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The bosonic atoms used in present day experiments on Bose-Einstein condensation are made up of fermionic
electrons and nucleons. In this Letter we demonstrate how the Pauli exclusion principle for these constituents
puts an upper limit on the Bose-Einstein-condensed fraction. Detailed numerical results are presented for hy-
drogen atoms in a cubic volume and for excitons in semiconductors and semiconductor bilayer systems. The
resulting condensate depletion scales differently from what one expects for bosons with a repulsive hard-core
interaction. At high densities, Pauli exclusion results in significantly more condensate depletion. These results
also shed a new light on the low condensed fraction in liquid helium II.
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Recent experiments with ultracold fermionic gases have
demonstrated the gradual crossover between a Bose-Einstein
condensate of two-fermion molecules and a BCS-like conden-
sate of fermion pairs [1–3]. Turning this picture around, one
might ask to what extent subatomic degrees of freedom play a
role in Bose-Einstein condensates of bosonic atoms, because
these atoms are made up of fermions: electrons and nucle-
ons. From the energetic point of view there is no effect: sub-
atomic excitation energies greatly exceed the thermal energy
scale of Bose-Einstein condensation. Therefore one can safely
assume that the subatomic degrees of freedom are completely
frozen [4]. However, even for a frozen internal structure one
has to take into account the correct symmetries: at the level of
the many-electron wave function, quantum mechanics dictates
antisymmetry, which makes that electrons can not overlap.
As a consequence, the Pauli principle for the electrons lim-
its the available phase space for the bosonic atoms, which can
have an influence on the properties of the condensate [5–11].
It has been demonstrated before that a condensate of bosons
made up of fermions has a maximum occupation number [12].
For hydrogen atoms, that number corresponds to a conden-
sate density of the order of 1/(4πa3

0), with a0 the Bohr radius.
Such high densities are not reached in present day experiments
on Bose-Einstein condensates [13]. Still, the Pauli principle
can have an effect also at lower densities, where it leads to
condensate depletion. It is generally believed that it is suffi-
cient to model this effect through an effective interaction for
the bosons which is strongly repulsive at short distances, like
a hard-sphere potential or e.g. the (unphysical) r−12 term in
the Lennard-Jones potential. The condensate will be depleted,
simply because of the excluded volume. However, the only
physical parameter which determines the low-density proper-
ties of the condensate is the scattering length. It is demon-
strated below that any bosonic interaction with the right scat-
tering length fails to reproduce the Pauli exclusion effect at
high densities. We show how Pauli exclusion puts an upper
bound on the Bose-Einstein condensed fraction of ultracold
atomic gases. The bound is made quantitative for hydrogen
atoms, through the use of an exactly solvable pairing model.

The consequences for ultracold alkali gases, exciton conden-
sates in semiconductors and liquid helium II are discussed.

Following Penrose and Onsager [17], one can define a
Bose-Einstein condensate by looking at the one-boson density
matrix ρB(r,r′) of a many-boson system,

ρB(r,r′) = 〈ΦB|b†
r′br|ΦB〉, (1)

with b†
r the operator that creates a boson at position r and ΦB

the many-boson wave function. The system is said to exhibit
Bose-Einstein condensation if the one-body density matrix
has an eigenvector ψB(r) with an eigenvalue λB of the same
order as the total number of bosons, N. The ratio fB = λB/N
gives the condensed fraction, and the eigenvector ψB(r) cor-
responds to the order parameter of the condensate.

Taking into account that atomic bosons are actually made
up of fermions, one realizes that the many-boson state |ΦB〉
corresponds at a more microscopic level to a many-fermion
wave function |ΦF〉. For bosons made up of two fermions, the
bosonic one-body density matrix of Eq.(1) can be related to
the fermionic two-body density matrix. Grouping the fermion
pair states in a single coordinate R = (r1,r2), one can write
the fermionic two-body density matrix as a square matrix
ρF(R,R′). A Bose-Einstein condensate would show up as an
eigenvector ψF(R) of the fermionic two-body density matrix
with a macroscopic eigenvalue λF [18]. If the bosons cor-
respond to strongly bound pairs of fermions, one can expect
the bosonic and the fermionic picture of the condensate to be
equivalent [5], with

