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Abstract

When the initial and transition probabilities of a finite Markov chain in discrete time are
not well known, we should perform a sensitivity analysis. This can be done by considering
as basic uncertainty models the so-called credal sets that these probabilities are known or
believed to belong to, and by allowing the probabilities to vary over such sets. This leads
to the definition of an imprecise Markov chain. We show that the time evolution of such a
system can be studied very efficiently using so-called lower and upper expectations, which
are equivalent mathematical representations of credal sets. We also study how the inferred
credal set about the state at time n evolves as n→ ∞: under quite unrestrictive conditions,
it converges to a uniquely invariant credal set, regardless of the credal set given for the
initial state. This leads to a non-trivial generalisation of the classical Perron–Frobenius
Theorem to imprecise Markov chains.

Keywords: Markov chain, sensitivity analysis, imprecise Markov chain, event tree,
probability tree, credal set, lower expectation, upper expectation, stationarity, non-linear
Perron–Frobenius Theorem, regularity.
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1 Introduction
One convenient way to model uncertain dynamical systems is to describe them as Markov
chains. These have been studied in great detail, and their properties are well known. How-
ever, in many practical situations, it remains a challenge to accurately identify the transition
probabilities in the Markov chain: the available information about physical systems is often
imprecise and uncertain. Describing a real-life dynamical system as a Markov chain will
therefore often involve unwarranted precision, and may lead to conclusions not supported by
the available information.

For this reason, it seems quite useful to perform probabilistic robustness studies, or sensi-
tivity analyses, for Markov chains. This is especially relevant in decision-making applications.
Many researchers in Markov Chain Decision Making [12, 18, 25, 36]—inspired by Satia &
Lave’s [1973] original work—have paid attention to this issue of ‘imprecision’ in Markov
chains.

Work on the more mathematical aspects of modelling such imprecision in Markov chains
was initiated in the early 1980s by Hartfiel & Seneta (see [13–15]), under the name ‘Markov set-
chains’. Hartfiel’s work seems to have been unknown to Kozine & Utkin [21], who approached
the subject from a different angle. Armed with linear programming techniques, these authors
performed an experimental study of the limit behaviour of Markov chains with uncertain
transition probabilities. More recently, Škulj [31, 32] has also contributed to a formal study of
the time evolution and limit behaviour of such systems. Markov set-chains can also be seen as
special cases of so-called credal networks under strong independence [7, 8].

All these approaches use sets of probabilities to deal with the imprecision in the transition
probabilities. When these probabilities are not well known, they are assumed to belong to
certain sets, and robustness analyses are performed by allowing the transition probabilities
to vary over such sets. This should be contrasted with more common ways of performing
a sensitivity analysis: looking at small deviations from a reference model and evaluating
derivatives of important variables in this reference point.

As we shall see, the sets of probabilities approach leads to a number of computational
difficulties. But we will show that they can be overcome by tackling the problem from another
angle, using lower and upper expectations, rather than sets of probabilities. Our new method
also makes it fairly easy to formulate and prove convergence (or Perron–Frobenius-like) results
for Markov chains with uncertain transition probabilities that hold under weaker conditions
than the ones found by Hartfiel [14, 15] and Škulj [32]. We shall see that our condition for this
convergence, which requires that the imprecise Markov chain should be regularly absorbing,
is implied by, and even strictly weaker than, both Hartfiel’s product scrambling and Škulj’s
regularity conditions.

In the rest of this Introduction, we give an overview of the theory of classical Markov chains
and formulate the classical Perron–Frobenius theorem. Then, in Sections 2 and 3, we introduce
imprecise Markov chains and generalise many aspects of the classical theory. In Section 4, we
briefly discuss accessibility relations, which allows us to give a nice interpretation to a number
of conditions that will turn out to be sufficient for a Perron–Frobenius-like convergence result.
In Section 5, we generalise the classical Perron–Frobenius theorem, and explore the relation
of our generalisation with previous work in the literature. We discuss a number of theoretical
and numerical examples in Section 6, and we give perspectives for further research in the
Conclusions. Proofs of theorems and propositions have been relegated to an appendix.

