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Chapter 1 
 

Introduction 
 
 
 
Four percent of elementary school children in the Dutch-speaking part 
of Belgium have mathematics learning disabilities (e.g., Desoete, 
Roeyers, & Buysse, 2000; Ghesquière, Ruijssenaars, Grietens, & 
Luycks, 1996). Similar prevalence rates have been found in other 
countries (e.g., Shalev, Manor, Auerbach, & Gross-Tsur, 1998). The 
number of students classified as having learning disabilities has 
furthermore increased substantially over the last 20 years (Swanson, 
2000). The current theories and models of learning are somewhat 
inadequate in dealing with children with mathematics learning 
disabilities, since many difficulties persist into the college years and 
many of these children continue to function below  the mathematics 
level of a 13-year-old child, even as adults (Cawley & Miller, 1989; 
Miller & Mercer, 1997). There is nowadays a certain consensus that 
cognitive and metacognitive variables have an important effect on 
students’ mathematics achievement. Unfortunately, despite all the 
emphasis on cognition and metacognition, one factor that makes this 
area so complicated is the use of different concepts for the same 
phenomena, and vice versa. In addition, it is confusing that many 
variables overlap conceptually or in the way they are operationalized, 
making studies difficult to compare (Vermeer, 1997). In this chapter our 
conceptual framework is presented and the variables within our studies 
as well as the research questions are outlined.  

 

 

1.1. Object of this study and research questions 

 
In this thesis we investigate the relationship between mathematical problem solving and 

off-line metacognition in average intelligent children of the third grade with and without 

mathematics learning disabilities.  The reasons for setting up this research were twofold. 

Firstly, this research aimed at gaining better insights into the different metacognitive aspects of 

mathematical problem solving in children with and without mathematics learning disabilities. 

Secondly, the research was set up to further explore the influence of metacognitive instruction 

on the learning of mathematics in lower elementary school children. The chapters are based on 

a series of articles which have been published or are under editorial review [see also 1.4.]. More 

specifically this research had four purposes. 

Our first purpose was to clarify some of the issues on the conceptualization of 

metacognition in lower elementary school children. Moreover, we investigated whether some 
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of the most commonly used metacognitive parameters can be combined into supervariables on 

which young children differ. In addition we examined whether the relationship between 

metacognition and mathematical problem solving can be found in elementary school children. 

Furthermore, we wanted to study whether inadequate metacognitive skills were core 

characteristics of young children with mathematics learning disabilities. We hypothesized less 

developed metacognition in young children with specific mathematics learning disabilities [see 

chapter 2].  

Our second purpose was to clarify some of the issues on the assessment of 

metacognition in young children. Moreover, we investigated the different methods to assess 

metacognition and examined the problems emerging in the assessment through observation, 

questionnaires and (semi-) structured interviews. In addition, EPA2000 (De Clercq, Desoete, & 

Roeyers, 2000) is presented, to be used as an objective indicator and dynamic assessment tool, 

providing rich information about the cognitive and off-line metacognitive skills involved in 

mathematical problem solving, enabling teachers or therapists to tailor a relevant instructional 

program [see chapter 3]. 

A third purpose was to show the relationship between mathematics, off-line 

metacognition and intelligence, in young children. We wanted to investigate Swanson’s 

‘independency model’ (Swanson, 1990) in average intelligent children in grade 3. Furthermore, 

we wanted to investigate the ‘maturational lag hypothesis’ or to test the hypothesis that children 

with mathematics learning disabilities primarily show immature (and retarded but not deficient) 

off-line metacognitive skills, comparable with mathematics average-performing younger 

children.  Congruently with this hypothesis we could expect the same prediction and evaluation 

skills in children with specific mathematics learning disabilities, combined learning disabilities 

and in younger children matched at mathematics performance level. Furthermore, we were 

interested in answering a critical question about metacognition ‘Is it general or domain-

specific?’. We hypothesized domain-specific metacognitive problems and low off-line 

metacognitive skills in children with specific mathematics learning disabilities and in children 

with combined mathematics and reading disabilities, but no such problems in children with 

specific reading disabilities solving mathematics tasks [see chapter 4]. 

A fourth purpose was to investigate the modifiability of off-line metacognitive skills 

of young children and the impact on mathematical problem solving. Thus, the aim of the study 

was to investigate whether short training on prediction enhanced the mathematical problem 

solving skills of young children. In addition, we wanted to evaluate the efficacy of different 

instruction variants on mathematical problem solving in young children [see chapter 5].  
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1.2. Conceptual framework 1 

 
In the last decade, substantial progress has been made in characterizing cognitive and 

metacognitive skills important to success in mathematical problem solving (Boekaerts, 1999; 

Donlan, 1998; Geary, 1993; Hacker, Dunlosky, & Graesser, 1998; Lucangeli & Cornoldi, 1997; 

Montague, 1992; Simons, 1996; Verschaffel, 1999; Wong 1996). Based on these researchers, 

our own conceptual model on mathematical problem solving was developed (see Figure 1). To 

provide background, we begin with a description of this framework, which considers both 

cognitive and metacognitive factors. Since metacognition supervises cognition, we begin with a 

description of the cognitive skills involved in mathematical problem solving in elementary 

school children.  

 

Figure 1 Mathematical problem solving: a conceptual model 
 

COGNITION 
Numeral comprehension & production   
Operation symbol comprehension & production  
Number system knowledge  
Procedural calculation                                           
Language comprehension   
Context comprehension                                           
Mental visualization                          
Selecting relevant information                           
Number sense 

METACOGNITION  
Declarative Knowledge METACOGNITIVE  
Procedural Knowledge KNOWLEDGE 
Conditional Knowledge   
Prediction  METACOGNITIVE    
Planning     SKILLS 
Monitoring                     
Evaluation                      
Self-concept METACOGNITIVE  
Self-efficacy BELIEFS 
Motivation  
Attribution  
Conception of intelligence and learning   

 

                                                 
1 Based on Desoete, A., Roeyers, H., Buysse, A., & De Clercq, A. (2001). Assessment of 
metacognitive skills in young children with mathematics learning disabilities. In J. Carlson 
(Ed.), Potential Assessment and Cognitive Training: Actual Research and Perspectives in 
Theorybuilding and Methodology. JAI Press Inc/Elsevier, England, in press.  
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1.2.1.  Mathematical problem solving and cognition 2.  

 

Research from different theoretical approaches has provided information 

regarding cognitive skills that are important for young children to solve mathematical problems 

adequately (Donlan, 1998; Geary, 1993; McCloskey & Macaruso, 1995; Montague, 1998; 

Rourke & Conway, 1997; Thiery, 1999; Veenman, 1998; Verschaffel, 1999). 

Numeral comprehension and production skills (NR) are cognitive skills necessary for 

the reading, writing, and comprehension of one or more digit numbers (e.g., read '5' or '14'') 

(e.g., McCloskey & Macaruso, 1995; Van Borsel, 1998). In order to answer tasks such as 

'15+9=_’ several cognitive skills are required. First children need to have adequate numeral 

comprehension (NR skills). They need to know that '15' is not '51' or '510' and that '9' is not '6'. 

Problems with these cognitive skills lead to mistakes such as 15+9 = 18 (confusion between 5 

and 2 and 9 and 6).  

Operation symbol comprehension and production skills (S) are a second kind of 

cognitive skills enabling the reading, writing, and comprehension of operation symbols (such as 

+, -, x, =, <, >) (e.g., Veenman, 1998). Checking whether operation symbols are known can be 

done with symbol or S tasks. Problems with these cognitive skills lead to mistakes such as 15x9 

= 24.  

Number system comprehension and production skills (K) are the cognitive skills 

dealing with number system knowledge and the position of decades and units (e.g., Veenman, 

1998). K skills are required to be able to know that 15 is 'l more than 14' and 'l less then 16'.  

Children making K mistakes often have problems with the place of a number on a number line 

and do not know how many decades and units there are for example in 15.  

Procedural skills (P) are domain-specific cognitive skills to calculate and solve 

mathematics tasks in number problem formats (e.g., 15+9=_ or 81-5=_) (e.g., McCloskey & 

Macaruso, 1995; Noel, 2000; Veenman, 1998). Children have to know how to subtract to solve 

81-5 as 76 (and not as 84 or 34). Problems with these cognitive skills lead to mistakes such as 

15+9 = 105 or 114.  

Linguistic skills (L) are cognitive conceptual skills enabling children to understand 

and solve one-sentence word problems (e.g., 9 more than 15 is _). Language holds a central 

                                                 
2  Based on Desoete, A., & Roeyers, H. (2001). Het enigma van de rekenstoornis. Procedurele, 
talige en representatiedeficieten bij achtjarigen met rekenstoornissen. (The enigma of the 
mathematics learning disability. Procedural, linguistic and representation deficits in eight-year 
olds with mathematics learning disabilities.) Significant. Electronisch wetenschappelijk 
tijdschrift voor klinische research en reviews voor revalidatie en psychosociale hulpverlening, 
1, 18 blz.  
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place according to several authors (e.g., McCloskey & Macaruso, 1995; Campbell, 1998). 

Veenman (1998) stressed the importance of general conceptual knowledge in mathematics. Van 

Borsel (1998) even goes beyond that in defending mathematics learning disabilities as a special 

kind of language disorders. We would not go so far.  However, we can see that if children do 

not know what 'more' means, word problems such as  '9 more than 15 is?' cannot be solved 

correctly.  

Visualization skills  (V) are cognitive skills enabling an adequate representation (V-

skills) of the problem or task (e.g., Geary, 1993; Montague, 1998; Vermeer, 1997; Verschaffel, 

1999). A mental representation is required in most word problems, since a simple 'translation' 

of keywords in a problem (e.g., ‘more’) into calculation procedures (e.g., ‘addition’), without 

representation, leads to ‘blind calculation’ or ‘number crunching’. This superficial approach 

leads to errors, such as answering '24’ to tasks such as '15 is 9 more than _', ’27 is 3 less than _' 

and ‘48 is half of _’.   

Contextual skills (C) are cognitive skills enabling the solving of tasks in more than 

one-sentence word problems (e.g., Bert has 14 Digimon cards. Griet has 5 Digimon cards more 

than Bert. How many cards does Griet have ?_). We are aware that in literature ‘context’ is 

used by some authors for all kinds of realistic word problems (e.g., Verschaffel, 1999). In 

realistic mathematics education children are given the possibility, in small groups, of 

discovering adequate strategies themselves for a variety of tasks presented in meaningful and 

rich ‘contexts’ (e.g., Milo, 2001; Van Luit, 1999; Verschaffel, 1999). So children can solve 

5+38 by knowing the answer directly, reversing the problem (38+5), splitting it up according 

the N10 procedure (38+2+3), splitting it up according the 1010-procedure (30+0+8+5), saying 

aloud the addition using the number line (39 40 41 43) and so on. However, from the cognitive 

and therapeutic perspective we are convinced that it is meaningful to differentiate L tasks from 

C tasks, in order to get a complete profile of cognitive skills and to be able to tailor a 

therapeutic program to those skills.  For example, children capable of solving L and V tasks can 

gradually learn to deal with C tasks.  

Relevance skills (R) are cognitive skills enabling the solving of word problems with 

irrelevant information included in the assignment (e.g., Bert has 14 Pokémon cards and 3 

Digimon cards. Griet has 5 Pokémon cards more than Bert. How many Pokémon cards does 

Griet have ?_). Children can have difficulty ignoring and not using information (e.g., 3 

Digimon cards) in an assignment. They think all numbers have to be ‘used’ in order to solve a 

mathematical problem, and answer ‘22’. Indirect tasks containing irrelevant information 

included are further referred to as relevance or R tasks.  

Number sense skills (N) are the ninth cognitive skills enabling the solving of tasks 

such as 'the answer to 5 more than 14 is nearest to_. Choose between 5, 10, 15, 70 and 50'. 
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These skills to estimate, without giving the exact answer, are labeled  ‘number sense’. Tasks 

which depend on number sense, are referred to as N tasks (e.g.,  Sowder, 1992). 

Children with specific mathematics learning disabilities were found to differ from 

children with mathematics learning problems and from children without learning problems on 

V, P, and L tasks (Desoete & Roeyers et al., 2000). In addition, children with combined 

domain-specific and automatization disabilities in particular were found to have significantly 

lower scores on V, L, and P skills, whereas children with isolated domain-specific disabilities 

only had low P and V scores and children with mathematics automatization disabilities did not 

fail in any of those cognitive skills (Desoete & Roeyers, 2001). Furthermore, partial 

correlations were found between all cognitive skills except between L and P, L and S, L and 

R+N and V and R+N skills (Desoete et al., 2000, 2001). We illustrate our conceptual model 

with three examples.  

In order to answer tasks such as '14+9=_', several cognitive skills are required. 

Firstly, children need to have adequate numeral comprehension (NR skills). They need to know 

that '14' is not '41' or '410' and that '9' is not '6' or '0'. Number system knowledge (K skills) is 

required to be able to know that 14 is 'l more than 13' and 'l less then 15'. Furthermore, children 

need to understand the meaning of operation symbols (S skills), such as '+' and '='. Moreover, 

children also need to build an adequate representation (V skills) of the task in order to be able 

to execute adequate procedural calculations (P skills). So '14+9' is not '104' (1+9=10, repetition 

of 4) or '113' (1, 4+9=13) but '23'.  

In order to answer the assignment 'John has 14 apples. Peter has 9 apples more than 

John, how many apples does Peter have?' the same NR, K, V, and P skills are involved. In 

addition, children need to understand the meaning of 'more' (L skills) and they need to be able 

to deal with longer sentences and more contextual information (C skills) requiring more from 

their concentration and working memory.   

In order to answer the word problem 'John has 14 apples and 2 bananas. Peter has 9 

apples more than John.  Both children have at least? apples. Choose between 9, 14, 20 or 23', 

NR, K, L, C, V, and P skills are again required. Furthermore, children need to have sensitivity 

to important parts of the instruction (the number of bananas is not important) and they need to 

be able to select relevant information (R skills). In addition, children have to estimate the 

answer based upon their number sense (N skills). 

To summarize, nine cognitive skills (see Figure 1) were found important in 

mathematical problem solving. A linear progression (top-down in Figure 1) might be suspected 

in the cognitive skills involved in mathematical problem solving, from givens to goals. 

Nevertheless, in reality problem solving should be considered as cyclic and highly dependent 

on a well-organized and flexible accessible mathematical knowledge base (Verschaffel, 1999).  
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1.2.2.  Mathematical problem solving and metacognition 3. 

 

It is nowadays widely accepted that metacognition influences mathematical problem 

solving (Carr & Jessup, 1995; Lucangeli, Cornoldi, & Tellarini, 1998; Hacker et al., 1998; 

Verschaffel, 1999). However, in research on mathematics learning disabilities from a 

developmental (Goldman, Pellegrino, & Mertz, 1988; Groen & Parkman, 1972) or 

neuropsychological viewpoint (Geary, 1993; McCloskey & Macaruso, 1995; Rourke & 

Conway, 1997) metacognitive perspectives are seldom included. Furthermore, metacognition 

remains a fuzzy concept, without operational definitions and with even more problems 

concerning the assessment of the phenomena. In order to define the metacognitive skills 

included in mathematical problem solving (see Figure 1), we start with a brief historical review 

of the concepts needed.  

 

From metamemory to metacognition. 

 

Flavell (1976) originated the theoretical construct of metacognition, and defined the 

first aspect of metacognition as ‘…one’s knowledge concerning one’s own cognitive processes 

and products or anything related to them’ (Flavell, 1976, p. 232). Furthermore, he referred to a 

second aspect of metacognition, namely to the active monitoring and self-regulation of 

cognitive skills. Flavell subdivided the metacognitive knowledge component into knowledge of 

‘person variables’, ‘task variables’ and ‘strategy variables’. A person’s belief that he or she is 

fairly good at calculation but poor at solving mathematical word problems can be seen as a 

person variable. The task variables refer to the fact that ‘the individual learns something about 

how the nature of the information encountered affects and constrains how one should deal with 

it’ (Flavell, 1987, p. 22). Metacognitive strategy variables are, for example, designed ‘to get 

some idea of how much work lies ahead or to feel confident that the cognitive goal is reached’ 

(Flavell, 1987, p. 23; Flavell, Green, & Flavell, 1995). 

The first research line on metacognition, in the seventies, can be situated within 

developmental psychology research on memory (e.g., Flavell, 1976, 1979). From the early 

years of life, pieces of metamemory knowledge were found to develop within an overall theory 

of mind (Wellman, 1988). In particular, knowledge about memory strategies appears woven 

within a more complex metamemory system of ideas on memory functioning and aspects such 
as knowledge about memory, memory monitoring, memory effectiveness and emotional states 

                                                 
3 Based on Desoete et al. (2001).  
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related to memory (Lucangeli, Galderisi, & Cornoldi, 1995, p. 12). The development of 
metamemory was at first considered to be completed when children were 12 years old. Later 

findings contradicted this (Simons, 1996). During this period Flavell's construct of 

metacognition contained two components, with a knowledge and a skills component. 

The second generation of research on metacognition no longer exclusively focused on 

metamemory. More complex tasks such as reading (Ehrlich, 1991; Garner, 1987; Jacobs & 

Paris, 1987) and mathematics (Schoenfeld, 1985) were studied. The metacognitive research in 

reading peaked in the 1980s and has plateaued since (Wong, 1996).  Topics of interest in this 

generation of research included in particular metacognitive skills or executive control (Kluwe, 

1987) during problem solving. Furthermore, major intervention focused on metacognitive 

aspects of expert problem solving (e.g., Lester, Garofalo, & Kroll, 1989). 

In recent studies, metacognition has multiple and almost disjointed meanings, 

including a wide range of phenomena (Borkowski, 1992; Carr & Biddlecomb, 1998; 

Schoenfeld, 1992; Wong, 1996). Metacognition is, moreover, often used in an overinclusive 

way, including motivational and affective constructs (Boekaerts, 1999; Hamers & Overtoom, 

1997; Reder & Schunn, 1996). Simons (1996) combined the different metacognitive 

phenomena into three metacognitive components, namely metacognitive knowledge, executive 

control (or metacognitive skills) and metacognitive conceptions (or beliefs). The heyday of 

metacognitive research in reading appears to be over and metacognitive research nowadays 

focuses essentially on mathematical problem solving (Wong, 1996).  

 

Metacognition: A conceptual enigma starting with two and ending with three components. 

 

In order to clarify our mathematical problem solving model, we start with a definition 

of the metacognitive parameters included in Figure 1.  

‘Metacognitive knowledge’ has been described as knowledge and deeper 

understanding of one’s own cognitive skills and products (Flavell, 1976). Within metacognitive 

knowledge, Cross and Paris (1988), and Jacobs and Paris (1987) distinguished declarative 

knowledge, procedural knowledge, and conditional knowledge. The ‘metacognitive declarative 

knowledge’ was found to be ‘what is known in a propositional manner’ (Jacobs & Paris, 1987, 

p. 259) or assertions about the world and knowledge of the influencing factors (memory, 

attention and so on) of human thinking. ‘Procedural metacognitive knowledge’ can be 

described as ‘the awareness of processes of thinking (Jacobs & Paris, 1987, p. 259) or 

knowledge of the methods for achieving goals and knowledge of how skills work and how they 

are to be applied. ‘Conditional or strategic metacognitive knowledge’ is considered to be ‘the 
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awareness of the conditions that influence learning such as why strategies are effective, when 

they should be applied and when they are appropriate (Jacobs & Paris, 1987, p. 259).  

Metacognitive skills are the voluntary control people have of their own cognitive 

skills. The number of metacognitive skills being distinguished varies from three to ten (Audy, 

1990; Boekaerts & Simons, 1995; Lucangeli & Cornoldi, 1997; Montague, 1997; Pasquier, 

1990; Schoenfeld, 1992; Shute, 1996; Sternberg, 1985). Substantial data have been 

accumulated on four metacognitive skills: orientation, planning, monitoring, and evaluation 

(Lucangeli & Cornoldi, 1997; Lucangeli et al., 1998). ‘Orientation’ or prospective prediction 

skills guarantee working slowly when exercises are new or complex and working fast with easy 

or familiar tasks. One thinks about the learning objectives, proper learning characteristics, and 

the available time. Children estimate the difficulty of a task and use that prediction 

metacognitively to regulate engagement. ‘Planning’ is a deliberate activity that establishes 

subgoals for monitoring engagement with a task (Winne, 1997). Planning skills make children 

think in advance of how, when, and why to act in order to obtain their purpose through a 

sequence of subgoals leading to the main problem goal (Greeno & Riley, 1987). ‘Monitoring’ 

skills are the on-line (Rost, 1990) self-regulated control of used cognitive strategies through 

concurrent verbalizations during the actual performance, in order to identify problems and to 

modify plans (Brown, 1987; Tobias & Everson, 1996). The fourth metacognitive skill, being 

the ‘evaluation’ skill, can be defined as the retrospective (or off-line) verbalizations after the 

event has transpired (Brown, 1987), where children look at what strategies were used and 

whether or not they led to a desired result. Children reflect on the outcome and on the 

understanding of the problem and the appropriateness of the plan, the execution of the solution 

method as well as on the adequacy of the answer within the context of the problem (Garofalo & 

Lester, 1985; Vermeer, 1997). Since prediction and evaluation are measured before or after the 

solving of exercises, we labeled them ‘off-line metacognition’. Planning and monitoring can 

then be considered rather as on-line metacognitive skills. 

Simons (1996) described a third metacognitive component ('metacognitive beliefs') as 

the broader general ideas and theories (e.g., self-concept, self-efficacy, motivation, attribution, 

conceptions of intelligence and learning - see Figure 1) people have about their own (and other 

people’s) cognition. The self-concept influences learning variables and the evaluation of the 

ability to solve the problems, determining whether one is motivated to apply the effort and 

persistence required (McCombs, 1989). Self-efficacy, or students’ estimates of their chances of 

success after they were told what type of task they were going to do, was found to be a 

predictive measure of mathematics achievement (Vermeer, 1997). Motivation drives and directs 

behavior (Heyman & Dweck, 1996) and can be seen as the motor to apply metacognitive 

knowledge and to use metacognitive skills (Boekaerts, 1999). Furthermore, attributional beliefs 



Introduction 

10 

or perceived causes of successes and failures seem to be important and related to the pursued 

goals (Vermeer, 1997; Wong, 1996). Conceptions of intelligence and learning are also related 
to the goal orientation of children (Vermeer, 1997).  Lucangeli and her colleagues (1997, 1998) 

tended to dispute ‘metacognitive beliefs’ as a separate component of metacognition and 

classified them within metacognitive knowledge (as support or hindrance and misconceptions 

or as a truly individual mathematical epistemology). Others partly supported this view and 

defined these so-called (metacognitive) beliefs as non (meta)-cognitive but affective and 

conative (motivational or volitional) variables (e.g., Boekaerts, 1999; Garcia & Pintrich, 1994; 

Masui & De Corte, 1999; Mc Leod, 1992; Vermunt, 1996). 

 

1.2.3.  The enigma of learning disabilities  

 

Several authors use different concepts for ‘disablement’ in mathematical problem 

solving (mathematics learning difficulties, mathematics learning problem, mathematics 

learning disorder, mathematics learning disability, mathematics learning retardation, 

mathematics learning deficiency, dyscalculia) (e.g., APA, 1994; Dumont, 1994; Fletcher & 

Morris, 1986; Hellinckx & Ghesquiere, 1999; WHO, 1997; Rourke  & Conway, 1997; 

Swanson, 2000; Thiery, 1999; Van Hove & Roets, 2000; Van Luit, 1998) (see also Desoete & 

Roeyers, 2000) 4.  

The World Health Organization (WHO) provided a coding system for a wide range of 

information about health. The International Classification of Diseases (ICD-10) classified 

health conditions and their etiological framework (e.g., ‘disorders’, injuries, etc.) . 

‘Functioning’ (non-problematic aspects) and ‘disability’ (problematic aspects) associated with 

health conditions were classified in the International Classification of Functioning, Disability 

and Health (ICIDH-2). Within ICIDH-2 ‘disability’ serves as an umbrella term for 

‘impairments’ (i.e.  problems of function and structure of the human organism, e.g., reduction 

of psychological functions as mental representation), ‘activity limitations’ (i.e. difficulties in 

executing activities, e.g., not being able to take care of ones budget) and ‘participation’ 

restrictions (formally called ‘handicaps’, i.e. limited participation in community activities) (Van 

Hove & Roets, 2000; WHO, 1997). Moreover, according to the social model of disability (e.g., 

Goodley, 2000; Oliver, 1996; Van Hove & Roets, 2000), on which the ICIDH-2 was based, 

disability is not considered to be an attribute of an individual (as in the medical model) but 

rather a complex collection of conditions in which contextual (environmental and personal)  

factors interact with all the components of functioning and disability, in facilitating or 

                                                 
4 Based on Desoete, A.,  & Roeyers, H. (2001).  
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hindering impact of features of the physical, social, and attitudinal world. However interesting, 

this discussion goes beyond the scope of this thesis. Within this thesis we adopted the concept 

of ‘learning disability’ for the children in our studies. We did so, without being associated to 

any political, social or philosophical discourse, but because this is a frequently used term in the 

research literature of children with severe mathematics learning disablements  (e.g., Swanson, 

2000; Wong, 2000).  In addition, we did not choose the term ‘learning difficulties’, as for 

example used in the self advocacy movement (e.g., Goodley, 2000), to prevent confusion with 

children with a mental retardation [see also 1.3.]. Furthermore the discussion on whether 

children with learning disabilities have to be considered as children with a ‘learning 

retardation’ (or maturational lag hypothesis) or rather as children with a ‘learning deficiency’ is 

further elaborated upon in chapter 4 [see also 1.1.]. 

Within this thesis we use, in congruence with the definition in the DSM IV (APA, 

1994, p. 46-51), three criteria to state that children have mathematics learning disabilities 5. At 

first, as suggested by the 'discrepancy criterion', children have to perform significantly more 

poorly on mathematics than we would expect based on their general school results and/or 
intelligence. For instance a child obtains percentile 2 on the Kortrijkse Rekentest (KRT; 

Cracco, Baudonck, Debusschere, Dewulf, Samyn, & Vercaemst, 1995), with a TIQ of 110 and 

an age-adequate reading level. Moreover, the 'severeness criterion’ is used, based on the DSM 

IV (APA 1994, p. 46-51). So we only talk about a mathematics learning disability if children 

have difficulties with mathematics, measured by a valid test, where they perform minus two or 

more standard deviations (SD) below the norm. In addition, a third criterion is used, namely the 

'resistance criterion’ referring to the teacher’s judgments or the fact that the difficulties remain 

severe, even with the usual remediation at school (remedial teaching or school therapist). 

Teachers' judgments are used since, although some researchers question the trustworthiness of 

these data, reviews indicate that those judgments can serve as worthy assessments of students' 

achievement-related behaviors triangulated with data gathered by other protocols (Winne & 

Perry, 1996). Furthermore, teacher's perception of student’s use of strategies was found to be an 

important predictor of academic performances in children with learning disabilities (Meltzer, 

Roditi, Houser, & Perlman, 1998).    

In addition, we define mathematics learning problems as the unexplainable 

difficulties with mathematics validated by a test, where children perform within –2 SD and -1 

SD below the norm (severeness criterion) (e.g., Ghesquière et al., 1996). Moreover, these 

difficulties have to be noticed by the teacher in order to talk about a mathematics learning 

problem. 

                                                 
5 Based on Desoete, A. & Roeyers, H. (2001).  
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In addition, within this thesis the same discrepancy, severeness and persistence 

criteria are used for reading learning disabilities and reading learning problems.  

Moreover, the term specific mathematics learning disabilities is used for children 

with mathematics learning disabilities, but no reading difficulties. Specific reading disabilities 

are used for children with reading learning disabilities, but no mathematics difficulties. 

Combined mathematics learning disabilities is used for children with combined mathematics 

and reading learning disabilities.  

 

1.3.  Scope and limits of this thesis 

 

As described in this chapter, we focus on the interplay between variables in 

consideration of an adequate explanation of individual differences in mathematics performance.  

However, we restrict ourselves to average intelligent children with mathematics learning 

disabilities in grade 3 [see 1.2.].  

In addition, we are aware that prediction and evaluation, as metacognitive concepts, 

are related to metamemory concepts such as calibration’, ‘feeling-of-knowing’,  and ‘judgments 

of learning’. Furthermore, the research on ‘Metacognitive Knowledge Monitoring Assessment ‘ 

,  and the ‘feelings of difficulty’ is very much related to the prediction and evaluation concepts 

used in this thesis  [see also Chapter 4]. Moreover, we are aware that item-specific confidence 

measures at the task-specific level have been studied in a motivational or affective context (as 

‘motivational beliefs’, ‘self-efficacy’ beliefs, and ‘appraisals’) (e.g., Vermeer, 1997). However, 

most of the studies on these topics are conducted with regular schoolchildren or adolescents. 

The relationship with young children with mathematics learning disabilities is a challenging 

link to make. This thesis was set up to contribute to a better understanding of this link. 

However, we restrict our research to the prediction and outcome evaluation. We are aware of 

the other metacognitive components and of the importance of motivation and self-referred 

cognition in mathematics, but these topics extend the scope of this thesis.   

 

1.4.  Structure of this thesis. 

 

After the introduction, the second chapter focuses on the conceptualization of 

metacognition, investigating whether some of the most commonly used metacognitive 

parameters can be combined into supervariables on which young children differ. In the third 

chapter an assessment of off-line metacognition is presented. In chapter four, this assessment is 

used to investigate several hypotheses about off-line metacognition in average intelligent 

children. Third-grade children with specific mathematics learning disabilities are compared 
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with peers with specific reading disabilities, children with combined learning disabilities, age-

matched peers, and younger children matched at mathematics level. In the fifth chapter the 

modifiability of off-line metacognition and the impact on mathematical problem solving is 

investigated.  

This thesis is comprised of several papers, which have been accepted for publication 

[chapter 2, 3, and 4] or are under editorial review [chapter 5]. Since each of the papers is a self-

contained manuscript, the text of some of the chapters may partially overlap.  
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Chapter 2 

 
Metacognition and mathematical problem solving  

in grade 3 1. 

 

 

 
This chapter presents an overview of two studies that examined the 
relationship between metacognition and mathematical problem solving 
in 165 children with average intelligence in grade 3 in order to help 
teachers and therapists gain a better understanding of contributors to 
successful mathematical performance. Principal components analysis 
on metacognition revealed three metacognitive components (global 
metacognition, off-line metacognition, and attribution to effort) 
explaining 66 % to 67 % of the common variance. The findings from 
these studies support the use of the assessment of off-line metacognition 
(essentially prediction and evaluation) to differentiate between average 
and above-average mathematical problem solvers and between students 
with a specific mathematics learning disability or problem.  

 

 

Introduction 

 

Flavell introduced the concept of metacognition in 1976, in the context of 

developmental psychology and research on metamemory (Simons, 1996). He defined 

metacognition as…’one’s knowledge concerning one’s own cognitive processes and products 

or anything related to them, …  Metacognition refers furthermore to the active monitoring of 

these processes in relation to the cognitive objects or data on which they bear, usually in service 

of some concrete goal or objective’ (Flavell, 1976, p. 232).  

To gain a better understanding of successful mathematical performance, 

metacognition seems to be important (Lucangeli & Cornoldi, 1997).  Nowadays, metacognition 

has become a general multidimensional and overinclusive construct (Boekaerts, 1999), 

enabling learners to adjust accordingly to varying problem solving tasks, demands, and 

                                                
1 This chapter is based on Desoete, A., Roeyers, H., & Buysse, A. (2001). Metacognition and 
mathematical problem solving in grade 3. Journal of Learning Disabilities, 34, 435-449. 
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contexts (Allen & Armour-Thomas, 1992; Montague, 1998). Simons (1996) postulated a 

difference between ‘metacognitive knowledge’, ‘executive control’ (or metacognitive skills), 

and ‘metacognitive conceptions’ (or metacognitive beliefs).  

