of type hi with

rhsi = w from x to z that d�(x; z) = ws.

Remains to prove the lemma if l(dx
�
(x; z)) = m.

(Remark that these are the only possible values for l(d�(x; z)) granted the

condition on w.)

Let dx
�
(x; z) be ~w. Consider elements zx; yx 2 ��, xz; xy 2 ��� such that

d�(x; yx) = d��(xy; y) = w and d�(x; zx) = d��(xz; z) = ~w. As we are working
with a 1-twinning there are two possibilities :

1. First possibility : (zx; y) 2 O or (yx; z) 2 O.
Then it is clear that dx

�
(x; z) = dx

�
(x; y).

2. Second possibility whenever (zx; y) and (yx; z) 6= O.
Consider a third chamber r which is s-adjacent to both z and y. It

follows that (zx; r) 2 O. Hence l(d
x
�
(x; r)) 2 fm;m� 1g.

Suppose that l(dx
�
(zx; r)) = m�1). Then l(ws) = m�1 as there would

be a gallery �w0s = x � x0 � x1 � : : : � r � y of length m with

(x; x0) 2 O. The type of �w0s is h
0i. Thus dx

�
(x; y) = rh0si = w with

l(rh0) < l(w).

We conclude that l(dx
�
(x; r)) = m and thus dx

�
(x; r) = ~w. An analogous

reasoning gives dx
�
(x; r) = w. Hence ~w = w and dx

�
(x; z) 2 fw;wsg. 2

Before proving the main theorem we give an important lemma.

Lemma 82 Let O is a 1-twinning between (�+;W; S; d+) and (��;W; S; d�).

Suppose x 2 ��, y 2 ���, and �h a minimal gallery from x to y via xo of
type h = (h1h2 : : : hm). Then every chamber z 2 ��� joined by a gallery ���h
of type h to y lies opposite x.

proof :

Set �h = xy0y1 : : : ym(= y). Construct a special gallery ��h in ��. Denote x
by x0. Consider the sh1 panel through x. Then there is a unique chamber in

this panel not opposite y0. This is the chamber x1. Suppose we already con-

structed a gallery x0x1 : : : xi of type (h1h2 : : : hi) with (xj ; yj) 2 O, 0 � j � i
and (xj ; yj+1) 62 O for 0 � j � i � 1. Then we choose as xi+1 the unique

chamber of the shi+1
panel through xi not opposite yi. Proceeding in this
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way we end up with a gallery ��h = x0x1 : : : xm in �� of type h such that

(xj ; yj) 2 O, 0 � j � m, and (xj ; yj+1) 62 O for 0 � j � m � 1. Let z0 be
another chamber of ��� joined to y by a gallery ���h = z0z1 : : : zm of type h.

Then it one easily deduces using the properties of 1-twinnings and the fact

that xy0y1 : : : ym is minimal that (xj ; zj) 2 O for 0 � j � m. This implies in

particular that (x; z0) 2 O. 2

Theorem 83 Given a thick 1-twinning O between (�+;W; S; d+) and
(��;W; S; d�). Then O de�nes a twinning if and only if condition Ptw is
satis�ed for some element x 2 ��.

proof :

That this condition is necessary is follows theorem 79.

To show the converse we use the following strategy.

Fix a chamber x0 of ��, si-adjacent to x for si 2 S. Then we prove the

chamber x0 obeys condition Ptw.
As buildings are connected chamber systems this implies that every chamber

of �� satis�es condition Ptw. From this we deduce then that also all cham-

bers of ��� satsisfy condition Ptw. Theorem 79 implies then that O de�nes

a twinning between �+ and ��.

Consider y0 2 ���. Let �~h = x0~y0~y1 : : : ~ym�1 ~ym(= y) and ��h = x0 �y0�y1 : : : �ym�1
�ym (= y) be two minimal galleries from x0 to y via (x0)o. Suppose the type of
�~h is ~h = (~h1~h2 : : : ~hm) and the type of ��h is �h = (�h1�h2 : : : �hm). Let r~h = ~w
and r�h = �w. Then l( ~w) = l( �w) = m. Remains to show that ~w = �w.

Two cases occur :

1. First case : there exists no minimal gallery from x0 to y of type g, such
that l(sirg) < l(rg).

According to the length of the distance between x and y tree sub cases

occur.

First subcase : l(dx
�
(x; y)) = m

We assume that dx
�
(x; y) = s1s2 : : : sm = w. Next thing to do is calcu-

late the relation between x and ~y0 and between x and �y0. As a generic

case we consider x and ~y0.
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Suppose d�(x; ~y0) 62 O. On going down from y to ~y0 via ~ym�1 � ~ym�2 �
: : : � ~y0 we get (use Lemma 80) :

dx
�
(x; ~ym) = w

dx
�
(x; ~ym�1) = w or w~sim

...

dx
�
(x; ~y0) = w~sim : : : ~̂sip : : : ~si1

where the hat stands for possible omitting a certain generator.

This means w = s~s1 : : : ~̂sp : : : ~sm. Thus there is a minimal gallery

xz0z1 : : : zm of type (ii1 : : : ip�1ip+1 : : : im) = ~g, (r~g = ~w), from x to

y via xo. But as this type starts with i and we are working with a

1-twinning, x0 lies opposite z1. Thus there is a gallery x0z1 : : : y from

x0 to y of length m� 1. A contradiction to the minimality of m. This

implies (x; ~y0) 2 O. In a completely analogous way we �nd (x; �y0) 2 O.
As the chamber x satis�es condition Ptw we deduce the equality ~w = �w.

Second subcase : l(d�(x; y)) = m+ 1

Suppose dx
�
(x; ~y0) = 1 or dx

�
(x; �y0) = 1 We get a contradiction with

l(dx
�
(x; y)) = m+ 1.

Hence :

dx
�
(x; ~y0) = si

dx
�
(x; �y0) = si

Consider arbitrary chambers lets call them ~y�1 and �y�1 in ��, si-
adjacent to ~y0 and �y0 respectively.
We have :

dx
�
(x; ~y�1) = dx

�
(x; �y�1) = 1

The hypothesis x yields s ~w = s �w or equivalently ~w = �w.

Third subcase : l(d�(x; y)) = m� 1

Then there exists a minimal gallery � of length m� 1 from x to y via
xo namely xy0y1 : : : y. Then dx

�
(x0; y0) equals si. Let y�1 be an arbi-

trary chamber in ��, si-adjacent to y0. Then x
0 lies opposite y�1 and

thus the sequence x0y�1y0y1 : : : ym�1 is a minimal gallery from x0 to y
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of a certain type g0 such that l(sirg0) < l(g0), a contradiction with the

hypothesis.

2. Second case : there exists a minimal gallery from x0 to y of type u with

l(siru) < l(ru).
Notations are as above. Without loss of generality we may assume

that �~h is a gallery of type u = ~h = (i~h2 : : : ~hm). Under these as-

sumptions it follows that dx
�
(x; y) = s~h2 : : : s~hm . As before we denote

d�(x; y) by w. We claim all minimal galleries from x0 to y via xo have
type v such that with rv = r~h. Consider as above the other mini-

mal gallery ��h = x0�y0�y1 : : : �ym�1 �ym = y. Assume that the type of

��h = (�h1�h2 : : : �hm).
First possibility : l(sir�h) < l(r�h).

Without loss of generality we can assume in this case that �s�h1 =

si. We have that x lies opposite �y1 and the hypothesis on x gives

s~h1s~h2 : : : s~hm = s�h1s�h2 : : : s�hm . Hence r~h = r�h.

The second case occurs when l(sir�h) > l(r�h).
Consider d�(x; �y0).

Suppose that d�(x; �y0) = si. On going down from y to �y0 the distance
dx
�
should stutter two times. (Remember that dx

�
(x; y) = ~s2~s3 : : : ~sm).

Two possbilities occur.

There exists p, 1 � p � m such that :

w = ŝis�h1 : : : ŝ�hp : : : s�hm

or there exist p1, p2 with 1 � p1, p2 such that :

w = sis�h1 : : : ^s�hp1 : : : ŝ �p2 : : : s�hm

The second possibility cannot occur as we have that l(siw) > l(w). If
p 6= mwe can replace the gallery �~h by a gallery � �w = �y0�y1 : : : �yp�1�yp : : : y

of type ~h. We can restrict ourselves in particular to the galleries

�y0�y1 : : : �yp and �y0�y1 : : : �yp and we have reduced the situation to the case

where p = m.

So we can assume without loss of generality that p = m.

From the calculation from above gives :

w = s�h1s�h2 : : : s�hm�1
:
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To proceed we construct a special gallery in �� starting in x.
Consider a chamber x2 2 �� with d�(x; x2) = s�h1 . Then (x2; ~y2) 2 O.
Choose a chamber x3 2 ��, s�h3-adjacent to x2. As before we �nd

d�(x3; ~y3) 2 O. Continuing in this way we build up a gallery � =

xx2x3 : : : xm in �� such that d�(xi; xi+1) = s�hi and (xi; ~yi) 2 O for

1 � i � m.

Choose a third chamber z0 2 ��� of the s�hm-panel through y, not
opposite xm. As we know dx

�
(x; y) = w we have using Lemma 81 that

dx
�
(x; z0) 2 fw;ws�hmg.

Suppose that dx
�
(x; z0) = w.

This yields (xm; z0) 2 O as w = s�h1s�h2 : : : s�hm�1
, a contradiction.

It follows that dx
�
(x; z0) = ws�hm .

Suppose z0 = �ym�1. On going down from �ym�1 to �y0 we get granted

the assumption dx
�
(x; �y0) = si that :

ws�hmw
�1 = si

or equivalently :

s�h1s�h2 : : : s�hm = siw:

This contradicts the assumption l(sir�h) > l(r�h). Therefore z0 6= �ym�1.
But then d��(�y0; z0) = ws�hm and granted Lemma 80 we �nd dx

�
(x; �y0) =

1, contradicting the hypothesis that dx
�
(x; �y0) = si.

The initial assumption that dx
�
(x; �y0) = 1 is false and the only possi-

bility is that dx
�
(x; �y0) = si. We saw d�x(x; y) = s~h2s~h3 : : : s~hm . Hence

l(dx
�
(x; y)) equals m� 1. As d��(�y0; y) = s�h1 s�h2 : : : s�hm and two possi-

bities occur on going down from y to �y0.
First possbilitie :

There exists p1, p2, 1 � pi � 2 such that :

ws�hm : : : ŝ�hp1 : : : ŝ�hp2 : : : s�h1 = si

(Remark that in this case p1 6= m as dx
�
(x; �y0) = si.) or :

ws�hms�hm�1
: : : s�h1 = si:

The �rst possibility contradicts the fact that l(ws�hm) = m and. If the

second possbilitye would occur we have l(si(ws�hm)) = l(sir�h) < l(r�h)
contradicting the initial assumption on r�h.

This means that the possbility that l(sir�h) > l(r�h) is thus excluded.
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The above discussion shows the following property. If x0 2 �� is si-adjacent
to x and y 2 ���. Consider two minimal galleries �~h and ��h of types

(~h1~h2 : : : ~hm) and (�h1�h2 : : : �hm) respectively. Then r~h = r�h. This is one half

of condition Ptw for x0.
We show that the other half of condition Ptw for x0 also holds. This follows
from the following observation. Let y 2 ��� and �f = yx0x1 : : : x

0 be a min-

imal gallery from y to x0 via yo of type (f1f2 : : : fn). Using Lemma 2.2.3 one
can easily construct a gallery �f�1 = x0y0y1 : : : y of type (fnfn�1 : : : f1) from
x0 to y. As we know that all minimal galleries from x0 to y have the same

type up to homotopies we're done.

By the connectedness of the buildings �+ and ��, condition Ptw is valid

for all chambers of ��.

Let z 2 ��� and u 2 ��. As every minimal galery from z to u de�nes a

minimal galery from u to z, one easily checks that z also satis�es condition

Ptw. Hence O de�nes a twinning between �+ and �� by Theorem 79. 2
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Chapter 3

Moufang sets

3.1 Introduction

In the standard reference [32] J. Tits introduces the basic concepts to be used

in a possible classi�cation program for twin buildings. Of major importance

here is the notion of Moufang set. Loc. cit. is the �rst place where a formal

de�nition appears. In view of the work of B. M�uhlherr [20] the class of the

so called induced Moufang sets need special attention. Induced Moufang

sets are obtained as local data derived from the global geometry of Moufang

buildings. In order to carry out the classi�cation program for the ~B2 case

in the spirit in [20] one needs to solve the following question. "Suppose we

are given two Moufang quadrangles �1 and �2 having isomorphic induced

Moufang sets. Does this yield any relation between �1 and �2 ?"

In this chapter we will develop an alternative setup concerning induced Mo-

ufang sets which emphasizes less the quadrangle. As a consequence the ques-

tion above is translated to a more algebraic one. Namely in a lot of cases the

Moufang sets we consider are closely related to the endomorphism groups of

a certain vector space endowed with a quadratic form of Witt index 1. Using

the geometry provided by the form one could also view these endomorphism

groups as auto-morphism groups of this geometry.

71
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Hence the question concerning isomorphic induced Moufang sets is translated

to a question concerning isomorphic linear groups preserving a form of Witt

index 1 or to a question of isomorphisms of the related geometries.

As the groups and geometries which arise here are in some cases classical,

some work is already done concerning isomorphisms.

Nevertheless most of the theorems we �nd in the literature provide partial

answers that are valid under restrictions which we had to overcome.

In a lot of cases one could use Borel-Tits theory [2]. One disadvantage is

that this works only if the groups are algebraic ones. This yields in par-

ticular that the vector space in which the form is de�ned should be �nite

dimensional over a �eld of characteristic not 2. As the induced Moufang sets

we consider do not always arise from algebraic groups (e.g. if characteristic

of ground �eld is 2) this still leaves a gap.

Classical theory (cfr. e.g. [6], [7], [8], [12], [11], [17], [24]) also gives an-

swers in some cases. As above these results mostly work only if the vector

space is �nite dimensional, the form is non-degenerate, and the groups are

of the same type. Especially the question concerning isomorphic orthogonal

Moufang sets in characteristic 2 was problematic. (cfr. Proposition 127)

A partial answer was given in [5] but the result only holds under a certain

non degeneracy condition. The alternative approach developed in this chap-

ter was very useful here. Using this setup the question was solved completely.

In Chapter 8 in [29] one can also �nd some theorems which handle with

questions related to isomorphisms between Moufang sets (e.g. Lemma 8.18).

Nevertheless one veri�es that the heart of the problem cannot be solved using

this theory. It is in fact translated in another setup.

Moreover as the classi�cation program of ~B2 buildings requires a comparison

of Moufang sets of di�erent nature we followed a more elementary strategy.

In this way we could compare indi�erent Moufang sets with other ones, solve

a lot of question even if the characteristic of the ground �elds is 2 and the

groups are not algebraic groups and ultimately give an theorem which char-

acterizes classical Moufang sets in some sense

Moreover most of the results proved in this chapter will �nd application in

Chapter 4 dealing with existence and non-existence of certain ~B2 Moufang

buildings.
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3.2 Projective Moufang sets

We start the discussion on Moufang sets by considering the family of pro-

jective ones. Implicitly these sets were studied before under other names

and with other terminology. One of the �rst to investigate isomorphisms

between two such Moufang sets was L.K. Hua. (cfr. [12]). A version of his

description of all possible isomorphisms can be found in section 8.12.3 on

pp147-149 in [29]. Moreover the techniques used in loc. cit. will enable us

to compute in this section all Moufang subsets in a special case. We give a

formal description of what is meant by projective Moufang set and prove a

�rst proposition.

Let k be a division ring, E a 2-dimensional right k-vector space and X be the

set of all vector lines in E. To simplify the calculations we use a coordinate

system. Choose a base fe1; e2g of E. Denote he1x + e2i as (x) and he1i as
(1). This means we can write X = f(x)jx 2 kg [ f(1)g.
Choose as point set the set X .

As to the root group structure we start by giving descriptions of U(1) and

U(0). In classical terms U(1) and U(0) co��ncide with transvection groups with

centers e1, e2 respectively. A typical example of a root elation u((1); (0); (x))
2 U(1) has matrix representation with respect to the ordered base fe1, e2g :�

1 x
0 1

�

whereas an element of the form u((0); (1); (x)) 2 U(0) has matrix represen-

tation with respect to the ordered base fe1, e2g :�
1 0

x�1 1

�
:

All other root groups are conjugates of U(1) under appropriate elements of

U(0). Namely if (x) 2 X , we de�ne Ux = gU1g
�1, where g = u((0); (1); (x)).

We check that (X; (Ux)x2X) de�nes a Moufang set.

1. Condition MoS1.

We �rst prove that U(1) acts regularly on X nf(1)g. Let (x), (y) 2 Xn
f(1)g. Then the root elation with matrix representation with respect to the

ordered base fe1, e2g : �
1 y � x
0 1

�
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is the unique element of U(1) sending (x) to (y).
By similar arguments one checks that also U(0) acts regularly on X n f(0)g.
As the other root groups are de�ned as conjugates of U(1), condition MoS1

is clearly satis�ed.

2. Condition MoS2.

As U(1) and U(0) co��ncide with the transvection groups with centers e1 and
e2, a root group Ux corresponds to the group of transvections of center x.
Hence the set fUxj x 2 Xg is stabilized by GL2(k) and condition MoS2

holds.

In this way we obtain a Moufang set (X; (Ux)x2X) which is denoted by P(k)
and is called a projective Moufang set de�ned over the division ring k. As

already mentioned we prove the following proposition.

Proposition 84 Consider a projective Moufang set P(k) de�ned over the
�eld k.

(i) If char(k) 6= 2 every Moufang subset Y of P(k) corresponds to a sub�eld
of k.
(ii) If char(k) = 2 every Moufang subset Y of P(k) corresponds after a right

choice of coordinate system to a subset l of k
satisfying : (�k is the �eld generated by l)
(i) l = l�1

(ii) 1 2 l
(iii) The set l is a vectorspace over a sub�eld k0 of k containing �k2.

proof :

Suppose as above that the point set of P(k) is de�ned as the set of all

vectorlines of a 2 dimensional right k-vectorspace E. Choose an ordered

base fe1; e2g of E such that with notations as above P(k) = (X = (f(x)jx 2
kg [ f1g, (Ux)x2X).
Let Y be a Moufang subset of P(k). Set l = ft 2 kj(t) 2 Y g. Without loss

of generality we can assume that (0), (1) 2 Y and (1) 2 Y as Y contains

by de�nition at least 3 elements.

We show that (l;+) is a subgroup of (k;+).
Let s; t 2 l. As (Y; (StabUy(Y ))y2Y ) is a Moufang set, u((1); (0); (t)) stabi-
lizes Y . This means that u(1; 0; t)(s) = (s + t) 2 Y and hence s + t 2 l.

By similar arguments one deduces that if t 2 l also �t 2 l. Hence (l;+) is a
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subgroup of (k;+).
To proceed we restate a formula used on p148 in [29].

It is based on the following general observation. Let (�;W; S; d) be a Mo-

ufang building with root groups (U�)�2�. Then there exist for every u� 2 U�
unique u�� and u0

�� 2 U�� such that u��u�u
0

�� interchanges � and �� in

the standard apartment.

As Moufang sets are 1 dimensional Moufang buildings we can specialize this

property. Chambers are points of the Moufang sets and apartments are pairs

of chambers. The above observation means that every u((1); (0); (a)) 2
U(1), determines unique �1; �2 2 U(0) with :

�1u((1); (0); (a))�2((0)) = (1)

�1u((1); (0); (a))�2((1)) = (0):

The only possible choice for �1 and �2 is �1 = �2 = u((0); (1); (�a)) and
�1u((1); (0); (a))�2 has a matrix representation with respect to the ordered

base fe1, e2g :�
1 0

�a�1 1

��
1 a

0 1

��
1 0

�a�1 1

�
=

�
0 a

�a�1 0

�
:

Hence for (x) 2 Xn f(0), (1)g we �nd :

�1u((1); (0); (a))�2((x)) = (�ax�1a):

As u((0); (1); (�a)) 2 StabU(0)
(Y ), we �nd �1 u((1); (0); (a)) �2(Y ) = Y .

This means in particular that if a, b 2 l, b 6= 0 also ab�1a 2 l. Setting a = 1

or b = 1 this shows that if y 2 l also y�1 and y2 2 l.
According to the characteristic we distinguish two cases.

(1) Char(k) 6= 2.

Let a; b 2 l, then (a + b)2 2 l. But (a + b)2 = a2 + 2ab + b2 with a2; b2 2 l.

This implies 2ab 2 l. Hence also ((2ab)�1 + (2ab)�1)�1 = ab 2 l.
This proves that l is a sub�eld of k.
(2) Char(k) = 2.

Denote the �eld generated by l as �k. We see that l has the following proper-
ties :

(i)l�1 = l

(ii)1 2 l
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(iii) The set l is a vector space over �k2.
Remains to check the converse.

Let P(k) be as in the beginning of the proof. This means P(k) is de�ned
using the a two dimensional right k-vector space E with base fe1; e2g used

to coordinatize the Moufang set. Suppose l is a subset of k such that l is
a sub�eld of k if char(k) 6= 2 and l satis�es conditions (i), (ii) and (iii) of

the proposition if char(k) = 2. Let Y = f(x)jx 2 lg [ f(1)g. We show

that Y is a Moufang subset of P(k). This will be done if we prove that for
any three points (a), (b), (c) 2 Y , the element u((a); (b); (c)) stabilizes Y .

If (a); (b) and (c) are not mutually di�erent we have u(a; b; c) = 1, so we

can suppose a 6= b; b 6= c and a 6= c. One calculates that u((a); (b); (c)) has
matrix representation with respect to the ordered base fe1, e2g : 

a2+bc
a4+a2b2+a2c2+b2c2

a2(b+c)

a4+a2b2+a2c2+b2c2

b+c
a4+a2b2+a2c2+b2c2

a2+bc
a4+a2b2+a2c2+b2c2

!

Let (x) 6= (1) 2 Y . Then u((a); (b); (c)) (x) = (((a2+ bc)x+ a2b+ a2c)(bx+
cx+ a2 + bc)�1).
If (x) = (1) we �nd u((a); (b); (c)) (1) = (a2 + bc)(b + c)�1 = (a2(b + c) +

bc2 + b2c).
Let char(k) 6= 2.

Then the condition on l implies u((a); (b); (c))(x) 2 Y if (x) 2 Y .
Let char(k) = 2.

Conditions (i) and (iii) on l yield that (a2 + bc)(b + c)�1 = a2(b + c)�1

+(b�1 + c�1)�1 2 Y .
By the same conditions the element ((a2+bc)x+a2b+a2c)(bx+cx+a2+bc)�1

belongs to l if and only if ((a2 + bc)x+ a2b+ a2c)(bx+ cx+ a2 + bc) belongs
to l. Now ((a2 + bc)x + a2b + a2c)(bx + cx + a2 + bc) = (a2b + b2c + a2c +

bc2)x2 + (a2b2 + a2c2 + a4 + b2c2)x + (a4b + a4c + a2b2c + a2bc2). By Prop-

erty (iii) one �nds ((a2 +bc)x + a2b +a2c) (bx +cx +a2 +bc) = b(a4 +a2c2

+a2x2 +c2x2) +c(a4 +a2b2 +a2x2 +b2x2) +x(a4 +a2b2 +a2c2 +b2c2) 2 l.

This proves u((a); (b); (c))(x) 2 Y , 8(x) 2 Y and Y is a Moufang subset of

P(k). 2

Motivated by this proposition we give the following de�nition.

De�nition 85 Let k be a �eld of characteristic 2, k0 a sub�eld of k contain-

ing k2 and l a subset of k satisfying :
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(i) l is an additive subgroup of k,
(ii) l�1 = l,
(iii) 1 2 l,
(iv) l generates k as a ring,

(v) l is a vectorspace over k0.
By an indi�erent Moufang set P(k0; l; k) we mean a Moufang subset Y of a

projective Moufang set P(�k) such that after the right choice of coordinate

system Y = f(x)jx 2 lg[f(1)g. If for an indi�erent Moufang set P(k0; l; k),
k0 = k2 we will denote it shortly as P(l; k).

Remark that if P(k0; l; k) is an indi�erent Moufang set then identity map from

points of P(k0; l; k) to points of P(k2; l; k) de�nes a Moufang set isomorphism.

Hence P(k0; l; k) �= P(k2; l; k).

3.3 Induced Moufang sets in generalized poly-

gons.

In this section we explain the well known procedure to construct Moufang

sets given a Moufang polygon. It is not hard to see how this procedure can

be generalized to the tree case.

Let � = (P ;L; I) be a generalized Moufang n-gon such that n < 1. Con-

sider x 2 �. If z 2 �(x), choose a root �z with z 2 Int(�) and x 2 @�.
The group U�z induces on �(x) n fzg a regular permutation group. It can

be shown that the action of U�z is independent of the initial choice of �z.

Therefore we can identify U�z with a permutation group Uz � Sym(�(x)).
Repeating this procedure for every y 2 �(x) we get a pair (�(x); (Uz)z2�(x)).
As for every z 2 �(x), Uz acts regularly on �(x) n fzg, condition MoS1 is

satis�ed for (�x; (Uz)z2�(x)).
By assumption on �, u�yU�zu

�1
�y

= Uu�y (�z). As u�y(�z) is a root such that x is

contained in @u�y(z) and u�y(z) 2 �(x)\Int(u�y(�z)), u�yU�zu
�1
�y
2 fUzjz 2

�(x)g. This means condition MoS2 is also satis�ed and (�(x),(Uz)z2�(x)) is
a Moufang set. We call it an induced Moufang set on �(x) in �, and denote

it by M�(x)(�). Using the transitive action of the little projective group on

points and lines (for a proof of this fact we refer to Theorem 64 of Chapter

2 taking into account that the group N acts transitively on the chambers of

the standard apartment �0) it is not hard to show that M�(x)(�) depends

up to isomorphism only on the type of x. In other words if x and x0 are two
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points in �, M�(x)(�) and M�(x0)(�) will be isomorphic. Hence we can talk

about the isomorphism class of induced Moufang sets on a line pencil or a

point row of �. The isomorphism class of induced Moufang sets on a line

pencil is denoted by Ml(�). Similarly Mp(�) stands for the isomorphism

class of induced Moufang sets on a point row in �.

3.4 Desarguesian projective planes and

Moufang sets

In this section we give a description of the induced Moufang sets on the point

rows and line pencils of a Desarguesian projective plane. The terminology

and notation will be used in Chapter 4 dealing with existence and non-

existence of certain Moufang buildings.

Throughout this section � denotes a Desarguesian projective plane. Using

classical theory (cfr [13]) we know that there exists a division ring k and a

3-dimensional right k-vector space E such that � �= PG(E). For the sequel

we will identify in most cases � and PG(E). We state the following Lemma

which will be used in Chapter 4.

Lemma 86 If � be a Desarguesian projective plane de�ned over a division

ring k then Mp(�) �= P(k) and Ml(�) �= P(kopp).

proof :

By assumption we have � = PG(E), where E is a 3-dimensional right k-

vector space. Choose a base B = fe1, e2, e2g of E. Let E
� be the dual vector

space of E and denote the dual base of B as B� = fe�1, e
�

2, e
�

3g with e�i (ej)
= Æij . As usual we will consider E

� as a right kopp-vector space.
Every point of � corresponds then to a vector line of the form he1x1 +e2x2
+e3x3i and every line of � corresponds to a vector line in E� of the form

he�1y1 +e
�

2y2 +e
�

3y3 i.
Denote by �0 be the standard apartment fhe1i, he2i, he3ig.
As a generic point row to calculate Mp(�) we choose he1; e2i. Write the

point set of � (he1; e2i) as fhe1v+ e2ijv 2 kg, [fhe1ig. A typical root elation

of the induced Moufang setM�(he1;e2i) with �xed point he1i, which sends he2i
to he1t + e2i has as matrix representation with respect to the base ordered
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B : 0
@ 1 t 0

0 1 0

0 0 0

1
A ;

whereas a root elation �xing he2i and sending he1i to he1t+e2i has as matrix
representation with respect to the base ordered base B :0

@ 1 0 0

t�1 1 0

0 0 1

1
A :

Consider the projective Moufang set P(k) coordinatized in a canonical way.

De�ne the map � from P(k) to M�(he1;e2i) by :

�(v) = he1v + e2i

�(1) = he1i:

We check that � de�nes a Moufang set isomorphism. Using Lemma 41 of

Chapter 1 this will be done if we check that the maps �(1) from U(1) and

Uhe1i and �(0) from U(0) to Uhe2i with :

�(1)(u((1); (0); (t))) = � Æ u((1); (0); (t)) Æ ��1

�(0)(u((0); (1); (t)) = � Æ u((0); (1); (t)) Æ ��1

de�ne bijections.

Let (v) 2 P(k).
We have :

�u((1); (0); (t)��1�((v)) = �((v + t))

= he1(v + t) + e2i

= u(he1i; he2i; he1t+ e2i)(he1v + e2i):

This shows �(1)(u((1); (0); (t)) = u(he1i; he2i, he1t + e2i). In a similar way

one checks that �(0) de�nes a bijection from U(0) to Uhe2i. Therefore � de�nes

a Moufang set isomorphism from P(k) to M�(he1;e2i).

The Moufang setMl(�) can be calculated in a similar way asMp(�) using

the dual projective plane PG(E�). For sake of completeness and for applica-

tion in Chapter 4 we give the explicit calculations. As generic line pencil to

calculate Ml(�) we choose �(he2i). Using the dual base B� the elements of
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�(he2i) can be written as fhe�1v
� + e�3i jv

� 2 koppg [ fhe�1ig. Let t
� 2 kopp. A

typical root elation ofM�(he2i) (�) �xing he
�

1i and sending he�3i to he
�

1t
� +e�3i

has as matrix representation with respect to the ordered base f e�1, e
�

2, e
�

3g :0
@ 1 0 t�

0 1 0

0 0 1

1
A :

Similarly the root elation �xing he�3i sending he
�

1i to he
�

1t
�+ e�3i has as matrix

representation with respect to the base f e�1, e
�

2, e
�

3g :0
@ 1 0 0

0 1 0

t��1 0 1

1
A :

Let P(kopp) be the projective Moufang set de�ned over kopp coordinatized in

a canonical way. De�ne the map �� from P(kopp) to M�(he2i) by :

��(v�) = he�1v
� + e�3i

�(1) = he�1i:

Using similar arguments as forM�(he1;e2i) one easily checks that �� de�nes a
Moufang set isomorphism. This completes the proof. 2

3.5 Classical generalized quadrangles

In this section we introduce two classes of generalized quadrangles which

will be called classical. In order to make calculations on the quadrangles we

will use a coordinatization similar to the one introduced in [37]. For more

information on the quadrangles and coordinate systems we refer the reader

to chapter 2 and 3 of loc. cit.

3.5.1 Symplectic quadrangles

Let k be a �eld, E a k-vector space and f a non-degenerate symplectic

bilinear form on E i.e. f is a function from E � E to k satisfying :

f(x� + y�; z) = �f(x; z) + �f(y; z)



3.5. CLASSICAL GENERALIZED QUADRANGLES 81

f(x; x) = 0

Rad(f) = 0

where x; y; z 2 E, �; �; � 2 k arbitrary and Rad(f) = fv 2 E j f(v; u) =
0;8u 2 Eg. Remark that the equality f(x + y; x + y) = 0 implies f(x; y) =

�f(y; x), allowing us to de�ne orthogonality (denoted by ?) according to

the formula :

x ? y , f(x; y) = 0:

Orthogonality is clearly a symmetric binary relation on E � E.
For a subspace X of E one de�nes :

X? = fy 2 E j f(x; y) = 0; 8x 2 Xg:

A subspace X is called isotropic if X \ X? 6= f0g and totally isotropic if

X � X?. Amongst the totally isotropic subspaces there are maximal ones

all having the same dimension. This number is called the Witt index of f

and denoted by �(f). If the form f is non-degenerate and dim(E) < 1
then necessarily dim(E) = 2m with �(f) = m. Under these conditions one

can choose a base feig1�i�2m satisfying f(ei; ei+m) = 1 and f(ei; ej) = 0 if

j 6= i+m. Such a base is also called a symplectic base. (For exact proofs of
these facts we refer to the classical theory for example [6], [7] or Chapter 8

in [29].)

To construct a generalized quadrangle we start with a 4 dimensional right

k-vector space E and a non-degenerate symplectic form f of Witt index 2.

With respect to a symplectic base feig1�i�4, f is represented by the form :

x1y3 � x3y1 + x2y4 � x4y2:

Call points P all totally isotropic 1 spaces i.e. all projective points of PG(E).
Lines L are all totally isotropic 2-spaces in E i.e. projective lines of PG(E)
on which f vanishes. An easy calculation shows that hxi is collinear with
hyi if and only if f(x; y) = 0. We leave it to the reader to check that the

rank 2 geometry (P ;L; I) with I the natural incidence de�nes a generalized
quadrangle. This quadrangle is denoted by W (k) and is called a symplectic

quadrangle.
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3.5.2 Coordinatization of W (k)

Choose feig1�i�4 such that the ordered set fe1; e3; e2; e4g is a symplectic base
i.e. :

f(e1; e2) = 1 f(e1; ej) = 0; j 6= 2

f(e3; e4) = 1 f(e3; ej) = 0; j 6= 4:

A straightforward check shows that the following table written down with

respect to this base exhausts all points and lines of W (k). Hence it provides

a coordinate system for the generalized quadrangle. Round brackets denote

points and square brackets indicate lines.

Points

Coordinates in W (k) elements in PG3(k)

(1) (1; 0; 0; 0)
(x) (x; 0; 1; 0)

(v; y) (�y; 0; v; 1)
(x;w; x0) (w � xx0; 1;�x0;�x)

Lines

Coordinates in W (k) elements in PG3(k)

[1] h(1; 0; 0; 0); (0; 0; 1; 0)i
[v] h(1; 0; 0; 0); (0; 0; v; 1)i
[x;w] h(x; 0; 1; 0); (w; 1; 0;�x)i
[v; y; v0] h(�v; 0; y; 1); (v0 ; 1;�y; 0)i

3.5.3 Generalized quadrangles de�ned by (�; �)-quadratic

forms

In this section we will use notations and de�nitions concerning division rings

with involutions as introduced in Chapter 1. For more information we refer

consequently to this chapter. The following de�nitions and notations are

mainly based on Chapter 8 in [29], section 2.3. in [37] and Chapter 10 in [4].

To construct quadrangles we �rst discuss some de�nitions and basic prop-

erties. Throughout this paragraph we will use the de�nitions and notations

introduced in section 1.3 of Chapter1.

De�nition 87 Let k be a division ring with involution � and E a right k-

vectorspace. A function f going from E � E to k is a �-sequilinear form
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(or shortly sesquilinear form if � is clear from the context) if it is biadditive

and :

f(x�; y�) = ��f(x; y)�; 8x; y 2 E;8�; � 2 k:

De�nition 88 A �-sesquilinear form f is called re
exive if there exists a

constant � 2 k such that :

f(x; y) = f(y; x)��; 8x; y 2 E

A form satisfying this equation is also called (�; �)-hermitian form. In par-

ticular a (�; 1)-hermitian form is indicated as hermitian and a (�;�1)-form
as anti-hermitian.

De�nition 89 A re
exive (�; �)-hermitian form f is called trace valued if

there exists a �-sesquilinear form g such that :

f(x; y) = g(x; y) + (g(y; x))��; 8x; y 2 E:

De�nition 90 A function q from E to k(�;�) is called (�; �)-quadratic if the

following conditions hold :

(i) q(x�) = �q(x)�� , 8� 2 k; x 2 E.
(ii) There exists a trace valued (�; �)-hermitian form f on E �E such that :

q(x+ y) = q(x) + q(y) + f(x; y); 8x; y 2 E:

or equivalently to (i) and (ii)
(i)0 There exists a �-sesquilinear form g with :

q(x) = g(x; x) + k(�;�); 8x 2 E:

For the proof of the equivalence of (i); (ii) and (i)0 we refer to 8.2.1. on

pp121-122 in [29]. To simplify notation in most of the cases the coset k(�;�)
will be omitted. This means that we write for example q(x) = g(x; x) instead

of q(x) = g(x; x) + k(�;�). In the sequel we will call in a lot of cases a (�; �)-
quadratic form a pseudo-quadratic form if � and � are of no importance and
a (�; 1)-quadratic form simply a �-quadratic form.

Given any (�; �)-sesquilinear f on a space E we can introduce orthogonality

on E � E, (denoted with the symbol ?) de�ned by :

x ? y , f(x; y) = 0:
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The conditions on f ensure that ? is well de�ned i.e. ? is a symmetric

binary relation on E.
Given any subspace X � E we set :

X? = fx 2 E j f(x; y) = 0; 8y 2 Xg:

In particular E? is denoted byRad(f), and the form f is called non-degenerate

if Rad(f) = 0. A subspace X � E is called isotropic of X \X? 6= f0g, non-
isotropic if X \ X? = f0g and totally isotropic if X � X?. Using Zorns

Lemma it can be shown that amongst the totally isotropic subspaces there

are maximal ones sharing the same dimension called the Witt index of f ,
denoted by �(f).
Due to the properties of q, one easily checks q�1(0) is a union of 1-dimensional

subspaces of E. A subspace X of E is called totally singular if X � q�1(0).
Similarly as above one can show that amongst the totally singular subspaces

there are maximal one's all having the same dimension called the Witt index

of q, denoted by �(q). If q�1(0) = 0, q is called anisotropic. A straightfor-

ward calculation (see 8.2.3. on p123 in [29]) shows that any (�; �)-quadratic
form q, determines uniquely the (�; �)-hermitian form f as above. The set

q�1(0)\Rad(f) is thus a well de�ned subspace of E. If q�1(0)\Rad(f) = f0g,
q will be called non-degenerate.
In order to construct a generalized quadrangle we start with a division ring

k endowed with an involution �, E a right k-vector space and q a (�; �)-
quadratic form of Witt index 2. De�ne the following incidence structure

(P ;L; I), where P is the point set, L the line set and I the incidence re-

lation. Points are all totally singular vector lines in E, while lines are the

totally singular planes in E. When working in the projective space PG(E)
associated to E this means that points and lines correspond to projective

points and projective lines on which q vanishes. Incidence is the one induced
by PG(E). A straightforward check shows that if s = hxi and t = hyi in P , s
and t are collinear if and only if f(x; y) = 0. We leave it as an exercise to the

reader to check that (P ;L; I) is a generalized quadrangle. In the following we
will denote it by Q(E; q; k; �). To end this section we mention the following

useful observations as explained in 8.2.1 and 8.2.2 in [29].

Suppose q is a (�; �)-quadratic form on a vector space E, and let c 2 k�.

Then the form cq de�ned by cq(v) = c:q(v) de�nes a (�0; �0) quadratic form
where t�

0

= ct�c�1 and �0 = c(c�)�1�. Under these conditions the forms q
and cq are said to be proportional to one another.

Important for further calculations is the following lemma (Lemma in section
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8.2.2 in [29]).

Let Q(E; q; k; �) be generalized quadrangle de�ned by the (�; �)-quadratic
form q and c 2 k. Then clearly cq de�nes a non-degenerate (�0; �0)-quadratic

form on E of Witt index 2 with t�
0

= ct� c�1 and �0 = c(c�)�1�. Hence we

can consider the quadrangle Q(E; cq; k; �0). We have the following lemma

concerning Q(E; cq; k; �0)

Lemma 91 Let Q(E; q; k; �) be a generalized quadrangle de�ned by a (�; �)-

quadratic form q. Then for c 2 k the quadrangle Q(E; q; k; �) is isomorphic
to Q(E; cq; k; �0) with t�

0

= ct�c�1, 8 t 2 k.

proof :

Let Q(E; q; k; �) and Q(E; cq; k; �0) be as in the Lemma. De�ne the bijection
� from Q(E; q; k; �) to Q(E; cq; k; �0) as :

�(hci) = hci:

One easily checks then that � de�nes an isomorphism from Q(E; q; k; �) to
Q(E; cq; k; �0). 2

Lemma 92 Every pseudo-quadratic form is proportional to a �0-quadratic

form, for suitable �0. Every pseudo-quadratic form which is not quadratic is
proportional to a (�;�1)-quadratic form, where � can be chosen in such a
way that 1 2 k�;�1 = Tr(�).

proof :

See 8.2.2. on p123 in [29]. 2

3.5.4 Coordinatization of Q(E; q; k; �)

In this section we will introduce a coordinate system for quadrangles of

the form Q(E; q; k; �) based on the coordinatization described in Chapter

3 in [37]. The following proposition, which is analogous to the Proposition

2.3.4 in [37], is of crucial importance.
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Proposition 93 Let q be a non-degenerate (�; �)-quadratic form of Witt in-
dex 2 on E a right k-vector space. Then there exist four vectors ei, i 2
f�2;�1; 1; 2g, a direct sum decomposition :

E = e�2k � e�1k � E0 � e1k � e2k

with f(e�2; e2) = �, f(e�1; e1) = 1, f(ei; ej) = 0, if i + j 6= 0 and a non-
degenerate anisotropic form q0 on E0 such that for v = e�2x�2 + e�1x�1 +

e0 + e1x1 + e2x2 with xi 2 k and e0 2 E0 :

q(v) = x�
�2�x2 + x�

�1x1 + q0(e0):

proof :

The proof is similar to the proof of Proposition 2.3.4. in [37]. 2

As to the coordinates we explain how to handle points. For the lines analo-

gous calculations hold.

Choose a base fe�2; e�1; e1; e2g as in Proposition 93.

Consider a arbitrary point hxi of Q(E; q; k; �). Then x = e�2x�2+ e�1x�1+
v0 + e1x1 + e2x2, v0 2 E0 and xi 2 k.
Two cases occur :

First case : x2 6= 0.

After a possible multiplication we can assume x2 = 1. Expressing q(x) = 0

gives

x�
�2� + q0(v0) + x�

�1x1 = 0:

Thus x�2 = v1 � x�
�1x1, with v1 2 k such that q(v0) + v1 = 0. This point is

coordinatized as (�x�
�1; (v0; v1); x

�
1 ).

Second case : x2 = 0.

If x�1 6= 0, we can assume without loss of generality x�1 = 1. Expressing

that hxi belongs to Q(E; q; k; �) gives x1 + q0(v0) = 0. This point hxi is
coordinatized as ((v0; x1);�x�2).
If x�1 = 0, the conditions on q0 imply that v0 has to be 0.
If in this case x1 = 0 then hxi is the point he�2i. This point is labelled by

(1).

On the other hand if x1 6= 0 after an eventual multiplication x1 = 1. In
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coordinates hxi is denoted by (x�2). To recapitulate we have the following

table :

Points

Coordinates in Q(E; q; k; �) Points in PG(E)

(1) (1; 0; 0; 0; 0)
(x) (x; 0; 0; 1; 0)

((v0; v1); y) (�y; 1; v0; v1; 0)
(x; (w0; w1); x

0) (w1 + xx0� ;�x�; w0; x
0�; 1)

A similar reasoning for lines leads to the following table :

Lines

Coordinates in Q(E; q; k; �) Lines in PG(E)

[1] h(1; 0; 0; 0; 0); (0; 0; 0; 1; 0)i
[(v0; v1)] h(1; 0; 0; 0; 0); (0; 1; v0 ; v1; 0)i

[x; (w0; w1)] h(x; 0; 0; 1; 0); (w1 ;�x
�; w0; 0; 1)i

[(v0; v1); y; (v
0

0; v
0

1)] h(�y; 1; v0; v1; 0); (v
0

1; 0; v
0

0; y
�� � f(v0; v

0

0); 1)i

There are two labelling sets used for the coordinatization. One is the �eld k
and the other one is the R0;1 = f(v0; v1) 2 E0 � k j q0(v0) + v1 = 0g. Denote
R1 = ft 2 kj 9v0 2 V0 j (v0; t) 2 R0;1g and R0 = E0. As R0;1 � R0 � R1 we

de�ne projections (denoted by subscripts 0 and 1) by :

(v0; v1)0 = v0 2 R0;

(v0; v1)1 = v1 2 R1:

Given a labelling set of the form R0;1 we de�ne the following operation �
by :

(v0; v1)� (w0; w1) = (v0 + w0; v1 + w1 � f(v0; w0))

for (v0; v1), (w0; w1) 2 R0;1. One easily checks that (v0; v1) � (w0; w1) 2 R0;1.

As :

(v0; v1)� (0; 0) = (v0; v1)

(v0; v1)� (�v0;�v1 � f(v0; v0)) = (0; 0)

(u0; u1)� ((v0; v1)� (w0; w1)) = ((u0; u1)� (v0; v1))� (w0; w1)

8 (u0; u1), (v0; v1), (w0; w1) 2 R0;1 we see that � de�nes a group structure

on R0;1 which we will denote by (R0;1;�).
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De�nition 94 A Moufang set (X; (Ux)x2X) which is isomorphic to an in-

duced Moufang set Mp(Q) or Ml(Q), where Q is a classical generalized

quadrangle will be called a classical Moufang set.

3.6 Quadrangles of indi�erent type

Let k be a �eld of characteristic 2 with sub�eld k0 containing k2, l � k a

vector space over k0 and l0 a vector space over k2 i.e. :

k2 � l0 � k0 � l � k:

Suppose l and l0 meet the following conditions :

(1) l�1 = l, l0�1 = l0, 1 2 l \ l0

(2) l generates k as a ring, l0 generates k0 as a ring
Consider the geometry obtained by choosing all point rows and line pencils

of W (k) coordinatized over l, l0 respectively i.e. we restrict in the coordina-

tization table of W (k) as given in section 3.5.2, x; x0; y to l and v; v0; w to l0.

Incidence is the one induced by W (k). Denote this incidence structure by

Q(k; k0; l; l0). A straightforward check shows it is a generalized quadrangle,

called a quadrangle of indi�erent type.

3.7 Coordinatization of Q(k; k0; l; l0)

This is the coordinatization inherited from W (k).

3.8 Moufang structures

As for the coordinatization we follow for to the description of the Moufang

structure of the quadrangles under consideration the approach described in

chapters 4 and 5 in [37].

3.8.1 Moufang structure of W (k)

Consider W (k) with its coordinatization as described in section 3.5.2. Let

�0 be the standard apartment f(1); [1], (0), [0; (0; 0)], (0; (0; 0); 0), [(0; 0)
, 0 , (0; 0)], ((0; 0),0),[(0; 0)]g. As already mentioned there are two isomor-

phism classes of Moufang sets associated to W (k), namely Mp(W (k)) and
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Ml(W (k)).
We start with the description of a representative of Mp(W (k)).
Consider as point row �([0]) = f(0; x)jx 2 kg [ f(1)g. To describe the root
group U(1) we choose the root �(1) = f[0; 0], (0), [1], (1), [0]g. As ex-

plained in section 3.3 the root elations with respect to �(1) induce the root

group U(1). The action of a typical element u((1); (0; 0); (0; t)) 2 U(1) is

given by:

Elements of W (k) Image under u((1); (0; 0); (0; t))

(1) (1)

(x) (x)

(v; y) (v; y + t)
(x;w; x0) (x;w + 2tx; x0 + t)

[1] [1]

[v] [v]
[x;w] [x;w + xt]

[v; y; v0] [v; y + t; v0]

The formula u((1); (0; 0); (0; t1)) u((1); (0; 0); (0; t2)) = u((1); (0; 0); (0; t1+

t2)) implies that all root groups are isomorphic to the additive group on

k. Other root groups are calculated by conjugating the group U(1) with

appropriate elements of the little projective group. This representation of

(X = f(x)jx 2 kg [ f(1)g; (Uz)z2X) shows that it is isomorphic to P(k).
Namely consider P(k) de�ned in a 2-dimensional k-vector space V . Choose a
coordinate system of P(k). Then a concrete Moufang set isomorphism from

P(k) to M�((0;0))(W (k)) is given by � with :

�(1) = (1)

�(x) = (0; x); 8x 2 k

Leaves us with the description of the induced Moufang set on a line pencil.

Consider as pencil �((0)) = f[0; t]jt 2 kg [ f[1]g. In order to calculate

U[1] we consider the root �[1] = f(0); [1]; (1); [0]; (0; 0)g in �0. A typical

element of U[1], lets say u([1]; [0; 0]; [0; t]), acts in the following way :
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Elements of W (k) Image under u([1]; [0; 0]; [0; t])

(1) (1)

(x) (x)
(v; y) (v; y)

(x;w; x0) (x;w + t; x0)
[1] [1]

[v] [v]

[x;w] [x;w + t]
[v; y; v0] [v; y; v0 + t]

As before u([1]; [0; 0]; [0; t]) u([1]; [0; 0]; [0; s]) = u([1]; [0; 0]; [0; s+t]), 8s; t 2
k, yielding that U[1] is isomorphic to the additive group on k. Other root

groups are computed using the little projective group of W (k). We thus ob-

tain a Moufang set (X = f[0; t]jt 2 kg [ f(1)g; (Uz)z2X). As in the case of

M�([0])(W (k)) one easily shows that M�((0))(W (k)) �= P(k).

3.8.2 Moufang structure of Q(E; q; k; �).

Similar as for the symplectic quadrangle W (k) we calculate two classes

of induced Moufang sets, namely Mp(Q(E; q; k; �)) and Ml(Q(E; q; k; �)).
Choose a �xed coordinate system for Q(E; q; k; �)) associated to the decom-

position E = e�2k � e�1k � E0 � e1k � e2k and suppose B0 is an ordered

base of E0. Consider the standard apartment �0 = f(1), [1], (0), [0; (0; 0)],
(0; (0; 0); 0), [(0; 0); 0; (0; 0)] ,([0; 0]; 0) , [(0; 0)]g. As generic point row we

choose �([(0; 0)]) = f((0; 0); x) jx 2 kg [f(1)g. In order to calculate the

root group U(1), we use the root �(1) = f[0; (0; 0)], (0), [1], (1), [(0; 0)]g.
The action of a typical element u((1); ((0; 0); 0); ((0; 0); t)) 2 U�(1)

is given

by :

Elements of Q(E; q; k; �) Image under u((1); ((0; 0); 0); ((0; 0); t))

(1) (1)

(x) (x)
((v0; v1); y) ((v0; v1); y + t)

(x; (w0; w1); x
0) (x; (w0; w1)� (0; tx� � xt�); x0)

[1] [1]

[(v0; v1)] [(v0; v1)]
[x; (w0; w1)] [x; (w0; w1)� (0; tx� � xt�)]

[(v0; v1); y; (v
0

0; v
0

1) [(v0; v1); y + t; (v00; v
0

1)]
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This means that u((1); ((0; 0); 0); ((0; 0); t)) has matrix representation with

respect to the ordered base B = fe�1, B0, e1g :0
BBBB@

1 �t 0 0 0

0 1 0 0 0

0 0 IjB0j
0 0

0 0 0 1 t�

0 0 0 0 1

1
CCCCA :

The group U�(1)
induces by construction the root group U(1) of

M�([(0;0)])(Q(E; q; k; �) acting on �([(0; 0)]). Other root groups can be found

by the conjugating U�(1)
with appropriate elements of the little projective

group and restricting the action to �([(0; 0)]).
This de�nes the Moufang set M�([(0;0)])(Q(E; q; k; �)) = (f((0; 0); x)jx 2 kg
[f(1)g, (Uz)z2X). As for the symplectic quadrangle one easily shows that

M�([(0;0)])
�= P(k).

Remains to describe Ml(Q(E; q; �;K).

As line pencil we choose �((0)) = f[0; (x0; x1)] j(x0; x1) 2 R0;1g [ [1]. To

calculate the root group U[1] we use the root �[1] = f(0), [1], (1), [(0; 0)],
((0; 0); 0)g. The action of a typical element of U�[1]

say u([1]; [0; (0; 0)],

[0; (t0; t1)]) is given by :

Elements of Q(E; q; k; �) Image under u([1]; [0; (0; 0)]; [0; (t0 ; t1)])

(1) (1)

(x) (x)

((v0; v1); y) ((v0; v1; y � f(t0; v0)))
(x; (w0; w1); x

0) (x; (t0; t1)� (w0; w1); x
0)

[1] [1]

[(v0; v1)] [(v0; v1)]
[x; (w0; w1)] [x; (t0; t1)� (w0; w1)]

[(v0; v1); y; (v
0

0; v
0

1)] [(v0; v1); y � f(t0; v0); (t0; t1 � (v00; v
0

1)]

Thus u([1]; [0; (0; 0)]; [0; (t0 ; t1)]) has matrix representation with respect to

the ordered base B : 0
BBBB@

1 0 f(t0; B0) 0 t1
0 1 0 0 0

0 0 IjBj0j 0 t0
0 0 0 1 0

0 0 0 0 1

1
CCCCA
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By construction U�[1]
induces the root group U[1] acting on �((0)). As

usual one calculates other root groups after conjugating U�[1]
with appropri-

ate elements of the little projective group.

An easy calculation shows that :

u([1]; [0; (0; 0)]; [0; (x0 ; x1)])u([1]; [0; (0; 0)]; [0; (y0 ; y1)])
= u([1]; [0; (0; 0)]; [0; (x0 ; x1)� (y0; y1)]):

One easily deduces from this equation that U[1] and hence all root groups of

M�((0))(Q(E; q; k; �)) are isomorphic to (R0;1;�).

3.8.3 Moufang structure of Q(k; k0; l; l0)

Root groups are induced by the root groups ofW (k). As an example we look
at the action of u([1]; [0; 0]; [0; t]) on �((0)), with t 2 l0.

Elements of Q(k; k0; l; l0) Image under u([1]; [0; 0]; [0; t])

(1) (1)

(x) (x)
(v; y) (v; y)

(x;w; x0) (x;w + t; x0)

[1] [1]

[v] [v]
[x;w] [x;w + t]

[v; y; v0] [v; y; v0 + t]

Remark that similar calculations as for W (k) yield that Mp(Q(k; k
0; l; l0) �=

P(l; k) andMl(Q(k; k
0; l; l0) �= P(l0; k0). In the next two sections we will give

alternative descriptions for the induced Moufang sets so far considered. This

will simplify and clarify in a lot of cases notations and calculations. In the

sequel we will work in almost all cases with these alternative descriptions.

3.9 Di�erent types of Moufang quadrangles

In this section we make divide the quadrangles we so far considered in dif-

ferent classes. In the list which we present there will of course be some

overlaps.

Symplectic quandrangles These are quadrangles of the form W (k).
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Orthogonal quadrangles By this we mean quadrangles of the form

Q(E; q; k; �) for which � = 1. In the sequel we will denote them also

by QO(E; q; k).

Hermitian quadrangles By this we mean quadrangles of the form

Q(E; q; k; �) for which Z(k) = k and � 6= 1. In the sequel we will

denote them also by QH(E; q; k; �).

Unitary quadrangles These are quadrangles of the form Q(E; q; k; �)

for which Z(k) 6= k. In the sequel we will also denote them by

QU(E; q; k; �).

Indi�erent quadrangles Quadrangles of the form Q(k; k0; l; l0) as de-
scribed in section 131.

3.10 An alternative description of

induced Moufang sets of W (k) and

Mp(Q(E; q; k; �))

In sections 3.8.1 and 3.8.2 we saw thatMp(W (k)) �=Ml(W (k)) �= P(k) and
also M(Q(E; q; k; �)) �= P(k). Hence the alternative description of these

Moufang sets is provided by the description of P(k) given in section 3.2.

3.11 An alternative description of

induced Moufang sets of Q(k; k0; l; l0)

In section 3.8.3 we already mentioned that Mp(Q(k; k
0; l; l0)) �= P(l; k) and

Ml(Q(k; k
0; l; l0)) �= P(l0; k0). Hence the alternative description we will use

for these Moufang sets is the one induced by the descriptions of P(l; k) and
P(l0; k0) as used in section 3.2.
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3.12 An alternative description of

Ml(Q(E; q; k; �))

We start by giving a general construction of a family of Moufang sets f(X ,

(Ux)x2Xg. Subsequently we show that everyMl(Q(E; q; k; �)) corresponds to
such a Moufang set and conversely that every element of this family belongs

to the class Ml(Q(E; q; k; �)) for some generalized quadrangle Q(E; q; k; �).

3.12.1 General setup and coordinatization.

Let k be a division ring with involution � and V a right k-vector space.

Suppose q is a non-degenerate (�; �)-quadratic form of Witt index 1. Denote

the set of all totally singular vector lines in V by X . Inspired by the coordi-

natization of generalized quadrangles we introduce the following coordinate

system.

Using techniques similar as those for proving Proposition 93 it is not hard to

check that V can be decomposed as :

V = e�1k � V0 � e1k;

such that q(ei) = 0, i = 1;�1, e?
�1 \ e?1 = V0, f(e1; e�1) = 1 and qjV0

is anisotropic. Fix such a decomposition and denote R0;1 = f(v0; v1) 2
V0 � kjq(v0) + v1 = 0g, R0 = V0, R1 = ft 2 kj 9v0 2 R0j (v0; t) 2 R0;1g.
One checks that X = fhe�1ig [ fhe�1v1 + v0 + e1i j(v0; v1) 2 R0;1 g. In the

sequel we label he�1v1+ v0+ e1i as (v0; v1) and he�1i as (1). In this way we

obtain a coordinatization. Remark that this coordinatization depends as in

the quadrangle case on the initial decomposition of V . Therefore a label of

the form (v0; v1) will only have meaning if this decomposition is known.

3.12.2 Description of root groups and switching of co-

ordinates.

Consider the set X as in the foregoing section. We de�ne a root group struc-

ture on X . We start by giving a general procedure to calculate root group

elements and give concrete descriptions of U(1) and U(0;0).

Let x; y and z 2 X . In order to calculate u(x; y; z) we consider a decompo-

sition V = �e�1k � �V0 � �e1k such that h�e�1i = x and h�e1i = y. Suppose that

with respect to the coordinate system associated with this decomposition
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z = (t0; t1). Choose an ordered base �B0 of �V0. Then we de�ne u(x; y; z) as
the linear transformation on V with matrix representation :

(with respect to the ordered base �B = f�e�1; �B0; �e1g)0
@ 1 f(t0; �B0) t1

0 I
j �B0j

t0
0 0 1

1
A : (3.1)

Choose a �xed decomposition of V = e�1k � V0 � e1k. Denote the coordi-

nate system associated to this decomposition by superscript 1 i.e. (v0; v1)
1 =

he�1v1 + v0 + e1i and (1)1 = he�1i. Let B0 be an ordered base of V0.
Using the recipe described above we calculate the actions of U(1) and U(0;0).

By formula (3.1) a typical element u((1); (0; 0), (t0; t1)) has matrix repre-

sentation with respect to the ordered base fe�1; B0; e1g:0
@ 1 f(t0; B0) t1

0 IjB0j
t0

0 0 1

1
A :

In order to calculate a matrix representation of an typical element u((0; 0);(1),

(v0; v1)), (v0 6= 0), of U(0;0) we decompose V as V = (e1�
�1)k � V0 � e�1k.

Coordinates associated with this decomposition will be denoted with a su-

perscript 2 i.e. (v0; v1)
2 = h(e1�

�1)v1 + v0 + e�1i and (1)2 = he1i. Remark
that the following equalities hold

(v0; v1)
1 = (v0v

�1
1 ; �v�11 )2; v0 6= 0

(1)1 = (0; 0)2

(0; 0)2 = (1)1:

In particular (t0; t1)
1 = (t0t

�1
1 ; �t�11 )2. Formula (3.1)implies that u((0; 0);(1),

(t0; t1)) has matrix representation :0
@ 1 f(t0t

�1
1 ; B0) �t�11

0 IjB0j
t0t

�1
1

0 0 1

1
A

with respect to the ordered base f�e1; B0; e�1g. Thus with respect to the

ordered base fe�1; B0; e1g has matrix representation :0
@ 1 0 0

t0t
�1
1 IjB0j

0

��t�11 �f(t0t
�1
1 ; B0) 1

1
A :
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If in the sequel we use two coordinate systems to describe X such that the

�rst is associated to the decomposition V = e�1k � V0 � e1k and the second

to V = (e1�
�1)k � V0 � e�1k we say that we use a switch of coordinates.

We check that (X; (Ux)x2X) is a Moufang set. Choose a coordinate system

associated to the decomposition V e�1k � V0 � e1k. Let B0 be an ordered

base of V0.