Z

ψB(r)b†
rdr ≡

Z

ψF(r1,r2)a
†
r1

a†
r2

dr1dr2, (2)

λB = λF . (3)

The fermionic model has the Pauli correlations between the
fermions taken into account, while the bosonic model does
not. Unfortunately, for any realistic model the fermionic
many-body problem is too complicated in order to determine
ρF(R,R′) accurately.
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A variational approach is feasible: λF is an eigenvalue of
the many-body operator B†B, with the operator B† defined as

B† =

Z

ψF(r1,r2)a
†
r2

a†
r1

dr1dr2. (4)

If one knows the structure of the order parameter ψF of the
fermionic pair condensate, one can determine an upper limit
for the eigenvalue λF :

λF = 〈ΦF |B†B|ΦF〉 < |EP|, (5)

where EP is the ground state energy of a fermionic pairing
Hamiltonian, HP = −B†B. This Hamiltonian is not meant to
be phenomenological, but it is useful here because it is inte-
grable [19] and exactly solvable [20]. Therefore, given the
pair function ψF(r), one can determine the ground state en-
ergy EP(2N) of HP for 2N fermions, and make a rigorous
variational statement about the boson condensed fraction:

fB ≤ |EP(2N)|
N

. (6)

This upper bound is valid at all temperatures, but will be most
stringent at zero temperature, because there one expects the
largest condensed fraction. The resulting eigenstate is not
meant as an approximation to the true state |Φ f 〉, because
Eq.(6) is a variational statement on the condensed fraction,
not on the energy.

To determine the upper bound of Eq.(6), one needs to know
the bosonic order parameter in terms of the fermionic degrees
of freedom. Although the following treatment is based on a
hydrogen 1s wave function, the procedure is more general.
Alkali atoms such as 7Li, 23Na or 87Rb can be seen as a paired
state of a valence electron and a singly ionized core atom. Be-
cause the tail of the wave function for the valence electron
is similar to the hydrogen 1s wave function, we expect qual-
itatively the same Pauli effects as for hydrogen atoms. The
Bloch-Messiah theorem says that it is always possible to write
a fermion pair wave function in the form B† = ∑i ψF(i)a†

i a†
−i,

where the index i does not necessarily refer to momentum
states. The ground state energy of the corresponding pair-
ing Hamiltonian HP = −B†B gives the upper bound for the
condensed fraction. In the low-density limit this results in
fB ≤ 1− N ∑i |ψF(i)|4, while the upper bound in the high-
density limit follows from the absolute maximum occupation

number for the pair condensate [12]: fB ≤ (∑i |ψF (i)|)2

4N . At in-
termediate densities one can evaluate the exact solution for the
ground state energy of HP (see below).

Here we consider hydrogen atoms in a cubic volume V with
periodic boundaries, because for this case the wave function
is known analytically, and therefore we can determine the up-
per bound of Eq.(6) easily. At low temperatures and densities,
one can expect that the protons and electrons form hydrogen
atoms and that all atoms are in a 1s state. Because of transla-
tional invariance, the bosonic condensate order parameter will
be a uniform function in the center-of-mass coordinate of the
atoms. The resulting pair operator can be written as

B† = ∑
k

ψF(k)a†
k,pa†

−k,e, (7)

where the sum runs over all momentum states allowed by the
periodic boundary conditions of the cubic volume V , with the
subscripts p and e distinguishing between protons and elec-
trons and ψF(k) the pair wave function in momentum space,

ψF(k) =

√
Z

(1+a2
0k2)2

, (8)

with Z = 64πa3
0/V . As discussed above, one can assume

the internal structure of the hydrogen atoms to be completely
frozen at temperatures of the order of 1µK, relevant for Bose-
Einstein condensation [4]. Therefore we can rely on the pair
operator of Eq.(7) in order to evaluate the upper bound of
Eq.(6).