‘Metacognitive knowledge’ has been described as the knowledge and the deeper 

understanding of cognitive processes and products (Flavell, 1976). In mathematics, for 

example,  children may know that they have to check themselves in multi-digit divisions but 

not while solving one-digit additions. Three components of metacognitive knowledge have 

been described.  ‘Declarative metacognitive knowledge’ was found to be ‘what is known in a 

propositional manner’ (Jacobs & Paris, 1987, p. 259) or the assertions about the world and the 

knowledge of the influencing factors (memory, attention etc.) of human thinking. ‘Procedural 

metacognitive knowledge’ can be described as ‘the awareness of processes of thinking (Jacobs 

& Paris, 1987, p. 259) or the knowledge of the methods for achieving goals and the knowledge 

of how skills work and how they are to be applied. Procedural knowledge is necessary to apply 

declarative knowledge efficaciously and to co-ordinate multiple cognitive and metacognitive 

problem solving. ‘Conditional or strategic metacognitive knowledge’ is considered to be ‘the 

awareness of the conditions that influence learning such as why strategies are effective, when 

they should be applied and when they are appropriate (Jacobs & Paris, 1987, p. 259). 

Conditional knowledge enables a learner to select appropriate strategies and to adjust behavior 

to changing task demands. These metacognitive components may therefore help children to 

know how to study a new timetable (procedural knowledge), to make use of the awareness of 

previously studied number facts (declarative knowledge), and to select appropriate study 

behavior (conditional knowledge). 

According to Brown (1980), executive control or ‘metacognitive skills’ can be seen 

as the voluntary control people have over their own cognitive processes. A substantial amount 

of data has been accumulated on four metacognitive skills: prediction, planning, monitoring 

and evaluation (e.g., Lucangeli & Cornoldi, 1997). In mathematics, prediction refers to 

activities aimed at differentiating difficult exercises (e.g., 126 : 5 = _) from the easy ones (e.g., 

126 – 5 = _), in order to be able to concentrate on and persist more in the high-effort tasks. 

Planning involves analyzing exercises (e.g., ‘It is a division exercise in a number-problem 

format’), retrieving relevant domain-specific knowledge and skills (e.g., how to do divisions) 

and sequencing problem solving strategies (e.g., division of hundreds, tens, and units in mental 

mathematics). Monitoring is related to questions such as ‘am I following my plan?’, ‘is this 

plan working?’ ‘should I use paper and pencil to solve the division?’ and so on. In evaluation 

there is self-judging of the answer and of the process of getting to this answer.  

Lucangeli and Cornoldi (1997) and Lucangeli, Cornoldi, and Tellarin (1998) disputed 

‘metacognitive beliefs’ as a separate component of metacognition and classified them within 
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metacognitive knowledge (as support or hindrance and misconceptions or as a truly individual 

mathematical epistemology). Others have partly supported this view and defined these beliefs 

as non (meta) cognitive but affective and conative (motivational or volitional) variables (e.g., 

Garcia & Pintrich, 1994; Masui & De Corte, 1999; Mc Leod, 1992; Vermunt, 1996). Simons 

(1996), however, described metacognitive beliefs as the broader general ideas and theories 

people have about their own and other people’s cognition (e.g., on attribution, motivation, self-

esteem) and regarded it as a third component of metacognition.  

The debate on whether there are two (knowledge and skills) or three (knowledge, 

skills and beliefs) components within metacognition remains unresolved (Dickson, Collins, 

Simmons, & Kameenui, 1998). This debate is often based on theoretical concepts that lack 

empirical validation. Even authors who are in favor of a  two-component approach of 

metacognition (e.g., Lucangeli & Cornoldi, 1997) have found it important to study attribution, 

not least because Pintrich and Anderman (1994) have found that children with learning 

disabilities attribute success and failure to external factors and Borkowski, Teresa Estrada, 

Milstead, and Hale (1989) pointed out that all training programs on metacognition had to be 

combined with attributional retraining.  

From a developmental point of view, metacognitive knowledge precedes 

metacognitive skills (Flavell, 1979; Flavell, Green, & Flavell, 1995; Flavell, Miller, & Miller, 

1993). With age children become increasingly conscious of cognitive capacities, strategies for 

processing information and task variables that influence performance (Berk, 1997). 

Furthermore, low-effort skills (e.g., problem identification) precede high-effort skills (e.g., plan 

making and self-regulations) (Berk, 1997; Shute, 1996).  For a general review of the concept 

we refer to Boekaerts (1999), Brown (1987), Hacker, Dunlosky, and Graesser (1998), 

Montague (1998), Simons (1996) and Wong (1996). 

In the last decade, various authors have described metacognition as essential in 

mathematics (Borkowski, 1992; Carr & Biddlecomb, 1998; De Clercq, Desoete, & Roeyers, 

2000, De Corte, Verschaffel, & Greer, 1996; De Corte, Verschaffel, & Op 't Eynde, 2000, 

Desoete, Roeyers, Buysse, & De Clercq, 2001; Schoenfeld, 1992), although some authors have 

remained skeptical (e.g., Siegler, 1989). Metacognition was found to be instrumental in 

challenging tasks in mathematics, not overtaxing the capacity and skills of children, and in 

relatively new strategies that are being acquired (Carr, Alexander, & Folds-Bennet, 1994; Carr 

& Jessup,1995). Furthermore, especially during the initial stage of mathematical problem 

solving, when students build an appropriate representation of the problem, and in the final stage 

of interpretation and checking the outcome of the calculations, metacognition is involved in 

mathematical problem solving (Verschaffel, 1999). Metacognition prevents ‘blind calculation’ 

or a superficial ‘number crunching’ approach (e.g., answering ‘53’ to the exercise ’50 is 3 more 
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than _, since ‘more’ is always translated into addition) in mathematics (Vermeer, 1997, p. 23; 

Verschaffel, 1999, p. 218). Furthermore, metacognition allows students to use the acquired 

knowledge in a flexible, strategic way (Lucangeli et al., 1998).  

 

Aim and research questions 

 

Because metacognitive components include a wide range of overlapping phenomena 

(Boekaerts, 1999; Reder & Schunn, 1996), we have narrowed our research to three research 

questions.  The present study aims to contribute some data to the debate on whether there are 

two or three components within metacognition. In order to do so, we investigate empirically in 

two exploratory studies whether some of the most used metacognitive parameters (declarative 

knowledge, conditional knowledge, procedural knowledge, prediction, planning, monitoring, 

evaluation, and attribution) can be combined into two (knowledge and skills) or three 

(knowledge, skills, and beliefs) supervariables on which young children differ. Of the 

metacognitive beliefs we only include attribution, because it seems important in children with 

learning disabilities and because it is often included in metacognitive training programs.  

Because research on the relationship between metacognition and mathematics is 

usually conducted in older students (e.g., Montague, 1997) or in students with acquired deficits 

associated with brain injury (e.g., Mora & Saldana, 2001) and because inconsistent results were 

found in younger children (e.g., Siegler, 1989), we investigate whether the relationship between 

metacognition and mathematical problem solving can be found in elementary school children.  

Furthermore, academic problems can be studied within either of two assumptions 

related to sample characteristics. A first key assumption is that there is a virtual continuum 

from very poor to very good mathematical problem solving. The first study was set up within 

this assumption to investigate our research questions within the empirical findings of our data 

set. In study 1, we investigate in a typical population whether children with below-average 

performance in the area of mathematics also show below-average performance on 

metacognition and whether age-matched children with high mathematics expertise exhibit 

general strengths on metacognition.  

However, another key assumption is possible. Children with mathematics learning 

problems may also be considered as a clinical group of children with mathematical problem 

solving scores below critical cut off scores (-1 SD or below the 17th percentile). Study 2 was 

set up within this theoretical construct.  To investigate whether the relationship between 

mathematics and metacognition also exists in children with an operational cut off definition of 

mathematics learning problems, we have studied whether low metacognitive knowledge and 

skills and external attribution are core characteristics of young children with mathematics 
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learning problems or disabilities. We hypothesize that young children with specific 

mathematics learning problems or disabilities will have less developed metacognitive 

knowledge, skills, and beliefs.   

 

Study 1 

 

Method 

 
Participants 

 

The participants, all third-grade students (ages 8 - 9), were referred to us by 

participating general education elementary schools. Each referred child was screened for 

inclusion in the study, with written parental consent, based on the following criteria: 1. no 

treatment for any kind of school-related problem; 2. average general intelligence level 

according to the school psychologist (Full Scale IQ between 90 and 120 on collective 

intelligence measurements); 3. an overall school result of at least level B out of five levels (A – 

E); 4. only white, native Dutch speaking children without any history of severe reading 

problems, extreme hyperactivity, sensory impairment, brain damage, chronic medical 

condition, insufficient instruction, or serious emotional or behavioral disturbance were included 

as participants. The final sample included 80 third-graders (31 boys and 49 girls).  

The average score for the total sample on mathematical problem solving was 

percentile 56.82 (SD  = 33.07). The average score on reading fluency was percentile 63.44 (SD 

= 22.14). No child with a reading score below the 25th percentile was accepted. Thus,  children 

with severe reading problems were excluded, because some of the mearsures depended on the 

reading of instructions. The exclusion of children with reading disabilities narrows the scope of 

this study, but it also guarantees that any found poor metacognitive results found are not due to 

problems in reading cognition. 

As all the children were attending general education elementary school without 

severe reading or mathematics learning problems according to teachers and parents, further 

individual intelligence assessment were not included. The  socioeconomic status, based on the 

years of education of father (M = 10.62 years, SD = 2.69) and mother (M = 10.62 years, SD = 

2.90) was recorded. 
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Measures 

 

The Kortrijk Arithmetic Test (Kortrijkse Rekentest, KRT; Cracco et al. 1995) is a 60-

item Belgian mathematics test on domain-specific knowledge and skills, resulting in a 

percentile score on mental computation, number system knowledge, and a total percentile 

score. The psychometric value has been demonstrated on a sample of 3,246 Dutch-speaking 

children. Because we found performances on mental computation (e.g., 129 + 879 = _ and 

number system knowledge (e.g., add three tens to 61 and you have _) on the KRT to be 

strongly interrelated in our sample, Pearson’s r = .76, p � .01, we used the standardized total 

percentile score based on national norms. 

The One Minute Test (Eén Minuut Test, EMT; Brus & Voeten, 1999) is a test of 

reading fluency for Dutch-speaking people, validated for Flanders on 10,059 children 

(Ghesquière & Ruijssenaars, 1994), measuring the ability of children to read correctly as many 

words as possible out of 116 words (e.g., leg, car) in one minute.   

The metacognitive tests were specifically designed for the present study and consisted 

of the Metacognitive Attribution Assessment (MAA) and the Metacognitive Skills and 

Knowledge Assessment (MSA).These instruments were tested in a pilot study (n = 30) in order 

to determine their usefulness for this age group and their sensitivity in measuring individual 

differences. Analyses showed that students without reading problems could handle the 

instruments well. Students were interviewed after the test about 1. the reasons they gave for 

certain predictions and evaluations; 2. their planning and monitoring following the prediction; 

and 3. the reasons they thought exercises to be difficult or easy.  

The given answers all referred to the constructs in question. Moreover, different 

experts on mathematics and on metacognition were consulted in order to increase the construct 

validity. As to the reliability, Cronbach’s alpha varied from .59 to .87.  Furthermore, test retest 

correlations of .81 (p < .0005) and interrater reliabilities for the metacognitive parameters 

varying between .98 and 1 (p  < .0005)  were found.  

The MAA is a 13-item attribution rating scale based on the work of Carr and Jessup 

(1995; see Appendix A). Children evaluate internal stable (e.g., ability), internal nonstable 

(e.g., effort), external stable (e.g., task characteristics) and external nonstable (e.g., luck) 

attributions as causes of hypothetical situations.  The four alternatives (internal stable, internal 

nonstable, external stable and external nonstable) are ranked on a 4-point scale according to 

perceived importance (see Appendix A). The scores on internal nonstable (or effort) attribution 

were put into a composite score for this study. Cronbach � of .59 was found. 

The MSA was inspired by the work of Cross and Paris (1988), Myers and Paris 

(1978), Lucangeli and Cornoldi. (1998), and Montague (1997). The MSA assesses, without 
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time limit, two metacognitive components (knowledge and skills) including seven 

metacognitive parameters (declarative, procedural, and conditional knowledge, and prediction, 

planning, monitoring,  and evaluation skills; see Appendix B).  

In the measurement of ‘metacognitive declarative knowledge’ (15 items), children are 

asked to choose the easiest and the most difficult exercise out of five and to retrieve their own 

difficult or easy addition, subtraction, multiplication, division or word problem. The exercises 

on ‘procedural metacognitive knowledge’ (15 items) require children to explain ‘how’ they 

solved exercises. ‘Conditional metacognitive knowledge’ (10 items) is assessed by asking for 

an explanation of ‘why’ an exercise is easy or difficult and asking for an exercise to be made 

more difficult or easier by changing it as little as possible. Children received 2 points for a 

correct and complete answer, 1 point for an incomplete but correct answer, and no points for 

any other answer.  

In the assessment of ‘prediction’ (25 items), children are asked to look at exercises 

without solving them and to predict whether they would be successful in this task on a 4-point 

rating scale (see Appendix B). Children might predict well and solve the exercise wrongly, or 

vice versa. Predictions corresponding with actual mathematics performance (rating ‘I am 

absolutely sure I can solve the exercise correctly' and correct answer, or rating ‘I am absolutely 

sure I cannot solve the exercise correctly’ and incorrect answer) received 2 points. The rating ‘I 

am sure I can(not) solve the exercise correctly’ and corresponding mathematics performance 

received 1 point. Children ‘were then scored on ‘evaluation’ doing the exercises on the same 

rating scale (see Appendix B). The answers were scored and coded according to the procedures 

used in the assessment of prediction skills. For ‘planning’, children had to put 10 sequences 

necessary to calculate (e.g., choose the appropriate strategy, read the assignment well, extract 

the information necessary for the solution) in order. When the answers were put in the right 

order the children received 1 point. The following types of questions measured ‘monitoring’: 

What kind of errors can you make doing such an exercise? How can you help younger children 

to perform well on this kind of exercises? Complete and adequate strategies were awarded 2 

points. Hardly adequate but not incorrect strategies (such as ‘I pay attention’) received 1 point. 

Answers that were neither plausible nor useful did not receive any points.  

To examine the psychometric characteristics of the developed metacognitive 

parameters, Cronbach alpha reliability analyses were conducted. For declarative knowledge, 

procedural knowledge, and conditional knowledge Cronbach �’s were .66, .74, and .70, 

respectively. For prediction, planning, monitoring, and evaluation Cronbach alphas were .64, 

.71, .87, and .60, respectively.  
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Data collection 

 

All participants were assessed individually outside the classroom setting. They 

completed a standardized test on mathematics, the KRT (Cracco et al., 1995), a reading fluency 

test, the EMT (Brus & Voeten, 1999) and two metacognitive tests, the MAA and the MSA, on 

two different days, for a total of about three hours. The examiners, all trained psychologists, 

received six hours of theoretical and practical training in the assessment and interpretation of 

mathematics, reading, and metacognition.  

 

Results 

 

The sample was divided into three mathematics performance groups (below-average, 

average, and above-average performers) based on the standardized total percentile on the KRT 

(Cracco et al., 1995). Fifteen children obtaining a score of at least 1 SD below the KRT mean 

were assigned to the group of below-average mathematical problem solvers. Thirty-nine 

children were assigned to the group of average mathematical problem solvers because their 

mathematics scores were between –1 SD and +1 SD. Twenty-six children obtaining a score 

equal to or exceeding 1 SD above the mean were assigned to the group of above-average 

mathematical problem solvers. Preliminary comparisons revealed that the three groups did not 

differ significantly in the socioeconomic status of the father; F (2, 77) = 0.06, p = .94;  or the 

mother; F (2, 77) = 0.15, p =  .86.  

The mean total percentile scores on the KRT for below-average, average, and above-

average mathematical problem solvers were 8.73 (SD = 2.63), 52.82 (SD = 20.33), and 93.38 

(SD = 6.30) respectively. The mean mathematical school grade of the below-average 

performers was 11.19 % (SD = 5.73). The mean grades of average performers and above- 

average performers were 52.38 % (SD = 19.49) and 91.12 % (SD = 6.79) respectively. 

The means and standard deviations of the metacognitive parameters, all normally 

distributed, are presented in Table 1.  
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Table 1 Metacognitive parameters 

 Parameter  M  SD 

Knowledge      

  Declarative  25.54  4.96 

  Conditional  7.76   3.60 

  Procedural  18.21   5.92 

Skills      

         Prediction  15.86   5.26 

         Planning  5.01  2.04 

         Monitoring  19.27   5.08 

         Evaluation  14.99   5.20 

Beliefs      

         Attribution  37.04  5.62 

 
The correlation matrix of these parameters is presented in Table 2. 

 
Table 2 Intercorrelation matrix for metacognitive paramaters in study 1 

Parameter         

  DK CK PK Pr Pl Mo Ev 

Declarative Know. DK - - - - - - - 

Condition. Know. CK .42 - - - - - - 

Procedural Know. PK .39 .52 - - - - - 

Prediction Pr .16 .18 .10 - - - - 

Planning Pl .32 .31 .48 .29 - - - 

Monitoring Mo .34 .28 .24 .39 .33 - - 

Evaluation Ev .43 .42 .50 .17 .39 -.04 - 

Attribution At .08 .24 .01 .18 .10 -.04 .16 

 
Given the high intercorrelations between the metacognitive parameters, the internal 

structure of the data was analyzed with a principal components analysis, to account for all the 

variance. This analysis was carried out to develop a small set of components empirically 

summarizing the correlations among the variables2 

To determine whether metacognitive parameters could be combined into two or three 

factor components, an initial run with principal components extraction was carried out. Eight 

components were needed to account for all the variance in our data set. This initial number of 

                                                
2 With a principal axis factor analysis, allowing covariance within the data, the same three 
factors were found and the data remained almost the same. 
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eight could be reduced to three, retaining enough components for an adequate fit but not so 

many that parsimony was lost. This number of components in our solution was based on three 

criteria  (Tabachnick & Fidell, 1996). The first criterion was that there were three components 

with eigenvalues higher than l (Kaizer normalization). Components 4, 5, 6, 7, and 8 had 

eigenvalue  of 0.76, 0.63, 0.58, 0.36, and 0.32, respectively and were not as important from a 

variance perspective.  The second criterion as to the adequacy of a two- of three-component 

solution to our data set was that a two component solution accounted for 53.43  % of the 

common variance, whereas a three-component solution explained 66.86 % of the common 

variance.  The third component accounted for 13.43 % of the variance. The third criterion as to 

the number of components was the Cattell scree test of eigenvalues plotted against components. 

Again, there appeared to be three components in our data. The component matrix is presented 

in Table 3. The eigenvalues (proportion of common variance) corresponding to Components 1 

to 3 were 2.98 (37.3 % of common variance), 1.24 (15.5 % of common variance), and 1.09 

(13.6 % of common variance).  

 

Table 3 Component Matrix 

  Global  
component 

Off-line  
component 

Attribution 
component 

Knowledge     
 Declarative knowledge .69 -.04 -.15 
 Conditional knowledge .73 -.16 .08 
 Procedural knowledge .75 -.24 -.30 
Skills     
 Prediction .44 .59 .38 
 Planning .69 .11 -.09 
 Monitoring .67 -.49 .05 
 Evaluation .49 .73 -.17 
Believes     
 Attribution .24 -.15 .89 
     
Eigenvalue  2.98 1.24 1.09 
% of Variance  37.3 15.5 13.6 
Mean total group  66.85 21.22 20.85 
(SD)  (13.28) (4.88) (5.39) 

 
All weighted scores of the metacognitive parameters with loading higher than .30 

were added in the subsequent metacognitive components. Component 1 dealt with all 

metacognitive knowledge and skills parameters. Component 2 essentially dealt with off-line 

metacognitive activities either in the initial stage (prediction) or in the final stage (evaluation) 

of the mathematics performance. Component 3 dealt essentially with metacognitive beliefs 

about attribution, combined with some prediction. The residual correlations between 

components 1 and 2, components 1 and 3 and components 2 and 3 were  r = .25 (p < .05), r  = 
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.05 (p = NS) and r = .28 (p <.05), respectively. We subsequently refer to these components as 

‘global metacognition’, ‘off-line metacognition’, and ‘attribution’ (see general discussion).  

Given these components, we looked for between-group differences expecting students 

performing below average on mathematics to have less global and less off-line metacognition 

and to attribute less to unstable and internal factors than their peers with above average 

mathematical problem solving skills. 

To look for differences between students performing below average, average or above 

average on mathematics, a multivariate analysis of variance (MANOVA) was conducted with 

global metacognition, off-line metacognition, and attribution as dependent variables and 

mathematical ability group membership as the independent variable. Post hoc analyses were 

conducted using the Tukey procedure, which corrects for unequal sample size. With an effect 

size of .50, we found a power of .80. 

The MANOVA revealed a significant main effect for mathematical performance 

group on the multivariate level, F (6, 150) = 7.78, p � .0005. In the total model, metacognition 

was predicted for 42 % (1-Wilk’s Lambda) by the three mathematical ability groups, 

subsequently referred to as the degree of mathematical performance. Univariate significant 

between-group effects were found for global metacognition, off-line metacognition, and for 

attribution (see Table 4). Global metacognition, off-line metacognition, and attribution were 

predicted for 16 %, for 38 %, and for 29 %, respectively.   

 

Table 4 Mean typical scores on metacognition  

 Below-average Average Above-average  
 mathematical mathematical mathematical  
 problem solvers problem solvers problem solvers  
 M M  M F (2,77) 
 (SD) (SD) (SD)  
     
Global  58.43a 65.44a 73.58b   8.52* 
 (15.67) (10.85) (10.15)  
     
Off-line 16.91a    20.45 b  25.51c   24.98* 
 (4.14) (3.84) (3.99)  
     
Attribution  17.07 a 19.89 a 25.32 b 17.38* 
 (4.02) (5.25) (4.11)  
     

* p � .0005 
abc  different indexes refer to significant between-group differences with significance level .05 

 
Post hoc follow-up analyses (see indexes in Table 4) revealed that above-average 

performers did better than average and below-average performers on global metacognition. No 

differences were found between below-average and average mathematical problem solvers on 
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the global metacognitive component. All three performance groups also differed on off-line 

metacognition. Above-average mathematical problem solvers did better than average and 

below-average problem solvers and average problem solverss did better than below-average 

mathematical problem solvers on off-line metacognition. Furthermore, above-average 

mathematical problem solver had more internal attributions than average and below-average 

mathematical problem solvers. Means and standard deviations for the three mathematical 

ability groups on metacognition are presented in Table 4. 

 

Discussion 

 

Our results favored three metacognitive components (global metacognition, off-line 

metacognition and attribution) that are different from the three forms of metacognition, Simons 

(1996) described. Because these results did not validate a previously used metacognitive 

construct, it seemed useful to replicate these components in a sample of children with 

mathematics learning disabilities (see Study 2).  

The findings of this study support the use of this assessment procedure on 

metacognition to differentiate between different groups of mathematical problem solvers in a 

continuum from very poor to very good mathematical problem solvers. We were able to 

differentiate between all three mathematics ability groups on off-line metacognition, 

confirming the importance of metacognition in the initial or forethought phase and in the final 

or self reflection phase of mathematical problem solving (Verschaffel, 1999). Furthermore, 

above-average mathematical problem solvers had more global metacognition and higher 

internal and unstable attributions than average and below-average mathematical problem 

solvers without additional reading problems. Global metacognition and attributions did not, 

however, differ significantly between average and below-average mathematical problem 

solvers. 

In Study 2, we aim to replicate the structure of the metacognitive components found 

in the random sample of Study l with children with specific mathematics learning problems and 

disabilities from a cut off perspective. Again, the exclusion of children with reading problems 

and, therefore, the possible exclusion of children with both mathematics and reading learning 

problems limits the findings, but it also guarantees that weaker metacognition scores in children 

with mathematics learning problems are not due to problems with reading the assignment.  

In Study l, a global score on mathematics (number system knowledge, and mental 

computation) differentiated between children with above-average, average, and below-average 

mathematical problem solving skills. Because Study 2 investigates metacognition in children 

with specific mathematics learning problems, we included a mathematics test on verbal 
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numeral processing, as suggested by Lucangeli and Cornoldi (1997). We also included a test on 

retrieval of arithmetic number facts from semantic memory, because Geary (1993) discovered 

difficulties in this area in one subtype of children with mathematics learning disabilities. 

Furthermore, as the sample was no longer a random sample, IQ scores were added in the 

selection procedure to exclude the possibility that some of the difference between the groups on 

the metacognitive tasks would simply be due to differences in level of intelligence. 

 

 
Study 2 

 

Method 

 

Participants 

 

Fifty-nine children of average intelligence with specific mathematics learning 

problems or disabilities (22 boys and 37 girls) and 26 children (8 boys and 18 girls) who did 

not score above average but did not have learning problems participated. The average age of 

the participants was 8.2 years (SD = 0.4). The sample was drawn, with the written consent of 

the children’s parents and teachers, from Grade 3 in several elementary schools. Participants 

were native Dutch-speaking children attending a general education elementary school, and 

were selected for this study on the basis of teachers’ referrals and test scores indicating specific 

mathematics learning problems or disabilities (LD) or not.  

Teacher judgments were used because, although some researchers question the 

trustworthiness of such data, reviews indicate that these judgments can serve as worthy 

assessments of students' achievement-related behaviors triangulated with data gathered by other 

protocols (Winne & Perry, 2000). Furthermore, teacher perceptions of students’ use of 

strategies were found to be an important predictor of academic performances in children with 

learning disabilities (Meltzer, Roditi, Houser, & Perlman, 1998).  

To be accepted in the cohort, the children’s general intelligence had to be average 

according to the school psychologist (Full Scale IQ between 90 and 120 on the WISC-R 

(Vander Steene, Van Haasen, De Bruyn, Coetsier, Pijl, Poortinga, Spilberg, & Stinissen, 1986) 

and the general school result had to be at least a B level. Furthermore, children’s reading 

performances had to be rated 4 or 5 on a 7-point performance rating scale (1 = very poor, 7 = 

very good) by the teacher. The mathematical problem solving skills of the participating 

children had to be rated 1 (children with mathematics learning disabilities), 2 (children with 

mathematics problems) or 4 (moderate math performers) on the same scale. We did not include 
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children with rates of 3 in order to differentiate better between children with mathematics 

problems and moderate performers without learning problems.  

The average mathematics school grade for the total sample was 26.89 % (SD = 

16.20). The average score for the total sample on the KRT (Cracco et al., 1995) was percentile 

18.14 (SD = 22.02). The average percentile scores on two other mathematical performance tests 

(TTR; de Vos, 1992, and VT; Dudal, 1985) were 30.13 (SD = 24.00) and 40.40 (SD = 25.03), 

respectively. The mean socioeconomic status of the father and mother (based on years of 

education) was 10.82 years (SD = 2.91) and 10.40 years (SD = 2.76), respectively.  

 

Measures  

 

The KRT (Cracco et al., 1995) was used to measure math abilities, as described in 

Study l. The MAA and MSA were adapted concerning the number of items. Furthermore, two 

other mathematics tests (VT and TTR) and a teacher rating form (MSA questionnaire) were 

introduced.  

The Word Problems (Vraagstukken, VT; Dudal, 1985) test is a Belgian test to probe 

numeral processing in 10 word problem formats (e.g., John and Lisa together weigh 37 kg. 

John weighs 19 kg. What is the weight of Lisa?). The psychometric value has been 

demonstrated on a sample of 859 Dutch speaking children.  

The Arithmetic Number Facts Test (Tempo Test Rekenen, TTR; de Vos, 1992) is a 

test on 200 arithmetic number fact problems (e.g., 5 x 9 = _). Children have to solve as many 

number fact problems as possible out of 200 in 5 minutes. The test has been normed for 

Flanders on 10,059 children (Ghesquière & Ruijssenaars, 1994).  

The MSA questionnaire, which was created for this study, is a Likert rating scale 8-

item questionnaire for teachers on metacognitive skills (e.g., the child never (1) / always (5) 

knows in advance whether an exercise will be easy or difficult). Furthermore teachers rated the 

mathematical and reading performances as well as the intelligence of children (e.g., 1. very low 

compared to peers 7. very good compared to peers).  

The MSA questionnaire was tested in a pilot study in order to determine its 

usefulness for the purpose (Desoete & Roeyers, 2000; Desoete, Roeyers, & Buysse, 2000). 

Teachers were found to have a good picture of children's performances in the area of 

mathematical problem solving. All children with mathematics learning disabilities, diagnosed 

by reliable and valid mathematical problem solving-tests were also detected based on their 

teacher ratings (n = 150). 

Because the number of items used in the MSA in Study 2 was adapted, the 

psychometric characteristics were examined again. All variables were normally distributed. 
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Cronbach � reliability analyses were conducted on the different metacognitive parameters. 

Cronbach � of .70 was found for the MAA (10 items). A Cronbach �  of .79 was found for 

declarative knowledge (25 items).A Cronbach � of .59 was found for procedural knowledge 

(20 items). A Cronbach � of .74 was found for conditional knowledge (40 items). For 

prediction (40 items), planning (20 items), monitoring (25 items), and evaluation (40 items), 

Cronbach �’s were  .87, .65, .70, and .90, respectively. The Cronbach � of the MSA 

questionnaire was .87. To examine the concurrent validity of the MSA, or the correspondence 

between the assessed metacognitive skills and the opinion of the teacher on the metacognitive 

skills of the participants, Cronbach � interreliability analysis was conducted with the four 

metacognitive skill scores (MSA) and four MSA questionnaire scores as scale items. This 

resulted in a Cronbach � of .70.  

 

Data collection 

 

All participants were assessed individually outside the classroom setting by skilled 

mathematical therapists who had received a 24-hour theoretical and practical training in the 

assessment of mathematics and metacognition. The children completed three standardized tests 

on mathematics, the KRT (Cracco et al., 1995), the VT (Dudal, 1985) and the TTR (de Vos, 

1992), as well as the MAA and the MSA, on two different days, for a total of about four hours 

in total. Teachers filled out a questionnaire on metacognitive skills, reading, mathematics and 

intelligence (MSA questionnaire).   

 

Results 

 

The sample was divided into three mathematics ability groups based on mathematics 

standardized percentiles scores (KRT, TTR, VT) and teacher referrals. Participants scoring at 

least l SD below the mean (or below the 17th percentile in mathematical ability) on at least two 

mathematics tests and below the 30th percentile in ability on the third math test were assigned 

to the group of children with a math disability if they also received a rating of 1 on mathematics 

on a 7-point scale according to the teacher. Most of these children performed  more than 2 SD 

below the mean (or below the 3rd percentile) on all mathematics tests. When participants 

received a rating of 2 on mathematics from the teacher and performed at least l SD below the 

mean (or below the 17 percentile in math ability) on one mathematics test and below the 30 th 

percentile in ability on the other math tests, they were assigned to the group of children with a 

math problem.  Participants obtaining a score of – 0.5 SD below or + 0.5 SD above the mean on 
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all three mathematics tests and a mathematics rating of 4 by the teacher were assigned to the 

group of average performing children without disabilities.  

Preliminary comparisons revealed that the three groups did not differ significantly in 

the socioeconomic status (SES) of the father, F (2, 82) = 1.55, p = .22, or the mother, F (2, 82) 

= 2.16, p =  .12. To exclude the possibility that some of the difference between the groups on 

the metacognitive tasks was due to IQ differences, the mean IQ scores  of the three groups were 

compared in Table 5.  