1. Condition MoS1 :

By the matrix description of U(1) it is clear that it acts regularly on X n
f(1)g. As all root groups have the same matrix representation with respect

to di�erent coordinate systems condition MoS1 is satis�ed.

2. Condition MoS2 :

Let u((1); (0; 0); (t0; t1)) 2 U(1) and v 2 Ur, r 2 X .

The element vu((1); (0; 0); (t0 ; t1))v
�1 is a linear transformation of V which

sends v((0; 0)) to v((t0; t1)) and has matrix representation of the form (1)

with respect to the ordered base fv(e�1); v(B0); v(e1)g. Hence v u((1);(0; 0),

(t0; t1)) v
�1 belongs to Uv(1) by the description of the root groups and con-

dition MoS2 is satis�ed.

Thus (X; (Ux)x2X) is a Moufang set. In the sequel we will denote it by

M(V; q; k; �).
Remark that by similar arguments to prove condition MoS2 we see that

any linear transformation g that satis�es q(x) = q(g(x)); 8x 2 V , de�nes a

permutation of the points ofM(V; q; k; �) such that g u((1); (0; 0); (x0; x1))
g�1 2 Ug(1). This implies that the transvection group of M(V; q; k; �) is
normalized by the group of linear transformations of V preserving the form

q.
To end this section we mention a special class of Moufang sets of the form

M(V; q; �; k).

De�nition 95 A polar line is a Moufang setM(V; q; �; k) such that dim(V ) =
2 and Z(k) 6= k. If q is a (�; �)-quadratic form we denote it by Pol(k; �; �).
If in particular � = �1 a polar line Pol(k; �; �) will be shortly denoted as

Pol(k; �).

De�nition 96 An extended polar line is a Moufang set M(V; q; k; �) with
abelian root groups such that Z(k) 6= k.

Concerning polar lines we have the following lemma.
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Lemma 97 A polar line of the form Pol(k; �) de�ned by a (�;�1)-quadratic
form, where k is a generalized quaternion algebra and � its standard involu-
tion, is isomorphic to the projective Moufang set P(Z(k)).

proof :

As the polar line is de�ned by a (�;�1)-quadratic form it follows that the

points set of Pol(k; �) equals f(0; �)j� 2 Tr(�)g [(1). The assumptions

on k and � imply that Tr(�) = Z(k). Consider the projective Moufang

set P(Z(k)) with certain coordinatization. Then one easily shows that the

bijection from Pol(k; �) to P(Z(k))given by :

�((0; �)) = (�)

�((1)) = (1)

de�nes a Moufang set isomorphism. 2

3.12.3 Proportional Moufang sets

Consider a Moufang set of the form M(V; q; k; �) and c 2 k, c 6= 0. As

mentioned in section 3.5.3, the form cq is a (�0; �0)-quadratic form where

t�
0

= ct�c�1 and �0 = c(c�
�1

)�. Moreover cq is non-degenerate on V and

has Witt index 2. By this we can consider the Moufang set M(V; cq; k; �0)

which is isomorphic to the original M(V; q; k; �). In order to construct an

isomorphism we consider a decomposition V = e�1k�V0�e1k with associated
coordinatization using the labelling set R0;1 = f(v0; v1) 2 V0 � kjq(v0) +
v1 = 0g. As the (�0; �0)-sesquilinear form associated to cq is given by cf , a
coordinatization of M(V; cq; k; �0) can be obtained using the decomposition

V = �e�1k � V0 � �e1k with �e�1 = e�1c
�1 and �e1 = e1. The labelling set is

given by �R0;1 = f(�v0; �v1) 2 V0 � kj cq(�v0) + �v1 = 0g. We will denote this

coordinate system with superscript c.
We �nd :

(�v0; �v1)
c = h�e�1�v1 + �v0 + �e1i; 8(�v0; �v1) 2 �R0;1

= he�1c
�1�v1 + �v0 + e1i

= (�v0; c
�1�v1)

(1)c = (1):
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Using these equations one easily check that the bijection � fromM(V; q; k; �)
to M(V; cq; k; �0) given by :

�(v0; v1) = (v0; cv1)
c; 8(v0; v1) 2 R0;1

�(1) = (1)c

de�nes a Moufang set isomorphism.

De�nition 98 Given a Moufang set of the formM(V; q; k; �) and c 2 k, we
call the Moufang set M(V; cq; k; �c) with t�

c

= ct�c�1; 8t 2 k proportional
to M(V; q; k; �) with factor c. The isomorphism � constructed above will be

denoted in the sequel as  c. Moreover suppose we consider a coordinatization

of M(V; q; k; �) associated to the decomposition V = e�1k � V0 + e1k. As

explained above we can consider the coordinate system ofM(V; cq; k; �) asso-
ciated to the decomposition V = �e�1k�V0� �e1k with �e�1 = e�1c

�1, �e1 = e1.

Under these conditions both coordinate systems will be called proportional .

Using Lemma 92 we see that given a Moufang set of the form M(V; q; k; �),
with � 6= 1 there always exists a constant c 2 k such that cq is a (�c;�1)-
quadratic form with t�

c

= ct�c�1. Therefore we will assume in most cases

that for every Moufang set of the form M(V; q; k; �) with � 6= 1, q is a

(�;�1)-quadratic form. This assumption will simplify in a lot of cases the

notation and calculations.

3.12.4 M(V; q; k; �) and induced Moufang sets.

We prove the following lemma.

Lemma 99 Every Moufang setM(V; q; k; �) is isomorphic to a Moufang set
M�(x)(Q(E; q; k; �)), where x is an arbitrary point in the generalized quad-
rangle of the form Q(E; q; k; �), and conversely every M�(x)(Q(E; q; k; �))

where Q(E; q; k; �) is a generalized quadrangle de�ned by a (�; �)-quadratic
form and x an arbitrary point in Q(E; q; k; �), is isomorphic to a Moufang
set M(V; q; k; �).

proof :

Consider a Moufang set M(V; q; k; �). Choose a decomposition V = e�2k �
V0� e2k with associated coordinate system using the label set R0;1. Let q be

a (�; �)-quadratic form and suppose the (�; �)-hermitian form associated to
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q is given by f . Let �E = e�1k � V � e1k, where e�1 and e1 are free vectors
independant of V . De�ne �f and �q by :

�f jV = f
�f(e�1; V0) = 0

�f(e1; V0) = 0

�f(ei; ej) = Æi;�j; i; j 2 f�2;�1; 1; 2g

�qjV = q

�q(e�1) = 0

�q(e1) = 0:

Extend �f and �q such that they de�ne a (�; �)-quadratic and (�; �)-hermitian
form on �E. Using a coordinatization induced by the decomposition �E =

e�2k� e�1k�V0� e1� e2 as described in section 3.5.4 one easily checks that

M�((0))(Q( �E, �q; k; �)) is isomorphic to M(V; q; k; �) under the bijection �
given by :

�([0; (x0; x1)]) = (x0; x1); 8(x0; x1) 2 R0;1

�((1)) = (1):

As to the converse we consider a generalized quadrangle of the form Q(E, q,
k, �). Choose a coordinatization with associated decomposition E = e�2k�
e�1k�E0�e1k�e2k and labelling set R0;1 = f(v0; v1) 2 E0�kj q(v0)+v1 =
0g. Set V = e�2k � E0 � e2k. Then q is a non-degenerate (�; �)-quadratic
form of Witt index 1 on V and we can consider M(V; q; k; �). Consider

the coordinatization of M(V; q; k; �) associated to the decomposition V =

e�2k � E0 � e2k, i.e. :

(v0; v1) = e�2v1 + v0 + e2; 8(v0; v1) 2 R0;1

(1) = (e�2):

Then one checks that the map � de�ned by :

�([0; (v0; v1)]) = (v0; v1); 8(v0; v1) 2 R0;1

�([1]) = (1)

de�nes a Moufang set isomorphism fromM�((0))(Q(E; q; k; �)) toM(V; q; k; �).
2
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3.13 The automorphisms sx and rx.

In the calculations that follow an important role is played by the special

automorphisms sx and rx of the Moufang sets under consideration. We start

by giving a short motivation and calculate in some special cases the exact

action of these automorphisms.

The automorphisms sx and rx are a special case of the following lemma.

Lemma 100 Given a Moufang set (X; (Ux)x2X). If ua 2 Ua, ua 6= 1 and
a 6= b, there exist unique elements ub; u

0

b 2 Ub such that ubuau
0

b interchanges
a and b.

proof :

Consider the equations

ubuau
0

b(a) = b

ubuau
0

b(b) = a:

Using the conditions of Moufang sets one easily checks that this has unique

solutions ub and u
0

b. 2

Using Lemma 100 we give de�nitions of sx and rx.
Let P(k) be projective Moufang set. Choose a �xed coordinatization. By

Lemma 100 every u((1); (0); (v)), v 6= 0, determines unique w;w0 2 U(0)

such that wu((1); (0); (v))w0 interchanges (0) and (1). In the sequel we

will denote this element by s(v).
One easily checks that w = w0 = u((0); (1); (�v)) and hence :

s(v) = u((0); (1); (�v))u((1); (0); (v))u((0); (1); (�v)):

Let M(V; q; k; �) be a Moufang set as in section 3.12. Choose a �xed coor-

dinatization of the set, associated to a decomposition V = e�1k � V0 � e1k.

Then Lemma 100 implies that every u((1);(0; 0), (v0; v1)), v0 6= 0, deter-

mines unique w;w0 2 U(1) such that wu((1); (0; 0); (v0; v1))w
0 interchanges

(0; 0) and (1). In the sequel we will denote this element by s(v0;v1).

One easily checks that w = w0 = u((0; 0);(1), (�v0;�v1 + f(v0; v0)).
Hence :

s(v0;v1) = u((0; 0); (1); (�v0;�v1 + f(v0; v0))u((1); (0; 0); (v0; v1))

u((0; 0); (1); (�v0;�v1 + f(v0; v0)):
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LetQ(E; q; k; �) be a quadrangle as in section 3.5.3. Choos a �xed coordinati-
zation and letM�((0))(Q(E; q; k; �)) be an induced Moufang set in this quad-

rangle. Given u([1]; [0; (0; 0)]; [0; (v0 ; v1)]) there exist by Lemma 100 unique

elements z, z0 2 U[0;(0;0)] such that z u([1]; [0; (0; 0)]; [0; (v0 ; v1)]) z
0 inter-

changes [1] and [0; (0; 0)]. In the sequel we denote this element by s[0;(v0;v1)].
As for M(V; q; k; �) one checks that z = z0 = u([0; (0; 0)];[1],[0,(�v0 ;�v1 +
f(v0; v0)]). Hence :

s[0;(v0;v1)]
= u([0; (0; 0)]; [1]; [0; (�v0 ;�v1 + f(v0; v0)])u([1]; [0; (0; 0)]; [0; (v0 ; v1)])
u([0; (0; 0)];[1],[0,(�v0;�v1 + f(v0; v0)])

As to the de�nition of rx we make the following conventions.

Let P(k) be a projective Moufang set. Choose a �xed coordinate system as

above. Using Lemma 100 every u((0); (1); (v)) determines unique elements
y; y0 2 U(1) such that yu((0); (1); (v))y0 interchanges (0) and (1). In the

sequel we will denote this element by r(v). One easily checks that in this case

y = y0 = u((1); (0); (�v)) and hence :

r(v)
= u((1); (0); (�v))u((0); (1); (v))u((1); (0); (�v)):

If M(V; q; k; �) is a Moufang set as in section 3.12 we choose a �xed coor-

dinate system of this set. By Lemma 100 every u((0; 0); (1); (v0; v1)) de-

termines a unique elements y and y0 such that yu((0; 0); (1); (0; 0))y0 in-
terchanges (0; 0) and (1). For the sequel we will denote this element by

r(v0;v1). One easily checks that y = y0 = u((1); (0; 0); (�v0;�v1 + f(v0; v0))
and hence :

r(v0;v1) = u((1); (0; 0); (�v0;�v1 + f(v0; v0))u((0; 0); (1); (v0 ; v1))

u((1); (0; 0); (�v0;�v1 + f(v0; v0)):

Let M�((0))(Q(E; q; k; �)) be an induced Moufang set in Q(E; q; k; �) as

above. Lemma 100 shows that every u([0; (0; 0)]; [1]; [0; (v0 ; v1)]) determines

unique elements t, t0 2 U[1] such that t u([0; (0; 0)]; [1]; [0; (v0 ; v1)]) t
0 in-

terchanges [1] and [0; (0; 0)]. For the sequel we will denote this element by
r[0;(v0;v1)]. One easily checks that t = t0 = u([1]; [0; (0; 0)]; [0; (�v0 ;�v1 +
f(v0; v0))]).
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Hence :

r[0;(v0;v1]
= u([1]; [0; (0; 0)]; [0; (�v0 ;�v1 + f(v0; v0))])u([0; (0; 0)]; [1]; (v0 ; v1)])
u([1]; [0; (0; 0)]; [0; (�v0 ;�v1 + f(v0; v0))]):

We calculate in some special cases the exact action of sx and rx.

First case : the projective Moufang set P(k).
Choose a coordinatization of the set such that he1i = (1) and he2i = (0; 0).
Given u((1); (0); (v)) we saw that w = w0 = u((0); (1); (�v)) and the ma-

trix representation of s(v) with respect to the ordered base fe1, e2g becomes :

s(v) =

�
1 0

0 �v�1

��
1 v

0 0

��
1 0

0 �v�1

�

=

�
0 v

�v�1 0

�
:

In a complete similar way one �nds :

r(v) =

�
0 v

�v�1 0

�
:

Second case : s(v0;v1) with (v0; v1) 2 M(V; q; k; �) with q a (�;�1)-quadratic
form and v0 2 Rad(f), where f is the form associated to q.

Choose a �xed coordinate system associated to a decomposition V = e�1k�
V0�e1k. Let B0 be an ordered base of V0. Given u((1); (0; 0); (v0; v1) we saw
the elements w and w0 are given by w = w0 = u((0; 0); (1); (�v0;�v1)). Thus
we �nd in matrix notation with respect to the ordered base fe�1; B0; e1g :

s(v0;v1) =

0
@ 1 0 0

v0v
�1
1 IjB0j

0

�v�11 0 1

1
A
0
@ 1 0 v1

0 IjB0j
v0

0 0 1

1
A
0
@ 1 0 0

v0v
�1
1 IjB0j

0

�v�11 0 1

1
A

=

0
@ 0 0 v1

0 IjB0j
0

�v�11 0 1

1
A

In a similar way one calculates with respect to the ordered base fe�1; B0; e1g :

r(v0;v1) = s(v0;v1) =

0
@ 0 0 v1

0 IjB0j
0

�v�11 0 0

1
A :
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Third case : s[0;(v0;v1)] where [0; (v0; v1)] is a line a generalized quadrangle

Q(E; q; k; �) de�ned by a (�;�1)-quadratic form q with associated form f
and v0 2 Rad(f). Suppose Q(E; q; k; �) is coordinatized using the decom-

position E = e�1k �e�1k �E0 �e1k �e2k. Let B0 be an ordered base of

E0. Similar calculations as for M(V; q; k; �) one shows that s[0;(v0;v1)] has as
matrix representation with respect to the ordered base B = fe�2, e�1, B0,

e1, e2g : 0
BBBB@

0 0 0 0 v1
0 1 0 0 0

0 0 IjB0j
0 0

0 0 0 1 0

�v�11 0 0 0 0

1
CCCCA

In a complete similar way one �nds that r[0;(v0;v1)] has as matrix representation
with respect to the ordered base B :0

BBBB@
0 0 0 0 v1
0 1 0 0 0

0 0 IjB0j
0 0

0 0 0 1 0

�v�11 0 0 0 0

1
CCCCA :

3.14 Di�erent types of Moufang sets

In this section we make a division of the Moufang sets under consideration.

Amongst the classical Moufang sets we distinguish 4 classes. Motivation will

become clear when calculating the isomorphism classes. (In this list k stands
for a division ring with involution �, V is a right k-vector space and q is a

(�; �)-quadratic form.)

Moufang sets of type 1 :

Projective Moufang sets P(k).

Moufang sets of type 2 :

These are Moufang sets of the form Q(V; q; k; �) with � = 1. We denote

them by MO(V; q; k) and call them orthogonal Moufang sets.
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Moufang sets of type 3 :

By this we mean Moufang sets of the formM(V; q; k; �) with Z(k) = k
and � 6= 1. We denote them byMH(V; q; k; �) and call them hermitian

Moufang sets.

Moufang sets of type 4 :

These are Moufang sets of the form M(V; q; k; �) with Z(k) 6= k.

We call these Moufang sets unitary Moufang sets and denote them

by MU(V; q; k; �)).

Moufang sets of type 5 :

These are the indi�erent Moufang sets of the form P(k0; l; k0) as de-
scribed in section 3.2.

Important to notice as concerns this division is that there is overlap in this

list. As will be seen in the rest of this chapter several Moufang sets belong

to di�erent classes. Furthermore we introduce the following notation. For

a Moufang set of the form M(V; q; k; �) we denote its transvection group

by TM(V; q; k; �). For an orthogonal Moufang set MO(V; q; k), TO(V; q; k)
stands for its transvection group. In a similar way we will denote for Mo-

ufang setsMH(V; q; k; �),MU(V; q; k; �), P(k) and P(l; k) the transvection
groups by TH(V; q; k; �), TU(V; q; k; �), TP(k) and TP(l; k). Finally we re-

mark that for any orthogonal Moufang setMO(V; q; k) with char(k) = 2 the

equation q(v + v) = 0 = q(v) +q(v) leads to f(v; v) = 0, 8v 2 V .

3.15 Isomorphism problems

3.15.1 General theory

Lemma 101 Let (X;Ux)x2X) and (X
0; Ux0)x02X0) be two isomorphic classical

or mixed Moufang sets de�ned over division rings k and k0. Then char(k) =
char(k0).

proof :

One easily checks that every root elation ux satis�es :

ord(ux) = char(k):
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As every Moufang set isomorphism induces an isomorphism between root

groups the lemma follows. 2

Lemma 102 Consider two Moufang set of the form M(V ,q,k,�) and M
(V 0, q0, k0, �0) where q is a (�; �)-quadratic form and q0 a (�0; �0)-quadratic
form. Suppose ' is a bijective semi-linear transformation from V to V 0 with
associated �eld isomorphism � such that : for some constant c0 2 k0 :

c0(q(x))� = q0('(x)); 8x 2 V

c0(f(x; y))� = f 0('(x); '(y)); 8x; y 2 V

where c0 satis�es :

c0���c0
�1

= ���
0

; 8� 2 k

c0�� = c0
�0
�0

Then ' induces a Moufang set isomorphism � from M(V; q; k; �) to

M(V 0; q0; k0; �0) de�ned by :

�(hxi) = h'(x)i; 8hxi 2 M(V; q; k; �):

proof :

Remark �rstly that the conditions on c0 imply that (c0k�;�)
� = k�0;�0 . This

follows from the equation :

c0(t� t��)� = c0t� � c0t����

= c0t� � t��
0

c0��

= c0t� � t��
0

c0
�0
�0

= (c0t�)� (c0t�)�
0

�0:

This implies that the map � is a well de�ned bijection from points of M(V ,
q, k, �) to M(V 0; q0; k0; �0). We prove that for any hxi, 2 M(V; q; k; �) the

map �hxi de�ned by :

�hxiu(hxi; hyi; hzi) = � Æ u(hxi; hyi; hzi) Æ ��1
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de�nes a bijection from Uhxi to Uh'(x)i. Lemma 41 then implies that � de�nes

a Moufang set isomorphism.

We use the description of the root groups in M(V; q; k; �) as described in

section 3.12.2. Let he�1i 2 M(V; q; k; �). Choose a coordinatization of

M(V; q; k; �) associated to the decomposition V = e�1k �V0 �e1k with

labelling set R0;1 = f(v0; v1) jq(v0) + v1 = 0g. Choose a coordinatization

of M(V 0; q0; k0; �0) associated to the decomposition V 0 = e0
�1k

0 �V 0

0 � e01k
0

such that '(e�1) = e0
�1c and '(e1) = e01. Remark that (1) = he�1i for

M(V; q; k; �) and (1) = he0
�1i = �((1)) for M(V 0; q0; k0; �0). Moreover for

(v0; v1) 2 M(V; q; k; �) we �nd :

�((v0; v1)) = h'(e�1v1 + v0 + e1)i

= h'(e�1)v
�
1 + '(v0) + '(e1)i

= he0
�1(c

0v�1 ) + '(v0) + e01i

= ('(v0); c
0v�1 )

Let (v0; v1) 2 R0;1 and (w00; w
0

1) 2 R
0

0;1.

Then we have :

�u((1); (0; 0); (v0; v1))�
�1((w00; w

0

1))

= �u((1); (0; 0); (v0; v1))(('
�1(w00); (c

0�1)�
�1

w01
��1

))

= �(('�1(w00) + v0; v1 + (c0�1)�
�1

w01
��1

� f(v0; '
�1(w00)))

= (w00 + '(v0); c
0v�1 + w01 � c0(f(v0; '

�1(w00)))
�)

= (w00 + '(v0); c
0v�1 + w01 � f 0('(v0); w

0

0))

= u((1); (0; 0); ('(v0); c
0v�1 ))((w

0

0; w
0

1))

= u(�((1));�((0; 0)); �((v0; v1)))((w
0

0; w
0

1))

showing that �hxi de�nes a bijection from Uhxi to Uh'(x)i. This completes the
proof. 2

Lemma 103 Let (X; (Ux)x2X) be a Moufang set of the form M(V; q; k; �)
which is coordinatized using the decomposition V = e�1k�V0� e1k with asso-
ciated labelling set R0;1 = f(v0; v1) 2 V0�kjq(v0)+v1 = 0g. Then Z((R0;1;�))
= f(v0; v1) 2 R0;1 j f(v0; w0) = f(w0; v0), 8w0 2 V0g. In particular if � 6= 1,
Z((R0;1;�) = f(v0; v1) 2 R0;1 j v0 2 Rad(f)g.

proof :
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Let M(V; q; k; �) and R0;1 be as in the theorem.

Suppose (v0; v1) 2 Z((R0;1)). Then this means :

(v0; v1)� (w0; w1) = (w0; w1)� (v0; v1); 8(w0; w1) 2 R0;1:

Equivalently :

f(v0; w0) = f(w0; v0); 8w0 2 V0:

Let � 6= 1, and suppose f(v0; w0) 6= 0 for a w0 2 V0.
We �nd that :

f(v0; w0�) = f(w0�; v0); 8� 2 k

yielding :

�� = �; 8� 2 k;

a contradiction.

Hence in this case we �nd Z(R0;1;�) = f(v0; v1) 2 R0;1 j v0 2 Rad(f)g. 2

Lemma 104 A classical Moufang set (X; (Ux)x2X) has commutative root
groups if and only if:

(i) it is of type 1,

(ii) it is of type 2,

(iii) it is of type 3 and dim(V ) = 2,

(iv) it is of type 4 and codim(Rad(f)) = 2.

An indi�erent Moufang set always has commutative root groups.

proof :

Let (X; (Ux)x2X) be a projective Moufang set P(k). As in this case the

root groups are isomorphic to the additive group on k the lemma holds.

Suppose (X; (Ux)x2X) is a Moufang set of the form M(V; q; k; �). Choose a

coordinatization of M(V; q; k; �) with associated decomposition V = e�1k�
V0 � e1k and labelling set R0;1 = f(v0; v1) 2 V0 � kjq(v0) + v1 = 0g. As

we already saw the root groups are isomorphic to (R0;1;�). By Lemma 103

we know that the root groups are commutative if and only if the form f is
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symmetric on V0.
If M(V; q; k; �) is of type 2, this condition is clearly satis�ed.

If M(V; q; k; �) is of type 3 or 4, Lemma 103 yields codim(Rad(f)) = 2.

If M(V; q; k; �) is of type 3, Theorem 8.2.4 of [29] implies that f is non-

degenerate. Hence in this case the root groups are commutative if and only

if V0 = 0.

The statement about the indi�erent Moufang sets is clear as these are Mo-

ufang subsets of projective ones. 2

Corollary 105 Let MU(V; q; k; �) be a unitary Moufang set de�ned over a
generalized quaternion algebra with standard involution � in characteristic
non 2. Suppose q is a (�;�1) quadratic form and choose a coordinatization

associated to a decomposition V = e�1k �V0 �e1k with labelling set R0;1

= f(v0; v1) 2 V0 � k jq(v0) + v1 = 0g. Then Z(R0;1;�) = f(0; �)j� 2 Tr(�)g.
ThereforeMU(V; q; k; �) has commutative root groups if and only if dim(V ) =

2 and MU(V; q; k; �) �= P(Z(k)).
Moreover if MU(V; q; k; �) is a unitary Moufang set de�ned over a general-
ized quaterion algebra k with standard involution �, and dim(V ) = 2 we �nd

in any case that MU(V; q; k; �) �= P(Z(k)).

proof :

Let R0;1 be as in the theorem. By Lemma 103 we have that

Z((R0;1;�)) = f(v0; v1) 2 R0;1jv0 2 Rad(f)g:

But if char(k) 6= 2 we have q = f=2 showing Rad(f) = fv0 2 V0 jq(v0) = 0g.
As q is anisotropic on V0 we thus �nd :

Z((R0;1;�)) = f(0; �)j� 2 Tr(�)g:

This means that if char(k) 6= 2, Z((R0;1;�)) = R0;1 if and only if dim(V ) = 2.

But then the point set of MU(V; q; k; �) consists of f(0; �) j� 2 Fix(�) =

Z(k)g [f(1)g.
LetMU(V; q; k; �) a unitary Moufang set de�ned by a (�;�1)-quadratic form
such that dim(V ) = 2 de�ned over generalized quaternion algebra k with

standard involution �. Lemma 97 implies that MU(V; q; k; �) �= P(Z(k)).
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This implies in particular that if char(k) 6= 2 MU(V; q; k; �) has commuta-
tive root groups if and only if it is isomorphic to P(Z(k)). 2

Lemma 106 Let M(O(V; q; k)) be an orthogonal Moufang set coordinatized
with respect to a decomposition V = e�1k � V0 � e1k using the labelling set
R0;1 = f(v0; v1) 2 V0 � kjq(v0) + v1 = 0g and suppose B0 is an ordered base

of V0.
Then for (t0; t1), (v0; v1) :

s(t0;t1)(v0; v1) = (t0f(t0; v0)v
�1
1 + v0v

�1
1 t1; t1v

�1
1 t1):

Thus s(t0;t1) has matrix representation with respect to the

ordered base fe�1; B0; e1g :0
@ 0 0 t1

0 IjB0j
t0t

�1
1 f(B0; t0)

t�11 0 0

1
A :

proof :

Consider a decomposition of V as V = e�1k � V0 � e1k with associated

coordinatization with labelling set R0;1 = f(v0; v1) 2 V0 � kjq(v0) + v1 = 0g.
Denote this coordinate system with superscript 1 i.e.

(v0; v1)
1 = he�1v1 + v0 + e1i; 8(v0; v1) 2 R0;1

(1)1 = he�1i:

Remember that

s(t0;t1)1 = u((0; 0)1; (1)1; (�t0; t1)
1)u((1)1; (0; 0)1; (t0; t1)

1)

u((0; 0)1; (1)1; (�t0; t1)
1):

In order to calculate the action of u((0; 0)1; (1)1; (�t0; t1)
1) on the Moufang

set we will make use of a switch of coordinates as explained in section 3.12.2.

This means that besides the �rst coordinate system we consider a second

system associated to the decomposition V = e1k � V0 � e�1k. Coordinates
with respect to this second system will be denoted by superscript 2 i.e.

(v0; v1)
2 = he1v1 + v0 + e�1i; 8(v0; v1) 2 R0;1)

(1)2 = he1i:
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Remark that the following equalities hold :

(v0; v1)
1 = (v0v

�1
1 ; v�11 )2; 8(v0; v1) 2 R0;1 n f(0; 0)g

(0; 0)1 = (1)2

(1)2 = (0; 0)1

and if MO(V; q; k) is orthogonal then f(v0; v0) = �2q(v0); 8v0 2 V0.
Let (v0; v1)

1 be any element of MO(V; q; k; �) with v0 6= 0.

We calculate :

u((0; 0)1;11; (�t0; t1))(v0; v1)
1 = (�t0 + v0; t1 + v1 + f(t0; v0))

1

Set A = t1 + v1 + f(t0; v0).
We have :

u((0; 0)1; (1)1; (t0; t1)
1)(�t0 + v0; A)

1

= u((1)2; (0; 0)2; (t0t
�1
1 ; t�11 )2)((�t0 + v0)A

�1; A�1)2

= (t0t
�1
1 + (�t0 + v0)A

�1; A�1 + t�11 � f(t0t
�1
1 ; (�t0 + v0)A

�1)2

= (t0t
�1
1 + (�t0 + v0)A

�1; A�1 + t�11 � 2A�1 � A�1t�11 f(t0; v0))
2

= (t0t
�1
1 + (�t0 + v0)A

�1;�A�1 + t�11 �A�1t�11 f(t0; v0))
2

= (t0v
�1
1 (A� t1) + v0t1v

�1
1 ; At1v

�1
1 )1

Moreover:

u((1)1; (0; 0)1; (�t0; t1)
1)(t0v

�1
1 (A� t1) + v0t1v

�1
1 ; At1v

�1
1 )1

= u((1)1; (0; 0)1; (�t0; t1)
1)(t0(1 + v�11 f(t0; v0) + v0t1v

�1
1 ; t1v

�1
1 t1

+t1 + t1v
�1
1 f(t0; v0))

1

= (t0v
�1
1 f(t0; v0) + v0t1v

�1
1 ; t1v

�1
1 t1 + t1 + t1v

�1
1 f(t0; v0) + f(t0; t0)

+v�11 f(t0; t0)f(t0; v0) + t1v
�1
1 f(t0; v0) + t1)

1

= (t0v
�1
1 f(t0; v0) + v0t1v

�1
1 ; t1v

�1
1 t1

+2t1(1 + v�11 f(t0; v0)) + f(t0; t0)(1 + v�11 f(t0; v0)))
1

= (t0v
�1
1 f(t0; v0) + v0t1v

�1
1 ; t1v

�1
1 t1)

1

2

Lemma 107 Let MO(V; q; k) be an orthogonal Moufang set coordinatized

over a labelling set R0;1. Then :

s(v0�;v1�2)s(v0;v1)((w0; w1)) = (w0�
2; w1�

4); 8(v0; v1); (w0; w1) 2 R0;1; � 2 k:
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Hence

s(v0;v1)s(v0�;v1�2) 2 Z(FixTMO(V;q;k)(f(1); (0; 0)g); 8(v0; v1) 2 R0;1; � 2 k:

proof :

Suppose R0;1 is the labelling set of a coordinatization of MO(V; q; k) as-

sociated to the decomposition V = e�1k �V0 �e1k. Let (v0; v1), (w0; w1)

2 R0;1, � 2 k. Then we have using Lemma 106 :

s(v0�;v1)�2s(v0;v1)((w0; w1))

= s(v0�;v1�2)((v0f(v0; w0)w1
�1 + w0w1

�1v1; v1
2w1

�1))

= (v0�(f(v0�; v0f(v0; w0)w1
�1 + w0w1

�1v1))w1v1
�2

+(v0f(v0; w0)w1
�1 + w0w1

�1v1)v1
�2w1v1�

2; w1v1
�2v1

2�4)
= (v0�

2f(v0; v0)f(v0; w0)v1
�2 + v0�

2f(v0; w0)v
�1
1

+v0f(v0; w0)�
2v�11 + w0�

2; w1�
4

= (v0�
2f(v0; w0)v

�1
1 (f(v0; v0)v

�1
1 + 2) + w0�

2; w1�
4)

= (w0�
2; w1�

4)

As an arbitrary element of FixTMO(V;q;k) f(1), (0; 0)g) has a matrix repre-

sentation with respect to the ordered base fe�1, B0, e1g of the form :0
@ � 0 0

0 A0 0

0 0 ��1

1
A

we see that s(v0�;v1�2) s(v0;v1) 2 Z(FixTMO(V;q;k) f(1), (0; 0)g). 2

Lemma 108 LetMU(V; q; k; �) be a unitary Moufang set de�ned by a (�; 1)-
quadratic form q where char(k) = 2. Assume that the form associated to q

is given by f . Let (t0; t1), (v0; v1) 2 R0;1. If f(t0; t0) = 0 we have for (v0; v1)
2 R0;1 :

s(t0;t1)((v0; v1)) = (t0t
�1
1 f(t0; v0)v

�1
1 t1 + v0v

�1
1 t1; t1v

�1
1 t1):

proof :

Remark that f(t0; t0) is equivalent to the condition t�1 = t1. The Lemma
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then follows by the calculations made in Lemma 106 taking into account

that char(k) = 2 and f(t0; t0) = 0. 2

Lemma 109 Let MU(V; q; k; �) be a type 4 Moufang set with q a (�;�1)
quadratic form. Suppose that g is the �-sesquilinear form such that q(v)
= g(v) + k�;�. Then the set fg(w)j w 2 Rad(f)g is contained in Fix(�).

Moreover any coordinatization of MU(V; q; k; �) with associated labelling set
R0;1 satis�es :

f(v0; v1)1j(v0; v1) 2 Z(R0;1;�)g � Fix(�):

and for (t0; t1); (v0; v1) 2 R0;1 nf(0; 0g with (t0; t1) 2 Z(R0;1;�) we have :

s(t0;t1)(v0; v1) = (v0v
�1
1 t1; t1v

�1
1 t1); 8(t0; t1); (v0; v1) 2 R0;1 n f(0; 0)g;

and

r(t0;t1)(v0; v1) = (v0v
�1
1 t1; t1v

�1
1 t1); 8(t0; t1); (v0; v1) 2 R0;1 n f(0; 0)g:

proof :

Let v 2 Rad(f) with v 6= 0. (Remark that this is only possible if char(k) =

2).

The equation :

q(v(� + �)) = (�+ �)�g(v)(�+ �)

= g(v�) + ��g(v)�+ ��g(v)� + g(v�) + k�;�1

= g(v�) + g(v�) + f(v�; v�) + k�;�1

= q(v�) + q(v�); 8�; � 2 k

implies :

��g(v)�+ ��g(v)� 2 k�; 8�; � 2 k:

Equivalently :

��(g(v) + g(v)�)� 2 k�; 8�; � 2 k:

If g(v) 6= g(v)� this means k = k� a contradiction as k� � Fix(�) and

� 6= 1. Hence g(v)� = g(v). Choose a coordinatization of MU(V; q; k; �)
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associated to the decomposition with labelling set R0;1 = f(v0; v1) 2 V0 � kj
q(v0) + v1 = 0g. Let B0 be an ordered base of V0. If (v0; v1) 2 Z((R0;1;�))
Lemma 103 shows that v0 2 Rad(f), but then v1 = g(v0)+r for a r 2 Tr(�).
Hence v1 belongs to Fix(�) as g(v0) 2 Fix(�).
Let (t0; t1) 2 Z((R0;1;�)), then t0 2 Rad(f). Using matrix representation of

root elations with respect to the ordered base fe�1; B0; e1g as explained in

section 3.12.2 we have :

s(t0;t1) = u((0; 0); (1); (t0 ; t1))u((1); (0; 0); (t0 ; t1))u((0; 0); (1); (t0; t1))

=

0
@ 1 0 0

t0t
�1
1 IjB0j

0

t�11 0 0

1
A
0
@ 1 0 t1

0 IjB0j
t0

0 0 1

1
A
0
@ 1 0 0

t0t
�1
1 IjB0j

0

t�11 0 0

1
A

=

0
@ 0 0 t1

0 IjB0j
0

t�11 0 0

1
A :

Hence

s(t0;t1)(v0; v1) = (v0v
�1
1 t1; t1v

�1
1 t1); 8(v0; v1) 2 R0;1:

The statement for r(t0;t1) follows by similar arguments. 2

The following Lemmas are translations of well known isomorphism theo-

rems to the language of Moufang set.

Lemma 110 Let k be a generalized quaternion algebra. Then P(k) is iso-

morphic to a non-commutative orthogonal Moufang set MO(V 0; q0; Z(k))
such that dim(V 0) = 6.

proof :

We use the theory on generalized quaternion algebras as brie
y exposed on

p73 and 74 in [6]. This means that we can choose in k elements i and j such
that k = Z(k) � iZ(k) �jZ(k) � jiZ(k).

Moreover if char(k) 6= 2 we can assume

i2 = �0

j2 = �0

ij = �ji
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where �0 and �0 are non squares in 2 Z(k).
If char(k) = 2 these elements can be assumed to satisfy :

i2 = i+ �0

j2 = �0

ij = ji + i

where �0 and �0 are non squares in Z(k). Let � be the standard involution

in k. Then we denote the norm with respect to � as N , i.e. N(x) = x�x.

De�ne the orthogonal Moufang set MO(V 0; q0; Z(k))) in the following way.

Let V 0 = e0
�1Z(k) �V

0

0 �e
0

1Z(k) with V 0

0 = e00
1Z(k) �e00

2Z(k) � e00
3Z(k)

�e00
4Z(k) and de�ne the forms q0 and f 0 as follows. Let x0 = e0

�1x
0

�1 +e
0

0
1z1

+e00
2z2 +e

0

0
3z3 +e

0

0
4z4 +e

0

1x
0

1 and y
0 = e0

�1y
0

�1 +e
0

0
1u1 +e

0

0
2u2 +e

0

0
3u3 +e

0

0
4u4

+e01y
0

1. Set � = z1 + iz2 +jz3 +jiz4 and � = u1 +iu2 +ju3 +jiu4, with x
0

�1,

x01, y
0

�1, y
0

1, zi, ui 2 Z(k), 1 � i � 4.

q0(x0; x0) = (x0
�1)x

0

1 +N(�)

f 0(x0; y0) = x0
�1y

0

1 + x01y
0

�1 + ���+ ���

One easily checks that f 0 is a trace valued quadratic form and q0 is a quadratic

form such that q0(x0 + y0) = q0(x0) +q0(y0) +f(x0; y0), 8x0; y0 2 V 0. As q0(e01)
= q0(e0

�1) = 0 and q0jV 00 is anisotropic since it is the norm function N , q0 is a
quadratic form on V 0 of Witt index 1. This means that we can consider the

Moufang setMO(V 0; q0; Z(k)). In the sequel we will use the coordinatization
of this set associated to the decomposition V 0 = e0

�1Z(k) �V
0

0 �e
0

1Z(k) with
labelling set R0

0;1. Consider the projective Moufang set P(k) with canonical

coordinatization as explained in section 3.2. De�ne the bijection � from to

MO(V 0; q0; Z(k)) to P (k) in the following way :

�((1)) = (1)

�((e00
1
z1 + e00

2
z2 + e00

3
z3 + e00

4
z4;�N(�)) = (�):

with � = z1 +iz2 +jz3 +jiz4. Using Lemma 41 we check that � de�nes a

Moufang set isomorphism. It will thus enough to show that the map �(1)

de�nes as :

�(1)(u1) = � Æ u1 Æ ��1
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de�nes a map from U(1) to U(1) and similarly show that the map �(0;0)
de�ned by :

�(0;0)(u0) = � Æ u0 Æ �
�1

de�nes a map from U(0;0) to U(0).

Let (t00; t
0

1), (v
0

0; v
0

1) 2 R
0

0;1 with v
0

0 = e00
1z1 +e

0

0
2z2 +e

0

0
3z3 +e

0

0
4z4, v

0

1 = �N(�)

where � = z1+iz2 +jz3 +jiz4, t
0

0 = e001u1 +e
0

0
2u2 +e

0

0
3u3 +e

0

0
4u4, t

0

1 = �N(�)
if � = u1 + iu2 +ju3 +jiu4.
We �nd :

�(1)(u((1); (0; 0); (t00 ; t
0

1)))((�))

= �(u((1); (0; 0); (t00; t
0

1))(v
0

0; v
0

1))

= �((t00 + v00;�N(�) �N(�) � ���� ���))
= �((t00 + v00;�N(�+ �))

= (�+ �)
= u((1); (0); (�))(�)

showing that �(1) (u((1); (0; 0),(t00 ; t
0

1)) = u((1); (0),�((t00; t
0

1))).

As to the map �(0;0) we reason as follows. In MO(V 0; q0; k0) we �nd that

s(e0;�1)U(1) s
�1
(e0;�1)

= U(0;0) and in P(k) we have s(1) U(1) s
�1
(1)

= U(0). By

construction of � we have �((e0;�1)) = (1). Therefore it will be enough if

we show that � Æ s(e00
1;�1) Æ�

�1 = s(1) in order to show that �(0;0) de�nes a

map from U(0;0) to U(0). Let (v00; v
0

1) 2 R0

0;1 with v
0

0 = e00
1z1 +e

0

0
2z2 +e

0

0
3z3

+e00
4z4, v

0

1 and v
0

1 = �N(�) where we put � = z1 + iz2 +jz3 +jiz4.
If char(k) 6= 2 we have :

�(s(e0;�1)((v
0

0; v
0

1)))

= �(�e00
1f 0(e00

1; v00)(N(�))�1 + v00(N(�))�1;�(N(�))�1)

= �(�(e00
1z1 � e00

2z2 � e00
3z3 � e00

4z4)(N(�))�1;�(N(�))�1)

= (���(N(�))�1;�(N(�))�1)
= (���1)
= s(1)((�))
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and in this case we �nd thus that � Æ s(e00
1;�1) Æ�

�1 = s(1).

If char(k) = 2 we have :

�(s(e00
1;1)((v

0

0; v
0

1)))

= �((f 0(e00
1; v00)(N(�))�1 + v00(N(�))�1; (N(�))�1))

= �(e00
1(z1 + z2) + e00

2z2 + e00
3z3 + e00

4z4)(N(�))�1; (N(�))�1))
= (��(N(�))�1)
= (��1)

= s(1)((�))

and thus we �nd that also in this case � Æ s(e00
1;1) Æ�

�1 = s(1). The non

commutativity of MO(V 0; q0; Z(k)) follows from the non commutativity of

P(k). This completes the proof.
2

Lemma 111 Let MO(V; q; k; �) be an orthogonal Moufang set such that
dim(V ) = 3. Then MO(V; q; k) �= P(k).

proof :

Choose a coordinatization of MO(V; q; k) associated to the decomposition

V = e�1k �V0 �e1k with labelling set R0;1 = f(v0; v1) jq(v0) + v1 = 0g. Us-
ing the results of 3.12.3 we can assume without loss of generality that there

exists a vector e0 2 V0, with (e0;�1) 2 R0;1. Indeed if this is not the case

we choose a (v0; v1) 2 R0;1 nf(0; 0)g. Consider the proportional Moufang set

MO(V;�v�11 q) coordinatized using the decomposition V = �e�1k �V0 ��e1k
with �e�1 = �e�1v1 and �e1 = e1 and labelling set �R0;1. By construction we

�nd then that (v0;�1) 2 �R0;1.

Consider the projective Moufang set P(k) coordinatized in the canonical way

as explained in section 3.2. De�ne the bijection � from P(k) toMO(V; q; k)
by :

�((v)) = (e0v;�v
2)

�((1)) = (1):

We show that � de�nes Moufang set isomorphism. By Lemma 41 it suÆces

to show that the two maps �(0) and �(1) with :

�(1)(u((1); (0); (t)) = � Æ u((1); (0); (t)) Æ ��1
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�(0)(u((0); (1); (t)) = � Æ u((0); (1); (t)) Æ ��1

de�ne bijections from U(1) to U(1) and from U(0) to U(0;0).

Let (s), (t) 2 P(k), with �(s) = (s0; s1), �(t) = (t0; t1).
Then we �nd for (v0; v1) with �

�1((v0; v1)) = (v) :

�(u((1); (0); (s))��1(v0; v1) = �((s+ v))

= �(s)� �(v)

= (s0; s1)� (v0; v1)

= u((1); (0; 0); (s0 ; s1))((v0; v1))

Thus :

�(1)(u((1); (0); (s))) = u((1); (0; 0); �(s)):

Remains to show that � de�nes a bijection from U(0) to U(0;0). As U(0) =

s(1)U(1)s(1), U(0;0) = s(e0;�1)U(1)s(e0;�1) and �(1) = (e0;�1) it will be enough
to show that :

� Æ s(1) Æ �
�1 = s(e0;�1):

Let v 2 k, with v 6= 0.

We have :

�s(1)�
�1((e0v; v

2)) = �((v�1))

= (e0v
�1; v�2)

= (e0(f(e0; e0)� 1)v�1; v�2)

= (e0f(e0; e0v)v
�2 � e0v

�1; v�2)

= s(e0;�1)((e0v; v
2))

�s(1)�
�1(1) = (0; 0)

= s(e0;�1)(1)

�s(1)�
�1(0; 0) = (1)

= s(e0;�1)(0; 0)

showing that � Æ s(1) Æ �
�1 = s(e0;�1). This completes the proof. 2
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Lemma 112 LetMO(V; q; k) be a orthogonal Moufang set with dim(V ) = 4

and codim(Rad(f)) 6= 2. Then MO(V; q; k) �= P(�k) where �k is a quadratic
Galois extension of k.

proof :

Choose a coordinatization of MO(V; q; k) associated to the decomposition

V = e�1k �V0 �e1k with labelling set R0;1. Similar arguments as in the proof

of Lemma 111 show we can assume without loss of generality that there exists

a e0 2 V0 such that (e0;�1) 2 R0;1. In particular q(e0) = 1 and f(e0; e0) = 2.

Let a0 be a second vector such that he0; a0i = V0. Consider the quadratic

polynomial p(X) = X2+ f(e0; a0)X+ q(a0) in k[X ]. Let 
 be a root of p(X)

in an algebraic closure of k. Remark that the other root of p(X) is given

by f(e0; a0) �
. As f jV0 6= 0, p(X) is a quadratic and separable polynomial

and k(
) is thus a quadratic Galois extension of k. Let � be the non trivial

automorphism of k(
) �xing k which sends 
 to 
 + f(e0; a0). Denote for

x 2 k, N(x) = xx�, Tr(x) = x + x�. Every x 2 k(
) can thus be written

as � + 
�, �, � 2 k. Consider P(k(
)) with canonical coordinatization as

explained in section 3.2. De�ne the bijection � from P(k(
)) toMO(V; q; k)

by :

�(�+ 
�) = (e0�+ a0�; �
2 + 2��f(e0; a0)
 + q(a0)�

2)

= (e0�+ a0�;N(� + 
�))

�(1) = (1):

We show that � de�nes Moufang set isomorphism. By Lemma 41 it suÆces

to show that the two maps �(0) and �(1) de�ned by :

�(1)(u((1); (0); (t)) = � Æ u((1); (0); (t)) Æ ��1

�(0)(u((0); (1); (t)) = � Æ u((0); (1); (t)) Æ ��1

determine bijections from U(1) to U(1) and from U(0) to U(0;0).

Let (s), (t) 2 P(k(
)), with �(s) = (s0; s1), �(t) = (t0; t1).
Then we �nd for (v0; v1) with �

�1((v0; v1)) = (v) :

�(u((1); (0); (s))��1(v0; v1) = �((s+ v))

= �(s)� �(v)
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= (s0; s1)� (v0; v1)

= u((1); (0; 0); (s0 ; s1))((v0; v1))

Thus :

�(1)(u((1); (0); (s))) = u((1); (0; 0); �(s)):

Remains to show that the map �(0) de�nes a bijection from U(0) to U(0;0). As

U(0) = s(1)U(1)s(1) and U(0;0) = s(e0;�1)U(1)s(e0;�1) it will be enough to show

that :

� Æ s(1) Æ �
�1 = s(e0;�1):

Let �, � 2 k such that � + 
� 6= 0.

We �nd :

�s(1)�
�1((e0�+ a0�;�N(�+ 
�)))

= �s(1)((� + 
�))

= �(�(�+ 
�)�1)
= �(�(�+ 
��)(N(� + 
�))�1))
= �(((�(f(e0; a0�+ �)) + 
�)(N(� + 
�))�1))

= (�e0(� + f(e0; a0)�)(N(� + 
�))�1 + a0�(N(� + 
�))�1;�(N(� + 
�))�1):

Using Lemma 109 we �nd :

s(e0;�1)(e0�+ a0�;�N(�+ 
�))
= (�e0f(e0; e0�+ a0�)(N(� + 
�))�1

+(e0�+ a0�)(N(� + 
�))�1; (N(� + 
�))�1)

= (�e0(f(e0; e0)� 1)�(N(� + 
�))�1 � e0f(e0; a0)�(N(� + 
�))�1

+a0�(N(� + 
�))�1; (�N(� + 
�))�1)
= (�e0(� + f(e0; a0)�)(N(� + 
�))�1 + a0�(N(� + 
�))�1;�(N(� + 
�))�1))

= �s(1)�
�1((e0�+ a0�;N(�+ 
�)):

As also :

�s(1)�
�1(1) = (0; 0)

= s(e0;�1)(1)

�s(1)�
�1(0; 0) = (1)

= s(e0;�1)(0; 0)

we �nd that �s(1)�
�1 = s(e0;�1). This closes the proof. 2
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Lemma 113 Let MO(V; q; k) be an orthogonal Moufang set such that
codim(Rad(f)) = 2. Then MO(V; q; k) is isomorphic to an indi�erent Mo-
ufang set of the form P(l; k0).

proof :

Suppose MO(V; q; k) is as in the lemma. Choose a coordinatization of the

set associated to a decomposition V = e�1k �V0 �e1k with labelling set

R0;1. Remark that the assumption on f implies Rad(f) = V0 and hence

fq(w) jw 2 Rad(f)g = fq(w0) jw0 2 V0g. Let (e0; c
�1) 2 R0;1. Then the set

l = fcq(w)jw 2 Rad(f)g clearly satis�es :

(i) l is an additive subgroup of k,

(ii) l�1 = l as c�1q(w)�1 = cq(w(q(w)c)�1), 8 w 2 Rad(f),
(iii) 1 2 l.
(iv) l is a vectorspace over k2.

Therefore we can consider the indi�erent Moufang set P(l; k0) where k0 is
the sub�eld of k generated as a ring by l. We prove that MO(V; q; k) is
isomorphic to P(l; k0). De�ne the bijection � fromMO(V; q; k) to P(l; k0) as
follows :

�((1)) = (1)

�((v0; v1)) = (cv1):

We use Lemma 41 to show that � de�nes a Moufang set isomorphism. Let

(t0; t1), (v0; v1) 2 R0;1. Then we �nd :

�(u((1); (0; 0); (t0; t1))((v0; v1))) = �((t0 + v0; t1 + v1))

= (c(t1 + v1))

= u((1); (0); (ct1))((cv1))

= u((1); (0); �((t0; t1))((cv1))

hence � Æ u((1); (0; 0); (t0; t1)) Æ �
�1 = u((1); (0); �((t0; t1))). As (t0; t1)

was chosen arbitrarily this shows that � U(1) �
�1 = U(1).

Remains to show that the map �(0;0) de�ned by :

�(0;0)(u0) = � Æ u0 Æ �
�1

determines a bijection from U(0;0) to U(0). As before we use the fact that

U(0;0) = s(e0;c�1) U(1) s
�1
(e0;c�1)

, U(0) = s(1) U(1) s(1) and �((e0; c
�1)) = (1).
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This means that if we show � Æ s(e0;c�1) Æ �
�1 = s(1) then the statement

about �(0;0) holds.
Let (v0; v1) 2 R0;1 the we �nd :

�(s(e0;c�1)((v0; v1))) = �((v0v
�1
1 c�1; c�1v�11 c�1))

= s(1)(cv1)

= s(1)�((v0; v1)):

Hence � Æ s(e0;c�1) Æ �
�1 = s(1) and � de�nes a Moufang set isomorphism.

2

Lemma 114 Every unitary Moufang set MU(V; q; k; �) with non-

commutative root groups where k is a generalized quaternion algebra with
standard involution � and dim(V ) = 3 is isomorphic to a hermitian Moufang
setMH(V 0; q0; k0; �0) with dim(V 0) = 4 and k0 isomorphic to a quadratic Ga-

lois extension of Z(k). Conversely every hermitian Moufang setMH(V; q; k; �)
with dim(V ) = 4 is isomorphic to a unitary Moufang set MU(V 0; q0; k0; �0)
with non-commutative root groups, where dim(V 0) = 3, k0 a generalized

quaternion algebra with standard involution �0, and k isomorphic to a quadratic
Galois extension of Z(k0).

proof :

Let MU(V; q; �) be unitary Moufang set de�ned over a generalized quater-

nion algebra with standard involution � such that dim(V ) = 3. Without loss

of generality we can assume that q is a (�;�1)-quadratic form. Assume q(v)
= g(v; v) + Tr(�) and q(v + w) = q(v) + q(w) +f(v; w) with f a (�;�1)-
hermitian form and g a �-sesquilinear form. Choose a coordinatization of

MU(V; q; k; �) associated to a decomposition V = e�1k �V0 �e1k with la-

belling set R0;1. As k is a generalized quaternion algebra there exist (cfr [6]

p73) a !, � 2 k, with k = Z(k)� wZ(k) � �Z(k) �!�Z(k) such that :

char(k) = 2 and :

!2 = ! + �0, �
2 = �0, �0, �0 2 Z(k) n Z(k)

2 and �! = !� + �, �� = �

and !� = ! + 1
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char(k) 6= 2 and :

!2 = �0, �
2 = �0, �0, �0 2 Z(k) n Z(k)

2, !� = ��!, !� = �! and ��

= ��.

Denote the norm function for k with N i.e. for � = z1 + wz2 +�z3 +�wz4
we have N(�) = ���. Without loss of generality we can assume that V0 =
hv0 i with g(v0; v0) = �v1 = �w (use Lemma 3.12.3 and section 3.12.3). Let

Lv1 = Z(k(v1) = Z(k)w. Then Lv1 is a separable quadratic Galois extension

of Z(k) on which � acts non trivially with FixjLv1 (�) = Z(k). Remark that

V0 = v0Lv1 � (v0�) Lv1 . Therefore we can de�ne a hermitian Moufang set

MH(V 0; q0; k0; �) in the following way. Set V 0 = e0
�1Lv1 �V0 �e

0

1Lv1 . Let

x0 = e0
�1x

0

�1 +x
0

0 +e
0

1x
0

1 and y
0 = e0

�1y
0

�1 +y
0

0 +e
0

1y
0

1 with x
0

0 = v0(z1 + !z2)
+(v0�)(z3 + !z4) and y

0

0 = v0(l1 + l2!) +(v0�) (l3 + !l4), zi, li 2 Z(k). Call
� = z1 + !z2 +�z3 +�!z4. and � = l1 + !l2 +�l3 +�!l4.

De�ne the forms q0 and f 0 on V 0 in the following way :

g0(x0; x0) = �(x0
�1)

�x01 +N(�)v1 + Tr(�0)

f 0(x0; y0) = ���v1 � v�1�
��:

One easily checks that f 0 de�nes a trace valued (�; 1)-hermitian form on V 0

and q0 a (�; 1)-quadratic form on V 0 such that q0(x0 + y0) = q0(x0) +q0(y0)

+f(x0; y0), 8x0, y0 2 V 0. Moreover by construction one checks that q0 is
anisotropic on V0. As q0(e0

�1) = q0(e01) = 0, q0 de�nes a (�0;�1)-quadratic
form on V 0 of Witt index 1. Put k0 = Lv1 . We can thus consider the hermi-

tian Moufang set MH(V 0; q0; k0; �0). When working with MH(V 0; q0; k0; �0)
we will use in the sequel its coordinatization associated to the decomposition

V 0 = e0
�1Lv1 �V0 �e

0

1 Lv1 . The labelling set is denoted as R
0

0;1. We show that

MH(V 0; q0; k0; �0) is isomorphic to MU(V;�q; k; �), which is a Moufang set

proportional and hence isomorhphic to MU(V; q; k; �). When working with

MU(V;�q; k; �) we will use the coordinatization associated to the decom-

position V = (�e�1)k � V0 � e1k. De�ne the map � fromMH(V 0; q0; k0; �0)

to MU(V;�q; k; �) in the following way :

�((v0(z1 + !z2) + v0�(z3 + !z4); N(�)v1 + u))

= (v0�
�; �v�1�

� + u)
�((1))

= (1):
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where u 2 Z(k) and � = z1+z2!+z3� +z4�!. The construction of MH(V 0,

q0, k0, �0) implies that � de�nes a bijection from MH(V 0; q0; k0; �0) to
MU(V; q; k; �). We check that � de�nes a Moufang set isomorphism us-

ing Lemma 41. Therefore it will be enough if we show that the map �(1)

determined by :

�(1)(u1) = � Æ u1 Æ ��1; 8u1 2 U(1)

de�nes a map from U(1) to U(1) and similarly that the map �(0;0) determined

by :

�(0;0)(u0) = � Æ u0 Æ �
�1; 8u0 2 U(0;0)

de�nes a map from U(0;0) to U(0;0). Firstly we show the claim for �(1).

Let u, zi, li 2 Z(k), 1 � i � 4.

We calculate :

�((v0(z1 + !z2); N(z1 + !z2)v1) � (v0(l1 + !l2); N(l1 + !l2)v1))

= �((v0((z1 + l1) + !(z2 + l2); N(z1 + !z2) +N(l1 + !l2)
�f 0(v0(z1 + !z2); v0(l1 + !l2)))
= �((v0((z1 + l1) + !(z2 + l2)); N((z1 + l1) + !(z2 + l2))

�(l1 + !l2)
�(z1 + !z2)v1 � (z1 + !z2)

�(l1 + !l2)v
�
1 )

= (v0((z1 + l1) + !(z2 + l2)
�; N((z1 + l1) + !(z2 + l2))v

�
1

�(l1 + !l2)
�(z1 + !z2)v1 � (z1 + !z2)

�(l1 + !l2)v
�
1 ))

= (v0((z1 + l1) + !(z2 + l2))
�; N(z1 + !z2)v

�
1

+N(l1 + !l2)v
�
1 + f(v0(z1 + !z2)

�; v0(l1 + !l2)
�))

= (v0(z1 + !z2)
�; N(z1 + !z2)v

�
1 )� (v0(l1 + !l2)

�; N(l1 + !l2)v1)

= �((v0(z1 + !z2); N(z1 + !z2)v1)) � �((v0(l1 + !l2); N(l1 + !l2)v1))

where we used the fact that v1 = w and thus �(v0(z1 + !z2),N(z1 + !z2)v1)
(v0(z1 + !z2)

�,N(z1 + !z2)v1) and similarly �(v0(l1 + !l2); N(l1 + !l2)v1)

= (v0(l1 + !l2)
�,N(l1 + !l2)v1).

By similar calculations one checks that :

�((v0�(z3 + !z4); N(z3 + !z4)v1)� (v0�(l3 + !l4); N(l3 + !l4)v1))
= �((v0�(z3 + !z4); N(z3 + !z4)v1))� �((v0�(l3 + !l4); N(l3 + !l4)v1)):

Call � = z1 + !z2 + �z3 + �!z4.
We �nd :

�((v0(z1 + !z2); N(z1 + !z2)v1)� (v0�(z3 + !z4); N(�(z3 + !z4)v1))

= �((v0(z1 + !z2) + v0�(z3 + !z4); N(z1 + !z2) +N(�(z3 + !z4))))
= �((v0(z1 + !z2) + v0�(z3 + !z4)); N(z1 + !z2 + �z3 + !�z4))
= (v0(z1 + !z2 + �z3 + �!z4); �v

�
1�

�)



124 CHAPTER 3. MOUFANG SETS

and :

�((v0(z1 + !z2); N(z1 + !z2)v1))� �((v0�(z3 + !z4); N(�(z3 + !z4))v1))

= (v0(z1 + !z2)
�; (z1 + !z2)v

�
1 (z1 + !z2)

�)� (v0(�(z3 + !z4)
� ;

N(�(z3 + !z4)v
�
1 )

= (v0(z1 + !z2 + �z3 + �!z4)
�; (z1 + !z2)v

�
1 (z1 + !z2)

�

+(�(z3 + !z4))v
�
1 (�(z3 + !z4))

� + f(v0(z1 + !z2)
�; v0(�(z3 + !z4))

�):

Let char(k) = 2 then we �nd :

�v�1�
� + (z1 + !z2)v

�
1 (z1 + !z2)

� + (�(z3 + !z4))v
�
1 (�(z3 + !z4))

�

+f(v0(z1 + !z2)
�; v0(�(z3 + !z4)

�)

= (z1 + !z2)v
�
1 (�(z3 + !z4))

� + (�(z3 + !z4))v
�
1 (z1 + !z2)

�

+f(v0(z1 + !z2)
�; v0(�(z3 + !z4))

�)

= (z1 + !z2)(w + 1)(�(z3 + !z4))
� + (�(z3 + !z4))(w + 1)(z1 + !z2)

�

+(z1 + !z2)(�(z3 + z4!))
�

= (z1 + !z2)!(z3 + z4 + !z4)� + �(z3 + !z4)(w + 1)(z1 + z2 + !z2)
= (z1 + !z2)(z3! + z4�0) + �(z3 + z3! + z4�0)(z1 + z2 + !z2)
= (z1 + !z2)�(z3! + z3 + z4�0) + �(z3 + !z3 + z4�0)(z1 + z2 + !z2)

= 0

This means that � v�1 �
� = (z1 + !z2)v

�
1 (z1 + !z2)

� +(�(z3 + !z4))v
�
1

(�(z3 + !z4))
� +f(v0(z1 + !z2)

�; v0(�(z3 + !z4))
�).