To find the ground-state energy of HP for N pairs, one has
to solve the following set of equations [20]:

1
yi

+∑
j 6=i

1
yi − y j

= F(2Zyi), ∀i = 1, . . . ,N −1, (9)

with the function F(x) given by

F(x) =
32
π

Z +∞

0

q2dq

x− (1+q2)4 . (10)

The energy EP is given by EP = ∑N−1
i=1

1
yi
−1. The low density

limit is obtained by taking the limit Z → 0 for a fixed number
of pairs N. One obtains, for nBa3

0 � 1, that

fB ≤ 1− 33π
2

(nB a3
0). (11)

The result of Eq.(11) was obtained without reference to inter-
actions. At the bosonic level the Pauli blocking between the
constituing fermions results in a repulsive interaction between
atoms at short distances. This interaction can be modeled us-
ing a pseudopotential

V (r) =
4π~

2as

m
δ(r)

∂
∂r

r, (12)

with m the atomic mass. For non-interacting hard spheres, one
can identify the scattering length as with the radius [21, 22].
The Bogoliubov approximation, which applies in the low-
density limit, results at zero temperature in a condensed frac-
tion that scales as [22, 23]

fB = 1− 8
3
√

π
(

nB a3
s

)

1
2 . (13)

The scaling with a power 1/2 assures that the variational
bound Eq.(11) is fulfilled. However, one observes that the Bo-
goliubov result is fundamentally different from the expression
of Eq.(11) because it scales differently. This can be explained
by the fact that the ground state wave function is not uniform.
In fact, one can expect a higher amplitude for configurations
where the bosons are well separated than for configurations
where bosons nearly overlap [24]. Consequently, it turns out
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that Pauli blocking is only a second order effect in the low-
density limit. The leading order is determined by bosonic
many-body physics, which not only tries to avoid overlapping
atoms, but also tries to minimize the energy.

The high density limit can be derived from the maximal
occupation number of the pair state [12], which for hydro-
gen results in fB ≤ 1

4πnB a3
0
. At high densities one has to assess

the effects of the interactions with the other atoms. Calcu-
lations with a quantum Monte Carlo method [25] and a con-
strained variational method [26] have shown that for an inter-
action with scattering length as the condensed fraction is well
described by the Bogoliubov approximation of Eq.(13), up to
densities of the order of nB ∼ 10−3a−3

s . For hydrogen atoms
the s-wave scattering length is given by as = 0.41a0 [27].
One can see in Fig. 1 that at a density of nB = 10−3a−3

s =
1.5×10−2a−3

0 , the Pauli effect results in a condensate deple-
tion of the order of 36%, while hard spheres with a radius
as, and hence any interaction with the same scattering length,
yield a depletion of only 5%. One can conclude that at den-
sities of the order of 10−3a−3

0 and higher the Pauli exclusion
effect results in a significantly stronger condensate depletion
than the hard-sphere potential, and that an effective two-body
interaction for the bosons is not able to reproduce this effect.

However, at high densities one also has to consider another
effect: due to interactions with electrons and protons in neigh-
bouring atoms, the intrinsic wave function of the atoms might
get deformed from the standard 1s wave function of Eq.(8). A
way to take these interactions into account is to use a screened
Coulomb potential, such as the Hulthén potential [28, 29]:
VH(r) = − 4γV0

e2γr/a0−1
, with V0 the hydrogen 1s binding energy

and γ a dimensionless parameter proportional to the screening
constant as defined in the Debeye-Hückel or Thomas-Fermi
models. This is a phenomenological way to take screening
into account, which could deviate from the true microsopic
behaviour at high densities. The intrinsic wave function in
momentum space becomes

ψF(k) =

√

Z (1− γ2)
[

(1− γ)2 +a2
0k2

][

(1+ γ)2 +a2
0k2

] . (14)