 

Table 5 Description of the participants 

 Math 
Disabilities 

Math 
Problems 

 Average 
performers 
without 
disabilities 

 

 M M  M F (2,82) 
 (SD) (SD) (SD)  
TIQ 105.00 103.19 105.42 2.12 
 (4.11) (4.67) (4.36)  
SES father** 11.18 10.10 11.31 1.55 
 (1.89) (3.45) (3.06)  
SES mother** 11.03 9.61 10.65 2.16 
 (2.46) (2.58) (3.14)  
Mathematics school 10.61a 27.87b 43.28c 77.85* 
Result (6.47) (7.33) (13.95)  
KRT percentile 5.46a 12.68a 38.31b 26.54* 
 (5.11) (15.45) (25.96)      
TTR percentile 11.57a 30.32b 49.88c 28.36* 
 (10.89) (19.54) (23.62)  
VT percentile 18.07a 46.81b 56.81c 29.98* 
 (19.01) (21.90) (15.82)  
*  p<.0005 
**  based on the years of education  
abc  different indexes refer to significant between-group differences with significance level .05 

 
As shown in Table 5, no differences on IQ or SES were found between the three 

mathematical problem solving performance groups. Furthermore, descriptive statistics with 

mean ratings on the mathematics tests (KRT, VT, and TTR) for the children with a disability, a 

problem and for the average performing children without disabilities were also presented in 

Table 5.  

A principal components analysis was carried out to explore the internal structure of 

the metacognitive data and to find out whether the metacognitive parameters (declarative 

knowledge, conditional knowledge, procedural knowledge, prediction, planning, monitoring, 

evaluation, and attribution) could be combined into the same supervariables as in Study 1. 

Eight components were needed to account for all the variance in our dataset. Again this initial 

number of eight could be reduced to three components based on the Kaizer normalization, the 

additional variance of the third component and the Cattell screetest. Components 4, 5, 6, 7, and 
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8 had eigenvalues of 0.82, 0.58, 0.56, 0.37, and 0.27, respectively, and were not as important 

from a variance perspective. Furthermore, the third component had an additional explained 

variance of 12.92 %, and the Cattell scree test confirmed this three-component solution.  

Between components l, and 2, 1 and 3, and 2 and 3 correlations of  r = .62, p < .0005; 

r = .03, p = NS; and r = .00, p = NS; respectively, were found. The means and standard 

deviations for the metacognitive components are presented in Table 6.  

 
Table 6 Metacognitive parameters 

  M (SD) 
Knowledge     
 Declarative  38.20 7.08 
 Conditional 33.49  8.08 
 Procedural  27.33  5.43 
    
Skills    
 Prediction 26.60  9.49 
 Planning 6.91  2.89 
 Monitoring 31.49  6.96  
 Evaluation 29.60  11.75 
    
Conceptions    
 Attribution 29.04  5.44 

 
As the metacognitive components are intercorrelated, the correlation matrix is 

presented in Table 7. 

 
Table 7 Intercorrelation matrix 

  DK CK PK Pr Pl Mo Ev At 
Declarative know.  DK - - - - - - - - 
Conditional know.  CK .51 - - - - - - - 
Procedural know.  PK .43 .45 - - - - - - 
Prediction   Pr .29 .18 .18  - - - - 
Planning   Pl .33 .23 .22 .12  - - - 
Monitoring  Mo .53 .39 .46 .13 .41  - - 
Evaluation  Ev .29 .30 .29 .67 .30 .17  - 
Attribution  At .10 .20 .07 .08 .02 .20 .06 - 

 
The three-component solution (see Table 8) was comparable to the one found in 

Study 1 (global metacognition, off-line metacognition, and attribution) and explained 67.5% of 

the common variance.  

 



Chapter 2 

38 

Table 8 Component matrix 

  Global 
component 

Off-line 
component 

Attribution 

Knowledge     
 Declarative  .77 -.17 -.06 
 Conditional  .70 -.21 .17 
 Procedural  .68 -.21 .01 
     
Skills     
 Prediction .52  .75 .12 
 Planning .54  .09 -.48 
 Monitoring .71 -.41 -.05 
 Evaluation .63  .66 .02 
     
Conceptions     
 Attribution .24 -.17 .86 
     
Eigenvalue  3.04 1.32 1.03 
% of Variance  38.03 16.52 12.92 
     
Mean  129.75 24.88 21.74 
(SD)  (22.51) (11.77) (4.92) 

 
The eigenvalues (proportion of common variance) corresponding to components 1 to 

3 (see Table 8) were 3.04 (38.03% of common variance), 1.32 (16.52% of common variance), 

and 1.03 (12.92% of common variance), respectively. All weighted components with their 

loadings, if higher than .30, were added in the subsequently used global, off-line, and 

attribution components.  

We also looked for differences between children on metacognition. A MANOVA was 

conducted with global metacognition, off-line metacognition, and attribution as dependent 

variables. The variable differentiating between children with math disabilities, children with 

math problems and children without learning disabilities was used as the independent variable. 

Post hoc analyses where conducted using the Tukey procedure, which corrects for unequal 

sample size. With an effect size of .50, we found a power of .85.  The MANOVA (see Table 9) 

revealed a significant main effect for mathematical ability group,  F (6, 160) = 16.40, p � .0005.  
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Table 9 Mean typical scores on metacognition  

 Math LD  Math LP  Without LP  
 M M  M F (2,82) 
 (SD) (SD) (SD)  
Global 114.00a 3 132.85b 143.03b 15.78* 
 (25.58) (15.53) (15.26)  
     
Off-line 15.62a 22.84b 37.28c 52.37* 
 (4.97) (7.21) (10.74)  
     
Attribution 20.16 22.62 22.38 2.22 
 (3.95) (4.59) (5.93)  

* p �  .0005 
abc different indexes refer to significant between-group differences with significance level .05 

 
In the total model, off-line and global metacognition were predicted for 26% and for 

55 % , respectively. The model did not significantly predict the attribution score. Significant 

between-subject effects were found for the degree of mathematics learning disability on the 

global metacognition and off-line metacognition components, but no significant results were 

found on attribution. Descriptive statistics with mean ratings for children with a mathematics 

learning disability (LD), a mathematics learning problem (LP) and for children without learning 

problems are presented in Table 9.  

Post hoc follow-up analyses revealed that children with mathematics learning 

disabilities performed worse than children with a learning problems or average performers 

without disabilities on global and off-line metacognition (see indexes in Table 9). Participants 

with a mathematics learning disability did not differ significantly from average mathematical 

problem solvers without learning problems on global metacognition, but they did significantly 

worse than average mathematical problem solvers without LD on off-line metacognition (see 

indexes in Table 9).  

 
Discussion 

 

In this selected sample of children with specific mathematics learning problems or 

disabilities, our results indicated, three metacognitive components similar to those found in the 

first study, as internal structure of the data. All metacognitive knowledge parameters were 

combined with all metacognitive skills in the first, global metacognitive component. The off-

line skills (prediction and evaluation) were combined with a negative loading on monitoring in 

                                                
3 The mean scores are higher than those reported in Table 4 because of additional items in the 
MSA/MBA 
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the second component (off-line metacognition). The attribution on effort, combined with a 

negative loading on planning, created the third component. 

Furthermore, participants with a specific mathematics disability (and intact reading 

skills) showed less global metacognition than their peers with a mathematics learning problem 

or no learning problem. Off-line metacognition differed between all three groups. Participants 

with specific mathematics learning disabilities performed significantly lower than average 

mathematical problem solvers on off-line metacognition. Furthermore, children with a specific 

mathematics learning disability performed worse on off-line metacognition than their peers 

with a mathematics learning problem. No between-group differences where found on 

attribution. 

 

General discussion 

 

Since the introduction of the concept of metacognition, there has been considerable 

debate about the multiple meanings of the concept (Boekaerts, 1999). Our exploratory studies 

investigated whether (declarative, procedural, and conditional) metacognitive knowledge, 

metacognitive skills (prediction, planning, monitoring, and evaluation) and metacognitive 

attribution could be combined into a smaller number of supervariables, validating a three- 

(knowledge, skills, conceptions) or two-comonent (knowledge, skills) construct. Moreover, we 

looked for differences in metacognition between students with and without mathematics 

learning problems in order to investigate whether metacognition should be part of the 

assessment of children with mathematics learning problems or disabilities.   

In both studies, we failed to validate the traditionally used components of 

metacognition (knowledge, skills, and beliefs) related to successful execution of mathematical 

problem solving. We did find three components, but not the expected ones. Instead, three 

different metacognitive components combined the metacognitive parameters into a smaller 

number of supervariables in both studies.  

All metacognitive knowledge parameters (declarative, conditional, and procedural) 

were found to be interrelated with all metacognitive skills (prediction, planning, monitoring, 

and evaluation). Because this first component combined all metacognitive parameters with the 

exception of the contested belief component of metacognition (Lucangeli & Cornoldi, 1997), 

we labeled the component as ‘global metacognition’, including both on-line and off-line 

measured metacognitive aspects.  

Prediction and evaluation were found to be interrelated (Component 2). As both these 

metacognitive parameters were measured either before or after the solving of exercises, we 

labeled this metacognitive component ‘off-line (measured) metacognition’, in contrast to ‘on-
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line measured metacognitive skills’. Monitoring was found to be negatively correlated with off-

line metacognition.  

Metacognitive attribution was detected as a different component (Component 3). In 

Study 1, attribution on effort was related to high off-line prediction skills, whereas in Study 2 

attribution on effort was found to be correlated with low on-line planning behavior. Because the 

loading on attribution was very high in both studies and the combination with other parameters 

(low procedural knowledge and high prediction skills in Study 1 and low planning skills in 

Study 2) was not stable, we labeled this component as ‘attribution’. In both studies, we found 

significant correlations between global and off-line metacognitive components. 

These results indicate the existence of a construct for prediction and evaluation skills 

(Component 2) that, although related, is somehow different from the construct combining these 

skills with planning and monitoring skills and metacognitive knowledge (Component l). These 

findings are consistent with the research of Verschaffel (1999), who stressed the importance of 

metacognition during the initial stage ('prediction') of mathematical problem solving before the 

actual 'on line' calculation. Furthermore, metacognition was also found important in the final 

stage ('evaluation') of mathematical problem solving or after the actual 'on line' calculation. 

Therefore, these metacognitive activities take place without children actual calculating, and can 

be considered as 'off line' metacognitive in nature. 

Our research also offered some insights into the relationship between metacognition 

and mathematics in young elementary school children. Both studies have shown metacognition 

to be characteristic for the above-average ‘expert’ approach to mathematical problem solving in 

the elementary school. In Study l, the importance of metacognition in mathematical problem 

solving could be demonstrated in a random sample of third-grade students. Above-average 

mathematical problem solvers (experts) had more global and off-line metacognition and 

attributed failure and success more to internal and unstable effort causes than average and 

below-average mathematical problem solvers (novices). In Study 2, the relevance of 

metacognition could be confirmed in third-grade students with specific mathematics learning 

problems from a cutoff perspective. Average mathematical problem solvers without learning 

problems did better on global and off-line metacognition than their age- and intelligence-

matched peers with a specific mathematics learning disability. Furthermore, children with a 

specific mathematics learning disability had lower off-line metacognition scores than their 

peers with a mathematics learning problem.  

To assess whether impairments in the three metacognitive components (global, off-

line, and attribution) were core characteristics of specific mathematics learning problems or 

disabilities, both studies were analyzed on the difference between children with and without 

mathematics learning problems. No conclusive evidence was found for a global metacognitive 
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deficit (Component 1), because children with different mathematical problem solving skills did 

not always differ significantly on global metacognition. In Study l, we could not differentiate 

between average and below-average mathematical problem solvers on global metacognition, 

whereas in Study 2 no significant differences in global metacognition were found between 

subjects with a mathematics learning problem and average performing peers without 

mathematics learning problems. Off-line metacognition (Component 2), however, seemed 

especially important, because the three performance groups in both studies differed on this 

component. In Study 1, children with below-average mathematical problem solving skills had 

lower off-line metacognitive scores than peers with average mathematical problem solving 

skills. Moreover, children with average mathematical problem solving skills did worse than 

peers with above-average mathematical problem solving skills. In Study 2, children with 

mathematics learning disabilities had less developed off-line metacognitive skills than their 

peers with mathematics learning problems. Both groups did worse than children with average 

mathematical problem solving skills, without mathematics learning problems.  A less 

developed attribution on effort (Component 3) was found not to be a core characteristic of 

children with mathematics learning problems in our sample, as we failed to find differences 

between subgroups of children with and without specific mathematics learning problems in 

Study 2. Above-average performers, however, attributed significantly more to effort than 

average and below-average performers faced with mathematical problem solving tasks in study 

1.  

These results should be interpreted with care, because the metacognitive skills might 

involve different mental operations (e.g., simultaneous versus serial thinking) and might be age 

dependent and still maturing until adolescence (Berk, 1997). Furthermore because the MAA 

and MSA depended on children reading the instructions, only children of average intelligence 

without additional reading problems were included in these studies. Thus, there is a possible 

exclusion of children with combined mathematics and reading learning disabilities, a subtype 

described by Geary (1993) as children having difficulties in fact retrieval. The empirically 

demonstrated metacognitive components therefore, still need a full explanation from more 

applied research on different age, reading, and intelligence groups.  To exclude alternative 

possible explanations, our studies need to be replicated with a larger sample of children with 

mathematics learning disabilities. It would also be useful to compare off-line metacognition in 

children with specific mathematics learning disabilities and intact reading skills with 

metacognitive performances of children with specific reading disabilities and intact 

mathematical problem solving skills and to investigate the modifiability of metacognitive 

performances. Such studies are currently being prepared. 
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In summary, our studies suggest that three metacognitive supervariables are involved 

in mathematical problem solving in grade 3. These components can help to gain a better 

understanding of contributors to successful mathematical performance. Furthermore, the 

findings from these studies support the use and importance of a metacognitive assessment 

procedure to differentiate between mathematical ability groups and between students with and 

without specific mathematics learning problems or disabilities. However, despite the 

consistency of the findings in these studies, only off-line metacognition (prediction and 

evaluation) could differentiate between average and below-average mathematical problem 

solvers and between children with a specific mathematics learning disability and children with 

a mathematics learning problem. Taking into account the complex nature of mathematical 

problem solving, it may be useful to assess off-line metacognition in young children with 

mathematics learning problems and disabilities in order to focus on these factors and their role 

in mathematics learning and development.  
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Appendix A 

Sample Item from the Metacognitive Attribution Scale 

 

Read the following statements and rank them (in ٱ) as: 
 

4 the most important reason 
3  
2  
1 not an important reason at all 

 
 

Chris cannot solve word problems.  
This is because ? (attribution of failure) 

 
 The teacher did not explain the word problems enough this time (external ٱ

nonstable) 
 Word problems are always difficult (external stable) ٱ
 Chris did not try hard enough (internal nonstable) ٱ
 Chris is not good at mathematics (internal stable) ٱ
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Appendix B 

Sample Items from the Metacognitive Skill and Knowledge Assessment  (MSA) 

 

Look at these additions (without solving them) 
45+28= 
45+23= 
43+8= 
23+6= 
9+23= 

 
�� Which addition is the most difficult one Declarative metacognitive knowledge 
�� Why? Conditional metacognitive knowledge 
�� How will you proceed? Procedural metacognitive knowledge 

 
 
Look at this exercise (without solving the exercise) 

25 is 1 more than ?  
 
Can you solve this exercise correctly?  Metacognitive prediction skill 
 
  I am absolutely sure I can solve the exercise correctly ٱ
  I am sure I can solve the exercise correctly ٱ
  I am sure I cannot solve the exercise correctly ٱ
  I am absolutely sure I cannot solve the exercise correctly ٱ
 
 
How will you proceed to solve this exercise? Put the sentences in the correct order.  

25 is 1 more than ? 
Metacognitive planning skill  

  Choose the appropriate strategy ٱ
   I read the assignment well ٱ
   I extract the information necessary for the solution ٱ
 
 
Do it. Solve the exercise 

25 is 1 more than ?  
 
You have answered. Are you sure that your answer is the correct answer? 
  I am absolutely sure I have solved the exercise correctly ٱ
  I am sure I have solved the exercise correctly ٱ
  I am sure I have not solved exercise correctly ٱ
  I am absolutely sure I have not solved the exercise correctly ٱ
 
�� According to you what kind of mistakes do children make in such exercises? 

Metacognitive monitoring skill 
�� What is important, according to you, to succeed in subtraction? 

Metacognitive monitoring skill 
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  to put the numbers at the right place ٱ
 to know the multiplication tables well ٱ
  to pay attention to tens and units ٱ
  to finish as soon as possible ٱ
 
Write in  4 ٱ the most important reason 

  3 ٱ
  2 ٱ
 not important at all 1 ٱ

 
�� How can you help young children with these kind of exercises? 

Metacognitive monitoring skill 
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Chapter 3 
 

The assessment of off-line metacognition 

 

 

 

3.1.  Metacognition: how can it be assessed? 1 

 
The purpose of 3.1. is to describe some reflections on how 
metacognition can be assessed. In the past, different methods were used 
to assess metacognition (Tobias &  Everson, 1996). We will present a 
brief review of the different methods in order to then focus on a more 
indirect and dynamic assessment of metacognition.   

 

Metacognition can be observed 

Observation in the natural context and introspection or retrospection are often 

combined as techniques to assess metacognition. These studies observe and register (in notes, 

audio or video-tapes) the performance of children in an individual situation, working on a task 

(e.g., Carr, Alexander, & Folds-Bennett, 1994) or playing (e.g., Kirby & Williams, 1994).  

During the task (in the case of introspection and think-aloud protocols) or afterwards 

(in the case of retrospection) children are asked about their metacognition. In addition, in some 

cases the  period of time before children notice that something is missing is analysed. The 

sooner children demand assistance, the more metacognitive knowledge and skills is assumed 

(e.g., Kirby & Williams, 1994).   

In young children (2 to 10 years of age) another assessment method is sometimes 

used, namely the registration of the ‘private speech’ used (Manning, White, & Daugherty, 

1994). Private speech then refers to ‘the speech reflecting heightened awareness and/or 

regulation of one’s thinking in relation to the task’ (Rohrkemper, 1986, p. 193-194).  

All these observation techniques are, however, very time-consuming. An even greater  

problem with these studies is that comparison between instruments is often difficult, due to the 

disjoint metacognitive concepts (Erlich, 1991) and to the different open questions and scoring 

                                                 
1Based on Desoete, A., Roeyers, H., Buysse, A., & De Clercq, A. (2001). Dynamic assessment  
of metacognitive skills in young children with mathematics learning disabilities. In J. Carlson 
(Ed.), Potential Assessment and Cognitive Training: Actual research and Perspectives in 
Theorybuilding and Methodology. England: JAI Press Inc/Elsevier, in press. 
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systems (Tobias & Everson, 1996). In addition, questions on the reliability of the reported 

answers can arise (Erlich, 1991).  

 

Questionnaires to assess metacognition 

 

Self-report questionnaires are also frequently used to assess metacognition. In the 

self-report questionnaires, children have to choose between a set of metacognitive strategies 

they frequently use, while learning or solving a problem.  

Some self-report questionnaires use curriculum-free content to measure how children 

learn and cope with information (e.g., Gagné, 1994; Pintrich, Smith, Garcia, &  Mackeachie, 

1993). Other questionnaires use content-dependent measures to obtain information on 

metacognition (e.g., De Clercq, Desoete, & Roeyers, 2000; Montague, 1992; Paris & Lindauer, 

1982).  

There are self-report questionnaires with open and closed questions. Questionnaires 

with open questions (e.g., De Franco & Curcio,1997; Montague, 1996) offer qualitatively richer 

information, but they are more time-consuming and more difficult to deal with, due to the same 

problems with scoring systems as in the observation assessment. Questionnaires with multiple 

choice questions (e.g., Efklides, Papadaki, Papantoniou, & Kiosseglou, 1997) are fast measures 

of metacognitive processes and often provide quite objective data. Some authors combine the 

two methods (e.g., Lucangeli, Cornoldi, & Tellarini, 1998).  

A problem with the self-report questionnaires is that young children often lack the 

linguistic skills to participate in such studies. Teacher-report questionnaires can then offer 

additional information on the metacognitive functioning of those pupils (e.g., Carr & Kurtz, 

1991; Fortunato, Hecht, Tittle, & Alvarez, 1991). 

 

Metacognition and hypothetical interviews. 

 

Another strategy to assess metacognition is the hypothetical interview. In a 

hypothetical interview, children have to find as many useful strategies as they can in a 

hypothetical situation. The number of strategies are then used as indicator of metacognitive 

functioning. The quality of the retrieved strategies is used as an indicator of the level of 

metacognitive functioning (Thorpe & Satterly, 1990).  

The same methodological problems arise, using hypothetical interviews, as with the 

observation and introspection. An additional disadvantage is that subjects only have to give as 

many strategies as possible, including strategies they have never personally used before. The 
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question then arises as to whether such studies measure metacognitive knowledge or whether 

this is more a matter of cognitive divergent thinking. 

 

Metacognition and more indirect assessment 

 

Recently, more indirect assessment techniques are being used for metacognition (e.g., 

De Clercq et al., 2000; Reder & Ritter, 1992; Tobias & Everson, 1996).  

Since metacognitive concepts remain related to meta-memory research (Nelson & 

Narens, 1990), some authors use memory-assessment techniques and study for example the 

‘feeling-of-knowing’ (FOK). The FOK is related to our metacognitive prediction skills and can 

be described as ‘a rating made by people about the probability that they will be able to 

recognise an element of information’ (Lories, Dardenne, & Yzerbyt, 1998, p. 7). Reder and 

Ritter (1992) and Schunn, Reder, Nhouyvanisvong, Richards, and Stroffolino (1997) used the 

‘rapidly choose’ paradigm to investigate FOK. Children were asked to rapidly choose (in 850 

milliseconds) whether they would retrieve or compute the answer to the arithmetic problem. If 

they choose to retrieve, they were then required to give the answer within 1500 milliseconds.  

Tobias and Everson (1996) also developed an indirect method to measure 

metacognition, related to our prediction, namely the ‘Metacognitive Knowledge Monitoring 

Assessment’ (KMA). With the KMA they assess what students think they know or do not know 

and what they really know and do not know. This relationship is analysed in four scores. 

Correct knowledge monitoring is seen in correspondence between the real scores and the 

predicted scores.  

 

Metacognition and dynamic assessment 

 

Dynamic assessment, according to Lidz (1997), refers to the development of 

decision-specific information which most characteristically involves interaction between the 

examiner and the examinee, focusing on the learner’s metacognitive processes in a pretest-

intervention-posttest administration.  

Metacognition is seldom explicitly assessed in a dynamic assessment design, 

although Clements and Natasi (1990) found dynamic assessment very promising in this context. 

Furthermore, in tests such as the Learning Potential Assessment Device (LPAD, Feuerstein, 

Rand, & Hoffman, 1979) or the Actualisation du Potentiel Intellectuel (API, Audy, 1990) 

metacognition is certainly included, but is not always differentiated from the measured 

cognitive processes.  
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Since prediction and evaluation skills (‘off-line measured metacognition’) in 

particular were found to differentiate between good, moderate, and poor mathematical 

performers [see chapter 2], an indirect and more dynamic assessment of these metacognitive 

aspects was developed. In the Evaluation and Prediction Assessment (EPA2000, De Clercq et 

al., 2000) cognition and off-line metacognition (predication and evaluation) is assessed in a 

pretest-posttest-design, with the possibility for a short intervention ('kurzzeit lerntest' (Güthke 

in Güthke & Wingenfeld, 1992)) between pretest and posttest, since such administration seems 

useful in the assessment of children with mathematics learning disabilities (Rutland, 1995). A 

paper and pencil version (Evaluation and Prediction Assessment, EPA) and a computerised 

assessment (EPA2000) with a colour-rating scale (De Clercq et al., 2000; Desoete, Roeyers, & 

De Clercq, 2001 & 2002), were constructed. Children have to solve different types of 

mathematical tasks, where children with mathematics learning disability were found to have 

problems (Desoete, Roeyers, & Buysse, 2000). Before solving the different mathematical tasks, 

children first have to ‘predict’  their performance. After doing the exercise, children ‘evaluate’ 

on the same 4-point  rating scale [see 3.2.]. EPA2000 can be used with an dynamic assessment 

purpose [see 3.2.]. A short term intervention can then take place after the pretest in order to 

assess how modifiable children are by comparing their pretest and posttest results. In a small 

study (n = 24) on children with mathematics learning disabilities in group 5 a discriminant 

analysis showed that we could predict for 79% which children got a prediction intervention, 

based on the posttest results of both groups of children (�2 (2) = 6.63, p < .05). Children in the 

intervention-condition had significant higher posttest prediction results (F (1,22) = 6.90, p < 

.05), but no higher posttest evaluation results (F (1, 22) = 0.01, p = ns) and no higher cognitive 

scores (F (1, 22) = 0.03, p = ns) than the children in the non-intervention condition (Desoete , 

Roeyers, & De Clercq, 2001). 

 

Conclusion  

 

Several striking problems emerge in the assessment of metacognition through 

observation, questionnaires, and interviews, which limits the comparison of studies. The 

interpretation of these issues does reflect suggestions for indirect and more dynamic assessment 

of off-line metacognitive skills. The EPA2000 can be used as such a dynamic assessment tool, 

providing rich information about the cognitive and metacognitive processes involved in 

mathematical problem solving, enabling teachers to tailor a relevant instructional program. 

Taking into account the complex nature of mathematical problem solving, it may be 

useful to assess off-line metacognition in young children with mathematics learning disabilities 

in order to focus on these factors and on their role in mathematics learning and development. 
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We stated that an adequate explanation of (meta)cognitive variables should be based upon a 

more indirect and dynamic assessment of these variables. Additional research on this topic may 

enhance our understanding of normal mathematical development. 

Furthermore, therapy on prediction and evaluation has to be one of the aims in the 

treatment of youngsters with mathematics learning disabilities, especially when this appears to 

be  indicated by profile analyses of EPA2000 (De Clercq et al., 2000). When children are aware 

of the difficulty of tasks, they can pay more attention and work more slowly in order to make 

fewer mistakes. Reflecting on the outcome makes children learn from their mistakes and 

successes. Perhaps some mathematics learning disabilities will then be less pervasive, because 

students will know their own strong and weak points and will have learned to become more 

active to control their mathematical thinking processes. Such intervention studies on the 

modifiability of off-line metacognition can also enhance our understanding of normal learning 

and learning potential in general.  

 

3.2.  EPA2000: Assessing off-line metacognition in mathematical problem solving 2. 
 

The purpose of 3.2. is to describe the Evaluation and Prediction 
Assessment (EPA2000). The EPA2000 is a computerized procedure for 
assessing various cognitive and metacognitive processes associated 
with mathematical problem solving in primary school children. 
EPA2000 can easily be used by teachers without much computer 
knowledge. Students solve 80 mathematical tasks and are asked about 
their metacognitive predictions and evaluations on these tasks. An 
actual student protocol is used to illustrate the administration and 
interpretation of the EPA2000.  

 

Introduction 

 

Research from different theoretical approaches has provided information regarding 

processes that are important for young children to solve mathematical problems adequately 

(Donlan, 1998; Koriat, 1995; Lucangeli & Cornoldi, 1997; Metcalfe, 1998; Montague, 1998; 

Schunn, Reder, Nhouyvanisvong, Richards, & Stroffolino, 1997; Schwartz & Metcalfe, 1994). 

Our model of mathematical problem solving integrates nine cognitive processes and two 

metacognitive parameters.  To clarify our conceptual framework, we describe the cognitive 

processes included in mathematical problem solving (see NR, S, K, P, L, C, V, R, N in Table 

1). 

 
                                                 
2 This chapter is based on Desoete, A., Roeyers, H., & De Clercq, A. (2002). EPA2000: 
Assessing off-line metacognition in mathematical problem solving. Focus on learning 
problems in mathematics. In press.  
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Table 1 Cognitive and metacognitive strategies and processes  
COGNITION 

Numeral comprehension and production  (NR) 
e.g., Put into the right order from low to high 39  37  38  40 
 
Operation symbol comprehension and production  (S) 
e.g., Which is correct? 38+1=39 or 38x1=39 

Number system knowledge  (K) 
e.g., Complete this series 37  38  39  ? 

Procedural calculation  (P) 
e.g., 37+1=? 

Language comprehension  (L) 
e.g., 1 more than 37 is ? 

Context comprehension  (C) 
e.g., William has 37 keys. James has 1 key more than William. How many keys does James have ? 

Mental representation visualization  (V) 
e.g., 37 is l more than ? 

Selecting relevant information  (R) 
e.g., William has 37 keys. James has 1 key more than William and 2 keys less than Linda. How many 
keys does James have ? 
 
Number sense  (N) 
e.g., 37 is nearest to? 47,40,73 or 30 

METACOGNITION 
Prediction  (Pr) 
e.g., Do you think you can solve this exercise? 
 
Evaluation  (Ev) 
e.g., Are you sure about this answer? 

 
 

'Cognitive processes' enable the translation of numerical (NR processes), symbolic (S 

processes), simple linguistic (L processes) are complex contextual (C processes) information 

into mental representations or visualizations (V  processes) of the problem or task. 

Furthermore, dealing with number system knowledge (K processes), eliminating irrelevant 

information (R processes) and estimating based on number sense (N processes) typify 

mathematical problem solving and precede procedural calculation processes (P processes), 

leading to the computing of the solution (Desoete, Roeyers, & Buysse, 2001; Desoete, Roeyers, 

Buysse, & De Clercq, 2001).  

In addition 'metacognition' seems to be involved in successful mathematical problem 

solving (see Pr and Ev in Table 1) (Lucangeli & Cornoldi, 1997; Montague, 1998; Tobias & 

Everson,1996). Flavell (1976) defined metacognition as ‘…one’s knowledge concerning one’s 

own cognitive processes and products or anything related to them’ (1976, p. 232). Studies 
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concerned with problem solving strategies in mathematically average-performing children have 

shown that metacognition is instrumental during the initial stage ('Prediction', Pr) of 

mathematical problem solving, when subjects build an appropriate representation of the 

problem, as well as in the final stage ('Evaluation', Ev) of interpretation and checking the 

outcome of the calculations (Verschaffel, 1999). Prediction guarantees working slowly when 

exercises are new or complex and working fast with easy or familiar tasks. Evaluation refers to 

the retrospective verbalizations after the event has transpired (Brown, 1987), where children 

look at what strategies were used and whether they led to a desired result or not.  

Children with mathematics learning disabilities show some typical  shortcomings in 

different 'cognitive' processes (NR, S, K, P, L, C, V, R, N) of mathematical problem solving 

(e.g., Geary, 1993; McCloskey & Macaruso, 1995; Rourke & Conway, 1997; Verschaffel, 

1999). Some of these children have problems in number (NR) and symbol (S) comprehension 

and production. They confuse 6 with 9, 'drie' (three in Dutch) with 'vier' (four in Dutch) or x 

with +. Other children with mathematics learning disabilities lack the needed number system 

knowledge (K) or make especially mistakes of a procedural (P) type. These children confuse 

digits and tens or forget for example in a multidigit addition to start in the right column. 

Language-dependent (L) and mental representation (V) related mistakes or problems dealing 

with linguistic or contextual (C) information as well as a lack of number sense (N) are also 

typical for some children with mathematics learning disabilities (Desoete, Roeyers, Buysse, & 

De Clercq, 2000). Furthermore, children with mathematics learning disabilities often show 

below-average performances on the different metacognitive (Pr, Ev) parameters included in 

mathematical problem solving [see chapter 2]. To focus on the problems of students with 

mathematics learning disabilities and to tailor a relevant instructional program, it is necessary 

to assess the 'cognitive' and 'metacognitive' strengths and weaknesses of these children. No test 

is currently available for a combined assessment of cognitive and metacognitive skills in grade 

3 of the elementary school [see 3.1.]. The purpose of this chapter is to describe such assessment 

strategies for mathematics.  