If char(k) 6= 2 we have for � = z1 + !z2 + �(z3 + !z4) that the equation :

�v�1�
�

= (z1 + !z2)v
�
1 (z1 + !z2)

�

+(�(z3 + !z4))v
�
1 (�(z3 + !z4))

�

+f(v0(z1 + !z2)
�; v0(z3 + !z4)

�)

is equivalent to the equation :

�(z1 + !z2)f(v0; v0)(�(z3 + !z4))

= (z1 + !z2)
�v�1 (�(z3 + !z4))

+(�(z3 + !z4))
�v�1 (z1 + !z2):

We �nd :

(z1 + !z2)
�v�1 (�(z3 + !z4)) + (�(z3 + !z4))

�v1(z1 + !z2)
= (�z1 + !z2)v1(�(z3 + !z4) + �(z1 + !z2)v1(z3 + !z4)



3.15. ISOMORPHISM PROBLEMS 125

and :

�(z1 + !z2)f(v0; v0)(�(z3 + !z4))

= (z1 + !z2)v1(�(z3 + !z4)) + �(�z1 + !z2)(z3 + !z4);

showing that also in this case �v�1�
� = (z1 + !z2)v

�
1 (z1 + !z2) +(�(z3 +

!z4)v
�
1 (�(z3 +!z4))

� +f(v0(z1 + !z2)
�; v0(�(z3 + !z4))

�). We thus �nd that

in any case :

�((v0(z1 + !z2); N(z1 + !z2)v1)� (v0�(z3 + !z4); N(�(z3 + !z4))v1))

= �((v0(z1 + !z2); N(z1 + !z2)v1))� ((v0�(z3 + !z4); N(�(z3 + !z4))v1)):

Moreover one easily checks that :

�((v0(z1 + !z2) + v0�(z3 + !z4); N(�)v1)� (0; u))

= �((v0(z1 + !z2) + v0�(z3 + !z4); N(�)v1)) � �((0; u)):

As every element (w00; w
0

1) 2 R
0

0;1 can be written in a form (v0(z1+!z2),N(z1+

!z2)v1) � (v0�(z3+!z4),N(z3+!z4)v1) � (0; u), with u, zi 2 Z(k) the above
equations show that for (w00; w

0

1), (u
0

0; u
0

1) 2 R0

0;1, �((w
0

0; w
0

1) � (u00; u
0

1) =

�((w00; w
0

1))� �((u00; u
0

1)). For (w
0

0; w
0

1), (u
0

0; u
0

1) 2 R
0

0;1 the element u((1);(0; 0),(u00; u
0

1))

acts in the following way :

u((1); (0; 0); (u00; u
0

1))((w
0

0; w
0

1)) = (u00; u
0

1) � (w00; w
0

1):

It therefore follows that �(1) de�nes a mapping from U(1) to U(1).

We �nally prove that �(0;0) de�nes a map from U(0;0) to U(0;0). Suppose that

we show that � Æ s(0;1) �
�1 = s(0;1). As s(0;1)U(1) s(0;1) = U(0;0) we �nd for

u0 2 U(0;0) a u1 with s(0;1) u1 s(0;1) = u0 and we have :

� Æ u0 Æ �
�1 = � Æ s(0;1)u1s(0;1) Æ �

�1

= s(0;1)� Æ u1 Æ ��1s(0;1)

= s(0;1)�(1)(u1)s(0;1)

2 U(0;0)

and hence the proof that � de�nes an isomorphism is complete.

Remains to show that � s(0;1) �
�1 = s(0;1). Let u, zi 2 Z(k), 1 � i � 4. Call

� = z1 + !z2 +�z3 +�!z4.
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We �nd :

�(s(0;1)((v0(z1 + !z2) + v0�(z3 + !z4); N(�)v1 + u))
= �((v0(z1 + !z2)(�(N(�)v1 + u))�1 + v0�(z3 + !z4)(�(N(�)v1 + u))�1;
(�(N(�)v1 + u))�1))

= �((v0(z1 + !z2)(�(N(�)v1 + u))�1 + v0�(z3 + !z4)(�(N(�)v1 + u))�1;
N(�(N(�)v1 + u))�1 �N(�)(v1 + v�1 )N(N(�)v1 + u))�1 � u(N(�)v1 + u))�1))
= (�v0(�(N(�)v1 + u)�1)�; �(N(�)v1 + u))�1v�1 (�(N(�)v1 + u))�1)�

�N(�)(v1 + v�1 )N(N(�)v1 + u))�1 � u(N(�)v1 + u))�1))

We have :

(�(N(�)v1 + u)�1)� = (N(�)v�1 + u)�1��

= ((��)�1N(�)v�1 + u(��)�1)�1

= (�v�1 + u(��)�1)�1

= ��(�v�1�
� + u)�1

implying that :

�(�(N(�)v1 + u))�1 = ���(�v�1�
� + u)�1

N(N(�)v1 + u)) = N(�v�1�
� + u):

Moreover :

�(N(�)v1 + u))�1v�1 (�(N(�)v1 + u)�1)�

�N(�)(v1 + v�1 )(N(N(�)v1 + u))�1 � u(N(N(�)v1 + u))�1

= �(N(�)v�1 + u)v�1 (N(�)v1 + u)(N(N(�)v1 + u))�2

�N(�)(v1 + v�1 )(N(N(�)v1 + u))�1 � u(N(N(�)v1 + u))�1

= �v�1 (N(N(�)v1 + u))�1 �N(�)(v1 + v�1 )(N(N(�)v1 + u))�1

�u(N(N(�)v1 + u))�1

= �(�v1�
� + u)(N(N(�)v1 + u))�1

= �(�v1�
� + u)(N(�v1�

� + u))�1

= �(�v�1�
� + u)�1

where we used the identity �v1 + v�1�
� = N(�)(v1 + v�1 ) and the fact that

N(N(�)v1 + u)) = N(�v1�
� + u).
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Thus we �nd that :

�(s(0;1)((v0(z1 + !z2) + v0�(�z3 + �!z4); N(�)v1 + u)))

= (�v0(�
�(�v�1�

� + u)�1; (��v�1�
� + u)�1)

= s(0;1)(v0�
� ; �v�1�

� + u)
= s(0;1)�((v0(z1 + !z2) + v0�(�z3 + �!z4); N(�)v1 + u))):

This proves that � s(0;1) �
�1 = s(0;1). By Lemma 41 we �nd that � de�nes

a Moufang set isomorphism from MH(V 0; q0; Z(k); �0) to MU(V;�q; k; �).
As MU(V;�q; k; �) is isomorphic to MU(V; q; k; �) (cfr. see section 3.12.3)

under  �1 with :

 �1((1)) = (1)

 �1((v0; v1)) = (v0;�v1)

we �nd that �� =  �1� de�nes an isomorphism from MH(V 0; q0; k0; �0) to

MU(V; q; k; �).
Conversely let MH(V; q; k; �) be hermitian Moufang set with dim(V ) = 4.

As usual we assume that q is a (�;�1)-quadratic form. Choose a coor-

dinatization of MH(V; q; k; �) associated to the decomposition V = e�1k
�V0 �e1k. Assume that g is a � sesquilinear form such that q(v) = g(v; v)
+Fix(�) and f the (�;�1)-hermitian form satisfying q(v+w) = q(v)+q(w)+

f(v; w), 8v, w 2 V . Let v0 be a vector of V0 n f0g and put g(v0; v0) = v1.
As q is anisotropic on V0 we �nd that v1 62 Fix(�). Hence Fix(�)(v1) = k.
Without loss of generality we can assume that v21 = v1 + �0, if char(k) = 2

and v21 = �0 if char(k) 6= 2 with �0 2 Fix(�) n(Fix(�))
2. Let w0 be a vector

in V0 such that f(v0; w0) = 0. Then we have V0 = v0k � w0k. Put g(w0; w0)

= w1. As w1 = v1z1 + z2 for some zi 2 Fix(�) and Fix(�) = Tr(�) we can

assume without loss of generality that w1v
�1
1 = �0 2 Fix(�). As v0 62 hw0i

and f(v0; w0) = 0 we �nd that �0 62 (Fix(�))2. (Otherwise we would have

q(v0�+w0) = 0 for a � 2 k and v0� = w0). Let k
0 be the generalized quater-

nion algebras with center Fix(�) constructed in the following way. Put k0

= Fix(�) �v1Fix(�) ��
0Fix(�) � �0v1Fix(�) with :

char(k0) = 2 and :

(�
0

)2= �0, and �
0v1 = v1�

0 + �0.

char(k) 6= 2 and :

�02 = �0, v1�
0 = ��0v1.
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Denote the standard involution of k0 by �0 and let N 0 be the norm function

on k0. Remark that every element of MH(V; q; k; �) can then be written as

((v0(z1+ v1z2) +w0(z3+ v1z4), N
0(z1+ v1z2+�

0z3+ �0v1z4) + u), u 2 Fix(�).
By the construction of k0 we see that k is embedded in k0 and �0jk = �.
De�ne the unitary Moufang set MU(V 0; q0; k0; �0) in the following way. We

set V 0 = e0
�1k

0 �v0k
0 �e01k

0. Let x0 = e0
�1x

0

�1 +v0�
0 +e01x

0

1 and y
0 = e0

�1y
0

�1

+v0�
0 +e01y

0

1, with x
0

�1, x
0

1, y
0

�1, y
0

1, �
0, �0 2 k0.

Then we set :

q0(x0; x0) = �(x0
�1)

�0x01 � �0
�
v�1�

0 + Tr(�0)

f 0(x0; y0) = �(x0
�1)

�y01 + (y0
�1)

�x01 + �0
�0
(�v1 + v�1 )�

0

Then one easily checks that q0 de�nes a (�0;�1)-quadratic form on V 0 of Witt

index 1 with associated trace valued (�0;�1)-hermitian form f 0. Therefore

we can consider the Moufang set MU(V 0; q0; k0; �0). Coordinatize this set

using the decomposition V 0 = e0
�1k

0 +V 0

0 +e01k
0 where V 0

0 = v00k.
De�ne the map � from MH(V; q; k; �) to MU(V 0; q0; k0; �0) by :

�((1))

= (1)

�((v0(z1 + v1z2) + w0(z2 + v1z4); N
0(z1 + v1z2 + �0z3 + �0v1z4))

= (v0(�
0)�

0

; �0v�
0

1 (�
0)�

0

):

The calculations used to prove the �rst part of the Lemma show that � de-

�nes a Moufang set isomorphism from MH(V; q; k; �) to MU(V 0; q0; k0; �0).

This completes the proof. 2

Lemma 115 Let k be a generalized quaternion algebra in characteristic non

2 and � a non standard involution Then every polar line Pol(k; �) is isomor-
phic to an non commutative orthogonal Moufang set MO(V 0; q0; Z(k)) with
dim(V 0) = 5.

Without loss of generality we can choose i, j and 2 k with i2 = �0, j
2 = �0,

ij = �ji, k = Z(k) �iZ(k) �jZ(k) �jiZ(k) such that � is given by :

(z1 + iz2 + jz3 + jiz4)
� = z1 � iz2 + jz3 + jiz4; 8zi 2 Z(k); 1 � i � 4:
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Denote the standard involution in k by 
 and the norm function in k by N .

Let Pol(k; �) be a polar line de�ned by a (�;�1) quadratic form. Choose a
coordinatization of Pol(k; �) associated to a decomposition V 0 = e0

�1k �e
0

1k.

Then we �nd that the point set of Pol(k; �) is given by f(0; t)jt 2 Fix(�)g
= f(0; z1+jz3+jiz4) jzi 2 Z(k). In order to construct an orthogonal Moufang

set MO(V 0; q0; Z(k)) we proceed as follows. Let V 0 be the 5-dimensional

vectorspace e0
�1Z(k) �V

0

0 �e
0

1Z(k) with V
0

0 = e00
1Z(k) � e00

2 Z(k) �e00
3Z(k).

De�ne the forms g0, f 0 and q0 on V 0 as follows. Let x0 = e0
�1x

0

�1 +x
0

0 +e
0

1x
0

1

with x00 = e00
1z01 +e

0

0
2z02 +e

0

0
3z03 and put �0 = z01+ jz02 +jiz

0

3. Let y
0 = e0

�1y
0

�1

+y00 +e
0

1y
0

1 with y
0

0 = e00
1u01 +e

0

0
2u02 +e

0

0
3u03 and put �0 = u01 + ju02 +jiu

0

3.

g0(x0; x0) = x0
�1x

0

1 + N(�0)

f 0(x0; y0) = y0
�1x

0

1 + x0
�1y

0

1 + �0


�0 + �0



�0

q0(x0) = g0(x0; x0)

One easily checks that q0 de�nes a quadratic form on V 0 of Witt index

1. Therefore we can consider the Moufang set MO(V 0; q0; Z(k)). Coor-

dinatize MO(V 0; q0; Z(k)) using the decomposition V 0 = e0
�1Z(k) �V

0

0 �
e01Z(k) with labelling set R0

0;1. De�ne the bijection � from the point set of

MO(V 0; q0; Z(k)) to Pol(k; �) in the following way :

�((1)) = (1)

�((e00
1
z1 + e00

2
z2 + e00

3
z3;�N(�0)) = (0; �)

where we put �0 = z01+jz
0

2 +jiz03. We check that � de�nes a Moufang set

isomorphism using Lemma 41. It will thus be enough to prove that the map

�(1) given by :

�(1)(u1) = � Æ u1 Æ ��1; 8u1 2 U(1)

de�nes a map from U(1) to U(1) and similarly that the map �(0;0) given by :

�(0;0)(u0) = � Æ u0 Æ �
�1

de�nes a map from U(0;0) to U(0;0).

Let (v00; v
0

1), (t
0

0; t
0

1) 2 R0

0;1 with v
0

0 = e00
1z1 +e

0

0
2z2 +e

0

0
3z3 and v

0

1 = �N(�0)
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where we put �0 = z1+jz2+jiz3, t
0

0 = e00
1u1 +e

0

0
2u2 +e

0

0
3u3 and t

0

1 = �N(�0)
where we put �0 = u1 +ju2 +jiu3.
We calculate :

�(u((1); (0; 0); (t00; t
0

1))((v
0

0; v
0

1)))

= �((t00 + v00;�N(�0)�N(�0)� �0
�0 � �0
�0))

= �((t00 + v00;�N(�0 + �0))
= (�0 + �0)
= u((1); (0; 0); (0; �0))((0; �0))

showing that � Æ u((1); (0; 0); (t00; t
0

1)) Æ�
�1 = u((1); (0; 0); �((t00; t

0

1))). As

for u(0;0) we reason as follows. For MO(V 0; q0; Z(k)) we have that s(e00
1;�1)

U(1) s(e00
1;�1) = U(0;0) and similarly for MU(V 0; q0; k0; �0) we �nd s(0;1) U(1)

s(0;1) = U(0;0). Moreover by construction of � we �nd �((e00
1;�1))) = (0; 1).

In order to show that �(0;0) de�nes a map from U(0;0) to U(0;0) it will therefore

be enough if we show that � Æ s(e00
1;�1) Æ�

�1 = s(0;1). Let (v
0

0; v
0

1) be as above

i.e. v00 = e00
1z1 + e00

2z2 +e
0

0
3z3 and v

0

1 = �N(�0) where we put �0 = z1 + jz2
+jiz3.

We have :

�(s(e00
1
;�1)((v

0

0; v
0

1))

= �((�e00
1f 0(e00

1; v00)(N(�))�1 + v00(N(�))�1; (�N(�))�1)

= �((�(e00
1z1 � e00

2z02 � e00
3z3)(N(�0))�1;�(N(�0))�1

= (��0
(N(�0))�1;�(N(�0))�1)
= (�0)�1

= s(0;1)(�
0)

= s(0;1)�((v
0

0; v
0

1)

proving that � Æ s(e00
1;�1) Æ �

�1 = s(0;1). That MO(V 0; q0; Z(k)) is non com-

mutative follows from the fact that it is isomorphic to M(V; q; k; �) which is

non commutative.

2

As to orthogonal Moufang sets over small �elds we have the following lemma.

Lemma 116 Let MO(V; q; k) be an orthogonal Moufang set such that k

= F2 or F3 , then one of the following possibilities occurs :

(i) k = F2 , dim(V ) = 3 and MO(V; q; k) �= P(F2 ),
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(ii) k = F2 , dim(V ) = 4 and MO(V; q; k) �= P(F4),

(iii) k = F3 , dim(V ) = 3 and MO(V; q; k) �= P(F3),

(iv) k = F3 , dim(V ) = 4 and MO(V; q; k) �= P(F9).

proof :

LetMO(V; q; k) be a in the lemma and choose a coordinatization ofMO(V; q; k)
associated to the decomposition V = e�1k �V0 �e1k with labelling set R0;1.

Suppose �rstly that k = F2 .
We �rst show that if dim(V ) � 4, codim(Rad(f)) 6= 2. If this where the

case we would �nd at least two vectors v0 and w0 2 V0 with v0 6= w0 such

that f(v0; w0) = 0 and q(v0) = q(w0) = 1. But then the equation q(v0 + w0)

= q(v0) +q(w0) = 0 implies v0 = w0 a contradiction. Suppose dim(V ) 6= 5.

Let v0. As dim(V0) � 3, dim(v?0 \V0) � 2. This means that there exists a

w0 6= v0 such that f(v0; w0) = 0. But then the equation q(v0 + w0) = q(v0)
+q(w0) = 0 leads to v0 = w0, a contradiction. Therefore the only possi-

blities left are dim(V ) = 3 and by Lemma 111, MO(V; q; k) �= P(F2 ) or
codim(Rad(f)) 6= 2, dim(V ) = 4 and MO(V; q; k) �= P(F4 ) by Lemma 112.

Subsequently we assume that k = F3 .
Suppose dim(V ) � 5. Let v0, w0 2 V0 such that f(v0; w0) = 0. Without loss

of generality we can assume that q(v0) = 1 and q(w0) = �1. As dim(V0)
� 3, we �nd that dim(v?0 \w

?

0 \ V0) = 1. Let t0 2 v
?

0 \w
?

0 \V0. Then there

are two possible choices for q(t0). If q(t0) = 1 the equation q(t0 + w0) = 0

leads to t0 = w0, a contradiction. And if q(t0) = �1, we have q(v0 + t0) = 0

and hence a v0 = t0, a contradiction. This shows that dim(V ) � 4. Thus

we have two possibilities. Or dim(V ) = 3, andMO(V; q; k) �= F3 by Lemma
111, or dim(V ) = 4 and MO(V; q; k) �= F9 . 2

Lemma 117 Consider a orthogonal Moufang set M(O(V; q; k)). Suppose
f is the form associated to q. Assume 5 � dim(V ) < 1 if Rad(f) =

0, codim(Rad(f)) � 4 if Rad(f) 6= 0 and k 6= F2 . Then TO(V; q; k) =

[PGO(V; q; k); PGO(V; q; k)].

proof :
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Choose a decomposition of V such that V = e�1k � V0 �e1k, with as-

sociated coordinatization over the labelling set R0;1 = f(v0; v1) 2 V0 � k
jq(v0) + v1 = 0g. In particular this means that the point set of MO(V; q; k)

can be written as f(v0; v1)j(v0; v1) 2 R0;1g [ f(1)g with :

(v0; v1) = he�1v1 + v0 + e1i; 8(v0; v1) 2 R0;1

(1) = he�1i:

Suppose �rstly that char(k) 6= 2.

As every u((1);(0; 0) ,(v0, v1)) with v0 6= 0 equals u((1);(0; 0), (v01=2,
v11=4))

2, Proposition 10 in [7] implies U(1) � [PGO(V; q; k); PGO(V; q; k)].

Similar calculations yield U(0;0) � [PGO(V; q; k); PGO(V; q; k)]. Theorem 2

of loc. cit. states [PGO(V; q; k); PGO(V; q; k)] is simple. As TO(V; q; k) is
generated by U(1) and U(0;0) and is normalized by PGO(V; q; k) (cfr section

3.12.2) it follows that [PGO(V; q; k), PGO(V; q; k)] = TO(V; q; k).
Suppose char(k) = 2.

Choose (v0; v1) 2 R0;1 n f(0; 0)g arbitrarily.
By Lemma 107 we �nd that s(v0;v1)s(v0v�1

1 ;v�1
1 ) has as matrix representation

with respect to the ordered base fe�1, B0, e1g :0
@ v21 0 0

0 1jB0j
0

0 0 v�21

1
A :

As in the non characteristic 2 case [O(V; q; k); O(V; q; k)] contains all squares
of linear transformations preserving the form q (see Proposition 15 in [6],

for the degenerate case a similar proof holds). In particular s(v0;v1)s(v0v�1
1 ;v�1

1 )

2 [PGO(V; q; k); PGO(V; q; k)].
By the de�nition of sx we �nd :

u((1); (0; 0); (v0; v1))s(v0;v1)s(v0v�1
1 ;v�1

1 )u((1); (0; 0); (v0v
�1
1 ; v�11 ))

= [u(((1); (0; 0); (v0; v1); u((0; 0); (1); (v0 ; v1))]
[u((0; 0); (1); (v0v

�1
1 ; v�11 )); u((1); (0; 0); (v0v

�1
1 ; v�11 ))]

2 [PGO(V; q; k); PGO(V; q; k)]:

Multiplication of u((1); (0; 0); (v0 ; v1)) s(v0;v1) s(v0v�1
1 ;v�1

1 )

u((1); (0; 0); (v0v
�1
1 , v�11 )) on the right with (s(v0;v1) s(v0v�1

1 ;v�1
1 ))

�1 implies :

u((1); (0; 0); (v0; v1))u((1); (0; 0); (v0v1; v
3
1))

= u((1); (0; 0); (v0(1 + v1); v1(1 + v21))) (3.2)

2 [PGO(V; q; k); PGO(V; q; k)] (3.3)
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Two cases occur.

1. v1 6= 1.

Applying formula (3.3) for u((1); (0; 0); (a0a1; a
3
1)) gives u((1);(0; 0); (v0v1(1+

v31); v
3
1(1 + v61))) 2 [PGO(V; q; k); PGO(V; q; k)].

This yields :

u((1); (0; 0); (v0(1 + v1); v1(1 + v21))u((1); (0; 0); (v0v1(1 + v31); v
3
1(1 + v61)))

= u((1); (0; 0); (v0(1 + v1)
4; v1(1 + v1)

8) 2 [PGO(V; q; k); PGO(V; q; k)]:

Conjugating u((1); (0; 0); (v0(1 + v1)
4; v1(1 + v1)

8) with the transformation

with matrix representation :0
@ (1 + v1)

�4 0 0

0 1jB0j
0

0 0 (1 + v1)
4

1
A

belonging to [PGO(V; q; k); PGO(V; q; k)] gives u(1; (0; 0); (v0; v1)) 2 [PGO(V; q; k),
PGO(V; q; k)].

2. v1 = 1.

Granted the conditions on k there is at least one � 2 k such that �4 6= 1.

Consider (a0�
2; a1�

4) 2 R0;1. By what is already proved we �nd u(1,

(0; 0), (a0�
2; a1�

4)) 2 [PGO(V; q; k); PGO(V; q; k)]. Conjugating u(1; (0; 0),
(a0�

2; a1�
4)) with the matrix :0

@ �2 0 0

0 1jB0j
0

0 0 ��2

1
A

of [PGO(V; q; k),PGO(V; q; k)] yields u(1; (0; 0); (a0; a1)) 2
[PGO(V; q; k),PGO(V; q; k)]. It follows that U(1) � [PGO(V; q; k),PGO(V; q; k)].

Complete analogously one deduces U(0;0) � [PGO(V; q; k),PGO(V; q; k)], hence
TO(V; q; k) �
[PGO(V; q; k); PGO(V; q; k)]. Finally the simplicity of [PGO(V; q; k); PGO(V; q; k)]

(cfr Theorem 3 and Theorem 4 in [6]) shows TO(V; q; k) = [PGO(V; q; k),
PGO(V; q; k)]. 2
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Lemma 118 A hermitian Moufang setMH(V; q; k; �) has commutative root
groups if and only if dim(V ) = 2 and MH(V; q; k; �) �= P(Fix(�)).

proof :

LetMH(V; q; k; �) be a hermitian Moufang set with commutative root groups.

Choose a coordinatization ofMH(V; q; k; �) associated to the decomposition

V = e�1k � V0 �e1k with labelling set R0;1 f(v0; v1) 2 V0 � k jq(v0) + v1
= 0g. Lemma 104 shows that in this case dim(V ) = 2. But this means

that the point set ofMH(V; q; k; �) is given by f(0; t) jt 2 Fix(�)g [f(1)g.
Consider the Moufang set P(Fix(�)) labelled in a canonical way. De�ne the

bijection � from P(Fix(�)) to MH(V; q; k; �) by :

�(t) = (0; t); 8t 2 Fix(�)

�(1) = (1):

Using Lemma 41 one easily checks that � de�nes a Moufang set isomorphism.

That the converse holds i.e. if MH(V; q; k; �) is isomorphic to P(Fix(�))
then it has commutative root groups is clear. 2

Lemma 119 Let P(k) be a projective Moufang set. Then Z(k) = k if and

only if P(k) is commutative.

proof :

Coordinatize P(k) in a canonical way. Without loss of generality we can

assume x = (1) and y = (0). Every element of FixTP(k)fx; yg has matrix

representation : �
t1 0

0 t2

�
with t1, t2 2 Z(k) and t1t2 2 [k; k].
If Z(k) = k then clearly Z(FixTP(K)fx; yg) = FixTP(K)fx; yg.
As to the converse, the conditions of the lemma yield that Z(FixTP(k)fx; yg)
= FixTP(k)fx; yg. This means that for every r; t; z 2 k, with r 6= 0 and

t 6= 0 :

(rtztr) = (s(r)s(1))(s(t)s(1))((z))

= (s(t)s(1))(s(r)s(1))((z))

= (trzrt):
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Or equivalently :

r�1t�1rtztrt�1r�1 = z; 8z 2 k:

If z = 1 this implies trt�1r�1 = (r�1t�1rt)�1 and hence r�1t�1rt = [r�1; t�1]
2 Z(k), 8 r, t 2 k. Lemma 50 implies that Z(k) = k. 2

Lemma 120 An orthogonal Moufang set M(O(V; q; k)) with associated bi-
linear form f is commutative if and only if dim(V ) = 3, dim(V ) = 4 or

codim(Rad(f)) = 2.

proof :

Choose a coordinatization of the Moufang set associated to the decomposition

V = e�1k�V0�e1k with labelling set R0;1 = f(v0; v1) 2 V0�kjq(v0)+v1 = 0g.
Suppose dim(V ) � 5 and codim(Rad(f)) 6= 2.

Remark that then Lemma 116 implies that k 6= F2 or F3 . This implies

that there exists at least one subspace �V � V such that dim( �V ) = 5 and

codim�V (Rad(f)) 6= 2. Consider the Moufang subsetM( �V ; q; k). As this is a

Moufang subset of a commutative Moufang set it should itself be a commu-

tative Moufang set. This means that we can reduce the situation to the case

where dim(V ) = 5, and codim(Rad(f)) 6= 2. We prove that the commuta-

tivity of the Moufang set leads to a contradiction.

Two cases occur.

First case : Rad(f) 6= 0

This means dim(Rad(f)) = 1 and there exist at two points (a0; a1) and

(b0; b1) 2 R0;1 such that a0k �Rad(f) �b0k = V0. Let Rad(f) = hr0i. Set

e10 = a0, e
2
0 = b0 and e30 = r0 and denote the ordered base fe10, e

2
0, e

3
0g of

V0 as B0. Using Lemma 106 the automorphism s(a0;a1)s(b0;b1) has a matrix

representation with respect to the ordered base fe�1; B0; e1g of the form :0
BBBB@

a1b
�1
1 0 0 0 0

0 z1 z2 0 0

0 z3 z4 0 0

0 0 0 1 0

0 0 0 0 a�11 b1

1
CCCCA

with zi 2 k; 1 � i � 4. Choose (c0; c1); (d0; d1) 2 R0;1 with c0 62 Rad(f) and

d0 2 Rad(f).
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Then s(c0;c1)s(d0;d1) has a matrix representation of the form with respect to

the base B = fe�1; B0; e1g :0
BBBB@

c1d
�1
1 0 0 0 0

0 x1 y1 0 0

0 x2 y2 0 0

0 x3 y3 1 0

0 0 0 0 c�11 d1

1
CCCCA

with �; xi; yi 2 k, 1 � i � 3. Expressing that s(a0;a1)s(b0;b1) and s(c0;c1)s(d0;d1)
commute in their action on the Moufang set translates in the following set

of equations :

x3z1 + y3z3 = x3 (3.4)

x3z2 + y3z4 = y3 (3.5)

Let c0 =
P3

j=1 e
j
0c

j
0. We calculate x3 and y3 :

Using Lemma 106 we �nd :

s(c0;c1)s(d0;d1)(e
1
0) = c0f(e

1
0; c0)c

�1
1 + e10

=

3X
j=1

ej0f(e
1
0; e

2
0)c

j
0c

2
0c
�1
1 + e10

Thus x3 = c20c
3
0c
�1
1 f(e10; e

2
0).

In a similar way one calculates :

s(c0;c1)s(d0;d1)(e
2
0) =

n�2X
j=1

ej0f(e
1
0; e

2
0)c

j
0c

1
0c
�1
1 + e20:

and y3 = c10c
3
0c
�1
1 f(e10; e

2
0).

Filling in these two expressions in the formula concerning commutativity

gives :

c20c
3
0c
�1
1 f(e10; e

2
0)z1 + c10c

3
0c
�1
1 f(e10; e

2
0)z3 = f(e10; e

2
0)c

2
0c

3
0c
�1
1 :

Hence :

c20z1 + c10z3 = c20
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where we used the fact that by the choice of e10 and e20, f(e
1
0; e

2
0) 6= 0. As

fej0 j 1 � j � mg forms a base, we can choose c10 and c20 to be arbitrary

elements of k. This means in particular that :

xz1 + yz3 = x; 8x; y 2 k

Thus z1 = 1 and z3 = 0.

In a completely analogous way one deduces from equation (3.5) that z2 = 0

and z4 = 1.

Thus s(a0;a1)s(b0;b1) has matrix representation of the form :0
@ � 0 0

0 I3 0

0 0 ��1

1
A

This means:

s(a0;a1)s(b0;b1)(v0; v1) = (v0�; v1�
2); 8(v0; v1) 2 R0;1:

In concrete terms :

a0f(a0; v0)a
�2
1 b1 + b0(f(a0; b0)f(v0; a0)a

�2
1 + f(v0; b0)a

�1
1 ) + v0a

�1
1 b1

= v0�; 8v0 2 V0: (3.6)

Let v0 2 V0 n ha0; b0i.
Then equation (3.6) yields :

a0f(v0; a0)a
�2
1 b1 + b0(f(a0; b0)f(a0; v0)a

�2
1 + f(b0; v0)a

�1
1 ) = 0:

And as a0 and b0 are linearly independent :

f(a0; v0) = 0

f(a0; b0)f(a0; v0)a
�2
1 + f(b0; v0)a

�1
1 = 0:

But then we �nd that for every v0 2 V0 n ha0; b0i, f(a0; v0) = 0, which is only

possible if a0 2 Rad(f), contradicting the initial assumption on a0.

Second case : Rad(f) = f0g.
Remark that in this case if char(k) = 2, dim(V ) = 2n, n 2 N as f

is a symplectic form on V . As dim(V ) = 5 this case can only occur if



138 CHAPTER 3. MOUFANG SETS

char(k) 6= 2. Choose a coordinatization of the set associated to the decom-

position V = e�1k �V0 �e1k with labelling set R0;1 = f(v0; v1) 2 V0 � k
jq(v0) + v1 = 0g and let B0 be an ordered base of V0. As dim(V0) = 3 and

k 6= F3 Lemma 1.29 in [24] implies that every element of Z(FixTMO(V;q;k)

(f(1), (0; 0)g)) has a matrix representation with respect to the ordered base

fe�1, B0, e1g of the form : 0
@ � 0 0

0 I3 0

0 0 ��1

1
A

with � 2 k. But then we �nd for (a0; a1), (b0; b1), (v0; v1) 2 R0;1 :

s(a0;a1)s(b0;b1)(v0; v1) = (v0�; v1�
2)

for some � 2 k. By similar arguments as in the case where Rad(f) 6= f0g
the implies f(a0; v0) = 0; 8v0 2 V0, a contradiction.

This means that if MO(V; q; k; �) is commutative, dim(V ) = 3 or 4 or

codim(Rad(f)) = 2.

That the converse holds if dim(V ) = 3 or 4 follows from Lemmas 111 and

112.

Suppose codim(Rad(f)) = 2. Choose as usual a coordinatization associ-

ated to the decomposition V = e�1k �V0 �e1k and with labelling set R0;1

= f(v0; v1) 2 V0� k jq(v0) + v1 = 0g. Let B0 be an ordered base of V0. Then
we �nd in this case that f jV0 = 0. Let g 2 FixTMO(V;q;k) (f(1) (0; 0)g). As g
preserves the forms q and f this implies that g de�nes a linear transformation
of V preserving V0.
Moreover :

q(g(v0)) = q(v0); 8v0 2 V0

yields :

q(g(v0) + v0) = 0; 8v0 2 V0:

As g(v0) 2 V0 and q is anisotropic on V0 this shows :

g(v0) = v0; 8v0 2 V0:

This means that g has a matrix representation of the form :0
@ � 0 0

0 IjB0j
0

0 0 ��1

1
A
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with respect to the ordered base fe�1, B0, e1g. Hence we �nd Z(FixTMO(V;q;k)

(f(1) (0; 0)g)) = FixTMO(V;q;k) (f(1) (0; 0)g). 2

Lemma 121 A polar line Pol(k; �) with 1 2 Tr(�) is commutative if and
only if k is a generalized quaternion algebra and � its standard involution

and Pol(k; �) �= P(Z(k)).

proof :

Fix a coordinatization for Pol(k; �). By Lemma 92 and section 3.12.2 we

can assume that the point set is given by f(0; �)j� 2 Tr(�)g with 1 2
Tr(�). As Pol(k; �) is assumed to be commutative Z(FixTPol(k;�) f(x),
(y)g) = FixTPol(k;�) for any two points (x), (y) 2 Pol(k;�). In particu-

lar Z(FixTPol(k;�) = FixTPol(k;�) and the following equation should hold for

any �, �0 2 Tr(�) :

(s�s1)(s�0s1)(v) = (s�0s1)(s�s1)(v); 8v 2 Tr(�):

Suppose that if k is a generalized quaternion algebra � is not its standard

involution. Lemma 47 implies then that Tr(�) generates k as a ring. But

then the above equation yields that [�; �0] 2 Z(k), 8�; �0 2 Tr(�). By Lemma
49 we �nd that k is a generalized quaternion algebra and � is its standard

involution a contradiction. Hence the only possibility left is that k is a gen-

eralized quaternion algebra with standard involution �. That the converse

of the Lemma holds is a straightforward check. 2

Corollary 122 Let MU(V; q; k; �) be a unitary Moufang set de�ned by a

(�;�1) quadratic form q such that 1 2 Tr(�). If MU(V; q; k; �) is commu-
tative, k is a generalized quaternion algebra with standard involution �.

proof :

Choose a coordinatization ofMU(V; q; k; �) associated to the decomposition

V = e�1k � V0 �e1k with labelling set R0;1. Then the set Y = f(0; �)j � 2
Tr(�)g de�nes a Moufang subset of MU(V; q; k; �) isomorphic to Pol(k; �).

But as MU(V; q; k; �) is commutative, Pol(k; �) should be commutative.
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Using Lemma 121 we �nd that k is a generalized quaternion algebra with

standard involution �. 2

For an extended polar line (cfr. p96) de�ned over a generalized quaternion

algebra we can be more precise.

Lemma 123 LetMU(V; q; k; �) be an extended polar line de�ned by a (�;�1)-
quadratic form q with 1 2 Tr(�). Suppose that k is a generalized quaternion

algebra k with standard involution �. Then MU(V; q; k; �) is commutative if
and only if dim(V ) = 2, and M(V; q; k; �) �= P(Z(k)).

proof :

Choose a coordinatization of the Moufang set associated to the decomposition

V = e�1k �V0 �e1k with labelling set R0;1 = (v0; v1) 2 V0�k jq(v0)+v1 = 0g.
Suppose V0 6= 0. The assumption on MU(V; q; k; �) implies that f jV0 = 0

and by Lemma 109 R1 � Fix(�).
Let (v0; v1), (w0; w1) 2 R1. Due to the commutativity of FixTMU(V;q;k;�)

f(1), (0; 0) g we �nd :

(s(v0;v1)s(0;1))(s(w0;w1)s(0;1))((u0; u1))

= (s(w0;w1)s(0;1))(s(v0;v1)s(0;1))((u0; u1)); 8(u0; u1) 2 R0;1

Using the matrix representations of sx as explained in section 3.12.2 one

easily checks that this yields :

v1w1 = w1v1; 8v1; w1 2 R1 (3.7)

Choose (a0; a1) 2 R0;1 such that a0 6= 0. Remark that as Tr(�) = Z(k),
a1 62 Z(k).
We �nd by (3.7) :

a1�
�a1� = ��a1�a1; 8� 2 k:

Put f��a1� j� 2 kg = �a1. Clearly �a1 � Ckfa1g. Suppose �a1 � Z(k)(a1).
This means that for all � 2 k :

��a1� = a1z1 + z2; for z1; z2 2 Z(k):

But then Lemma 53 implies that a1 2 Z(k) = Tr(�) a contradiction as q is

anisotropic on V0.
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The only possibility left is that V0 = 0. This means that the point set of

MU(V; q; k; �) is given by f(0; �) j� 2 Tr(�) = Z(k)g [f(1)g. Consider the
projective Moufang set P(Z(k)) Coordinatize in a canonical way. Then one

easily checks that the map � give by :

�((�)) = (0; �); 8� 2 Z(k)

�((1)) = (1)

de�nes a Moufang set isomorphism.

Conversely if dim(V ) = 2 we �nd that MU(V; q; k; �) is isomorphic to

P(Z(k)) by Lemma 97. Therefore it de�nes in this case a commutative

Moufang set.

2

3.15.2 The isomorphism problem for projective Mo-

ufang sets.

In this section we investigate all possible Moufang sets under consideration

isomorphic to a projective one.

The proof given below can be found on pp147-150 of [29]. One of the �rst

to prove it with other notations was L. K. Hua in [12]. We restate it here

for the sake of completeness and as the techniques used in it illustrate some

basic strategies which will be used later on.

Proposition 124 Consider two projective Moufang sets P(k) and P(k0) de-
�ned over division rings k and k0 then :

P(k) �= P(k0), k �= k0 or k
op
�= k0:

proof :

Let P(k) and P(k0) be isomorphic under �. Without loss of generality we can

coordinatize P(k) and P(k0) in such a way that �((0)) = (0),�((1)) = (1)

and �((1)) = (1). The map � induces a bijection between k and k0 also
denoted by � and de�ned by :

�((x)) = (�(x)); x 2 k:
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Translating the fact that � is a Moufang set isomorphism yields :

for v, w 2 k :

�u((1); (0); (v))(w) = �((v + w))

= (�(v + w))

= �u(1; 0; v)��1�(w)

= u((1); (0); (�(v))(�(w))

= (�(v) + �(w))

Hence � de�nes an isomorphism between the additive groups on k and k0.
To derive further properties of � we use the automorphisms s(v), for v 6= 0.

From section 3.12.2 we know that s(v) has matrix representation with respect

to the base used for coordinatization :

�
0 v

�v�1 0

�

Hence sv(w) = (�vw�1v), 8w 6= 0 2 k.
Applying � we obtain :

�(�vw�1v) = (��(v)�(w�1)�(v)):

In particular if v = 1

�(w�1) = (�(w))�1; 8w 6=2 k; 8w 6= 0

and if w = 1

�(v2) = (�(v))2; 8v 2 k:

For v,w 2 k one deduces :

�(v2) + �(vw) + �(wv) + �(w2) = �((v + w)2)

= (�(v) + �(w)2

= �(v2) + �(v)�(w) + �(w)�(v) + �(w2)
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Or �(vw + wv) = �(v)�(w) + �(w)�(v).
The properties of � deduced so far yield for v, w 2 k n f0g :

(�(vw) � �(v)�(w))(�(vw))�1(�(vw) � �(w)�(v)

= (1 � �(v)�(w)(�(vw))�1)(�(vw) � �(w)�(v))
= �(vw) � �(v)�(w) � �(w)�(v) + �(v)�(w)�((vw)�1)�(w)�(v)
= �(vw) + �(v)�(v�1w)�(v) � (�(v)�(w) + �(w)�(v))

= �(vw) + �(wv)� (�(v)�(w) + �(w)�(v))
= 0

For any �xed v0 2 k n f0g, the additive group on k is thus union of two

subgroups L1 = fw 2 kj�(v0w) = �(v0)�(w)g and L2 = fw 2 kj�(v0w) =
�(w)�(v0)g. This is only possible if L1 = k or L2 = k. Analogously k is union
of the two additive subgroups R1 = fv 2 kj�(vw) = �(v)�(w); 8w 2 kg and
R2 = fv 2 kj�(vw) = �(w)�(v); 8w 2 kg. This implies that R1 = k and

�(vw) = �(v)�(w), 8v; w 2 k or k = R2 and �(vw) = �(w)�(v), 8v; w 2 k.
Hence � de�nes a �eld isomorphism or anti-isomorphism between k and k0.
Conversely suppose k �= k0 or k �= k

0op under �. Choose coordinate systems
for both P(k) and P(k0) and de�ne the bijection (also denoted by �) between

both point sets by :

�(v) = (�(v))

�(1) = (1)

It is an easy exercise to check � de�nes a Moufang set isomorphism between

P(k) and P(k0). 2

Proposition 125 A non-commutative projective Moufang set P(k) is iso-

morphic to a Moufang set M(V 0; q0; �0; k0) if and only if k is a general-
ized quaternion algebra and M(V 0; q0; �0; k0) is an orthogonal Moufang set
MO(V 0; q0; k0) with dim(V 0) = 6 and k0 �= Z(k).

proof :

Suppose the form associated to q0 is given by f 0. Remark that by Lemma

119 Z(k) 6= k.
Lemma 104 shows thatM(V 0; q0; k0; �0) is of type 2, of type 3 with dim(V 0) =

2 or of type 4 with codim(Rad(f 0)) = 2
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Let P(k) be de�ned in the 2 dimensional right k-vector space E. Choose a
base fe1, e2g of E inducing a coordinatization of P(k) such that he1i = (1)

and he2i = (0).

First case : M(V 0; q0; k0; �0) is an orthogonal Moufang set MO(V 0; q0; k0).
As usual we suppose that the Moufang set isomorphism betweenMO(V 0; q0; k0)

and P(k) is given by �. Suppose P(k) is de�ned in the 2-dimensional right

k-vector space E. Let e1, e2 be a base of E inducing a coordinatization of

P(k) such that (1) = he1i, and (0) = he2i. Choose a coordinatization of

MO(V 0; q0; k0) associated to the decomposition V 0 = e0
�1k

0 �V 0

0 � e1k
0 with

labelling set R0

0;1 = f(v00; v
0

1) 2 V
0

0 �k
0 jq(v00)+v

0

1 = 0g. Let B0

0 be an ordered

base of V 0

0 . Without loss of generality we can assume �((1)) = (1) and

�((0)) = (0; 0).
Consider the Moufang subset Y(v00;v01) = f(v00z

0; v01z
02) jz0 2 k0g [ f(1)g.

Clearly this determines a Moufang subset of MO(V 0; q0; k0). Let P(k0) be
the projective Moufang set with k0 as ground �eld coordinatized in a canon-

ical way. De�ne the bijection �(v00;v
0

1)
from P(k0) to Y(v00;v01) as follows :

�(v00;v
0

1)
(z0) = (v00z

0; v01z
02); z0 2 k0

�(v00;v
0

1)
(1) = (1):

Using Lemma 41 one checks that �(v00;v
0

1)
de�nes a Moufang set isomorphism.

Let (v) 2 P(k). Denote the set f(vz) jz 2 Z(k)g [ f(1)g as Y(v). One easily
shows that this set determines a Moufang subset of P(k). Let P(Z(k)) be
the projective Moufang set de�ned over Z(k) coordinatized in a canonical

way. Then one checks that the bijection �(v) from P(Z(k)) to Y(v) given by :

�(v)(z) = (vz); z 2 k

�(v)(1) = (1)

induces a Moufang set isomorphism.

Let (v) 2 P(k) such that �(v) = (v00; v
0

1) with v
0

0 62 Rad(f 0). We show that

�(Y(v)) = Y(v00;v01).

If (vz) 2 Y(v), we �nd that s(vz)s(v) has matrix representation with respect

to the base fe1, e2g : �
�z 0

0 �z�1

�
:

Hence s(vz)s(v) 2 Z(FixTP(k) (f(1), (0)g)). Let �(vz) = (w00; w
0

1). We thus

�nd s(w00;w01) s(v00;v01) 2 Z(FixMO(V 0;q0;k0) f(1), (0; 0)g).
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Remark that as P(k) is not commutative, dim(V 0) � 5 and codim(Rad(f 0)) >
2 and by Lemma 116, k 6= F2 or F3 . The techniques used in the proof of

Lemma 120 show that s(w00;w01) s(v00;v01) has a matrix representation with respect

to the ordered base fe�1, B
0

0, e
0

1g :0
@ �0 0 0

0 IjB00j 0

0 0 �0�1

1
A

where �0 2 k0.
Thus we �nd in any case for a �0 2 k0 :

s(w00;w01)s(v00;v01)(u
0

0; u
0

1) = (u00�
0; �0

2
u01); 8(u

0

0; u
0

1) 2 R
0

0;1: (3.8)

By Lemma 106 we �nd for (u00; u
0

1) 2 R
0

0;1 :

(s(w00;w01)s(v00;v01)((u
0

0; u
0

1)))0
= w00f

0(w00; u
0

0)w
0

1
�2v01 + v00(f

0(w00; v
0

0)f
0(u00; w

0

0)w
0

1
�2 + f 0(u00; v

0

0)w
0

1
�1)

+u00w
0

1
�1v01

= u00�
0

Hence by (3.8) we �nd for u00 2 V 0

0n hv
0

0, w
0

0i (remark that such u00 exist as
dim(V 0) � 5) :

w00f
0(w00; u

0

0)w
0

1

�2
v01 + v00(f

0(w00; v
0

0)f
0(u00; w

0

0)w
0

1

�2
+ f 0(u00; v

0

0)w
0

1

�1
) = 0:(3.9)

Suppose that v00 and w
0

0 are linearly independent. Then the above equation

implies that :

f(w00; u
0

0) = 0; 8u00 2 V
0

0

hence w00 2 Rad(f
0). Equation (3.9) therefore becomes :

v00f
0(u00; v

0

0)w
0

1

�1
= 0; 8u00 2 V

0

0 n hv
0

0; w
0

0i

and thus :

f 0(v00; u
0

0) = 0; 8u00 2 V
0

0

contradicting the assumption on v00.
Therefore the only possibility left is that w00 2 hv

0

0i and hence �(vz) = (w00; w
0

1)

2 Y(v00;v01).

Conversely let (v00z
0; v01z

02) 2 Y(v00;v01). By (1) we �nd s(v00z0;v01z02) s(v
0

0;v
0

1)
2
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Z(FixTMO(V 0;q0;k0) f(1), (0; 0)g). Hence if ��1 (v00z
0; v01z

02) = (w), also s(w)
s(v) 2 Z(FixTP(k) f(1),(0)g). In the proof of Lemma 119 we saw that every

element of Z(FixTP(k) f(1), (0)g) has as matrix representation with respect

to the ordered base fe1, e2g : �
t1 0

0 t2

�

with t1, t2 2 Z(k) and t1t2 2 [k; k]. As s(w) s(v) has matrix representation

with respect to the base fe1, e2g of the form :�
0 w

�w�1 0

��
0 v

�v�1 0

�
=

�
�wv�1 0

0 �w�1v

�
this means that there exists a z 2 Z(k) such that w = vz and thus w

��1(v00z
0; v01z

02) 2 Y(v).
Thus we proved so far that �(Y(v)) = Y�((v)) if (�((v)))0 62 Rad(f

0).

Remark that this property is equivalent to the statement that if (�((v)))0
62 Rad(f 0) then for z 2 Z(k) :

(�(vz))0 = (�(v))0z
0; for a z0 2 k0:

As a next step we show that there exists a �eld isomorphism � from Z(k) to
k0 such that :

(�(vz))0 = (�(v)0z
�); 8z 2 k: (3.10)

Choose a �xed �v 2 k such that (�(�v))0 62 Rad(f). Then we prove that � in-

duces a Moufang set isomorphism from Y(�v) to Y�((�v)). Hence �(�v)Æ � Æ��((�v)))
induces a Moufang set isomorphism from P(Z(k)) to P(k0). By Proposition

124 we know that this isomorphism is induced by a �eld isomorphism � from

Z(k) to k0. By the construction of �(�v) and ��((�v)) it follows that :

(�((�vz)))0 = (�((�v)))0z
�:

Let u 2 k such that (�((u)))0 is linearly independent from (�((�v)))0. Two

cases occur :

1. (�((u))))0 2 Rad(f
0).

Consider the equations :

(�(((u + �v)z)))0 = (�((u+ �v)))0z
0

= (�((u)))0z
0 + (�((�v)))0z

0

= (�((uz)))0 + (�((�v)z)))0

= (�((uz)))0 + (�((�v)))0z
�: (3.11)
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for appropriate z0 2 k0. If (�((u)z)))0 would be not contained in Rad(f 0),
we �nd by what is already proved (�((uzz�1)))0 = (�((u)))0 62 Rad(f 0) a
contradiction. Hence (�((uz)))0 2 Rad(f

0) and equation (3.11) shows that :

z0 = z�

and :

(�((u)z)))0 = �((u))0z
�:

2. (�((u))))0 62 Rad(f
0).

The equations :

(�(((u + �v)z)))0 = (�((uz)))0 + (�((�vz)))0

= (�((u))))0z
0 + (�((�v)))0z

�

= (�((u+ �v)))0z
00

= (�((u)))0z
00 + (�((�v)))0z

00

for appropriate z0, z00 2 k0 show that z0 = z00 = z� and (�((uz)))0 =

(�((u)))0z
�.

If (�((u)))0 is linearly dependent on (�((�v)))0 we choose a w 2 k such that

(�((w)))0 is linearly independent on (�((�v)))0.
The equations :

(�(((u+ w)z)))0 = (�((u))))0z
� + (�((w)))0z

�

= (�((uz)))0 + (�((wz)))0

= (�((uz)))0 + (�((w)))0z
�

show (�((uz))))0 = (�((u)))0z
�.

Therefore we proved property (3.10).

But this means that dim(V 0) = dim(kjZ(k)).
Let �((1)) = (e00; e

0

1). If (v00; v
0

1) 2 R0

0;1 nf(0; 0)g we consider the Moufang

subset of MO(V 0; q0; k0) determined by the set Yhe00;v00i = f(e00z
0

1 + v00z
0

2; e
0

1z
0

1
2

+v01z
0

2
2�f 0(e00; v

0

0z
0

1z
0

2) jz
0

1; z
0

2 2 k
0g [f(1)g. Using property (??) we see that

��1 (Yhe00;v00i) = f(z1 + vz2) jz1, z2 2 kg [f(1)g. Call this set Y1;v. Because
� is a Moufang set isomorphism Y1;v is a Moufang subset of P(k). As (1),

(1), (0) 2 Y1;v, s(1) should stabilize Y1;v and (�v�1) = s(1)((v)) 2 Y1;v.
This means that there exist zv1 and z

v
2 2 Z(k) with :

v�1 = zv1 + vzv2
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equivalently :

v2zv2 + vzv1 + 1 = 0:

As v was chosen arbitrarily this shows that every element of k is solution of

a quadratic equation over Z(k). Lemma 51 implies that k is a generalized

quaternion algebra. That conversely every Moufang set of the form P(k)
where k is a generalized quaternion algebra is isomorphic to some orthogo-

nal Moufang set of the form MO(V 0; q0; k0) with dim(V 0) = 6 follows from

Lemma 110.

Second case : M(V 0; q0; k0; �0) is a hermitian Moufang set.

In this case Lemma 104 implies dim(V 0) = 2 andM(V 0; q0; k0; �0)�= P(Fix(�0)).
Using Proposition 124 we have k �= Fix(�0), contradicting the fact that k is

non-commutative.

Third case: M(V 0; q0; k0; �0) is a unitary Moufang set.

By Lemma 104 codim(Rad(f 0)) = 2. Choose a decomposition of V 0 as

V 0 = e0
�1k

0�V 0

0 � e
0

1k
0 with associated coordinatization over the labelling set

R0

0;1 = f(v00; v
0

1) 2 V 0

0 � kjq0(v00) + v01 = 0g. Let B0

0 be an ordered base of V 0

0 .

By Lemma 92 and section 3.12.2 we can assume that q0 is a (�;�1)-quadratic
form, R0

0;1 \ f0g �k
0 = f(0; x0)jx0 2 Tr(�0)g, 1 2 Tr(�0) and �((1)) = (0; 1).

Consider the Moufang subset ofM(V 0; q0; k0; �0) determined by the subspace

e0
�1k

0 � e01k
0 of V 0. Call this subset Y0. Clearly Y0 �= Pol(k0; �0). Let �01 and

�02 be two elements of Tr(�0). Denote by v1 and v2 the elements of k such

that �(vi) = (0; �0i), 1 � i � 2. By assumption on �, �svis1�
�1 = s(0;�0i)s(0;1).

Moreover as sv1s1sv2s1 = sv1v2s1 we �nd:

s�01s1s�02s1 = s�(v1v2)s1

= s~�0s1

with �(v1v2) = ~�0.
This implies :

s�01s1s�02s1(�
0) = s~�0s1(�

0); 8�0 2 Tr(�0)

or equivalently :

�01�
0

2�
0�02�

0

1 =
~�0�0 ~�0; 8�0 2 Tr(�):

This means that there exists a �0 2 Ck0(Tr(�)) with:

�1�2 = ~��0:
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From �01�
0

2
2�01 =

~�0 ~�0 it follows �0�0� = 1 and :

�01�
0

2�
0�02�

0

1 = �02�
0

1�
0�01�

0

2; 8�
0 2 Tr(�):

Lemma 49 shows that k0 is a generalized quaternion algebra with standard

involution �0.
If char(k) 6= 2, Corollary 105 shows that MU(V 0; q0; k0; �0) �= P(Z(k0)). As
P(k) was assumed to be non-commutative this leads to a contradiction.

Let char(k) = 2. Suppose dim(V 0

0) � 1. Remember that as P(k) has

commutative root groups the same should hold for MU(V 0; q0; k0). Remark

that by Lemmas 103 and 109 R1 � Fix(�0). Let (u), (v) 2 P(k) such that

�(u) = (u00; u
0

1) and �(v) = (v00; v
0

1).

As :

�s(u)s(1)s(v)s(1)�
�1 = �s(uv)s(1)�

�1

we �nd :

s(u00;u01)s(0;1)s(v00;v01)s(0;1) = s(w00;w01)s(0;1)

with (w00; w
0

1) = �(uv).
Using the results of section 3.13 we know that with respect to the ordered

base the element fe0
�1, B

0

0, e
0

1g s(u00;u01) s(0;1) s(v00;v01) s(0;1) has as matrix repre-

sentation : 0
@ u01v

0

1 0 0

0 IjB00j 0

0 0 u01
�1v01

�1

1
A

and s(w00;w01) s(0;1) has matrix representation :

0
@ w01 0 0

0 IjB00j 0

0 0 w01
�1

1
A :

Because these two matrices should act in a same way on MU(V 0; q0; k0; �0)
we �nd u01v

0

1 = w01. We already remarked that R0

1 2 Fix(�0), in particular

u01, v
0

1, w
0

1 2 Fix(�
0). But then

(u01v
0

1)
�0 = u01v

0

1

= v01u
0

1

= (w01)
�0

= w01
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shows v01u
0

1 = u01v
0

1. The automorphism s(v00;v01) s(0;1) s(u00;u01) s(0;1) has a matrix
representation with respect to the ordered base fe0

�1, B
0

0, e
0

1g of the form :0
@ v01u

0

1 0 0

0 IjB00j 0

0 0 v01u
0

1

1
A :

Thus we see s(v00;v01) s(0;1) s(u00;u01) s(0;1) = s(u00;u01) s(0;1) s(v00;v01) s(0;1). Sending

this equation over to P(k) via ��1 yields :

s(u)s(1)s(v)s(1) = s(v)s(1)s(u)s(1)

equivalently :

s(uv)s(1) = s(vu)s(1):

This is only possible if uv = vuz, for an element z 2 Z(k). As u and v where
chosen arbitrarily we �nd

[u; v] 2 Z(k); 8u; v 2 k:

Lemma 50 shows that this is only possible if Z(k) = k. But then Lemma

119 implies that P(k) is commutative, a contradiction. 2

Proposition 126 A commutative projective Moufang set P(k) is isomor-

phic to a Moufang set (X 0; (Ux0)x02X0) isomorphic to M(Q(V 0; q0; �0; k0)) or
to P(�k0; l0; k0) if and only if :

(i) (X 0; (Ux0)x02X0) is an orthogonal Moufang set MO(V 0; q0; k0) and one

of the following possibilities occurs :
(i:a) dim(V 0) = 3 and k �= k0,
(i:b) dim(V 0) = 4, codim(Rad(f)) 6= 2 and k �= k00, where k00 is a

quadratic Galois extension of k0,
(i:c) char(k) = 2, codim(Rad(f 0)) = 2 and there exists a constant
c0 2 k0 such that the subset fc0q0(w0)jw0 2 Rad(f)g of k0 is a sub�eld of
k0 isomorphic to k,

(ii) (X 0; (Ux0)x02X0) is a hermitian Moufang setMH(V 0; q0; k0; �0), dim(V 0) =

2 and k �= Fix(�),
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(iii) (X 0; (Ux0)x02X0) is a unitary Moufang setMU(V 0; q0; k0; �0) de�ned over
a generalized quaternion algebra k0 with standard involution �0, dim(V 0)

= 2 and k �= Z(k0),

(iv) (X 0; (Ux0)x02X0) is an indi�erent Moufang set of the form P(�k0; l0; k0),
and k �= l0 = k0.

Choose a coordinatization of M(V 0; q0; k0; �) with associated decomposition

V 0 = e0
�1k

0�V 0

0�e
0

1k
0 and labelling setR0

0;1 = f(v00; v
0

1) 2 V
0

0�kjq(v
0

0)+v
0

1 = 0g.
If � denotes the isomorphism from P(k) to M(V 0; q0; �0; k0) we can assume

without loss of generality that �(0) = (0; 0) and �(1) = (1).

First case : (X 0; (Ux0)x02X0) is an orthogonal Moufang set of the form

MO(V 0; q0; k0)).