1.1 A short analysis of classical Markov chains
Consider a finite Markov chain in discrete time, where at consecutive times n = 1,2,3, . . . ,N,
N ∈ N the state X(n) of a system can assume any value in a finite set X . Here N denotes
the set of non-zero natural numbers, and N is the time horizon. The time evolution of such a
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system can be modelled as if it traversed a path in a so-called event tree; see Shafer [29]. An
example of such a tree for X = {a,b} and N = 3 is given in Figure 1.

The situations, or nodes, of the tree have the form x1:k := (x1, . . . ,xk)∈X k, k = 0,1, . . . ,N.
For k = 0 there is some abuse of notation as we let X 0 := {�}, where � is the so-called
initial situation, or root of the tree. In the cuts1 X n of �, the value of the state X(n) at time n
is revealed.

a

(a,a)

(a,a,a) (a,a,b)

(a,b)

(a,b,a) (a,b,b)

b

(b,a)

(b,a,a) (b,a,b)

(b,b)

(b,b,a) (b,b,b)

X 1

X 2

Figure 1: The event tree for the time evolution of system that can be in two states, a and b, and
can change state at time instants n = 1,2. Also depicted are the respective cuts X 1 and X 2

of � where the states at times 1 and 2 are revealed.

In a classical analysis, it is generally assumed that we have: (i) a probability distribution
over the initial state X(1), in the form of a probability mass function m1 on X ; and (ii) for
each situation x1:n that the system can be in at time n, a probability distribution over the next
state X(n+1), in the form of a probability mass function q(·|x1:n) on X . This means that in
each non-terminal situation2 x1:n of the event tree, we have a local probability model telling
us about the probabilities of each of its child nodes. This turns the event tree into a so-called
probability tree; see Shafer [29, Chapter 3] and Kemeny & Snell [19, Section 1.9].

The probability tree for a Markov chain is special, because the Markov Condition states
that when the system jumps from state X(n) = xn to a new state X(n+1), where the system
goes to will only depend on the state X(n) = xn the system was in at time n, and not on its
states X(k) = xk at previous times k = 1,2, . . . ,n−1. In other words:

q(·|x1:n) = qn(·|xn), x1:n ∈X n, n = 1, . . . ,N−1, (1)

where qn(·|xn) is some probability mass function on X . The Markov chain may be non-
stationary, as the transition probabilities on the right-hand side in Eq. (1) are allowed to depend
explicitly on the time n. Figure 2 gives an example of a probability tree for a Markov chain
with X = {a,b} and N = 3.

With the local probability mass functions m1 and qn(·|xn) we associate the linear real-
valued expectation functionals E1 and En(·|xn), given, for all real-valued maps h on X ,
by

E1(h) := ∑
x1∈X

h(x1)m1(x1) and En(h|xn) := ∑
xn+1∈X

h(xn+1)qn(xn+1|xn) (2)

Throughout, we will formulate our results using expectations, rather than probabilities.3 Our
1A cut V of a situation s is a collection of descendants v of s such that every path (from root to leaves) through s

goes through exactly one v in V .
2A non-terminal situation is a node of the tree that is not a leaf.
3Arguments for the ‘expectation approach’ to probability theory were given by Whittle [37]. This approach is also

central in the work of de Finetti [11]. For classical, precise probabilities, whether we use the language of probability
measures, or that of expectation operators, seems to be a matter of personal preference, as the two approaches are
formally equivalent. But for the imprecise-probability models we introduce in Section 2, it was argued by Walley [33]
that the (lower and upper) expectation language is mathematically superior and more expressive.
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Figure 2: The probability tree for the time evolution of a Markov chain that can be in two
states, a and b, and can change state at each time instant n = 1,2.

reasons for doing so are not merely aesthetic, or a matter of personal preference; they will
become clear as we go along.

In any probability tree, probabilities and expectations can be calculated very efficiently
using backwards recursion.4 Suppose that in situation x1:n, we want to calculate the conditional
expectation E( f |x1:n) of some real-valued map f on X N that may depend on the values of
the states X(1), . . . , X(N). Let us indicate briefly how this is done, also taking into account
the simplifications due to the Markov Condition (1).