The Evaluation and Prediction Assessment (EPA2000) is a computerized assessment  

of cognitive and metacognitive skills. EPA2000 was adapted from a longer version of a semi-

structured metacognitive interview (Metacognitive Skills and Beliefs Assessment - MBA and 

MSA, Desoete & Roeyers, 1998) designed to assess processes, important for successful 

mathematical problem solving [see chapter 2]. A paper-and-pencil version was developed 

primarily to be used as a diagnostic-prescriptive tool, to assess primary school students’ 

strengths and weaknesses in mathematical problem solving (Evaluation and Prediction 

Assessment, EPA, Desoete & Roeyers, 1999). Next, a less informal but highly motivating 

computer version was developed with the same items (Evaluation and Prediction Assessment 
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2000, EPA2000, De Clercq et al., 2000). EPA and EPA2000 were designed for average 

intelligent children with or without mathematics learning disabilities in grade 3. 

To provide background, the theoretical basis of EPA2000 is described first. The 

research findings that support the EPA2000 as a diagnostic-prescriptive tool are then presented. 

Finally an actual student protocol is used to illustrate the administration and interpretation of 

the EPA2000. 

EPA and EPA2000 asses nine cognitive (NR, S, K, P, L, C, V, R, N) and two 

metacognitive (Pr, Ev) processes found to be important in mathematical problem solving in 

grade 2 and 3 (see Table 1).  Exercises, in EPA and EPA2000, on Arabic Numeral 

comprehension and production or NR problems include the reading of single-digit and multiple-

digit numerals as well as verbal numeral comprehension (e.g., Put into the right order from low 

to high: 39  37  38  40). The numeral comprehension additionally includes operation Symbol 

comprehension or S problems (e.g., Which is correct? 38+1=39 or 38x1=39). Number system 

Knowledge or K problems deal with insight into the number structure (e.g., Complete this 

series: 37, 38, 39, _). Within the Procedural calculation items (or P problems) the capacity to 

do additions, subtractions, multiplications and divisions is assessed (e.g., 37+1=_). 

Furthermore, exercises include items probing basic arithmetical facts and items with carry-over 

problems. Within the word problems of EPA and EPA2000, the L problems demand a simple 

single-sentence Language analysis (e.g., 1 more than 37 is _). The C  type of word problems, 

however, depend upon Contextual language analysis in more than one sentence (e.g., baker 

problem in Figure 1). Another cognitive activity necessary to solve word problems is mental 

representation or Visualization of the problem (V problems). '15 is l less than ?' is a such V 

problem. Without visualization children answer 14, since they translate ‘less’ into ‘minus’, and 

answer '14' in a superficial number-crunching approach. In order to give correct answers, 

irrelevant information has to be eliminated in R type word problems where Relevant 

information has to be selected. ‘Lena has 24 Christmas balls, Grace has 15 Christmas stars and 

8 Christmas balls. How many Christmas balls do they have altogether?’ is such a R problem. 

Here the number of stars is irrelevant. Furthermore, in EPA2000 some items on Number sense 

(N problems) are included (e.g., 37 is nearest to? Choose between 47, 40, 73 or 30).  

As to 'metacognition', Verschaffel (1999) stressed its importance during the initial 

(prediction) and final (evaluation) stages of problem solving (see Table 1). Since these 

metacognitive skills are measured before or after the solving of exercises, we labeled them ‘off-

line (measured) metacognition’. In two studies we found off-line metacognition capable of 

differentiating between good performers, moderate performers and children with mathematics 

learning disabilities [see also chapter 2]. To prevent floor or ceiling effects on children with and 

without mathematics learning disabilities in grade 3, exercises of different complexity (varying 
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from grade l to 4) were introduced to measure mathematical problem solving in children of 

grade 3.   

The EPA 

 

The EPA paper and pencil version (EPA) (Desoete & Roeyers, 1999) has a three-part 

(metacognitive prediction - cognition - metacognitive evaluation) assessment. Children have to 

predict and evaluate with 80 mathematical problem solving tasks (e.g., NR problems, S 

problems, K problems, P problems, L problems, C problems, V problems, R problems, N 

problems - see Table 1). In the assessment of prediction, children are asked to look at exercises 

without solving them and to predict if they will be successful in this task on a 4-point rating 

scale. Children have to evaluate after solving the same mathematical tasks on the same 4-point  

rating scale.  

Metacognitive predictions or evaluations are awarded with two points, whenever they 

correspond to the child’s actual performance on the task (doing the exercise correctly and rating 

‘absolutely sure I am correct’, or doing the exercise wrong and rating ‘absolutely sure I am 

wrong’) (see Table 2). Predicting and evaluating, rating ‘sure I am correct’ or ‘sure I am 

wrong’ receive one point whenever they correspond. Other answers do not gain any points, as 

they are considered to represent a lack of off-line metacognition. As to the cognitive 

mathematical problem solving, children obtain l point for every correct answer. 
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Table 2  EPA and EPA2000 scoring system 
 
 Real cognitive score  

(NR, S, K, P, L, C, V, R, N) + 
Real cognitive score  
(NR, S, K, P, L, C, V, R, N) - 

Prediction   
(PrS ++) 

++/+    
2 point for prediction 
1 point for mathematical cognition 

++/-    
0 point for prediction 
0 point for mathematical cognition 

Prediction   
(PrS +) 

+/+      
1 point for prediction 
1 point for mathematical cognition 

+/-      
0 point for prediction 
0 point for mathematical cognition 

Prediction   
(PrS -) 

-/+       
0 point for prediction 
1 point for mathematical cognition 

-/-       
1 point for prediction 
0 point for mathematical cognition 

Prediction   
(PrS --) 

--/+       
0 point for prediction 
1 point for mathematical cognition 

--/-      
2 point for prediction 
0 point for mathematical cognition 

Evaluation  
(EvS ++) 

+/++     
2 point for evaluation 
1 point for mathematical cognition 

-/++     
0 point for evaluation 
0 point for mathematical cognition 

Evaluation  
(EvS +) 

+/+       
1 point for evaluation 
1 point for mathematical cognition 

-/+       
0 point for evaluation 
0 point for mathematical cognition 

Evaluation  
(EvS -) 

+/-        
0 point for evaluation 
1 point for mathematical cognition 

-/-        
1 point for evaluation 
0 point for mathematical cognition 

Evaluation  
(EvS --) 

+/--       
0 point for evaluation 
1 point for mathematical cognition 

-/--       
2 point for evaluation 
0 point for mathematical cognition 

 
Note. PrS ++ = I am absolutely sure that I will solve the exercise correctly, PrS + = I am quite sure that I 
will solve the exercise correctly, PrS - = I am quite sure that I will solve the exercise wrong, PrS -- = I am 
absolutely sure that I will solve the exercise wrong, EvS ++ = I am absolutely sure that I have solved the 
exercise correctly, EvS + = I am quite sure that I have solved the exercise correctly, EvS - = I am quite sure 
that I have solved the exercise wrong, EvS -- = I am absolutely sure that I have solved the exercise wrong, 
Real cognitive score (NR, S, K, P, L, C, V, R, N) + = correct answer to the mathematical problem solving 
task, Real cognitive score (NR, S, K, P, L, C, V, R, N) - = wrong answer on mathematical problem solving 
task. 

 

The psychometric data of the EPA have been analyzed on 1336 third-grade children. 

Furthermore, mathematical processes (NR, S, K, P, L, C, V, R, N, Pr, Ev) were compared in 

average intelligent children with mathematics learning disabilities (-2 SD on mathematical 

performance tests), children with mathematics learning problems (-1 SD on mathematical 

performance tests) and moderate achieving peers without learning disabilities on EPA (n = 320) 

(Desoete, Roeyers, & Buysse, 2000). In addition various experts on mathematics and on 

mathematics learning disabilities were consulted in order to increase the construct validity. As 

to the concurrent validity, Pearson product moment correlation coefficients were computed 

between the mathematical problem solving scores of the EPA and the scores of other 

mathematics tests for these children (n = 145). A correlation of .56 (p < .0005) was found with 

another mathematical problem solving test frequently used in Belgium. In addition, a 

correlation of .79 (p < .0005) was found between the EPA mathematical problem solving scores 
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and teacher ratings of mathematics skills. Furthermore, Cronbach’s alpha reliability analyses 

were conducted. Reliability coefficients of .88 were found. As to metacognition, various 

authors were consulted to increase the construct validity. In addition, Cronbach’s alphas of .79 

and .73 respectively were found for the prediction and evaluation scores of the EPA in the same 

sample (n = 145). In another study with 30 third-grade students test-retest correlations of .81 (p 

< .0005) were found (De Clercq et al., 2000). 

It became clear from these studies that the students and teachers were able to handle 

the instrument well. Findings support the use of this assessment procedure to differentiate 

between average (between –0.5 SD and +0.5 SD) and above-average (+2 SD) achievers on 

mathematical problem solving tests and peers with mathematics learning disabilities (-2 SD on 

these tests) in the prediction and evaluation skills (Desoete, Roeyers, Buysse, & De Clercq, 

2000 & 2001).  

However, this study revealed one restriction. There appeared to be an interference of 

cognitive and metacognitive mathematical solving processes with the paper and pencil 

assessment, even with teachers giving very explicit instructions to predict and not to calculate 

in the prediction phase.  Because of these findings we decided to design an assessment without 

possible interferences between the cognitive and metacognitive processes. Since most studies 

suggest the equivalence of conventional and computerized instruments (Schulenberg & 

Yutrzenka, 1999), a computerized version was developed, which is easy to be modified and 

translated by a teacher without computer knowledge.  

 

The EPA2000 

 

The computerized assessment (EPA2000) is derived from the paper and pencil 

assessment (EPA) with exactly the same cognitive (NR, S, K, P, L, C, V, R, N) and 

metacognitive (Pr, Ev) tasks (Desoete, De Clercq, & Roeyers, 2000). With EPA2000 we are 

able to obtain a clear picture of and differentiate between cognitive and off-line metacognitive 

processes of third-graders (De Clercq et al., 2000). Since children have to click with the mouse 

while predicting, there is less time to calculate. In addition the prediction reaction time can be 

computed, in order to control for the interference between prediction and cognition. 

Furthermore children perform the cognitive tasks (NR, S, K, P, L, C, V, R, N) without seeing 

what they predicted and they evaluate without seeing their calculation results. The software is 

easily installed by teachers without much computer knowledge. 
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In the first part metacognitive prediction (Pr) skills are assessed (see Figure 1). 

Children have to predict on 80 mathematical problem solving tasks. Children are asked to look 

at the exercises without solving them and to predict whether they will be successful in this task 

on a color rating scale. In Figure 1 children have to predict on contextual language related (Pr 

on C) tasks. Children might predict well and do the exercise wrong, or vice-versa (see Table 2). 

 

Figure 1 Assessment of metacognitive prediction 

 
 

In a second part, cognition (NR, S, K, P, L, C, V, R, N) is assessed. Children have to 

solve the same 80 mathematics problem solving tasks they predicted on before. In Figure 2 

children are asked to solve a P problem.  



Assessment of off-line metacognition 

 65

Figure 2 Assessment of cognition (P tasks) 

 
 

 

In a third part, children are asked to ‘evaluate’ (Ev) after solving the mathematical 

problem solving task, without seeing how they predicted or solved these tasks (see Figure 3). 

The same color rating scale as in prediction is used. The 80 prediction (Pr), cognition (NR, S, 

K, P, L, C, V, R, N) and evaluation (Ev) problems on the EPA2000 (Desoete, De Clercq et al., 

2000) are exactly the same as those of the EPA (Desoete, & Roeyers, 1999).  

Figure 3 Assessment of metacognitive evaluation skills 
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The EPA2000 items are scored as in the EPA paper and pencil form (see Table 2). 

Results on the three subscales are the basis for developing cognitive and metacognitive profiles 

(see Appendix) for individual students. These profiles provide a graphic display (see Appendix) 

of a student’s cognitive (NR, S, K, P, L, C, V, R, N) and metacognitive (Pr, Ev) mathematical 

problem solving strengths and weaknesses and can be used as a guide to tailor instruction by 

teachers for individual students.  

The EPA2000 was tried out in one classroom with 30 children. The teacher installed the 

software and interpreted the results. It appeared that all children and the teacher were able to 

handle the instrument very well. In addition, the psychometric data were analyzed on 407 

children (Desoete, Roeyers, & De Clercq, 2001a). Cronbach’s alphas were .89 for the cognitive 

scores, .74 for the metacognitive prediction skills, and .85 for metacognitive evaluation skills. 

In another study, with 30 third-grade children, test-retest correlations of .80 (p < .0005) for the 

EPA and EPA2000 were found (De Clercq et al., 2000).  

The EPA2000 has recently been used in different studies focusing on children with  

mathematics learning disabilities (-2 SD) in grade 3 [see chapter 4].  Moreover, an exploratory 

study (Desoete, Roeyers, & De Clercq, 2001a) was setup to investigate whether average 

intelligent third graders with specific mathematics learning disabilities (n = 60) could be 

distinguished from children without learning disabilities (n = 60) in grade 3 on prediction and 

evaluation scores of EPA2000. In order to do so we compared two groups of  average 

intelligent children, controlling for differences in TIQ, reading skills and socio-economic level 

of both parents. Chi-square analyses revealed significant differences between the two groups 

(�2 (2) = 68.05, p < .0005) (see Table 3). Eighty-tree percent of the children could be classified 

into the correct diagnostic group on the basis of the two metacognitive scores.  

 

Table 3  Discriminant Analysis of off-line metacognition in children with and without 
Mahematics earning disabilities in grade 3 
 
     Group    
     Math. 

LD. 
 No LD.  

Scale   (max.) Function 
Coefficients 

 M SD M SD 

Prediction   (160) .48  99.34 18.78 125.93 14.30 
Evaluation   (160) .60  101.81 18.98 127.56 11.04 
Group centroids    -.88  .88  
Function 1  Eigen value 

0.79 
% variance 
100 

 Canonical corr.  
0.66 

Wilks's Lambda 
0.56 

Note. Math. LD. = average intelligent children with specific mathematics learning disabilities in grade 3; 
No LD. = average intelligent children without learning disabilities in grade 3. 
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Follow-up analyses (see Table 3) revealed that children with specific mathematics 

learning disabilities showed lower metacognitive prediction scores (F (1,118) = 76.18, p 

<.0005) and lower evaluation scores (F (1,118) = 82.55, p <.0005) than their age-mates without 

learning disabilities. 

In another study (n = 407), our results indicate EPA 2000 to be very useful in the 

assessment of average intelligent (TIQ > 90) children with specific mathematics or combined 

reading and mathematics learning disabilities (Desoete, Roeyers, & De Clercq, 2001). Children 

with ADHD had somehow more problems, since the assessment took too long for these young 

children.  

A demo version of the EPA2000 can be downloaded free from 

http://twiprof1.rug.ac.be/epa2000. In the what follows we highlight the use of EPA2000 in the 

description of the cognitive and metacognitive strengths and weaknesses of Helmut, who was 

referred to us by a school psychologist because of significantly below-grade-level mathematics 

achievement. EPA2000 was administered and interpreted with the teacher. 

 

 

Administration and interpreting the EPA2000 

 
 

Helmut is a 9-year-old average intelligent (WISC R TIQ 104, VIQ 109, PIQ 98) boy 

with mathematics learning disabilities. Helmut performs average in reading and poorly in 

mathematics at school. The intelligence subtests are presented in Figure 4.  EPA2000 was 

administered by his regular teacher in collaboration with the school psychologist.  

 

Figure 4 Intelligence profile of Helmut (d.o.b. 12.07.91) 
Verbal subtests of the WISC-R  
I Information  SS7 
S Similarities  SS15 
A Arithmetic   SS 9 
V Vocabulary  SS 12 
C Comprehension  SS 16 
D Digit span   SS 10 
 
Performance subtests of the WISC-R 
PC Picture Completion  SS 12 
PA Picture Arrangement  SS 12 
Bl Blocks   SS 10 
FC Figure Completion  SS 8 
MA Mazes   SS 8 
SU Substitution  SS 9 
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Helmut first made predictions (Pr) on his performance in the mathematical problem 

solving tasks. Then he solved the mathematical problem solving tasks (NR, S, K, P, L, C, V, R, 

N) and evaluated (Ev) his performance (see Table 1).  

As to the prediction (Pr), he got a score of 96/160 or 60% (see Appendix).  

Also the NR tasks, the reading of single-digit exercises (9, 2, 7, 3, 4, 8, 5) was 

correct. The reading of multiple-digit exercises was good even when the digit name was not 

congruent with the number structure, with exception of the confusion of 71 and 37. Helmut 

read correctly 71,  41, 21, 40, 51, 82, 70, 91, 712, and 978. Furthermore, Helmut’s verbal 

numeral comprehension was good. There was no confusion of  written and oral number 

production. Helmut read 62, 81, 630, 311 and 407 without mistakes. Helmut did not have NR 

problems. He got a score of 21/22 or 95% (see Appendix). 

Also on operation symbol comprehension (S problems), all items were solved 

correctly. Helmut knew <,>,x, + and knew that the weight of a person is expressed in pounds. 

He got a score of 5/5 or 100% (see Appendix). 

The number system knowledge (K problems) was also assessed. Helmut could put 5 

numbers (e.g., 19 28 37 46 or 105 150 501 510)  in the correct order, whereas he was mistaken 

with 10.1 11 15.1  51 and with the time structuration task. He got a score of 8/10 or 80% 

As to the P tasks, procedural additions to be solved by mental arithmetic (15+2=_ and 

42+51=_) were correctly handled (see 2/2 addition Appendix). Subtraction (19-15=_) was 

solved correctly, with exception of 17-3=_ (see 1/2 subtraction Appendix). Items to be solved 

with carry over (15+9=_ and 17-9=_) were correct (see 2/2 carry over Appendix). Helmut knew 

simple arithmetical facts (3x7=_, 8x3=_, and 8:2=_ ;35:7=_) (see 4/4 arithmetical facts). 

Procedural calculation tasks (15x7=_ and 24x8=_) were incorrect whereas 210x30 was solved 

correctly (see 1/3 multiplication Appendix). The division task 98:7=_ was incorrect, whereas 

168:8=_ was solved correctly (see 1/2 division Appendix). Procedural items to be solved by 

calculation procedures (27+653=_, 60+235=_, 210x30=_) were not correct (see 2/5 calculation 

procedures Appendix). In total he got 13/20 or 65% for P tasks (see also graphic display in 

Appendix). 

As to the language related word problems (L problems), Helmut solved correctly 

‘twice 6 is ’, ‘ l less than 25 is ’ and ‘l more than 58 is’ (see 3/3 simply language factor in 

Appendix).  Word problems involving an additional order factor (e.g., ‘ is half of 8’ and _‘ is 2 

less than 54’) were correct (see 2/2 temporo-spatial or order factor Appendix). In total he got a 

score of 5/5 or 100% (see graphic display Appendix). 

C problems or word problems based on additional context information were correctly 

solved in the case of the postman problem but not in the case of the baker problem, key 

problem and the marbles problem (see 1/4 or 25% context factor Appendix).  
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As to the V  problems, the following word problems, where mental representation 

was essential in order to solve the problem, were incorrectly answered: ‘58 is l more than_’, ‘16 

is half of_’ and ‘170 is 2 less than_’ although ‘58 is l less than_’ and ‘14 is twice _’ were 

correct (see 2/5 or 40 % mental representation or visualisation factor Appendix).  

Furthermore, as to the R problems, the word problems where Helmut had to eliminate 

irrelevant information (concert problem, km problem, Christmas stars problem, milk problem) 

were all incorrect (see 0/4 or 0% relevance factor Appendix).  

In addition word problems based on number sense (N problems) were correct in the 

case of the flyer problem, but not in the case of the car problem, 27 near _, 99 near _ and in the 

case of the bus problem (see 1/5 or 20% number sense Appendix).  

Helmut often misjudged his own results and got a score of 85/160 or 53% on 

evaluation (Ev) (see Appendix). It took Helmut 40 minutes to complete the EPA2000. Helmut's  

cognitive and metacognitive profile was computed. Based upon the results of 550 third graders 

without learning problems (see ° in the graphic display in the Appendix) we were able to 

interpret Helmuts (see * ) graphic display.  

Summarizing the data, we found that Helmut’s cognitive strengths were his numerical 

comprehension and prediction (NR), his symbol comprehension and production (S), his insight 

into the structure of the numbers (K) and his capacity for analyzing linguistic information (L). 

His cognitive weaknesses were dealing with addition contextual information (C), mental 

representation of the answer (V), selecting relevant information (R) and estimating in number 

sense tasks (N). As to the off-line metacognitive skills, we found Helmut retarded on prediction 

(Pr) skills but even more retarded on evaluation (Ev) skills. The following instructional 

recommendations could therefore be given: We recommended that Helmut receive 

comprehensive cognitive strategy instruction in coping with contextual cues (C), in problem 

representation strategies or visualization (V), in selecting relevant information (R) and in 

dealing with number sense (N). Furthermore, we recommended reflection moments after the 

mathematical problem solving, to increase the prediction (Pr) but especially also the boy’s 

evaluation skills (Ev). This intervention took place, in close collaboration with the teacher, in a 

rehabilitation center twice a week in two 30-min sessions for one year. 

  

Conclusion 

 

The EPA2000 makes it possible for the teacher to obtain a fair intra-individual picture 

of the cognitive processes involved in mathematical problem solving of third grade children 

with or without mathematics learning disabilities, in order to analyze problem solving mistakes. 

The profile summarizes students’ strengths and weaknesses and facilitates interpretation of the 
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data, by graphing the scores from the scoring form. This allows instructional recommendations 

to be made. EPA2000 in this manner provides a picture of the number comprehension and 

production (NR), the operation symbol comprehension and production (S), the number system 

knowledge (K) and the capacities to calculate (P). We are furthermore able to note whether the 

problems with word problems are due to inadequate language-related strategies (L), problems 

to deal with context information (C) or whether they are due to inadequate mental problem 

representation and visualization (V). Furthermore, we obtain a picture of students’ cognitive 

capacities  to eliminate irrelevant information (R) as well as of the number sense skills (N) of 

third-graders.  Furthermore, EPA2000 Student Profile facilitates the  interpretation of the 

metacognitive prediction (Pr) and evaluation (Ev) skills, compared with same-age children.  

Helmut’s performance on the EPA2000 indicated that he was able to read single and 

multiple digits and comprehend operation symbols without problems. Furthermore, simple 

word problems based on single-sentence linguistic information without the need for mental 

representation of that information did not pose any problem for the boy. However, whenever 

number crunching was no longer adequate and the use of problem representation strategies was 

necessary, Helmut failed. In addition, he could not cope with contextual information nor could 

he eliminate irrelevant information or depend on a good number sense. In this way the 

EPA2000 provided the teacher with information about Helmut’s cognitive problem solving 

strategies and gave her cues as to a relevant cognitive instructional program for the boy. 

Furthermore, Helmut’s prediction skills were better than his evaluation skills. However, 

evaluation is necessary to decrease one’s impulsivity and to reflect upon one’s actions in order 

to learn in the near future. Helmut should therefore be required to give a rationale for his 

decisions and answers to instill the notion that decisions and answers should be metacognitively 

guided.  

To sum up, children with mathematics learning disabilities show shortcomings in 

different cognitive processes (NR, S, K, P, L, C, V, R, N) and in metacognition (Pr, Ev) 

associated with mathematical problem solving. To focus on the particular problems of students 

with mathematics learning disabilities and to tailor a relevant instructional program, it is 

necessary to assess the cognitive and metacognitive strengths and weaknesses of these children. 

This assessment can easily be done in the classroom, by a teacher in collaboration with a school 

psychologist. The assessment does not necessitate much computer knowledge. The EPA2000 is 

a motivating instrument, providing rich information about the processes involved in 

mathematical problem solving. The student’s profile has several educational implications, 

enabling teachers and therapists in developing relevant instructional programs to optimize 

students’ mathematical insights. 
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Appendix 

 
Cognitive and metacognitive profile of Helmut 

 

I. Cognitive profile      51/80=63% 
Numeral comprehension and production (NR problems)   21/22=95% 

Number reading Units     7/7 
Number reading Tens Units    9/10 
Verbal numerical comprehension    5/5 

Symbol comprehension and production (S problems)   5/5=100% 
Number system knowledge or insight into the number structure(K problems) 8/10=80% 
Word problems  

Language factor (L problems)    5/5=100% 
Simply language factor   3/3 
Language related to temporo-spatial or order  2/2 

Context factor (C problems)     1/4=25% 
Mental representation or visualization factor (V problems)  2/5=40% 
Relevance factor (R problems)    0/4=0% 
Number sense factor (N problems)    1/5=20% 

Procedural calculation (P problems)     13/20=65% 
Arithmetical facts (memory) 

Multiplication  arithmetical facts   2/2 
Division arithmetical facts    2/2 

Calculation procedures (domain-specific skills) 
Addition      2/2 
Subtraction     1/2 

  Carry over     2/2 
Multiplication     1/3 
Division      1/2 
Calculation procedures >100   2/5 

 
II. Metacognitive profile  
Prediction (Pr)        96/160=60% 
Evaluation (Ev)       85/160=53% 
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Graphic display of the Student Profile 

EPA2000 Evaluatie en Predictie Assessment (De Clercq, et al., 2000) 

Child: Helmut   Grade : 3     Date:   Date of Birth:  

100 ° *NR *S   ° *L       

90  °    ° °     

80   * K        ° 

70      ° *P      °  

60   °     ° ° *Pr *Ev 

50            

40       *V      

30      *C      

20         *N   

10        *R    

Grade 3 children (n = 550) (°) and profile Helmut (*) .  

 

Strenghts: NR, S,K, L, compared with third graders; P is moderate compared with third graders 

 

Weaknesses: C, V, R, N,Pr and Ev compared with third grades 
Recommendations: Therapy on C, V, R, N. Helping to develop prediction skills before starting 
mathematical problem solving. Stimulating evaluating skills after mathematical problem 
solving tasks 
 
Keys NR = Number comprehension and production, S = Symbol comprehension and 
production, K = Number System Knowledge, P = Procedural calculation, L = Dealing with 
linguistic information, C = Dealing with contextual information, V = Mental representation, 
visualization, R = Selecting relevant information,  N = Number sense,  Pr = Prediction,  Ev= 
Evaluation 
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Chapter 4 

 

Off-line metacognition. 

A domain-specific retardation in young children with learning 

disabilities?1 

 

 
 

Off-line metacognition (prediction and evaluation) was assessed in 437 
average intelligent children, with or without learning disabilities, in 
grades 2 and 3. Children with specific mathematics learning disabilities 
were compared with peers with specific reading disabilities, children 
with combined learning disabilities, age-matched peers and younger 
children matched at mathematical problem solving level. Our results 
indicate that off-line metacognition cannot be reduced to a 
demonstration of intelligence. Moreover, children with reading 
disabilities were found to have comparable off-line metacognitive 
scores to age-matched peers, without learning disabilities. 
Furthermore, significant lower prediction and evaluation scores were 
found for children with specific or combined mathematics learning 
disabilities compared with age-matched peers. In addition, our data 
showed a different metacognitive profile for children with specific or 
combined mathematics learning disabilities, not comparable on all 
aspects with the profile of younger children, as suggested by the 
retardation or maturational lag hypothesis. The educational 
implications of these results are discussed. 

 

Introduction 

Flavell introduced the concept of metacognition in 1976. He defined metacognition as 

the knowledge and active monitoring of one’s own cognitive processes. Metacognition has 

become a general multidimensional construct enabling learners to adjust to varying tasks, 
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demands and contexts (e.g., Hutchinson, 1992; Montague, 1996, 1997). Moreover, 

metacognition is currently often used in an overinclusive way, including motivational and 

affective constructs (Boekaerts, 1999). Despite the emphasis on metacognition, many 

metacognitive concepts are nowadays interpreted differently by various researchers and include 

a wide range of phenomena. We will therefore start with a definition of our concepts, to avoid 

misunderstanding  

Metacognition has traditionally been differentiated into two central components, 

namely metacognitive knowledge and metacognitive processes (Lucangeli, Galderisi & 

Cornoldi, 1995). ‘Metacognitive knowledge’ can be described as the knowledge, awareness, 

and deeper understanding of one’s own cognitive processes and products (Flavell, 1976). In 

addition, ‘metacognitive processes’ or ‘skills’ can be seen as the voluntary control people have 

of their own cognitive processes (Brown, 1980).  

One of the metacognitive skills is ‘prediction’. Prediction guarantees for children 

thinking about the learning objectives, proper learning characteristics and the available time. 

Moreover, children estimate or predict the difficulty of a task and use that prediction 

metacognitively to regulate engagement, related to outcome and efficacy expectation (Winne, 

1997). There have already been a number of studies dealing with the importance of prospective 

‘prediction’ skills in mathematics (e.g., Lucangeli & Cornoldi, 1997). Cornoldi (1998) showed 

that cognition is affected by predictions, which precede and are triggered by a specific task. The 

ability to predict enables children to foresee task difficulties and makes children work slowly 

on difficult tasks and more quickly on easier tasks. In addition prediction makes children relate 

problems to other problems, develop intuition about the prerequisites required for doing the 

task and distinguish between apparent and real difficulties in mathematical problem solving 

(Lucangeli, Cornoldi, & Tellarini, 1998).   

Another metacognitive skill, the ‘evaluation’ skill, can be defined as the retrospective 

reflections after the event has transpired (Brown, 1987), where children look at what strategies 

were used and whether or not they led to a desired result. Children reflect on the outcome and 

on the understanding of the problem and the appropriateness of the plan, the execution of the 

solution method as well as on the adequacy of the answer within the context of the problem 

(Garofalo & Lester, 1985; Vermeer, 1997).  Evaluation makes children evaluate their 

performance and compare task performance with other people and use the final result in 

locating the error in the solution process (Lucangeli et al., 1998). 

                                                                                                                                                         
1 This chapter is based on Desoete, A., & Roeyers, H. (2001). Off-line metacognition. A 
domain-specific retardation in young children with learning disabilities? Learning Disabilities 
Quarterly. In press. 
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In this chapter we restrict ‘prediction’ to predicting whether or not children are likely 

to solve a particular problem. Evaluation in this context is restricted to the outcome evaluation 

or to the judgement of how well children did in the absence of feedback. Since prediction and 

evaluation are measured before or after the solving of exercises, we labeled them as ‘off-line 

(measured) metacognition’, in contrast to ‘on-line (measured) metacognitive skills’, such as 

planning and monitoring. Off-line metacognition differentiated between average and above-

average mathematical problem solvers and between students with a mathematics learning 

disability (Desoete, Roeyers, & Buysse, 2001).  

Prediction and evaluation are related to concepts such as calibration’, ‘feeling-of-

knowing’, ‘judgments of learning’, and the research on ‘Metacognitive Knowledge Monitoring 

Assessment ‘ and the ‘feelings of difficulty’. Calibration can be defined in terms of whether the 

predicted value assigned to a single item is followed by the occurrence of that value on the 

criterion test. A comparison is made of whether the prediction before a task corresponds to the 

actual performance on the task (Nelson, 1996a & b). Some children know they know, others 

have the illusion of knowing, while other children know they don’t know and a last group does 

not know they know. The Feeling of Knowing (FOK) is ‘a rating made by people about the 

probability that they will be able to recognize an element of information’ (Koriat, 1998; Lories, 

Dardenne, & Yzerbyt, 1998, p. 7; Reder & Ritter, 1992). Nhouyvanisvong and Reder (1998) 

reviewed different paradigms to clarify the FOK. They found that the judgements preceding 

execution of question-answering strategies (pre-retrieval FOK) were part of a more general 

process occurring automatically when a question is asked, to help to regulate strategy selection 

and operating. Judgements Of Learning (JOL) occur during or after acquisition and are 

predictors of future test performance on currently recallable items (Nelson, 1992, 1996a & b; 

Nelson & Narens, 1990, p. 130). Tobias and Everson (1996) developed the ‘Metacognitive 

Knowledge Monitoring Assessment (KMA). With this instrument they assess what students 

‘think’ they know or do not know (what we call prediction) and what they ‘really’ know and do 

not know. This relationship is analyzed in four scores (predicted score + real score +, predicted 

score + real score - , predicted score - real score -, predicted score - real score +). Correct 

knowledge monitoring is seen in correspondence between the real scores and the predicted 

scores. This research design is very much like the one we used. Furthermore, the study of 

Efklides, Papadaki, Papantoniou, and Koisseoglou (1997) on the ‘feelings of difficulty’ is also 

related to our study on prediction and evaluation. Their feeling of difficulty is ‘the subjective 

experiences of task complexity’ assessed on a 4-point rating scale (1997, p. 233).  