As P(k) is commutative Lemma 120 implies that dim(V 0

0) = 1, dim(V 0

0) = 2

or f jV 00 = 0. We investigate these cases separately.

1. dim(V 0

0) = 1

Lemma 111 shows that MO(V 0; q0; k0) �= P(k0). Hence by Proposition 124

we see that MO(V 0; q0; k0) is isomorphic to P(k) if and only if k �= k0.

2. dim(V 0

0) = 2.

Lemma 112 shows that MO(V 0; q0; k0) �= k00, where k00 is a quadratic Galois

extension of k0. Hence Proposition 124 implies that in this caseMO(V 0; q0; k0)

is isomorphic to P(k) if and only if k �= k00.
3. f 0jV 00 = 0

Without loss of generality we can assume that after an possible multiplica-

tion of q0 with a constant c0, we can work in the proportional Moufang set

MO(V 0; cq0; k0), with proportional coordinate system associated to the de-

composition e0
�1c

0�1k0 �V 0

0 � e
0

1k
0 (cfr. section 3.12.2) with labelling set �R0;1.

Denote cq0 = �q and c0f 0 = �f . AsMO(V 0; q0; k0) is isomorphic toMO(V; �q; k0)
in a canonical way under  c, � induced an isomorphism �� =  c Æ � between

P(k) and MO(V 0; �q; k0) satisfying :

��(0) = (0; 0)
��(1) = (1)

��(1) = (�e0; 1):

We show �R1 is a sub�eld of k0.

As Rad( �f) = 0, �R1 is an additive subgroup of k.
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Let �u1, �v1 2 �R1. This means that there exists �u0; �v0 2 V 0

0 such that (�u0; �u1)
and (�v0; �v1) 2 �R0;1. Suppose u; v 2 k with �(u)(�u0; �u1), �(v) = (�v0; �v1) and
�(uv) = ( �w0; �w1) then :

s(�v0;�v1)s(�e0;1)s(�u0;�u1)s(�e0;1)(�e0; 1) = (�e0�u1�v1; (�u1�v1)
2)

= �(s(v)s(1)s(u)s(1)(1))

= �(s(uv)s(1)(1)

= s( �w0; �w1)(�e0; 1)

= (�e0 �w1; �w
2
1):

Thus we have :

�u1�v1 = �w1 2 �R0;1:

If �u1 2 �R1, also �u�11 2 �R1 This shows that �R1 is a sub�eld of k0.

Hence we can consider the projective Moufang set P( �R1) with a coordinati-

zation.

Consider the bijection 
 from MO(V 0; �q; k0) to P( �R1) determined by :


((�v0; �v1)) = (�v1)


((1)) = (1):

Then one easily checks that 
 de�nes a Moufang set isomorphism. As P(k)
is isomorphic toMO(V 0; �q; k0) we deduce using Proposition 124 that k �= �R1.

Second case: (X 0; (Ux0)x02X0) is a hermitian Moufang set M H(V 0,q0,k0,�0).
Using Lemma 104 we �nd dim(V 0) = 2 andM(V 0; q0; k0; �0) is isomorphic to
P(Fix(�)). Hence P(k) �= P(Fix(�0)) and k �= Fix(�0) by Proposition 124.

Third case: (X 0; (Ux0)x02X0) is a unitary Moufang set MU(V 0; q0; k0; �0).
As P(k) is commutative and has commutative root groups. Lemma 104 im-

plies that MU(V 0; q0; k0; �0) is a polar line or extended polar line. Moreover

by Lemma 123 we see that dim(V 0) = 2 and MU(V 0; q0; k0; �0) �= P(Z(k0)).
Proposition 124 implies that in this case thus P(k) �= MU(V 0; q0; k0; �0) if
and only if k �= Z(k0).

Fourth case : (X 0; (Ux0)x02X0) is of the form P(�k0; l0; k0)
Suppose P(k) �= P( �k0; l0; k0) under �. After coordinatization of both Mo-

ufang sets, � induces a map from k to l0, also denoted by �, and de�ned by
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�(v) = (�(v)), 8v 2 k. Without loss of generality we can assume �(0) = (0),

�(1) = (1) and �(1) = (1).

Let v1; v1 2 k and w01; w
0

2 2 l
0 with �(v1) = w01 and �(v2) = w02. Then :

�(s(v1v2)s(1)(1) = s(�(v1v2))s(1)(1)

= (�(v1v2)
2)

= ((�(v1)�(v2))
2)

= ((w01w
0

2)
2)

= s(w01)s(1)s(w02)s(1)(1)

= �(s(v1)s(1)s(v2)s(1)(1):

This implies that w01w
0

2 2 l0. As w01 and w02 where chosen arbitrarily and

k0 is generated by l0 as a ring it follows that l0 = k0. But in this case

P( �k0; l0; k0) �= P(k0), and hence k �= l0 by Proposition 124.

That the converse of the proposition holds in the cases (i):a, (i):b, (ii) and
(iii) is an easy consequence of Proposition 124.

Remains to check that whenever (X 0; (Ux0)x02X0) is an orthogonal Moufang

set of the form MO(V 0; q0; k0) with codim(Rad(f 0)) = 2 such that for some

constant c0 2 k0 the setfc0q0(w0) jw0 2 Rad(f 0)g is a �eld isomorphic to k

then P(k) �= (X 0; (Ux0)x02X0).
Under the conditions we coordinatizeMO(V 0; q0; k0) associated to the decom-
position V 0 = e0

�1k �V
0

0 �e
0

1k with labelling set R0

0;1 = f(v00; v
0

1) jq(v
0

0)+v
0

1 =

0g. We have fc0q0(v00) jv
0

0 2 V 0

0g = fc0q0(w0)j w0 2 Rad(f 0)g. Denote this

set as k00. By the assumptions we have that k00 is a �eld such that k �= k00,
hence P(k) �= P(k00). LetMO(V 0; c0q0; k0) be the Moufang set proportional to

MO(V; q; k) with factor c0 coordinatized using the decomposition V 0 = �e0�1k
0

�V 0

0 ��e01k
0 with �e0�1 = e0

�1c
0�1 and �e01 = e01.

Consider a canonical coordinatization of P(k00). Remark that for any c0q0(v00),
v00 is the unique vector w

0

0 of V
0

0 such that c0q0(w00) = c0q0(v00). Therefore we
can de�ne the bijection � from P(k00) to MO(V 0; c0q0; k0) by :

�(v0) = (v00; v
0)

�(1) = (1)

where for v0 2 k00, v00 is the unique vector of V
0

0 such that c0q0(v00) = v0. Us-
ing Lemma 41 one easily checks that � de�nes a Moufang set isomorphism.

Hence MO(V 0; q0; k0) �= MO(V 0; c0q0; k0) �= P(k00). This shows that P(k) �=
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P(k00) �= MO(V 0; q0; k0). 2

3.15.3 The isomorphism problem for orthogonal Mo-

ufang sets.

In this section we investigate possible isomorphisms between orthogonal Mo-

ufang sets and other Moufang sets mentioned in the list of section 3.14

Proposition 127 An orthogonal Moufang set MO(V; q; k) is isomorphic to
a classical or indi�erent Moufang set (X 0; (Ux0)x02X0) if and only if one of

the following holds :

(i) (X 0; (Ux0)x02X0) is a projective Moufang set P(k0) and one of the fol-
lowing subcases occurs :
(i:a) Z(k0) 6= k0, k0 is a generalized quaternion algebra, dim(V ) = 6

and k �= Z(k0),
(i:b) dim(V ) = 3, Z(k0) = k0 and k �= k0,
(i:c) dim(V ) = 4, codim(Rad(f)) 6= 2, Z(k0) = k0 and �k �= k0, where �k

is the quadratic Galois extension of k determined by MO(V; q; k),
(i:d) codim(Rad(f)) = 2, there exists a constant c such that the set
fcq(w)jw 2 Rad(f)g is a �eld isomorphic to k0,

(ii) (X 0; (Ux0)x02X0) is an orthogonal Moufang setMO(V 0; q0; k0; �0) and one

of the following subcases occurs :
(ii:a) dim(V ) = dim(V 0) = 3, and k �= k0,
(ii:b) dim(V ) = 3, dim(V 0) = 4, codim(Rad(f 0) 6= 2 and k �= �k0, where
�k0 is the quadratic Galois extension of k0 determined by MO(V 0; q0; k0),

(ii:c) dim(V 0) = 3, dim(V ) = 4, codim(Rad(f) 6= 2 and k0 �= �k, where
�k is the quadratic Galois extension of k determined by MO(V; q; k),
(ii:d) dim(V ) = dim(V 0) = 4, codim(Rad(f)) 6= 2, codim(Rad(f 0)) 6=
2 and �k �= �k0, where �k is the quadratic Galois extension of k deter-
mined by MO(V; q; k) and �k0 is the quadratic Galois extension of k0

determined by MO(V 0; q0; k0),

(ii:d) codim(Rad(f)) = 2, dim(V 0) = 3, there exists a constant c 2 k
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such that the set fcq(w) jw 2 Rad(f)g is a sub�eld of k isomorphic to
k0,
(ii:e) codim(Rad(f)) = 2, dim(V 0) = 4, codim(Rad(f 0)) 6= 2 and

there exists a constant c 2 k such that the set fcq(w) jw 2 Rad(f)g
is a �eld isomorphic to a quadratic Galois extension �k0 determined by
MO(V 0; q0; k0),

(ii:f) codim(Rad(f 0)) = 2, dim(V ) = 3, there exists a constant c0 2 k
such that the set fc0q0(w0) jw0 2 Rad(f 0)g is a sub�eld of k0 isomorphic
to k,

(ii:g) codim(Rad(f 0)) = 2, dim(V ) = 4, codim(Rad(f)) 6= 2 and there
exists a constant c0 2 k0 such that the set fc0q0(w0) jw0 2 Rad(f 0)g is
a �eld isomorphic to the quadratic Galois extension �k determined by

MO(V; q; k),
(ii:h) codim(Rad(f)) = codim(Rad(f 0) = 2, � induces a bijection from
' from fq(w) jw 2 Rad(f)g to fq0(w0)j w0 2 Rad(f 0)g, there exist

constants c 2 k, c0, d0 2 k0 such that 1 2 fcq(w) jw 2 Rad(f)g,
1 2 f c0q0(w0) jw0 2 Rad(f 0)g and an isomorphism � from the �eld
generated by fcq(w) jw 2 Rad(f)g to the �eld generated by fc0q0(w0)
jw0 2 Rad(f 0)g such that :

d0'(q(w)) = (c(q(w)))�; 8w 2 Rad(f):

(ii:i) MO(V; q; k) is not commutative and there exists a bijective semi-
linear transformation ' from V to V 0 and a constant c0 2 k0 such that :

�(hxi) = h'(x)i; 8x 2 V with hxi 2 MO(V; q; k);

c0(f(x; y)� = f 0( ~�(x); ~�(y)); 8x; y 2 V;

c0(q(x))� = q0( ~�(x)); 8x 2 V;

where f and f 0 are the forms associated to q and q0,

(iii) (X 0; (Ux0)x02X0 is a hermitian Moufang set of the formMH(V 0; q0; k0; �0)

with dim(V 0) = 2 and MO(V; q; k)) �= P(Fix(�)), �=M(V 0; q0; k0; �0),

(iv) (X 0(Ux0)x02X0) is an extended polar lineMU(V 0; q0; k0; �0) de�ned over a
generalized quaternion algebra k0 isomorphic toMO(V; q; k). If char(k) 6=
2, dim(V 0) = 2 and one of the following subcases occurs :
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(iv:a) dim(V ) = 3, �0 is the standard involution and k �= Z(k0),
(iv:b) dim(V ) = 4, �0 is the standard involution and �k �= Z(k0), where
�k is the quadratic Galois extension determined by MO(V; q; k),

(iv:c) dim(V ) = 3, �0 is not the standard involution andMO(V; q; k) is
isomorphic to the orthogonal Moufang set determined byM(V 0; q0; k0; �0).

(v) X 0; (Ux0)x02X0) is an indi�erent Moufang set P(�k0; l0; k0) and one of the

following subcases occurs :
(v:a) dim(V ) = 3 and k �= l0 = k0,
(v:b) dim(V ) = 4, codim(Rad(f 0)) 6= 2 and �k �= l0 = k0, where �k is the

quadratic Galois extension of k determined by MO(V; q; k),
(v:c) codim(Rad(f)) = 2, � induces a bijection ' from fq(w) jw 2
Rad(f)g to �l0, there exist constants c 2 k, c0 2 k0 such that 1 2 fcq(w)
jw 2 Rad(f)g and an isomorphism � from the �eld generated by fcq(w)
jw 2 Rad(f)g to k0 such that :

c0('(q(w)) = (c(q(w)))�:

proof :

First case : (X 0; (Ux0)x02X0) is a projective Moufang set of the form P(k0).
If Z(k0) 6= k0 we refer to Proposition 125. If Z(k0) = k0 we refer to Proposi-

tion 126.

Second case: (X 0; (Ux0)x02X0) is a non commutative orthogonal Moufang set

of the form MO(V 0; q0; k0).
Remark that this implies that dim(V ) � 5 and dim(V 0) � 5 and k 6= F2
or F3 by Lemma 116. Choose coordinatizations of both Moufang sets with

associated decompositions V = e�1k�V0e1k and V
0 = e0

�1k
0�V 0

0e
0

1k
0. and la-

belling sets R0;1 = f(v0; v1) 2 V0�kjq(v0)+v1 = 0g and R0

0;1 = f(v00; v
0

1) 2 V
0

0

�kjq0(v00) + v01 = 0g. Let B0 and B
0

0 be ordered bases of V0 and V
0

0 . Without

loss of generality we can assume �((0; 0)) = (0; 0) and �((1)) = (1). Using

the results of section 3.12.3 we can assume (0; 1) 2 R0;1, (0; 1) 2 R0

0;1 and

�((0; 1)) = (0; 1). As for any coordinate (v0; v1) 2 R0;1, v1 is completely

determined by v0, � induces a bijection from V0 to V
0

0 also denoted by � and

de�ned by :

�(v0; v1) = (�(v0); v
0

1)

The element v01 will be denoted in the sequel by �v0(v1).

Expressing that � is a Moufang set isomorphism implies that
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for (v0; v1), (w0; w1) 2 R0;1 :

�((v0; v1)� (w0; w1)

= (�(v0 + w0); �
v0+w0(v1 + w1 � f(v0; w0))

= (�(v0) + �(w0); �
v0(v1) + �w0(w1)� f 0(�(v0); �(w0))

= �((v0; v1))� �((w0; w1)):

This means that � de�nes an additive bijection from V0 to V
0

0 .

Our next claim is that � induces a semi-linear transformation from V0 to V
0

0 .

We give di�erent proofs depending on char(k).

1. First case : char(k) 6= 2.

Let (v0; v1) 2 R0;1 and � 2 k.
Using Lemma 107 we �nd that s(v0;v1) s(v0�;v1�2) 2 Z(FixTMO(V;q;k) f(1),

(0; 0)g). Namely for (w0; w1) 2 R0;1 we have :

s(v0;v1)s(v0�;v1�2)(w0; w1) = (w0�
�2; w1�

�4):

Thus it follows that s(�(v0);�v0 (v1)) s(�(v0�);�v0�(v1�2)) 2 Z(FixTMO(V 0;q0;k0) f(1),

(0; 0)g. Suppose �(v0) and �(v0�) are linearly independent. As dim(V 0) �
we can choose an a00 2 V 0

0 , such that a00 62 h�(v0), �(v0�) i. Denote W
0

0 = h
a00, �(v0), �(v0�) i and W

0 = e0
�1k

0 �W 0

0 �e
0

1k
0. As q0 is a non degenerate

quadratic form of Witt index 1 on W 0 we can consider the Moufang subset

MO(W 0; q0; k0) ofMO(V 0; q0; k0). We �nd that s(�(v0);�v0 (v1)) s(�(v0�);�v0�(v1�2))
2 Z(FixTMO(W 0;q0;k0) f(1), (0; 0)g). But as dim(W 0

0) � 3 and k 6= F3 , Theo-
rem 1.29 in [24] implies that the restriction of s(�(v0);�v0 (v1)) s(�(v0�);�v0�(v1�2))
on W 0 has a matrix representation with respect to the ordered base fe0

�1,

�(v0), �(v0�), a
0

0, e
0

1 g of the form :0
@ �0 0 0

0 I3 0

0 0 �0�1

1
A :

This yields for w00 2 W
0

0 that :

(s(�(v0);�v0 (v1))s(�(v0�);�v0�(v1�2)))((w
0

0; q
0(w00)))0

= �(v0)f
0(w00; �(v0))(�

v0(v1))
�2�v0�(v1�

2)

+�(v0�)(f
0(�(v0); �(v0�))f

0(�(v0); w
0

0)(�
v0(v1))

�2

+f 0(�(v0�); w
0

0)(�
v0(v1))

�1) + w00(�
v0(v1))

�1�v0�(v1�
2)

= w00�
0
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This means that for every w00 2 W
0

0 n h�(v0), �(v0�)i :

�(v0)f
0(w00; �(v0))(�

v0(v1))
�2�v0�(v1�

2)

+�(v0�)(f
0(�(v0); �(v0�))f

0(�(v0); w
0

0)(�
v0(v1))

�2

+f 0(�(v0�); w
0

0)(�
v0(v1))

�1)

= 0:

And as �(v0), �(v0�) are linearly independent this shows :

f 0(w00; �(v0)) = 0; 8w00 2 W
0

0 n h�(v0); �(v0�)i

yielding that �(v0) 2 Rad(f 0jW 0), a contradiction as f 0 is not degenerate on

W 0.

This shows that �(v0) and �(v0�) are linearly dependent.

And in this way we �nd :

�(v0�) = �(v0)�
0; �0 2 k0;8� 2 k; v0 2 V0:

As dim(V0) � 3 we can use Lemma 54 to see that � de�nes a bijective semi-

linear transformation with an associated �eld isomorphism � such that :

�(v0�) = �(v0)�
�; 8� 2 k; v0 2 V0:

2. Second case char(k) = 2.

Let (v0; v1) 2 R0;1 with �(v0) 62 Rad(f 0) and � 2 k. Then we show that

�(v0�) = �(v0)�
0, �0 2 k0.

By Lemma 107 we have :

s(v0;v1)s(v0�;v1�2)(w0; w1) = (w0�
2; w1�

4); 8(w0; w1) 2 R0;1;

and s(v0;v1)s(v0�;v1�2) 2 Z(FixTMO(V;q;k) f(0; 0); (1)g) and also s(�(v0);�v0 (v1))
s(�(v0�);�v0(�(v1�2)) 2 Z(FixTMO(V 0;q0;k0)f(0; 0); (1)g.
To simplify notations and calculations we reduce the situation to the case

where dim(V 0) = 5 to prove that if �(v0) 62 Rad(f
0), �(v0) and �(v0�) are lin-

early dependent. Indeed, due to the conditions onMO(V; q; k) and �(v0) we
can choose a subspaceW 0

0 � V 0

0 containing �(v0) and �(v0�) sucht that �(v0)

62 Rad(f 0jW 0

0
) and such that the Moufang subset MO(W 0; q0; k0) is not com-

mutative withW 0 = e0
�1k

0 �W 0

0 �e
0

1k
0 and dim(W 0) = 5. As s(�(v0�);�v0(�(v1�2))

2 Z(FixTMO(V 0;q0;k0)f(0; 0); (1)g we also �nd that s(�(v0�);�v0(�(v1�2)) 2 Z(FixTMO(W 0;q0;k0)f(0; 0); (1)g.
Hence we are reduced to the case where dim(V 0) = 5.
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Suppose �(v0) and �(v0�) are linearly independent.

We give matrix representations of s(�(v0);�v0 (v1))s(�(v0�);�v0�(v1�2)) with respect

to certain bases.

Suppose �rstly that �(v0�) 2 Rad(f
0).

Then we choose an ordered base B0

0 = fe00
1
, e00

2
, e00

3g such that e00
1
= �(v0)

and e00
3 = �(v0�). Using Lemma 106 one we �nd that with respect to the

ordered base fe0
�1; B

0

0; e
0

1g, s(�(v0�);�v0�(v1�2)) has a matrix representation of

the form : 0
BBBB@

�0 0 0 0 0

0 1 x0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 �
0
�1

1
CCCCA :

Consider an arbitrary element t of FixTMO(V 0;q0;k0)f(0; 0); (1)g. Then this

has a general matrix representation with respect to the ordered base fe0
�1; B

0

0,

e01g of the form : 0
BBBB@

�0 0 0 0 0

0 g01 h01 0 0

0 g02 h02 0 0

0 g03 h03 1 0

0 0 0 0 �
0
�1:

1
CCCCA :

Expressing that t and s(�(v0);�v0 (v1)) s(�(v0�);�v0(�(v1�2)) commute translates in
the following set of equations :

g0ix
0 = 0; 2 � i � 3:

Using Lemma 106 one can choose a t such that for some i, 2 � i � n � 2,

g0i 6= 0. Then the above equations show x0 = 0.

Hence s(�(v0);�v0 (v1)) s(�(v0�);�v0(�(v1�2)) has matrix representation of the form :

0
@ �0 0 0

0 I3 0

0 0 �
0
�1

1
A :

Suppose �(v0�) 62 Rad(f).
If f 0(�(v0); �(v0�) 6= 0 we let B0

0 = fe00
1, e00

2, e00
3g be an ordered base of V 0

0

with e00
1 = �(v0), e

0

0
2 = �(v0�) and e

0

0
3 the vector which spans Rad(f 0).
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By Lemma 106 one checks that s(�(v0);�v0 (v1)) s(�(v0�);�v0(�(v1�2)) has a matrix

representation with respect to the ordered base fe0
�1, B

0

0, e
0

1g of the form :0
BBBB@

�0 0 0 0 0

0 x01 x02 0 0

0 x03 x04 0 0

0 0 0 1 0

0 0 0 0 (�0)�1

1
CCCCA

If f 0(�(v0); �(v0�) = 0 we choose the base B0

0 = f e00
1, e00

2, e00
3g of V 0

0 such

that e00
2 = �(v0) and he00

3 = Rad(f 0). Remark that by choice of e00
3, e00

3

2 �(v0)
? \ = (�(v0�))

? = h �(v0); �(v0�)i. Using Lemma 106 we �nd as

matrix representation of s(�(v0);�v0 (v1)) s(�(v0�);�v0(�(v1�2)) with respect to the

ordered base fe0
�1, B

0

0, e
0

1g :0
BBBB@

�0 0 0 0 0

0 1 0 0 0

0 x01 1 0 0

0 x03 0 1 0

0 0 0 0 (�0)�1

1
CCCCA

We set as general matrix representation of an element t of FixTMO(V 0;q0;k0)

f(0; 0); (1)g with respect to the ordered bases fe0
�1; B

0

0; e
0

1g the following

form : 0
BBBB@

�0 0 0 : : : 0

0 g01 h01 0 0

0 g02 h02 0 0

0 g03 h03 1 0

0 0 0 0 �
0
�1:

1
CCCCA

Let f 0(�(v0); �(v0�)) = 0.

Translating the fact that t and s(�(v0);�v0 (v1)) s(�(v0�);�v0(�(v1�2)) commute yields
the following set of equations :

g01x
0

1 = x01

h01x
0

1 = 0

g01x
0

3 = x03

h01x
0

3 = 0:
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As a next step we calculate g0i and h0i for a special case. Let b00 and c00
2 V 0

0 with f(e
0

0

1
; c00) = 0, and f(e

0

0

1
; b00) 6= 0 (remark that this is possible as

e00
1 62 Rad(f 0)). Write b00 =

P3

j=1 e
0j
0 b

0j
0 . Using Lemma 106 we calculate :

s(b00;b01)s(c00;c01)(e
01
0 ) = b00f(e

01
0 ; b

0

0)b
0
�1
1 + e

01
0

=

3X
j=1

e
0j
0 b

0j
0 f(e

01
0 ; b

0

0)b
0
�1
1 + e

01
0 :

Thus in particular for r(b00;b01)r(c00;c01), g
0

1 = (1 + b
01
0 f(e

01
0 ; b

0

0)b
0
�1
1 ) and g02 =

b
02
0 f(e

01
0 ; b

0

0)b
0
�1
1 and the equation from above becomes :

x01 + x01(b
01
0 f(e

01
0 ; b

0

0)b
0
�1
1 ) = x01:

Equivalently :

x01b
01
0 = 0:

As f 0(e00
1; b00) = f 0(e00

1;
P3

j=2 e
0

0
jb00

j) we can choose b00
1 arbitrarily in the above

formula. Hence x01 = 0. In a completely similar way one shows x03 = 0. Thus

in this case s(�(v0);�v0 (v1)) s(�(v0�);�v0(�(v1�2)) has a matrix representation of the

form (with respect to the base B = f e0
�1, B

0

0, e
0

1g) :0
@ �0 0 0

0 I3 0

0 0 �
0
�1

1
A :

Suppose �nally that f 0(�(v0); �(v0�)) 6= 0. Expressing in this case that

s(�(v0);�v0 (v1)) s(�(v0�);�v0(�(v1�2)) commutes with an arbitrary element t of FixMO(V;q;k)

f(0; 0), (1)g with matrix representation with respect to the ordered base

fe0
�1; B

0

0; e
0

1g : 0
BBBB@

�0 0 0 0 0

0 g01 h01 0 0

0 g02 h02 0 0

0 g03 h03 1 0

0 0 0 0 �
0
�1:

1
CCCCA

yields the following set of equations :

g03x
0

1 + h03x
0

3 = g03 (3.12)

g03x
0

2 + h03x
0

4 = h03: (3.13)
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We calculate in some special cases g03 and h
0

3. Let c
0

0 2 V
0

0 with f
0(e00

1; c00) = 0

and f 0(e00
2; c00) = 0 and b00 =

P3

j=1 e
0

0
jb00

j . Choose c01, b
0

1 2 k with (b00; b
0

1),

(c00; c
0

1) 2 R
0

0;1.

Then we �nd :

s(b00;b01)s(c00;c01)(e
0

0

1
) =

3X
j=1

e00
j
b00
j
f(e00

1
; e00

2
)b00

2
b01
�1

+ e00
1

s(b00;b01)s(c00;c01)(e
0

0

2
) =

3X
j=1

e00
j
b00
j
f(e00

1
; e00

2
)b00

1
b01
�1

+ e00
2
:

Consequently we have in this case :

f 03 = b00
2
b00

3
f 0(e00

1
; e00

2
)b01

�1

g03 = b00
1
b00

2
f 0(e00

1
; e00

2
)b01

�1
:

But then equations (3.12) and (3.13) become :

b00
2
b00

3
f 0(e00

1
; e00

2
)b01

�1
x01 + b00

1
b00

2
f 0(e00

1
; e00

2
)b01

�1
x03 = b00

1
b00

2
f 0(e00

1
; e00

2
)b01

�1

b00
2
b00

3
f 0(e00

1
; e00

2
)b01

�1
x02 + b00

1
b00

2
f 0(e00

1
; e00

2
)b01

�1
x04 = b00

1
b00

2
f 0(e00

1
; e00

2
)b01

�1
:

After simpli�cation :

b00
2
x01 + b00

1
x03 = b00

2

b00
2
x02 + b00

1
x04 = b00

1
:

As b00 was chosen arbitrarily, these equations should hold for all b00
1
and b00

2

in k. This is only possible if x02 = x03 = 0 and x01 = x04 = 1.

This means that also in this case s(�(v0);�v0 (v1)) s(�(v0�);�v0(�(v1�2)) has a matrix
representation of the form : 0

@ �0 0 0

0 I3 0

0 0 �
0
�1

1
A :

In any case we thus �nd that for every (v00; v
0

1) 2 R
0

0;1 :

s(�(v0);�v0 (v1))s(�(v0�);�v0�(v1�2))(v
0

0; v
0

1) = (v00�
0; v01�

02):
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Using Lemma 106 and projecting on the �rst coordinate gives that this is

equivalent to :

�(v0)f
0(v00; �(v0))(�

v0(v1))
�2�v0�(v1�

2)

+�(v0�)f
0(�(v0); �(v0�))f

0(�(v0); v
0

0)(�
v0(v1))

�2

+f 0(�(v0�); v
0

0)(�
v0(v1))

�1) + v00(�
v0(v1))

�1�v0�(v1�
2)

= v00�
0

As dim(V 0

0) � 3, h�(v0); �(v0�)i 6= V 0

0 and this implies that for every v00 62
h�(v0) �(v0�i :

f 0(�(v0); v
0

0) = 0:

or equivalently �(v0) 2 Rad(f
0), contradicting the assumption on �(v0). This

proves �(v0) and �(v0�) are linearly dependent.

So far we thus showed the following property : if for w0 2 V0, �(w0) 62 Rad(f
0)

then :

�(w0�) = �(w00)�
0; � 2 k0;8�0 2 k0:

Suppose w0 2 V0 with �(w0) 2 Rad(f
0) and � 2 k. Then we choose a u0 2 V0

such that �(u0) 62 Rad(f
0).

Let �(u0�) = �(u0)�
0. We have �(w0 + u0) 62 Rad(f 0).

Hence :

�((w0 + u0)�) = �(w0 + u0)�
00; �00 2 k0

= �(w0�) + �(u0�)

= �(w0�) + �(u0)�
0:

If �(w0�) 62 Rad(f 0), �(w0) = �((w0�)�
�1) implies �(w0) 62 Rad(f 0) a con-

tradiction. Hence �(w0�) 2 Rad(f
0).

Then the equation from above implies :

�(w0�) = �(w0)�
0:

We �nd in all cases for � 2 k and v0 2 V0 :

�(v0�) = �(v0)�
0; �0 2 k0:

Thus � de�nes in all cases an additive map from V0 to V
0

0 preserving vector

lines. As dim(V0) � 3 Lemma 54 implies that � is a semi-linear transforma-

tion from V0 to V
0

0 with an associated isomorphism �.



164 CHAPTER 3. MOUFANG SETS

This shows that in all cases � de�nes a semi-linear transformation from V0
to V 0

0 with an associated �eld isomorphism �.
Let (v0; v1) 2 R0;1. Then the equation :

�s(0;1)(v0; v1) = �(v0v
�1
1 ; v�11 )

= (�(v0)(v
�1
1 )�; �v0(v1))

= (�(v0)(�
v0(v1))

�1; (�v0(v1))
�1)

shows that :

�v0(v1) = v�1 :

This implies that �v0(v1) is independent of v0.

De�ne the semi-linear transformation ' from V to V 0 in the following way.

If x = e�1x�1 + x0 + e1k 2 V we set

'(x) = e0
�1x

�
�1 + �(x0) + e01x

�
1 :

By the de�nition of ' we have :

�(hxi) = h'(x)i; 8hxi 2 MO(V; q; k):

We check that ' preserves the forms f and q.
Let (v0; v1), (w0; w1) 2 R0;1.

Then �(v0; v1) = (�(v0); v
�
1 ) implies :

q0(�(v0)) = (q(v0))
�; 8v0 2 V0:

From :

�((v0; v1)� (w0; w1)) = (�(v0 + w0); (v1 + w1 � f(v0; w0))
�)

= (�(v0) + �(w0); v
�
1 + w�

1 � f 0(�(v0); �(w0))

= �((v0; v1))� �((w0; w1))

we deduce :

(f(v0; w0))
� = f 0(�(v0); �(w0)); 8v0; w0 2 V0:

Let x = e�1x�1 + x0 + e1x1, y = e�1y�1 + y0 + e1y1 2 V .
We have :

q(x) = x�1x1 + q(x0)

f(x; y) = x�1y1 + x1y�1 + f(x0; y0):
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Applying � to this formulas yields :

(q(x))� = x�
�1x

�
1 + (q(x0))

�

= x�
�1x

�
1 + q0(�(x0))

= q0('(x))

and :

(f(x; y))� = x�
�1y

�
1 + x�1y

�
�1 + (f(x0; y0))

�

= x�
�1y

�
1 + x�1y

�
�1 + f 0(�(x0); �(y0))

= f 0('(x); '(y)):

This proves ' meets the conditions of the theorem.

Throughout the proof we assumed (0; 1) 2 R0;1, (0; 1) 2 R0

0;1 and �((0; 1))
= (0; 1). In general this is not always the case and we have to use a pos-

sible multiplication of the forms. Namely suppose �(v0; v1) = (v00; v
0

1) for

(v0; v1) 2 R0;1 and (v00; v
0

1) 2 R
0

0;1. Then we can consider the forms v�11 q and

v01
�1q0. Using proportional coordinate systems for the sets MO(V; v�11 q; k)

andMO(V 0; v01
�1q0; k0) as explained in section 3.12.3 we see that the isomor-

phism '�1
v�1
1

Æ � Æ'v01
�1 satis�es �((0; 0)) = (0; 0), �((1)) = (1) and �((0; 1))

= (0; 1).
Therefore we �nd a bijective semi-linear transformation ' such that :

'v�1
1
Æ � Æ 'v01

�1(hxi) = h'(x)i; 8hxi 2 MO(V; q; k)

(q(x))� = v�1 v
0

1

�1
q0('(x)); 8x 2 V

(f(x; y))� = v�1 v
0

1

�1
f 0('(x); '(y)); 8x; y 2 V:

As one easily checks that 'v�1
1
Æ � Æ 'v01

�1(hxi) = �(hxi) and ' meets the

conditions of the theorem.

Conversely let ' be a bijective semi-linear transformation meeting the re-

quirements of the Proposition. Then Lemma 102 shows that � de�ned by :

�(hxi)h'(x)i; hxi 2 MO(V; q; k)

determines a Moufang set isomorphism form MO(V; q; k) to MO(V 0; q0; k0).

Third case : dim(V ) � 4, codim(Rad(f)) 6= 2 and (X 0; (Ux0)x02X0) is an



166 CHAPTER 3. MOUFANG SETS

orthogonal Moufang set.

If dim(V 0) � 5 the proof of the second case implies that ��1 induces a semi-
linear transformation from V 0 to V . It follows that then dim(V ) = dim(V 0),

a contradiction as dim(V ) � 4 by assumption. Hence we have dim(V 0) � 4.

Four cases occur :

1. dim(V ) = dim(V 0) = 3.

Lemma 111 impliesMO(V; q; k) �= P(k) andMO(V 0; q0; k0) �= P(k0). Hence
by Proposition 124 we see that MO(V; q; k) �= MO(V 0; q0; k0) if and only if

k �= k0.

2. dim(V ) = 3, dim(V 0) = 4 and codim(Rad(f 0)) 6= 2.

Using Lemmas 111 and 112 we see thatMO(V; q; k)�= P(k) andMO(V 0; q0; k0)
�= P(k00), where k00 is the quadratic Galois extension of k0 determined by k0.

Hence by Proposition 124 we have thatMO(V; q; k) �=MO(V 0; q0; k0) if and
only if k �= k00.
3. dim(V ) = 3, dim(V 0) = 4 and codim(Rad(f 0)) = 2.

We refer to the proof of the sixth case.

4. dim(V ) = 4 and dim(V 0) = 3.

The situation is similar as when dim(V ) = 3 and dim(V 0) = 4.

5. dim(V ) = dim(V 0) = 4 and codim(Rad(f)) = 2.

By Lemma 120 we then know that MO(V; q; k) is commutative. Hence

MO(V 0; q0; k0) is commutative and codim(Rad(f 0)) = 2 by the same Lemma.

We refer to the proof of the sixth case.

6. dim(V ) = dim(V 0) = 4 and codim(Rad(f)) 6= 2. By Lemma 120 we have

codim(Rad(f 0)) 6= 2. Lemma 112 implies thatMO(V; q; k) �= P(�k), where �k
is the quadratic Galois extension of k determined by MO(V; q; k) and sim-

ilarly MO(V 0; q0; k0) �= P (�k0) where �k0 is the quadratic Galois extension of

k0 determined by MO(V 0; q0; k0). Proposition 124 shows that in this case

MO(V; q; k) �= MO(V 0; q0; k0) if and only if �k �= �k0.

Fourth case: M(V 0; q0; k0; �0) is of type 4.
Denote the isomorphism from MO(V; q; k) to M(V 0; q0; k0; �0) by �. With-

out loss of generality we can assume that q0 is a (�;�1)-quadratic form and

1 2 Tr(�0) (cfr. see Lemma 92 and section 3.12.2). Choose decompositions

V = e�1k � V0 � e1k and V 0 = e0
�1k

0 � V 0

0 � e01k
0 with associated coordinati-

zations over the labelling sets R0;1 = f(v0; v1) 2 V0 � kjq(v0) + v1 = 0g and
R0

0;1 = f(v00; v
0

1) 2 V
0

0 � k
0 jq0(v00) + v

0

1 = 0g. Remark that the assumptions on

q0 yield R0

0;1\ f0g �k = f(0; x0)jx0 2 Tr(�0)g and (0; 1) 2 R0

0;1.

As MO(V; q; k) has commutative root groups the same should hold for
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M(V 0; q0; k0; �0). Lemma 109 shows that f 0
jV 00

= 0 and R0

1 � Fix(�0).

Suppose that if k0 is a generalized quaternion algebra, �0 is not the stan-

dard involution. Then Lemma 47 implies that k0 is generated as a ring by

Tr(�0). Let v0 2 Tr(�0). By assumption there exists a (v0; v1) 2 R0;1 with

�((v0; v1)) = (0; v0). Let � 2 k. Set �(v0�; v1�
2) = (w00; w

0

1). By Lemma

107 we have s(v0;v1) s(v0�;v1�2) 2 Z(FixTMO(V;q;k)f(0; 0); (1)g). Hence after

applying � we get :

s(0;v0)s(w00;w01) 2 Z(FixTM(V 0;q0;k0;�0)f(0; 0); (1)g):

Using the matrix representations of section 3.13 this means :0
@ 0 0 v0

0 IjB0j
0

v0�1 0 0

1
A
0
@ 0 0 w01

0 IjB0j
0

w01
�1 0 0

1
A =

0
@ �01 0 0

0 IjB0j
0

0 0 �02

1
A

Hence v0w01
�1 = �01 and v

0�1w01 = �02.

By assumption we have :0
@ �01 0 0

0 IjB00j 0

0 0 �02

1
A 2 Z(FixTMU(V 0;q0;k0;�0f(1); (0; 0)g):

This means that in particular for every �0 2 Tr(�0) the automorphism with

matrix representation with respect to the ordered base fe0
�1, B

0

0, e
0

1g :0
@ [�0; �01] 0 0

0 IjB00j 0

0 0 [�0�1; �02]

1
A

should act as the identity on MU(V 0; q0; k0; �0). As Tr(�0) generates k0 as a

ring we �nd that [�0; �01] = [�0; �02] = z0�0 with z0�0 2 Z(k0) with z0�0
�0z0� = 1.

This means that there exists for every �0 2 Tr(�0) a z0�0 2 Z(k
0) such that :

�0�01 = �01�
0z0�0:

Let �0 62 Z(k0). Then :

(1 + �0)�01 = (1 + �0)�01z
0

(1+�0)

= �01 + �01�
0z0�0
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shows :

z0(1+�0) + �0z0(1+�0) = 1 + �0z�0

and thus :

z0�0 = z0(1+�0) = 1:

This means �01 2 Z(k
0). In a similar one shows that �02 2 Z(k

0).

Set z0 = �01 then we thus �nd :

�(v0�; v1�
2) = (w00; v

0z0); z0 2 Z(k0) (3.14)

By assumption there exists a (e0; e1) 2 R0;1 such that �((e0; e1)) =(0; 1).
Call the Moufang subset of MO(V; q; k) determined by the set f(e0�1 +
v0�2; e1�

2
1 + v1�

2
2 + �1�2f(e0; y0))j�i 2 k; 1 � i � 2g as Yhe0;v0i. Formula

(3.14) yields that for every (u00; u
0

1) 2 �(Y ), u01 can be written as �01 + v0�02,
with �0i 2 Z(k0), 1 � i � 2. In particular �(s(e0;e1)(v0; v1)) 2 �(Y ) and thus

s(0;1)(0; v
0) = (0; v0�1) 2 �(Y ). But then v0�1 can be written as � 01 + v0� 02, for

� 0i 2 Z(k
0), 1 � i � 2.

Equivalently :

v0
2
� 02 + v0� 01 + 1 = 0:

As v0 was chosen arbitrarily we conclude that every element of Tr(�0) is so-
lution of a quadratic equation with co�eÆc��ents in Z(k0).

Lemma 52 shows that k0 is a generalized quaternion algebra.

But then we �nd by Lemma 47 that in k0 is in any case a generalized quater-

nion algebra.

Let char(k) 6= 2. As MO(V; q; k) has commutative root groups Lemma 104
implies that dim(V 0) = 2. Two cases occur according if �0 is the standard
involution in k0 or not.

If �0 is the standard involution in k0 Lemma 105 implies thatMU(V 0; q0; k0; �0)
�= P(Z(k0)). Therefore Proposition 125 implies that or dim(V ) = 3 and

k �= Z(k0) or dim(V ) = 4 and �k �= Z(k0) where �k is the quadratic Galois

extension of k determined by MO(V; q; k).

If �0 is not the standard involution Lemma 115 shows thatMU(V 0; q0; k0; �0)
is isomorphic to a non commutative orthogonal Moufang setMO(V 00; q00; Z(k0))
with dim(V 00) = 5. In this case we thus �nd that MO(V; q; k) should be iso-

morphic to MO(V 00; q00; Z(k0)).
Fifth case : (X 0; (Ux0)x02X0) is an indi�erent Moufang set of the form

P(�k; l; k).
Choose a coordinate system for MO(V; q; k) with associated decomposition
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V = e�1k �V0 �e1k and labelling set R0;1 = f(v0; v1) 2 V0 � kjq(v0) + v1 =
0g and a coordinate system for P(�k; l; k). Let B0 be an ordered base of

V0. Without loss of generality we can assume �((0; 0)) = (0) and �((1))

= (1). As P(�k0; l0; k0) is a commutative Moufang set the same should hold

for MO(V; q; k).
Hence Lemma 120 implies that dim(V ) = 3, dim(V ) = 4 or codim(Rad(f)) =

2.

1. dim(V ) = 3.

Lemma 111 shows thatMO(V; q; k) �= P(k). By Proposition 126 we see that

MO(V; q; k) �= P(�k0; l0; k0) if and only if k �= l0 = k0.
2.dim(V ) = 4 and codim(Rad(f)) 6= 2.

Lemma 112 showsMO(V; q; k) �= P(�k), where �k is a quadratic Galois exten-
sion of k determined byMO(V; q; k). Proposition 126 yieldsMO(V; q; k) �=
P(�k0; l0; k0) if and only if �k �= l0 = k0.
3. codim(Rad(f)) = 2.

Remark that in this case f jV0 = 0 and Rad(f) = V0. Let e0 2 V0 with q(e0)
6= 0. Set c = q(e0)

�1. Denote l = fcq(w) jw 2 Rad(f)g = fcq(v0) jv0 2 V0g.
We check that l meets the requirements of Proposition 84.

(a) If cq(v0) 2 l we have :

c�1(q(v0))
�1 = cq(v0(q(v0)

�1c�1)) 2 l

and hence l = l�1.

(b) By construction we have 1 2 l.
(c) If cq(v0) 2 l and � 2 k we �nd :

(cq(v0))�
2 = cq(v0�) 2 l

and thus l is a vector space over k2.
Denote the �eld generated by l in k as h. But then Proposition 84 shows

that l determines a Moufang subset of h namely the indi�erent Moufang set

P(l;h).
We show that P(l;h) is isomorphic to MO(V; q; k).

Choose a coordinatization of P(l;h) and let 
 be the bijection from P(l;h)
to MO(V; q; k) de�ned by :


(cq(v0)) = (v0; v1)


(1) = (1):
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Remark that as f jV0 = 0, for (v0; v1) 2 R0;1, v0 is completely determined by

v1. Therefore we see that 
 is well de�ned.

We use Lemma 41 to show that 
 de�nes a Moufang set isomorphism. It will

be enough if we prove that the mappings 
(1) and 
(0) de�ned by :


(1)(u((1); (0); (x))) = 
 Æ u((1); (0); (x)) Æ 
�1; x 2 l


(0)(u((0); (1); (x))) = 
 Æ u((0); (1); (x)) Æ 
�1; x 2 l

de�ne bijections from U(0) to U(0;0) and from U(1) to U(1).

Let cq(v0) 2 l with q(v0) = v1 then we �nd for (w0; w1) 2 R0;1 :


u((1); (0); (cq(v0))

�1((w0; w1)) = 
u((1); (0); (cq(v0))((cq(w0)))

= 
((cq(v0 + w0)))

= (v0 + w0; v1 + w1)

= u((1); (0; 0); (v0; v1))((w0; w1)):

Moreover as (w0; w1) was chosen arbitrarily and 
u((1); (0); (cq(v0))) ((1))

= (1) we see that :


(1)(u((1); (0); (cq(v0)))) = u((1); (0; 0); 
((cq(v0)))):

Thus 
(1) bijection from U(1) to U(1). Remark that for P(l; k), s(1) U(1)

s�1
(1)

= U(0) and similarly for MO(V; q; k), s(e0;e1) U(1) e
�1
(e0;e1)

= U(0;0). As


((1)) = (e0; q(v0)) it suÆces to show that 
 Æ s(1)

�1 = s(e0;e1) in order to

prove that 
(0) de�nes a bijection from U(0) to U(0;0).

We �nd for (v0; v1) 2 R0;1 :


s(1)

�1((v0; v1)) = 
s(1)((cq(v0)))

= 
((c�1q(v0)
�1))

= (v0v
�1
1 c�1; c�2v�11 )

= (v0v
�1
1 q(e0); q(e0)

2v�11 )

= s(e0;e1)((v0; v1)):

and :


s(1)

�1((1)) = (0; 0)

= s(e0;e1)((1))


s(1)

�1((0; 0)) = (1)

= s(e0;e1)((0; 0)):



3.15. ISOMORPHISM PROBLEMS 171

This proves 
Æ s(1) Æ

�1 = s(e0;e1) and 
 de�nes a Moufang set isomorphism.

As V0 = Rad(f) we �nd fq(v0) jv0 2 V0g = fq(w) jw 2 Rad(f)g. Moreover

as for any v0 2 V0, v0 is completely determined by q(v0), � induces a bijection

' from fq(w) jw 2 Rad(f)g to �l0 if we set :

'(q(v0)) = �(v0; v1); 8v0 2 Rad(f) = V0:

Proposition 131 implies that MO(V; q; k) �= P(l;h) is isomorphic to P(
�k0; l0; k0) if and only if there exists a constant c0 2 k0 and a �eld isomorphism

� h to k0 such that :

c0�
((cq(v0))) = (cq(v0))
�

or equivalently :

c0('(q(v0))) = (cq(v0)))
�:

This closes the �fth case.

Sixth case : codim(Rad(f)) = 2 and (X 0; (Ux0)x02X0) is an orthogonal Mo-

ufang set MO(V 0; q0; k0).

Choose a coordinatization ofMO(V; q; k) associated to the decomposition V
= e�1k �V0 � e1k with labelling set R0;1 = f(v0; v1) 2 V0�kjq(v0)+v1 = 0g.
Choose as in proof of the �fth case a constant c 2 k, such that P(l; h) is
isomorphic under 
 to MO(V; q; k) where l = fcq(v0) jv0 2 V0g and h is the

�eld generated by l. As in this caseMO(V; q; k) is commutative Lemma 120
shows that dim(V 0) = 2, dim(V 0) = 3 or codim(Def(f 0)) = 2.

We distinguish three cases :

1. dim(V 0) = 3.

Using Lemmas 111 and 131 we see that in this caseMO(V; q; k) �=MO(V 0; q0; k0)

if and only if h = l �= k0.
2. dim(V 0) = 4 and codim(Rad(f 0)) 6= 2.

Using Lemmas 112 and 131 we see thatMO(V; q; k) �=MO(V 0; q0; k0) if and
only if h = l �= �k0 where �k0 is the quadratic Galois extension of k0 determined

by MO(V 0; q0; k0).
3. codim(Rad(f 0)) = 2.

Choose a coordinatization of MO(V 0; q0; k0) associated to the decomposi-

tion V 0 = e0
�1k

0 � V 0

0 �e
0

1k
0 with labelling set R0

0;1 = f(v00; v
0

1) 2 V 0

0 � k0

jq0(v00) + v01 = 0g.
In view of the conditions on f and f 0 we have Rad(f) = V0 and Rad(f

0) = V 0

0 .

This means that for v0 2 V0, v0 is completely determined by q(v0). Similarly
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for v00 2 V
0

0 , v
0

0 is completely determined by q0(v00)). Therefore � induces a bi-

jection from fq(w) jw 2 Rad(f)g= fq(v0) jv0 2 V0g to fq
0(w0) jw0 2 Rad(f 0)g

= fq0(v00)) jv
0

0 2 V
0

0g is we set :

'(q(v0)) = (�((v0; q(v0))))1; 8v0 2 Rad(f):

Similarly as forMO(V; q; k) we know that there exists a indi�erent Moufang

set P(l0;h0) and an isomorphism 
 0 from P(l0;h0) toMO(V 0; q0; k0) such that

l0 = fc0q0(w0) jw0 2 Rad(f 0)g and h0 is the �eld generated by l0. Remember
that 
 0 is given by :


 0((c0q0(v00))) = (v00; q
0(v00))


 0((1)) = ((1)):

But then 
 0�1 � 
 de�nes a Moufang set isomorphism from P(l;h) to P(l0;h0).
Proposition 131 shows that MO(V; q; k) �= P(l;h) is thus isomorphic to

MO(V 0; q0; k0) �= P(l0;h0) if and only if there exists an isomorphism from h
to h0 and a constant a0 2 h0 such that


 0
�1
�
(cq(v0)) = (a0(cq(v0)

�)); 8v0 2 Rad(f) = V0

The is clearly equivalent to :

c0('(q(v0))) = a0(cq(v0))
�;8v0 2 Rad(f) = V0;

or if we set c0a0�1 = d0 :

d0('(q(v0))) = (cq(v0))
�;8v0 2 Rad(f):

This closes the sixth case.

2

3.15.4 The isomorphism problem for hermitian Mo-

ufang sets.

In this section we will investigate the possible isomorphisms between a her-

mitian Moufang set and the other Moufang sets in the list of section 3.14.
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Proposition 128 A hermitian Moufang set MH(V; q; k; �) with associated
form f is isomorphic under � to a classical or indi�erent Moufang set
(X 0; (Ux0)x02X0) if and only if one of the following holds :

(i) (X 0; (Ux0)x02X0) is a projective Moufang set of the form P(k0), dim(V ) =

2 and Fix(�) �= k0,

(ii) (X 0; (Ux0)x02X0) is an orthogonal Moufang setMO(V 0; q0; k0), dim(V ) =
2 and P(Fix(�0)) �= MO(V 0; q0; k0),

(iii) (X 0; (Ux0)x02X0) is a hermitian Moufang setM(H(V 0; q0; k0; �0)) and one
of the following subcases occurs:

(ii:a) dim(V ) = dim(V 0) = 2 and Fix(�) �= Fix(�0),
(ii:b) dim(V ) = dim(V 0) = 3, Fix(�) �= Fix(�0) and MH(V; q; k; �)
�= MH 0(V 0; q0; k0; �0),

(ii:c) dim(V ) > 3 and � induces a bijective semi-linear transformation
from V to V 0 preserving the forms i.e. there exists a collineation '
(with associated �eld isomorphism �) from V to V 0 and a constant

c0 2 Fix(�0) such that :

�(hxi) = h'(x)i; 8hxi 2 M(H(V; q; k; �))

c(f(x; y))� = f 0('(x); '(y)); 8x; y 2 V

c(q(x))� = q0('(x)); 8x 2 V;

(iv) (X 0; (Ux0)x02X0) is a unitary Moufang setMU(V 0; q0; k0; �0) de�ned over
a quaternion algebra k0 with standard involution �0, dim(V 0) = 2 and

MH(V; q; k; �) �= Fix(�) �= Z(k0) �=MU(V 0; q0; k0; �0).

(v) (X 0; (Ux0)x02X0) is a unitary Moufang setMU(V 0; q0; k0; �0) with dim(V 0) =

3, k0 is a generalized quaternion algebra with standard involution �0

which determines a hermitian Moufang setMH( �V ; �q, �k; ��) with dim( �V )
= 4 and isomorphic to MH(V; q; k; �).

(vi) (X 0; (Ux0)x02X0) is an indi�erent Moufang set P(�k0; l0; k0), dim(V ) = 2

and Fix(�) �= l0 = k0,

proof :
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First case :(X 0; (Ux0)x02X0) is a projective Moufang set P(k0).
We refer to Proposition 125.

Second case : (X 0; (Ux0)x02X0) is an orthogonal Moufang set MO(V 0; q0; k0).
We refer to Proposition 127.

Third case : (X 0; (Ux0)x02X0) is a hermitian Moufang set MH(V 0; q0; k0; �0).
Using Lemma 92 and section 3.12.2 we can assume q is a (�;�1)-quadratic
and q0 is a (�0;�1)- quadratic form. We have Tr(�) = Fix(�) and Tr(�0)

= Fix(�0). Choose coordinatizations of both Moufang sets associated to the

decompositions V = e�1k � V0 � e1k and V 0 = e0
�1k

0 � V 0

0 � e01k
0 with la-

belling sets R0;1 = f(v0; v1) 2 V0 � kjq(v0) + v1 = 0g and R0

0;1 = f(v00; v
0

1) 2
V 0

0 � kjq0(v00) + v01 = 0g. Without loss of generality we can assume that

�((0; 0)) = (0; 0) and �((1)) = (1). Let g and f be the forms on V such

that q(x) = g(x; x) +k�;�1, 8x 2 V and q(x + y) = q(x) + q(y) + f(x; y),

8x; y 2 k. Similarly g0 and f 0 denote the forms on V 0 such that q0(x0)
= g0(x0; x0), 8x0 2 V 0 and q0(x0 + y0) = q0(x0) +q0(y0) +f 0(x0; y0), 8 x0, y0

2 V 0. By the proof of Lemma 104 we have forMH(V; q; k; �) that Z(U(1)) =

f u((1); (0; 0); (0; t))j t 2 Fix(�)g and similarly for MH(V 0; q0; k0; �0) that
Z(U(1)) = f u((1); (0; 0); (0; t0) jt0 2 Fix(�0)g. As � induces an isomorphism
between root groups and �u((1); (0; 0); (0; t))��1 = u((1); (0; 0); �((0; t)))

we �nd that �f(0; t)jt 2 Fix(�)g = f(0; t0)jt0 2 Fix(�0)g. This means that �
induces a bijection (also denoted by �) from Fix(�) to Fix(�0) de�ned by :

�((0; t)) = (0; �(t)); 8t 2 Fix(�) (3.15)

Upon a possible multiplication of q0 with a certain constant we can thus

also assume that �((0; 1)) = (0; 1). Denote Y = f (0; t)jt 2 Fix(�)g and

Y 0 = f(0; t0) jt0 2 Fix(�0)g. Lemma 118 implies that Y [f(1)g and Y 0

[f(1)g de�ne Moufang subsets of k and k0 which are isomorphic to Fix(�)
and Fix(�0). In view of the isomorphism from P(Fix(�)) to Y and from

P(Fix(�0)) to Y 0 Proposition 124 implies that the map � from Y to Y 0 de-

�nes a �eld isomorphism from Fix(�) to Fix(�0).
Using property (3.15) one shows that � is independent of the �rst coordi-

nate i.e. if (v0; v1) 2 R0;1 and (v0; �v1) 2 R0;1 with �(v0; v1) = (v00; v
0

1) then

�(v0; �v1) = (v00; �v
0
1).

Namely if (v0; v1) and (v0; �v1) 2 R0;1, then (v0; v1) 	 (v0; �v1) = (0; t) for

some t 2 Fix(�). Hence �((v0; v1) 	 (v0; �v1)) = (0; t0) ,t0 2 Fix(�0), and
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�(v0; �v1) = (v00; v
0

1) �(0; t
0) = (v00; v

0

1 + t0). This implies that � induces a

bijection from V0 to V
0

0 (which we also denote by �) de�ned by :

(�(v0; v1))0 = �(v0); 8(v0; v1) 2 R0;1:

To simplify the calculations we introduce following notation.

If (v0; v1) 2 R0;1 we set :

�(v0; v1) = (�(v0); �
v0(v1));

where the superscript stresses a possible dependence on v0.
Remark that �(t) = �0(t) 8t 2 Fix(�).
If t 2 Fix(�)) we de�ne the transformation mt by :

mt = s(0;t)s(0;1):

Note that the action of mt is given by :

mt(1) = (1)

mt(v0; v1) = (v0t; v1t
2); 8(v0; v1) 2 R0;1:

We show the following property :

For every v0 6= 0 there exists at least one �v0 62 Fix(�) with

�(v0�v0) = �(v0)�
0

v0
; �0v0 62 Fix(�

0): (3.16)

For v0 6= 0 2 V0 we choose a v1 2 k with (v0; v1) 2 R0;1 and consider

s(0;1)(v0; v1) = (v0v
�1
1 ; v�11 ). Sending this equation over to MH(v0; q0; k0; �0)

via � implies :

�(v0v
�1
1 ) = �(v0)(�

v0(v1))
�1:

As the form q is anisotropic on V0, v1 is not contained in Fix(�), and as

�f(0; t)jt 2 Fix(�)g = f(0; t0)jt0 2 Fix(�0)g it follows that �v0(v1) 62 Fix(�
0).

This means we can set �v0 = v�11 and (3.16) holds.

As every s 2 k can be written as a+ �v0b, a; b 2 Fix(�) we calculate :

(�((v0s; s
�sv)))0 = (�(ma((v0; v1)))�mb((v0�v0 ; �

�
v0
�v0v1)))0

= (m�(a)�((v0; v1)))0 + (m�(b)�((v0)�
0

v0
; (�0v0)

�0�0v0)))0

= �(v0)(�(a) + �0v0�(b))
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where we used the fact that �(v0�v0) = �(v0) �
0

v0
and �(mt((w0; w1))) =

(�(w0)�(t), �
w0(w1)(�(t))

2), 8 (w0; w1) 2 R0;1, 8t 2 Fix(�). Thus we �nd

for v0 2 V0 and � 2 k :

�(v0�) = �(v0)�
0

v0
; (3.17)

where the subscript v0 denotes a possible dependence on v0. By symmetrical

arguments we �nd for �0 2 k0 and v00 2 V
0

0 that :

��1(v00�
0) = ��1(v00)�v00 ; (3.18)

where the subscript v00 denotes a possible dependence on v
0

0. We distinguish

two cases :

1. First case : dim(V0) = 1.

If in this case dim(V 0

0) � 2, formula (3.17) and Lemma 54 imply that �

de�nes a semi-linear transformation from V0 to V 0

0 a contradiction. Hence

dim(V 0

0) = 1. And thus we �nd that for � 2 k, v0 2 V0 :

�(v0�) = �(v0)�
0

v0

where �0v0 might depend on v0.
2. Second case : dim(V0) = 2.

In this case formula (4) and Lemma 54 imply that ��1 induces a semi-linear

transformation from V 0

0 to V0 with an associated �eld isomorphism ��1.
Hence � induces a semi-linear transformation of V0 to V 0

0 with associated

�eld isomorphism �.

The relation :

s(0;t)(v0; v1) = (v0v
�1
1 t; tv�11 t)

gives after applying � :

�(v0)�
v0(v1)

�1�(t) = �(v0)(v
�1
1 )�t�

�v0v
�1
1 t(t2v�11 ) = �(t)(�v0(v1)

�1�(t)

As t� = �(t), 8t 2 Fix(�) the �rst of these equations implies that :

�v0(v1) = v�1 ;

proving that � is independent from its second coordinate. Therefore we can

drop the superscript v0 in �
v0(v1) and simply write �(v1) instead of �v0(v1).
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Let (v0; v1); (w0; w1) 2 R0;1 then the equation :

�(v0; v1)� �(w0; w1) = (�(v0 + w0); �(v1 + w1 � f(v0; w0))

= (�(v0) + �(w0); (v1 + w1 � f(v0; w0))
�)

= (�(v0) + �(w0); �(v1) + �(w1)� f 0(�(v0); �(w0)))

yields :

f(v0; w0)
� = f 0(�(v0); �(w0)); 8v0; w0 2 V0:

As (v0;�g(x0; x0))) 2 R0;1 and (�(v0);�g
0(�(v0; �(v0)))) 2 R

0

0;1 we have :

g0(�(v0); �(v0)) = (g(v0; g(v0)))
� + k0�0;�1; 8v0 2 V0:

Consider v0, w0 2 V0 such that f(v0; w0) 6= 0 (such a pair of vectors always

exists as Rad(f) = 0). Then we �nd for every � 2 k :

(f(v0�;w0))
� = f 0(�(v0�); �(w0)):

Yielding :

��(f(v0; w0))
� = (�)��

0

f 0(�(v0); �(w0)):

This shows :

��� = ���
0

; 8� 2 k:

Let he�1x�1 + x0 + e1x1i 2 MH(V; q; �; k) i.e.