In theory, at very high densities the system could undergo a
Mott transition, where electrons and protons are no longer
bound to each other in hydrogen atoms, but rather form a
plasma. For cold hydrogen atoms this is not a realistic sce-
nario, but it does apply to excitons in semiconductors, which
have a similar intrinsic structure. The Mott transition occurs
at an exciton density of nc ' 0.02a−3

x , with ax the exciton
Bohr radius [30]. This behavior should be reflected in the
density dependence of the screening parameter γ: at very low
densities γ should tend to zero, in order to recover the hydro-
gen wave function, Eq.(8), from the Hulthén wave function,
Eq.(14). The Mott transition, on the other hand, would require
the bound states of the Hulthén potential to disappear around
the transition density. As this happens at γ = 1, we follow
Ref. [31] to take γ =

√

nB/nc. The variational bound for the
condensed fraction can be obtained for any density by solving

the eigenvalue equations of the pairing Hamiltonian HP with
the screened pair structure of Eq.(14). Fig. 1 shows the results
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FIG. 1: Maximal condensed fraction for hydrogen 1s bosons (full
line), Hulth én 1s bosons (dashed line), and bosonic hard spheres of
radius as (circles), as a function of the density parameter nBa3

0. The
hydrogen and Hulth én curves were calculated for 1000 bosons, the
hard-sphere results were taken from Ref.[25].

for the hydrogen 1s and Hulthén 1s intrinsic wave functions.
At the resolution of the figure the results for 1000 and 2000
particles are undistinguishable, meaning that convergence has
been reached and that finite-size effects are negligible at these
particle numbers. The screening effects enhance the conden-
sate depletion even more. They become important only when
the maximal condensed fraction is lower than 80%, so they
are of secondary importance in the high density regime.

The densities where the Pauli effect becomes sizeable are
probably out of reach for an ultracold atomic hydrogen gas,
because three-body recombination processes would convert
the atoms into molecules. However, the same pair structure
also applies to Wannier excitons in semiconductors. There
the Pauli effect might explain, together with biexciton re-
combination, why a clear signal of exciton condensation
has not yet been observed in a three-dimensional structure.
Bose-Einstein condensation of excitons has been observed
in semiconducting bilayers [14]. The physics there is ba-
sically two-dimensional [15, 16]. There too the Pauli ef-
fect applies. Although an analytical expression for the in-
trinsic structure of these excitons is not readily available,
one can estimate the Pauli effect by looking at the results
of Fig. 2 for a two-dimensional hydrogen wave function,
φh(k) ∝ (1 + a2

xk2/4)−3/2 and for a Gaussian wave function
with the same low-density properties, φg(k) ∝ exp(−a2

xk2/5),
with ax the two-dimensional excitonic Bohr radius.

If one has to treat more valence electrons independently,
then the boson operator corresponds to a three- or higher-
body fermion operator instead of a pair operator, and the
resulting Hamiltonian −B†B is no longer exactly solvable.
Still, one can expect the Pauli principle to have qualitatively
the same effect on e.g. 4He condensates: the electrons will
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FIG. 2: Maximal condensed fraction for two-dimensional excitons
with a hydrogen-like (solid line) or Gaussian (dashed line) intrinsic
wave function, as a function of the exciton density parameter nba2

x .
The curves were calculated for 1000 excitons.

avoid overlap and hence limit the available phase space for
the 4He atoms. A uniform distribution of hard-core bosons
can qualitatively explain the reduced condensed fraction in
liquid helium II compared to an ultracold low-density Bose
gas [17, 24]. The Pauli blocking of the underlying fermions
offers a more microscopic view of this process. Pauli effects
will result in a significant depletion of the condensate at den-
sities of the order of 10−3 times the close-packing density or
higher, and definitely at the density of liquid helium.

We have demonstrated here that Pauli blocking of the un-
derlying electrons leads to condensate depletion in ultracold
atomic gases and in exciton condensates. This effect might
be measurable in systems where densities of the order of
10−3a−3

0 can be reached, such as Wannier excitons in semi-
conductors or 4He films adsorbed on porous Vycor glass [32].
This effect depends solely on the symmetry and internal struc-
ture of the wave-functions. In the high-density regime, this
effect can not be modeled through an effective two-body in-
teraction at the bosonic level. Interactions might change the
internal wave function of the fermionic pairs. Our calcula-
tions based on a screened potential show that the Pauli effect
dominates over the interaction effects at densities one or two
orders of magnitude below the Mott transition density.
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