From a developmental point of view, metacognitive knowledge precedes 

metacognitive skills (Flavell, 1979). In school-aged children, metacognitive knowledge grows 
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through the development of a strong conceptual knowledge base, domain-specific strategies 

and perturbation resulting in the accommodation of schemes at higher levels of abstraction 

(Carr & Biddlecomb, 1998). Around the age of 9 to 10 years, metacognitive knowledge 

becomes a comprehensive theory and expands through reflection on one’s own learning and on 

the learning of others (Berk, 1997). In addition, metacognitive knowledge was found to expand 

using efficient metacognitive skills (Carr, Alexander, & Folds-Bennett, 1994). These 

metacognitive skills were found to be maturing until adolescence (Berk, 1997). 

The metacognitive research on reading peaked in the 1980s (e.g., Jacobs & Paris, 

1987) and has plateaued since (Wong, 1996). Metacognition has more recently also been 

applied to mathematics (e.g., Borkowski, 1992; Hacker, Dunlosky, & Graesser, 1998; 

Schoenfeld, 1992; Vermeer, 1997). Studies concerned with problem solving strategies in 

mathematically average-performing children have shown that metacognition is instrumental 

during the initial stage of mathematical problem solving, as well as in the final stage of 

interpretation and checking the outcome of the calculations (Verschaffel, 1999). Metacognition 

was furthermore found to be important when the task demands challenge the child but do not 

overtax existing skills (Carr, Alexander, & Folds-Bennett, 1994). Numerical and geometrical 

problem solving abilities in particular were found to be strongly related to metacognitive skills, 

whereas this relation was only present for some children in arithmetic performance tasks 

(Lucangeli, Cornoldi, & Tellarini, 1998). Nevertheless, some authors some remain skeptic as to 

the importance of metacognition in young children (e.g., Siegler, 1989). 

Children with mathematics learning disabilities were found to have less developed 

metacognitive knowledge or awareness and poorer metacognitive skills (Lucangeli & Cornoldi, 

1997; Lucangeli et al., 1998). These children also verbalized fewer of those skills (Montague, 

1998). In addition, it has recently been proposed that children with mathematics learning 

disabilities have different metacognitive beliefs than children with good mathematical 

performance (Lucangeli et al., 1998). Furthermore, children with reading learning disabilities 

were found to be weaker in the integration of metacognition with on-line processing and 

problem solution than peers without disabilities (Swanson, 1993).  

Although there is nowadays a certain consensus that metacognition has an important 

effect on students’ achievement (Garcia & Pintrich, 1994; Metcalfe, 1998; Verschaffel, 1999; 

Wong, 1996), some questions remain unresolved. One of these questions considers the 

relationship between metacognition and intelligence. This relationship is hotly disputed. Brown 

(1978) and Sternberg (1979, 1985) conceptualized metacognitive skills as demonstrations of 

intelligence and as a part of the cognitive repertoire. Swanson’s (1990) independency model, on 

the other hand, viewed intelligence and metacognition as two separate entities, where 
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metacognitive skills could compensate for low intelligence scores. Furthermore, empirical 

evidence was found for the model, hypothesizing an interaction between metacognition and 

intelligence as well as an additional value of metacognition in the explanation of learning (e.g., 

Demetriou, Gustafsson, Efklides, & Platsidou, 1992; Sleife, Weiss, & Bell, 1985). 

Another unresolved question is whether low metacognitive scores are to be considered as 

demonstrations of a ‘maturational lag’ or ‘retardation’ rather than being viewed as a ‘deficit’ in 

children with learning disabilities. Wong (1996) pointed out that the assumption that students 

with learning disabilities lack metacognitive skills is invalid. These children appear to have less 

sophisticated metacognitive skills than peers without learning disabilities. Furthermore, low 

metacognitive scores in children with learning disabilities are considered by Borkowski and 

Thorpe (1994) to be the result of insufficient maturity in the development of the regulation of 

mathematical cognition. In this case metacognitive differences between children with and 

without learning disabilities can be explained according to the ‘maturation lag’ or ‘retardation 

hypothesis’. However, another possible explanation is the ‘deficit hypothesis’, where 

metacognition is considered as a deficit in children with learning disabilities (Geary, 1993). In 

the case of the deficit hypothesis, children with learning disabilities would have different or 

disharmonically developed metacognitive knowledge and skills, not at all comparable with the 

skills and knowledge of younger children matched at mathematical performance level. 

Davidson and Freebody (1986) found the deficit hypothesis not to be capable of explaining 

some of their research data. 

Another unresolved question is whether metacognition is a ‘domain-specific’ or a 

more ‘general’ phenomenon.  Some authors regard metacognition as higher-order skills, 

affecting performance in a variety of academic areas and therefore as more general skills. In 

such cases metacognitive components may seem to be pervasive across situations, and work 

interactively (Montague, 1996, 1997). The findings of Schraw, Dunkle, Bendixen, and De 

Backer Roedel (1995) supported this domain-general hypothesis. On the other hand, much of 

the work on expert problem solving is consistent with the domain-specific hypothesis (Bereiter 

& Scardamalia, 1993). Expert problem solvers were found to be able to assess and update their 

mental representations in familiar domains, but to be no more able than novices in using these 

metacognitive skills in unfamiliar ones (Davidson & Sternberg, 1998, p. 54). We refer to 

Perkins and Salomon (1989) for a comparison of the domain-specific and domain-general 

views.  

In summary, much research on metacognition has yielded inconsistent results in 

younger children (e.g., Siegler, 1989). Furthermore, the debate on the relationship between 

metacognition and intelligence, the maturational lag and domain specificity hypothesis, remains 
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unresolved. In addition, although authors do agree that an operational definition of learning 

disabilities is meaningful in order to differentiate children with learning disabilities from 

mental retarded children and to make study more comparable (e.g., Kavale & Forness, 2000; 

Swanson, 2000), most studies do not differentiate between children with specific mathematics 

learning disabilities (MD), specific reading disabilities (RD) and children with combined 

reading and mathematics learning disabilities (MD+). This differentiation nevertheless seems 

necessary, certainly since over time a number of authors have shown that children with 

mathematics learning disabilities are a heterogeneous group (Ostad, 1998) and even different 

neuropsychological profiles were found (e.g., Rourke, 1993; McCloskey & Macaruso, 1995).  

 

The present study 

 

Aim and research questions 

 

The present study was designed to examine three issues of differences between 

children without learning disabilities and children with specific or combined mathematics 

learning disabilities regarding off-line metacognition.  

First, it was designed to show the relationship between mathematics, off-line 

metacognition and intelligence, in young children. We wanted to investigate Swanson’s 

‘independency model’ in average intelligent children in grade 3. 

The second purpose of this study was to investigate the ‘retardation or maturational 

lag hypothesis’ or to test the hypothesis that children with mathematics learning disabilities 

primarily show immature off-line metacognitive skills, comparable with mathematically 

average-performing younger children. Congruently with the retardation hypothesis we could 

expect the same prediction and evaluation skills in children with specific mathematics learning 

disabilities, combined learning disabilities and in younger children matched at mathematical 

performance level. 

Although most studies end here, we nevertheless wanted to perform two additional 

analyses. First we wanted to investigate whether children with specific or combined 

mathematics learning disabilities in grade 3 also have more problems with prediction and 

evaluation on so-called ‘easy tasks’ (or mathematical problem solving tasks designed for 

children in grade 1 (P1 and E1) or grade 2 (P2 and E2)). We could hypothesize that since the 

recruited children with specific or combined mathematics learning disabilities have the same 

mathematical skills as children in grade 2, they would also have comparable prediction and 

evaluation skills. Secondly we wanted to compare prediction and evaluation skills on different 
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cognitive problem solving tasks (numeral and operation symbol comprehension, number 

system knowledge, mental arithmetic, procedural calculation and word problems) in all 

children. According to the retardation or maturational lag hypothesis we could expect the same 

results for children with specific or combined mathematics learning disabilities and younger 

children on prediction about numeral and operational symbol comprehension (PNR+S),  

prediction about number system knowledge (PK), prediction about mental arithmetical problem 

solving (PM), prediction about procedural calculation (PP) and prediction about the solving of 

word problems (PW).  Moreover, according to the retardation or maturational lag hypothesis 

we could expect the same results for children with specific or combined mathematics learning 

disabilities and younger children on evaluation about numeral and operational symbol 

comprehension (ENR+S),  evaluation about number system knowledge (EK),  evaluation about 

mental arithmetical problem solving (EM), evaluation about procedural calculation (EP) and 

evaluation about the solving of word problems (EW).  For the sake of completeness, we also 

compared predictions and evaluations on so-called ‘difficult tasks’ (P4 and E4), or tasks 

designed for fourth-graders and expected a similar pattern.  

Furthermore, with Brown (1987, p. 107) we are interested in answering a critical 

question about metacognition ‘Is it general or domain-specific?’. In order to add some data to 

this debate, mathematical average-performing third-graders (MA3) were compared with age-

matched children with reading disabilities (RD) on off-line metacognition during mathematical 

problem solving. We hypothesized domain-specific metacognitive problems and low off-line 

metacognitive skills in children with specific mathematics learning disabilities (MD) and in 

children with combined mathematics and reading disabilities (MD+), but no such problems in 

children with reading disabilities (RD) solving mathematical tasks.  

 

Method 

 

Participants 

 

The participants in this investigation consisted of third-grade (MD, RD, MD+) children referred 

by psychologists of multidisciplinary rehabilitation centers, teachers at schools for special 

education or paraprofessionals treating children with learning disabilities, because of 

significantly below-grade-level mathematics and/or reading achievement.  

Each referred child was screened for inclusion in the study, with the permission of the 

parents, based on the following criteria. (1) The average intelligence had to be 90 < TIQ < 120. 

Furthermore, the participants had to have an ability-achievement discrepancy based on their 
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total IQ and total standardized achievement test scores. Scores had to be below the 3rd 

percentile on frequently used tests on mathematics for the MD and MD+ children and below 

the 3rd percentile on reading tests for the RD and MD+ group of children. The performance 

level of all children was at least 1 year below grade level according to the school psychologist. 

(3) To be accepted in our sample as children with learning disabilities (MD, RD, and MD+) the 

diagnosis had to be acknowledged and inefficient learning strategies had to be detected by a 

school psychologist or a team of therapists. (4) In addition, only white native Dutch-speaking 

children without histories of extreme hyperactivity, sensory impairment, brain damage, a 

chronic medical condition, insufficient instruction or serious emotional or behavioral 

disturbance were included as participants. The final sample included 62 MD children (29 boys 

and 33 girls), 53 RD children (30 boys and 23 girls) and 72 MD+ children (40 boys and 32 

girls).  

Two control groups (MA2, MA3) were included in the contrastive analysis, in order 

to be able to investigate the domain specificity hypothesis (and to compare RD with MA3) and 

the maturational lag hypothesis (and to compare MD and MD+ with MA2).  

The first control group (MA3) consisted of 130 (70 boys and 60 girls) average-intelligent third-

graders (ages 8-9) without a diagnosis of learning disability or other problems. Sixty of these 

children were matched with the children with mathematics learning disabilities (MD), seventy 

of these children were matched with the children with combined learning disabilities (MD+), 

based upon not more than l week difference in date of birth.  

The second control group (MA2) consisted of 120 (52 boys and 68 girls) average-

intelligent second-grade students (ages 7-8), without a diagnosis of learning disability or other 

problems. The sample was drawn at random, with the permission of the children’s parents, 

from regular elementary classes. The matching was based on their mathematical problem 

solving skills. For this purpose, children with mathematics learning disabilities in grade 3 (MD 

and MD+) and the group of young children in grade 2 (MA2) performed two tests on domain 

specific mathematical knowledge for grade 2 and 3. Only children in grade 2 were accepted in 

this study if they could be matched with a child with mathematics learning disabilities and had 

less than 2 points of difference in performance scores on both tests (Kortrijk Arithmetic Test 

Grade 2 and Grade 3; Cracco, Baudonck, Debusschere, Dewulf, Samyn, & Vercaemst, 1995) 

compared with children with mathematics learning disabilities. Based upon these criteria, 55 

children in grade 2 were matched with the children in grade 3 with specific mathematics 

learning disabilities (MA) and 65 children in grade 2 were matched with the children in grade 3 

with combined mathematics and reading disabilities (MA+).   
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The participants in both control groups (MA2, MA3) were all native Dutch-speaking 

Belgian children, with average intelligence (90<TIQ<120) and an overall school result of at 

least level B (60%).  

At the time of the testing, the third-grade subjects (MA3, MD, RD, and MD+) had a 

mean age of 101.18 months (SD = 4.56 months), whereas the second-graders had a mean age of 

88.76 months (SD = 5.52). Furthermore, the final sample had a mean TIQ of 102.11 (SD = 

6.86), a mean VIQ of 101.93 (SD = 6.77) and a mean PIQ of 101.74 (SD = 9.10).  

 

Measures 

 

The Kortrijk Arithmetic Test (Kortrijkse Rekentest, KRT) (Cracco et al. 1995) is a 

Belgian mathematics test of mental computation (e.g., 129+879=_) and of number system 

knowledge (e.g., add three tens to 61 and you have _) . Children have to read the instruction 

and write down the answer to 60 mathematical tasks within 45 minutes. The psychometric 

value has been demonstrated on a sample of 3,246 Dutch-speaking children. In all groups 

(MA2, MA3, MD, RD, MD+), the standardized total percentile based on Dutch norms was 

used. The version for grade 2 was used for MA2, while the version for grade 3 was used for 

MA3, MD, RD, and MD+ children. In addition, the children in grade 2 also carried out the 

version for grade 3 and the children with mathematics learning disabilities (MD and MD+) also 

carried out the version for grade 2, in order to make matching possible. 

The One Minute Test (Een Minuut Test, EMT) (Brus & Voeten, 1999) is a test of 

reading fluency for Dutch-speaking people, validated for Flanders on 10,059 children 

(Ghesquière & Ruijssenaars, 1994), measuring the capacity of children to read correctly as 

many words as possible.  All children (MA2, MA3, MD, RD, MD+) were given l minute to 

read as many words as possible out of the same 116 words.  

The intelligence of all children was measured. Total IQ was used, since this seems to 

be the most reliable basis documenting an ability-achievement discrepancy (Kavale & Forness, 

2000). Furthermore, since WISC-III was not yet available in Belgium, WISC-R (Wechsler et 

al., 1986) was used. The psychometric value of WISC-R is good and data for Flanders are 

available. In addition, since IQ is likely to be overestimated with the WISC-R (Flynn, 1998; 

Lyon, 1995; Gaskill, Frank, & Brantley, 1997), a cut-off of 90 (pc 25) instead of 85 was used 

for average intelligence.  

The Evaluation and Prediction Assessment (EPA2000) (De Clercq, Desoete, 

&Roeyers, 2000; Desoete, Roeyers, Buysse, & De Clercq, 2000, 2001) has a three-part 

(metacognitive prediction - mathematical problem solving - metacognitive evaluation) 
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assessment. Children have to predict and evaluate on 80 mathematical problem solving tasks, 

including tasks at grade 1, 2, 3, and 4. EPA2000 includes tasks on the comprehension of 

numbers and operation symbols (NR  and S tasks) (e.g., put into the right order from low to 

high 39  37  38  40 ), number system knowledge (K tasks) (e.g., complete this series 37  38  39  

_), mental arithmetic (M-tasks) (e.g., 37+1=_), procedural arithmetic (P tasks) (e.g., 37+653=_) 

and word problems (W-tasks) (e.g., William wants to buy 3 cars. Two cars cost 1 euro. How 

long must William save? Choose between ‘till he has 6 euro’, ‘till he has 3 euro’, ‘till he has 2 

euro’, ‘till he has 1 euro’).  In the measurement of prediction, children are asked to look at 

exercises without solving them and to predict whether they will be successful in this task on a 

4-point rating scale. Children have to evaluate after solving the different mathematical problem 

solving tasks on the same 4-point rating scale. In EPA2000, children have to comprehend the 

instruction (with assistance for the reading aspect for RD and MD+ children) and to click on 

the answer with the mouse. All children (MA2, MA3, MD, RD, MD+) solved the same 

exercises. With EPA2000 the accuracy in problem solving is scored as well as the accuracy of 

predictions and evaluations. Children can give four ratings (‘1’ absolutely sure I am wrong, ‘2’ 

sure I am wrong, ‘3’ sure I am correct, ‘4’ absolutely sure I am correct). Metacognitive 

predictions or evaluations are awarded two points whenever they correspond to the child’s 

actual performance on the task (predicting or evaluating ‘1’ and doing the exercise wrong and 

rating ‘4’ and doing the exercise correctly). Predicting and evaluating, rating ‘1’ or ‘3’ receive 

one point whenever they correspond.  Other answers do not gain any points, as they are 

considered to represent a lack of off-line metacognition.  As to the mathematical problem 

solving, children obtain l point for every correct answer.  The three scores (prediction, 

mathematical problem solving and evaluation) are unrelated. For instance, in theory a child can 

obtain maximum scores for prediction, zero score for mathematics and medium score for 

evaluation. The psychometric value has been demonstrated on a sample of 550 Dutch-speaking 

children (Desoete, Roeyers, & De Clercq, 2002). To examine the psychometric characteristics 

of the EPA2000 in this study, Cronbach’s alpha reliability analyses were conducted. For 

prediction, mathematical cognition and evaluation Cronbach’s � of  .74, .89, and .85 

respectively were found for the total test (80 items).  For prediction and evaluation subscores 

for the different grades and for the different kinds of mathematical problem solving, tasks were 

computed on 100 points (see Table 1).  
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Table 1  Cronbach’s alpha analyses on EPA2000 

 Number of items Cronbach’s �   Cronbach’s � 

  Prediction evaluation 

NR-and S-tasks 27 items .90 .75 

K-tasks 10 items .88 .81 

M-tasks 10 items .87 .80 

P-tasks 10 items .95 . 91 

W-tasks 23 items .94 .91 

Tasks grade 1 19 items .90 .75 

Tasks grade 2 37 items .94 .90 

Tasks grade 3 20 items .95 .92 

Tasks grade 4 4 items .86 .79 

Note. NR and S=numeral and operation symbol comprehension, K=number system knowledge, M=mental 
arithmetic, P=procedural arithmetic, W=word problems 
 

Data Collection 

 

All subjects were assessed individually, outside the classroom setting, where they 

completed the KRT (Cracco et al., 1995), EMT (Brus & Voeten, 1999) and the EPA2000 (De 

Clercq et al., 2000), on two different days, for about two hours in total. The examiners, all 

psychologists or therapists skilled in learning disabilities, received practical and theoretical 

training in the assessment and interpretation of mathematics, reading and metacognition. The 

training took place two weeks before the start of the assessment. In addition, systematic, 

ongoing supervision and training was provided during the assessment of the first 15 children 

with and without learning disabilities. The training included a review and discussion of the 

EPA2000 student profiles and involved several meetings during the assessment period. 

 

Results 

 

Preliminary Comparisons 

 

Preliminary comparisons revealed that the five mathematical ability groups  (MA2, 

MA3, MD, RD, MD+) did not differ significantly in TIQ (F (4, 432) = 1.64, p = .16). 

Nevertheless, significant differences were found between the groups on VIQ (F (4, 432) = 2.96, 

p <.05) but not on PIQ (F (4, 432) = 0.67, p = .61). Children with combined mathematics and 

reading disabilities had lower VIQ scores than the other four groups of children. The groups did 

not, however, differ significantly in the socio-economic level of the father (F  (4, 432) = 2.19, p 
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= .07) or the mother (F (4, 432) = 1.79, p =  .13). Similarly, the four participant groups of grade 

3 (MA3, MD, RD, MD+) did not differ significantly from each other in age (F (3,236) = 2.06, p 

= .11). Finally the five mathematical ability groups, as expected, differed significantly from 

each other on KRT (F (4, 432) = 123.30, p < .0005), EPA2000 cognition (F (4, 432) = 137.54, 

p < .0005) and EMT (F (4, 432) = 187.24, p < .0005).  The average scores on the KRT (Cracco 

et al., 1995), EPA2000 (De Clercq et al., 2000) and the EMT (Brus & Voeten, 1999) as well as 

TIQ, VIQ and PIQ are presented in Table 2.  

 

Table 2  Children with and without learning disabilities compared 

 MA2 MA3 MD RD MD+  
 M M M M M  
 (SD) (SD) (SD) (SD) (SD) F(4,432)= 
 N=120 N=130 N=62 N=53 N=72  
TIQ 102.50 102.71 101.47 102.77 100.47 1.64 
 (7.71) (5.46) (7.37) (6.37) (7.39)  
VIQ 101.99a 102.68a 102.18a 102.89a 99.56b 2.96* 
 (7.30) (5.35) (6.50) (4.96) (8.84)  
PIQ 102.27 101.64 100.29 102.75 101.57 0.67 
 (7.44) (10.06) (10.41) (8.23) (9.26)  
SES F 14.02 14.39 13.73 13.81 15.29 2.19 
 (3.70) (3.58) (3.30) (2.58) (4.36)  
SES M 14.02 14.19 13.97 13.66 14.89 1.79 
 (2.78) (2.53) (2.65) (3.01) (3.25)  
KRT 41.43b 44.92a 24.02c 39.36b 25.82c 123.30* 
 (7.24) (6.03) (6.79) (9.25) (10.83)  
EPA2000 53.86b 67.54a 50.37c 66.09a 49.39c 137.54* 
 (7.52) (4.59) (9.02) (5.39) (8.16)  
EMT 40.68c 55.64a 50.68b 29.91d 25.68d 187.24* 

 (9.58) (8.22) (6.37) (6.95) (10.27)  
Note. MA2=age-matched young children in grade 2, MA3=mathematical performance-matched 
children in grade 3 without learning disabilities, MD=children with specific mathematics learning 
disabilities, RD=children with specific reading learning disabilities, MD+=children with combined 
mathematics and reading learning disabilities. 
* p �  .0005  
abc different indexes refer to significant between-group differences with significance level .05 
 

Post-hoc follow-up analyses (see abc indexes in Table 2) revealed that children with a 

specific mathematics learning disability (MD) did not differ from children with a combined 

mathematics and reading disability (MD+) on the KRT (Cracco et al., 1995) or on the EPA2000 

(De Clercq et al., 2000). MD and MD+ children, as expected, had lower scores on the KRT 

than age-matched peers (MA3) and than children with reading disabilities (RD). Furthermore, 

MD and MD+ children did worse on mathematical problem solving on the EPA2000 than 

mathematical problem solving- matched children (MA2). Post-hoc analyses also revealed that 

RD children, as expected, performed worse than MA3 children on tests where they had to read 

assignments (KRT) but not on tests where they had assistance in reading the assignment 
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(EPA2000). Furthermore, it can be concluded from Table 2 that RD children did not differ from 

MD+ children on the EMT. In addition, RD and MD+ children had lower scores on the EMT 

than MA2 children.  

To summarize, children with mathematics learning disabilities (MD and MD+) did 

worse on mathematical problem solving than children with reading disabilities (RD) and age-

matched peers (MA3), whereas children with reading disabilities (RD) and children with 

combined reading and mathematics disabilities (MD+) had lower reading scores than peers 

matched for mathematics learning disabilities (MD) and age (MA3).  

 

Group Design Data Analyses 

 

In order to investigate the relationship between mathematical learning, metacognition 

and intelligence, and given the high intercorrelations between the mathematical problem 

solving tests (KRT and EPA2000 cognition), the internal structure of the mathematical problem 

solving data was analyzed by Principal Components Analysis. This analysis was carried out to 

develop a mathematical problem solving component empirically summarizing the correlations 

among the KRT and EPA2000 cognition variables. A one-component solution was extracted, 

explaining 76.41% of the common variance.   

The component matrix is presented in Table 3.  

 

Table 3  Component Matrix 

 Mathematical problem solving component 

KRT .87 

EPA2000 mathematical cognition .87 

Eigenvalue 1.53 

% of Variance 46.41 

 

 

In order to investigate the relationship between the mathematics component, off-line 

metacognition, and intelligence, Pearson correlations were computed between the mathematical 

problem solving component score, prediction (P) and evaluation (E) and TIQ, VIQ, and PIQ of 

all subjects (see Table 4).  
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Table 4  Pearson correlations between the mathematical problem solving component, IQ, and 

off-line metacognition 

 TIQ VIQ PIQ Math. 

Comp. 

Prediction Evaluation 

TIQ - .87** .75** .12* .03 .03 

  (p=.00) (p=.00) (p=.01) (p=.53) (p=.51) 

VIQ - - .46** .15* .08 .08 

   (p=.00) (p=.00) (p=.12) (p=.10) 

PIQ - - - .03 -.04 -.04 

    (p=.54)  (p=.45) (p=.46) 

Math - - - - .71** .75** 

     (p=.00) (p=.00) 

Pred - - - - - .79** 

      (p=.00) 

** p �  .0005 
* p �  .01 
 

 

Significant correlations were found between the mathematical problem solving 

component and prediction (r =.71, p < .0005) and between the mathematical component and 

evaluation (r =.75, p < .0005). Furthermore, a significant correlation was found between the 

mathematics component and VIQ (r =.15, p < .005), but not between mathematics and PIQ. 

Nor were significant correlations found between predictions and TIQ or between evaluations 

and TIQ. In addition, no significant correlations were found between prediction and VIQ, 

evaluation and VIQ, prediction and PIQ, evaluation and PIQ (see Table 4).  

In order to further investigate the independency of intelligence and metacognition, 

partial correlations were computed between mathematical problem solving and prediction and 

evaluation, controlling for TIQ, VIQ, and PIQ. Partial correlation coefficients between 

mathematical problem solving and prediction and between mathematical problem solving and 

evaluation of r =.71 (p  < .0005) and r =.74 (p  < .0005) respectively were found. These results 

indicate that the relationship between metacognition and mathematics remains almost the same, 

controlling for the influence of intelligence. 

In order to answer our research questions on the relation between off-line 

metacognition and mathematics and in order to test the maturational lag and domain specificity 

hypothesis, a Multivariate Analysis of Variance (MANOVA) was conducted with prediction 

(P) and evaluation (E) skills, as measured by EPA2000, as dependent variables and belonging 

to one of the five mathematical ability groups (MA2, MA3, MD, RD, MD+) as a factor. Post-
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hoc analyses were conducted using the Tukey procedure. With a medium effect size (f = .25), a 

power of  >.91 was found. 

The MANOVA revealed a significant main effect for the groups at the multivariate 

level (F (8, 862) = 40.21, p � .0005). Univariate significant between-subject effects were found 

for prediction (P) and for evaluation (E) (see Table 5).  

 

 

Table 5 Metacognitive prediction and evaluation skills in children 

 MA2 MA3 MD RD MD+  

 M M M M M  

 (SD) (SD) (SD) (SD) (SD) F(4, 432)= 

 N=120 N=130 N=62 N=53 N=72  

P** 64.79b 79.27a 61.90b 76.30a 61.21b 74.79* 

 (9.62) (8.16) (11.59) (9.14) (8.80)  

E** 64.12b 79.77a 62.90b 77.17a 60.63b 79.79* 

 (9.92) (6.79) (12.34) (7.54) (11.17)  

Note. P=prediction on all tasks in EPA2000, E=evaluation on all tasks in EPA2000. MA2=age-
matched young children in grade 2, MA3=mathematical performance-matched children in grade 3 without 
learning disabilities, MD= children with specific mathematics learning disabilities, RD=children with 
specific reading learning disabilities, MD+=children with combined mathematics and reading learning 
disabilities. 
* p �  .0005 
** maximum score is reduced to 100 points 
abc different indexes refer to significant between-group differences with significance level .05 
 

 

Post-hoc analyses (see ab-indexes in Table 5) demonstrated significantly lower 

prediction and evaluation scores for the children with specific or combined mathematics 

learning disabilities compared with age-matched children. No differences were found between 

children with a specific mathematics learning disability or combined mathematics learning 

disabilities and mathematical performance-matched younger children. In addition, children with 

reading disabilities did not have significantly lower prediction and evaluation scores than age-

matched peers. These results might point in the direction of the maturational lag and domain 

specificity hypothesis. 

In order to further analyze this maturational lag of children with specific and 

combined mathematics learning disabilities on off-line metacognition, we investigated whether 

those third-grade students with mathematics learning disabilities also had problems with 

prediction on so-called ‘easy tasks’. By ‘easy tasks’ we mean mathematical tasks designed for 

younger children (Prediction on tasks grade 1 or P1 and Prediction on tasks grade 2 or P2). For 
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the sake of completeness, we also compared performance on ‘difficult tasks’ or tasks designed 

for older children (Prediction on tasks grade 4 or P4). We might expect no differences between 

children with mathematics learning disabilities and mathematical performance-matched 

children on prediction on tasks designed for grade 1, prediction on tasks designed for grade 2, 

and tasks designed for grade 4. A Multivariate Analysis of Variance (MANOVA) was therefore 

conducted with prediction on tasks designed for grade 1 (P1), prediction on tasks designed for 

grade 2 (P2), prediction on tasks designed for grade 3 (P3), and prediction on tasks designed for 

grade 4 (P4) as dependent variables and belonging to one of the five mathematical performance 

groups (MA2, MA3, MD, RD, MD+) as a factor. Post-hoc analyses were conducted using the 

Tukey procedure.  With a medium effect size (f = .25) a power of .92 was found. 

The MANOVA revealed a significant main effect for the mathematical performance 

groups at the multivariate level (F (16, 1311) = 26.32, p � .0005). Univariate significant 

between-subject effects were found for P1, P2, P3, and P4 (see Table 6).  

 

Table 6  Prediction on tasks for children in grades 1 to 4 

 MA2 MA3 MD RD MD+  

 M M M M M  

 (SD) (SD) (SD) (SD) (SD) F(4, 432)= 

 N=120 N=130 N=62 N=53 N=72  

P1** 83.25b 92.97a 72.76c 88.88a 77.62c 49.27* 

 (9.17) (7.88) (17.73) (9.79) (9.99)  

P2** 65.27b 81.16a 60.96b 78.15a 61.81b 78.99* 

 (11.61) (8.68) (11.99) (9.36) (8.35)  

P3** 49.10b 69.79a 47.04b 65.32a 46.83b 71.96* 

 (15.25) (11.62) (11.47) (13.76) (9.14)  

P4** 52.96a 38.83b 47.43a 35.78b 49.02a 9.18* 

 (22.57) (21.69) (19.95) (23.27) (23.30)  

Note. P1=prediction on tasks level grade 1, P2=prediction on tasks level grade 2, P3=prediction on 
tasks level grade 3, P4=prediction on tasks level grade 4. MA2=age-matched young children in grade 2, 
MA3=mathematical performance-matched children in grade 3 without learning disabilities, MD= children 
with specific mathematics learning disabilities, RD=children with specific reading learning disabilities, 
MD+=children with combined mathematics and reading learning disabilities. 
* p < .0005 
** maximum score on P1, P2, P3, and P4 is 100 
 

 

Post-hoc Tukey analyses revealed that children with specific or combined 

mathematics learning disabilities (MD and MD+) did worse than age-matched children on the 

prediction tasks designed for grade 1. No difference was found between mathematical 
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performance-matched younger children and children with specific or combined mathematics 

learning disabilities on the prediction tasks designed for grade 2, grade 3, and grade 4. 