For these simplifications, a prominent part will be played by the so-called transition
operators5 Tn and Tn. Consider the linear space L (X ) of all real-valued maps on X . Then
the linear operator (transformation) Tn : L (X )→L (X ) is defined by

Tnh(xn) := En(h|xn) = ∑
xn+1∈X

h(xn+1)qn(xn+1|xn) (3)

for all real-valued maps h on X . In other words, Tnh is the real-valued map on X whose
value Tnh(xn) in xn ∈X is the conditional expectation of the random variable h(X(n+1)),
given that the system is in state xn at time n. More generally, we also consider the linear
maps Tn from L (X n+1) to L (X n), defined by

Tn f (x1:n) := Tn( f (x1:n, ·))(xn)

= En( f (x1:n, ·)|xn) = ∑
xn+1∈X

f (x1:n,xn+1)qn(xn+1|xn) (4)

for all x1:n ∈X n and all real-valued maps f on X n+1.6

We begin our illustration of backwards recursion by calculating E( f |x1:n) for the case
n = N−1. Here

E( f |x1:N−1) = E( f (x1:N−1, ·)|x1:N−1)

= ∑
xN∈X

f (x1:N−1,xN)q(xN |x1:N−1)

= ∑
xN∈X

f (x1:N−1,xN)qN−1(xN |xN−1) = TN−1 f (x1:N−1), (5)

4See Chapter 3 of Shafer’s book [29] on causal reasoning in probability trees, which contains a number of
propositions about calculating probabilities and expectations in probability trees. That such backwards recursion is
possible, was arguably discovered by Christiaan Huygens in the middle of the 17-th century. Shafer [29, Appendix A]
discusses Huygens’s treatment [16, Appendix VI] of a special case of the so-called Problem of Points, where Huygens
draws what is probably the first recorded probability tree, and solves the problem by backwards calculation of
expectations in the tree.

5The operators Tn are also called the generators of the Markov process; see Whittle [37].
6The Tn can be seen as projection operators, since (with some abuse of notation) Tn ◦Tn = Tn.
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where the third inequality follows from the Markov Condition (1), and the fourth from Eq. (4).
Using similar arguments for n = N−2, we derive from the Law of Iterated Expectations7 that

E( f |x1:N−2) = E(E( f (x1:N−2, ·, ·)|x1:N−2, ·)|x1:N−2) = TN−2TN−1 f (x1:N−2). (6)

Repeating this argument leads to the backwards recursion formulae

E( f |x1:n) = TnTn+1 . . .TN−1 f (x1:n) (7)

for n = 1, . . . ,N−1, while for n = 0, we get

E( f ) := E( f |�) = E1(T1T2 . . .TN−1 f ). (8)

In these formulae, f is any real-valued map on X N . In Figure 3, we give a graphical repre-
sentation of calculations using the backwards recursion formulae (7) and (8), for a two-state
stationary Markov chain.

E( f ) = E1(T1T2 f )

E( f |a) = T1T2 f (a) E( f |b) = T1T2 f (b)

E( f |a,a) = T2 f (a,a) E( f |a,b) = T2 f (a,b) E( f |b,a) = T2 f (b,a) E( f |b,b) = T2 f (b,b)

f (a,a,a) f (a,a,b) f (a,b,a) f (a,b,b) f (b,a,a) f (b,a,b) f (b,b,a)
f (b,b,b)

Figure 3: Backwards calculation of the conditional and joint expectations of a real-valued
map f on X 3, for a stationary Markov chain with state set X = {a,b}, and a uniform
probability mass function attached to each non-terminal situation.

For instance, if we let f be the indicator functions I{x1:N} of the singletons {x1:N}, For-
mulae (7) and (8) allow us to calculate the joint probability mass function p defined by
p(x1:N) = E(I{x1:N}) for all the variables X(1), . . . , X(N). We can also use them to find the
conditional mass functions pn(·|xn) and p(·|x1:n) defined by pn(xn+1:N |xn) = p(xn+1:N |x1:n) =
E(I{x1:N}|x1:n).

1.2 The Perron–Frobenius Theorem for classical Markov chains
We are especially interested in the case of a stationary Markov chain, and in the (marginal)
expectation En(h) of a real-valued map h (on X ) that depends only on the state X(n) at time n.
Here, Eq. (8) becomes

En(h) := E1(Tn−1h), (9)

where T := T1 = T2 = · · · = TN−1, and where we denote by Tk the k-fold composition of
T with itself; in particular, T0 is the identity operator id on L (X ). If we let h = I{xn}, this
allows us to find the probability mass function mn(xn) = En(I{xn}), xn ∈X for the state X(n).