�x�
�1x1 + q(x0) = 0:

Applying � to this equation gives :

�x��
0

�1 x
�
1 + q0(�(x0)) = 0: (3.19)

De�ne the semi-linear transformation ' from V0 to V
0

0 by :

'(e�1x�1 + x0 + e1x1) = e0
�1x

�
�1 + �(x0) + e01; x�1; x1 2 k; x0 2 V0:

Then equation (3.19) implies that ' induces a bijection from the points of

MH(V; q; k; �) to the points of MH(V 0; q0; k0; �0) such that

�(hxi) = h'(x)i; 8hxi 2 MH(V; q; k; �):

Remains to check that ' preserves the forms q and f . Let x = e�1x�1+x0+
e1x1 2 V then :

q(x) = �x�
�1x1 + q(x0):
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Applying � to this expression gives :

(�x�
�1x1 + q(x0))

� = �x��
�1x

�
1 + q0(�(x0))

= �x��
0

�1 x
�
1 + q0(�(x0)

= q0('(x)):

Let e�1x�1 + x0 + e1x1 and e�1y�1 + y0 + e1y1 2 V then :

f(e�1x�1 + x0 + e1x1; e�1y�1 + y0 + e1y1) = �x�
�1y1 + f(x0; y0) + x�1y�1

Let x = e�1x�1 + x0 + e1x1 and y = e�1y�1 + y0 + e1y1. Then :

(f(x; y))� = (�x�
�1y1 + f(x0; y0) + x�1y�1)

�

= �x��
0

�1 y
�
1 + f 0(�(x0); �(y0)) + x��

0

1 y�
�1

= f 0(e0
�1x

�
�1 + �(x0) + e01x

�
1 ; e�1y

�
1 + �(y0) + e1y

�
1 )

= f 0('�(x); '�(y)):

Throughout the proof we assumed that �((0; 1)) = (0; 1). This might involve
a possible multiplication of q0 with a certain element of Fix(�0).

Namely suppose M(V 0; q0; k0; �0)) is coordinatized using a decomposition

e0
�1k

0 � V 0

0 � e01k
0. Let �((0; 1)) = (0; c0), c0 2 Fix(�0). Then we consider

the proportional Moufang set M(V 0; c0�1q; k0; �0) (cfr. section 3.12.3) coor-

dinatized using the decomposition V 0 = �e0�1k
0 � V 0

0 � �e01k
0, with �e0 = e0

�1c

and �e01 = e01. Using this coordinate system the isomorphism  c0�1 Æ � from

MH(V; q; k; �) to MH(V 0; c�1q0; k0; �0) clearly satis�es  c0�1 Æ�((0; 0)) =

(0; 0),  c0�1 Æ�((1)) = (1) and  c0�1 Æ�((0; 1)) = (0; 1) and we can ap-

ply the proof so far developed. This means that there exists a semi-linear

transformation ' with associated �eld isomorphism � from V to V 0 such

that :

 c0�1 Æ �(hxi) = h'(x)i; 8hxi 2 MH(V; q; k; �)

(q(x))� = c0
�1
q0('(x)); 8x 2 V

(f(x; y))� = c0
�1
f 0('(x); '(y)); 8x; y 2 V:

And thus we �nd that ' is a bijective semi-linear transformation from V to
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V 0 with associated �eld isomorphism � such that :

�(hxi) = h'(x)i; 8hxi 2 MH(V; q; k; �)

c0(q(x))� = q0('(x)); 8x 2 V

c0(f(x; y))� = f 0('(x); '(y)); 8x; y 2 V:

Conversely let ' be a bijective semi-linear transformation from V to V 0 sat-

isfying :

c0(q(x))� = q0('(x)); 8x 2 V

c0(f(x; y))� = f 0('(x); '(y)); 8x; y 2 V

with c0 2 Fix(�0). Then Lemma 102 implies that the map fromMH(V; q; k; �)
to MH(V 0; q0; k0; �0) de�ned by :

�(hxi) = h'(x)i

determines a Moufang set isomorphism.

Fourth case : (X 0; (Ux0)x02X0) is a unitary Moufang set MU(V 0; q0; k0; �0).

Using Lemma 92 and the results from section 3.12.2 we can assume without

loss of generality that q0 is a (�0;�1)-quadratic form such that 1 2 Tr(�0).

Choose coordinatizations of both Moufang sets associated to the decomposi-

tions V = e�1k�V0� e1k and V
0 = e0

�1k
0�V 0

0 � e
0

1k
0 with labelling sets R0;1

= f(v0; v1) 2 V0�kjq(v0)+v1 = 0 and R0

0;1 = f(v00; v
0

1) 2 V
0

0 �k
0jq0(v00)+v

0

1 =

0g. Without loss of generality we can assume that �((0; 0)) = (0; 0) and

�((1)) = (1) and �((0; 1)) = (0; 1).
By Lemma 103 we know that � f(0; t) jt 2 Fix(�)g = f(v00; v

0

1) v
0

0 2 Rad(f
0)g.

Remark that f(v00; v
0

1)j v
0

0 2 Rad(f
0)g [ f(1)g determines a Moufang subset

ofMU(V 0; q0; k0; �0) namelyM(Rad(f 0); q0; k0; �0). One checks that f(0; t)jt 2
Fix(�)g [f(1)g determines a Moufang subset ofMH(V; q; k; �) isomorphic
to P(Fix(�)). Moreover in a similar way one checks that the set f(0; �0)j�0 2
Tr(�)g [ f(1)g determines a Moufang subset ofMU(Rad(f 0); q0; k0; �0). As
P(Fix(�) is a commutative Moufang set Lemma 121 implies that k0 is a

generalized quaternion algebra with standard involution �0.

For every (v00; v
0

1), the element v
0

0 is completely determined by v01. Therefore



180 CHAPTER 3. MOUFANG SETS

we de�ne a bijection (also denoted by �) from Fix(�) to L0 = ft0jt0 = q0(v00)
for a v00 2 Rad(f

0) if we set :

(�((0; t)))1 = �(t); 8t 2 Fix(�):

Remark that Lemma 109 shows that L0 � Fix(�0). Therefore we �nd that

L0 * k0. In the sequel we will denote for t 2 Fix(�) the automorphism s(0;t)
s(0;1) as mt and for t0 2 L0 with q(t00) = t0, s(t00;t0) s(0;1) as mt0 . We show that

L0 is a �eld isomorphic to Fix(�).
By de�nition 1 2 L0. Let a01, b

0

1 2 L
0 with q0(a00) = a0, q0(b00) = b01, �(r) = a01

and �(t) = b01.

Then the equations :

q0(a00 + b00) = a01 + b01

q0(a00a
0

1

�1
) = a01

�1

show that a01 + b01 2 L
0 and a01

�1 2 L0.
Using the matrix representations of sx as explained in section 3.13 we �nd :

�mrmt�
�1 = �mrt�

�1

= m�(rt)

= ma01
mb01

= ma01b
0

1
:

Using the matrix representations this is only possible if �(rt) = a01b
0

1 z
0, with

z0 2 Z(k0) such that z0z0� = 1. But as k0 is a generalized quaternion algebra

with standard involution this implies a01b
0

1 = ��(rt) and a01b
0

1 2 L
0.

This proves that L0 is a �eld and L0 is a Moufang subset ofMU(V 0; q0; k0; �0).

As � induces a bijction from Fix(�) to L0 it determines an isomorphism

from P(Fix(�)) to P(L0). Proposition 124 shows that � induces a �eld

isomorphism from Fix(�) to L0. Suppose Rad(f 0) 6= 0.

Then there exists at least one (a00; a
0

1) with a00 6= 0 and a01 2 L0. As q0 is
anisotropic on V 0

0 we �nd a
0

1 62 (k0) and dim(L0)jZ(k0) = 2 as k0 is a generalized
quaternion algebra and L0 6= k0. Because L0 is 2 dimensional over Z(k0) we

�nd Z(k0)(a01) = L0.

Let �0 2 k0 arbitrarily then q0(a00�
0) = �0�

0

a01�
0 shows :

�0
�0
a01�

0 2 L0 = (Z(k0)(a01)); 8�
0 2 k0:
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Lemma 53 implies that a01 2 Z(k0) a contradiction as q0 is anisotropic on

V 0

0 . This shows that for MU(V 0; q0; k0; �0) clearly Rad(f 0) = 0. But then we

�nd Z((R0

0;1;�)) = f(0; �0) j�0 2 Tr(�0) and �f (0; t) jt 2 Fix(�)g = f(0; �0)
j�0 2 Tr(�0). This implies that � is independent of its second coordinate.

Indeed if (v0; v1), (v0; �v1) 2 R0;1 we have :

�((v0; v1)	 (v0; �v1) = �((0; v1 � �v1))

= (0; �(v1 � �v1)

and hence (�((v0; v1)))0 = (�((v0; �v1)))0. This implies that we can de�ne a

bijection from V0 to V
0

0 (also denoted by �) in the following way. If v0 2 V0
we set :

(�((v0; q(v0))))0 = �(v0):

Thus we can introduce the following notation. If (v0; v1) 2 R0;1 we set :

�((v0; v1)) = (�(v0); �
v0(v1))

where the superscript denotes a possible dependence on v0. As for (v0; v1),
(w0; w1) 2 R0;1

(�((v0; v1)� (w0; w1)))1 = (�((v0 + w0; v1 + w1 � f(v0; w0)))1

= (�((v0; v1)))1 + (�((w0; w1)))1

� is an additive map from V0 to V
0

0 . We �nd for (v0; v1) 2 R0;1, v0 6= 0 and

� 2 Fix(�) :

�(m�(v0; v1)) = �((v0�; �
2v1))

= �((v0�); �
v0�(�2v1)))

= �((v0)�(�); �(�)
2�v0(v1))

= m�(�)(�(v0); �
v0(v1))

and thus :

�(v0�) = �(v0)�(�)8� 2 Fix(�
0): (3.20)

Moreover :

�((v0v
�1
1 ; v�11 )) = �(s(0;1)(v0; v1))

= s(0;1)(�((v0); �
v0(v1)))

= (�(v0)(�
v0(v1))

�1; (�v0(v1))
�1)
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shows :

�(v0v
�1
1 ) = �(v0)(�

v0(v1))
�1: (3.21)

As for every (v0; v1) 2 R0;1 with v0 6= 0, v1 62 Fix(�) we have Fix(�)(v1)
= k, equations (3.20) and (3.21) show :

�(v0�) = �(v0)�
0

v0
; 8� 2 k; v0 2 V0; (3.22)

where the superscript denotes a possible dependence on v0.
We distinguish two cases :

1. dim(V 0

0) � 2.

Equation (3.22) and Lemma 54 imply that � induces a semi-linear transfor-

mation from V0 to V
0

0 with � a �eld isomorphism from k to k0. But then we

would have that Z(k0) = k0 a contradiction.

2. dim(V 0

0) = 1.

In this case Lemma 114 implies thatM(V 0; q0; k0; �0) is isomorphic toM(H;V; q; k)
with Fix(�) �= k0.

Fifth case : (X 0; (Ux0)x02X0) is an indi�erent Moufang set of the form P(�k0; l0; k0).
If MH(V; q; k; �) �= P( �k0; l0; k0) Lemma 104 implies that dim(V ) = 2, and

MH(V; q; k; �) �= P(Fix(�)). The result now follows from Proposition 131.

2

3.15.5 The isomorphism problem for unitary Moufang

sets.

In this section we will assume that the all quadratic forms q are (�;�1)-
quadratic forms. Lemma 92 and section 3.12.3 show that this does not put

any restrictions on the forms.

Proposition 129 A unitary Moufang setMU(V; q; k; �)) with non commu-

tative root groups such that Rad(f) = 0 if char(k) = 2 and k is a generalized
quaternion algebra with standard involution � is isomorphic under � to a
classical Moufang set (X 0; (Ux0)x02X0) if and only if one of the following holds

:
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(i) (X 0; (Ux0)x02X0 is a hermitian Moufang set MH(V 0; q0; k0; �0),
with dim(V 0) = 4, dim(V ) = 3, k is a generalized quaternion algebra
and Fix(�0) �= Z(k).

(ii) (X 0; (Ux0)x02X0) is a unitary Moufang set MU(V 0; q0; k0; �0) and � in-
duces a bijective semi-linear transformation ' satisfying :

�(hxi) = h'(x)i; 8hxi 2 MU(V; q; k; �)

(f(x; y))� = c0f 0('(x); '(y)); 8x; y 2 V

q(x)� = c0q0('(x)); 8x 2 V

for some constant c0 2 k0 with :

c0���c0
�1

= ���
0

; 8� 2 k:

proof :

As MU(V; q; k; �) has by assumption non-commutative root groups, the set

(X 0; (Ux0)x02X0) can only be a hermitian or unitary Moufang set.

First case : (X 0; (Ux0)x02X0) is a hermitian Moufang set MH(V 0; q0; k0; �0).

Proposition 128 implies that dim(V ) = 3, k is a generalized quaternion alge-

bra with standard involution �, dim(V 0) = 4. By Lemma 114MU(V; q; k; �)
is isomorphic to a hermitian Moufang setMH(V1; q1, k1,�1) with k1 a quadratic

Galois extension of Z(k) = Fix(�1). Therefore Proposition 128 implies thus

that Fix(�1) = Z(k) �= Fix(�0).
Conversely suppose dim(V ) = 3, k is a generalized quaternion algebra with

standard involution � and MH(V 0; q0; k0; �0) is a hermitian Moufang set

such that dim(V 0) = 4 and Z(k) �= Fix(�0). Lemma 114 implies that

MH(V 0; q0; k0; �0) is isomorphic to a unitary Moufang set MU(V 0

1 ,q
0

1; k
0

1; �
0

1)

de�nes over a generalized quaternion algebra k01 with center Fix(�
0) and with

dim(V 0) = 3. As Z(k01)
�= Z(k) we �nd k �= k01. As there is up to isomorphism

only one unitary Moufang set MU(V; q; k; �) with dim(V ) = 3 we �nd that

MH(V 0; q0; k0; �0) �= MU(V 0

1 ,q
0

1,k
0

1,�
0

1)
�= MU(V; q; k; �).

Second case : (X 0; (Ux0)x02X0) is a unitary Moufang set MU(V 0,q0; k0; �0).
Remark as mentioned in the beginning of this section q is assumed to be

a (�;�1)-quadratic form similarly q0 is a (�0;�1)-quadratic. Let f be the
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(�;�1)-hermitian form associated to q, f 0 the (�0;�1)-hermitian form asso-

ciated to q0, q(v) = g(v; v) + k�;�1, 8v 2 V and q0(v0) = g0(v0; v0) + k0�;�1,
8v0 2 V 0 where g is a �-sesquilinear form and g0 is a �0-sesquilinear form. Us-

ing section 3.12.3 we can moreover assume 1 2 Tr(�), 1 2 Tr(�0). Choose a
coordinatizationM(V; q; k; �) associated to the decomposition V = e�1k�V0
�e1k and a coordinatization of M(V 0; q0; k0; �0) with decomposition V 0 =

e0
�1k

0�V 0

0�e
0

1k
0. Then the labelling setsR0;1 = f(v0; v1 2 V0�kjq(v0)+v1 = 0g

and R0

0;1 = f(v00; v
0

1)jq
0(v00)+v

0

1 = 0g satisfy R0;1\ f0g�k = f(0; �)j� 2 Tr(�)g
and R0

0;1 \f0g� k
0 = f(0; �0)j�0 2 Tr(�0)g. Without loss of generality we can

assume �((0; 0)) = (0; 0), �((0; 1)) = (0; 1) and �((1)) = (1).

Let (v0; v1), (w0; w1) 2 R0;1.

The equation :

�(u((1); (0; 0); (v0; v1))(w0; w1)) = �((v0; v1)� (w0; w1))

= �((v0; v1)� �((w0; w1))

= u((1); (0; 0); �((v0; v1)))�((w0; w1)):

shows that � induces an isomorphism from (R0;1;�) to (R0

0;1;�). Using

Lemma 103 we have :

Z((R0;1;�)) = f(v0; v1) 2 R0;1jv0 2 Rad(f)g

Z((R0

0;1;�)) = f(v00; v
0

1) 2 R
0

0;1jv
0

0 2 Rad(f
0)g:

Thus if (v0; v1) 2 R0;1 with v0 2 Rad(f) we have (�((v0; v1)))0 2 Rad(f 0).
Note that for any vector w0 2 Rad(f) the only vector u0 2 V0 for which

q(u0) = q(w0) is w0 and similarly for any w00 2 V 0

0 , q
0(w00) is completely

determined by w00. Therefore we can de�ne a bijection (also denoted by �)
between the set L = ft 2 k jq(v0) = t; v0 2 Rad(f)g and the set L

0 = ft0 2 k0

jq0(v00) = t0; v00 2 Rad(f
0)g by :

(�(v0; v1))1 = �(v1); 8v0 2 Rad(f):

Remark that the equation s(0;1)((a0; a1)) = (a0a
�1
1 ; a�11 ), 8(a0; a1) 2 Z(R0;1;�)

implies that �(a�11 ) = (�(a1))
�1, 8a1 2 L.

Using this map we show that k is a quaternion algebra with standard

involution � and if and only if k0 is a generalized quaternion algebra with

standard involution �0. We show one direction. The other way follows by

symmetric arguments.

One easily checks Y = Z((R0;1;�)) [f(1)g is a Moufang subset of
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MU(V; q; k; �) and similarly that Y 0 = Z((R0

0;1;�)) [f(1)g is a Moufang

subset ofM U (V 0; q0; k0; �0). As �(Y ) = Y 0, Y is isomorphic as Moufang set

to Y 0.

The assumptions on Rad(f) in the characteristic 2 case implies that in any

case Z((R0;1;�)) = f(0; �) j� 2 Tr(�)g. Lemma 123 implies that (Y; (Uy)y2Y )
�= P(Z(k)). As (Y 0; (Uy0)y02Y 0) �= (Y; (Uy)y2Y ) Lemma 121 shows that k

0 is a

generalized quaternion algebra with standard involution.

As a next step we show

Claim 1 :

�f(0; �)j� 2 Tr(�)g = f(0; �0)j�0 2 Tr(�0)g: (3.23)

If char(k) 6= 2 then this follows from the fact that Z(R0;1;�) = f(0; t)jt 2
Tr(�)g and Z(R0

0;1;�) = f(0; t0)jt0 2 Tr(�0)g.
Hence we can assume char(k) = 2.

Suppose that for a (0; �) 2 R0;1 we have �(0; �) = (a00; a
0

1). As (0; �) 2
Z((R0;1;�)), clearly a

0

0 2 Rad(f
0).

We distinguish two subcases :

1. First subcase : k is a generalized quaternion algebra with standard invo-

lution �.
If char(k) = 2, we have by assumption that Rad(f) = f0g. We already

saw that the Moufang subset determined by Y = Z((R0;1;�)) = f(0; t) jt 2
Tr(�)g is isomorphic to the Moufang subset determined by Y 0 = Z((R0

0;1;�)).
As Rad(f) = 0 we have that (Y; (StabUy(Y ))y2Y ) is isomorphic to P(Z(k)).
But (Y 0; (StabUy0 (Y

0))) is an extended polar line de�ned over a generalized

quaternion algebra with standard involution and Lemma 123 yields that

Rad(f 0) = 0.

And thus we �nd that (3.23) is also satis�ed in this case.

2. Second subcase : if k is a generalized quaternion algebra � is not its

standard involution.

Remark that in this case by Lemma 47, k is generated as a ring by Tr(�).
We write � = z + z�, z 2 k.
Let � 2 Tr(�) and (v0; v1) 2 R0;1. In the sequel we will denote the automor-

phism s(0;�)s(0;1) as m� and the group hu((1); (0; 0); (v0; v1);m�j � 2 Tr(�)i
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by S(v0;v1).
To proceed we �rst prove a general property :

Consider � in k and (v0; v1) 2 R0;1 with �(v0; v1) = (v00; v
0

1). Write � as

an expression of elements of Tr(�) i.e. :

� =

nX
j=1

�j1;j : : : �i(j);j ; �k;j 2 Tr(�)

We show by induction on the number of terms in the expression that

there exists a  � 2 S(v0;v1) such that :

( �(v0; v1))0 = v0�

(�( �(v0; v0))0 = v00�
0 (3.24)

with �0 sumn
j=1�(�1;j) : : : �(�i(j);j).

If there is only one term in the expression i.e. we have for example � =

�1�2 : : : �n one checks that we can set  � = m�1m�2 : : :m�n .

Suppose the claim is true for any expression of elements of Tr(�) with fewer

terms that in � =
Pn

j=1 �1;j : : : �i(j);j . To simplify notation we can assume

that without loss of generality i(n) = 2. Put �1;n �n�1 and �2;n = �n. Consider
� =

Pn

j=1 �1;j : : : �i(j);j�
�1
n ��1n�1. Remark that then (� + 1) �n�1 �n = �.

By induction we know that there exists a  � 2 S(v0;v1) such that :

( �(v0; v1))1 = v0�

(�( �(v0; v1))1 = v00�
0

with �0
Pn

j=1 �(�1;j) : : : �(�i(j);j)�(�n)
�1�(�n�1)

�1.

Consider m�nm�n�1
u((1); (0; 0); (v0; v1))  �. We �nd :

m�nm�n�1
u((1); (0; 0); (v0; v1)) �(v0; v1)

= m�nm�n�1
u((1); (0; 0); (v0; v1))(v0�; x1)

= m�nm�n�1
(v0(� + 1); x1 + v1 � f(v0; v0))

= (v0((� + 1)�n�1�n); �n�n�1(x1 + v1 � f(v0; v0))�n�1�n)
= (v0�; �n�n�1(x1 + v1 � f(v0; v0))�n�1�n)

and :

�(m�nm�n�1
u((1); (0; 0); (v0; v1)) �(v0; v1))

= m�(�n)m�(�n�1)u((1); (0; 0); (v00 ; v
0

1)(v
0

0�
0; x01)

= m�(�n)m�(�n�1)(v
0

0(�
0 + 1); v01 + x01 � f 0(v00; v

0

0))

= (v00((�
0 + 1)�(�n�1)�(�n); �(�n)�(�n�1)(v

0

1 + x01 � f 0(v00; v
0

0))�(�n�1)�(�n))
= (v00�

0; �(�n)�(�n�1)(v
0

1 + x01 � f 0(v00; v
0

0))�(�n�1)�(�
0

n))):
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This shows that we can set  � = m�n m�n�1
u((1); (0; 0); (v0; v1))  � and the

formula (3.24) is proved.

We proceed with the proof of formula (3.23). As the root groups of both

Moufang sets are non commutative we can choose a (w0; w1) 2 R0;1 such

that w0 62 Rad(f) and �(w0; w1) = (w00; w
0

1) where w
0

0 62 Rad(f
0).

Using Lemma 108 we calculate :

�(w0�; �w1�) = �s(0;�)s(0;1)(w0; w1)

= s(a00;a01)s(0;1)(w
0

0; w
0

1)

= (w00a
0

1; a
0

1w
0

1a
0

1);

where �((0; �)) = (a00; a
0

1), a
0

0 2 Rad(f
0). Write z as an expression of elements

of Tr(�) i.e. for example z =
Pm

j=1 �1;j : : : �i(j);j . This implies :

� =

mX
j=1

�1;j : : : �i(j);j +

mX
j=1

�i(j);j : : : u1;j

=

mX
j=1

(�1;j : : : �i(j);j + �i(j);j : : : �1;j)

Using (3.24) we �nd a  � 2 S(w0;w1) such that :

 �(w0; w1) = (w0�; � �w1�)

�( �(w0; w1)) = (w00�
0; �0 �w01�

0)

with (w0; �w1) 2 R0;1 and (w00; �w
0

1) 2 R
0

0;1 and :

�0 =
Pm

j=1(�(�1;j) : : : �(�i(j);j) + �(�i(j);j) : : : �(�1;j))

The above equation clearly shows that �0 2 Tr(�0).
Using equation (3.25) we �nd :

�((w0�; �w1�)� (0; �( �w1 � w1)�) = (w00�
0; �0 �w01�

0)

But as �(w0�; �w1�) = (w00a
0

1, a
0

1 w
0

1a
0

1) this yields :

w00a
0

1 + (�(0; �( �w1 � w1)�))0 = w00�
0:

Moreover �(0; �( �w1 � w1)�) 2 Z(R0

0;1;�) and we have (�(0; �( �w1 � w1)�))0
2 Rad(f 0). As w00 62 Rad(f 0) the above equation is only possible if a01 = �0.
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But then we �nd as the form q0 is anisotropic on V 0

0 that a
0

0 = 0. By this the

proof of (3.23) is complete.

As a result of equation (3.23), we have that � is independent of the sec-

ond coordinate i.e. if (v0; v1), (v0; �v1) 2 R0;1 with �(v0; v1) = (v00; v
0

1) then

�(v0; �v1) = (v00; �v
0

1).

Indeed this follows from :

�(v0; �v1) = �((v0; v1)� (0; �v1 � v1))

= (v00; v
0

1)� (0; �(�v1 � v1))

= (v00; v
0

1 + �(�v1 � v1)):

This means � induces a bijection between V0 and V
0

0 also denoted by � and

de�ned in the following way. If v0 2 V0 we choose a v1 2 k such that

(v0; v1) 2 R0;1 and set :

(�(v0; v1))0 = �(v0):

It thus makes sense to introduce the following notation. For (v0; v1) 2 R0;1

we write :

�(v0; v1) = (�(v0); �
v0(v1))

where the superscript denotes a possible dependence on v0.

Remark that the equation s(0;1) ((v0; v1)) = (v0v
�1
1 ; v�11 ), 8(v0; v1) 2 R0;1

implies that :

s(0;1)(�(v0); �
v0(v1)) = (�(v0v

�1
1 ; �v0v

�1
1 (v�11 )):

Hence :

�(v0)�
v0(v1)

�1 = �(v0v
�1
1 )

(�v0(v1))
�1 = �v0v

�1
1 (v�11 ); 8(v0; v1) 2 R0;1

Let (v0; v1), (w0; w1) 2 R0;1. As � induces an isomorphism between root

groups we �nd :

�(v0 + w0) = (�((v0; v0)� (w0; w1)))0

= (�((v0; v1)))0 + (�(w0)))0

= �(v0) + �(w0):
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This means that � de�nes an additive bijection from V0 to V
0

0 .

Our next goal is to show :

Claim 2 : � induces a semi-linear transformation from V0 to V
0

0 with certain

associated �eld isomorphism � and such that for (v0; v1) 2 R0;1, �((v0; v1))
= (�(v0); v

�
1 ).

Remark that the assumptions on MU(V; q; k; �) implies dim(V ) � 3 and

dim(V 0) � 3.

We consider two subcases.

1. First subcase : k is a generalized quaternion algebra with standard invo-

lution �.
If dim(V ) = 3, Lemma 114 and Proposition 128 show that dim(V 0) = 3.

This means in particular that we can choose v0, 2 V0, v
0

0 2 V
0

0 with hv0i = V0
and hv00i = V 0

0 with �(v0) = v00. Let i, j and 2 k such that k = Z(k) �iZ(k)
jZ(k) +jiZ(k) and :

if char(k) 6= 2 :

i2 = �0, j
2 = �0, ij = �ji

if char(k) = 2 :

i2 = i+ �0, j
2 = �0, ij = ji+ j,

with �0, �0 2 Z(k) n Z(k)
2. Without loss of generality we can choose i such

that g(v0; v0) = �i. Denote the norm function in k by N . Choose similar i0, j 0

for k0 and denote the norm function in k0 by N 0. We use the notations of the

proof of Lemma 114. Let MH(V1; q1; k1; �1) be the hermitian Moufang set

isomorphic toMU(V; q; k; �) andMH(V 0

1 ; q
0

1; k
0

1; �
0

1) the hermitian Moufang

set isomorphic toMU(V 0; q0; k0; �0) as constructed in the proof of Lemma 114.
Suppose that g1 is a �1-sesquilinear on V1 such that q1 (v1) = g(v1) +k(�;�1),
8v1 2 V1 and similarly that g01 is a �01-sesquilinear form on V 0

1 with q01(v
0

1)

= g0(v01; v
0

1) +(k
0

1)(�01;�1), 8v
0

1 2 V 0

1 . By construction we have k1 = Z(k)(i).
Without loss of generality we can moreover assume that k01 = Z(k)(i0). Sup-
pose �1 is the isomorphism fromMH(V1; q1; k1; �1) toMU(V; q; k; �) and � 01
is the isomorphism fromMH(E 0

1; q
0

1; k
0

1; �
0

1) toMU(V 0; q0; k0; �0) as described
in the proof of Lemma 114. Remark that �1 is given by :

�1((1)) = (1)

�1((v0(z1 + iz2) + v0j(z3 + iz4); N(�) + u) = (v0�
�;��v�1�

� � u)
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where � = z1 +iz2 +jz3 +jiz4 and similarly :

� 01((1)) = (1)

� 01((v
0

0(z
0

1 + i0z02) + v00j
0(z03 + i0z4); N

0(�0) + u0) = (v00�
0�
0

;��0v01
�0
�0
�0
� u0)

where �0 = z01 +i
0z02 +j

0z03 +j
0i0z04. Consider the isomorphism � 01

�1��1 from
MH(V1; q1; k1; �1) to MH(V 0

1 ; q
0

1,k
0

1,�
0

1) and denote it by ~�. By Proposition

128 we know that there exist a constant c0 k01 and a semi-linear transformation

' from V1 to V
0

1 with associated �eld isomorphism � such that :

~�(hx1i = h'(x1)i; 8hx1i 2 MH(V1; q1; k1; �1)

c0(f1(x1; y1))
� = f 01('(x1); '(y1)); 8x1; y1 2 V1

c0(g1(x1; x1))
� = g01('(x1); '(x1)); 8x1 2 V1:

As � de�nes an isomorphism from Z(k)(i) to Z(k0)(i0) we can assume with-

out loss of generality that i� = i0 and ��0 = �00. As by assumption �((0; 1))
= (0; 1), we have ~� ((0; 1)) = (0; 1) and hence the proof of Proposition 128

implies that c0 = 1. Remark that � 01
�1 and �1 induce semi-linear transforma-

tions (also denoted by � 01
�1 and �1) satisfying :

�1(v0((z1 + iz2) + v0j(z3 + iz4)) = (v0((z1 + iz2 + jz3 + jiz4))

� 01(v
0

0((z
0

1 + i0z02) + v00j
0(z03 + i0z04) = v00(z

0

1 + iz02 + j 0z03 + j 0i0z04)

Let ~�(v0j) = '(v0j) = w00, with w
0

0 = v00�
0

0, and �
0

0 = �01 +i
0�02 +j

0�03 +j
0i0�04.

Then we have V 0

0 = v00(Z(k
0)i0)� w00(Z(k

0)i0).
Suppose char(k) 6= 2.

We �nd f(v0; v0j) = 0 and g(v0j; v0j) = �0i.

Hence :

g01(w
0

0; w
0

0) = (g1(v0j; v0j))
�

= ��0 i
�

= �N 0(�00)i
0

f 01(v
0

0; w
0

0) = (f1(v0; v0j))
�

= 0

= ��00i
0 + i0

�
�00
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The last equation implies that �00 i
0 = �i0 �00 and hence �01 = 0. This yields

(�00)
� = ��00, and thus N 0(�00) = ���0 gives (�00)

2 = ��0 . This means that we
can extend � to an isomorphism from k to k0 if we set (z1+ iz2+ jz3+ jiz4)

�

= z�1 + i0z�2 +�00z
�
3 +�00i

0z�4 .
Suppose char(k) = 2.

In this case we have f1(v0; v0j) = 0 and g1(v0j; v0j) = �0i.

Hence :

g01(w
0

0; w
0

0) = ��0 i
0

= N 0(�00)i
0

f 01(v
0

0; w
0

0) = 0

= �00i
0 + i0�00 + �00

The �rst of these equations shows that ��0 = N 0(�00) while the last equation
implies that �04 = 0 and �03 = 1.

From :

(1 + N 0(�00))i
0 = (1 + ��0 )i

0

= (N((1 + j))i)�

= (g1(v0 + v0j; v0 + v0j))
�

= g01(v
0

0 + v00�
0

0; v
0

0 + v00�
0

0)

= N 0((1 + �00))i
0

= (1 + (�00 + �00
�0
) +N(�00))i

0

if follows that �00 = �00
�0 .

This implies that as in the characteristic non 2 case we can extend the iso-

morphism � to an isomorphism from k to k0 if we set :

(z1 + iz2 + jz3 + jiz4)
� = z�1 + i0z�2 + �00z

�
3 + �00i

0z�4 :

We show that for w0 2 hv0i and � 2 k

�(w0�) = �(w0)�
�:

We have :

� 01
�1
��1(v0(u1 + iu2) = v00(u1 + iu2)

�:
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Using the explicit expressions of �1 and �
0

1 this leads to :

�(v0(u1 + iu2)
�) = �(v0)(u1 + iu2)

��0 :

Moreover :

� 01
�1
��1(v0j(u3 + iu4)) = v00�

0

0(u3 + iu4)
�

shows that :

�(v0(ju3 + jiu4)
�) = �(v0)(ju3 + jiu4)

��0 :

As :

�(v0j
2) = �(v0)�0 = �(v0)(�

0

0)
2

one deduces that for any w0 2 hv0 i and � as above �(w0�) = �(w0) �
�.

Hence � de�nes a semi-linear transformation from V0 to V
0

0 with associated

�eld isomorphism �.

This means that we can assume for the rest of this subcase that dim(V )
� 4 and dim(V 0) � 4.

Suppose that char(k) 6= 2. We present a proof which holds whenever

Tr(�) = Fix(�), Tr(�0) = Fix(�0) and dim(V0) � 2.

If k is a generalized quaternion algebra with standard involution � such that

char(k) 6= 2 we have Tr(�) = Fix(�) = Z(k). As we already saw this implies

that k0 is a generalized quaternion algebra with standard involution �0. As

char(k0) 6= 2 it follows that Tr(�0) = Fix(�0) = Z(k0). This shows that if

dim(V0) � 2 and k is a generalized quaternion algebra with standard invo-

lution � such that char(k) 6= 2 the proof which we will presents holds.

The �rst step consists in showing that for any two v0, w0 2 V0 :

f(v0; w0) = 0, f 0(�(v0); �(w0)) = 0:

We show one direction (the other direction then follows by symmetric argu-

ments).

Suppose for v0, w0 2 V0, f(v0; w0) = 0. As we know that �(0) = 0 we can

assume v0 6= 0 and w0 6= 0. Choose v1, w1 2 k with (v0; v1), (w0; w1) 2 R0;1.

Consider (v0v
�1
1 ; v�11 ) 2 R0;1.

We �nd :

�(v0v
�1
1 ; v�11 ) = �(s(0;1)(v0; v1))
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= s(0;1)(�(v0); �
v0(v1))

= (�(v0)(�
v0(v1))

�1; (�v0(v1))
�1):

Moreover f(v0v
�1
1 ; w0) = 0 yields :

[(v0v
�1
1 ; v�11 ); (w0; w1)] = 0:

Sending this equation over to R0

0;1 via � gives :

[(�(v0)(�
v0(v1))

�1; (�v0(v1))
�1); (�(w0); �

w0(w1))] = 0

and hence :

f 0(�(v0)(�
v0(v1))

�1; �(w0)) = f 0(�(w0); �(v0)(�
v0(v1))

�1):

If f 0(�(v0); �(w0)) 6= 0 this equation implies that :

�v0(v1) = (�v0(v1))
�:

As by assumption Tr(�0) = Fix(�0) and the form q0 is anisotropic on V 0

0 we

see that �(v0) = 0 and hence v0 = 0, a contradiction.

Remark that Lemma 109 implies Rad(f) = 0 and Rad(f 0) = 0 as q and q0

are forms of Witt index 2 with Tr(�) = Fix(�) and Tr(�0) = Fix(�0).

Let � 2 k and v0 2 V0. As v
?

0 is sent via � to (�(v0))
? it follows that

�(v0�) = �0v0 ;

with �0v0 2 k
0 and where the subscript denotes a possible dependence on v0.

As dim(V0) � 2 Lemma 54 implies that � de�nes a semi-linear transformation
from V0 to V

0

0 with an associated �eld isomorphism �.

Suppose that char(k) = 2.

In this case we know that by assumption Rad(f) = f0g and Rad(f 0) =

f0g. Denote in the sequel of this proof for x 2 k, Lx = Z(k)(x) i.e. Lx
is the sub�eld of k generated over Z(k) by x and similarly for x0 2 k0, Lx0

= Z(k0)(x0). We show that for any (v0; v1) 2 R0;1

�(v0Lv1) = �(v0)L�v0 (v1): (3.25)

From s(0;1)(v0; v1) = (v0v
�1
1 ; v�11 ) we get after applying � that �(v0v

�1
1 ) =

�(v0)(�
v0(v1))

�1. Let z 2 Z(k) = Tr(�). Then the equation s(0;z) s(0;1)
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((v0; v1)) = (v0z; zv1z) gives after applying � that �(v0z) = �(v0)�(z), 8z 2
Z(k). As Lv1 = Z(k)(v1) = Z(k)(v�11 ) and L�v0 (v1) = L(�v0 (v1))�1 we see

that �(v0Lv1) � �(v0)L�v0 (v1). The other inclusion �(v0L�v0 (v1)) � �(v0Lv1)

follows by similar arguments.

Let v0, w0 2 V0. We prove :

f(v0; w0) = 0, f 0(�(v0); �(w0)) = 0:

We show one direction. The other direction follows by symmetric arguments.

Let f(v0; w0) = 0 for some v0, w0 2 V0. Firstly we show that :

f 0(�(v0); �(w0)) = f 0(�(w0); �(v0)): (3.26)

Choose v1, w1 2 k such that (v0; v1), (w0; w1) 2 R0;1. We have [(v0; v1); (w0; w1)]

= 0. As � de�nes an isomorphism from (R0;1;�) to (R
0

0;1;�) we have :

[(�(v0); �
v0(v1)); (�(w0); �

w0(w1))] = 0

or equivalently

f 0(�(v0); �(w0)) = f 0(�(w0); �(v0)):

Suppose �rstly that f(v0; w0) = 0 with w0 = v0. As also f(v0v
�1
1 ; v0) = 0

in this case and �((v0v
�1
1 ; v�11 )) = �(s(0;1)((v0; v1))) = s(0;1) (�(v0); �

v0(v1))
= (�(v0)(�

v0(v1))
�1, (�v0(v1))

�1) we see that :

f 0(�(v0)(�
v0(v1))

�1; �(v0)) = f 0(�(v0); �(v0)(�
v0(v1))

�1):

Equivalently :

(�v0(v1)
�1)�f 0(�(v0); �(v0)) = f 0(�(v0); �(v0))(�

v0(v1))
�1):

Suppose f 0(�(v0); �(v0)) 6= 0 then we �nd :

(�v0(v1)
�1)� = f 0(�(v0); �(v0))�

v0(v�11 )(f 0(�(v0); �(v0)))
�1: (3.27)

As (�v0(v1)
�1)� 2 L�v0 (v1) it follows that f

0(�(v0); �(v0)) stabilizes L�v0 (v1)
under conjugation. If f 0(�(v0); �(v0)) 62 L�v0 (v1) it follows that as Z(k),
�v0(v1) also stabilizes L�v0 (v1) and k is a generalized quaternion algebra that

k0 stabilizes L�v0 (v1). A similar reasoning as the one used in the proof of

Lemma 123 leads to a contradiction. Therefore we �nd that f 0(�(v0); �(v0)) 2



3.15. ISOMORPHISM PROBLEMS 195

L�v0 (v1). As L�v0 (v1) is a commutative �eld equation (3.27) becomes (�
v0(v1))

�

= �v0(v1). From q0(�(v0)) = g0(�(v0); �(v0))+Z(k) = �v0(v1)+Z(k) we �nd
that g0(�(v0); �(v0)) 2 Fix(�0). Hence f 0(�(v0); �(v0)) = g0(�(v0); �(v0))

+(g0(�(v0); �(v0)))
�) = 0, a contradiction. Therefore we �nd that

f 0(�(v0); �(v0)) = 0.

Remains to consider the case where f(v0; w0) = 0 and v0 6= w0. Sup-

pose f 0(�(v0); �(w0)) 6= 0. We �nd that f(v0v
�1
1 ; w0) = f(v0; w0w

�1
1 ) =

f(v0v
�1
1 ; w0w

�1
1 ) = 0. Moreover we have �((v0v

�1
1 ; v�11 )) = �(s(0;1)((v0; v1)))

= (�(v0)�
v0(v1)

�1, �(v0)�
v0(w1)

�1 and similarly �((w0v
�1
1 , w�11 )) (�(w0)

(�w0(w1))
�1, (�w0(w1))

�1). In view of (3.26) this means that the following

equations hold :

f 0(�(v0); �(w0)) = f 0(�(w0); �(v0))

f 0(�(v0)(�
v0(v1))

�1; �(w0)) = f 0(�(w0); �(v0)(�
v0(v1))

�1)

f 0(�(v0); �(w0)(�
w0(w1))

�1) = f 0(�(w0)(�
w0(w1))

�1; �(v0))

f 0(�(v0)(�
v0(v1))

�1; �(w0)(�
w0(w1))

�1) = f 0(�(w0)(�
w0(w1))

�1; �(v0)

(�v0(v1))
�1):

Equivalently :

f 0(�(v0); �(w0) = f 0(�(w0); �(v0)) (3.28)

(�v0(v1)
�1)�f 0(�(v0); �(w0)) = f 0(�(w0); �(v0))(�

v0(v1))
�1 (3.29)

f 0(�(v0); �(w0))(�
w0(w1))

�1 = (�w0(w1)
�1)�f 0(�(w0); �(v0)) (3.30)

(�v0(v1)
�1)�f 0(�(v0); �(w0))(�

w0(w1))
�1 = (�w0(w1)

�1)�f 0(�(w0); �(v0))�
v0(v1)

: (3.31)

Using formulas (3.28), (3.29) and (3.30), formula (3.31) yields :

f 0(�(v0); �(w0))(�
v0(v1))

�1(�w0(w1))
�1 = f 0(�(v0); �(w0))(�

w0(w1))
�1(�v0(v1))

�1:

If f 0(�(v0); �(w0)) 6= 0 this implies :

�v0(v1)�
w0(w1) = �w0(w1)�

v0(v1)

If �w0(w1) 62 L�v0 (v1) the above equation implies �
v0(v1) 2 Z(k) a contradiction

as q is anisotropic on V0. Thus �
w0(w1) 2 L�v0 (v1) and we �nd that L�w0 (w1)

= L�v0 (v1).

Equation (3.29) implies :

(�v0(v1)
�1)� = (f 0(�(v0); �(w0))(�

v0(v1))
�1(f 0(�(v0); �(v0))

�1:
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As (�v0(v1)
�1)� 2 L�v0 (v1) n Z(k) this shows that f 0(�(v0); �(v0)) stabi-

lizes L�v0 (v1) via conjugation. If f 0(�(v0); �(w0)) 62 L�v0 (v1) we �nd that k0

stabilizes L�v0 (v1). A similar reasoning as the one used to prove Lemma

123 leads to a contradiction. Therefore we �nd that f 0(�(v0); �(w0)) 2
L�v0 (v1), a commutative �eld and hence (�v0(v1))

�0 = �v0(v1). As q0(�(v0))
= �v0(v1) + Tr(�0) = g0(�(v0); �(v0)) + Tr(�0) we see that g0(�(v0); �(v0))

2 Fix(�0) and f 0(�(v0); �(v0)) = g0(�(v0); �(v0)) +(g
0(�(v0); �(v0))

�0 = 0.

Similar arguments show that f 0(�(w0); �(w0)) = 0, �w0(w1) 2 Fix(�0) and
f 0(�(v0), �(w0)) 2 L�w0(w1). In particular we �nd by what is already proved

that f(w0; w0) = 0. Hence w1 2 Fix(�).
Suppose �rstly that w0 62 hv0i. Using Lemma 108 we �nd :

s(w0;w1)s(0;1)((v0; v1)) = (v0w1; w1v1w1):

Applying � to this equation yields :

�(v0w1) = (�((v0w1; w1v1w1)))0

= (�(s(w0;w1)((v0; v1))))0

= (s(�(w0);�w0(w1))s(0;1)((�(v0); �
v0(v1))0

= �(w0)�
w0(w1)

�1f 0(�(v0); �(w0))�
w0(w1) + �(v0)�

w0(w1):

As �w0(w1)f
0(�(v0); �(w0))�

w0(w1) 2 L�w0 (w1) and �
w0(w1) 2 L�v0 (v1) formula

(3.25) implies that there exist �1 2 L�w0 (w1) and �2 2 L�v0 (v1) such that :

�(w0�1) = �(w0)(�
w0(w1))

�1f 0(�(v0); �(w0))�
w0(w1)

�(v0�2) = �(v0)�
w0(w1):

We �nd :

�(v0w1) = �(w0�1 + v0�2)

and thus :

v0w1 = w0�1 + v0�2:

As w0 62 hv0i this is only possible if �1 = 0 and �(w0�1) = �(w0) (�
w0(w1))

�1

f 0(�(v0); �(w0)) �
w0(w1) = 0. But then it follows that f 0(�(v0); �(w0)) = 0,

a contradiction against the assumption on f(�(v0); �(w0)). Therefore we �nd

that if w0 62 hv0i and f(v0; w0) = 0 necessarily also f 0(�(v0); �(w0)) = 0.

Remains the case where w0 2 hv0i. This means we can set w0 = v0�,

� 2 k. Without loss of generality we can thus assume that w1 = �� v1�.
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Remark that if � 2 Lv1 we �nd �(v0�) = �(v0) �
0 for some �0 2 L�v0 (v1)

and we �nd f(�(v0); �(v0�)) = f(�(v0); �(v0))�
0 = 0. Hence we can assume

that � 62 Lv1 . Suppose f 0(�(v0); �(v0�)) 6= 0. Then we already deduced

that f 0(�(v0); �(v0)) = 0, f 0(�(v0�); �(v0�)) = 0, L�v0 (v1) = L�v0�(��v1�) and
f 0(�(v0), �(v0�)) 2 L�v0 (v1). Using Lemma 108 we �nd :

(s(v0;v1)s(0;1)(v0�; �
�v1�))0 = v0�v1:

Applying � to this equation gives :

�(v0�v1)
= (�(s(v0;v1)s(0;1)(v0�; �

�v1�))0
= (s(�(v0);�v0 (v1))s(0;1)(�(v0�); �

v0�(��v1�)))0
= �(v0)(�

v0(v1))
�1f 0(�(v0); �(v0�))�

v0(v1) + �(v0�)�
v0(v1):

Now as �v0(v1) 2 L�v0�(��v1�) and (�
v0(v1))

�1f 0(�(v0); �(w0)) �
v0(v1) 2 L�v0 (v1)

formula (3.25) implies that there exist �1 2 Lv1 and �2 2 L��v1� with :

�(v0�1) = �(v0)(�
v0(v1))

�1f 0(�(v0); �(v0�))�
v0(v1)

�(v0��2) = �(v0�)(�
v0(v1))

�1:

But this means that we have :

�(v0�v1) = �(v0�1) + �(v0��2); (3.32)

and :

�v1 = �1 + ��2:

As �2 2 L��v1� there exist z1, z2 2 Z(k) with �2 = z1 +�
�v1�z2. This means

that equation (3.32) becomes :

�v1 = �1 + �z1 + ���v1�z2

or equivalently :

�(z1 + ��v1�z2 + v1) = �1:

As � 62 Lv1 this is only possible if �1 = 0 and �(v0�1) = 0 = �(v0)(�
v0(v1))

�1

f 0(�(v0); �(v0�))�
v0(v1). We �nd f 0(�(v0); �(v0�) = 0 contradicting the

assumption on f 0(�(v0); �(v0�)). Therefore we also �nd in this case that

f 0(�(v0); �(w0)) = 0.

This completes the proof that :

f(v0; w0) = 0, f 0(�(v0); �(w0)) = 0:
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Now we can proceed as in the case where char(k) 6= 2 and k is a gener-

alized quaternion algebra with standard involution to see that � induces a

semi-linear transformation with an associated �eld isomorphism � such that

�(v0�) = �(v0)�
�, 8� 2 k, 8v0 2 V0.

2. Second subcase : the general case, if k is a generalized quaternion al-

gebra � is a non standard involution.

By Lemma 47 we have that k is generated as a ring by Tr(�). Consider

� 2 k and (v0; v1) 2 R0;1. Then � can be expressed in terms of elements of

Tr(�) i.e. for there exist �i 2 Tr(�), 1 � i � n such that for example :

� =

nX
j=1

�1;j : : : �i(j);j ; �k;j 2 Tr(�):

Denote as before S(v0;v1) = hu((1); (0; 0); (v0; v1));m�j� 2 Tr(�)i.
Using property (3.24) we �nd a  � 2 S(v0;v1) such that :

�( �((v0; v1))) = �((v0�; ��v1�
�))

= (�(v0)�
0; ��v1�

�0)

= �((v0�; ��v1�
�))

= (�(v0�); �
v0�(��v1�

�))

with (v0; �v1) 2 R0;1 and (w00; �w
0

1) 2 R
0

0;1 and �
0 =

Pn

j=1 �(�
j
1;1) : : : �(�

j

1;i(j)
)

This implies :

�(v0�) = �(v0)�
0; 8v0 2 V0: (3.33)

Remark that we can not use Lemma 54 in this case to show that � induces

a semi-linear transformation from V0 to V
0

0 as dim(V0) can be 1. Therefore

we will have to proceed in another way.

De�ne the map � from k to k0 in the following way. If � 2 k, we choose an
expression of � in terms of elements of Tr(�) i.e. for example :

� =

mX
j=1

��1;j : : : ��i(j);j ; ��k;j 2 Tr(�):

Subsequently we de�ne :

�� =

mX
j=1

�(��1;j) : : : �(��i(j);j):
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We show that � is well de�ned i.e. that it is independent of the expression

of � in terms of elements of Tr(�). This will be done is we prove that every
expression of 0 in terms of elements of Tr(�) is sent over by � to 0.

Consider an arbitrary expression of elements of Tr(�) i.e. for example
Pl

j=1

�1;j : : : �i(j);j , �k;j 2 Tr(�). Choose v0 6= 0 in V0.
Then we know that :

�((v0(

lX
j=1

�1;j : : : �i(j);j))) = �(v0)(

lX
j=1

�(�1;j) : : : �(�i(j);j):

Hence :
lX

j=1

�1;j : : : �i(j);j = 0,

lX
j=1

�(�1;j) : : : �(�i(j);j) = 0:

This shows that � is a well de�ned bijection from k to k0. By construction

we see that � de�nes a �eld isomorphism from k to k0 satisfying :

�(v0�) = �(v0)�
�; 8v0 2 V0; � 2 k:

and :

��� = ���
0

; 8; 8� 2 k:

This prove that � de�nes a semi-linear transformation from V0 to V 0

0 with

associated �eld isomorphism �.

Let (v0; v1) 2 R0;1.

Then :

�s(0;1)(v0; v1) = (��(v0v
�1
1 ); ��v0v

�1
1 (�v�11 ))

= (��(v0)(v
�1
1 )�; ��v0v

�1
1 (�v�11 ))

= (��(v0)(�
v0(v1))

�1; (��v0(v1)
�1)

= s(0;1)(�(v0); �
v0(v1)):

yields :

(�v0(v1))
�1 = (v�11 )�

�(�v0(v1))
�1 = ��v0v

�1
1 (�v�11 ):

The �rst of these equations shows �v0(v1) is independent of v0 and :

�v0(v1) = v�1 :
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Therefore we have :

�(v0; v1) = (�(v0); v
�
1 ); 8(v0; v1) 2 R0;1: (3.34)

Let (v0; v1), (w0; w1) 2 R0;1. As �((v0;�g(v0; v0))) = (�(v0),(�g(v0; v0))
�)

and (�(v0),�g
0(�(v0); �(v0)) 2 R

0

0;1 we �nd :

g(v0; v0)
� = g0(�(v0); �(v0)) + k0�0;�1; 8v0 2 V0:

Moreover equation (3.34) implies :

(�(v0) + �(w0); v
�
1 + w�

1 � (f(v0; w0))
�)

= �((v0; v1)� (w0; w1))

= �((v0; v1)) � �((w0; w1))

= (�(v0) + �(w0); v
�
1 + w�

1 � f 0(�(v0); �(w0))):

Therefore :

(f(v0; w0))
� = f 0(�(v0); �(w0)); 8v0; w0 2 V0:

De�ne the semi-linear transformation ' from V to V 0 by :

'(e�1x�1 + x0 + e1x1) = e0
�1x

�
�1 + �(x0) + e01x

�
1 ; 8x�1; x1 2 k;8x0 2 V0:

We check ' preserves the forms.

For x = e�1x�1 + x0 + e1x1 2 V we have :

q(x) = �x�
�1x1 + q(x0):

Applying � to this equation gives :

(q(x))� = �x��
�1x

�
1 + (g(x0; x0))

� + k0�0;�1

= �x��
0

�1 x
�
1 + q0(�(x0))

= q0(e0
�1x

�
�1 + �(x0) + e01x

�
1 )

= q0('(x)):

Let e�1x�1 + x0 + e1x1, e�1y�1 + y0 +e1y1 2 V then :

f(x; y) = �x�
�1y1 + x�1y�1 + f(x0; y0):

Applying � to this equation gives :

(f(x; y))� = (�x�
�1y1 + x�1y�1 + f(x0; y0))

�

= �x��
0

�1 y
�
1 + x��

0

1 y�
�1 + f(�(x0); �(y0)

= f 0('(x); '(y)):
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Thus ' is a semi-linear transformation from V0 to V 0

0 with associated �eld

isomorphism � satisfying :

�(hxi) = h'(x)i; 8hxi 2 MU(V; q; k; �)

(q(x))� = q0('(x)); 8x 2 V

(f(x; y))� = f 0('(x); '(y)); 8x; y 2 V:

Throughout the proof we assumed that �((0; 1)) = (0; 1). This might in-

volve a possible multiplication of q0 with a certain constant. Namely let

MU(V; q; k; �) and MU 0(V 0; q0; k0; �0) be two unitary Moufang sets isomor-

phic under �. Choose coordinatizations of both sets. In order to assure that

�((0; 1)) = (0; 1) one can choose can choose a 2 Fix(�) and a0 2 Fix(�0) such
that  a0�  

�

a (0; 1) = (0; 1), where  a is the isomorphism fromMU(V; q; k; �)

toMU(V; aq; k; �a) and  a0 the isomorphism fromMU(V 0,q0,k0,�0) toMU(V 0,

a0q0, k0, �0a
0

) (as de�ned in section 3.12.3). By what is already proved we �nd

a bijective semi-linear transformation ' with associated �eld isomorphism �

such that :

 �1a0 � a(hxi) = h'(x)i; 8hxi 2 MU(V; aq; k; �a)

(aq(x))� = a0q0('(x)); 8x 2 V

(af(x; y))� = a0f 0('(x); '(y)); 8x; y 2 V

��
a� = ���

0a
0

; 8� 2 k:

Let a0�1a� = c0. We �nd :

�(hxi) = h'(x)i; 8hxi 2 MU(V; q; k; �)

c0(q(x))� = q0('(x)); 8x 2 V

c0(f(x; y))� = f 0('(x); '(y)); 8x; y 2 V

c0���c0
�1

= ���
0

c0 meets the requirements of the Proposition.

Conversely suppose ' is a bijective semi-linear transformation from V to
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V 0 with associated �eld isomorphism � such that that there exists a constant

c0 2 k0 with :

c0(q(x))� = q0('(x)); 8x 2 V

c0(f(x; y))� = f 0('(x); '(y)); 8x 2 V

c0���c0
�1

= ���
0

; 8� 2 k:

Then Lemma 102 shows that the map � de�ned by

�(hxi) = h'(x)i; 8hxi 2 MU(V; q; k; �)

de�nes a Moufang set isomorphism.

2

Proposition 130 Let MU(V; q; k; �) be a unitary Moufang set with com-
mutative root groups. Then MU(V; q; k; �) is isomorphic to a projective,
orthogonal, hermitian or indi�erent Moufang set (X 0; (Ux0)x02X0) if and only

if :
(i) (X; (Ux0)x02X0) is a projective Moufang set of the form P(k0), k is a
generalized quaternion algebra with standard involution �, MU(V; q; k; �)
�= P(Z(k)) and Z(k) �= k0,
(ii) (X 0; (Ux0)x02X0) is an orthogonal Moufang set of the form MO(V 0; q0; k0)
and M U(V; q; k; �) is an extended polar line de�ned over a generalized

quaternion algebra k with standard involution � isomorphic toMO(V 0; k0; q0).
(iii) (X 0; (Ux0)x02X0) is a hermitian Moufang set of the formMH(V 0; q0; k0; �0),
k is a generalized quaternion algebra with standard involution �,MU(V; q; k; �)
�= P(Z(k)), MH(V 0; q0; k0; �0) �= P(Fix(�0)) and Z(k) �= Fix(�0),
(iv) (X 0; (Ux0)x02X0) is an indi�erent Moufang set of the form P(�k0; l0; k0),
MU(V; q; k; �) is an extended polar line de�ned over a generalized quater-

nion algebra isomorhic to P(�k0; l0; k0). Moreover if char(k) 6= 2, dim(V ) = 2

and Z(k) �= l0 = k0.

First case : (X 0; (Ux0)x02X0) is a projective Moufang set P(k0).
We refer to Propositions 125 and 126.

Second case : (X 0; (Ux0)x02X0) is an orthogonal Moufang set MO(V 0; q0; k0).
In this case we refer to Proposition 127.
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Third case : (X 0; (Ux0)x02X0) is a hermitian Moufang set MH(V 0; q0; k0; �0).
For this case we refer to Proposition 128.

Fourth case : (X 0; (Ux0)x02X0) is an indi�erent Moufang set P(�k0; l0; k0).
As P(�k0; l0; k0) is commutative and has commutative root groups Lemmas 104
and 123 imply that k is a generalized quaternion algebra with standard in-

volution � and MU(V; q; k; �) �= P(Z(k)). Proposition 126 yields then that

MU(V; q; k; �) �= P( �k0, l0; k0) if and only if Z(k) �= l0 = k0.

3.15.6 The isomorphism problem for indi�erent Mo-

ufang sets.

Proposition 131 An indi�erent Moufang set P(�k; l; k) is isomorphic under

� to a classical or indi�erent Moufang set (X 0; (Ux0)x02X0) if and only if one
of the following occurs :
(i) (X; (Ux0)x02X0) is a projective Moufang set P(k0) with l = k �= k0,

(ii) (X 0; (Ux0)x02X0) is an orthogonal Moufang set MO(V 0; k0; q0) and one of
the following subcases occurs :
(ii:a) dim(V 0) = 3, l = k �= k0, or

(ii:b) dim(V 0) = 4, codim(Rad(f 0)) 6= 2 and l = k �= k00, with k00 the quadratic
Galois extension of k0

determined by MO(V 0; q0; k0).