Furthermore, children with reading disabilities achieved performance equal to age-matched 

children without learning disabilities on all prediction tasks. In addition, young children (MA2) 

and children with mathematics learning disabilities (MD and MD+) actually outperformed the 

children without learning disabilities in grade 3 (MA3) and the children with reading 

disabilities (RD) on prediction about tasks designed for grade 4. 

We further investigated the evaluation skills on mathematical problem solving tasks 

grade l, grade 2, grade 3, and grade 4. We expected no differences between children with 

specific mathematics learning disabilities (MD), children with a combined learning disability 

(MD+), and mathematical problem solving-matched children (MA2) on evaluation tasks 

designed for grade 1 (E1), evaluation tasks designed for grade 2 (E2), evaluation tasks designed 

for grade 3 (E3), and evaluation tasks designed for grade 4 (E4). To test this hypothesis, a 

Multivariate Analysis of Variance (MANOVA) was conducted with E1, E2, E3, and E4 as 

dependent variables and belonging to one of the five mathematical performance groups (MA2, 

MA3, MD, RD, and MD+) as a factor. Post-hoc analyses were conducted using the Tukey 

procedure. With a medium effect size (f = .25) a power of .92 was found. 

The MANOVA revealed a significant main effect for the groups at the multivariate 

level (F (16, 1311) = 26.32, p � .0005). Univariate significant between-subject effects were 

found for E1, E2, E3, and E4 (see Table 7).  
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Table 7  Evaluation on tasks for children in grades 1 to 4 

 MA2 MA3 MD RD MD+  

 M M  M M M  

 (SD) (SD) (SD) (SD) (SD) F(4, 432)= 

 N=120 N=130 N=62 N=53 N=72  

E1 84.87b 94.08a 79.20c 91.73a 80.91c 57.84* 

 (9.08) (5.64) (10.11) (7.39) (7.92)  

E2 66.50b 82.21a 65.20b 79.80a 64.64b 67.01* 

 (11.51) (6.63) (14.06) (8.22) (9.74)  

E3 45.50b 73.94a 48.98b 69.17a 44.83b 110.78* 

 (15.15) (10.97) (14.79) (12.16) (11.80)  

E4 38.57 37.86 38.13 34.46 41.60 0.85 

 (22.39) (21.36) (25.64) (19.23) (19.12)  

Note. E1=evaluation on tasks level grade 1, E2=evaluation on tasks level grade 2, E3=evaluation on 
tasks level grade 3, E4=evaluation on tasks level grade 4. MA2=age-matched young children in grade 2, 
MA3=mathematical performance-matched children in grade 3 without learning disabilities, MD= children 
with specific mathematics  learning disabilities, RD=children with specific reading learning disabilities, 
MD+=children with combined mathematics and reading learning disabilities. 
* p < .0005 
** maximum score on E1, E2, E3 and E4 is 100 

 

 

Post-hoc Tukey analyses (abc-indexes in Table 7) revealed that children with specific 

or combined mathematics learning disabilities did worse than mathematical performance-

matched younger children on evaluation tasks designed for grade 1, although no significant 

differences were found on evaluation tasks designed for grade 2, evaluation tasks designed for 

grade 3 and evaluation tasks designed for grade 4, between the three groups of children (MA2, 

MD and MD).  Furthermore, children with reading disabilities achieved performance equal to 

age-matched children on all evaluation tasks. 

Since these results cannot be easily explained, we investigated whether the prediction 

and evaluation skills in children with specific or combined learning disabilities differed from 

those of younger children matched on mathematical performance on different aspects of 

mathematical problem solving, namely numeral and operation symbol comprehension (NR+S), 

number system knowledge (K), mental arithmetic (M), procedural calculation (P), and word 

problems (W). In order to do so, a Multivariate Analysis of Variance (MANOVA) was 

conducted with prediction on numeral and operation symbol comprehension (PNR+S), 

prediction on number system knowledge (PK), prediction on mental arithmetic (PM), 

prediction on procedural calculation (PP,) and prediction on word problems (PW) as dependent 

variables and belonging to the mathematical performance group of MA2, MD or MD+ as a 
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factor. Post-hoc analyses were conducted using the Tukey procedure. With a medium effect 

size (f = .25), a power of  .82 was found. 

The MANOVA revealed a significant main effect for the mathematical performance 

groups at the multivariate level (F (10, 402) = 2.12, p � .05). Univariate significant between-

subject effects were found for PK, PM, PP, and PW. No significant between-subject effects 

were found for PNR+S.  

 

Table 8  Prediction on different mathematical problem solving tasks compared 

 MA2 MD MD+  

 M M  M  

 (SD) (SD) (SD) F(2, 251)= 

 N=120 N=62 N=72  

PNR+S*** 69.65 66.08 65.11 1.77 

 (18.44) (19.71) (13.57)  

PK*** 56.43a 47.83b 48.40b 7.96** 

 (17.07) (17.76) (14.54)  

PM*** 64.56a 58.33b 59.02 6.05** 

 (13.41) (14.49) (12.57)  

PP*** 51.65a 41.74b 44.25 3.72* 

 (27.62) (24.71) (22.44)  

PW*** 52.14a 48.37 47.51b 4.07* 

 (13.14) (11.62) (9.90)  

Note. PNR+S=prediction on numeral and operation symbol comprehension tasks, PK=prediction on 
number system knowledge tasks, PM=prediction on mental arithmetic tasks, PP=prediction on procedural 
calculation tasks, PW=prediction on word problem tasks MA2=age-matched young children in grade 2, 
MD= children with specific mathematics learning disabilities, MD+=children with combined mathematics 
and reading learning disabilities 
* p<.05 
** p<.01,  
***       maximum score on PNR+S, PK, PM, PP, PW is 100 
ab different indexes refer to significant between-group differences with significance level .05 
 

Post-hoc analyses (see ab-indexes in Table 8) revealed better prediction performance 

for younger children matched on mathematical performance compared with children with 

specific mathematics learning disabilities on number knowledge, mental arithmetic, and 

procedural calculation tasks. Furthermore, young children matched on mathematical 

performance did better than children with combined learning disabilities on prediction about 

number knowledge and word problem tasks. 

In order to investigate whether the evaluation skills in children with specific or 

combined mathematics learning disabilities differed from those of younger children on different 
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aspects of mathematical problem solving, a Multivariate Analysis of Variance (MANOVA) 

was conducted with evaluation on numeral and operation symbol comprehension tasks 

(ENR+S), evaluation on number system knowledge tasks (EK), evaluation on mental arithmetic 

tasks (EM), evaluation on procedural calculation tasks (EP), and evaluation on word problem 

tasks (EW) as dependent variables and belonging to the mathematical performance group of 

MA2, MD or MD+, as a factor. Post-hoc analyses were conducted using the Tukey procedure. 

With a medium effect size (f = .25), a power of  .82 was found. 

The MANOVA revealed a significant main effect for the mathematical performance 

groups at the multivariate level (F (10, 494) = 4.79, p � .0005). Univariate significant between-

subject effects were found for EK and for EP. No significant between-subject effects were 

found for ENR+S, EM , and EW.  

 

Table 9  Evaluation on different mathematical problem solving tasks compared 

 MA2 MD MD+  

 M  M M  

 (SD) (SD) (SD) F(2, 251)= 

 N=120 N=62 N=72  

ENR+S*** 69.04 69.56 65.74 0.94 

 (18.86) (20.38) (15.36)  

EK*** 59.04a 50.87b 51.49b 5.79* 

 (18.51) (20.75) (15.70)  

EM*** 59.25 61.11 64.11 2.74 

 (14.10) (16.54) (10.82)  

EP*** 47.74a 39.35b 35.11b 7.95** 

 (22.41) (22.06) (19.59)  

EW*** 51.54 50.50 47.53 2.27 

 (13.39) (12.53) (11.59)  

Note.  ENR+S=evaluation on numeral and operation symbol comprehension tasks, EK=evaluation on 
number system knowledge tasks, EM=evaluation on mental arithmetic tasks, EP=evaluation on procedural 
calculation tasks, EW=evaluation on word problem tasks MA2=age-matched young children in grade 2, 
MD= children with specific mathematics learning disabilities, MD+=children with combined mathematics 
and reading learning disabilities. 
* p<.01 
** p<.0005,  
*** maximum score on ENR+S, EK, EM, EP, EW is 100 
ab  different indexes refer to significant between-group differences with significance level .05 
 

Post-hoc analyses revealed significantly better evaluation scores for young children 

matched on mathematical performance on number knowledge and procedural calculation tasks 
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compared with children with specific and combined mathematics learning disabilities (see ab-

indexes in Table 9). 

 

Discussion 

 

Since metacognition is especially instrumental during the initial and final stage of 

mathematical problem solving (Verschaffel, 1999), this study focuses on off-line metacognitive 

skills in young children, in grades 2 and 3. The differences between mathematically average-

performing children and children with learning disabilities were investigated, in order to add 

data on the independency, the maturational lag and the domain specificity hypotheses. Since 

different authors stressed the importance of an operational definition of learning disabilities, 

children with specific mathematics disabilities were differentiated from children with specific 

reading disabilities and children with combined learning disabilities. Furthermore, all children 

had average intelligence and the socio-economic level of both mother and father was 

investigated.  

We investigated the relationship between mathematical problem solving, off-line 

metacognition, and intelligence. The data from the present study are in line with earlier 

investigations that have documented the relationship between mathematics and metacognition 

(e.g., Lucangeli and colleagues, 1997, 1998). In 437 children, a significant relationship between 

a mathematical component and off-line metacognition and between the mathematical 

component and verbal intelligence was found. Furthermore, no significant relationship was 

found between intelligence and off-line metacognition in children of grades 2 and 3. These 

results suggest that off-line metacognition cannot be seen as a demonstration of intelligence. 

Metacognition was nevertheless found to be important in the explanation of mathematical 

problem solving and had an additional value in the explanation of learning, as already pointed 

out by Swanson (1990).  

We furthermore investigated the retardation or maturational lag hypothesis, meaning 

that children with specific or combined mathematics learning disabilities will perform worse on 

prediction and evaluation assignments than age-matched children without learning disabilities, 

but no such differences were expected compared with younger children matched on 

mathematical problem solving skills. The data from the present study indicate a large 

discrepancy between off-line metacognition in children with mathematics learning disabilities 

compared with average-achieving peers. The pattern in these results could therefore be 

interpreted within the maturational lag or retardation hypothesis. Young children with 

comparable mathematical performance scores on the EPA2000 (De Clercq et al., 2000) to 



Chapter 4 

 

 

100 

 

 

children with mathematics learning disabilities (and even lower) had comparable prediction and 

evaluation scores on the EPA2000.  

However, when we compared predictions and evaluations on the so-called ‘easy 

tasks’, or the tasks designed for younger (or older) children, subjects with specific or combined 

mathematics learning disabilities were expected to perform as well as younger children 

matched at mathematical performance level on prediction about tasks designed for the second 

grade or first grade and on evaluation about tasks designed for the second grade or first grade, 

according to the retardation or maturational lag hypothesis. On analyzing our results, however, 

a slightly different pattern was found. Children with mathematics learning disabilities had 

lower scores than younger children with comparable mathematical skills on prediction and 

evaluation on mathematics tasks designed for first-graders. However, no such differences were 

found, on prediction and evaluation about tasks designed for second, third or fourth graders. 

These results could not be totally explained by the maturational lag hypothesis, but indicated 

rather a disharmonic metacognitive profile in children with mathematics learning disabilities.  

Moreover, children in grade 2 and children with specific or combined mathematics 

learning disabilities outperformed the children in grade 3 without learning disabilities and the 

group of children with reading disabilities in grade 3 on prediction tasks related to 

mathematical problem solving topics designed for grade 4. This may seem inconsistent, but 

interviews afterwards with some of the children taught us that children in grade 2 and the 

children with mathematics learning disabilities were sure that they would not be able to solve 

such tasks, as they differed greatly from the ones they were used to solving. Therefore, these 

children correctly predicted being very sure about not being able to solve exercises of this kind. 

The children in grade 3 without mathematics learning disabilities might have had the illusion of 

being able to solve exercises of this kind, since the tasks appeared to be similar to the exercises 

they could solve in grade 3. This clarifies the finding which at first glance appears strange. 

In order to examine whether these results could be explained by analyzing the 

mathematical problem solving tasks, off-line metacognition on numeral and operation symbol 

comprehension, number system knowledge, mental arithmetic, procedural calculation, and 

word problems were compared in children with specific and combined mathematics learning 

disabilities and in younger children matched on mathematical performance. We found that 

subjects with a specific mathematics learning disability had significantly lower prediction 

scores than younger children, on number system knowledge, mental arithmetic, and procedural 

arithmetic.  Moreover, children with a combined learning disability did worse than younger 

children on number system knowledge and word problem tasks. Furthermore, children with 

specific or combined mathematics learning disabilities did worse than younger subjects on the 
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evaluation of number system knowledge and procedural calculation tasks. Again, these results 

cannot be explained by the maturational lag hypothesis, but indicate that children with 

mathematics learning disabilities have a different off-line metacognitive profile than young 

children with comparable mathematical performance.  

To sum up, at first glance children with specific or combined mathematics learning 

disabilities seem to have comparable prediction and evaluation skills to children one year 

younger, which could be interpreted according to the maturational lag hypothesis. However, on 

analyzing this performance further, significant differences were found compared with those 

children without learning disabilities, matched at the level of mathematical problem solving. 

All our data could not therefore be interpreted according to the maturational lag hypothesis. 

Further research seems to be indicated. 

Finally, consistent with the domain specificity hypothesis, we expected children with 

reading disabilities to achieve equal performance to children of the same age without learning 

disabilities on mathematically related prediction and evaluation tasks. In answering this 

research question, children with reading disabilities did not have significantly lower scores than 

peers without learning disabilities. Furthermore, the same pattern was found for all prediction 

and evaluation tasks in children with reading learning disabilities and peers without learning 

problems. These results are in line with earlier research on the domain-specificity of off-line 

metacognitive skills (e.g., Schraw et al., 1995). Thus, it could be argued that children with 

reading disabilities might have domain-specific problems with off-line metacognition related to 

reading tasks, but not with prediction and evaluation related to mathematical problem solving 

tasks. However, given that this study did not really compare metacognitive skills across 

domains (e.g., reading and mathematics), additional research is needed in order to be able to 

draw conclusions on the domain specificity of metacognition per se and to draw links to the 

expert-novice literature in general. 

The results of this study should be interpreted with care since metacognition might be 

age-dependent and still maturing until adolescence (Berk, 1997). In addition, depending on the 

particular nature of the mathematical task, metacognition may have a differential influence 

(Lucangeli et al., 1998). Furthermore, only off-line metacognitive skills are studied. Other 

answers may therefore be possible with on-line metacognitive skills or with metacognitive 

knowledge of beliefs. In addition, only children of average intelligence were included in this 

study and we were not able to match the five groups on VIQ, since this VIQ was found to be 

lower for children with a combined learning disability compared with the four other groups. 

This could explain the lower scores on language-related items such as prediction about word 

problems and certainly needs additional research. Moreover, since metacognitive skills were 
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not compared across domains (e.g., reading and mathematics) in this study, additional research 

is needed as to how domain-specific knowledge and experience interact in the production of 

proficient problem solving performance, in interaction with metacognition. It also remains 

unclear whether it is really a question of metacognitive skills per se or whether the difference 

between non-experts and experts is rather a function of background and conceptual knowledge 

(the ability to represent problems, etc.) as a basis for effective metacognition (e.g., as a basis for 

making predictions or judgements about how well you can solve a problem or choosing a 

problem solving strategy). Furthermore, the research on off-line metacognition in children with 

learning disabilities needs full explanation from more applied research on different age and 

intelligence groups.  

Despite the limitations, this study may have important conceptual and educational 

implications. Since metacognition is important for mathematical problem solving and 

metacognition cannot be reduced to demonstrations of intelligence, it has to be assessed 

separately, especially if things go wrong in mathematical problem solving. Furthermore, since 

we could not explain all our results according to the maturational lag hypothesis, we cannot 

expect metacognition to develop spontaneously as children grow older and have more 

experience of mathematics. Metacognitive therapy should therefore focus on the metacognitive 

weaknesses and strong points of children with specific or combined mathematics learning 

disabilities, making them more aware of how they calculate or deal with word problems. Such 

therapy programs seem to be indicated in addition to the more traditional mathematical training 

programs. Finally, therapy on off-line metacognition narrowly related to mathematical problem 

solving tasks does not seem to be needed in children with specific reading disabilities. 

However, this study makes it clear that in all children with reading disabilities, mathematics 

also has to be assessed, since children with combined reading and mathematics disabilities 

(RD+ or MD+) have problems with off-line metacognition related to mathematical problem 

solving.   

Summarizing, our studies support the use and importance of a metacognitive 

assessment procedure to differentiate between students with and without mathematics learning 

disabilities. Taking into account the complex nature of mathematical problem solving, it may 

be useful to assess off-line metacognition in young children with mathematics learning 

disabilities in order to focus on these factors and their role in mathematics learning and 

development (Desoete, Roeyers, & De Clercq, 2001). It might be possible that with more time 

allocated to off-line metacognitive instruction, especially during the initial stage and in the final 

stage of mathematical problem solving, some mathematics learning disabilities may become 

less pervasive.  
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Chapter 5 
 

Can Off-line metacognition enhance mathematical problem 
solving? 1 

 
 

 

The study in this chapter evaluated the effectiveness on the 
mathematical problem solving of a short metacognitive condition 
compared to four other conditions, in an elementary school setting. Two 
hundred and thirty-seven third-grade children were randomly assigned 
to a 5-sessions metacognitive strategy instruction, algorithmic direct 
cognitive instruction, motivational program, quantitative-relational 
condition or a spelling condition. Results indicate that children in the 
metacognitive program achieved significant gains in trained 
metacognitive skills, compared with the four other conditions. 
Moreover, the children in the metacognitive program performed better 
on trained cognitive skills than children in the algorithmic condition, 
with a follow-up effect on domain specific mathematics problem solving 
knowledge. However, despite the consistency of findings, no 
generalization effects were found on transfer of cognitive learning.   

 
 
 
Introduction 
 

Nearly 10 percent of primary school children have mathematical problems, whereas 4 

percent of them have mathematics learning disabilities (e.g., Desoete, Roeyers, & Buysse, 

2000; Shalev, Manor, Auerbach, & Gross-Tsur, 1998). However, from 1974 to 1997 on Psyclit, 

only 28 articles on mathematics learning disabilities were available, whereas 747 articles on 

reading disabilities could be found (Noel, 2000).  

In the last decade, substantial progress has been made in characterizing cognitive and 

metacognitive processes important to success in mathematical problem solving (Boekaerts, 

1999; Donlan, 1998; Hacker, Dunlosky, & Graesser, 1998; Simons, 1996; Wong 1996). Based 

on these researchers, we developed our own conceptual model on mathematical problem 

solving.  

 

                                            
1  Based on Desoete, A., & Roeyers, H. (2001). Can off-line metacognition enhance 
mathematical problem solving. Manuscript under editorial review. 



Chapter 5 

 110

Mathematical problem solving: a conceptual framework 
 

Our model of mathematical problem solving integrates nine cognitive skills and two 

metacognitive skills. To clarify this conceptual framework, we describe first the cognitive skills 

included in mathematical problem solving (see NR, S, K, P, L, C, V, R, and N in Figure 1) 

(Desoete & Roeyers, 2001a).  

 
 
Figure 1 Cognitive and metacognitive strategies and processes 
 

COGNITION 

Numeral comprehension and production                    (NR) 
e.g., Put these into the right order from low to high : 5  29  9  2 

Operation symbol comprehension and production     (S) 
e.g. ,Which is correct? 29<5 or 29>5 

Number system knowledge       (K) 
e.g., Complete this series: 27  28  29  _ 

Procedural calculation       (P) 
e.g. , 29+5=_ 

Language comprehension       (L) 
e.g. , 5 more than 29 is _ 

Context comprehension       (C) 
e.g. , Wanda has 29 keys. Willy has 5 keys more than Wanda. How many keys does Willy have? 

Mental representation visualization      (V) 
e.g. , 29 is 5 more than _ 

Selecting relevant information      (R) 
e.g., Wanda has 29 keys. Willy has 5 keys more than Wanda and 2 keys less than Linda.  
How many keys does Willy have? 

Number sense        (N) 
e.g. , 29 is nearest to _ Choose between  5, 20, 90 or 92 

METACOGNITION 

Prediction        (Pr) 
e.g. , Do you think you can solve this exercise? 

Evaluation        (Ev) 
e.g. , Are you sure about this answer? 
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Nine cognitive skills 
 

Mathematical problem solving requires an adequate mathematics lexicon. The first 

cognitive skills have to do with this lexicon and the symbolization of this lexicon. 

Mathematical performance depends on a well-developed number-naming system. A correct 

reading and comprehension of Arabic digits (e.g., 2) and number words (e.g., two) without 

visual perceptual (e.g., 6 and 9) or verbal phonetic (e.g., vier or four and vijf  or five) 

confusion, is necessary (e.g., Van Borsel, 1998; Veenman, 1998).  Furthermore, in Dutch the 

serial order of decades and units is reversed in the number names (e.g., 41 = forty-one in 

English but 'één-en-veertig' (one and forty) in Dutch). Children with number-naming problems 

may therefore confuse 41 and 14. Children who confuse 6 and 9, 'four' and 'five' or 41 and 14 

will not correctly solve mathematical problems. Number reading (NR) is the first cognitive skill 

involved in mathematical problem solving, according to our conceptual model.  

The second cognitive skill has to do with the symbolization of the mathematics 

lexicon. To solve mathematical problems, children have to read and deal with operation 

symbols (S) (e.g., x, +, <, >) without making mistakes of a perceptual (e.g.,  x  or +, - or =,  < or 

>) or phonetic type (e.g. min or minus, maal or times) (e.g., Silver, Pennett, Black, Fair, & 

Balise, 1999; Veenman, 1998). We can check to see if operation symbols are known by using 

symbol or S tasks. Problems with this cognitive skill lead to mistakes such as 4x3=7 or 4<3. 

Furthermore, mathematics depends on domain specific content or on the insight in the 

number structure and on the knowledge of the position of decades and units (e.g., Veenman, 

1998). Dealing with number system Knowledge (K) is further referred to as K processes. 

Children making K mistakes often have problems with the place of a number on a number line 

(e.g., complete this series: 37  38  39  _) and do not know how many decades and units there 

are, for example, in 39.  

In addition, some children lack the necessary procedural (P) knowledge and skills to 

calculate (e.g., McCloskey & Macaruso, 1995;  Noel, 1998).  Children must, for example, 

know that in  multidigit addition, they have to start in the right column to compute the sum of 

the digits in the right-most column, to write the ones digit of the sum at the bottom of the 

column and to carry the tens digit, if any, and so forth.  Children also have to know how to 

subtract to solve 42-3 as 39 (and not as 41 or 12 as some children do). With procedural or P 

tasks, we refer in our model to formula-tasks such as 3 + 50 = _ and 42 - 3 = _.  

Furthermore, mathematical problem solving depends on general conceptual and 

language (L) related knowledge and skills. Some children have no problems with formula-tasks 

such as 40 + 2 = _, but fail when this task is presented in a verbal modality (e.g., 2 more than 

40 is _). Language holds a central place in mathematical problem solving, according to several 
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authors (e.g., Campbell, 1998; McCloskey & Macaruso, 1995; Rourke & Conway, 1997; 

Veenman, 1998), although others remained skeptical and in favor of a language-independent 

representation (e.g., Noel, Robert, & Brysbaert, 1998). The discussion on whether or not there 

is a language specificity of the number-fact memory extends beyond the scope of this chapter; 

however, we see that if children do not know what 'more' means, word problems as '2 more 

than 40 is _' can not be solved correctly. The cognitive skill to deal with one-sentence word 

problems is further referred to as an L (language) skill.  Some children fail in mathematical 

problem solving because of problems with this skill (e.g., Campbell, 1998; Geary, 1993). These 

children have problems translating words (e.g. 'more') into calculation procedures (e.g. 

,'addition').  

However, language is not sufficient to solve, for example, ‘40 is 2 more than _’ or ’50 

is 10 less than _’. A translation of 'more' into addition and ‘less’ into subtraction would give 

40+2 or 42 and 50-10 or 40 as answers. The creation of an adequate mental representation or 

visualization (V) of the problem is required in this kind of task (e.g., Geary, 1993; Verschaffel, 

1999). A simple 'translation' of concepts in calculation procedures, without adequate mental 

representation, leads to errors, such as answering '40' to '20 is twice _' and  ‘25’ to '50 is half of 

_'. This ‘number crunching’ without reflection is in literature often referred to as ‘blind 

calculation’, where children analyze problems superficially and decide upon a strategy based on 

key words in a problem (more = plus, double = multiplication) (Vermeer, 1997). Tasks in 

which children have to create an adequate mental representation or visualization are further 

referred to as V-tasks. 

From cognitive learning theory, we know that children can have problems with the 

complexity of a task. With complexity we refer to the number of items that need to be worked 

out (Feuerstein, Rand, & Hoffman, 1979). On this parameter (level of complexity), a task such 

as '2 more than 40 is _' is less complex than an assignment such as 'Peter has 40 pictures. Mary 

has 2 pictures more than Peter. How many pictures does Mary have? _ '.  Short direct 

assignments in one sentence (on micro level) can be solved without problems by some children. 

The same children can have difficulties with longer indirect assignments (meso level), further 

referred to as context or C tasks. The problems with cognitive complexity were also found 

related to problems with working memory (and ‘cognitive overload’) and knowledge base (and 

‘expertise’).  C tasks can be more difficult than L or V tasks, due to their complexity. However, 

we also see that there are children who have fewer difficulties with Context tasks than with 

Language-related or Procedural tasks since they focus on the contextual clues included in such 

Context tasks, whereas those clues are absent in Language-related or Procedural tasks. These 

clues make it easier to form a picture or to visualize the situation, whereas this mental 

representation needs more active elaboration in Language-related or Procedural tasks.  
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Moreover, some children fall behind in selecting relevant information in order to 

create an adequate mental representation of the problem. The importance of this cognitive skill 

was already stressed by authors as Feuerstein et al. (1979) and Greenberg (1990).  In 

assignments such as 'Peter is 37 in. John is 2 in. taller than Peter. John weighs 44 lbs. How tall 

is John?, John’s weight does not matter. However, some children have difficulties ‘not using’ 

information, and answer 37+2+44 or 83. Indirect tasks with irrelevant information included are 

further referred to as Relevance or R tasks.  

As the ninth skill, the importance of number sense (N) was clearly demonstrated by 

Sowder (1992) and Verschaffel (1999). Some children easily answer assignments such as '2 

more than 40 is?' but have problems with tasks such as '2 more than 40 is nearest? Choose 

between 2, 38, 40, and 80'. The skill to estimate is labeled  ‘number sense’ and tasks which 

depend on it are referred to as N tasks. 

We illustrate the nine cognitive skills with an example. In order to answer tasks such 

as '25 is 7 more than?', several cognitive processes are required. Firstly, children need to have 

adequate numeral comprehension (NR processes). They need to know that '25' is not '52' or 

'250' and that '7 (‘zeven’ in Dutch)' is not '4' or '9 (‘negen’ in Dutch)'. They also need to 

understand the meaning of '=' and of '?' (S processes), in order to solve this problem. In 

addition, number system knowledge (K processes) is required to be able to know that 25 is 'l 

more than 24' and 'l less than 26'. Furthermore, children also need to build an adequate 

representation (V processes) of the task in order not to translate more in addition and answer 

(25+7=32). Also, children have to be able to execute adequate procedural calculations (P 

processes) in order not to answer ‘22’ (25-7=_ repetition of 2, 7-5=2).  

Our nine cognitive skills model was tested on 1336 children in order to determine its 

usefulness for the detection of weak and strong cognitive skills in third grade children (Desoete, 

Roeyers, Buysse, & De Clercq, 2001a&b). The combination of Visualization, Procedural, and 

Language-related skills was found to differentiate between children with mathematics learning 

disabilities, children with mathematics learning problems, and average performing 

mathematical problem solvers (Desoete, Roeyers, & Buysse, 2000). In addition, children with 

mathematical learning disabilities had lower scores on Number Reading, Relevance, and 

Number Sense tasks than age-matched children without learning problems.    
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Two metacognitive skills 
 

In the last few years, various authors have described metacognition as essential in 

mathematical problem solving (e.g., Borkowski, 1992; Carr & Biddlecomb, 1998; De Corte, 

Verschaffel, & Op ‘t Eynde, 2000). Flavell (1976) defined metacognition as ‘…one’s 

knowledge concerning one’s own cognitive processes and products or anything related to them’ 

(1976, p. 232). Studies have shown that metacognition is instrumental during the initial stage 

('Prediction', Pr) of mathematical problem solving, as well as in the final stage ('Evaluation', 

Ev) of interpretation and checking the outcome of the calculations (e.g., Verschaffel, 1999).  

Previous studies supported the use of the assessment of off-line metacognition 

(essentially outcome-related prediction and evaluation) to differentiate between average and 

above-average mathematical problem solvers and between students with mathematics learning 

problems (-1 SD) and peers with mathematics learning disabilities (-2 SD) (Desoete, Roeyers, 

Buysse, & De Clercq, 2001a). Moreover, average intelligent children with mathematics 

learning disabilities had significantly lower prediction and evaluation scores than age-matched 

children without learning disabilities (Desoete & Roeyers, 2001b). However, despite the 

consistency of the group design data analyses, a closer analysis of intra-individual differences 

in young children taught us that (most but) not all children with mathematics learning 

disabilities had metacognitive deficits. Somehow, approximately 60 percent of the children 

with mathematics learning disabilities and approximately 20 percent of the children without 

learning problems had a severe deficit (-2 SD) on metacognitive prediction  (Desoete, Roeyers, 

Buysse, & De Clercq, 2001b).   

 
 
Successful educational interventions 
 

Over the past years, increasing attention has been paid to the idea of outcome 

measures. What we know about treatment is often biased by the publication of positive 

outcomes. This 'all helps’ verdict is, however, not the picture we see in the area of learning 

disabilities. Although the current findings provide evidence that educational intervention for 

students with learning disabilities can produce positive effects of respectable magnitude, not all 

treatments were found equally effective. A meta-analysis revealed combined models (with 

direct instruction and strategy instruction) to be superior to the other models across studies 

(Swanson, Hoskyn, & Lee, 1999). Furthermore, Swanson found one-to-one instruction less 

effective than group instruction combined with one-to-one instruction and sustained treatment 

over a long period of time (more than 32 sessions) not to be more effective than more in time 

limited interventions. Moreover, a certain level of treatment specificity emerged across 

academic domains and the magnitude of change related to treatment was found to be larger in 
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some academic domains (e.g., magnitude of .80 for reading comprehension and vocabulary) 

than in others (e.g., mathematics .45).  

 
 
Aim and research questions 
 

The purpose of this chapter is to compare several short-term interventions on 

mathematical problem solving in young children. The study aims to contribute some data to the 

modifiability of mathematical problem solving in young children. In order to do so, we 

investigate empirically, in an exploratory study, whether children in the instruction variant, 

including off-line metacognitive strategy instruction, become better mathematical problem 

solvers than children receiving merely cognitive algorithmic direct instruction. In addition, 

these children are compared with three other instruction variants, namely children having 

quantitative-relational experiences without strategy or direct instruction, children having a very 

motivating experience and a control condition with children reading in a small groups  (see 

Figure 2). We investigate if the metacognitive strategy approach combined with a direct 

algorithmic cognitive instruction is more effective in promoting learning of the specific skills 

taught in the program, and applying what is learned (NR, P, L, V, and Pr see Figure 1) to 

uninstructed mathematical problem solving skills (R, N , and Ev see Figure 1).  