(ii:c) codim(Rad(f 0)) = 2, � induces a bijection ' from l to fq0(w0) jw0 2
Rad(f 0)g, there exist constants c 2 k, c0 2 k0 such that 1 2 c0q0(w0) jw0 2
Rad(f 0)g and an isomorphism � from k to the �eld generated by fc0q0(w0)
jw0 2 Rad(f 0)g such that :

c0'(v) = (cv)�; 8v 2 l;

(iii) (X 0; (Ux0)x02X0) is a hermitian Moufang set M(H(V 0; q0; k0; �0)) with
dim(V 0) = 2 and l = k �= Fix(�0),

(iv) (X 0; (Ux0)x02X0) is a unitary Moufang set MU(V 0; q0; k0; �0) de�ned over
a generalized quaternion algebra k0 with standard involution �0, dim(V 0) = 2

and k = l �= Z(k0),

(v) (X; (Ux0)x02X0) is an indi�erent Moufang set P(�k0; l0; k0), there exists a
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�eld isomorphism from k to k0, a constant c0 2 k0 such that :

�((x)) = (c0x�); 8(x) 2 P(�k; l; k):

proof :

First case : (X 0(Ux0)x02X0) is a projective Moufang set P(k).
As P(�k; l; k) as commutative Lemma 119 implies that k is a �eld. Using

Proposition 126 we see that in this case P(�k; l; k) is isomorphic to P(k) if
and only if l = k �= k0,

Second case : (X 0(Ux0)x02X0) is an orthogonal Moufang setMO(V 0; q0; k0; �0).
In this case we refer to Proposition 127.

Third case (X 0(Ux0)x02X0) is a hermitian Moufang set MH(V 0; q0; k0; �0).
As P(�k; l; k) has commutative root groups Lemma 118 implies that dim(V 0)

= 2 and MH(V 0; q0; k0; �0) �= P(Fix(�0)). Proposition 126 implies then that

P(�k; l; k) is isomorphic to MH(V 0; q0; k0; �0) if and only if l = k �= Fix(�0).

Fourth case (X 0(Ux0)x02X0) is a unitary Moufang set MU(V 0; q0; k0; �0).
Without loss of generality we can assume that q0 is a (�;�1)-quadratic
form such that 1 2 Tr(�). As P(�k; l; k) is commutative with commuta-

tive root groups Lemma 104 and Corollary 122 imply that MU(V 0; q0; k0; �0)
is an extended polar line de�ned over a generalized quaternion algebra k0

with standard involution �0. Lemma 123 implies that dim(V 0) = 2, and

MU(V 0; q0; k0; �0) �= P(Z(k0)). Using Proposition 125 we �nd that P(�k; l; k0)
�= MU(V; q; k; �)) if and only if l = k �= Z(k).

Fifth case : (X 0(Ux0)x02X0) is an indi�erent Moufang set of the form P(�k0; l0; k0).
choose for both P(�k; l; k) and P(�k0; l0; k0) coordinatizations. After a possi-

ble re coordinatization of P(�k0; l0; k0) we can assume that �((0)) = ((0)),

�(1) = (1) and �((1)) = (1). As � de�nes a bijection between the points

of P(�k; l; k) and P(�k0; l0; k0) it induces a bijection from l to l0 which we also

denote by � if we set :

�((v)) = (�(v)); 8v 2 l:

As u((1); (0); (v))((w)) = (v+w) we deduce �(v+w) = �(v)+�(w). Hence

� de�nes an additive morphism from l to l0
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The assumptions on l and l0 show that k2 = l2 and (k0)2 = (l0)2.
The equations s(0;1)(v) = (v�1) and s(0;v) (1) = (v�2) show that �((v�1))
= ((�(v))�1) and �((v2)) = ((�(v))2), 8v 2 l. Using these equations one

easily shows that � de�nes a bijection from l2 to (l0)2 preserving the additive
group structure, squares and inverse. The proof of Proposition 124 yields

that � de�nes an isomorphism from k2 to (k0)2. Thus if we de�ne the map

� from k to k0 by :

�(x) =
p
�(x2); 8x 2 k

we �nd that � de�nes a �eld isomorphism from k to k0 such that

�((v)) = (v�); 8v 2 l:

Remark that we the assumption that �((1)) = (1) can require a possible re

coordinatization. This means that with respect to the original coordinate

system we �nd a c0 2 k0 such that

�((v)) = (c0v�); 8v 2 l:

Conversely let � be a �eld isomorphism from k to k0 such that there exists a

constant c0 such that :

c0x� 2 l0; 8x 2 l:

De�ne the bijection � from P(�k; l; k) to P(�k0; l0; k0) by :

�((x)) = (c0x�); 8x 2 l:

Using Lemma 41 we check that � de�nes a Moufang set isomorphism. In

order to use this lemma we have to show that the map �(1) de�ned by :

�(1)(u(1)) = � Æ u(1) Æ �
�1; 8u(1) 2 U(1)

de�nes a bijection from the root elations �xing (1) in P(�k; l; k) to the set

of root elations in P(�k0; l0; k0) �xing (1) and similarly the map �(0) de�ned

by :

�(0)(u(0)) = � Æ u(0) Æ �
�1; 8u(0) 2 U(0)

de�nes a bijection from the root elations in P(�k; l; k) �xing (0) to the root

elations of P(�k0; l0; k0) �xing (0).
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Let (v0) 2 l0 we calculate :

�u((1); (0); (t))��1((v0)) = �u((1); (0); (t))(((c0
�1
v0)�

�1

))

= �(((c0
�1
v0)�

�1

+ t))

= ((v0 + c0t�))

= u((1); (0); �(t))((v0))

�u((1); (0); (t))��1((1)) = (1)

showing that �(1)= (u((1); (0); (t))) u((1); (0); �((t)))).

Let v0 2 l0 n f0g.
We �nd :

�u((0); (1); (t))��1((v0)) = �u((0); (1); (t))(((c0
�1
v0)�

�1

))

= �((((c0v0
�1
)�
�1

+ t�1)�1))

= ((v0
�1

+ (c0t�)�1)�1)

= u((0); (1); �(t))((v0))

�u((0); (1); (t))��1((0)) = (0)

showing that �(0) (u((0); (1); (t))) = u((0); (1); �((t))).

Using Lemma 41 we thus �nd that � de�nes a Moufang set isomorphism.

2

3.16 Local characterizations of some classical

Moufang sets

Main aim of this section is to generalize the techniques developed in the

previous paragraphs and come to a more abstract theory. To simplify the

notations and calculations we will assume that we always work with (�;�1)-
quadratic forms with 1 2 Tr(�) if � 6= 1. As explained in Corollary 92 and

section 3.12.3 this does not put any restrictions on the forms we consider.

Theorem 132 Let (X; (Ux)x2X) be a Moufang set with non-commutative

root groups. Then (X; (Ux)x2X) is isomorphic to a Moufang set of the form
M(V; q; k; �) where dim(V ) � 5, and if k is a generalized quaternion algebra
� is a non standard involution if and only if there exists a family of proper

Moufang subsets (Yi)i2I of (X; (Ux)x2X) and two points y1 and y2 such that :
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(i) For every i 2 I, Yi is isomorphic to a Moufang set of the form M(Vi,
qi,ki,�i) where if ki is a generalized quaternion algebra �i is a non
standard involution. All Yi have the same type. If the Yi are hermitian

Moufang sets dim(Vi) > 4, 8i 2 I,

(ii) y1, y2 2 Yi, 8 2 I and every three points x1, x2 and x3 are contained
in some Yi,

(iii) If the Yi are orthogonal Moufang sets the following condition holds :
for every i, j 2 I the Moufang set Yi \Yj is non-commutative with :

Z(FixTYify1; y2g) = Z(FixTYjfy1; y2g); 8i; j 2 I:

If char(kj) = 2, 8j 2 I, '�1i (Yj) is a Moufang set M(Vij ; qij, kj ; �j),
where Vij is a subspace of Vj and qij = qijVij .

(iv) If the Yi are not orthogonal Moufang sets the following
condition holds :

Z(StabUy1(Yi)) = Z(StabUy1(Yj)); 8i; j 2 I;

(v) If the Yi are hermitian Moufang sets there exists a Moufang subset Y0 of
the family such that Y0 \Yi \Yj is a Moufang set with non-commutative

root groups for every couple i, j 2 I.

proof :

Suppose (X; (Ux)x2X) is a Moufang set M(V; q; k; �) such that dim(V ) � 5

and if k is a generalized quaternion algebra � is a non standard involution.

Choose a coordinatization of M(V; a; k; �) associated to a decomposition V
= e�1k �V0 �e1k. Set H0 = f W i

0 j W
i
0 is a subspace op V and codim(W i

0)

= 3 g. By construction we can consider for every W i
0 2 H0 the Moufang set

Yi =M(e�1k�W
i
0�e1k, q, k, �). One easily checks that if we set the family

(Yi) satis�es the conditions of the Theorem.

Conversely suppose (X; (Ux)x2X) and Yi are Moufang sets as in the theorem.

If all Moufang sets (Yi) are orthogonal we put � = 1 and in the other cases

we set � = �1. For i 2 I we will assume that qi (�i; �)-quadratic form with

associated sesquilinear form fi. Moreover we will denote the isomorphism

from M(Vi; qi; ki; �i) to Yi by 'i. Choose for every i 2 I a coordinatization
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ofM(Vi,qi,ki; �i) associated to a decomposition ei
�1k �V

i
0 �e

i
1 with labelling

set Ri
0;1 = f(vi0; v

i
1) 2 V

i
0 � ki jqi(v

i
0) + vi1 = 0g such that 'i ((1)) = y1 and

'i((0; 0)) = y2.

Remark that the conditions (iii), (iv) and (v) of the theorem imply that

Yi \ Yj 6= ;, 8 i, j 2 I . For i 2 I we have char(ki) = ord(uy1), 8uy1 2 Uy1
and it follows that char(ki) = char(kj) 8 i, j 2 I .
Throughout this proof we will use the following notation which was intro-

duced in Chapter 1. If (X; (Ux)x2X) and (Y; (Uy)y2Y ) are two Moufang sets

and ' is an injection from (X; (Ux)x2X) into Y . Then we will denote for u

2 TX , the automorphism ' Æ u Æ '�1 of (Y; (Uy)y2Y ) as u
'.

Also important to mention is that by Lemma 47 the conditions on ki and �i
yield that Tr(�i) generates ki as a ring if Z(ki) 6= ki.

If �i 6= 1, 8 2 I we introduce the following notations :

Condition (iv) of the theorem yields that for i, j 2 I :

f'i((a
i
0; a

i
1))j(a

i
0; a

i
1) 2 Z(R

i
0;1;�)g = f'j((a

j
0; a

j
1))j(a

j
0; a

j
1) 2 Z(R

j
0;1;�)g:(3.35)

If i 2 I we will denote in the sequel Li = fai1 2 R
i
1 ja

i
1 = q(ai0), a

i
0 2 Rad(fi)g

= fai1 j(a
i
0; a

i
1) 2 Z(R

i
0;1;�) for some a

i
0 2 V

i
0 g. Remark that for ai1 2 Li the

element ai0 2 V
i
0 such that qi(a

i
0) = ai1 is uniquely determined by ai1. (If there

would be another bi0 2 Rad(fi) with qi(b
i
0) = ai1 the equation q(a

i
0 + bi0) = 0

implies that ai0 = bi0.) Moreover as (0; 1) 2 Ri
0;1, 8i 2 I , by assumption we

can introduce the following notation. For �i 2 Li we set :

m�i = s(xi0;�i)s(0;1);

with xi0 the unique vector in Rad(fi) satisfying q(x
i
0) = �i.

As a �rst step we show that for every i, j 2 I the set '�1i (Yj) is a Moufang

subset ofM(Vi; qi; ki; �i) of the formM(Vij ,qij ,ki,�i) where Vij is a subspace

of Vi and qij = qijVij .
Remark that if (vi0; v

i
1), (w

i
0; w

i
1) 2 '

�1
i (Yj) also (v

i
0; v

i
1) � (wi

0; w
i
1) 2 '

�1
i (Yj).

1. The Yl are orthogonal Moufang sets 8l 2 I .
If char(k) = 2 it follows by assumption that '�1i (Yj) is of the formM(Vij ; qij ; ki; �i)
where Vij is a subspace of Vi and qij = qijVij .
Remains the case where char(k) 6= 2.

Let (vi0; v
i
1) 2 '

�1
i (Yj) and �

i 2 ki. By Lemma 109 we know that s(vi0�i;vi1(�i)2)
s(v0;v1) 2 Z(FixTYi fy1, y2g). As Z(FixTYi fyi, yjg) = Z(FixTYj fy1, y2g)
we �nd that s'i

(vi0;v
i
1)
s(vi0�i;vi1(�i)2) 2 StabTX (Yi\Yj). In particular s(vi0�i;vi1(�i)2)
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s(vi0;vi1) ((v
i
0; v

i
1)) = (vi0(�

i)2; vi1�
i4) 2 '�1i (Yj).

Moreover as :

(vi0(1 + �i)2; vi1(1 + �i)4) = (vi0; v
i
1)� 2(vi0�

i; vi1(�
i)2)� (vi0(�

i)2; vi1�
i4)

and (v0(�
i)2; v1�

i4) 2 '�1i (Yj) we see that 2(v
i
0�

i, vi1(�
i)2) 2 '�1i (Yj). Hence

(vi0�
i,vi1 �i

2) 2 '�1i (Yj).
2. The Yl are hermitian Moufang sets such that dim(Vl) � 4, 8l 2 I .
Let (vi0; v

i
1) 2 '

�1
i (Yj). Equation (3.35) shows that f(0; �i) j�i 2 Fix(�i)g �

'�1i (Yj). Therefore we �nd for �i 2 ki that u((1); (0; 0); (0; �i) and m�i sta-

bilize '�1i (Yj). This means that f(v
i
0; v

i
1 + �i) j�i 2 Fix(�i)g � '�1i (Yj) and

f(v0�
i; �iv1�

i + �) j�i, �i 2 Fix(�i)g = fm�i(v
i
0; v

i
1 + �i) j�i, �i 2 Fix(�i)g

� '�1i (Yj).
By assumption we have (0; 1) 2 '�1i (Yj). Hence '�1i (Yj) is stabilized

by s(0;1). This implies that also the set f(vi0v
i
1

�1
�i ; �ivi1

�1
�i +�i) j�i, �i

2 Fix(�i)g is contained in '�1i (Yj)g. As v
i
1 62 Fix(�i) = Tr(�i), the �eld ki

equals Fix(�i)(v
i
1

�1
). We thus �nd that '�1i (Yj) is of the formM(Vji; qji; ki; �i),

where Vij is the space spanned by the vectors in f('�1i (yj))0 jyj 2 Yj \ Yig
and qij = qijVij .
3. The Yl are unitary Moufang sets with such that if kl is a generalized

quaternion algebra, �l is not its standard involution. 6= Z(kl), 8l 2 I .
Let (vi0; v

i
1) 2 '�1i (Yj). Formula (3.35) shows that f(0; �i) j�i 2 Tr(�i)g �

'�1i (Yj). Hence u((1); (0; 0),(0; �i)) stabilizes '
�1
i (Yj), 8�i 2 Tr(�i). This

means that f(vi0; v
i
1 + �i)j�i 2 Tr(�i) 2 '�1i (Yj)g. As also (0; 1) 2 '�1i (Yj)

the elements m�i = s(0;�i) s(0;1) for �i 2 ki will stabilize '
�1
i (Yj).

Let �i 2 ki. Denote as in the the second subcase of the proof of Theorem 129

S(vi0;vi1) hu((1); (0; 0); (vi0; v
i
1)), m�i j�

i 2 Tr(�i)i. Then we proved that there

exists a  �i 2 S(vi0;vi1) such that '�i((v
i
0; v

i
1)) = (vi0�

i, �i
�
�vi1 �

i), with (vi0; �v
i
1)

2 Ri
0;1. By de�nition of S(vi0;vi1) it follows that S(vi0;vi1) 2 Stab('�1i (Yj). This

means that (vi0�
i, �i

�
�vi1 �

i) 2 '�1i (Yj) and f(v
i
0�

i, �i
�
vi1�

i+�i) j�i 2 Tr(�i)g
� '�1i (Yj).
This shows that '�1i (Yj) will be the Moufang set of the formM(Vij ; qij ; ki; �i)
where Vij is the space spanned by f('�1i (yj))0 jyj 2 Yi \Yjg and qij = qijVij .
As a next step we show that for any every i, j 2 I there exists a unique

element ci;j 2 kj , and a unique bijective semi-linear transformation �ij from
V i
0 to V j

0 and a �eld isomorphism �ij from ki to kj such that :

'i((v
i
0; v

i
1)) = (�ij(v

i
0); cijv

i
1

�ij
); 8(vi0; v

i
1) 2 '

�1
i (Yj) (3.36)
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cij(�
i)�i�ijc�1ij = ��ij�j ; 8�i 2 ki: (3.37)

Firstly we show the unicity of cij , �ij and �ij . Suppose that there exist dij
2 Fix(�) \Z(k), a semi-linear transformation Æij with �eld isomorphism 
ij
such that a formula similar to (3.37) hold. We �nd :

�ij(v
i
0) = Æij(v

i
0)

cijv
i
1

�ij
= dijv

i
1


ij

for (vi0; v
i
1) 2 '�1i (Yj). The �rst equation shows that �ij = Æij while the

second equation implies that cij , = dij .
If the Yl orthogonal or hermitian Moufang sets the assumptions of the the-

orem imply that there exists at least one (vi0; v
i
1) 2 '�1i (Yj) with v0 6= 0. In

this case the �rst equation shows �ij = 
ij .

If the Yl are unitary Moufang sets and '�1i (Yj) = f(0; �i) j�i 2 Tr(�i), the
second equation shows that �ij equals 
ij as Tr(�

i) generates ki as a ring.
Firstly we prove formula (3.37) if Yi \ Yj contains a z 2 X such that

u(y1; y2; z) 62 Z(StabUy1 (Yi)) = Z(StabUy1 (Yj)).
Remark that this is only possible if all Yk are hermitian or unitary.

IfM(Vi; qi,ki,�i) is hermitian we choose zi 2 Yi, zj 2 Yj such that ('�1i (zi))0
and ('�1i (z))0 are linearly independent and similarly ('

�1
j (zj))0 and ('

�1
j (z))0

are linearly independent.

If M(Vi; qi; ki; �i) is unitary we choose zi 2 Yi and zj 2 Yj such that :

[u(y1; y2; zi); u(y1; y2; z)] 6= 1 and [u(y1; y2; z); u(y1; y2; zj ] 6= 1:

Let Yl be a Moufang set of the family containing zi, zj and z.
The permutation '�1l 'i of Yi \ Yl de�nes by assumption an automorphism

of the Moufang set Yi \Yl. The Propositions 128 and 129 show that there

exists a constant cil 2 kl and a bijective semi-linear transformation �il from
V i
0 to V l

0 with associated �eld isomorphism �il such that :

cil�
i�i�ilc�1il = �i

�il�j ; 8�i 2 ki

clj'
�1
l 'i((v

i
0; v

i
1))c

�1
lj = (�il(v

i
0); cilv

i
1

�il); 8(vi0; v
i
1) 2 '

�1
i (Yl)

By similar arguments there exists a constant clj 2 kj and a semi-linear trans-

formation �lj from V l
0 to V

j
0 with associated �eld isomorphism �lj such that :

clj�
l�l�ljc�1lj = �l

�lj�j
; 8�l 2 kl

'�1j 'l((v
l
0; v

l
1)) = (�(vl0); cljv

l
1

�lj
); 8(vl0; v

l
1) 2 '

�1
l (Yj):
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In particular :

'�1j 'i((0; �
i)) = '�1j 'l('

�1
l 'i((0; �

i)))

= '�1j 'l((0; cil�
i�il))

= (0; cljc
�lj
il �

i�il�lj)

= (0; cij�
i�ij)

if we set cij = c
�lj
il clj and �ij = �il�lj we �nd cij 2 kj and cij �

i�i�ij c�1ij
= �i

�ij�j , 8�i 2 ki.
IfM(Vi; qi; ki; �i) is unitary we leave it as an exercise for the reader to check

that one can proceed as in the proof of the second subcase of Theorem 129

to see that formula (3.37) holds.

IfM(Vi; qi; ki; �i) is hermitian, the assumption that Yi \ Yj has non-commutative
root groups implies dim(h ('�1i (yj))0 jyj 2 Yi \ Yji) � 1. We consider two

subcases.

First subcase : dim(h('�1i (yj))0 jyj 2 Yi \ Yj i) > 1.

Then one can proceed as in the proof of (ii:c) of Proposition 128 to see that

formula (3.37) holds.

Second subcase : dim(h('�1i (yj))0 jyj 2 Yi \ Yj i = 1. In this case we have

Yi \ Yj � Yl. Applying Proposition 128 to '�1l 'i and '�1j 'l proves that

also in this case formula (3.37) holds.

Remains to prove formula (3.37) whenever StabUy1(Yi \Yj) � Z(StabUy1 (Yi).
We distinguish three cases.

If the Yl are orthogonal, '
�1
i (Yj) and '

�1
j (Yi) are non-commutative orthog-

onal Moufang sets. As '�1j 'i de�nes an isomorphism from '�1i (Yj)) to

'�1j (Yi) formula (3.37) follows from Proposition 127.

If the Yl are hermitian assumption (v) of the theorem imply that in this case

StabUy1(Yi \Yj) cannot be contained in Z(StabUy1(Yi)). Hence this case can-
not occur.

If the Yl are unitary Moufang sets the assumption on StabUy1 implies that '

f(ai0; a
i
1) j(a

i
0; a

i
1) 2 Rad(fi)g = Yi \ Yj �

T
k2I Yk. Consider in this case a

Moufang set Yl such that Yi \ Yl contains an element zi with u(y1; y2; zi)
62 Z(StabUy1(Yi) and similarly Yl \ Yj contains a zl with u(y1; y2; zl) 62

Z(StabUy1 (Yl). Then we already know that formula (3.37) holds for '�1l 'i
and '�1j 'l. As Yi \ Yj � Yl formula (3.37) will also holds for '

�1
j 'i = '�1j 'l

'�1l 'i.

To proceed we choose an initial Moufang subset Y0, where Y0 is arbitrarily if
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the Yi are orthogonal or unitary and is as in condition (v) of the theorem if

the Yi are hermitian.
Using Y0 we de�ne the following binary relation (denoted by

v
�) on X .

Let x, x0 2 X . We set :

x
v
� x0 , u(y1; y2; z)(x) = x0; for some z 2 '0f(v0; v1) 2 R

0
0;1 \ f0g � k0g:

Remark that if all Yi are orthogonal we �nd for v, v0 2 X , v
v
� v0 if and only

if v = v0.
If �0 6= 1 we have :

x
v
� x0 , u((1); (0; 0); (0; �))'0 (x) = (x0); for some �0 2 Tr(�0):

We check that
v
� is an equivalence relation on X .

If the Yi are orthogonal this is clear. Remains to consider the case where �i
6= 1, 8i 2 I .
(a)

v
� is re
exive.

This is clear as for any x 2 X , u(y1; y2; y2)(x) = x.
and '0((0; 0)) = y2.
(b)

v
� is symmetric.

If x
v
� there exists a �0 2 Tr(�0) with u((1); (0; 0); (0; �0))'0(x) = x0.

Equivalently :

(u((1); (0; 0); (0; �0))'0)�1(x0) = u((1); (0; 0); (0;��0))'0(x0)

= x;

and we �nd x0
v
� x.

(c)
v
� is transitive.

Let x
v
� x0 and x0

v
� x00.

This means that there exist �0, �00 2 Tr(�0) such that :

u((1); (0; 0); (0; �0))'0(x) = x0

u((1); (0; 0); (0; �0
0
))'0(x0) = x00:

Hence :

u((1); (0; 0); (0; �0))'0u((1); (0; 0); (0; �0
0
))'0(x) = u((1); (0; �0 + �0

0
))'0(x)

= x00
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and x
v
� x00.

In the sequel we will denote for x 2 X its equivalence class with respect to
v
� as x0 and we set V0 = fx0jx 2 Xg.
As a next step we show that there exists an addition and scalar multiplica-

tion with elements of k0 on V0 turning it into a right k0-vector space.

1. Addition :

Let x0, y0 2 V0. Choose x 2 x0, y 2 y0 and set :

x0 + y0 = (u(y1; y2; x)(y))0:

We show that this is well de�ned i.e. independent of the representatives we

choose for x0 and y0. Let x
0 2 x0. Then we have to show that :

(u(y1; y2; x)(y))0 = (u(y1; y2; x
0)(y))0:

If the Yi are orthogonal Moufang sets this is clear as for every x 2 X ,

x0 = fxg. Remains the case where the Yi are not orthogonal.
Let Yi be a Moufang subset as in the theorem containing x and y with

'�1i (x) = (vi0; v
i
1) and '

�1
i (y) = (wi

0; w
i
1). By assumption on x and x0 there

exists a �0 2 Tr(�0) such that u((1); (0; 0); (0; �0))'0(x) = x0.
Formula (3.37) shows that '0(0; �

0) = 'i((0; �
i)) for some �i 2 Tr(�i). It

follows that x0 2 Yi, u((1); (0; 0); (0; �0))'0 = u((1); (0; 0); (0; �i))'i and

'�1j (x0) = (vi0; v
i
1 + �i).

Therefore we �nd :

u(y1; y2; x
0)(y) = (u((1); (0; 0); (vi0 ; v

i
1 + �i))'i(y)

= u((1); (0; 0); (0; �i))'iu((1); (0; 0); (vi0; v
i
1))

'i(y)

= u((1); (0; 0); (0; �0))'0(u(y1; y2; x)(y)):

Hence (u(y1; y2; x
0)(y))0 = (u(y1; y2; x)(y))0.

We prove that (V0;+) is an abelian group.

+ is associative on V0.
Let x0, y0, z0 2 V0, x 2 x0, y 2 y0, z 2 z0 and Yi a Moufang subset as

in the theorem containing x, y and z. Associativity follows from the

associativity of � on Ri
0;1 using the isomorphism 'i.
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(y2)0 is neutral element for +.
This follows from the fact that 'i((0; 0)) = y2, 8i 2 I .

Every x0 has an inverse for +.

If x0 2 V0 and ('i((v
i
0; v

i
1))0 = x0 one checks that the inverse if x0 is

given by ('i((�v
i
0;�v

�i
1 �f(vi0; v

i
0)))0.

+ is commutative on V0.
Let x0, y0 2 V0, x 2 x0, y 2 y0 and Yi a Moufang subset as in the

Theorem containing x and y.
Consider the equations :

u(y1; y2; y)(x) = u((1); (0; 0); (wi
0 ; w

i
1))

'i(x)

= 'i(u((1); (0; 0); (wi
0; w

i
1))((v

i
0; v

i
1)))

= 'i((w
i
0; w

i
1)� (vi0; v

i
1))

= 'i((0; f(v
i
0; w

i
0) � f(wi

0; v
i
0))� (vi0; v

i
1)� (wi

0; w
i
1))

= 'i(u((1); (0; 0); (0; f(vi0 ; w
i
0)� f(wi

0; v
i
0))

u((1); (0; 0); (vi0 ; v
i
1))(w

i
0; w

i
1))

= u((1); (0; 0); (0; f(vi0 ; w
i
0)� f(wi

0; v
i
0))

'i

u((1); (0; 0); (vi0 ; v
i
1))

'i(y)

= u((1); (0; 0); (0; f(vi0 ; w
i
0)� f(wi

0; v
i
0))

'i

u(y1; y2; x)(y)

as u((1); (0; 0); (0; f(vi0 ; w
i
0)� f(w

i
0; v

i
0))

'i = u((1); (0; 0); (ai0; a
i
1)) for

some (ai0; a
i
1) 2 Ri

0;1 \f0g � ki. this shows that (u(y1; y2; x)(y))0 =

(u(y1; y2; y)(x))0 and thus x0 + y0 = y0 + x0.

2. Scalar multiplication :

Let � 2 k0 and x0 2 V0. De�ne x0� in the following way. Choose a x 2 x0
and Yi such that x 2 Yi then we set :

x0� = ('(('�1i (x))0�
�0i ; ��0i�i('�1i (x))1�

�0i))0:

We check that this multiplication is well de�ned i.e. independent from the

representative x of x0 and independent ofthe Yi containing x.

Suppose x0 2 x0 and x
0 6= x. This means that there exists a �i 2 Tr(�) such

that '�1i (x0) = (('�1i (x))0, ('
�1
i (x))1 + �i).

We �nd :
(('�1i (x0))0�

�0i; ��0i�i('�1i (x0))1�
�0i)

= (('�1i (x))0�
�0i ; ��0i�i(('�1i (x))1 + �i)��0i):
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Therefore we �nd that ('i(('
�1
i (x))0�

�0i , ��0i�i ('�1i (x))1�
�0i))0 =

('i(('
�1
i (x0))0 ��0i

, ��0i�i ('�1i (x0))1 �
�0i))0. Showing that the de�nition of

multiplication with elements of k is independant from the representative x

we choose for x0.
Remains to show that the de�nition of scalar multiplication is independent of

the initial Moufang set Yi containing x we choose. To prove this we suppose

x 2 Yi \Yj .
Let cij , �ij and �ij be as in formula (3.37). For the following calculation we

distinguish two cases.

First case : The Yl are hermitian or orthonal Moufang sets.

Conditions (iii) and (v) of the theorem imply that there exists a (vi0; v
i
1)

2 '�10 (Yi) \'
�1
0 (Yj) with v

i
0 6= 0.

Using formula (3.37) we �nd for � 2 k0 the equations :

'0((v
i
0�; �

�vi1�)) = 'j((�0j(v
i
0)�

�0j ; c0j�
�0j�vi1

�0j��0j))

= 'i((�0i(v
i
0)�

�0i; c0i�
�0i�vi1

�0i��0i))

= 'j((�ij�0i(v
i
0)�

�0i�ij ; cijc
�ij
0i �

�0i�ij�vi1
�0i�ij��0i�ij)):

This yields :

c
�ij
0i cij = c0j

��0i�ij = ��0j ; 8� 2 k0 (3.38)

Second case : The Yi are unitary Moufang sets.

The equations :

'0((0; �
0)) = 'j((0; c0j�

0�0j))

= 'i((0; c0i�
0�0i))

= 'j((0; cijc
�ij
0i �

0�0i�ij))

show that :

cijc
�ij
0i = c0j

�0
�0i�ij = �0

�0j ; 8�0 2 Tr(�0): (3.39)

As Tr(�0) generates k0 as a ring this implies :

��0i�ij = ��0j ; 8� 2 k0: (3.40)
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We return to the general case.

By formula (3.37) we have :

'�1j (x) = (�ij(('
�1
i (x))0); cij(('

�1
i (x))1)

�ij)

yielding :

('�1j (x))0 = (�ij(('
�1
i (x)))0

('�1j (x))1 = cij('
�1
i (x))1

Using equations (3.38), (3.39) and (3.40) we have :

'i((('
�1
i (x))0�

�0i ; ��0i�i('�1i (x))1�
�0i))

= 'j((�ij(('
�1
i (x))0)�

�0i�ij ; cij�
�0i�ij�i('�1i (x))1�

�0i�ij))

= 'j((�ij(('
�1
i (x))0)�

�0i�ij ; ��0i�ijcij('
�1
i (x))1�

�0i�ij

= 'j(('
�1
j (x))0�

�0j ; ��0j�i('�1j (x))1�
�0j :

In this way we can conclude that the de�nition of multiplication is indepen-

dent ofthe Yi containing x we choose. Hence the de�nition of multiplication

of vectors in V0 with elements of k0 is well de�ned. By construction one

easily checks that the multiplication determines a scalar multiplication on V0
turning V0 into a right k0-vector space.

Remains to de�ne a quadratic form on V0. As for i, j 2 I , 'i((0; c0i)) =

'j((0; c0j)) = '0((0; 1)) we deduce that s
'i
(0;c0i)

= s
'j
(0;c0j)

.

Let x0 2 V0. We show that s'0

(0;1) de�nes a permutation on V0 sending (x0)

to a vector of hx0i. To prove this we choose a representative x 2 x0 and Yi
containing x.

We have :

s'0

(0;1)
(x) = s'i

(0;c0i)
(x)

= 'i((�('
�1
i (x))0(('

�1
i (x))1)

�1c0i;�c0i(('
�1
i (x))1)

�1c0i)

(3.41)

2 x0(�((('
�1
i (x))1)

�1)�
�1
0i c

��1
0i

0i ):

As for any �i 2 Tr(�i) :

s'0

(0;1)
'i((0; �

i)) = 'i((0;�c0i�
ic0i));
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we �nd that :

s'0

(0;1)(x0) = x0�x0 ; for some �x0 2 k0 depending on x0:

Therefore the following de�nition of q makes sense. For x0 we set :

q(x0) = ���1x0 ; 8x0 2 V0

Using the form q, we de�ne the form f on V0 by :

q(x0 + y0) = q(x0) + q(y0) + f(x0; y0); 8x0; y0 2 V0:

The fact that for i 2 I , s'0

(0;1)
= s'i

(0;c0i)
and equation (3.41) show that q(x0)

can be calculated in the following way. Choose a representative x 2 x0 and

a Yi containing x.
We have :

q(x) = (c�10i )
��1
0i (qi(('

�1
i (x))0))

��1
0i :

We show that q is an anisotropic (�0;�1) quadratic form on V0 with associ-

ated (�0;�1)-sesquilinear form f .

Let x0, y0, z0 and � 2 k0. Choose representatives x 2 x0, y 2 y0, z 2 z0 and
a Moufang subset Yi as in the theorem containing x, y and z.
By de�nition of addition and scalar multiplication we have (('�1i (x))0 +

('�1i (y))0, ('
�1
i (x))1 + ('�1i (y))1 �f(('

�1
i (x))0, ('

�1
i (y))0) 2 x0 + y0 and

(('�1i (x))0�
�0i , ��0i�i ('�1i (x))1 �

�0i) 2 x0�.
We �nd :

q(x0�) = (c�10i )
��1
0i (qi(('

�1
i (x)0�

�0i))�
�1
0i

= (c�10i )
��1
0i ��0i�i�

�1
0i (qi(('

�1
i (x))0))

��1
0i �

= ��0(qi(('
�1
i (x))0))

��1
0i �

= ��0q(x0)�:

where we used the fact that by formula (3.37), ��0i(c�10i )
��1
0i = (c�10i )

��1
0i

��0i�i�
�1
0i , 8� 2 k0.

Moreover the equations :

q(x0 + y0) = (c�10i )
��1
0i (qi(('

�1
i (x))0 + ('�1i (y))0))

��1
0i

= (c�10i )
��1
0i (qi(x0))

��1
i + (c�10i )

��1
0i (qi(y0))

��1
i +

(c�10i )
��1
0i (fi(('

�1
i (x))0; ('

�1
i (y))0))

��1
0i ;
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show that :

f(x0; y0) = (c�10i )
��1
0i (fi(('

�1
i (x))0; ('

�1
i (y))0))

��1
0i :

As :

f(x0 + y0; z0) = (c�10i )
��1
0i (fi(('

�1
i (x))0 + ('�1i (y))0; ('

�1
i (z))0))

��1
0i

= (c�10i )
��1
0i (fi(('

�1
i (x))0; ('

�1
i (z))0))

��1
0i

+(c�10i )
��1
0i (fi(('

�1
i (y))0; ('

�1
i (z))0))

��1
0i

= f(x0; z0) + f(y0; z0)

f(x0�; y0) = (c�10i )
��1
0i (fi(('

�1
i (x))0�

�0i; ('�1i (y))0))
��1
0i

= ��0(c�10i )
��1
0i (fi(('

�1
i (x))0; ('

�1
i (y))0))

��1
i

= ��0f(x0; y0)

f(y0; x0�) = (c�10i )
��1
0i (fi(('

�1
i (y))0; ('

�1
i (x))0�

��1
0i ))�

�1
0i

= (c�10i )
��1
0i (fi(('

�1
i (y))0; ('

�1
i (x))0))

��1
0i �

= f(y0; x0)�

f(x0; y0) = (c�10i )
��1
0i (fi(('

�1
i (x))0; ('

�1
i (y))0))

��1
0i

= �(c�10i )
��1
0i (fi(('

�1
i (y))0; ('

�1
i (x))0))

��1
0i

= �f(y0; x0)

we conclude that q is a (�0; �)-quadratic form with associated (�0;�1) sesquilin-
ear form f . The fact that qi is anisotropic on V

i
0 for every i 2 I yields that

q is anisotropic on V0.

In order to construct a unitary Moufang set isomorphic to (X; (Ux)x2X) we
consider the vector space e�1k0 � V0 �e1k0 where e�1 = y1 and e1 = y2.
De�ne the forms q and f on V by :

q(e�1x�1 + x0 + e1x1)
= �x�

�1x1 + q(x0)

f(e�1x�1 + x0 + e1x1; e�1z�1 + z0 + e1z1)
= �x�

�1z1 + x�1z�1 + f(x0; z0):

As q is anisotropic on V0, q will be a (�0; �)-quadratic form on V of Witt

index 1 with associated (�0; �)-sesquilinear form f . Therefore we can con-

sider the Moufang set MU(V; q; k0; �0). Choose the coordinatization of

MU(V; q; k0; �0) associated to the decomposition V = e�1k0 � V0 �e1k0.
De�ne the map 
 from (X; (Ux)x2X) in the following way.

Let x 2 X . Choose a Yi such that x 2 Yi and de�ne :


(x) = (x0; (c
�1
0i )

��1
0i (('�1i (x))1)

��1
0i ):
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Using Lemma 41 we check that � determines a Moufang set isomorphism.

1. 
 is well de�ned map from X to MU(V; q; k; �) i.e. 
 maps elements

of X to points of MU(V; q; k; �) and for x 2 X , 
(x) is independent of the

Moufang subset Yi containing x we choose.

Let x 2 X and choose Yi with x 2 Yi. Following the de�nition of q on V0 we
�nd :

q(x0) = (c�10i )
��1
0i (qi(('

�1
i (x))0))

��1
0i

= �(c�10i )
�
�1
0i (('�1i (x))1)

�
�1
0i :

This shows that 
(x) 2 MU(V; q; k; �).
Remains to prove that 
 is well de�ned. Suppose x 2 Yi \Yj . Using formulas
(3.38), (3.39) and (3.40) we deduce :

('�1j (x))1 = c0j(c
�1
0i )

��1
0i �0j(('�1i )(x))1)

��1
0i �0j :

Equivalently :

(c�10i )
��1
0i (('�1i (x))1)

��1
0i = (c�10j )

��1
0j (('�1j (x))1)

��1
0j ;

showing that 
 is well de�ned.

2. 
 de�nes a bijection from X to the points of MU(V; q; k; �).
Let (v0; v1) 2 MU(V; q; k; �). Choose a v 2 v0 and Yi containing v. Using

the de�nition of q on V we �nd :

q(v) = (c�10i )
��1
0i (qi(('

�1
i (v))0)

��1
0i

= v1:

We �nd that (('�1i (v))0, c0iv
�0i

1 ) 2 '�1i (Yi). Remark that by de�nition of V0,
('�1i (v))0 = ('�1i (v0))0, if v

0 2 v0. This means that (v0; v1) determines the

unique point x = '((('�1i (v))0; c0iv
�0i

1 )) such that 
(x) = (v0; v1).
3. 
 induces bijections 
(1) from Uy1 to U(1) and 
(0;0) from Uy2 to U(0;0)

de�ned by :


(1)(u(y1; y2; x)) = 
 Æ u(y1; y2; x) Æ 

�1


(0;0)(u(y2; y1; x)) = 
 Æ u(y2; y1; x) Æ 

�1:
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Let u(y1; y2; x) 2 Uy1 , (z0; z1) 2 MU(V; q; k; �). Choose a Yi such that x,

�1(z0; z1) 2 Yi with 'i((�x0; �x1)) = x, 'i((�z0; c0iz

�0i

1 )) = 
�1 (z0; z1).
We �nd :


u(y1; y2; x)

�1((z0; z1)) = 
u(y1; y2; x)'i((�z0; c0iz

�0i

1 )

= 
'i(u((1); (0; 0); (�x0 ; �x1)))((�z0; c0iz
�0i

1 ))

= 
'i((�x0 + �z0; �x1 + c0iz
�0i

1 � fi(�x0; �z0)))

= (x0 + z0; (c
�1
0i )

��1
0i �x1 + z1

�(c�10i )
��1
0i (fi(�x0; �z0))

��1
0i )

= (x0 + z0; (c
�1
0i )

��1
0i �x1 + z1 � f(x0; z0))

= u((1); (0; 0); (x0; (c
�1
0i )

��1
0i �x1))((z0; z1))

= u((1); (0; 0); 
(x))((z0; z1)):

This set of equations clearly yields that 
(1) de�nes a bijection from Uy1 to

U(1).

Similar calculations show that 
(0;0) de�nes a bijection from Uy2 to U(0;0).

By Lemma 41 it follows that 
 de�nes a Moufang set isomorphism. 2
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Chapter 4

Existence and non-existence

4.1 Introduction

In the standard reference [32], J. Tits sketches a possible outline leading

to a classi�cation of twin buildings. Having already working with Moufang

buildings in the past B. M�uherr took on the subject with Tits' approach as

starting point. After a while he managed to write a concrete classi�cation

program for 2-spherical twin buildings down. To this end a lot of techniques

and theorems of algebraic group theory (as described for example in [33]) had

been extended. Especially the theory on Galois cohomology. For a detailed

description we refer to [20] more particularly to Chapter 7 of this work.

To complete the classi�cation program B. M�uhlherr still needed a classi�ca-

tion of 3 types of geometries, namely twin buildings of type ~A2, ~B2 and 443.

One of these types consists of the class of ~B2 twin buildings. The ~B2 case

seemed to be a crucial case where a lot of work was around. One of the main

aims of this thesis was therefore to describe all possible ~B2 twin buildings

where the rank 2 residues are one of the quadrangles as described in Chapter

3.

To simplify notations and theory we will not give a concrete list of all these

buildings as twin buildings. Instead we give give a description of all Moufang

223
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buildings of type ~B2. As under some restrictions on the residues 2-spherical

twin buildings and Moufang buildings are the same objects we have there-

fore also a classi�cation of ~B2 twin buildings with some restrictions on the

residues. (For a proof of the fact that in almost all cases 2-spherical twin

buildings and Moufang buildings are the same objects we refer to Chapter 2

and [18]). Moreover the techniques used for the ~B2 case also applies to the

443 case leading to existence condition for twin buildings of type 443. We

start by recalling some known theorems and lemmas on isomorphism and

automorphisms which will be useful later on.

4.1.1 Isomorphism and automorphisms of some quad-

rangles

In this section we rephrase some isomorphism and automorphisms of some of

the quadrangles described in Chapter 3. Most of the result in this paragraph

can be found in or derived from [37] or in Chapter 8 in [29]. For sake of

completeness and as some results are not presented in [37] or [29] in the form

we want, we will give in most cases explicit proofs.

Theorem 133 Let Q(E; q; k; �) be a quadrangle de�ned by a (�; �)-quadratic
form q of Witt index 2. Let f be the (�; �)-hermitian form associated to q.
Suppose that dim(E) � 5 if � = 1 and � = 1, and if k is a generalized

quaternion algebra, � is not its standard involution.
A permutation g of points and lines of Q(E; q; k; �) is an automorphism
of Q (E; q; k; �) if and only if there exists a constant c 2 k, a semi-linear
transformation ' with associated �eld automorphism � such that :

g(hx; yi) = h'(x); '(y)i; 8hx; yi 2 Q(E; q; k; �)

c(q(x))� = q('(x)); 8x 2 E

c(f(x; y))� = f('(x); '(y)); 8x; y 2 E:

proof :

Let g be a permutation of the points and lines of Q(E; q; k; �) preserving

incidence. Theorem 8.6 in [29] implies that there exists a constant c 2 k,
a semi-linear transformation ' with associated �eld automorphism � such

that :

g(hx; yi) = h'(x); '(y)i; 8hx; yi 2 Q(E; q; k; �)
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c(q(x))� = q('(x)); 8x 2 E

c(f(x; y))� = f('(x); '(y)); 8x; y 2 E:

Conversely let ' be a semi-linear transformation with associated �eld iso-

morphism � such that :

c(q(x))� = q('(x)); 8x 2 E

c(f(x; y))� = f('(x); '(y)); 8x; y 2 E:

Then we can de�ne the permutation g of Q(E; q; k; �) by :

g(hx; yi) = h'(x); '(y)i;8hx; yi 2 Q(E; q; k; �):

As incidence in Q(E; q; k; �) is completely de�ned in terms of f one easily

checks that g de�nes an automorphism of Q(E; q; k; �). 2

Proposition 134 Let W (k) be a symplectic quadrangle de�nes over the �eld
k. Then W (k) is dually isomorphic to an orthogonal quadrangle QO(E; q; k)

with dim(E) = 5. Conversely every orthogonal quadrangle QO(E; q; k) with
dim(E) = 5 is dually isomorphic to the symplectic quadrangle W (k).

proof :

Let W (k) be the symplectic quadrangle de�ned over k. We use the coor-

dinatization of W (k) as described in section 3.5.2. To construct QO(E; q; k)
we reason as follows. Let E = e�2k �e�1k �e0k �e1k �e2k. De�ne the

forms f and q on E by setting (x = e�2x�2+ e�1x�1 +e0� +e1x1 +e2x2 and
y = e�2y�2 +e�1y�1 +e0� +e1y1 +e2y2)

q(x) = �2 + x�2x2 + x�1x1

f(x; y) = 2��+ x�2y2 + x2y�2 + x�1y1 + x1y�1:

One easily checks that q de�nes a quadratic form on E of Witt index 2 such

that q(x + y)= q(x) +q(y) +f(x; y), 8x; y 2 E. We can thus consider the

quadrangle QO(E; q; k). Coordinatize QO(E; q; k) using the decomposition

E = e�2k �e�1k + � e0k �e1k �e2k. With respect to the coordinatization
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we de�ne the bijection � from W (k) to QO(E; q; k) as follows :

�((1)) = [1]

�((x)) = [(e0x;�x
2)]

�((v; y)) = [v; (e0y;�y
2)]

�((x;w; x0)) = [(e0x;�x
2); w; (e0x

0;�x0
2
)]

�([1]) = (1)

�([v]) = (v)

�([x;w]) = ((e0x;�x
2); w)

�([v; y; v0]) = (v; (e0y;�y
2); v0):

By construction � de�nes a bijection from the point set of W (k) to the

line set of QO(E; q; k) and from the line set of W (k) to the point set of

QO(E; q; k). As � preserves incidence we see that W (k) is dually isomorphic
to QO(E; q; k) under �.

Conversily let QO(E; q; k) be an orthogonal quadrangle de�ned in the vector

space E such that dim(E) = 5. Choose a coordinatization of QO(E; q; k) as-
sociated to a decomposition E = e�2k� e�1k �V0 �e1k �e2k with labelling

set R0;1. Without loss of generalitiy we can then assume that there exists a

vector e0 with q(e0) = 1. Remarkt that this implies that R0;1 = f(e0�;��
2)

j� 2 kg. Consider the symplectic quadrangle W (k) coordinatizated as ex-

plained in section 3.5.2. De�ne the bijection � from QO(E; q; k) to W (k)
by :

�((1)) = [1]

�((v)) = [v]

�((e0x;�x
2); w)) = [x;w]

�((v; (e0y;�y
2); v0)) = [v; y; v0]

�([1]) = (1)

�([(e0x;�x
2)]) = (x)

�([v; (e0y;�y
2)]) = (v; y)

�([(e0x;�x
2); w; (e0x

0;�x0
2
)]) = (x;w; x0):

Then one easily checks that � de�nes a duality from QO(E; q; k) to W (k).
2
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Proposition 135 Let QO(E; q; k) be an orthogonal quadrangle with dim(E)
= 6. Then QO(E; q; k) is dually isomorphic to a hermitian quadrangle
QH(E 0; q0; k0; �0) where k0 is a quadratic Galois extension of k. Conversely

every hermitian quadrangle QH(E; q; k; �) with dim(E) = 5 is dually iso-
morphic to an orthogonal quadrangle QO(E 0; q0; F ix(�)) with dim(E 0) = 6.

proof :

We refer to Proposition 3.4.9 of [37]. 2

Proposition 136 Let QO(E; q; k) be an orthogonal quadrangle de�ned by a
quadratic form q with associated linear form f such that codim(Rad(f)) = 2.

Then QO(E; q; k) is isomorphic to an indi�erent quadrangle Q(k; k0; k; l0).
Conversely every indi�erent quadrangle Q(k; k0; k; l0) is isomorphic to an or-
thogonal quadrangle Q( �E; �q; k) and every indi�erent quadrangle Q(k; k0; l; k0)

is dually isomorphic to an orthogonal quadrangle QO( �E; �q; k).

proof :

Let QO(E; q; k) be as in the proposition. Consider a coordinatization of

the set associated to a decomposition E = e�2k � e�1k �V0 �e1k � e2k
with labelling set R0;1. Remark that then Rad(f) = V0. Let (e0; c

�1) 2 R0;1,

de�ne the set l0 by l0 = fcq(w) jw 2 Rad(f)g = fcq(w0) jw0 2 V0g and denote
the sub�eld of k generated as ring by l0 as k0. Clearly l0 satis�es :
(i) 10 is an additive subgroup of k0,
(ii) l0�1 = l0

(iii) l0�1 = l0,
(iv) l0 generates k0 as a ring.
(v) l0 is a vector space over k02

Let W (k) be the symplectic quadrangle de�ned over k coordinatized as ex-

plained in section 3.5.2. The conditions on l0 ensure that we can consider the

indi�erent quadrangle Q(k; k0; k; l0) by restricting the coordinates in the co-

ordinatization table for W (k) (cfr. section 131). De�ne the bijection � from

MO(V; q; k) to Q(k; k0; k; l0) as follows (x, x0, y 2 k and (v0; v1), (v
0

0; v
0

1),

(w0; w1) 2 R0;1) :

�((1)) = (1)
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�((x)) = (x)

�(((v0; v1); y)) = (cv1; y)

�((x; (w0; w1); x
0)) = (x; cw1; x

0)

�([1]) = [1]

�([(v0; v1)]) = [cv1]

�([x; (w0; w1)]) = [x; cw1]

�([(v0; v1); y; (v
0

0; v
0

1)]) = [cv1; y; cv
0

1]:

Clearly � de�nes in this way an isomorphism from QO(E; q; k) toQ(k; k0; k; l0).
Conversily consider an indi�erent quadrangle Q(k; k0; k; l0). Let fei0 ji 2 Ig
be a base of l0, where l0 is seen as a k2-vector space. Put �E = �e�2k ��e�1 k �
�V0 � �e1k ��e2 k where �V0 is a k-vector space with base fei0 ji 2 Ig. Remark
that the construction of �V0 implies that we can de�ne a bijection 
 from l0

to �V0 in the following way. Let �v0 2 l0. Then �v0 can be written in a unique

way as a sum
P

j e
j
0x

2
j , xj 2 k. In the sequel we put :


(�v0) =
X

ej0vj :

De�ne the forms �q and �f on �E in the following way :

�q(�e�2x�2 + �e�1x�1 +
P

j e
j
0vj + �e1x1 + �e2x2)

= x�2x2 + x�1x1 +
P
ej0v

2
j

�f(�e�2x�2 + �e�1x�1 +
P

j e
j
0vj + �e1x1 + �e2x2;

�e�2y�2 + �e�1y�1 +
P

j e
j
0wj + �e1x1 + �e2x2

= x�2x2 + x�1x1

In this way we get a quadratic form q on �E of Witt index 2 with associated

form �f . Therefore we can consider the orthogonal quadrangle QO( �E; �q; k).

By construction we have clearly that codim(Rad( �f)) = 2. De�ne the bijec-

tion � from Q(k; k0; k; l0) to QO( �E; �q; k) in the following way :

�((1)) = (1)

�((x)) = (x)

�(v; y) = ((
(v); v); y)

�((x;w; x0)) = (x; (
(w); w); x0)

�([1]) = [1]
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�([v]) = [(
(v); v)]

�([x;w]) = [x; (
(w); w)]

�([v; y; v0]) = [(
(v); v); y; (
(v0); v0)]:

Then one easily checks that � de�nes bijection from points and lines of

Q(k; k0; k; l0) to points and lines of QO( �E; �q; k) preserving incidence. Hence

Q(k; k0; k; l0) is isomorphic to QO( �E; �q; k).

For a indi�erent quadrangle of the form Q(k; k0; l; k0) we �nd by Proposition

3.4.4 in [37] that Q(k; k0; l; k0) is dually isomorphic to Q(k0; k2; k0; l2). By

what we already proved we know that Q(k0; k2; k0; k2) is isomorphic to an

orthogonal quadrangle QO( �E; �q; k0). Hence Q(k0; k; l; k) is dually isomorphic
to QO( �E; �q; k0). 2

Corollary 137 If char(k) = 2 the symplectic quadrangle W (k) is isomor-
phic to an orthogonal quadrangle QO(E; q; k).

proof :

LetW (k) be as in the corollary and considerW (k) as an indi�erent quadran-
gle Q(k; k; k; k). Proposition 136 shows then that Q(k; k; k; k) is isomorphic

to an orthogonal quadrangle QO(E; q; k). Hence W (k) is also isomorphic to
QO(E; q; k). 2

Proposition 138 Let Q(E; q; k; �) be a quadrangle de�ned by a (�;�1)-
quadratic form such that dim(E) = 4, kis a generalized quaternion alge-
bra with standard involution �. Then Q(E; q; k; �) is dually isomorphic
to an orthogonal quadrangle QO(E 0; q0; Z(k)) with dim(E 0) = 8 such that

Ml(QO(E
0; q0; Z(k)) consists of non-commutative orthogonal Moufang sets.

Let Q(E; q; k; �) be as in the theorem. As k is a generalized quaternion

algebra there exist (cfr [7] p73) i, j 2 k such that k = Z(k) �iZ(k) �jZ(k)
�jiZ(k) with if char(k) 6= 2, i2 = �0, j

2 = �0, and if char(k) = 2, i2 = i+�0,

j2 = �0, ij = ij + j, with �0, �0 2 Z(k) n Z(k)
2. The norm function on k is

denoted by N . De�ne the 8-dimensionalZ(k)-vector space E 0 by :

E 0 = e0
�2Z(k)� e0

�1Z(k)� V 0

0 � e01Z(k)� e02Z(k);
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with V 0

0 = e00
1Z(k) �e00

2Z(k) �e00
3Z(k) �e00

4Z(k) . Suppose that the forms
g0, f 0 and q0 on E 0 are de�nes as follows. If x0 = e0

�2x
0

�2 +e
0

�1x
0

�1 +x
0

0 +e
0

1x
0

1

+e02x
0

2 with x00 = e00
1z01 + e00

2z02 +e00
3z03 +e00

4z04, �
0 = z01 + iz02 +jz03 +lz04, y

0

= e0
�2y

0

�2 +e
0

�1y
0

�1 +y
0

0 +e
0

1y
0

1 +e
0

2y
0

2 with y
0

0 = e00
1u01 + e00

2u02 +e
0

0
3u03 +e

0

0
4u04

and �0 = u01 + iu02 +ju
0

3 +lu
0

4 we set :

g0(x0; x0) = x0
�2x

0

2 + x0
�1x

0

1 +N(�0)

f 0(x0; y0) = x0
�2y

0

2 + x02y
0

�2 + x0
�1y

0

1 + x01y
0

�1 + �0
�
�0 + �0

�
�0

q(x0) = g(x0; x0) + Tr(�)

= g(x0; x0) + Z(k)

One easily checks that q0 de�nes a quadratic form on E 0 of Witt index

2. Therefore we can consider the quadrangle QO(E 0; q0; Z(k)). Choose a

coordinatization of Q(E; q; k; �) associated to a decomposition E = e�2k
�e�1k�V0 �e1k �e2k and coordinatize QO(E 0; q0; Z(k)) via the decompo-

sition E 0 = e0
�2Z(k) �e

0

�1Z(k) �V
0

0 �e
0

1Z(k) �e
0

2Z(k). De�ne the map �
from Q(E; q; k; �) to QO(E 0; q0; Z(k)) in the following way : (x = x1 +ix2
+jx3 + jix4, x

0 = x01 +ix
0

2 +jx
0

3 +jix
0

4 and y = y1 + iy2 +jy3 +jiy4) :

�((1)) = [1]

�((x)) = [(e00
1x01 + e00

2x02 + e00
3x3 + e00

4x4;�N(x))]

�((0; v1); y) = [v1; (e
0

0
1y1 + e00

2y2 + e00
3y3 + e00

4y4;�N(y))]

�((x; (0; w1); x
0)) = [(e00

1x01 + e00
2x02 + e00

3x3 + e00
4x4;�N(x)); w1;

(e00
1y1 + e00

2y2 + e00
3y3e

0

0
4y4;�N(y))]

�([1]) = (1)

�([(0; v1)]) = (v1)

�([x; (0; v1)]) = ((e00
1x1 + e00

2x2 + e00
3x3 + e00

4x4;�N(x)); v1)

�([(0; v1); y; (0; v
0

1)]) = (v1; (e
0

0
1y1 + e00

2y2 + e00
3y3 + e00

4y4;�N(y)); v01)

By construction we see that � de�nes a bijection from the point set of

Q(E; q; k; �) to the line set of QO(E 0; q0; Z(k)) and from the line set of

Q(E; q; k; �) to the point set of QO(E 0; q0; Z(k)) preserving incidence. This

proves that Q(E; q; k; �) is dually isomorphic to QO(E 0; q0; Z(k)). That Ml

QO(E 0; q0; Z(k)) is not commutative follows from the fact that

Ml(QO(E
0; q0; Z(k)) =Mp(Q(E; q; k; �)) whereMp(Q(E; q; k; �)) is the iso-

morphism class containing P(k). 2
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4.2 Moufang foundations

4.2.1 Integrable Moufang foundations

Let M = (mij)i;j2I be a Coxeter matrix and (�;W; S; d) be a Moufang

building of type M with root groups (U�)�2�, where � is a root system

of type M . Suppose the standard apartment in � is given by �0 and the

isomorphism from W to �0 by 
0. Let 
0(1) = c+ 2 �0. Consider the

tuple ((Rij(c+))fi;jg2E(M), (cij)fi;jg2E(M), (�ijk)fi;jg;fj;kg2E(M)) with (cij)fi;jg
= c+, �ijk = 1, 8 fi; jg, fj; kg 2 E(M). It follows by the de�nition that

((Rij(c+))fi;jg2E(M), (cij)fi;jg2E(M), (�ijk)fi;jg;fj;kg2E(M)) is a Moufang founda-

tion. As for every Moufang building the automorphism group acts transi-

tively on the chambers (cfr. Proposition 64 of Chapter 2) we see that the

isomorphism class of ((Rij(c+))fi;jg2E(M), (cij)fi;jg2E(M), (�ijk)fi;jg;fj;kg2E(M))

is independent from c+. In the sequel we will therefore denote this isomor-

phism class as MoFo(�).

De�nition 139 LetM = (mij)i;j2I be a Coxeter matrix and ((�ij)fi;jg2E(M),

(cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) a Moufang foundation of type M . Then

we say that ((�ij)fi;jg2E(M), (cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) is integrable
if there exist a Moufang building (�;W; S; d) such that ((�ij)fi;jg2E(M),

(cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) belongs to MoFo(�).

A �rst result on the integrability of Moufang foundations is the following

theorem. But �rst we give a de�nition.

De�nition 140 A generalized Moufang polygon � is called semi-pappian if

Mp(�) or Ml(�) is isomorphic to a commutative projective Moufang set.

The question of integrability of Moufang foundations in the case where the

polygons involved are semi-pappian is solved by theorem 7.2.6 of [20]. We

restate this theorem without proof. For the details we refer to [20].

Theorem 141 Let M be an irreducible, 2-spherical, locally �nite Coxeter
matrix. Let F be a Moufang foundation of typeM with the property that every

polygons of the Moufang foundation is semi-pappian. Then F is integrable.

proof :

See Theorem 7.2.6 in [20].
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2

4.2.2 Moufang foundations and property (Ind)

The following notion will be useful for proving integrability of Moufang foun-

dations.

De�nition 142 Suppose that F = ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

(�ijk)fi;jgfj;kg2E(M)) is a Moufang foundation. Let ' = ('ij)fi;jg2E(M), where

for every fi; jg 2 E(M), 'ij de�nes an isomorphism from �ij to a Moufang

generalized polygon �0

ij preserving the Moufang structure. Then we denote

the Moufang foundation ((�0

ij)fi;jg2E(M), ('ij(cij))fi;jg2E(M),

('jk�ijk'
�1
ij )fi;jgfj;kg2E(M)) as '(F ).

An important remark concerning this de�nition is the following lemma.

Lemma 143 Let F = ((�ij)fi;jg2E(M), (cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M))

be a Moufang foundation and ' = ('ij)fi;j2E(M)g, where for every fi; jg
2 E(M), 'ij de�nes an isomorphism from �ij to a Moufang polygon �0

ij

preserving the Moufang structure. Then '(F ) is isomorphic to F .

proof :

If F and ' are as in the Lemma an isomorphism from F to '(F ) is given by

('ij ; Id). 2

The following de�nition is motivated by the theory exposed in [22].

De�nition 144 Let � = (P ;L; I) be a Moufang generalized n-gon with n
< 1 and x 2 P[ L. Then we say that � satis�es condition (Ind) on �(x)

if every automorphism of the induced Moufang set M�(x)(�) extends to an

automorphism of �. If condition (Ind) is satis�ed for every panel of � we

say that � satis�es condition (Ind).

The importance of condition (Ind) is illustrated in the following lemma.

Lemma 145 Let M be a 2-spherical Coxeter matrix such that G(M) is a
tree. Suppose f�ij jfi; jg 2 E(M)g is a set of Moufang polygons, cij a cham-

ber in �ij , 8fi; jg 2 E(M). Assume that for every fi; jg 2 E(M) such that
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there exists a k 2 I with fj; kg 2 E(M), �ij satis�es condition (Ind) on
every j-panel. Then all Moufang foundations of the form '((�ij)fi;jg2E(M),
(cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) with ' = ('ij)fi;jg2E(M), where every 'ij
de�nes an isomorphism from �ij to a Moufang polygon �0

ij, are isomorphic.

proof :

As every Moufang foundation F of the form ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

(�ijk)fi;jgfj;kg2E(M)) and '((�ij)fi;jg2E(M), (cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M))

,with ' = ('ij)fi;jg2E(M) as in the lemma, are isomorphic the lemma will be

proved if we show that all Moufang foundations ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

(�ijk)fi;jgfj;kg2E(M)) are isomorphic. Suppose ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

(�ijk)fi;jgfj;kg) and ((�ij)fi;jg2E(M), (cij)fi;jg2E(M), (�
0

ijk)fi;jgfj;kg) are two Mo-

ufang foundations involving �ij . Let 
 the identity on M . Let i, j, k 2 I
with fi; jg 2 E(M) and fj; kg 2 E(M). The conditions on the �ij yield

that every Moufang set isomorphism � 0ijk
�1 �ijk can be extended to an iso-

morphism of �ij which we will denote by (� 0ijk
�1 �ijk)

� Similarly �ijk �
0

ijk
�1

can be extended to an isomorphism of �jk which we denote by (�ijk �
0

ijk
�1)�.

If we put (
ij ; 
jk) = (Id, (�ijk�
0

ijk
�1)�) or (
ij ; 
jk) = ((� 0ijk

�1�ijk)
�; Id), 
ij

and 
jk clearly satisfy :


�1jk �
0

ijk
ij = �ijk:

One checks that for every fi; jg fj; kg 2 E(M) we can choose the 
ij and 
jk
out the two possibilities described above in such a way that ((
ij)fi;jg2E(M)),


) de�nes an isomorphism from ((�ij)fi;jg2E(M), (cij)fi;jg2E(M), (�ijk)fi;jgfj;kg)
to ((�ij)fi;jg2E(M), (cij)fi;jg2E(M), (�

0

ijk)fi;jgfj;kg). 2

To end this section we give some Proposition concerning property (Ind) in
the generalized quadrangles which were studied in Chapter 3.

Proposition 146 LetW (k) andW (k0) be two symplectic quadrangles. Choose

x 2 W (k), x0 2 W (k0). Then every isomorphism from M�(x)(W (k)) to
M�(x0)(W (k0)) extends to an isomorphism from W (k) to W (k0). In particu-
lar W (k) satis�es condition (Ind).

proof :

Let W (k), W (k0) be symplectic quadrangle as described in sections 3.5.1

and 3.5.2. Then we saw that for every point P and every line L in W (k),
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M�(P )(W (k)) �=M�(L)(W (k)) �= P(k). We prove that the proposition holds

if x and x0 are both point rows. The other cases can be proved in a simi-

lar way. We use the coordinatizations of W (k) and W (k0) as described in

section 3.5.2. Choose as generic point rows �([0]) and �([0]). Let � be an

isomorphism from M�([0])(W (k)). to M�([0])(W (k0)). By proposition 124

we see that we can assume that without loss of generality � induces a �eld

isomorphism � from k to k0 such that �((0; t)) = (0; t�), 8t 2 k. De�ne the
map �� from W (k) to W (k0) by :

Elements of W (k) Image under ��

(1) (1)

(x) (x�)
(v; y) (v�; y�)

(x;w; x0) (x�; w�; x0�)
[1] [1]

[v] [v�]

[x;w] [x�; w�]

[v; y; v0] [v�; y�; v0�]

Then one easily checks that �� de�nes an isomorphism from W (k) to W (k0)

which extends �.
This implies in particular that for x 2 W (k) every automorphism � of

M�(x)(W (k)) extends to an automorphism of W (k). Thus in this way we

see that W (k) satis�es conidition (Ind). 2

We remark that the fact that every symplectic quadrangle satsis�es con-

dition (Ind) can already be found in [22] (cfr. Proposition 1 of loc. cit.). In

fact it is proved in this paper that every �nite generalized polygon satis�es

condition (Ind).

Proposition 147 Let Q(E; q; k; �) be a generalized quadrangle de�ned by a
(�; �)-quadratic form and Q(E 0; q0; k0; �0) be a generalized quadrangle de�ned

by a (�0; �0)-quadratic form q0 such that of the following occurs :

(i) Ml(Q(E; q; k; �)) and Ml(Q(E
0; q0; k0; �0) consist of non-commutative

orthogonal Moufang sets,
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(ii) Ml(Q(E; q; k; �)) and Ml(Q(E
0; q0; k0; �0)) consist of hermitian Mo-

ufang sets and dim(E) > 5,

(iii) Ml(Q(E; q; k; �)) and Ml(Q(E
0; q0; k0; �0)) consist of unitary Moufang

sets with non-commutative root groups such that Rad(f) = 0 if char(k)

= 2, k is a generalized quaternion algebra with standard involution �,
where f is the (�; �)-hermitian the form associated to q.

Suppose p is a point in Q(E; q; k; �)) and p0 a point in Q(E 0; q0; k0; �0). Then

every isomorphism � from M�(p)(Q(E; q; k; �)) to M�(p0) (Q(E
0; q0; k0; �0))

can be extended to an isomorphism from Q(E; q; k; �) to Q(E 0; q0; k0; �0).
In particular under the conditions of the proposition both Q(E; q; k; �) and

Q(E 0; q0; k0; �0) satisfy condition (Ind) on their line pencils.

proof :

Suppose Q(E; q; k; �) and Q(E 0; q0; k0; �0) satisfy (i), (ii) or (iii), p a point in
Q(E; q; k; �) and p0 a point in Q(E 0; q0; k0; �0). Throughout this proof we will
use the coordinatizations of Q(E; q; k; �) and Q(E 0; q0; k0; �0) as described in

section 3.5.4. Assume that these coordinatizations are associated to decom-

positions E = e�2k � e�1k � E0 � e1k � e2k and E 0 = e0
�2k

0 � e0
�1k

0 �E 0

0

�e01k
0 � e02k

0 with labelling sets R0;1 and R0

0;1. Let � be an isomorphism

from M�(p)(Q(E,q,k,�)) to M�(p0)(Q(E
0,q0,k0,�0)) Without loss of generality

we can assume p = (0), p0 = (0), �([1]) [1] and �([0; (0; 0)]) = [0; (0; 0)].
Denote V = e�2k � E0 �e2k and V 0 = e0

�2k
0 �E 0

0 �e
0

2k
0. We use the iden-

ti�cation of M(V; q; k; �) and M�((0))Q(E; q; k; �) and M(V 0; q0; k0; �0) with
M�(0) Q(E

0; q0; k0; �0) as described in Lemma 99 of Chapter 3. Propositions

127, 128 and 129 show that there exists a semi-linear transformation ' from

V to V 0 with associated �eld isomorphism � and a constant c 2 k such that :

�([0; (v0; v1)]) = h'(e�2v1 + v0 + e2)i; 8(v0; v1) 2 R0;1

c(q(x))� = q('(x)); 8x 2 V

c(f(x; y))� = f('(x); '(y)); 8x; y 2 V;

c���c�1 = ���; 8� 2 k

c�� = c��: (4.1)

De�ne the semi-linear transformation '� with associated �eld isomorphism

� from E to E 0 in the following way :

'�(e�2x�2 + e�1x�1 + x0 + e1x1 + e2x2)
= e�1x

�
�1 + e1cx

�
1 + '(e�2x�2 + x0 + e1x1):
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Let x = e�2x�2 +e�1x�1 +x0 +e1x1 +e2x2 and y = e�2y�2 +e�1x�1 +y0
+e1y1 +e2y2.
We �nd :

c(q(x))�

= c(q(e�2x�2 + x0 + e2x2))
� + c(x�

�1x1)
�

= q('(e�2x�2 + x0 + e2x2)) + c(x��
�1x

�
1 )

= q('(e�2x�2 + x0 + e2x2)) + x��
�1cx

�
1

= q('�(x))

and :

c(f(x; y))�

= c(f(e�2x�2 + x0 + e2x2; e�2y�2 + y0 + e2y2))
� + c(x�

�1y1 + x�1 �y�1)
�

= f('(e�2x�2 + x0 + e2x2); '(e�2y�2 + y0 + e2y2)) + cx��
�1y

�
1 + cx��1 ��y�

�1

= f('(e�2x�2 + x0 + e2x2); '(e�2y�2 + y0 + e2y2)) + x��
�1cy

�
1 + x��1 c��y�

�1

= f('(e�2x�2 + x0 + e2x2); '(e�2y�2 + y0 + e2y2)) + x��
�1cy

�
1 + x��1 c��y�

�1

= f('(x); '(y));

where we used the properties of c and � and ' as described in formula (4.1).

Therefore we can de�ne the bijection �� from Q(E; q; k; �) to Q(E 0; q0; k0; �0)
if we set :

��(hxi) = h'(x)i; 8hxi 2 Q(E; q; k; �)

��(hx; yi) = h'(x); '(y)i;8hx; yi 2 Q(E; q; k; �) such that x 62 hyi:

As incidence in Q(E; q; k; �) and Q(E 0; q0; k0; �0) are inherited from their em-

bedding in PG(E) and PG(E 0), we see that �� de�nes an isomorphism from

Q(E; q; k; �) to Q(E 0; q0; k0; �0).

2

Proposition 148 Let Q(E; q; k; �) be a quadrangle de�ned by (�;�1)-quadratic
form of Witt index 2 such that k is a generalized quaternion algebra with stan-
dard involution � and dim(V ) = 4. Then Q(E; q; k; �) satis�es condition

(Ind) on its point rows.

Let Q(E; q; k; �) be a quadrangle as in the proposition. By Proposition

138 we know that Q(E; q; k; �) is dually isomorphic to an orthogonal quad-

rangle QO(E 0; q0; Z(k)) such that Ml(QO(E
0; q0; Z(k)) consists of a non-

commutative orthogonal Moufang set.
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Proposition 147 implies that QO(E 0; q0; Z(k)) satis�es condition (Ind) on its

line pencils. Hence Q(E; q; k; �) satis�es condition (Ind) on its point rows.

2

Proposition 149 Let Q(E; q; k; �) be a quadrangle de�ned by a (�; �)- quadratic
form q of Witt index 2 such that Z(k) 6= k and if k is a generalized quaternion
algebra � is not the standard involution. Suppose that the (�; �)-hermitian

form associated to q is given by f . If Q(E; q; k; �) satis�es condition (Ind) on
its point rows, k admits no anti-automorphism and for every automorphism

 of k there exists a constant c 2 k such that :

c
�
c�1 = �
�

c�
 = c��

proof :

Choose a coordinatization of Q(E; q; k; �) associated to a decomposition E

= e�2k � e�1k �V0 �e1k � e2 k. Suppose Q(E; q; k; �) satis�es condition
(Ind) on its point rows. In particular this means that Q(E; q; k; �) should
satisfy condition (Ind) on �((0; 0)). Suppose k admits an anti-automorphism


. Proposition 124 implies then that the permutation � of �([(0; 0)]) de�ned
by :

�((1)) = [1]

�(((0; 0); v)) = [(0; 0); v
)]; 8v 2 k

de�nes a Moufang set isomorphism. Suppose that � can be extended to an

automorphism of Q(E; q; k; �). But Theorem 133 implies that there exist an

automorphism � of k such that 
 = �. This is only possible if Z(k) = k
contradicting the assumption on k. Hence k can only admit automorphisms.

Suppose that 
 is an automorphism of k. Then the permutation of �([(0; 0)])
de�ned by :

�((1)) = (1)

�(((0; 0); v)) = [(0; 0); v
 ]; 8v 2 k

determines an automorphism of M�([(0;0)]) Q(E; q; k; �) (cfr. Proposition

124). As Q(E; q; k; �) satis�es condition (Ind) on its point rows Theorem
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133 implies that there exists a constant c 2 k and a semi-linear transformation
with associated automorphism � of k such that :

c(f(x; y))� = f('(x); '(y)); 8x; y 2 E

c(q(x))� = q('(x)); 8x 2 E

((0; 0); v�) = ((0; 0); v
):

Thus we �nd � = 
. Let x and y 2 E such that f(x; y) 6= 0. Then the �rst

of these equations implies that for � 2 k :

c(f(x�; y))� = c���(f(x; y))�

= c���c�1(c(f(x; y))�)

= f('(x)��; '(y))

= ���f('(x); '(y))

and we �nd :

c��
c�1 = ���; 8� 2 k:

Moreover we calculate for c :

(f(x; y))��c�� = c(f(x; y))����

= c(f(x; y)��)�

= c(f(y; x))�

= f('(y); '(x))

= f('(x); '(y))��

= f(x; y))��c��

implying that c�� = c��.
2

4.3 Integrability conditions for Moufang foun-

dations of type ~B2

4.3.1 Introduction

De�nition 150 Let M ~B2
the Coxeter matrix de�ned over the set I = f1, 2,

3g where m12 = m23 = 4 and m13 = 2. A Coxeter matrix M isomorphic to
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M ~B2
will be said to be of type ~B2.

A root system of type ~B2 is de�ned as a root system of type M ~B2
, whereas a

building of type ~B2 is a building of type M ~B2
. A Moufang foundation is said

to be of type ~B2 if it is of type M ~B2
.

Let (�;W; S; d) be a Moufang building of type ~B2 with associated root groups

system (U�)�2� ~B2
) where � ~B2

is a root system of type ~B2. Choose a root

base � ~B2
= f�1, �2, �3 g in � ~B2

with �m�1�2
= �m�2�3

= 4 and �m�1�3
= 2.

We thus �nd that :

[U��1
; U��3

] = 1: (4.2)

Using this equation we deduce the following necessary condition concerning

integrability of Moufang foundations of type ~B2.

Let ((�ij)fi;jg2E(M); (cij)fi;jg2E(M); (�ijk)fi;jgfj;kg2E(M)) be a Moufang foun-

dation of type ~B2. For every fi; jg 2 E(M) we suppose that the root

group structure on �ij is given by (U�kij)�kij2�ij , where �ij is a root sys-

tem of type Mij . Without loss of generality we can assume �m�1
12�

1
12

=

�m�2
23�

3
23

= 4. Suppose that this Moufang foundation is integrable. This

means that there exists a Moufang building (�;W; S; d) of type ~B2 and a

chamber c+ 2 � with ((�ij)fi;jg2E(M); (cij)fi;jg2E(M), (�ijk)fi;jg;fj;kg2E(M)) �=
(Rij(c+); (�cij)fi;jg2E(M); ( ��ijk)fi;jg;fj;kg2E(M) if �cij = c+ and ��ijk = Id, 8 fi; jg,
fj, kg 2 E(M). Then this implies in particular that after identi�cation in �

every element of U�1
12
should commute with every element of U�3

23
in the action

on �. This means in particular that every g 2 hU
��1

12
, U�1

12
i which stabilized

MR2(c12)(�12) should commute in its action on MR2(c12)(�12) with every g0

2 h U
��3

23
U�3

23
i which stabilizesMR2(c23)(�23) in its action onMR2(c12)(�12)

after identi�cation under �123. Set �123 = �.

We thus �nd :

[g; �g0��1](z) = z; 8z 2 MR2(c12)(�12); (4.3)

8g 2 hU
��1

12
,U�1

12
i \ Stab(MR2(c12)(�12) and g

0 2 h U
��3

23
, U�3

23
i

\ Stab(MR2(c23)(�23). We prove the following theorem.

Theorem 151 Let M = (mij)i;j2I be a Coxeter matrix of type ~B2 with
m12 = 4, m23 = 4 and m13 = 2 and � a root system of type ~B2 with root

base � = f�iji 2 Ig, such that �m�1;�2
= �m�2;�3

= 4 and �m�1;�3
= 2. Suppose



240 CHAPTER 4. EXISTENCE AND NON-EXISTENCE

that ((�ij)fi;jg2E(M), (cij)fi;jg2E(M) (�ijk)fi;jgfj;kg2E(M)) is a Moufang founda-
tion of type M such that for every fi; jg 2 E(M), (U�kij)�kij2��i;�j de�nes a

root group system for �ij. If �12 is a unitary quadrangle Q(E; q; k; �) and
�23 are unitary quadrangle Q(E 0; q0; k0; �0) and the Moufang foundation is

integrable one of the following possibilities occurs :

(i) MR2(c12)(�12) and MR2(c23)(�23) are both point rows and one of the
following subcases occurs :
(i.a) �123 induces a �eld anti-isomorphism from k to k0.

(i.b) k and k0 are generalized quaternion algebras with standard invo-
lutions � and � and �123 de�nes a �eld isomorphism from k to k0,

(ii) MR2(c12)(�12) and MR2(c23)(�23) are both line pencils, k and k0 are
generalized quaternion algebras with standard involutions � and �0,

dim(E) = dim(E 0) = 4 andMR2(c12)(�12) �= P(Z(k)) �=MR2(c23)(�23)
�= P(Z(k0)).

If �12 is a hermitian quadrangle Q(E; q; k; �) and �23 is a unitary quadran-
gle Q(E 0; q0; k0; �0) one of the following possibilities occurs :

(i) MR2(c12)(�12) is a point row, MR2(c23)(�23) is a line pencil, k
0 is a gen-

eralized quaternion algebra with standard involution �0 and dim(E 0) = 4

such that k �= Z(k0),

(ii) MR2(c12)(�12) is a line pencil, MR2(c23)(�23) is a line pencil, k0 is a
generalized quaternion algebra with standard involution �0 such that
Fix(�) �= Z(k0),

(iii) MR2(c12)(�12) and MR2(c23)(�23) are both line pencils, k0 is a general-

ized quaternion algebra with standard involution �0 such that k �= Z(k0)
and dim(E) = dim(E 0) = 4

.

Without loss of generality we can assume using Corollary 3.12.3 and the

results from section 3.12.2 that q is a (�;�1)-quadratic form such that

1 2 Tr(�) and similarly that q0 is a (�0;�1)-quadratic form with 1 2 Tr(�0).
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Choose a coordinatization of Q(E; q; k; �) associated to the decomposition

E = e�2k �e�1k �E0 �e1k �e2k with labelling set R0;1 = f(e0; e1) 2 E0�kj
q(e0) + e1 = 0g. Choose similarly a coordinatization for Q(E 0; q0; k0; �0) as-

sociated to the decomposition E 0 = e0
�2k

0 �e0
�1k

0 �E 0

0 �e
0

1k
0 �e02k

0 with

labelling set R0

0;1 = f(e00; e
0

1) 2 E
0

0�k
0 jq0(e00)+e

0

1 = 0g. Let B0 be an ordered

base of E0 and B
0

0 be an ordered base of E 0

0. For the rest of this proof we

will use the conventions and notations from paragraphs 3.5.4 and 3.8.2 and

denote �123 shortly as �.

First case : �12 and �23 are unitary quadrangles.

Four possibilities occur.

1. MR2(c12) and MR2(c23) are both point rows.

Without loss of generality we can assume that in this case �1
12 = f(1),

[(0; 0)], ((0; 0); 0), [(0; 0); 0; (0; 0)], (0; (0; 0); 0) g, �2
12 = f[0; (0; 0)], (0; (0; 0); 0),

[(0; 0); 0; (0; 0)], ((0; 0); 0), [(0; 0)]g, �1
23 = f(1), [(0; 0)], ((0; 0); 0), [(0; 0),

0,(0; 0)], (0; (0; 0); 0) g, �2
23 f[0; (0; 0)], (0; (0; 0); 0), [(0; 0); 0; (0; 0)], ((0; 0); 0),

[(0; 0)]g, MR2(c12)(�12) = �([(0; 0)]) and MR2(c23) (�23) = �([(0; 0)]). Re-

mark that by these assumptions � imply that � induces a bijection (also

denoted by �) from k to k0 if we set :

�(((0; 0); v)) = ((0; 0); �(v)); 8v 2 k:

Without loss of generality we can assume that �((1)) = 1. As mentioned

in section 3.8.2 the bijections 
 from P(k) to M�([(0;0)]) Q(E; q; k; �) and 

0

from P(k0) to M�([(0;0)]) with :


((v)) = ((0; 0); v); 8v 2 k


((1)) = (1)

and :


 0((v0)) = ((0; 0); v0); 8v0 2 k0


 0((1)) = (1)

de�ne a Moufang set isomorphisms from P(k) to M�([(0;0)])Q(E; q; k; �) and
from P(k0) to M�([(0;0)]) Q(E

0; q0; k0; �0). Proposition 124 yields then that �
de�nes a (anti)-isomorphism from k to k0.

Let � 2 Tr(�) and consider the automorphism s[0;(0;�)]s[0;(0;1)]. Call it this g�.
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One easily checks that g� has as matrix representation with respect to the

ordered base fe�2, e�1, B0, e1, e2g :0
BBBB@
�� 0 0 0 0

0 1 0 0 0

0 0 IjB0j
0 0

0 0 0 1 0

0 0 0 0 ���1

1
CCCCA

As :

g�((0; 0); v) = ((0; 0);��v); 8v 2 k

g�(1) = (1)

we see that g� 2 h U��1
12
U�1

12
i \Stab(MR2(c12) �12).

In a complete analogous way we de�ne for �0 2 Tr(�0) the automorphism g�0

= s[0;(0;�0)] s[0;(0;1)] of QU(E
0; q0; k0; �0) such that :

g�0((0; 0); v
0) = ((0; 0);��0v0); 8v0 2 k0

g�0(1) = (1):

We see that g�0 2 hU��1
23
U�1

23
i\ Stab(MR2(c23)(�23). Equation (4.3) implies

that for � 2 Tr(�) and �0 2 Tr(�) :

[g�; �
�1g�0�]((0; 0); v) = ((0; 0); v); 8v 2 k:

A brief calculation gives :

g��g�0�
�1((0; 0); v) = ((0; 0); ���1(�0�(v))

��1g�0�g�((0; 0); v) = ((0; 0); ��1(�0�(�v)):

Hence formula (4.3) is in this case equivalent to :

���1(�0�(v)) = ��1(�0�(�v)); 8v 2 k; 8�; T r(�); 8�0 2 Tr(�0):

Two cases occur :

(a) � is an anti-isomorphism.
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In this case we �nd ���1(�0�(x)) = ��1(�0�(�x)) and equation (4.3) is satis-

�ed.

(b) � is an isomorphism.

In this case the equation (4.3) is equivalent to requirement that :

���1(�0) = ��1(�0)�; 8� 2 Tr(�); �0 2 Tr(�0): (4.4)

Suppose that Tr(�) * Z(k). Lemma 8.13 in [29] and Lemma 47 imply that

Tr(�) generates k as a ring and Tr(�0) generates k0 as a ring. But then the

equation (4.4) implies that Z(k) = k, and Z(k0) = k0 a contradiction. Hence

by Lemma 8.13. in [29] the only possibility left is that both k and k0 are
generalized quaternion algebra's with standard involutions � and �0.

2. MR2(c12)(�12) is a point row and MR2(c23)(�23) is a line pencil.

Without loss of generality we can assume that in this case �1
12 = f[0; (0; 0)],

(0; (0; 0); 0), [(0; 0); 0; (0; 0)], ((0; 0); 0), [(0; 0)] g, �2
12 = f(1), [(0; 0)], ((0; 0); 0),

[(0; 0); 0; (0; 0)], (0; (0; 0); 0) g, �1
23 = f(1), [(0; 0)], ((0; 0); 0), [(0; 0); 0; (0; 0)],

(0; (0; 0); 0) g, �2
23 = f[0; (0; 0)], (0; (0; 0); 0), ((0; 0); 0), [(0; 0)], (0; (0; 0); 0)g

R2(c12) = �([(0; 0)]) and R2(c23) = �((0)). In section 3.8.2 we saw that

M�[(0;0)](Q(E; q; k; �) �= P(k) and the proof of Lemma 99 shows thatM�((0))

(Q(E 0; q0; k0; �0) is isomorphic toM(V 0; q0; k0; �0) with V 0 = e0
�2k

0 �E 0

0 �e
0

2k
0.

As Proposition 125 shows that P(k) cannot be isomorphic to the unitary

Moufang set M(V 0; k0; q0; �0) we see that this cannot occur.

3. MR2(c12)(�12) is a line pencil and MR2(c23)(�23) is a point row.

A similar proof as for when MR2(c12)(�12) is a point row and MR2(c23)(�23)

is a line pencil shows that this cannot occur.

4. MR2(c12)(�12) and MR2(c23) (�23) are both line pencils.

Without loss of generality we can assume that in this case �1
12 = f[0; (0; 0)],

(0; (0; 0); 0), [(0; 0); 0; (0; 0)], ((0; 0); 0), [(0; 0)] g, �2
12 = f (1), [(0; 0)], ((0; 0); 0),

[(0; 0); 0; (0; 0)], (0; (0; 0); 0) g, �1
23 = f[0; (0; 0)], (0; (0; 0); 0), [(0; 0); 0; (0; 0)],

((0; 0); 0), [(0; 0)] g, �2
23 = f (1), [(0; 0)], ((0; 0); 0), [(0; 0); 0; (0; 0)], (0; (0; 0); 0)

g. Without loss of generality we can assume that �[0; (0; 1)] = [0; (0; 1)].
Denote for z 2 k the automorphism s((0;0);z)s((0;0);1) as hz. Using the coordi-

natization one calculates :

hz([0; (v0; v1)]) = [0; (�v0z
�; zv1z

�)]; 8(v0; v1) 2 R0;1;

hz([1]) = [1]:
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Hence hz 2 hU��1
12
, U�1

12
i \Stab(MR2(c12)(�12)). In a complete similar way

we denote for each z0 2 k0 the automorphism s((0;0);z0) s((0;0);1) of Q(E
0; q0; k0; �0)

by hz0 .

We �nd :

hz0([0; (v
0

0; v
0

1)]) = [0; (�v00z
0;�z0v01z

0)]; 8(v00; v
0

1) 2 R
0

0;1;

hz0([1]) = [1]:

Hence we �nd that hz0 2 hU��1
23
, U�1

23
i \Stab(MR2(c23)(�23)).

As � de�nes a Moufang set isomorphism we �nd that �f[0; (v0; v1)] j(v0; v1) 2
Z(R0;1;�)g = f[0; (v00; v

0

1)] j(v
0

0; v
0

1) 2 Z(R0

0;1;�) g. Denote L = Z(R0;1;�)
\f0g �k and similarly L0 = Z(R0

0;1;�) \f0g �k
0. As for every z1 2 L the

vector z0 2 V0 such that q(z0) = �z1 is uniquely determined by z1 we see

that � de�nes a bijection from L to L0 (also denoted by �) and a bijection

from Rad(f) to Rad(f 0) (also denoted by �) if we set :

�[0; (z0; z1)] = [0; (�(z0); �(z1))]; 8(z0; z1) 2 Z(R0;1;�):

If z1 2 L we consider z0 2 V0 such that (z0; z1) 2 R0;1 and denote the

automorphism s[0;(z0;z1)] s[0;(0;1)] of Q(E; q; k; �) as hz1 . Using the descriptions

of the sx as described in section 3.13 shows that :

hz1([0; (v0; v1)]) = [0; (�v0z1; z1v1z1)]:

By construction we have that hz1 2 h U
��1

12
, U�1

12
i \ Stab(MR2(c12)(�12).

Moreover applying � to the explicit formula for hz1 shows that for z1 2 L

�([0; (�v0z1; z1v1z1)]) = [0; (��(v0)�(z1); �(z1)�(v1)�(z1))];

8(v0; v1) 2 Z(R0;1;�): (4.5)

Similarly one de�nes for z01 2 L0 the automorphism hz01 as s[0;(z00;z01)] s[0;(0;1)]
with (z00; z

0

1) 2 R
0

0;1. It follows that hz01 2 hU��1
23
, U�1

23
i \ Stab(MR2(c23)(�23).

Let z 2 L, z0 2 L0. Formula (4.3) yields that :

[hz; �
�1hz0�]([0; (v0; v1)]) = [0; (v0; v1)]; 8(v0; v1) 2 R0;1; 8z 2 L; 8z

0 2 L0:

Or equivalently :

hz�
�1hz0�([0; (v0; v1)]) = ��1hz0�hz([0; (v0; v1)]); 8(v0; v1) 2 R0;1:
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We calculate using formula (4.5) for (a0; a1) 2 Z(R0;1;�) :

hz�
�1hz0�([0; (a0; a1)]) = hz�

�1([0; (��(a0)z
0; z0�(a1)z

0)])

= [0; (a0�
�1(z0)z; z��1(z0)a1�

�1(z0)z)]

and by similarly we �nd :

��1hz0�hz([0; (a0; a1)]) = [0; (a0z�
�1(z0); ��1(z0)za1z�

�1(z0))]:

This means that formula (4.3) yields the following condition :

z��1(z0)a1�
�1(z0)z = ��1(z0)za1z�

�1(z0); 8a1; z 2 L; 8z
0 2 L0: (4.6)

But as ��1(L0) = L this shows if the Moufang foundation is integrable the

following should hold :

z1z2�z2z1 = z2z1�z1z2; 8z1; z2; � 2 L: (4.7)

If we set � = 1 it follows that :

z�11 z�12 z1z2 = (z1z2z
�1
1 z�12 )�1

and equation (4.7) becomes :

[z1; z2]�[z1; z2]
�1 = �; 8z1; z2 2 L: (4.8)

Suppose that Tr(�) 6� Z(k). Then we know by Lemma 8.13 and Lemma

47 that as L contains Tr(�) it generates k as a ring and by the same rea-

soning it follows that L0 generates k0 as a ring. But then equation (4.6)

shows that [z1; z2] 2 Z(k) 8 z1, z2 2 L. By Lemma 49 we see that k is

a generalized quaternion algebra with standard involution �. Hence Tr(�)
= Z(k) a contradiction with the assumptions. The only possibility left is that
Tr(�) � Z(k). But then Lemma 8.13 in [29] shows that k is a generalized

quaternion algebra with standard involution �.
Similar arguments show that k0 is a generalized quaternion algebra with stan-
dard involution �0.

As a next step we show that Rad(f) = 0 and Rad(f 0) = 0.

Suppose Rad(f) 6= 0. Then there exists a �x 2 L n Tr(�). Consider L�x

Z(k)(�x). Suppose that there exists a �0 2 k with �
�
0 �x�0 62 L�x. Let � 2 k. As

��0 �x�0 2 L equation (4.8) implies that [�x; ���x�] commutes with �x and ��0 �x�0.
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The choice of �0 implies that �x and �
�
0 �x �0 generate k seen as a Z(k)-algebra.

But then it follows that [�x; ���x�] 2 Z(k) and we �nd :

���x� 2 L�x; 8� 2 k:

The same reasoning as the one used to prove Lemma 123 leads to a contra-

diction. Hence Rad(f) = f0g. By similar arguments we �nd Rad(f 0) = f0g.
As a next step we show that V0 = 0 and V 0

0 = 0. Using Proposition 129 we

see that � is induced by a semi-linear transformation ' with associated �eld

isomorphism � such that :

�[0; (v0; v1)] = [0; ('(v0); v
�
1 )]; 8(v0; v1) 2 R0;1

��� = ���
0

:

We reconsider for z 2 k and z0 2 k0 the transformations hz and hz0 . By

formula (4.3 ) we know that

[hz; �
�1hz0�][0; (v0; v1)] = [0; (v0; v1)]; 8(v0; v1) 2 R0;1:

This leads to :

hz�
�1hz0�[0; (v0; v1)] = ��1hz0�hz[0; (v0; v1)]; 8(v0; v1) 2 R0;1:

Using ' and � we have :

hz�
�1hz0�([0; (v0; v1)]) = hz�

�1[0; (�'(v0)z
0�
0

; z0v�1 z
0�
0

)]

= hz([0; (�v0z
0�
0��1

; z0
��1

v1z
0�
0��1

)])

= [0; (v0z
0�
0��1

z�; zz0
��1

v1z
0�
0��1

z�:

Similarly :

��1hz0�hz([0; (v0; v1)]) = ��1hz0([0; (�'(v0)z
��; z�v�1 z

��)])

= ��1([0; (�'(v0)z
��z0

�0
; z0z�v�1 z

��z0
�0
)])

= [0; (v0z
�z0

�0��1

; z0
��1

zv1z
�z0

�0��1

)]:

If V0 6= we can choose a v0 6= 0 2 V0 and the above equation shows that :

z�z0
�0��1

= z0
�0��1

z�; 8z 2 k; 8z0 2 k0:
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As �0��1 de�nes a �eld anti-isomorphism from k0 to k this equation yields

that z� 2 Z(k) ; 8z 2 k, hence Z(k) = k a contradiction. Thus we �nd

V0 = 0. In a completely similar way one deduces that also V 0

0 = 0. But

then Lemma 123 shows that MR2(c12)(�12) �= P(Z(k)) and MR2(c23)(�23) �=
P(Z(k0)) and by Proposition 124 we �nd Z(k) �= Z(k0).

Second case : �12 is hermitian and �34 is unitary :

Let �12 = Q(E; q; k; �) and �23 = Q(E 0; q0; k0; �0). We distinguish as for the

�rst case between four possibilities.

1. MR2(c12)(�12) and and MR2(c23)(�23) are both point rows.

This would imply that P(k) �= P(k0) and hence by Proposition 124 that k �=
k0, a contradiction. This situation can thus no occur.

2. MR2(c12)(�12) is a point row and MR2(c23)(�23) is a line pencil.

Proposition 126 shows that k0, is a generalized quaternion algebra with stan-

dard involution �0 and dim(E 0) = 4.

3. MR2(c12)(�12) is a line pencil and MR2(c23)(�23) is a point row.

Proposition 128 shows that dim(E) = dim(E 0) = 4, k0 is a generalized quater-
nion algebra with standard involution �0 and Fix(�) �= Z(k0)

4. MR2(c12)(�12) and MR2(c23)(�23) are both line pencils.

Proposition 128 implies that then dim(E 0) = 6, k0 is a generalized quaternion
algebra with standard involution �0.

Suppose dim(E) > 5. Then we �nd by Propositon ?? that dim(E 0) = 6.

Moreover we have that Rad(f 0) = 0 if f 0 is the form associated to q0. Us-

ing the property we can follow the proof from above in the case where �12

and �23 where both unitary and MR2(c12)(�12) and MR2(c23)(�23) are both

line pencils. This then leads to V 0

0 = 0 a contradiction. Hence dim(E) = 4

and as in this caseMR2(c12)(�12) �= P(Fix(�)) Proposition 126 implies that

dim(E 0) = 4. 2
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4.4 Existence in ~B2 case

In this section we will give a list of integrable Moufang foundations of type
~B2 where the quadrangles involved are the ones described in Chapter 3. We

adopt the notations as introduced in section 4.3.1. When working with these

quadrangles we use the coordinatizations as introduced in Chapter 3. This

means that for quadrangles the form Q(E; q; k; �) we �x a coordinatization

associated to a decomposition E = e�2k �e�1k �V0 �e1k �e2k with labelling
set R0;1 as described in Chapter 3 section 3.5.4. For symplectic quadrangles

W (k) and indi�erent quadrangles Q(k; k0; l; l0) we use the coordinatization as

described in sections 3.5.2 and 3.7 in Chapter 3. Moreover for quadrangles

of the form Q(E; q; k; �), � 6= 1 we will assume that q is a (�;�1) quadratic
form. In view of Lemma 92 this will not put any restrictions. To make

the list of integrable Moufang foundations we use the following strategy.

We start with a classical or indi�erent Moufang set (X; (Ux)x2X). Subse-

quently we make a list of all possible Moufang foundations ((�ij)fi;jg2E(M),

(cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) of type ~B2 for which MR2(c12)(�12) and

MR2(c23)(�23) are isomorphic to (X; (Ux)x2X). For every such Moufang

foundation we investigate if condition (Ind) is satis�ed on MR2(c12)(�12)

and MR2(c23)(�23). If this is the case we know by Lemma 145 that there

is up to isomorphism one Moufang foundation involving �12 and �23 such

thatMR2(�12)(�12) andMR2(�23)(�23) are isomorphic to (X; (Ux)x2X). This
means that if we �nd a Moufang foundation ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

( ~�ijk)fi;jgfj;kg2E(M)) which is integrable then the original Moufang foundation

((�ij)fi;jg2E(M),(cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) is also integrable. To con-

struct integrable Moufang foundations we rely on the theory developed by

B. M�uhlherr and H. Van Maldeghem as exposed in [22] and [23].

De�nition 152 Let ((�ij)fi;jg2E(M); (cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) be a

Moufang foundation of type ~B2. IfMR2(c12)(�12) andMR2(c23)(�23) are both

point rows we will speak about a gluing of type PP . If MR2(c12)(�12) and

MR2(c23)(�23) are both line pencils we will speak about a gluing of type LL.
If MR2(c12)(�12) is a point row and MR2(c23)(�23) is a line pencil we will

speak about a gluing of type LP . Finally ifMR2(c12)(�12) is a line pencil and

MR2(c23)(�23) is a point row we will speak about a gluing of type PL.

If �12 is W (�k) we make the following conventions.

If MR2(c12)(�12) is point row we assume that it is M�([0])(W (k)).
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If MR2(c12)(�12) is a line pencil we assume that it equals M�((0))(W (k)).
If �12 is a generalized quadrangle Q(E; q; k; �) we make the following con-

ventions.

IfMR2(c12)(Q(E; q; k; �) is a point row we assume it isM�([(0;0)])(Q(E; q; k; �)).
If MR2(c12)(Q(E; q; k; �) is a line pencil we assume it equals
M�((0))(Q(E; q; k; �)).

Finally for �12 = Q(k; k0; l; l0) we make the following conventions.

If MR2(c12)(�12) is point row we assume that it is M�([0])(Q(k; k
0; l; l0).

IfMR2(c12)(�12) is a line pencil we assume that it equalsM�((0))(Q(k; k
0; l; l0).

We make the same conventions for �23.

Troughout the list we will always start with a Moufang foundation

((�ij)fi;jg2E(M), (cij)fi;jg2E(M), ( ~�ijk)fi;jgfj;kg2E(M)) of type ~B2 that the �ij

are classical or indi�erent quadrangles. The conventions made above on

MR2(c12) andMR2(c23) imply that we need not explicitely to know c12 and c23.

To simplify notations we will therefore denote ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

( ~�ijk)fi;jgfj;kg2E(M)) in the sequel of the section as ((�ij)fi;jg2E(M), ( ~�ijk)fi;jgfj;kg2E(M))

or even as F .
We start this section by giving some usefull Propositions concerning integra-

bility.

Proposition 153 Every Moufang foundation F ((Q(E; q; k; �), Q(E 0, q0, k0,

�0),�123) of type PP such that if Z(k) 6= k, �123 induces an anti-isomorphism
from k to k0 is integrable. In particular every Moufang foundation ((W (k),
Q(E 0; q0; k0; �0),�123) of type LP is integrable, every Moufang foundation

((W (k);W (k0); �123) of type LL is integrable and if char(k) = 2 every Mo-
ufang foundation (W (k), Q(E, q, k, �), �123) of type PP is integrable.

The conventions on Q(E; q; k; �) and Q(E 0; q0; k0; �0) show that �123 de�nes
a Moufang set isomorphism from M�([(0;0)]) Q(E; q; k; �) to

M�([(0;0)])Q(E
0; q0; k0; �0). Without loss of generality we will assume that q

and q0 are (�; 1)-quadratic forms and �123((0; 0); 1) = ((0; 0); 1). If this is

not the case we might have to consider for c 2 k and c0 2 k0 such that the

quadrangles Q(E; cq; k; �c) with ��
c

= c��c�1, 8� 2 k and Q(E 0; c0q0; k0; �0c
0

)

with �0�
0c
0

= c0 �0�
0

c0�1, 8�0 2 k0 are (�c; 1) and (�0c
0

; 1)-quadratic and

�123((0; 0); 1) = ((0; 0); 1). Clearly the map '1 which induces the identity on

points an lines de�nes an isomorphism from Q(E; q; k; �) to Q(E; cq; k; �) and

a similar bijection de�nes an isomorphism fromQ(E 0; q0; k0; �0) toQ(E 0; c0q0; k0; �0).
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Set ' = ('1; '2). As F �= '(F ) we can therefore consider '(F ). By proposi-
tion 124 we know that there exists a (anti)-isomorphism � from k to k0 such
that :

�123(((0; 0); x)) = ((0; 0); x�); 8x 2 k:

Let B0

0 = fe00
j j 2 Jg be a base of V 0

0 . De�ne the generalized quadrangle

Q( �E,�q,k,��) in the following way. If � is an isomorphism we set �E = �e�2k

��e�1k �V0 � �e1k ��e2�k where �V0 is the right k-vector space spanned by B0

0.

If � de�nes an automorphism we set �E = �e�2k
opp � e�1k

opp � �V0 ��e1 k
opp

�e2k
opp where �V0 is the right kopp-vector space spanned by B0

0. De�ne the

(anti)-isomorphism 
 from k0 to k by 
 = �Æ ��1 Æ �0.
Then E 0 is clearly isomorphic to �E under '
 if we set :

'�(e
0

�2x
0

�2 + e0
�1x

0

�1 +
P

j e
0

0
jv00

j + e01x
0

1 + e02x
0

2)

= �e�2x
0

�2

 + �e�1x

0

1

 +

P
j e

0

0
j(v00

j)
 + �e1x
0

1

 + �e2x

0

2



where x0i, v
0

0
j 2 k0.

De�ne �� by x�� = x

�1�0
, 8x 2 k.

The forms �g, �f and �q are given by :

�g(�x; �y) = (g0('�1
 (�x); '�1
 (�y)))
 ; 8�x; �y 2 �E

�f(�x; �y) = (f 0('�1
 (�x); '�1
 (�y)))
 ; 8�x; �y 2 �E

�q(�x) = �g(�x; �x) + k��;1:

By construction it follows that �q de�nes a (��; 1)-quadratic form on �E of Witt

index 2. This means that we can consider the quadrangle Q( �E,�q,k,��). Using
Theorem 133 it is clear that '
 induces an isomorphism from Q(E 0; q0; k0; �0)
to Q( �E,�q,�k,��). In the sequel we will work with the coordinatization of Q( �E; �q,

k,��) associated to the decomposition �E = �e�2k � �e�1 � �V0 � �e1k � �e2 k. Let
' = (Id; '
). Then the Moufang foundation '(F ) consists of the Moufang

foundation (Q(E; q; k; �), Q( �E; �q; k; ��), ��123) of type PP where ��123 is given

by :
��123((0; 0); x) = ((0; 0); x���):

We rephrase the proof of [23] of the integrability of '(F ). Firstly we de�ne

the division ring k(t;�; ��) as follows. Its elements are given by the rational

functions with variable t. Multiplication is given by :

x:y = xy; 8x; y 2 k

x�t = tx��; 8x 2 k:
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By putting t� = t we extend � to an involution of k(t;�; ��). Using V0 and �V0
we set W 1

0 = k(t;�; ��) 
V0 and W
2
0 = k(t;�; ��) 
 �V0 and W0 = W 1

0 � W 2
0 .

Then this means that every element of w0 W0 can be written in a unique way

as
P

j v
j
0t
j +

P
l �v

l
0 t

l where vj0 2 V0 and �vl0 2
�V0. Extend the forms g and �g

to a form g� on W0 by :

g�(
P

j v
j
0t
j +
P

i �v
i
0t
i;
P

j w
j
0t
j ;
P

i �w
i
0t
i)

=
P

i;j t
ig(vi0; w

j
0) +

P
i;j t

i�g(�vi0; �w
j
0)t

j :

If we set q�(w0) = g�(w0)+k(t;�; ��)(�;1), it follows from the results in [23] that

q� de�nes an anisotropic (�; 1)-quadratic form on W0. Set W e�
�1k(t;�; ��)

�e�
�1 k(t;�; ��) �W0 � e�1 k(t;�; ��) � e�2 k(t;�; ��) and extend g� to a form

on W as follows : (u = e�
�2x�2 + e�

�1x�1 +u0 +e
�

1x1 +e
�

2 x2 and w = e�
�2y�2

+e�
�1y�1 +w0 +e

�

1y1 +e
�

2y2 with xi, yi 2 k(t;�; ��) and u0, w0 2 W0)

g�(u;w) = x�
�2y2 + x�2y�2 + x�

�1y1 + x�1x�1 + g�(u0; w0):

Using g� we extend q� to W by setting :

q�(w) = g(w;w) + (k(t;�; ��)�;1; 8w 2 W:

In this way we see that q� de�nes a (�; 1)-quadratic form on W of Witt index

2. Hence we can consider the quadrangle Q(W ,q�,k(t;�,��),�). It is proved

in [23] that Q(W ,q�,k(t;�; ��),�) is the quadrangle at1 of an aÆne Moufang

building (�;W; S; d) of type ~B2 such that '(F ) = (Q(E; q; k; �),Q( �E; �q; k; ��),
��123) 2 MoFo(�). As '(F ) is isomorphic to F this proves that F is inte-

grable.

Let F (W (k); Q(E 0; q0; k0; �0); �123) be a Moufang foundation of type LP .

By Proposition 134 and Lemma 143 we �nd that F will be isomorphic to

a Moufang foundation �F = (QO(E; q; k); Q(E 0; q0; k0; �0), ��123) of type PP
where QO(E; q; k) is the orthogonal quadrangle dually isomorphic to W (k)
as desribed in the proof of Proposition 134. By what we already proved we

know that �F is integrable proving the integrability of F .
The integrability of a Moufang foundation (W (k);W (k0); �123) of type LL
follows by similar arguments.

Finally let char(k) = 2. Then we know by Proposition 137 that W (k) is
isomorphic to an orthogonal quadrangle QO(E; q; k). Hence every founda-

tion F = (W (k), (Q(E 0; q0; k0; �0); �123) of type is isomorphic to a founda-

tion �F = (QO(E; q; k),Q(E 0; q0; k0; �0), ��123)) of type PP . As we already
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proved that �F is integrable we �nd that every Moufang foundation (W (k),
Q(E 0; q0; k0; �0),�123)) is integrable. 2

Proposition 154 Let char(k) 6= 2 then every Moufang foundation

(W (k); Q(E 0; q0; k0; �0),�123) of type LL is integrable.

Let F be a foundation as in the proposition. By Proposition 126 we can

assume without loss of generality that �123 induces a �eld isomorphism from

k to k0. Consider the symplectic quadrangle W (k0). Then W (k0) is clearly
isomorphic to W (k). Let '��1 be the isomorphism from W (k0) to W (k) by
applying ��1 to the coordinates of elements of W (k0). Put ' = ('��1 ; Id).

Let �F be the Moufang foundation ((W (k0), Q(E 0; q0; k0; �0), Id)). The con-

struction of '�
�1

implies that '( �F ) = F . As �F is integrable by the results

in [23] we �nd that F is integrable. 2

Proposition 155 Suppose k and k0 are �elds. Then every Moufang foun-
dation F = (Q(E; q; k; �),Q(E 0; q0; k0; �0),�123) of type LL such that
M�((0))(Q(E; q; k; �)) is not-commutative is integrable. Moreover also ev-

ery Moufang foundation (W (k); Q(E 0; q0; k0; �0); �123) of type PL and every
Moufang foundation (W (k),W (k0),�123) of type PP is integrable.

proof :

We start by reducing the three cases to one.

1. Suppose �rstly that F = (Q(E; q; k; �),Q(E 0; q0; k0; �0),�123). The condi-

tions on M�((0))(Q(E; q; k; �)) yield that by Proposition 147, Q(E; q; k; �)
satsis�es condition (Ind) on �((0)), Q(E 0; q0; k0; �0) satsis�es condition (Ind)
on �((0)) and Q(E 0; q0; k0; �0) is isomorphic to Q(E; q; k; �). Suppose that the

isomorphism from Q(E; q; k; �) to Q(E 0; q0; k0; �0) is given by '23. Put ' =

(Id; '23). Then we �nd by construction that the foundation ((Q(E; q; k; �),Q(E
0; q0; k0; �0),�123))

is isomorphic to '(F ) = ((Q(E; q; k; �),Q(E; q; k; �),'�123 �123)). AsQ(E; q; k; �))

satis�es condition (Ind) on �((0)), '(F ) is isomorphic to the Moufang foun-

dation �F = (Q(E; q; k; �),Q(E; q; k; �),Id)).

2. F = (W (k); Q(E 0; q0; k0; �0) of type PL.
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Similar techniques as the ones used in the proof of Proposition 153 show

that F is isomorphic to the foundation F 0 = (W (k0); Q(E 0; q0; k0; �0) of type
PL. By Proposition 134 we know that W (k0) is dually isomorphic to an

orthogonal quadrangle QO( �E 0; �q0; k0). Denote the duality from W (k0) to

QO( �E 0; �q0; k0) as 
2. Put 
 = (Id; 
2). Then one easily checks that �F =


(F 0) = (QO( �E 0; �q0; k0), Q(E 0; q0; k0; �0),Id).

3. If F = (W (k);W (k0); �123) we know by Proposition 134 that W (k) is
dually isomorphic to an orthogonal quadrangle QO(E1; q1; k) and similarly

W (k0) is dually isomorphic to an orthogonal quadrangle QO(E 0

1, q
0

1,k
0). Sup-

pose that 
1 is a duality from W (k) to QO (E1; q1; k) and 

0

1 a duality from

W (k0) to QO (E 0

1, q
0

1, k
0). Put 
 = (
1; 
2). Then we can replace the

F by 
(F ) = (Q(E1; q1; k),Q(E
0

1; q
0

1; k
0) 
 01�123


�1
1 ), a Moufang foundation

of type LL. Proposition 146 implies that QO(E1; q1; k) and QO(E 0

1, q
0

1,

k0) satisfy condition (Ind) on their line pencils and that QO(E1; q1; k) �=
QO(E 0

1,q
0

1,k
0). Suppose that the isomorphism from QO(E1,q1, k) is given by

 23. Set  = (Id;  23). The we �nd by that F is isomorphic to  
(F ) =
(QO(E1; q1; k),QO(E

0

1; q
0

1; k
0), �123 


0

1 �123

�1
1 ). AsQO(E1,q1,k) andQO(E1,q1,k)

satisfy condition (Ind) on their line pencils we �nd that also in this case F
is isomorphic to the Moufang foundation �F = (QO(E1; q1; k), QO(E1; q1; k),
Id).

In all three cases we �nd that F is integrable if and only if �F is integrable.

We rephrase a proof of the integrability of �F given in [23].

Without loss of generality we will assume here that q is a (�; 1)-quadratic
form. In view of Lemma 92 this puts no restrictions on the form. (If q is

a (�; �)-quadratic form then we can �nd a constant c 2 k such that cq is a

(�; 1)-quadratic form. As the foundation F = (Q(E; q; k; �),Q(E; q; k; �),Id))
is isomorphic to Fc = (Q(E; cq; k; �),Q(E; cq; k; �),Id)) we can work with Fc
instead of F .) Firstly we de�ne the division ring k(t;�; 1) in the following

way. The elements of k(t;�; 1) are the rational functions in the variable t

where multiplication is given by :

a:b = ab; 8t 2 k

a�t = ta; 8a 2 k

We extend � to k(t;�; 1) by setting t� = t. In this way we construct a skew

�eld k(t;�; 1) with involution �.
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Subsequently we choose a coordinatization of Q(E; q; k; �) associated to a

decomposition E = e�2k �e�1k �V0 �e1k �e2k with labelling set R0;1.

Suppose that g is a �-sesquilinear form such that q(x) = g(x)+k�;1, 8x 2 E.
Let W0 = V0 
 k(t). Then every element of W0 can be written uniquely as a

sum
P
vi0t

i, vi0 2 V0.
We extend g and q to forms on W0 by setting :

g(
X

vi0t
i;
X

wj
0t
j) = tig(vi0; w

j
0)t

j

q(
X

vi0t
i) = g(

X
vi0t

i;
X

vj0t
j) + (k(t;�; 1))(�;1)

with
P
vi0t

i and
P
wj
0t
j 2 W0. Then one easily checks that in this way g

de�nes a � sesquilinear form and q a (�; 1)-quadratic form on W0. Moreover

it is proved in [23] that q is anisotropic on W0.

Put W = e�2k(t) �e�1k �W0 �e1k(t) �e2k(t). We extend g and q to W in

the following way :

g(e�2x�2 + e�1x�1 +
X

vi0t
i + e1x1 + e2x2

= x�
�2x2 + x�

�1x1 + g(
X

vi0t
i); xi 2 k(t;�; 1); v

i
0 2 k

q(x)

= g(x) + (k(t;�; 1))(�;1); 8x 2 k

By construction q de�nes in this way a (�; 1)-quadratic form of with index 2.

Therefore we can consider the quadrangle Q(W; q; k(t;�; 1); �). It is proved

in [23] that Q(W; q; k(t;�; 1); �) is the quadrangle at 1 of an aÆne Moufang

building (�;W; S; d) of type ~B2 with �F = (Q(E; q; k; �),Q(E; q; k; �),Id))

2MoFo(�). This means that �F is integrable and hence F is integrable.

Proposition 156 Every Moufang foundation F= (Q(k; k0; l; l0), Q(�k, �k0, ; �l,
�l0); �123) is integrable.

proof :

Let F be a Moufang foundation as in the proposition. As every indi�erent

quadrangle is dually isomorphic to an indi�erent quadrangle we can assume

without loss of generality that F is or type PP . Proposition 131 implies that

�123 induces a �eld isomorphism from k to �k such that for some �c 2 �k :

�c�123(l) = �l:
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Upon a possible re coordinatization of Q(�k,�k0,�l,�l0) we can assume that �c
= 1. Let Q(k; k00; l0; l00) be the indi�erent quadrangle obtained by applying

��1 to the coordinates of Q(�k; �k0; �l, �l0). Then Q(k; k00; l; l00) is isomorphic to

Q(�k,�k0;�l,�l0) by applying � to the coordinates of Q(k; k00; l; l00). Denote this

isomorphism by '�. Put ' = (Id; '�). By construction it then follows that
�F = '�1(F ) = (Q(k; k0; l; l0), Q(k; k00; l; l00), Id)). As �F is integrable by the

results of [23] we �nd that F is integrable. 2

4.4.1 Case I : MR2(c12)(�12) �= P(�k).

Z(�k) = �k

In this section we assume thatMR2(c12)(�12) �= P(�k) with �k a �eld. Remark
that if in this case �12 or �23 is an indi�erent quadrangle Q(k; k0; l; l0) we
�nd by Proposition 125 that l = k �= �k. But then Proposition 136 shows

that Q(k; k0; l; l0) is isomorphic to an orthogonal quadrangle. Therefore we

will not explicitly consider the cases where �12 or �23 are indi�erent quad-

rangles.

Case I.1 �12 = W (k) and �23 = W (k0).

Without loss of generality we can assume that �k = k in view of Proposi-

tion 124.

The gluing is of type PP .

By proposition 124 we know that � induces a �eld isomorphism from

k to k0. As both W (k) and W (k0) satisfy condition (Ind) on their

point rows (cfr. Proposition 146) there is up to isomorphism only one

Moufang foundation ((�ij)fi;jg2E(M),(cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M))

of type PP involving W (k) and W (k0). The integrability of F follows

from Proposition 155.

The gluing is of type PL, LL or LP .
A similar reasoning as for a gluing of type PP shows that the Mo-

ufang foundation ((�ij)fi;jg2E(M); (cij)fi;jg2E(M); (�ijk)fi;jgfj;kg2E(M)) is

integrable.
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Case I.2 �12 = W (k) and �23 = QO(E 0; q0; k0).

The gluing is of type PP .

Proposition 124 implies that � induces a �eld isomorphism from k to

k0. The integrability follows from Propositions 153 and 154.

The gluing is of type LP .

By Proposition we know that � induces a �eld isomorphism from k to

k0. The integrability of the Moufang foundation follows from Proposi-

tion 153.

The gluing is of type PL.
Proposition 127 implies that one of the following cases occurs :

dim(E 0) = 5, k �= k0. By Proposition 134 we have that QO(E 0; q0; k0; �0)

is dually isomorphic to W (k0). Hence the Moufang foundation F is

isomorphic to a Moufang foundation (W (k),W (k0), ��123) of type PP .
Proposition 155 implies thus that in this case F is integrable.

dim(E 0) = 6, k �= k00, where k00 is the quadratic Galois extension of k0

determined byMO(V 0; q0; k0). Proposition 135 shows that QO(E 0; q0; k0)
is dually isomorphic to QH(E 00; q00; k00; �00). Hence F is isomorphic

to a Moufang foundation �F = (W (k); QH(E 00; q00; k00; �00) of type PP .

Propositions 153 and 154 yield the integrability of F .
codim(Rad(f 0)) = 2, there exists a constant c0 2 k0 such that the set

fc0q0(w0) jw0 2 Rad(f 0)g is isomorphic to k. Proposition 136 implies

that QO(E 0; q0; k0) is isomorphic to an indi�erent quadrangle. Hence F
is isomorphic to a foundation �F involving two indi�erent quadrangles

and the integrability of F follows from Proposition 156.

The gluing is of type LL.

Proposition 127 implies that one of the following cases occurs :

dim(E 0) = 5, k �= k0 and hence QO(E 0; q0; k0) is dually isomorphic to

W (k0). The integrability of F follows from Proposition 153.

dim(E 00) = 6 and k �= k00 with k00 the quadratic Galois extension de-

termined by QO(E 0; q0; k0) as described in Lemma 112. In this case

QO(E 0; q0; k0) is dually isomorphic to a hermitian Moufang set QH(E 00,

q00, k00, �00). The integrability of the Moufang foundation follows from
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Proposition 153. codim(Rad(f 0)) = 2 and there exists a constant c0

2 k0 such that the set fc0q0(w0) jw0 2 Rad(f 0)g is a �eld isomorphic

to k. Proposition 136 shows that QO(E 0; q0; k0) is isomorphic to an

indi�erent quadrangle. The integrability of F follows from Proposition

156.

Case I.3 �12 = W (k) and �23 = QH(E 0; q0; k0; �0).

The gluing is of type PP .
The integrability of F follows from Propositions 153 and 154.

The gluing is of type LP .

For the a proof of the integrability of F we refer to Proposition 153

The gluing is of type PL.
Proposition 155 shows that F is integrable in this case.

The gluing is of type LL.
Proposition 128 implies that dim(E 0) = 4 and k �= Fix(�0). Proposi-

tion 135 implies that then QH(E 0; q0; k0; �0) is dually isomorphic to an

orthogonal quadrangle QO( �E 0, �q0,k0). Hence F is isomorphic to a Mo-

ufang foundation (W (k), QO( �E 0,�q0,k0)) of type LP . Hence Proposition

153 implies that F is integrable.

Case I.4 �12 = W (k) and �23 = QU(E 0; q0; k0; �0).

Remark that in this case only gluings of type PL and LL are possible.