 
 
Method 
 
Participants 
 

Participants were all third-grade children attending seven elementary schools in the 

Dutch-speaking part of Belgium. The sample included 237 white children - 114 girls and 123 

boys. All children followed regular elementary education. Permission for children to participate 

in this study was obtained from their parents.  

The children had an average intelligence according to the teacher. Their measured 

Full scale IQ varied between 79 and 135 on CIT-34 (Stinissen et al., 1974) in October of the 

third grade. The mean IQ was 104.80 (SD = 7.90), with as raw sub scores General 

Development 10.96 (SD = 1.70), Contradictions 13.08 (SD = 2.20), Logical Relations 15.29 

(SD = 2.68), Analogical Reasoning 12.42 (SD = 2.92), Mathematics 8.94 (SD = 3.25) and 

Shifting 13.63 (SD = 3.55). 

At the time of pretesting, the participants had a mean age of 99.59 months (SD = 3.27 

Months). The pretest battery consisted of a measurement of the domain specific mathematics 

knowledge (Kortrijkse Rekentest, KRT, Cracco et al., 1995), a test on mathematical number 

facts (Tempo Test Rekenen, TTR, deVos, 1992) and a computerized assessment of 
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mathematical cognition and off-line metacognition (Evaluation and Prediction Assessment 

EPA2000 De Clercq, Desoete, & Roeyers, 2000). On the KRT2, children achieved a 

standardized mean percentile score of 39.78 (SD = 26.18). On the TTR, children achieved a 

standardized mean percentile score of 55.76 (SD = 31.99). Children's mathematical skills on the 

EPA2000 were 57.63/80 (SD = 8.18). The prediction score was 102.31 / 160 (SD = 16.46) 

whereas the evaluation score was 106.52 / 160 (SD = 18.43). In addition, the children read 

39.93 (SD = 7.69) words correctly in one minute (Brus & Voeten, 1999). 

 

 
Teacher training 
 

Four paraprofessionals were trained to teach all of the five instruction variants 

(metacognitive intervention, cognitive intervention, computerized motivational intervention, 

math intervention and spelling intervention). Each paraprofessional participated in three 

instruction variants. All paraprofessionals were skilled therapists with experience with children 

with mathematics learning disabilities. Initial paraprofessional training took place one month 

prior to the start of the interventions. The paraprofessionals were trained over 10 hours in total.  

In addition, systematic, ongoing supervision and training was provided during the 

interventions. During initial training, the paraprofessionals learned about current conceptions of 

mathematical problem solving and worked through the prepared training manuscript. Ongoing 

training included review and discussion of the next session plan and objectives and feedback on 

the past session.  

 
 
Training Integrity 
 

During and after the intervention, each classroom was visited by the first author. 

Condition integrity was evaluated throughout the study by direct observation and semi-

structured interviews of the paraprofessionals before, during and after each intervention 

session. The level of treatment integrity was obtained by calculating the percentage of 

treatment components implemented as designed over the 2 weeks of the study. Throughout 

interventions and across paraprofessionals, treatment integrity was very high and a 97% fidelity 

to essential instructional practices was found. 

 
 
Measures 
 

The Kortrijk Arithmetic Test (Kortrijkse Rekentest, KRT) (Cracco et al. 1995) is a 

60-item Belgian mathematics test on domain-specific knowledge and skills, resulting in a 
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percentile on mental computation (especially tasks on procedural calculation), number system 

knowledge (especially tasks on language comprehension and visualization) and a total 

percentile. The psychometric value of the KRT 2 and KRT3 has been demonstrated on a 

sample of 381 and 523 Dutch-speaking students (and on 3,246 children in total). Since we 

found performances on mental computation (e.g., 129+879=_) and number system knowledge 

(e.g., add three tens to 61 and you get _) on the KRT to be strongly interrelated in our sample 

(Pearson’s r = .76, p � .01), we used the standardized total percentile based on national norms. 

The One Minute Test (Een Minuut Test, EMT) (Brus & Voeten, 1999) is a test of 

reading fluency for Dutch-speaking people, validated for Flanders on 361 third-graders (and on 

3,462 children in total) (Ghesquière & Ruijssenaars, 1994), measuring the capacity of children 

to read correctly as many words as possible out of 116 words (e.g., leg, car) in one minute.  

The Arithmetic Number Facts test (Tempo Test Rekenen, TTR) (de Vos, 1992) is a 

test consisting of 200 arithmetic number fact problems (e.g., 5 x 9 =_). Children have to solve 

as many number-fact problems as possible out of 200 in 5 minutes. The test has been 

standardized for Flanders on 220 third-graders  (and on 10,059 children in total) (Ghesquière & 

Ruijssenaars, 1994).  

The Collectieve verbale intelligentietest voor derde en vierde leerjaar (CIT-34) 

(Stinissen, Smolders, & Coppens-Declerck, 1974) is a verbal intelligence test for children 

which is made up of 8 subtests, validated for Flanders on 622 third-graders (and on 3,701 

children in total). A validity coefficient (correlation with school results) and reliability 

coefficient (with the KR20 formula) of .67 and .95 respectively were found.  

The Evaluation and Predication Assessment (EPA2000) (De Clercq, Desoete, & 

Roeyers, 2000) is a computerized procedure for assessing various cognitive (number reading, 

operation symbol comprehension, number knowledge, procedural calculation, language 

comprehension, dealing with context information, visualization, dealing with relevance and 

number sense see Figure 1) and metacognitive (prediction and evaluation see Figure 1) 

processes associated with mathematical problem solving in elementary school children (see 

chapter 3). The psychometric value has been demonstrated on a sample of 550 Dutch-speaking 

third-graders (Desoete, Roeyers, & De Clercq, 2002). Moreover, Cronbach’s alpha reliability 

analyses revealed for prediction, mathematical cognition and evaluation Cronbach’s � of  .74, 

.89 and .85 for the total test (80 items) (Desoete & Roeyers, 2001b).  Moreover, on 1336 

children no partial correlations were found between relevance and number sense tasks and 

between number reading, language comprehension and visualization tasks (Desoete, Roeyers, 

& De Clercq, 2000). 
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Group Design 
 

In this study a pretest-posttest control groups design with follow-up was used. The 

experiment took place in a separate classroom for five times in two weeks, 50 minutes each 

time. Each session consisted of the mathematics problems in accordance with the instructions 

given in the program. 

For group design data analyses, different types of outcome measures were 

administered to the participants before and after the five hours of training. Pretesting and 

posttesting included measures of trained metacognitive content (Pr see Figure 1),  trained 

cognitive content (NR, P, L, and V see Figure 1), non-trained metacognitive content (Ev see 

Figure 1) and non-trained cognitive content (R and N see Figure 1) measured with EPA2000 

(De Clercq et al., 2000). In addition, an independent follow-up assessment of mathematical 

problem solving (KRT, Cracco et al., 1995) not related to our model, but especially measuring 

trained content (P, L, and V) (see Figure 1), was used six weeks after the intervention.  

 
 
Overview of Intervention Procedures 
 

The metacognitive experimental group (Number Town) was compared with four 

other instruction variants.  The inclusion of five groups was important to ensure that any 

treatment effect obtained by the metacognitive group could be attributed to the metacognitive 

strategy instruction, rather than to other factors such as algorithmic direct instruction (in Count 

City), motivation experiences (in Computer Group), quantitative relation experience (in Math 

Group) or participation in a small group intervention program (in Control Group) 

In the metacognitive (Number Town) and cognitive (Count City) training, numeral 

comprehension and production (NR),  procedural calculation (P), mental representation (V), 

and language comprehension (L) were explicitly taught as ‘Trained Cognitive content’ (38 

points on EPA2000). In the Computer and Math Condition, children also did exercises on these 

NR, P, V, and L tasks, without these kinds of tasks being created by us in accordance with our 

conceptual framework (see Figure 1). Moreover, prediction (Pr) was explicitly taught in the 

metacognitive group and is further referred to as ‘Trained Metacognitive content’ (160 points 

on EPA2000). None of the five training sessions elaborated on tasks dealing with irrelevant 

information included in the assignment (R) or on number sense tasks (N), so this content is 

further referred to as ‘Non-trained Cognitive content’ (9 points on EPA2000). Moreover, none 

of the five types of training focused on evaluation (Ev), so this content is further referred to as 

‘Non-trained Metacognitive content’ (160 points on EPA2000). Cronbach’s alphas of .78, .74, 

.59 and .85 were found for trained cognitive content, trained metacognitive content, non-trained 

cognitive content and non-trained metacognitive content respectively.  
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Each of the metacognitive (Number Town) sessions involved a direct prediction-

strategy (Pr) as well as a direct cognitive (NR, P, L, V) instruction (see Appendix A). The tasks 

were specially created for the metacognitive and cognitive group. This metacognitive training 

was verbal in nature and focused on prediction of task difficulty as well as on the tasks and 

problem solving procedures themselves. Each session in the metacognitive condition started 

with an orientation or rehearsal phase. Then the need for a metacognitive principle was 

experienced and brought about, in small group sessions (about 10 children). The metacognitive 

training was experienced by the children as a very motivating intervention, since all children 

scored 4 or 5 on a 5-point motivation rating scale. 

The algorithmic cognitive training (Count City) used exactly the same exercises as 

the metacognitive group. There was direct cognitive instruction of NR, P, V, and L tasks (see 

Appendix B), without prediction-strategy (Pr) teaching. A step-by-step presentation of the 

problems was used, without a prediction of task difficulty. The aim of the cognitive condition 

was to increase the mathematical problem solving skills, in small group sessions (about 10 

children), through direct instruction without metacognitive strategy support. The children 

experienced the cognitive training as a very motivating intervention, since all children scored 4 

or 5 on a 5-point motivation rating scale. 

The computer-assisted training made use of most motivating exercises, in small group 

sessions (about 10 children) on mathematical problem solving in grade 3, without direct or 

strategy instruction given. Therefore 100 mathematics therapists were consulted in order to 

select the five most attractive NR, P, L, and V exercises. Their selection were five 

computerized math software programs: Multi (Dainamic, 1992a), Top 100 part 2 (De Winter & 

Witters, 1998a), Arithmic (Dainamic, 1992b), Top 100 part 4 (De Winter & Witters, 1998b), 

Tempo (Dainamic, 1992c). The children worked with this software (one program each session) 

in small group sessions (about 10 children each on a computer). The children experienced the 

computer training as a very motivating intervention, since all children scored 4 or 5 on a 5-

point motivation rating scale. 

With the math group, it was investigated if simple mathematical problem solving was 

not sufficient to make children better problem solvers. Here 100 mathematical therapists were 

consulted and the most used exercises for children in grade 3 were selected and presented to the 

children in small groups (about 10 children in a group). The selection seemed to be five 

combinations of paper and pencil exercises. The math training was not experienced as more 

motivating than ordinary math sessions, since all children scored 2 or 3 on a 5-point motivation 

rating scale. 

Control subjects (control group) received the same amount of instructional time, as 

did children in the four other conditions. However, instead of math instruction, the control 
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group received 5 sessions in small groups (with about 10 children in a group) on the correct 

analysis of words in spelling and reading activities. The control training was not experienced as 

more motivating than ordinary math sessions, since all scored 2 or 3 on a 5-point motivation 

rating scale. 

The important features of the five intervention programs are presented in Figure 2. 

All participants received the same amount of instructional time. During this period, the children 

did not get any metacognitive strategy or cognitive direct instruction from their ordinary 

classroom teacher. Furthermore, trainers and teachers were double blind about the research 

questions of this study and the participants were randomly assigned to one of the conditions 

(metacognitive condition, cognitive condition, computer group, math group, control condition) 

by the researchers.  

 

Figure 2 Different Interventions compared 
 
Intervention Model Metacognitive 

Number 
Town 

Cognitive 
Count 
City 

Motivation 
Computer 

group 

Math  
group 

Control  
group 

Prediction strategy (Pr) 
Instruction 

+ - - - - 

Algorithmic (NR,P,L,V)  
direct instruction 

+ + - - - 

Motivating  
experience  

+ + + - - 

Quantitative-relational 
experience  

+ + + + - 

Small group  
Intervention 

+ + + + + 

 
 
Results 
 
Preliminary comparisons 
 

Preliminary comparisons revealed that the children in the five conditions did not 

differ significantly in proportions of female and male participants (�2 (1, N = 237) = 0.34, p =  

.56).  However, the children in the five conditions differed significantly in TIQ on CIT-34 

(Stinissen et al., 1974), F (4, 232) = 3.21, p < .05, ή2  = .05 (see Table 1). Tukey comparisons 

revealed that both computer-trained participants and the control group outperformed the 

metacognitive group on full-scale intelligence. 
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Table 1 Preliminary characteristics of the children in the different conditions 
 
 Metacogn. Cognition Motivation Math Control F(4, 232) = 
 M M M M M  

 (SD) (SD) (SD) (SD) (SD)  

 N=49 N=50 N=38 N=58 N=42  

Intelligence       
Full Scale IQ 102.00b 103.60 106.79a 105.52 106.38a 3.21 (p<.05) 

 (9.88) (8.06) (6.70) (5.04) (7.73)  
Content       
 Metacognition       

to be trained 102.73 104.70 101.34 100.73 101.68 0.42 (p=.79) 
 (14.27) (17.08) (18.94) (14.56) (18.94)  
not to be trained 106.77 107.33 106.13 107.88 103.78 0.39 (p=.82) 

 (16.31) (15.28) (24.47) (18.63) (18.46)  
 Cognition       

to be trained 32.43 31.74 32.41 33.75 31.96 1.17 (p=.32)  
 (3.39) (4.13) (6.72) (4.64) (5.11)  
not to be trained 4.88 4.82 4.65 5.14 4.54 0.74 (p=.57) 

 (1.55) (1.66) (1.87) (2.31) (1.78)  
 Follow-up       

KRT 37.55 39.14 45.26 42.38 36.72 0.81 (p=.52)  
 (28.45) (31.40) (24.61) (24.69) (20.90)  

 
 

Since we focused on children in the metacognitive condition and those children did 

not have higher intelligence scores than the children in the four other conditions, intelligence 

was not included in the subsequent analyses as a covariate. 

In addition, pretest scores and additional subscores were compared. The MANOVA 

(Multivariate Analysis Of Variance) with as dependent variables the two EPA2000-pretest 

mathematical problem solving subscores (trained cognitive content and non-trained cognitive 

content) and as independent variables the condition (metacognitive condition, cognitive 

condition, motivation condition, math condition, and control condition) was not significant on 

the multivariate level (F (8, 462) = 0.79, p = .61). Moreover, the MANOVA (Multivariate 

Analysis Of Variance) with as dependent variables the two EPA2000-pretest metacognitive 

subscores (trained metacognitive content and non-trained metacognitive content) and as 

independent variables the condition (metacognitive condition, cognitive condition, motivation 

condition, math condition and control condition) was not significant on the multivariate level 

(F (8, 462) = 0.98, p = .45). In addition, the ANOVA (Univariate Analysis Of Variance) with as 

dependent variables the KRT pretest percentile scores (to be used as follow-up measure) as 

independent variables the condition (metacognitive condition, cognitive condition, motivation 

condition, math condition, and control condition)  was found not significant on the multivariate 

level (F (4, 232) = 0.81, p = .52). 
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Treatment effects 
 

In order to answer the research question on the modifiability of mathematical problem 

solving, trained content posttest scores (trained cognitive content, trained metacognitive 

content) were measured. Dependent measures were analyzed separately via a 5 (Condition: 

metacognitive condition, cognitive condition, computer condition, math condition, control 

condition) x 2 (Time: pretest, posttest) univariate analysis of variance (ANOVA), with repeated 

measure on the second factor. Each ANOVA determined whether significance exists among the 

five conditions, when compared on the dependent measure at pretesting and posttesting 

simultaneously. We were especially interested in the condition by time interaction. 

In addition, if the ANOVAs revealed a significant condition by time interaction 

effect, posthoc tests were performed on the posttest scores, using an appropriate posthoc 

procedure (Tukey if equal variance could be assumed and Tamhane if equal variance could not 

be assumed). In addition, the observed power and the effect sizes were calculated.  

It should be noted that preliminary analyses with the trainer in the model as a second 

between subject variable yielded no significant main effects for the trainer (p  > .05) or trainer x 

condition interactions  (p  > .05) across all dependent posttest measures (trained cognitive 

content, trained metacognitive content, non-trained cognitive content, non-trained 

metacognitive content). Similarly, preliminary analyses with gender in the model as second 

between subject variable yielded no significant main effects or interactions across all dependent 

posttest measures (p  > .05). Thus trainer and gender were not considered further in the 

analyses. 

 
 
Trained Metacognitive Content 
 

A principal aim of this study was to evaluate whether young children respond better 

to instruction, including a metacognitive strategy component, than to the four other instruction 

variants in promoting higher prediction skills.  

In order to investigate the modifiability of this metacognitive skill, trained 

metacognitive content (or prediction) was analyzed via a 5 (Condition: metacognitive 

condition, cognitive condition, computer condition, math condition, control condition) x 2 

(Time: pretest, posttest) univariate analysis of variance (ANOVA), with repeated measure on 

the second factor. Moreover, post hoc analyses were conducted using the Tamhane procedure, 

since equal variance could not be assumed (Levene  F (4, 232) = 2.33, p = .05).  

A significant interaction effect with a medium effect size (ή2 = 0.74; Power = 1.00) 

emerged for condition x time (F (4, 232) = 164.73, p < .0005). In addition, a significant main 

effect with a very small magnitude (ή2 = 0.06; Power = 0.91) emerged for condition (F (4, 232) 
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= 4.00, p < .005) and a significant main effect with a small effect size (ή2 = 0.27; Power = 1.00) 

emerged for time (F  (1, 232) = 85.68, p < .0005). Means and standard deviations for the 

posttest are presented in Table 2. 

 

Table 2 Posttest characteristics of the children in the different conditions 
 
 Metacogn

. 
Cognition Motivation Math Control Time x Condition 

F(4, 232)=  
 M M M M M  
 (SD) (SD) (SD) (SD) (SD)  
 N=49 N=50 N=38 N=42 N=58  
Content       
Metacognition       

trained 119.89a 104.26b 99.62b 99.98b 100.80b 164.73 (p<.0005) 
(ή2 = 0.74) 

 (11.08) (16.75) (18.58) (14.20) (16.95)  
Non-trained 

(=transfer) 
116.20a 108.50 105.55 108.30 104.40b 15.57 (p<.0005)  

(ή2 = 0.21) 
 (16.07) (14.42) (24.24) (19.49) (19.23)  
Cognition       

Trained 35.73a 32.92b 31.87b 33.17b 30.95b 46.92 (p<.0005)  
(ή2 = 0.45) 

 (2.65) (3.45) (6.96) (5.07) (5.16)  
Non-trained 

(=transfer) 
5.57 5.00 5.05 5.37 5.13 0.93 (p=0.45)  

(ή2 = 0.02) 
 (1.27) (1.77) (1.81) (2.23) (2.07)  
Follow-up       

KRT 57.42a 40.42b 45.13b 43.02b 37.65b 118.97 (p<.0005) 
(ή2 = 0.67) 

 (25.78) (27.61) (24.54) (24.83) (20.95)  
 

 

Post hoc follow-up analyses (see ab-indexes in Table 2) revealed that metacognitive-

trained children did better than the children in the other four conditions on this measure. This 

measure indicated that the metacognitive group successfully learned the specific metacognitive 

content of their program, whereas the cognitive group did not spontaneously gain 

metacognitive insights while working on cognitive content.  

 
 

Trained Cognitive Content 
 

A second aim was to determine which condition (metacognitive condition, cognitive 

condition, computer condition, math condition, control condition) was most effective in 

promoting cognitive learning on number comprehension and production tasks, procedural 

calculation tasks, language comprehension tasks, and mental representation tasks. These tasks 

were included in the training and considered as trained cognitive content. 
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In order to investigate the modifiability of cognitive skills, trained cognitive content 

was analyzed via a 5 (Condition: metacognitive condition, cognitive condition, computer 

condition, math condition, control condition) x 2 (Time: pretest, posttest) univariate analysis of 

variance (ANOVA), with repeated measure on the second factor. Moreover, post hoc analyses 

were conducted using the Tamhane procedure, since equal variance could not be assumed 

(Levene  F (4, 232) = 8.60, p < .0005).  

A significant interaction effect with a small effect size (ή2 = 0.45; Power = 1.00) was 

found for time x condition (F (4, 232) = 46.92, p <.0005). However, in addition a significant 

main effect with a very small effect size (ή2 = 0.04; Power = 0.71 for condition and ή2 = 0.06; 

Power = 0.97 for time), emerged for condition (F (4, 232) = 2.53, p < .05) and for time (F (4, 

232) = 15.25, p < .0005). Mean scores and standard deviations for the posttest are presented in 

Table 2.  

Post hoc follow-up analyses (see ab-indexes in Table 2) revealed that metacognitive-

trained children did better than the children in the four other conditions on this cognitive 

content measure. No differences were found between children in the cognitive condition and 

children in the computer condition, math condition or control condition. 

This measure indicated that the metacognitive group successfully learned the specific 

cognitive content of their metacognitive program. In addition, the cognitive group did not 

perform better than the children in the three other conditions on number reading, procedural 

mathematics, linguistic tasks, and on visualization tasks, although these contents were taught 

algorithmically. 

 
 
Generalization or transfer 
 

In order to answer the research question on the generalization or metacognitive and 

cognitive transfer of mathematical problem solving skills, non-trained content posttest scores 

(non-trained cognitive content and non-trained metacognitive content) were measured. 

Dependent measures were analyzed separately via a 5 (Condition: metacognitive condition, 

cognitive condition, computer condition, math condition, control condition) x 2 (Time: pretest, 

posttest) univariate analysis of variance (ANOVA), with repeated measure on the second 

factor. Each ANOVA determined whether significance exists among the five conditions, when 

compared on the dependent measure at pretesting and posttesting simultaneously.  In addition, 

if the ANOVAs revealed a significant condition by time interaction effect, posthoc tests were 

performed on the posttest scores, using an appropriate posthoc procedure (Tukey if equal 

variance could be assumed and Tamhane if equal variance could not be assumed). In addition, 

the observed power and the effect sizes were calculated.  
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Non-trained Metacognitive Content 
 

One of the aims of this investigation was also to evaluate the metacognitive transfer. 

In order to so, we investigated if the metacognitive training, focusing on metacognitive 

prediction skills, also had a transfer effect on metacognitive evaluation skills.  

Therefore non-trained content (or evaluation scores on EPA2000) was analyzed via a 

5 (Condition: metacognitive condition, cognitive condition, computer condition, math 

condition, control condition) x 2 (Time: pretest, posttest) univariate analysis of variance 

(ANOVA), with repeated measure on the second factor. Moreover, post hoc analyses were 

conducted using the Tamhane and Tukey procedures (Levene  F (4, 232) = 2.28, p = .06). Both 

post hoc analyses revealed the same results (see ab-indexes Table 2).  

A significant interaction effect with a small effect size (ή2 = 0.21; Power = 1.00) was 

found for time x condition (F (4, 232) = 15.58, p <.0005). In addition, however, a significant 

main effect with a very small effect size (ή2 = 0.09; Power = 0.99), emerged for time (F (4, 232) 

= 22.26, p < .0005). No significant main effects emerged for condition (F (4, 232) = 1.18, p = 

0.32). Mean scores and standard deviations for the posttest are presented in Table 2.  

Post hoc follow-up analyses (see indexes in Table 2) revealed a significant difference 

between children in the metacognitive condition and children in the control condition, 

indicating that the metacognitive group learned the specific content of the sessions (trained 

metacognitive content and trained cognitive content), but only significant more metacognitive 

(non-trained metacognitive content) generalization of learning took place in the metacognitive 

condition compared to children in the control condition. 

 
 
Non-trained Cognitive Content 

 
In addition, the present study addresses the critical issue of cognitive transfer. In 

order to do so, we investigated if the metacognitive training, focusing on number 

comprehension and production (NR), procedural calculation (P), language comprehension (L), 

and mental representation or visualization (V) skills, had a cognitive transfer effect on 

mathematical problem solving skills needed to deal with relevance (R), and number sense (S) 

tasks.  

Therefore non-trained cognitive content was analyzed via a 5 (Condition: 

metacognitive condition, cognitive condition, computer condition, math condition, control 

condition) x 2 (Time: pretest, posttest) univariate analysis of variance (ANOVA), with repeated 

measure on the second factor. Moreover, post hoc analyses were conducted using the Tukey 
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procedure. In addition, the observed power was computed. We were especially interested in the 

condition by time interaction. 

No significant interaction effect was found for time x condition (F (4, 232) = 1.18, p 

= 0.32). However, a significant main effect with a very small effect size (ή2 = 0.06; Power = 

0.97), emerged for time (F (1, 232) = 15.41, p < .0005). No significant main effects emerged 

for condition (F (4, 232) = 0.73, p = 0.57). Mean scores and standard deviations for the posttest 

are presented in Table 2. As shown in Table 2, the metacognitive group learned the specific 

content of the sessions (trained cognitive content and trained metacognitive content), but no 

significant, more cognitive (non-trained cognitive content) generalization of learning took place 

than in the four other conditions. 

 
 
Follow-up data, six week after the training 
 

An important aim of the present study was to assess sustained growth in mathematical 

problem solving skills, after the training took place. Therefore we used a measure, nationally 

standardized, independent of our conceptual model, upon which the metacognitive and 

cognitive training were built (see Figure 1). This assessment took place six weeks after the 

training, and can be considered a measure of sustained mathematical problem solving growth. 

In order to compare mathematical problem solving in the five conditions, a univariate 

analysis of covariance (ANCOVA) was conducted, with condition (metacognitive condition, 

cognitive condition, computer condition, math condition, control condition) again the between 

subject factor, posttest scores on the KRT3 (Cracco et al., 1995) the dependent variable, and 

pretest scores on the KRT2 (Cracco et al., 1995) the covariate.  

The ANCOVA revealed a significant main effect with a medium magnitude (ή2 = 

0.70, Power = 1.00) for condition (F (4, 231) = 132.41, p < .0005). Moreover, a significant 

effect with a high magnitude (ή2 = 0.96, Power = 1.00) was found for the covariate (F (1, 231) 

= 5197.49, p < .0005).  

This significant main effect for condition was further analyzed using Tamhane post-

hoc multiple comparisons (Levene F (4, 232) = 3.00, p = .02). Post hoc follow-up analyses (see 

ab-indexes in Table 2) revealed significant differences between children in the metacognitive 

group and the children in the other conditions at the posttest scores. The children in the 

metacognitive condition outperformed the four other conditions.  
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Discussion 
 

In this study, a conceptual framework on mathematical problem solving in young 

children is presented. As to cognition, mathematical problem solving depends, according to this 

model, upon numeral comprehension and production, operation symbol comprehension, and 

production, number system knowledge, procedural calculation, language comprehension, 

context comprehension, mental visualization, selecting relevant information, and number sense 

(see Figure 1). Especially visualization, procedural calculation, and language comprehension 

processes were found capable of differentiating between children with varying mathematical 

problem solving skills. In addition, children with mathematics learning disabilities had lower 

scores on number reading, dealing with relevance, and number sense tasks than age-matched 

children without learning problems.  

Furthermore, off-line metacognitive skills were differentiating elementary-school 

children with mathematics-learning disabilities from peers with moderate mathematical 

performances and participants with above-moderate mathematical skills (Desoete, Roeyers, & 

Buysse, 2001).  However, despite the consistency of the group design data analyses, not all 

children with mathematics learning disabilities had a retardation in metacognition and also 

some children without learning disabilities were found to have metacognitive problems 

(Desoete, Roeyers, Buysse, & De Clercq, 2001b). Moreover, mathematical problem solving 

skills were found difficult to modify, although strategy and direct instruction were found to be 

salient in predicting effect sizes.  

Taking into account the complex nature of mathematical problem solving, the study 

addressed different issues related to mathematics treatment. We investigated whether children 

in the instruction variant including off-line metacognitive strategy instruction became better 

mathematical problem solvers than children in four other instruction variants (see Figure 2). In 

addition, we investigated if the approach, including a metacognitive component, was more 

effective in promoting learning the specific skills taught in the program, and applying what was 

learned (number reading, procedural calculation, language comprehension, visualization, and 

prediction) to uninstructed mathematical problem solving skills (dealing with relevance, 

number sense and evaluation).  

Results indicate that children in the metacognitive group had higher posttest 

prediction scores than children in the four other conditions. This could point in the direction of 

prediction being a modifiable metacognitive skill.  In the other groups, no such improvement 

was found, meaning that motivating children or ordinary exposure to mathematical problem 

solving exercises is not enough to stimulate children’s metacognitive skills. Apparently, off-

line metacognitive skills or strategies need to be explicitly taught in order to develop.  
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Moreover, an issue that motivated this study was whether combined training 

including a metacognition-based component would be more effective than an algorithmic 

cognitive approach in improving number reading, procedural skills, linguistic skills, and 

visualization in third grade children. That is, we wondered whether positive treatment outcomes 

could be obtained by adding an aspect of off-line metacognition on mathematical problem 

solving treatments and if these metacognitive trained children would have better math results 

than cognitive trained children without this aspect included in the condition. Based on our 

results, the answer to this question is yes. Children in the metacognitive group had significantly 

higher posttest mathematical problem solving scores (trained cognitive content) than the 

children in the cognitive condition. This could point in the direction of an additional effect of 

metacognition on cognitive problem solving, where the trained content remained acquired. 

In addition, another issue addressed in this study was whether differences existed 

between the conditions on transfer or generalization of learning. We found on the 

metacognitive evaluation (non-trained metacognitive content) skills, the metacognitive group 

performed better than the control group, indicating that the metacognitive group learned the 

specific metacognitive content of the sessions (prediction skills or trained metacognitive 

content), and that some significant metacognitive generalization of learning (evaluation skills 

or non-trained metacognitive content) took place, compared with the children who received a 

spelling intervention (control group). Furthermore, no significant differences were found on 

number sense and relevance problem solving tasks, indicating that the metacognitive group 

learned the specific cognitive content of the sessions (trained cognitive content), but that no 

significant more cognitive (non-trained cognitive content) generalization of learning took place. 

To summarize, our findings suggested a small transfer on metacognitive skills compared with 

control children but no significant transfer on cognitive skills for the metacognitive condition. 

This could be due to the limited number of items (only 9 items) or to the lack of partial 

correlations between number sense and relevance tasks and language-related tasks and 

visualization tasks (Desoete, Roeyers, & Buysse, 2000). It might also be so that this lack of 

effect was due to the limited number of training sessions and to the fact that all metacognitive 

and all cognitive skills have to be taught explicitly and cannot be supposed to develop from 

freely experiencing mathematics. 

Moreover, we were interested in the sustained growth in mathematical problem 

solving skills. The mathematical follow-up measure included especially trained content 

(procedural calculation, language-related tasks, and tasks depending upon a good mental 

representation) but no non-trained content (such as number sense or dealing with irrelevant 

information).  We found on the follow-up measure, the metacognitive group performed better 
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than the four other conditions.  This could point in the direction of a sustained effect of 

metacognition on cognitive problem solving,  six  week after the training. 

These results should be interpreted with care since there are several limitations to the 

present study.  Firstly, metacognition might be age-dependent and still maturing until 

adolescence (Berk, 1997). The empirically demonstrated metacognitive components therefore 

still need a full explanation from more applied research on different age groups.  In addition, to 

exclude alternative possible explanations, our studies need to be replicated with a sample of 

children with mathematics learning disabilities. Furthermore, the interventions were 

implemented for a very brief period of time. The interventions took place for five sessions. We 

chose for this design because we focused only on prediction skills and did not want to train all 

metacognitive skills, in order to know what triggered the modification of skills. Another 

limitation of this study was also that the interventions were implemented by paraprofessionals 

instead of classroom teachers. In reality, paraprofessionals are widely used to teach remedial 

instruction to students with learning disabilities. With adequate training and ongoing 

supervision, this study showed that paraprofessionals could successfully modify metacognitive 

prediction skills in young children. However, an alternative model for future study is one in 

which classroom teachers are trained in empirically validated mathematical problem solving 

interventions and provided with ongoing consultation while they implement interventions in 

their classrooms. Under this model, children would more likely benefit from incidental teaching 

and reinforcement of previously taught skills throughout the school day.  

Summarizing, our study suggests that a short-term intervention, including a 

metacognitive and cognitive component, can improve metacognitive and cognitive skills in 

young children, with a follow-up effect on domain-specific mathematics problem solving 

knowledge. Off-line metacognitive prediction was found to be modifiable even through a very 

short strategy instruction program. However, despite the consistency of findings, no 

generalization effects were found on transfer of cognitive learning.   
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Appendix A. 
Sample items from the metacognitive training (Number Town) 

 
Session 1 
 

The following story is told to the children: "In Number Town there is a big market 

with a school and four big lanes (Question lane with a cinema, Read Lane with the number 

Library, Big Lane, and Bridge Lane with a baker and a swimming pool) and four smaller streets 

(Add Street with a railway station, Remove Street, Times Street, and Division Street) (see 

Figure 1). 

Three animals live in Number Town: a fast rabbit, a slow turtle , and a cat, estimating 

whether to be fast or slow, according to the situation. The rabbit lives in the market. The turtle 

lives on Question Lane and the cat lives on Big Lane".  

The following questions are asked:  

If the three animals want to go to the baker, while it is quiet in the town, who would 

arrive at the bakery first?  

If the three animals want to go to the movie theater, who would arrive first, if there is 

a lot of traffic in the village?  

The principle of the first session is "taking time in advance avoids being sorry 

afterward". This principle is put on the first stage of the Number Stair of Number Town.  

 
Session 2 
 

In a second session, the principle of the previous session is reviewed. The following 

story is presented: "The cat wants to walk in her street. She visits the church and four stores. 

The church is full of additions and subtractions with big size numbers. The wine store is full of 

additions with big size numbers. The balloon store has lots of additions with big size numbers. 

The marble store has additions and subtractions with small size numbers. The match store has 

additions with small size numbers."  

Children are asked questions such as:  

Where does the cat have to walk slowly? Why? Where does the cat have to walk fast? 

Why? How will the turtle deal with the match store? How will the rabbit deal with the match 

store? What is the smartest way to deal with the match store? How will the turtle deal with the 

church? What is the smartest way to deal with the church?  

The children are invited to reflect on where they can work fast and where they have to 

be more careful. They are also invited to do 5 exercises in which you can work fast or carefully.  

The principle is experienced and then formulated. "Some exercises can be solved 

quickly whereas other exercises have to be solved very carefully." In addition, children have to 
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solve the exercises reflecting on this principle. Then children make their own exercises out of 

the match store, wine store, marble store, and balloon store and give these exercises to their 

neighbor to solve. The second principle is written on the second stair of the Number Stairs.  

 
Session 3 
 

In a third session, the previous principles are reviewed and the following story is 

introduced: "The cat, turtle, and rabbit want to go to the library in the morning and they want to 

go swimming in the afternoon. In Read Lane, there are a lot of numbers they have to read. In 

the library, there are also numbers on fast-to-read cards".  

Children have to solve the fast-to-read cards. In addition, children do exercises where 

they have to draw an arrow between, for example, 'forty-eight' and '48'. Also children have to 

find 3 number-drawings (an elephant, mailman, and whale).  Potential mistakes in the drawings 

are discussed. A discussion then takes place on the possible mistakes young children can make.  

In addition, the following story is told: "In the afternoon, the animals want to go 

swimming. They start at the library. The children are asked who will arrive first and they have 

to discuss their answer with their neighbor. Furthermore, in Bridge Lane, there are exercises 

everywhere. In Add Street, there are additions. In Remove Street, there are subtractions. In 

Times Street, children find multiplications. In Division Street, there are divisions. All the 

exercises in the four streets are exercises without "bridge over the ten". Children talk about 

where the rabbit will make a mistake. Moreover, they discuss and classify the exercises.  

The principle is experienced and verbalized, "Some exercises are more complex kinds 

of procedural calculations." This is put on the third stage of the Number Stairs. 

 
Session 4 
 

In session 4, the previous principles are reviewed. Furthermore, the following story is 

told: "The 3 animals want to walk in Question Lane. They are asked who would have to be 

careful?" Furthermore, children solve four word problems and discuss the difficulty of these 

exercises.  

Children make a long easy word problem, a short difficult word problem and a long 

difficult word problem for their neighbor. The answers are discussed in the group. Some 

additional exercises are also discussed in the group.  

Furthermore, the story continues as follows: "Our friends went to the movie theater 

and met 4 word problems (type of movie problem) (e.g., 90 is 1 more than?)." Children discuss 

that the rabbit will solve all of these word problems incorrectly. The cat will think in advance if 

the word problem was a language problem or a movie problem. Language problems are 
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visualized with lips, whereas movie problems were visualized with a movie camera. Children 

draw lips or a camera on several word problems.  

The fourth principle, "In some word problems we simply can depend on reading the 

words (language problems), whereas in other problems a mental representation (movie 

problems) is required" is experienced and verbalized.  

Children put this principle on the fourth stair of the Number stairs. 

 
Session 5 
 

In the fifth session, all principles are reviewed. The following story is told: "Miss 

Mouse and Tom the Mole come by train to visit Kjell the turtle. The mouse is very fast, but 

very small. The Mole is blind. They both arrive by the same train in Number Town."  

The following questions are asked:  

Who will arrive at Kjell's house first?  From what point in Number Town will the 

mole have problems? How can the Mole solve his problem? (By asking Kjell to help him from 

the station.)   

The principle is experienced and verbalized: Mathematics starts with an orientation 

phase in order to plan in advance. In addition, all children have to write down easy and difficult 

exercises. The answers are discussed in the group.  

The principle is placed: 'If you are not successful in something, exercises help a lot'.  

Children are asked: What will happen if the mole does walk to the turtle's house  without 

thinking in advance? Does the mouse also have to be careful?  

Then the story continues:  

"The turtle, mouse, and mole want to go to the church. The rabbit wants to go with 

them, but he has a broken leg. They all start from the Market. Children are asked: How do they 

have to walk? Is there a problem for the mole/mouse/rabbit?" Answers are discussed.  

The principle "Think on who you are and what you know, before you solve an 

exercise" is experienced and verbalized. Children are invited to give some exercises that 

illustrate this principle. 

The story continues:  

"There are also some humans who live in Number Town.  Mary is good in addition 

and subtraction, but bad in division and multiplication. Ann has difficulties solving sums. Peter 

has problems solving exercises bigger than 100. He is very good at solving small exercises. 

Mary is tired and has to take an exam ."  

Children are asked how she will perform. Then they are asked: If Ann has done lots 

of exercises and slept well, will she be able to solve the exercises? In addition, they have to 

write 5 exercises where Mary has (no) problems, 5 exercises where Peter has (no) problems, 
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and 1 exercise where both have (no) problems. All the answers are discussed in the group. Then 

they have to write down exercises that are difficult for themselves as well as exercises that are 

easy for themselves. These exercises are compared and discussed. In addition, children do an 

exercise on the blackboard. They have to predict in advance whether they will be successful or 

not.  
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Appendix B 
Sample items from the cognitive training (Count City) 

 
Session 1 
 

The following story is told: "Count City is a village, where all houses contain 

mathematics exercises. There are red houses, blue houses, green houses, yellow houses, and 

orange houses. In every session, we will learn about one of the colors of the houses.  In every 

session, children earn a color of the rainbow. "   

The children have to solve the questions in the red houses. They have to open the 

doors and windows of the houses and solve the questions in it.  In addition, the children are 

invited to follow the dots of a red house and write ‘mathematics house’ on the roof. Finally, the 

children play a number reading game and color the red color of the rainbow. Exactly the same 

exercises are done as in the Number Town condition. 

 
Session 2 
 

In a second session, the children are asked what they learned the previous session. 

The following story is presented: "Tine walks in Count City and visits the blue houses. She 

visits the five blue houses. The first blue house is full of additions and subtractions with big 

size numbers. The second blue house is full of additions with big size numbers. The third blue 

house has lots of additions with big size numbers. The fourth blue house has additions and 

subtractions with small size numbers. The fifth blue house has additions in it with small size 

numbers."  

Children are asked questions such as: How did you solve the exercises? Why? Who 

can show us how to solve such an exercise? What are the steps to take? 

The children are invited to do 5 other exercises on the black board.  

The procedural algorithm is experienced and then formulated. "In an addition we start 

with the units and then add the tens …”. Then children make their own exercises out of a blue 

page. The second color of the rainbow is colored.  Exactly the same exercises are made as in 

the Number Town condition. 

 
Session 3 
 

In a third session, the previous lessons are reviewed and the following story is 

introduced: "This is a street with all green houses. Can you read what is written on these 

houses?  In this street, there are a lot of numbers children have to read. Moreover, there are also 

numbers on fast-to-read cards".  
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Children have to solve the fast-to-read cards. In addition, children do exercises where 

they have to draw an arrow between, for example, 'forty-eight' and '48'. Also children have to 

find 3 number-drawings (elephant, mailman, and whale).  Mistakes in the drawings are 

corrected.  

In addition, exercises are made without "bridge over the ten”. Moreover, they discuss 

and classify the same exercises as in the Number Town condition.  

The principle is experienced and verbalized, "In reading two digit number, we first 

read the unit and then the ten, but we first write the ten and then the unit.  The green houses are 

colored and the green is put on the rainbow of Count City. 

 
Session 4 
 

In session 4, the previous principles are reviewed. Furthermore, the following story is 

told: "We are now walking in the yellow street full of word problems”.  

Children make a long easy word problem, a short difficult word problem and a long 

difficult word problem for their neighbor. The answers are discussed in the group. Some 

additional exercises are also discussed in the group.  

Furthermore, the story continues as follows: "In a fruit basket different fruits have a 

word problem on them (of the type 90 is 1 more than?)."  Children note the procedural 

calculations necessary to solve these word problems. Language problems are visualized with 

lips, whereas movie problems are visualized with a movie camera. Children draw lips or a 

camera on several word problems.  

The fourth principle, "To solve word problems we have to read the words (language 

problems) and visualize the problem (movie problems)" is experienced and verbalized. Exactly 

the same exercises are done as in the Number Town condition. The yellow houses are coloured 

and the yellow is put on the rainbow of Count City. 

 
Session 5 
 

In the fifth session, all the principles are reviewed. The following story is told: "We 

now visit the orange houses of Count City. In the first orange house children have to solve 

small exercises. In the second orange house children have to solve additions and subtractions. 

The third orange house has divisions and multiplications in it. " Then children have to write 

down two exercises for themselves. These exercises are compared and discussed. In addition, 

children do an exercise on the blackboard.  The orange houses are colored and the orange is put 

on the rainbow of the Count City. At the end of the last session, children receive the key to 

Count City."  
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Chapter 6 
 

General Discussion 
 
 
 

The central question underlying this thesis is whether or not off-line 
metacognition has some ‘value added’ in the assessment and 
intervention of young children with mathematics learning disabilities. 
We believe that an overview of the different studies in the context of 
mathematical problem solving in children with mathematics learning 
disabilities in this chapter, may contribute to a better understanding of 
why some mathematics learning disabilities remain such pervasive 
disabilities. 

 

 

6.1  Introduction 

The different studies reported in this thesis aimed at investigating whether young 

children with mathematics learning disabilities differed from children with mathematics 

learning problems and peers with age adequate mathematical problem solving skills on off-line 

metacognition. Moreover, we wanted to examine whether low off-line metacognition could be 

explained within ‘independency’, 'maturational lag’, and  ‘domain-specificity’ hypotheses. 

Finally, we aimed at investigating the modifiability of off-line metacognition and the impact on 

mathematical problem solving.  

For an overview of participants, instruments, and methods, we refer to the different 

chapters [see chapter 2, 3, 4, and 5]. The methodological limitations of the different studies are 

also discussed in the respective chapters of this thesis. In this chapter the results of the different 

studies are briefly reviewed and general conclusions are drawn. The chapter ends by giving 

some implications for future research as well as some practical implications of the different 

findings on the assessment and training of children with mathematics learning disabilities.  

 

6.2  Test of main hypotheses 

In the first research question it was investigated whether the frequently used 

metacognitive parameters could be combined into a two (knowledge, skills) or three 

(knowledge, skills, beliefs) componential construct. In answering this question, three 
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metacognitive components were extracted, but not the expected ones. The first component was 

a combination of metacognitive knowledge and skills in a ‘global metacognition’ component. 

The second component was found to be a combination of prediction and evaluation skills in 

what was called  ‘off-line’ metacognition. In addition, a third component was found in the 

metacognitive beliefs of young children.  Moreover, the off-line metacognitive component was 

the only component differentiating between children with mathematics learning disabilities, 

children with mathematics learning problems, children with average performances on 

mathematics and expert mathematics performers [see chapter 2].  

The second research question aimed to clarify some of the issues on the assessment of 

off-line metacognition in young children. Several striking problems emerged in the assessment 

of metacognition through observation, questionnaires, and interviews, which limited the 

comparison of studies. The interpretation of these issues reflected suggestions for an indirect 

and more dynamic assessment of off-line metacognitive skills. Therefore, an indirect 

computerized dynamic assessment tool (EPA2000, De Clercq, Desoete, & Roeyers, 2000) was 

developed for third-grade children with and without mathematics learning disabilities [see 

chapter 3].  

Moreover, our research aimed to investigate Swanson’s ‘independency model’ 

(Swanson, 1990) or the model where metacognition has an additional value in the explanation 

of learning. Furthermore, we wanted to investigate the ‘maturational lag hypothesis’ or the 

hypothesis that children with mathematics learning disabilities show immature metacognitive 

skills, comparable with the skills of younger children.  Furthermore, we were interested 

whether off-line metacognition could be considered as a domain-specific skill. Our findings 

were in line with the independency model and the domain-specificity hypothesis, since off-line 

metacognition was not found to be significantly correlated with intelligence and children with 

specific reading disabilities appeared to have no problems with the accurate prediction and 

evaluation on mathematics tasks. However, children with mathematics learning disabilities 

were found to have a different off-line metacognitive profile than young children with 

comparable mathematics performances, meaning that their problems could not be explained by 

the maturational lag hypothesis [see chapter 4].  

Finally, in answering the fourth research question, this study evaluated the 

effectiveness of an off-line metacognitive program in an elementary school setting. Our 

findings suggested that a short time intervention, including a prediction component was able to 

enhance off-line metacognitive and cognitive skills in young children, with a follow-up effect 

on domain-specific mathematics knowledge. On the other hand, apparently off-line 

metacognitive and cognitive skills needed to be explicitly taught in order to develop [see 

chapter 5].  
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6.3  Discussion of the findings 

 

One of the central questions underlying this thesis is whether the combined 

assessment of cognitive and off-line metacognition skills has some ‘value added’ in the 

approach of children with learning disabilities in grade 3. However, a rather worrying finding 

of this thesis was that it seemed not so easy (and in some cases rather arbitrary) to determine 

whether a child has a mathematics learning disability or not. Furthermore, our findings 

illustrated that not all skills were found to be equally important to assess. In addition, some 

questions about off-line metacognitive skills and the modifiability of those skills remain 

unsolved. Given these empirical and theoretical findings, we intend to explore these aspects in 

more detail in the paragraphs that follow. 

 

Mathematics learning disability 

 

Although authors agree that an operational definition of learning disabilities is 

meaningful (e.g. , Kavale & Forness, 2000; Swanson, 2000), most studies are rather vague with 

respect to what kind of children they call ‘children with learning disabilities’ [see chapter 4]. 

We have tried to be more explicit in this thesis.  

Therefore, each child with a mathematics learning disability was screened for 

inclusion in our studies, based on the following three criteria. First, the child had to perform 

significantly poorer on mathematics than we would expect based on their general school results 

and/or intelligence (discrepancy criterion) (APA, 1994). Moreover, the child had to perform 

minus two or more standard deviations below the norm (severeness criterion). In addition 

teachers’ judgments were used (resistance criterion) since reviews (Winne & Perry, 2000) 

indicate that those judgments were worthy assessments of students' achievement-related 

behaviors [see chapter 1, 2].  

These three criteria may seem very clear parameters for ascertaining whether an 

individual child belongs to the group of subjects with mathematics learning disabilities. 

However, nothing is further from the truth, and in clinical practice the diagnosis often depends 

on the test(s) chosen to measure the severeness criterion. This choice of these test(s) is crucial, 

since in a previous study no single test succeeded in identifying all children with a mathematics 

disability, according to the discrepancy and resistance criterion (see also Desoete & Roeyers, 

2000). As to the severeness criterion, a cocktail assessment - or test on number facts and at least 

a test on domain-specific or general conceptual knowledge - was needed to prevent the chosen 

test determining the diagnosis. 
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The enigma of off-line metacognition 

 

Since Flavell (1976) introduced the concept, metacognition has become a construct 

with multiple meanings (Boekaerts, 1999; Simons, 1996). One of the components of this 

construct, namely off-line metacognition, was found to differentiate between children with and 

without mathematics learning disabilities on a group level in lower elementary school children 

[see chapter 2 and 4]. In addition, it seemed  possible and useful to measure off-line 

metacognitive skills in childen with mathematics learning disabilities [see chapter 3]. 

Furthermore, a significant relationship was found between mathematics and off-line 

metacognition but not between intelligence and off-line metacognition [see chapter 4]. 

Moreover, off-line metacognition was found to have additional value in the explanation of 

learning, in line with Swanson’s (1990) independency model, where metacognitive skills could 

assist or even compensate for low intelligence scores.  

Moreover, our findings were in line with the domain specificity (e.g., Schraw, 

Dunkle, Bendixen, & De Backer Roedel, 1995) of off-line metacognition. The same pattern 

was found for all mathematics confidence measures in children with specific reading learning 

disabilities and peers without learning problems in grade 3 [see chapter 4]. Therefore, it might 

be possible that children with specific mathematics learning disabilities are able to estimate 

their chances of success on reading tasks but not on mathematical problem solving tasks. The 

question is then why they fail in such item-specific confidence measures at mathematics 

assignments and not at reading tasks. Moreover, it is certainly worthwhile investigating 

whether  reading-related confidence estimations can be of therapeutic value to enhance 

predictions and evaluations on mathematics.  

In addition, we could not explain inaccurate off-line metacognition in children with 

mathematics learning disabilities according to the maturational lag hypothesis. We found that 

children with specific mathematics learning disabilities had significantly less accurate 

prediction and evaluation skills on number system knowledge and procedural calculation than 

younger children with comparable mathematical performance scores.  Moreover, children with 

a combined learning disability predicted their accuracy to solve word problems less well than 

younger children. Since we could not explain these findings according to the maturational lag 

hypothesis, we cannot expect metacognition to develop spontaneously as children grow older or 

as they have more experience with mathematics [see chapter 4]. Congruently with this finding, 

motivating children or ordinary exposure to mathematics was found not to be sufficient to 

stimulate children’s off-line metacognitive skills [see chapter 5].  

Furthermore, it was found that most, but not all children with mathematics learning 

disabilities had inaccurate off-line metacognitive skills [see chapter 5].  However, a large 
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minority of the children with mathematics learning disabilities also had age-adequate prediction 

and evaluation skills (see further ‘Individual differences in children’).  

Finally, off-line metacognition was found to be a modifiable skill and even a short 

time prediction intervention seemed to be able to improve off-line metacognitive and cognitive 

skills in young children, with a follow-up effect on domain-specific mathematics knowledge 

but no transfer effect on non-trained cognitive skills [see chapter 5].  

Given these findings, it might be indicated that off-line metacognition is at least 

tested at a domain-specific level, especially if things go wrong in mathematical problem 

solving. Children with mathematics learning disabilities and inaccurate off-line metacognitive 

skills might then be taught to predict and evaluate more accurately.  Metacognitive therapy 

should therefore focus on the cognitive and metacognitive weaknesses and strong points of 

children, making them more aware of how they calculate, estimate, and deal with word 

problems. Such therapy programs seem to be indicated in addition to the more traditional 

approach of children with mathematics learning disabilities, in order to enhance the willingness 

and capacity to invest appropriate effort in doing mathematics. 

 

Important skills to measure in children with mathematics learning disabilities 

 

Our data underlined the importance of several metacognitive [see chapter 2 and 4] 

and cognitive skills [see chapter 1] to differentiate children with mathematics learning 

disabilities from children with mathematics learning problems and children with age-adequate 

mathematics performances. We summarize the skills in Figure 1.  

 
Figure 1 Important variables to assess 

Before the task During the task After he task 

Metacognition Cognition Metacognition 

Prediction skill (Pr) Cognitive skills Evaluation skill (Ev) 

Pr P Procedural calculation (P) Ev P 

Pr L Language comprehension (L) - 

Pr V Visualization (V) - 

Pr 1  Ev 1 

Pr K  Ev K 

Note. Pr = prediction, Ev = evaluation, P = procedural calculation, L = language comprehension, V = 
visualization, Pr1 = prediction on easy tasks, Pr K = prediction on number system knowledge tasks, Pr P = 
prediction on procedural calculation tasks, Pr L = prediction on language comprehension tasks, Pr V = 
prediction on visualization tasks, Ev 1 = evaluation on easy tasks, Ev K = evaluation on number system 
knowledge tasks, Ev P = evaluation on procedural calculation tasks 
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On metacognition, a majority of children with mathematics learning disabilities were 

found to have less accurate prediction skills than peers without learning disabilities [see chapter 

2]. Moreover, younger children outperformed all children with mathematics learning 

disabilities on prediction on tasks designed for first-grade students (so called ‘easy tasks’ or Pr 

1). Furthermore, children with specific mathematics learning disabilities had less accurate 

predictions on number system knowledge (Pr K) and procedural calculation (Pr P). In addition, 

children with combined learning disabilities were found to have less accurate predictions on 

word problems depending upon language (Pr L) related and visualization (Pr V) tasks [see 

chapter 4].  

Moreover, a majority of the children with mathematics learning disabilities had less 

accurate evaluation skills than peers without learning disabilities [see chapter 2]. In addition, 

children with mathematics learning disabilities had problems especially in estimating their 

chances of success on the ‘easy tasks’ (Ev 1). Finally, children with mathematics disabilities 

did worse than younger children, matched at the level of mathematical problem solving, on the 

evaluation on number knowledge (Ev K) and procedural calculation (Ev P) [see chapter 4].  

On cognition, children with mathematics learning disabilities were found to have less 

developed language comprehension skills (L).  Children with combined domain-specific and 

automatization mathematics learning disabilities in particular failed on the language 

prerequisite to solve word problems. Children with isolated mathematics automatization 

disabilities or children with isolated domain-specific mathematics knowledge disabilities did 

not have problems solving L tasks [see chapter 1].  Given these mixed findings, future  research 

has to clarify why language seems to be impaired in the first group and not in the second group 

of children with specific mathematics disabilities.  

In addition, several children with a specific mathematics learning disability were 

found to have less developed mental representation skills.  Only the children purely with an 

automatization disability did not fail on [see chapter 1] and even had high scores on these V 

tasks (Desoete & Roeyers, 2001). These findings support the idea that children with specific 

mathematics learning disabilities use blind calculation techniques depending on a simple 

translation of keywords in an instruction. This domain-specific mathematics disability group 

might therefore depend too little on a mental representation of problems. However, it is 

certainly worthwhile investigating whether the automatization disability group does not use too 

visual a mathematical problem-solving strategy, maybe at the cost of the retrieval of number 

facts.  

Finally, several children with a domain-specific or a domain-specific and 

automatization mathematics learning disability had problems with procedural skills, using 

several bugs (Van Lehn, 1990) [see chapter 1].  
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Individual differences in children with mathematics learning disabilities 

 

Studies at group level certainly reveal interesting information [see chapters 2, 4, and 

5]. However, there is a certain danger in these studies since they cannot be automatically 

applied to individual children. Not all children with mathematics learning disabilities were 

found to have the same inadequate metacognitive or cognitive skills. For example, children 

with a mathematics automatization disability did not fail in L, P or V tasks [see chapter 1]. In 

addition, only a small majority of the third graders with mathematics disabilities had inaccurate 

off-line metacognitive skills. Furthermore, a minority of the children without learning problems 

also had a severe deficit (-2 SD) on off-line metacognitive skills [see chapter 5].  

Taking all these findings together, there might be a sort of mathematics learning 

disabilities spectrum, with different cognitive and metacognitive profiles in young children. It 

might therefore be important to assess off-line metacognitive and cognitive skills in children 

with mathematics learning disabilities. Certainly Pr, Ev, P, L, V skills have to be tested in order 

to detect whether these skills are age-adequately developed. In addition, general protocol 

cognitive or metacognitive intervention on all children with mathematics learning disabilities 

might represent over-consumption of therapeutic energy, since not all individual children were 

found to have below-average performance on tasks depending on those skills.  

 

Outcome measures 

 

Another question underlying this thesis is whether an intervention on off-line 

metacognition has some value added on the treatment of children with mathematics learning 

disabilities in grade 3. Positive outcomes were expected, since current findings provided 

evidence that educational interventions for students with learning disabilities can produce 

positive effects of respectable magnitude (Swanson, Hoskyn, & Lee, 1999). Moreover, 

metacognition was found to be a trainable skill (Efklides,  Papadaki, Papantoniou, & 

Kiosseoglou, 1997; Lucangeli, Cornoldi, & Tellarini, 1998).  

The findings from our intervention study indicated that prediction is a modifiable 

skill.  Moreover, we found positive treatment outcomes by adding an aspect of off-line 

metacognition on traditionally used mathematical problem solving treatments. In addition, 

children in the metacognitive condition did better than children in the control group but no 

significant transfer on cognitive skills took place [see chapter 5]. The findings of this study 

indicate that motivating children or ordinary exposure to mathematical problem solving 

exercises is not enough to stimulate children’s metacognitive skills. Off-line metacognitive 

skills need to be explicitly taught in order to develop. Moreover, since no transfer was found on 
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number sense or dealing with irrelevant facts, it might be the case that not only the 

metacognitive skills but also all cognitive skills have to be taught and cannot be supposed to 

develop from freely experimenting with mathematics. 

 

6.4  Future directions for related research 

 

The limitations of the different studies are discussed in the respective chapters of this 

thesis. It is, however, important to keep in mind that we have restricted the studies within this 

thesis to the prediction and evaluation of whether or not children are likely to solve a particular 

problem. Moreover, in the first study of the beliefs only attribution was included [see chapter 

2].  In addition, we have to be careful with the subscores of EPA2000, due to the limited 

number of items [see chapter 3]. Moreover, the results of the intervention study have to be 

replicated with children with mathematics learning disabilities [see chapter 5].  An overall 

limitation is that most studies present results at group level [see chapter 2, 4, and 5]. On all 

these aspects further research can be recommended and several lines for future research can be 

drawn.  

On the one hand there is no doubt that in many respects more in-depth research is 

needed as to metacognition in third-grade children. Only off-line metacognition was researched 

in these studies. For example the impact of Global Metacognition and Attribution still has to be 

investigated. Moreover, the other parameters included in the metacognitive beliefs and the 

relationship between cognition, metacognition, motivation, and emotion need additional 

research. Furthermore, in-depth research is certainly indicated for the forty percent of children 

with mathematics learning disabilities where inaccurate off-line metacognitive skills could not 

explain their severe failing in mathematics [see chapter 5]. In addition, the cognitive skills in 

our conceptual model also need more in-depth research. Finally, studies on the impact of 

cognitive and/or metacognitive programs in third-graders with mathematics learning disabilities 

would be useful in order to gain more insight into mathematical problem solving.  

On the other hand, cognition and off-line metacognition has to be researched in 

younger and older children and in children with below or above average intelligence. 

Moreover, it would also be interesting to investigate off-line metacognition related to reading 

tasks in children with mathematics or combined learning disabilities, in order to further confirm 

the domain-specificity hypothesis of off-line metacognitive skills. Furthermore, off-line 

metacognitive interventions should be adapted to children’s developmental phases since 

younger or older children may benefit from training programs that focus on different skills. In 
addition, individual research on children with mathematics learning disabilities remains 
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important to help us translate findings at group level to individual children.  We think that the 

research data derived from such studies could improve our understanding of the mechanism of 

metacognitive regulating behavior.  

 

6.5  Practical implications of this thesis 

 

One of the most challenging questions that arise from the data in our thesis is what 

implications the results described above have for the assessment and treatment of children with 

mathematics learning disabilities. As described in the introduction to this thesis, our studies of 

mathematical problem solving were guided by the cognitive and metacognitive approach. 

Consequently, no implications for a motivational, behavioral or emotional approach can be 

drawn from the results of our studies. Moreover, our studies only included participants with 

average intelligence in grade 3. So we cannot base broad conclusions on children with above or 

below-average intelligence or on younger or older children. However, based on our findings, 

some recommendations can be made for further assessment and the therapeutic approach to 

third-graders with mathematics learning disabilities. 

Firstly, in several chapters [1, 4, 6], we have argued the need for care in the diagnosis 

of ‘mathematics learning disability’. More specifically, we referred to the importance in young 

children to use at least one test on number facts as well as a test on domain-specific 

mathematics knowledge or general conceptual knowledge in order to prevent the chosen test to 

determine the diagnosis. It was further found that teachers’ judgments seemed to be an absolute 

requirement to confirm the test results. In addition, our findings revealed the importance of also 

testing the reading skills of children with mathematics learning disabilities to differentiate 

children with a specific mathematics learning disability from children with a combined learning 

disability [see chapter 4].  

Secondly, we repeatedly stressed [see chapter 2, 3], the importance of a cognitive and 

off-line metacognitive assessment procedure in children with mathematics learning disabilities. 

Our results indicate that relevant cognitive and metacognitive skills have to be assessed, 

especially (but not only) if things go wrong in mathematical problem solving. As to cognition, 

this means measuring procedural calculation, language comprehension and mental visualization 

skills. Furthermore, measurement of off-line metacognition seems indicated. Moreover, 

additional measurement of number reading, operation symbol comprehension, number 

knowledge, dealing with context information, dealing with irrelevant clues and number sense 

skills can be useful in order to assist or compensate weak cognitive skills in children with 

mathematics learning disabilities. Taking into account the complex nature of mathematical 
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problem solving, it may be useful to assess these skills with EPA2000 (De Clercq et al., 2000) 

[see chapter 3] in order to focus on these skills and their role in mathematics learning and 

development.  

Finally, since we found positive treatment outcomes by adding an aspect of off-line 

metacognition on mathematical problem solving treatments [see chapter 5], it might be possible 

that with more time allocated to off-line metacognitive instruction, some mathematics learning 

disabilities may become less pervasive. In addition, we found that off-line metacognitive skills 

needed to be explicitly taught in order to develop. Nevertheless, a standard metacognitive 

therapy for all children with mathematics learning disabilities was found not to be indicated, 

since not all children with mathematics learning disabilities had inaccurate off-line 

metacognitive skills (Desoete & Roeyers, 2001). However, according to us, a mathematics 

therapy plan should focus on cognitive and metacogitive weaknesses and strong-points of 

children, making children more aware of how they deal with problems in a number fact or word 

problem fact format, if metacognitive problems are found in these youngsters with mathematics 

learning disabilities (Desoete, Roeyers, & De Clercq, 2001).  When children become aware of 

the difficulty of tasks, they can pay more attention and work more slowly in order to make 

fewer mistakes. In addition, reflecting on the outcome makes children learn from their mistakes 

and successes.  

To conclude, a majority of the children with mathematics learning disabilities were 

found to show inaccurate off-line metacognitive skills. It may therefore be advisable to assess 

these skills and focus on these skills in young children with mathematics learning disabilities. 
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