The gluing is of type PL.
Proposition 125 implies that dim(E 0) = 4, k0 is a generalized quater-

nion algebra with standard involution �0. Proposition 138 implies that

QU(E 0; q0; k0; �0) is dually isomorphic to an orthogonal quadrangle

QO(E 00; q00; k00). The integrability of the Moufang foundation follows

thus from the Propositions 153. and 154.

The gluing is of type LL.

The same conclusions holds as for case of a gluing of type PL.

Case I.5 �12= QO(E; q; k) and �23 = QO(E 0; q0; k0).
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The gluing is of type PP .
By Proposition we know that � induces a �eld isomorphism from k to

k0 in this case.

For the integrability of F we refer to Proposition 153.

The gluing is of type PL.
Proposition 125 shows that one of the following cases occurs:

dim(E 0) = 5 and k �= k0.

Proposition 134 implies that QO(E 0; q0; k0) dually isomorphic to W (k0).
We can therefore refer to case I:2.
dim(E 0) = 6 and k �= k00 where k00 is the quadratic Galois extension of

k0 determined by QO(E 0; q0; k0). As in this case QO(E 0; q0; k0) is dually
isomorphic to a hermitian quadrangle QH(E 00; q00; k00; �00) the Moufang

foundation F is isomorphic to a Moufang foundation �F = (QO(E; q; k),

QH(E 00; q00; k00; �00), ��123) of type PP . The integrability of F follows

from Proposition 153.

codim(Rad(f 0)) = 2, and there exists a constant c0 2 k0 such that the

set fc0q0(w0) jw0 2 Rad(f 0)g is a �eld isomorphic to k.
Proposition 136 implies that QO(E 0; q0; k0) is isomorphic to an indif-

ferent quadrangle Q(k; k00; l; l00). Proposition 3.4.4 in [37] shows that

Q(k; k00; l; l00) is dually isomorphic to Q(k00; (k0)2; l00; (l0)2). Hence by

Proposition 136 we see that QO(E 0; q0; k0) is dually isomorphic to an

orthogonal quadrangle Q(E 00; q00; k00). This implies that F is isomorphic

to a foundation �F of type PP involving two orthogonal quadrangles.

The integrability of F therefore follows from Propostion 153.

The gluing is of type LL.
In this we �nd using Proposition 127 that codim(Rad(f))

= codim(Rad(f 0)) = 2 and that there exist constants c 2 k and c0

2 k0 such that fcq(w) jw 2 Rad(f)g is a �eld isomorphic to the �eld

fc0q0(w0) jw0 2 Rad(f 0)g. Lemma 136 implies that both �12 and �23 are

indi�erent Moufang sets. The integrability of the Moufang foundation

follows from Proposition 156.

The gluing is of type LP .
This case is can be derived from the case where we consider a gluing of

type PL.

Case I.6 �12 = QO(E; q; k) and �23 = QH(E 0; q0; k0).
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The gluing is of type PP .
Proposition 124 yields k �= k0.
We refer to case I:3.

The gluing is of type LP .

Propositions 125, 134 and 135 imply that there are three possibilities.

dim(E) = 5 and QO(E; q; k) is dually isomorphic to W (k). The inte-
grability follows from Proposition 153.

dim(E) = 6 and QO(E; q; k) is dually isomorphic to a hermitian quad-

rangle QH(E 00; q00; k; �00). The integrability follows from Proposition

153.

codim(Rad(f)) = 2, there exists a constant c 2 k such that the set

fcq(w) jw 2 Rad(f)g is a �eld isomorphic to k0. Proposition 136 im-

plies that QO(E; q; k) is isomorphic to an indi�erent quadrangle. Hence
we refer to case I.5 for a discussion on the integrability of F .

The gluing is of type PL or LL.

Propositions 128 and 135imply that dim(E 0) = 4 and thatQH(E 0; q0; k0; �0)
is dually isomorphic to an orthogonal quadrangle QO(E 00; q00; F ix(�0).
Hence we can refer to Case I.5 for a discussion on the integrability of

F .

Case I.7 �12 = QO(E; q; k) and �23 = QU(E 0; q0; k0; �0).
Proposition 125 shows that only gluings of type PL and LL are possible.

But then Proposition 125 shows that dim(E 0) = 4 and by Proposition 138 we

have that QU(E 0; q0; k0; �0) is dually isomorphic to an orthogonal quadrangle

QO(E 00,q00,Z(k0)). This means that the Moufang foundation F is isomorphic

to a Moufang foundation �F = (QO(E; q; k),QO(E 00; q00; Z(k0)), ��123). For a

discussion on the integrability of F we therefore refer to case I.5.

Case I.8 �12 = QH(E; q; k; �) and QH(E 0; q0; k0; �0).

The gluing is of type PP .
Proposition 124 implies k �= k0.
The integrability of the Moufang foundation follows from Proposition

153.

The gluing is of type PL.

Propositions 125 and 135 imply that dim(E 0) = 4, k �= Fix(�0) and
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that QH(E 0; q0; k0; �0) is dually isomorphic to an orthogonal quadrangle
QO(E 00; q00; F ix(�0)). The integrability of F then follows from Propo-

sition 153.

The gluing is of type LL.
Propositions 125 and 135 shows that dim(E) = dim(E 0) = 4 and

Fix(�) �= Fix(�0), QH(E; q; k; �) is dually isomorphic to an orthogonal

quadrangle QO( �E,�q,Fix(�)) and QH(E 0; q0; k0; �0) is dually isomorphic
to an orthogonal quadrangle QO( �E 0, �q0, Fix(�0)). Hence F is isomor-

phic to a Moufang foundation �F of type PP involvingQO( �E; �q; F ix(�))

and QO( �E 0,�q0,Fix(�0)). The integrability of the Moufang foundation

follows from Propositions 153 and 154.

The gluing is of type LP .
We refer to the case of a gluing of type PL.

Case I.9 �12 = QH(E; q; k; �) and �23 = QU(E 0; q0; k0; �0).
Remark that Proposition 124 implies that in this case only gluings of type

PL and LL are possible. Propositions 125 implies that dim(E 0) = 4. There-

fore we have that QU(E 0,q0,k0,�0)) is dually isomorphic to an orthogonal

quadrangle QO(E 00,q00,Z(k0)) by Proposition 138. For the integrability of the

Moufang foundation we can thus refer to case I.6.

Case I.10 �12 = QU(E; q; k; �) and �23 = QU(E 0; q0; k0; �0).
Remark that by Proposition 126 only a gluing of type LL is possible such

that dim(E) = dim(E 0) = 4. Proposition 138 shows that QU(E,q,k,�)) and
QU(E 0; q0,k0; �0 are both dually isomorphic to orthogonal quadrangles. For

the integrability of the Moufang foundation we therefore refer to case I.5.

Z(k) 6= k

Case I.11 �12 = QO(E; q; k) and �23 = QU(E 0; q0; k0; �0) Remark that Propo-

sition 125 implies that only a gluing of type LP is possble. For the integra-

bility of F we refer to the results proved in [23].

Case I.12 �12 = QU(E; q; k; �) and �23 = QU(E 0; q0; k0; �0).
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The gluing is of type PP .
Remark that Theorem 151 implies that if k is not a generalized quater-

nion algebra with standard involution �123 induces a (anti)-isomorphism

from k to k0. The integrability of the Moufang foundation follows from

Proposition 153.

The gluing is of type PL.

Proposition 130 shows that this case cannot occur unless Z(k) = k a

contradiction.

The gluing is of type LL.
Theorem 151 yields that the foundation can only be integrated if dim(E)
= dim(E 0) = 4, k is a generalized quaternion algebra with standard

involution and �0 is a generalized quaternion algebra with standard

involution �0. But then we �nd that QU(E; q; k; �) is dually iso-

morphic to an orthogonal quadrangle QO( �E; �q; Z(k)) and similarly

QU(E 0; q0; k0; �0) is dually isomorphic to an orthogonal quadrangle

QO( �E 0,�q0, Z(k0)) such that dim( �E) = dim(E 0) = 8. Thus F is iso-

morphic to a foundation �F = (QO( �E; �q; �k),QO( �E 0,�q0, �k0), ��123)) of type
PP . The integrability of F follows therefore from Proposition 153.

4.4.2 Case II : MR2(c12)(�12) �= MO( �V ; �q; �k)

To avoid unneccesary work we will avoid to rephrase the cases where we a

priori know that MR2(c12)(�12) is a projective Moufang set.

Case II.1 �12 = QO(E; q; k) and �23 = QO(E 0; q0; k0).

The gluing is of type PP , PL or LP .
As in this case MR2(c12)(�12) is isomorphic to projective Moufang set

we refer to case I.5.

The gluing is of type LL andMR2(c12)(�12) is not commutative. Propo-

sition 147 implies that QO(E; q; k) is isomorphic to QO(E 0; q0; k0) in this

case. The integrability of the foundation follows from Proposition 155.

The gluing is of type LL and MR2(c12)(�12) is commutative.

Remark that in this case Lemma 120 implies that codim(Rad(f)) = 2

and codim(Rad(f 0)) = 2. Hence �12 and �23 can be seen as indi�erent
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quadrangles by Proposition 136. This means that the Moufang foun-

dation F is isomorphic to a Moufang foundation of type LL involving

two mixed quadrangles. The integrability of F follows from Proposition

156.

Case II.2 �12 = QO(E; q; k) and �23= QU(E 0; q0; k0; �0).

The gluing is of type PP , PL or LP we refer to case I.7

The gluing is of type LL and char(k) 6= 2.

Proposition 127 implies that dim(E 0) = 4.

We distinguish between two subcases :

�0 is the standard involution. Proposition 138 shows thatQU(E 0; q0; k0; �0)

is dually isomorphic to an orthogonal quadrangle QO( �E 0; �q0; Z(k0)).
This means that F is isomorphic to a Moufang foundation �F
= (QO(E; q; k),Q( �E 0; �q0; Z(k0)), ��123) of type LP . For a discussion on

the integrability of F we can therefore refer to case I.5.

�0 is not the standard involution. Lemma 115 implies thatMR2(c23)(�23)

is isomorphic to a non-commutative orthogonal Moufang set

MO( �E 0; �q0; Z(k0)) with dim( �E 0) = 7. By Proposition 127 we �nd that

dim(E) = 7 and that q and q0 are proportional up to an isomorphism �
from k to Z(k0). The integrability of F follows from the results in [23].

The gluing is of type LL and char(k) = 2.

By Proposition 127 we �nd that in this case codim(Rad(f 0)) = 2, and

k0 is a generalized quaternion algebra. This means that MR2(c12)(�12)

is an extended polar line. If dim(E 0) = 4 the integrability of F can be

proved as above in the characteristic non 2 case. If dim(E 0) > 4 we the

integrability of F follows from the results in [23].

Case II.3 �12 = QO(E; q; k) and �23 = Q(k0; k00; l0; l00).

The gluing is of type PL or PP .
We refer to case I .

The gluing is of type LP .

Proposition 131 implies that codim(Rad(f)) = 2. Hence QO(E; q; k)
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is an indi�erent quadrangle by Proposition 136. The integrability of F
therefore follows from Proposition 156.

CaseII.4 �12 = Q(k; ~k; l; ~l) and �23 = Q(k0; ~k0; l0; ~l0).

The integrability of F follows in this case from Proposition 156.

4.4.3 Case III : MR2(c12)(�12) �= MH( �V ; �q; �k; ��).

To avoid unnecessary work we will avoid to rephrase cases where we know a

priori that MR2(c12)(�12) is a projective Moufang set.

Case III.1 : �12 = QH(E; q; k; �) and �23= QH(E 0; q0; k0; �0).

The gluing is of type PP , PL or LP .

We refer to case I.8.

The gluing is of type LL.
If dim(E) = 4, Proposition 128 shows that dim(E 0) = 4. By Proposi-

tion 135 we have that QH(E; q; k; �) is dually isomorphic to an orthog-

onal quadrangle QO( �E; �q; F ix(�)) and QH(E 0; q0; k0; �0) is dually iso-

morphic to an orthogonal quadrangle QO( �E 0; �q0,Fix(�0)). This means

that F is isomorphic to a foundation �F = (QO ( �E, �q, Fix(�)), QO
( �E 0, �q0, Fix(�0)), ��123)) of type PP . The integrability of F follows

then from Proposition 153.

If dim(E) > 5 Proposition 128 implies that dim(E 0) > 5 and both

MR2(c12)(�12) and MR23(c23)(�23) have non commutative root groups.

Remark that in this caseQH(E; q; k; �) is isomorphic toQH(E 0; q0; k0; �0)

by Proposition 147. The integrability of F follows from Proposition

155.

Remark that the case where dim(V ) = dim(V 0) = 5 is still left open.

Case III.2 : �12 = QH(E; q; k; �) and �23 = QU(E 0; q0; k0; �0).

The gluing is of type PP , PL or LP .

We refer to I.9.

The gluing is of type LL.
Theorem 151 implies that in this case dim(E) = dim(E 0) = 4, k0 is a

generalized quaternion algebra with standard involution �0 such that
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Z(k0) �= Fix(�). But then Proposition 135 implies that QH(E; q; k; �)
is dually isomorphic to an orthogonal quadrangle QO( �E; �q; F ix(�)) and
by Proposition 138 we �nd that QU(E 0; q0; k0; �0) is dually isomorphic

to an orthogonal quadrangle QO( �E 0; �q0, Z(k0)). This means that the

foundation F is isomorphic to a foundation �F= (QO( �E; �q; F ix(�)),
QO( �E 0; �q0,Z(k0),�0) of type PP . The integrability of F then follows

from Proposition 153

4.4.4 Case IV : MR2(c12)(�12) �= MU( �V ; �q; �k; ��)

By Theorem 151 we can refer to case I for a discussion on the integrability

of F in this case.

4.4.5 Case V : MR2(c12)(�12) �= P(�l; �k)

As earlier mentioned we will not consider the cases where we a priori know

that MR2(c12)(�12) is isomorphic to a projective Moufang set.

Case V.1 �12 = QO(E; q; k) and �23 = QO(E 0; q0; k0).

The gluing is of type PP , PL or LP . We refer to case I.5

The gluing is of type LL.
Propositions 131 and 136 show that QO(E; q; k) and QO(E 0; q0; k0) are

isomorphic to indi�erent quadrangles. Thus F is isomorphic to a foun-

dation of type LL involving two indi�erent quadrangles. The integra-

bility of F then follows from Proposition 156.

Case V.2 �12 = QO(E; q; k) and �23 = Q(k0; k00; l0; l00).

The gluing is of type PP , PL. We refer to case I:5.

The gluing is of type LP .

Proposition 131 and 136 yield that QO(E; q; k) is isomorphic to an

indi�erent quadrangle. Hence F is isomorhpic to a Moufang foundation

of type LL involving two indi�erent quadrangles. For the integrability

of F we refer to Proposition 156.
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The gluing is of type LL.
By Proposition 3.4.4 in [?] we know that Q(k0; k00; l0; l00) is dually isomor-
phic to the indi�erent quadrangle Q(k00; (k0)2; l00; (l0)2). Hence F is iso-

morphic to a Moufang foundation �F (QO(E; q; k),Q(k00; (k0)2; l00; (l0)2)
of type LP . The integrability of F follows then as above.

Case V.3 �12 = Q(k; �k; l; �l) and �23 = Q(k0; �k0; l0; �l0). The integrability of F
follows from Proposition 156.

4.5 Non-existence in 443 case

De�nition 157 Let M443 be the Coxeter matrix de�ned over the set I =

f1; 2; 3g with m12 = m23 = 4, m13 = 3. A Coxeter matrix M isomorphic to

M443 is said to be of type 443. A root system of type 443 is de�ned as a root

system of type M443, a building of type 443 is a building of type M443 and a

Moufang foundation of type 443 is de�ned as a Moufang foundation of type

M443.

In this section we will assume that for the (�; �)-quadratic forms with � 6= 1

involved � = �1. Using Lemma 92 and section 3.12.3 we see that this does

not put any restrictions on the forms.

Using similar reasonings as for the ~B2 case we will show the non-existence of

certain Moufang foundations of type 443.

Theorem 158 Let M = (mij)i;j2I with I = f1; 2; 3g a Coxeter matrix of
type 443, � a root system of type 443 with root base � = f�i ji 2 Ig such
that �m�1;�2

= �m�2;�3
= 4 and �m�1;�3

= 3. Suppose that ((�ij)fi;jg2E(M),

(cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) is a Moufang foundation of type 443 where
the for every fi; jg 2 E(M) the system (U�kij)�kij2��i�j forms a root groups

system for �ij . Suppose �12 is a unitary quadrangle QU (E; q; k; �), �23 is
a unitary quadrangle the form QU (E 0; q0; k0; �0) and �13 is a Desarguesion
projective plane de�nes over a division ring �k, MR2(c12)(Q(E; q; k; �) and

MR2(c23)(Q(E
0; q0; k0; �0) are both line pencils, MR1(c13)(�) is a line pencil

andMR3(c13)(�) is a point row. Assume moreover thatMl(Q(E; q; k; �)) and
Ml(Q(E

0; q0; k0; �0)) are Moufang sets with non-commutative root groups such

that if k or k0 is a generalized quaternion algebra with standard involution,
Rad(f) = 0 or Rad(f 0) = 0.
If then ((�ij)fi;jg2E(M),(cij)fi;jg2E(M), (�ijk)fi;jgfj;kg2E(M)) is integrable one of

the following possibilities occurs :
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(i) �312 induces an anti-isomorhpism vrom k to k0, k is a generalized
quaternion algebra with standard involution � and k0 is a generalized
quaternion algebra with standard involution �0,

(ii) �312 induces an isomorphism from k to k0 and both k and k0 are gener-
alized quaternion algebras.

proof :

Choose a coordinatization of QU (E; q; k; �) associated to the decomposi-

tion e�2k�e1k�E0�e1k�e2. Similarly we choose a coordinatization of QU

(E 0; q0; k0; �0) associated to the decomposition e0
�2k

0� e0
�1k

0 �E 0

0 �e
0

1k
0 �e02k

0.

The assumptions of the theorem imply that there exists a 3-dimensional right
�k-vector space U such that � �= PG(U). Denote the dual space of U by U�,

then U� is a right �kopp-vector space. Choose a base �xed base fu1, u2, u3g
of U with dual base fu�1, u

�

2, u
�

3g. For the rest of the proof elements of U
of the form u1w1 + u2w3 + u3w3 will be written as the row (w1; w2; w3) and

similarly every element of U � of the form u�1w
�

1 +u
�

2w
�

2 +u
�

3w
�

3 will be denoted

by (w�1; w
�

2 ; w
�

3)
�. Call �312 = �1, �132 = �3 and �123 = �2. Then we can as-

sume without loss of generality that : �1 de�nes a Moufang set isomorphism

from M�((1;0;0)) (PG(E)) to M�([(0;0)])(Q(E; q; k; �)), �2 de�nes a Moufang

set isomorphism from M�((0)) (Q(E; q; k; �)) to M�((0)) (Q(E 0; q0; k0; �0)),
�3 de�nes a Moufang set isomorphism from M�(h(0;1;0)(1;0;0)i) (PG(E)) to

M�([(0;0)])(Q(E
0; q0; k0; �0)).

Let P(�k) and P(�kopp) be projective lines de�ned over �k and �kopp. Choose

canonical coordinatizations of both projective Moufang sets. The calcula-

tions in section 3.4 show that the bijection 
 from P(k) to M�(h(1;0;0);(0;1;0)i)

de�ned by :


((v)) = h(v; 1; 0)i; 8v 2 �k


((1)) = h(1; 0; 0)i

determines a Moufang set isomorphism and similarly that the bijection 
�

from P(�kopp) to M�((1;0;0)) de�ned by :


�((v�)) = h(0; v�; 1)�i


�((1)) = h(0; 1; 0)�i

determines a Moufang set isomorphism.

To simplify notations we will identify in the sequel the point set of P(k) with
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the point set of M�(h(1;0;0);(0;0;1)i)(�) via 
 and similarly identify the point

set of P(�kopp) with the point set of M�((1;0;0))(�) via 

�. Without loss of

generality we can assume that �1((1)) = ((0; 0); 1) and �3((1)) = ((0; 0); 1).

Using Theorem 124 we see that �1 de�nes a �eld (anti)-isomorphism from
�kopp to k which we also denote as �1 and is de�ned by :

�1((�v
�)) = ((�v�)�1); 8�v� 2 �k:

In a similar way �3 de�nes a �eld (anti)-isomorphism from �k to k0 also de-

noted by �3 and de�ne by :

�3((�v)) = (�v�3); 8�v 2 �k:

Without loss of generality we can assume that �2 ([0; (0; 1)]) = [0; (0; 1)].
In this case Theorem 129 implies that the Moufang set isomorphism �2

fromM�((0))(QU(E; q; k; �) toM�((0))(QU(E
0; q0; k0; �0) sends f[0; (0; �)]j� 2

Tr(�)g to f[0; (0; �0)]j�0 2 Tr(�0g such that :

�2([0; (0; �)]) = [0; (0; �
 ];

with 
 a �eld isomorphism from k to k0 satisfying :

��
 = �
�
0

; 8� 2 k:

This implies that if the Moufang foundation ((�; QU(E; q; k; �),
QU(E 0; q0; k0; �0),(cij)fi;jg2E(M), (�i)1�i�3) is integrable also the Moufang

foundation ((�; QU(W; q; k; �); QU(W 0; q0; k0; �0); (cij)fi;jg2E(M), (�i)1�i�3) will

be integrable where W = he�2, e�1, e1, e2i and W 0 = he0
�2, e

0

�1, e
0

1, e
0

2 i.
Thus there exists a Moufang building (�;W; S; d) with root groups (U�)�2�
of type 443 such that ((�; QU(W; q; k; �); QU(W 0; q0; k0; �0); (�i; 1 � i � 3))
�= (Rij(c+),(cij)fi;jg2E(M), (�ijk)fi;jg;fj;kg2E(M)) with c+ 2 �, cij = c+, �ijk
= Id, 8fi; jg, fj; kg 2 E(M). Therefore we can reduce the situation to the

case where E0 = 0, E 0

0 = 0 and �2 induces a �eld isomorphism also denote

by �2 from k to k0 such that :

�2([0; (0; �)]) = [0; (0; ��2)] 8[0; (0; �)] 2 M�((0))(QU(V; q; k; �)) (4.9)

and :

���2 = ��2�
0

; 8� 2 k: (4.10)
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Let (b) 2 M�(h(010)(100)i)(�). Consider the automorphism s(b)s(1). Clearly

this de�nes an automorphism of � with matrix representation with respect

to the base fu1, u2, u3g : 0
@ �b 0 0

0 �b�1 0

0 0 1

1
A :

We have that for (x�) 2 M�(100)(PG(E)), s(b) s(1) ((x
�)) = (�b�1x�) and

s(b) s(1) (1) = (1). Clearly s(b)s(1) de�nes an automorphism h(b) �xing an

aparment in the Moufang building in which the Moufang foundation is inte-

grated. Without loss of generality we can thus assume that hb de�nes an au-

tomorphism of the Moufang foundation ((�; QU(E; q; k; �); QU(E 0 ; q0; k0; �0),

(cij)fi;jg2E(M), (�i; 1 � i �)).
This means in particular that hb de�nes automorphisms g�1(b) ofQU(E; q; k; �)
and g�3(b) of QU(E

0; q0; k0; �0). In particular g�1(b) will de�ne an automor-

phism of M�((0)) (QU(W; q; k; �)) and g�3(b) and automorphism of M�((0))

(QU (W 0, q0, k0; �0)). Without loss of generality we can assume that the

apartment given by f[1], (1), [(0; 0)], ((0; 0); 0), [(0; 0); 0; (0; 0)], (0; (0; 0); 0),
[0; (0; 0)], (0)g in QU(E; q; k; �) is �xed under g�1(b) and that the same apart-

ment given in QU(E 0; q0; k0; �0) is �xed by g�3(b).

By construction the automorphisms g�1(b) and g�3(b) are representations of

the action of hb on the whole building. If the Moufang foundation is inte-

grable this implies that the actions of g�1(b) on M�((0))(QU(W; q; k; �)) and
of g�3(b) on M�((0))(QU(V

0; q0; k0; �0)) should co��ncide after identi�cation via

�2. In other words :

g�1(b)([0; (0; �)]) = ��12 g�3(b)�2([0; (0; �)])); 8� 2 Tr(�):

Using formula (4.9) this gives :

g�1(b)([0; (0; �)]) = ��12 g�3(b)([0; (0; �
�2)]); 8� 2 Tr(�): (4.11)

We calculate the action of g�3(b) on QU(E
0; q0; k0; �0). As hb is the global

action of s(b)s(1) on the whole building and �3 de�nes a Moufang set iso-

morphism we have that g�3(b) = s�3(b)s�3(b) where a matrix representation of

s�3(b) with respect to the base fe�2, e�1, e1, e2g is given by :0
BB@

0 b�3 0 0

�b�3�1 0 0 0

0 0 0 b�3�
0

0 0 �b�3�
0�1

1
CCA :
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Thus g�3(b) has matrix representation :

0
BB@

b�3 0 0 0

0 b�3�1 0 0

0 0 b�3�
0

0

0 0 0 b�3�
0�1

1
CCA :

And thus for [0; (0; �0)] 2 M�([(0)]) QU(V
0; q0; k0; �0) we have :

g�3(b)([0; (0; �
0)]) = [0; (0; b�3�0b�3�

0

)]:

Remains to calculate the action of g�1(b) and translate formula (4.9). By

Theorem 133 we know that g�1(b) is induced by a semi-linear transformation

' with associated �eld automorphism 
 such that :

g�1(b)hxi = h'(x)i; 8hxi 2 QU(W; q; k; �)

c(f(x; y))� = f('(x); '(y)); 8x; y 2 W

c(q(x))� = q('(x)); 8x 2 W

where c 2 k is a constant which satis�es

c���c�1 = ���; 8� 2 k:

This means that with respect to the ordered base fe�2, e�1, e1, e2g, g�1(b)

has matrix representation :0
BB@

�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

1
CCA

with �i 2 k satisfying :

��1�4 = �c

��2�3 = c

By construction we know that for ((0; 0); x) 2 M�[(0;0)](QU(V; q; k; �) :

g�1(b)(((0; 0); x)) = ((0; 0); (�b�1x�
�1
1 )�1); 8x 2 k:
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Two cases occur :

First case : �1 de�nes a �eld anti-isomorphism.

Then we have :

g�1(b)(((0; 0); x)) = ((0; 0); (�xb�1
�1
); 8x 2 k:

This means that g�1(b) de�nes a linear transformation with a matrix repre-

sentation of the form :0
BB@

z 0 0 0

0 zb�1 0 0

0 0 ((zb�1)�)�1c 0

0 0 0 �(z�1)�c

1
CCA

with z 2 Z(k) and c 2 k. As c satis�es c��c�1 = ��, 8� 2 k we �nd that c 2
Z(k). Consequently g�1(b) acts on the Moufang set M�((0)) (QU(W; q; k; �))
by :

g�1(b)([0; (0; �)]) = [0; (0;�zz�c�1�)]; 8[0; (0; �)] 2 M�((0))(QU(V; q; k; �)):

Using property (4.10) condition (4.11) thus becomes :

�zz�c�1� = b�3�
�1
2 �(b�3�

�1
2 )�; 8� 2 Tr(�):

As �3�
�1
2 de�nes a bijection from �k to k this yields :

��1���� 2 Z(k); 8� 2 k; 8� 2 Tr(�):

If we put � = 1 in this equation we get :

��� 2 Z(k); 8� 2 k:

But then we have also that (1 + �)(1 + �)� = 1 + ��� +(� + ��) 2 Z(k).

Therefore we �nd that Tr(�) � Z(k). Lemma 8.13 in [29] implies that k
is a generalized quaternion algebra and � its standard involution. By sym-

metric arguments one �nds that k0 is a generalized quaternion algebra with

standard involution �0. As �k is isomorphic to k and k0 it is also a generalized
quaternion algebra.

Second case : �1 is an induces an isomorphism from �k to k.
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By similar arguments as for the �rst case one deduces that g�1(b) has a ma-

trix representation with respect to the ordered base fe�2, e�1, e1, e2g of the
form : 0

BB@
zb�1

�1 0 0 0

0 z 0 0

0 0 (z�1)�c 0

0 0 0 �(z�1b�1)�c�

1
CCA ;

with z 2 Z(k), and c 2 Z(k) as c satis�es c��c�1 = ��. For [0; (0; �)]

2 M�((0))(QU(V; q; k; �)) we thus �nd :

g�1(b)([0; (0; �)]) = [0; (0;�zz�(c�1)�(b�1)�1�(b�1)�1�)]; 8� 2 Tr(�):

In this case condition (4.11) thus becomes :

�zz�(c�1)�b�1
�1�b�1

�1�
= b�3�

�1
2 �(b�3�

�1
2 )� ; 8� 2 Tr(�):

Thus we �nd for every b 2 �k a zb 2 Z(k) such that :

zbb
�1�1�b�1

�1�
= b�3�

�1
2 �(b�3�

�1
2 )� ; 8� 2 Tr(�); (4.12)

Inserting � = 1 in this equation gives

b�3�
�1
2 �b�1� = (b�1b�3�

�1
2 )�1zb

and (4.12) becomes :

� = b�1b�3�
�1
2 �(b�1b�3�

�1
2 ); 8b 2 �k:; (6)

Suppose that if k is a generalized quaternion algebra, � is not its standard

involution. By Lemma 47 we know that in this case Tr(�) generates k as a

ring. But then (6) yields :

(b�1)(b�1)�
�1
1 �3�

�1
2 2 Z(k); 8b 2 �k:

By assumption �1 de�nes an isomorphism from �k to k and ��11 �3 �
�1
2 an

(anti)-automorphism of k. This means that if we put Æ = ��11 �3 �
�1
2 then :

��Æ 2 Z(k); 8� 2 k:

In particular

(1 + �)(1 + �)Æ 2 Z(k)
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leads to (� + �Æ) 2 Z(k). By then every � 2 k is solution of a quadratic

polynomial P�(X) with co�eÆc��ents in Z(k), namely P�(X) = X2 �(�+�Æ)X
+��Æ. Lemma 51 implies that this is only possible if k is a generalized quater-

nion algebra.

In any case we thus �nd that k is a generalized quaternion algebra, hence

the same is valid for �k and k0. This completes the proof. 2
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Appendix A

Nederlandstalige samenvatting

A.1 Inleiding en situering

Gebouwen verschenen impliciet het eerst in 1959 toen J. Tits een meetkundige

interpretatie gaf aan een bepaalde veel bestudeerde algebra��sche groep (cfr.

[28]). In die periode was het woord gebouw echter nog niet oÆcieel

ge��ntroduceerd in de abstracte en algebra��sche meetkunde. Het zou een 15

tal jaar duren vooraleer gebouwentheorie door het standaard werk van J.

Tits [29] een feit werd. Dit werk heeft als voornaamste doel een volledige

classi�catie te geven van sferische gebouwen (gebouwen met eindige diame-

ter) en rang groter dan 3.

Tweeling gebouwen, het vakgebied van deze thesis, dateren van een hele

tijd later. Eind jaren 80 traden nieuwe algebra��sche structuren op de voor-

grond als gevolg van de ontwikkelingen in de theoretische natuurkunde. Dit

waren de zogenaamde Kac-Moody algebra's (cfr. [16]). Deze algebra's kun-

nen het best gezien worden als veralgemeningen van algebra��sche groepen.

In algebra��sche groepentheorie gaat men er namelijk vanuit dat de dimen-

sie van de vectorruimten waarin de groepen gede�ni�eerd worden eindig is.

Indien men deze veronderstelling laat vallen en oneindig dimensionale vec-

275
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torruimten toelaat verkrijgt men onder een bepaalde voorwaarde Kac-Moody

algebra's. Gezien J. Tits er destijds in geslaagd was een succesvolle theorie

te ontwikkelen die algebra��sche groepen in een meetkundig perspectief stelde,

was men ervan overtuigd dat een gelijkaardige theorie voor Kac-Moody al-

gebra's diende opgesteld te worden.

Met dit als doeleinde stelden M. Ronan en J. Tits in 1990 het begrip tweeling

gebouw voor. Gezien tweeling gebouwen een veralgemening zijn van sferische

gebouwen gaf J. Tits in de standaard referentie [32], een ruw plan van hoe een

classi�catie van tweeling gebouwen eruit zou moeten zien. Deze beschrijving

zette B. M�uhlherr er toe aan te beginnen werken aan een classi�catie van

2-sferische tweeling gebouwen (2-sferische tweeling gebouwen zijn tweeling

gebouwen met lokaal eindige diameter).

Tijdens het schrijven van zijn proefschrift was B. M�uhlherr onrechstreeks

in contact gekomen met technieken die nuttig zouden blijken voor een clas-

si�catie. Het eerste resultaat dat een oplossing gaf voor een probleem dat

cruciaal was om deze classi�catie te kunnen aanvatten, werd opgelost door B.

M�uhlherr en M. Ronan in [18]. Een ander belangrijke techniek, die volgens J.

Tits zou moeten gebruikt worden, was de techniek van Galois cohomologie.

B. M�uhlherr slaagde erin in [21] om deze techniek uit te breiden naar het veld

van tweeling gebouwen. Hierna bleek de theorie van B. M�uhlherr krachtig

genoeg ome de klassicatie van 2-sferische tweeling gebouwen te reduceren tot

een classi�catie van 3 types tweeling gebouwen : tweeling gebouwen van type
~A2, ~B2 end type 443.

Gezien gebouwen van type ~A2 reeds goed gekend zijn door o.a. het werk

op aÆene gebouwen van H. Van Maldeghem en K. Van Steen bleven enkel de

types ~B2 and 443 over als onopgelost. Het voornaamste doel van dit proef-

schrift was dan ook te werken aan deze beide types meetkunden. Naarmate

de theorie vorderde dienden een aantal verwante, vaak algebra��sch gerichte

vragen opgelost te worden. Zo was een classi�catie van klassieke en gemengde

Moufang verzamelingen noodzakelijk, een probleem dat nauw verwant leek

met Borel-Tits theorie (cfr. [2]) en de theorie van orthogonale, hermitische en

unitaire groepen en algebra��sche krommen (cfr. [6, 7]). In een aantal gevallen

leidde dit zelf tot een aan aantal karakterisatiestellingen (cfr. Stellingen 74,

101, 132).

Om de uiteindelijk classi�catie van ~B2- tweeling gebouwen te bekomen met
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bepaalde residue's, werd gekozen om tweeling gebouwen te zien als Moufang

gebouwen. (Moufang gebouwen zijn gebouwen waarvoor aan hoge symmetrie

eisen voldaan is.) Dit had als voordeel dat stellingen en de presentatie kon-

den worden vereenvoudigd. Gezien door het werk van B. M�uhlherr (cfr. [18])

en het tweede deel van dit proefschrift de 2-sferische Moufang gebouwen en

tweeling gebouwen bijna altijd equivalente begrippen zijn, legde dit geen ex-

tra beperkingen op.

Dit proefschrift werd verdeeld in vier delen (Chapters).

In het eerste deel worden een aantal de�nities en notaties gegeven.

Het tweede deel behandelt de oplossing van twee problemen betre�ende tweel-

ing gebouwen.

Het derde deel beschrijft een classi�catie van gemengde en klassieke Moufang

verzamelingen.

In vierde deel wordt een parti�ele classi�catie gegeven van tweeling gebouwen

van type ~B2. Tevens wordt hier een eerste stelling bewezen die het niet

bestaan van een aantal meetkunden van type 443 aantoont.

De�nities

We vermelden in deze paragraaf de voornaamste de�nities en notaties. Als

belangrijkste verwijzingen in deze context vermelden we [1], [20], [29],[32],

[25] en [37].

A.1.1 Coxeter matrices, Coxeter systemen en wortel-

systemen

De�nitie 1 Zij I een eindige verzameling. Een Coxeter matrix over I is

een symmetrische matrix M = (mij)i;j2I zodat mij 2 N [ f1g, mkl � 2,

8k; l 2 I zodat k 6= l en mii = 1, 8i 2 I .

De�nitie 2 Een Coxeter matrixM = (mij)i;j2I noemt men 2-sferisch indien

mij <1, 8i; j 2 I . Indien M = (mij)i;j2I een Coxeter matrix is noteert met

E(M) = fi; jg � I waarvoor mij � 3.

De�nitie 3 Zij M = (mij)i;j een Coxeter matrix over een eindige verzamel-

ing I . Een Coxeter systeem van type M is een paar (W; (si)i2I), waarbij W

een groep is met presentatie W = hsij(sisj)
mij i:
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Stel dat (W; (si)i2I) een Coxeter systeem is. Voor x 2 W de�ni�eren we l(x)
dan als minfmjx = si(1)si(2) : : : si(m) ji(j) 2 I; 1 � j � mg. Bovendien

noemt men elk element van de vorm wsiw
�1 een spiegeling. Elke spiegeling

induceert een permutatie van W als men stelt :

wsiw
�1(x) = wsiw

�1x; 8x 2 W:

Men kan nu makkelijk bewijzen dat elke spiegeling wsiw
�1, een partitie van

W in twee helften invariant laat. Deze helften noemt men wortels in W
(behorend bij wsiw

�1). Deze wortels noteert men met �wsiw�1 en ��wsiw�1 ,

waarbij 1 2 �wsiw�1. Indien � en �� twee wortels zijn noteert men

@� = ffx; ygjx; y 2 W en s�(x) = yg:

Als fx; yg 2 @�, dan noemt men fx; yg ook een paneel dat ligt op @�.

De�nitie 4 Zij M = (mij)i;j een Coxeter matrix over I en (W; (si)i2I) een
Coxeter systeem van typeM . Dan noemt men de verzameling van alle wortels

in W een wortelsysteem van type M .

De�nitie 5 Zij M = (mij)i;j2I een Coxeter matrix over I en (W; (si)i2I een
Coxeter systeem van typeM met wortelsysteem �. Twee wortels � en � van

W worden prenilpotent genoemd indien � \ � 6= ; en �� \ � � 6= ;.
Indien � en � prenilpotent zijn noteert men :

[�; �] = f
 2 �j
 � � \ � and � 
 � �� \ ��g:

en :

(�; �) = [�; �] n f�; �g:

A.1.2 Gebouwen en Moufang gebouwen

De�nitie 6 Zij M = (mij)i;j een Coxeter matrix over een verzameling I ,
(W; (si)i2I) een Coxeter systeem van type M . Een gebouw (van type M) is
een viertal (�;W; (si)i2I ; s) waarbij � een verzameling is, wiens elementen

kamers worden genoemd, en d een functie is van � � � naar W zodat :

Bu1 d(x; y) = 1, als en slechts als x = y, 8x; y 2 �

Bu2 Stel dat voor x, y 2 �, d(x; y) = w en z een kamer zodat d(y; z) = s
met s 2 S dan geldt d(x; z) 2 fw;wsg. Als in het bijzonder l(ws)

> l(w), dan vinden we d(x; z) = ws.
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Bu3 Stel x, y 2 � met d(x; y) = w. Dan bestaat er voor elke si minstens
�e�en kamer z 2 � zodat d(x; z) = ws

De�nitie 7 Als (�;W; (si)i2I ; d) een gebouw is en c 2 � dan noemt men een

verzameling Rsi(c) fx 2 �jd(x; c) 2 f1; sig een si-paneel of ook wel kortweg

een paneel in �.

Het eenvoudigste voorbeeld van een gebouw van type M = (mij)i;j2I
wordt gegeven door het viertal (W;W; (si)s2I ; dW ) waarbij (W; (si)i2I) een

Coxeter systeem is van type I en dW wordt gegeven door :

dW (x; y) = x�1y; 8x; y 2 W:

Noteer dit gebouw als �W .

Als (�;W; (si)i2I ; d) een gebouw is van type M , dan kan men bewijzen dat

er deelverzamelingen � in � zijn die als gebouw isomorf zijn met �W . Zulke

verzameling noemt met een appartement van (�). Aangezien elk appart-

ment � isomorf is met �W kan men tevens spreken over spiegelingen, wortel,

wortelsysteem prenilpotente wortels in �.

De�nitie 8 Zij M = (mij)i;j2I een Coxeter matrix over I , (W; (si)i2) een
Coxeter systeem van type M en (�;W; (si)i2; d) een gebouw van type M .

Stel dat �0 een vast appartement in � is. Noteer all wortels in �0 door

�0. Dan noemen we (�;W; (si)i2I ; d) een Moufang gebouw als er een familie

(U�)�2�0
automor�sme groepen van (�;W; (si)i2I ; d) bestaan (wortelgroepen

genoemd) zodat :

Mo1 Elk element u� 2 U� �xeert alle kamers van �. Stel dat � een paneel

is gelegen op @�, en c een kamer van � die in � gelegen is. Dan werkt

U� regulier op alle kamers van � n fcg.

Mo2 Als f�, �g een paar prenilpotente wortels is, geldt :

[U�; U�] � U(�;�)

waarbij U(�;�) de groep is voortgebracht door U
 met 
 2 (�; �).

Mo3 Voor elk element u� 2 U� nf1g bestaat er een element m(u�) 2 U��
u� U�� waarvoor geldt m(u�) (�0) �0.

Mo4 Stel voor u� 2 U�, n = m(u�) dan geldt voor elke wortel � 2 �0

nU�n
�1 = Un(�):
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A.1.3 Tweeling gebouwen

De�nitie 9 Zij M = (mij)i;j2I een Coxeter matrix over I , en (W; (si)i2I
een Coxeter systeem van type M . Een tweeling gebouw (van type M) is

een paar gebouwen (�+;W; (si)i2I ; d+), (��;W; (si)i2I , d�) voorzien van een

complementaire aftandsfunctie d�, gaande van �+ t�� [ �� t�+ naar W

zodat (� 2 f�1; 1g, x 2 ��, y 2 ��� en d
�(x; y) = w) :

Tw1 d�(y; x) = w�1.

Tw2 Als z een kamer is in ��� met d��(y; z) = si em l(wsi) < l(w) dan
geldt dat d�(x; z) = wsi.

Tw3 Voor elke si 2 S bestaat er ten minste �e�en kamer z 2 ��� zodanig dat

d�(x; z) = wsi.

A.1.4 Moufang verzamelingen

Moufang verzamelingen werden het eerst formeel ge��ntroduceerd in [32]. Een

aantal gekende Moufang verzamelingen werden reeds voorheen bestudeerd

onder een andere naam en met andere notatie. Ze kunnen het best gezien

worden als de kleinst mogelijke tweeling gebouwen. Bovendien is elk Moufang

gebouw samengesteld uit een groot aantal Moufang verzamelingen.

De�nitie 10 EenMoufang verzameling is een verzamelingX met ten minste

3 elementen, en een familie groepen (Ux)x2X (wortelgroepen genaamd) zodat :

MoS1 Elke groep Ux werkt regulier op X nfxg.

MoS2 Elke groep Ux stabiliseert de verzameling groepen fUyjy 2 Xg door

conjungatie

De�nitie 11 Een isomor�sme tussen twee Moufang verzamelingen

(X; (Ux)x2X) en (Y; (Uy)y2Y ) is een bijectie � van X naar Y zodanig dat voor

elke x 2 X en ux 2 Ux geldt dat :

� Æ ux Æ �
�1 2 U�(x)
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A.2 Algemene resultaten

A.2.1 Tweeling gebouwen en Moufang gebouwen.

Door het werk van B. M�uhlherr en M. Ronan (cfr. [18]) was reeds gekend dat

onder bepaalde lokale voorwaarden elk tweeling gebouw kan gezien worden

als een Moufang gebouw. In het artikel [32] haalt J. Tits aan dat men tevens

het omgekeerde kan bewijzen, en geeft hij een aantal hints. Hij vermeldt

er echter bij dat het geen triviaal resultaat is dat enig werk vereist. Dit

probleem was dan ook een uitdaging om me vertrouwd te maken met de

theorie van tweeling gebouwen. De stelling luidt als volgt :

Stelling 12 (Theorem 74) Zij (�;W; (si)i2I ; d) een Moufang gebouw van

type M dan kan (�;W; (si)i2I ; d) gezien worden als de helft van een tweeling
gebouw, i.e. er bestaat een gebouw (��;W; (si)i2I ; d�) en een complementaire
afstandsfunctie d� zodat ((�;W; (si)i2; d), (��;W; (si)i2; d�),d

�) een tweeling

gebouw is.

A.2.2 Lokale karakterisatie van tweeling gebouwen

De volgende stelling is het resultaat van het onderzoek verricht naar abstracte

voorstellingen van tweeling gebouwen. Dit resultaat werd tevens onafhanke-

lijk gevonden door P. Abramenko en H. Van Maldeghem.

(Doorheen deze paragraaf stelt � telkens een element uit de verzameling

f�1; 1g voor.)
De volgende de�nitie kan tevens teruggevonden worden in [19].

De�nitie 13 Een 1-koppeling tussen een paar gebouwen (�+;W; (si)i2I ; d+)
en (��;W; (si)i2I ; d�) van hetzelfde type is een symmetrische binaire relatie

O � �+ � �� t �� ��+ zodat als voor c� 2 �� en c�� 2 ���, geldt

dat (c�; c��) 2 O, dan bevat elk paneel van �� waarop c� ligt juist �e�en

kamer z zodanig dat (z; c��) 62 O. Als O een 1-koppeling de�nieert tussen

(�+;W; (si)i2I ; d+) en (��;W; (si)i2I ; d�) en c� 2 ��, dan noteren we :

co� = fy 2 ���j(c�; y) 2 Og:

Stel dat ((�+;W; (si)i2I ; d+), (��;W; (si)i2I ; d�) ,d
�) een tweeling gebouw

is. Dan de�nieert de relatie Opp met :

(x; y) 2 Opp, d�(x; y) = 1
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een 1-koppeling tussen (�+;W; (si)i2I ; d+) en (��;W; (si)i2I ; d�). Men noemt

deze 1-koppeling ook de oppositie relatie tussen �+ en �� bepaald door d�.
Men kan aantonen dat tweeling gebouwen tevens kunnen gede�nieerd worden

in termen van de oppositie relatie. Met andere woorden, het is voldoende de

relatie Opp te kennen teneinde d� te reconstrueren.

De�nitie 14 Stel datO een 1-koppeling de�nieert tussen (�+;W; (si)i2I ; d+)
en (��,W ,(si)i2I , d�). Dan zeggen we dat O voldoet aan de voorwaarde Ptw
voor een kamer c 2 � als :
8 y 2 ���, 8 cy, �cy 2 c

o zodanig dat l(d��(cy; y)) = l(d��(�cy; y))
= minfl(d��(z; y))jz 2 cog, 8 yc 2 yo met l(d�(c; yc)) = minfl(d�(v; c))
jv 2 cog geldt :

d��(cy; y) = d��(�cy; y) = d�(c; yc):

Het belang van voorwaarde Ptw en tweeling gebouwen wordt gegeven in

volgende stelling :

Stelling 15 (Theorem 101) Stel dat O een 1-koppeling de�nieert tussen twee

dikke gebouwen (�+;W; (si)i2I ; d+) en (��;W; (si)i2I ; d�). Dan de�nieert O
een oppositie relatie tussen �+ en �� (i.e. er bestaat een tweeling gebouw
((�+;W; (si)i2I ; d+), (��;W; (si)i2I ; d�),d

� zodat Opp = O) als en slechts

als voorwaarde Ptw voldaan is voor ten minste �e�en kamer uit �+ of ��.

A.3 Resultaten over Moufang verzamelingen

Vooraleer het resultaat neer te schrijven, geven we waar mogelijk een korte

beschrijving van de Moufang sets welke in dit proefschrift beschouwd werden.

Als referentie geven we in dit kader Hoofdstuk 8 op van [29].

De�nitie 16 Stel k een lichaam met involutie �, � 2 k en V een rechtse

k-vectorruimte. Een (�; �)-hermitische vorm is een afbeelding f van V � V

naar k zodat :

f(x�; y�) = ��f(x; y)�; 8�; � 2 k; x; y 2 V

f(x+ y; z) = f(x; y) + f(x; z); 8x; y; z 2 V

f(x; y) = f(y; x)��; 8x; y 2 V

Voorts noteert men k(�;�) k=k�;� waarbij k�;� = ft� t��jt 2 kg.
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De�nitie 17 Stel k een lichaam met involutie �, � 2 k en V een rechtse

k-vectorruimte. Een functie q gaande van V naar k(�;�) noemt men een (�; �)-
kwadratisch vorm als q(x�) = ��q(x)� + k�;�, 8 � 2 k, x 2 V en indien er

een (�; �)-hermitische vorm f op V � V bestaan zodanig dat :

q(x+ y) = q(x) + q(y) + (f(x; y) + k�;�:

Indien q een (�; �)-kwadratische vorm is op een rechte k-vectorruimte V , kan

met bewijzen dat q�1(0) unie is van deel vectorruimten van V , welke totaal
isotrope deelruimten van V worden genoemd. Door het gebruik van Zorns

lemma volgt bovendien dat alle maximale deelruimten in q�1(0) dezelfde di-

mensie hebben, welke de Witt index van q wordt genoemd.

Indien q een (�; �)-kwadratische vorm is van Witt index 2 vormen totale

isotrope deelruimten een meetkundige structuur welke bekend staat als

een veralgemeende vierhoek, genoteerd als Q(V; q; k; �). We zullen hier

niet nader ingaan op de theorie van veralgemeende vierhoeken. Voor

meer informatie verwijzen we naar het standaard werk [37].

Indien q een (�; �)-kwadratische vorm is van Witt index 1, vormen

de totale isotrope deelruimten een Moufang verzameling, genoteerd

M(V; q; k; �).

De Moufang verzamelingen van de vorm M(V; q; k; �) vormen een grote

klasse van diegene die in dit werk bestudeerd worden. Ze worden in 3 klassen

onderverdeeld

Orthogonale Moufang verzamelingen,
Moufang verzamelingen van de vorm M(V; q; k; �) met � = 1.

Hermitische Moufang verzamelingen,
Moufang verzamelingen van de vorm M(V; q; k; �) met Z(k) = k en �
6= 1.

Unitaire Moufang verzamelingen Moufang verzamelingen van de vorm

M(V; q; k; �) met Z(k) 6= k.
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Naast Moufang verzamelingen geassocieerd met (�; �)-kwadratische vormen

vermelden we nog de twee andere klassen welke in classi�catie opgenomen

werden.

Projective Moufang verzamelingen,
genoteerd als P(k). Deze Moufang verzamelingen vertalen in feite alle

bepalende eigenschappen van de projective rechte over een lichaam k.

Gemengde Moufang verzamelingen,
genoteerd als P(k; k0; l; l0), waarbij k en k0 twee velden in karakteristiek

2 voorstellen met deelverzamelingen l en l0 die aan bepaalde voorwaar-

den voldoen.

De�nitie 18 Een Moufang verzameling (X; (Ux)x2X) noemt men klassiek
indien (X; (Ux)x2X) isomorf is met een projectieve Moufang verzameling of

een Moufang verzameling van de vorm M(V; q; k; �)

In Hoofdstuk 3 wordt in het kader van de classi�catie van ~B2- Moufang

gebouwen, een classi�catie gegeven van klassieke en gemengde Moufang verza-

melingen. Als belangrijk resultaat dat volgt uit deze classi�catie geven we :

Stelling 19 (cfr. Theorems 124, 125,126,127, 128, 129,130 en 131) Indien
de dimensie van V en V 0 groter is dan 5, en indien de wortelgroepen van beide
Moufang verzamelingen niet commutatief zijn indien Z(k) 6= k, dan bestaat

er voor elk isomor�sme � van M(V; q; k; �) naar M(V 0; q0; k0; �0) een semi-
lineare afbeelding ' met � een isomor�sme van k naar k0 en een constante
c0 2 k0 zodat :

�(hxi) = h'(x)i;8hxi 2 M(V; q; k; �)

(f(x; y))� = c0f 0('(x); '(y)); 8x; y 2 V

(q(x))� = c0q0('(x)); 8x 2 V

Deze stelling vormt een uitbreiding van Borel-Tits theorie in het geval van

een algebra��sche groep van rang 1.

Als gevolg van de classi�catie en gemengde Moufang verzamelingen kon een

lokale karakterisatiestelling voor klassieke Moufang verzamelingen opgesteld

worden.
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Stelling 20 (cfr. Theorem 132) Een Moufang verzameling (X; (Ux)x2X) is
van de vorm M(V; q; k; �), met dim(V ) � 5 en als k een veralgemeende
quaternionen algebra is, is � niet de standaard involutie, als en slechts als

er twee punten y1, y2 2 X en een familie (Yi)i2I Moufang deelverzamelingen
van (X; (Ux)x2X) zodat :

(i) Elke Yi is isomorf onder 'i met een Moufang setM(Vi; qi; ki; �i), waar-
bij dim(Vi) � 4 als Z(ki) = ki en �i 6= 1 en �i niet gelijk is aan de

standaard involutie als ki een veralgemeende quaternionen algebra is.
Alle Yi zijn van hetzelfde type.

(ii) Elke Moufang deelverzameling Yi bevat y1 en y2 en elk drietal punten
x1, x2 en x3 is bevat in een Yj.

(iii) Als de Yi orthogonale Moufang verzamelingen zijn, geldt :

voor elk paar i, j 2 I is de Moufang verzameling Yi \ Yj niet kommu-
tatief en :

Z(FixTYify1; y2g) = Z(FixTYjfy1; y2g):

Als char(ki) = 2, is elke Moufang verzameling '�1i (Yj) van de vorm
M(Vij ; qij ; kij ; �j) waarbij Vij een deelruimte van Vj voorstelt en qij
= qijVij .

(iv) Als de Yi niet orthogonaal zijn, geldt :

Z(StabUy1(Yi)) = Z(StabUy1(Yj)); 8i; j 2 I:

(v) Als de Yi hermitische Moufang verzamelingen zijn, bestaat er een Y0
behorende tot de familie (Yi)i2I , zodat voor elk paar i, j 2 I, Y0 \Yi
\Yj een Moufang verzameling is met niet-kommutatieve wortelgroepen.

A.4 classi�catie van ~B2- Moufang gebouwen

en het niet bestaan van Moufang gebouwen

van type 443

Stel dat (�;W; (si)i2I ; d) een Moufang gebouw is van typeM = (mij)i;j2I . Zij

Ri(c) het si-paneel in � dat c bevat. Dan volgt uit de standaard theorie dat

de Moufang structuur op � een structuur induceert zodat men Ri(c) kan zien
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als een Moufang verzameling. Noteer dergelijke Moufang verzameling met

MRi(c). We kunnen dan volgend begrip invoeren, waarover meer informatie

kan teruggevonden worden in [32], [20] en [21].

De�nitie 21 ZijM = (mij)i;j2I een Coxeter matrix over een verzameling I .
Een Moufang fundering (van type M) is een drietal ((�ij)i;j2E(M),

(cij)fi;jg2E(M) ,(�ijk)fi;jg;fj;kg2E(M)) met :

MoFo1 Voor elk paar fi; jg 2 E(M) is �ij een Moufang gebouw van type

(mk;l)k;l2fi;jg.

MoFo2 Voor elk paar fi; jg 2 E(M), stelt cij een kamer van �ij voor en cij
= cji, 8i; j 2 I

MoFo3 Voor elk koppel fi; jg fj; kg 2 E(M), de�nieert �ijk een isomor�sme

tussen MRj(cij) en MRj(cjk).

Men kan aantonen dat indien (�;W; (si)i; d) een Moufang gebouw is van

type M , hiermee een isomor�e klasse van Moufang funderingen van type M
correspondeert die we noteren als MoFo(�). Moufang funderingen bleken

door [32], [20] en [21] essentieel teneinde een classi�catie van Moufang gebouwen

te kunnen opstellen. Uit [18] volgde namelijk dat een Moufang gebouw

volledig bepaald wordt door MoFo(�). Er volgde namelijk uit dat in de

meeste gevallen twee Moufang gebouwen � en �0 isomorf zijn als en slechts

als MoFo(�) =MoFo(�0). Een classi�catie van Moufang gebouwen diende

dus te beginnen met een classi�catie van Moufang funderingen.

De�nitie 22 Een Moufang fundering F = ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

(�ijk)fi;jg;fj;kg2E(M)) van typeM noemt men integreerbaar indien F 2MoFo(�)

waarbij � een Moufang gebouw van type M voorstelt.

De�nitie 23 Stel M ~B2
de Coxeter matrix over f1; 2; 3g met m12 = m23 = 4

en m13 = 2 en M443 de Coxeter matrix over f1; 2; 3g met m12 = m23 = 4 en

m13 = 3.

De�nitie 24 Idien voor een Moufang fundering F = ((�ij)fi;jg2E(M),

(cij)fi;jg2E(M), (�ijk)fi;jg;fj;kg2E(M)), van typeM ~B2
,MR2(c12) enMR2(c23) beide

puntenrijen zijn, noemt men F van type PP,MR2(c12) enMR2(c23) beide lijnen

penselen, noemt met F van type LL, MR2(c12) een puntenrij enMR2(c23) een

lijnenpenseel is, noemt met F van type PL, MR2(c12) een lijnenpenseel en

MR2(c23) een puntenrij is, noemt men F van type LP .
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A.4.1 Niet integreerbare Moufang funderingen

Volgende twee stellingen zijn cruciaal voor een classi�catie van Moufang

gebouwen van types M ~B2
en M443.

Stelling 25 (cfr. Theorem 151) Zij F = ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

(�ijk)fi;jg;fj;kg2E(M)) een Moufang fundering van type M ~B2
.

Stel �12 = Q(E; q; k; �) en �23 = Q(E 0; q0; k0; �0), met Z(k) 6= k en Z(k0) 6=
k0. Als F integreerbaar is, geldt :

(i) F is van type PP en er geldt:

(i:a) �123 induceert een anti-isomor�sme van k naar k0

(i:b) k en k0 zijn veralgemeende quaternionen algebra's met standaard
involutie � en �0 en �123 de�nieert een isomor�sme van k naar k0

(ii) F is van type LL, k en k0 zijn veralgemeende quaternionen algebra's
en dim(E) = dim(E 0) = 4.

Stelling 26 (cfr. Theorem 158) Zij F = ((�ij)fi;jg2E(M), (cij)fi;jg2E(M),

(�ijk)fi;jg;fj;kg2E(M)) een Moufang fundering van type M443 met m12 = m23

= 4 en m13 = 3. Stel dat �12 = Q(E; q; k; �), �23 = Q(E 0; q0; k0; �0), met
Z(k) 6= k, Z(k0) 6= k0 en Rad(f) = Rad(f 0) = 0 (waarbij f de vorm is

geassocieerd aan q en f 0 de vorm geassocieerd met q0) als k of k0 een veral-
gemeende quaternionen algebra's is met standaard involutie � of �0. Als F
integreerbaar is, treedt �e�en van volgende gevallen op :

(i) �123 induceert een anti-isomor�sme tussen k en k0, k is een veralge-

meende quaternionen algebra met standaard involutie �, k0 is een ver-
algemeende quaternionen algebra met standaard involutie �0

(ii) �123 induceert een isomor�sme tussen k en k0, k is een veralgemeende
quaternionen algebra en k0 is een veralgemeende quaternionen algebra

A.4.2 Integreerbare Moufang funderingen van typeM ~B2

Gebruik makend van voorgaande stellingen kunnen de problematische gevallen

voor de classi�catie van ~B2- gebouwen volledig ge�elimineerd worden. Rest

ons dus nog over een lijst te geven van de integreerbare Moufang funderingen

van type ~B2. Bij het opstellen van deze lijst werd veelvuldig gebruik gemaakt

van de resultaten van [23]. Gezien de lengte en het technisch karakter van
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de lijst verwijzen we voor een expliciete opsomming naar paragraaf 4.4. We

vermelden echter wel de voornaamste stellingen.

Stelling 27 (cfr. Theorem 153) Elke Moufang fundering F = ((Q(E; q; k; �),
Q(E 0; q0; k0; �0), c12, c23, �123)) van type PP met Z(k) 6= k zodanig dat �123
een anti-isomor�sme de�nieert van k naar k0 is integreerbaar.

Stelling 28 (cfr. Theorem 155) Stel k en k0 beide velden. Dan is elke
Moufang fundering F = ((Q(E; q; k; �), Q(E 0; q0; k0; �0), c12, c23, �123)) van
type LL, zodat Ml(Q(E; q; k; �)) niet commutatief is, integreerbaar.
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