7Also known as the Rule of Total Expectation, or the Rule of Total Probability, or the Conglomerative Property;
see, e.g., Whittle [37, Section 5.3] or de Finetti [11].
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By the way, the linear transition operator T is very closely related to the so-called Markov,
or transition, matrix T of the stationary Markov chain, whose elements for all (x,y) ∈X 2 are
defined by

Txy := q(y|x) = TI{y}(x). (10)

Any such transition matrix satisfies the conditions Txy ≥ 0 and ∑z∈X Txz = 1. We will hence-
forth call transition matrix any matrix satisfying these properties.8 The probability counterpart
of the expectation formula (9) can then be written in matrix form as:

mn = m1T n−1, (11)

where, here and further on, we also use the notation mn for the row vector whose components
are the probabilities mn(xn), xn ∈X .

Under some restrictions on the transition operator T, the classical Perron–Frobenius
Theorem then tells us that, as n (as well as the time horizon N) recedes to infinity, this
probability mass function mn converges to some limit, independently of the initial probability
mass function m1; see Kemeny & Snell [19, Theorem 4.1.6] and Luenberger [22, Chapter 6].
In terms of expectation functionals and transition operators:

Theorem 1.1 (Classical Perron–Frobenius Theorem, Expectation Form). Consider a station-
ary Markov chain with finite state set X and transition operator T. Suppose that T is regular,
meaning that there is some k > 0 such that minTkI{x} > 0 for all x in X .9 Then for every
initial expectation operator E1, the expectation operator En = E1 ◦Tn−1 for the state at time n
converges point-wise to the same limit expectation operator E∞:

lim
n→∞

En(h) = lim
n→∞

E1(Tn−1h) =: E∞(h) for all h ∈L (X ). (12)

Moreover, the limit expectation E∞ is the only T-invariant expectation on L (X ), in the sense
that E∞ = E∞ ◦T.

2 Towards imprecise Markov chains
The treatment above rests on the assumption that the initial probabilities and the transition
probabilities are precisely known. If such is not the case, then it seems necessary to perform
some kind of sensitivity analysis, in order to find out to what extent any conclusions we might
reach using such a treatment, depend on the actual values of these probabilities.

A very general way of performing a sensitivity analysis for probabilities involves calcu-
lations with closed convex sets of probability mass functions, also called credal sets, rather
than with single probability measures. Let ΣX denote the set of all probability mass functions
on X , an (|X |−1)-dimensional unit simplex in the |X |-dimensional linear space RX , then{

m ∈ ΣX : (∀x ∈X )m(x)≤ 1
2

}
is a credal set, but

{
m ∈ ΣX : (∃x ∈X )m(x)≥ 1

2

}
is not.

There is a growing body of literature on this interesting and fairly new area of imprecise
probabilities, starting with the publication of Walley’s [33] seminal work. We refer to the
literature [5, 33–35] for more details and discussion.

Let us recall a number of results for credal sets, important for the developments in this
paper. Proofs can be found in Walley’s book [33, Chapters 2 and 3]. Specifying a closed
convex set P of probability mass functions p on a finite set Y is equivalent to specifying its

8In the literature we also find the term stochastic matrix, see Hartfiel [15], for instance.
9This means that there is a k > 0 such that all elements of the k-th power T k of the transition matrix T are (strictly)

positive. Matrices with this property are sometimes called regular as well, but this same name is also used for other
matrix properties. Another name for this property is ‘primitive’ [15].
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lower and upper expectation (functionals) EP : L (Y )→ R and EP : L (Y )→ R, defined
for all g ∈L (Y ) by

EP(g) := min
{

Ep(g) : p ∈P
}

and EP(g) := max
{

Ep(g) : p ∈P
}

, (13)

where Ep(g) = ∑y∈Y g(y)p(y) is the expectation of g associated with the probability mass
function p. In a sensitivity analysis, such functionals are quite useful, because they give tight
lower and upper bounds on the expectation of any real-valued map. Since the functionals
EP and EP are conjugate in the sense that EP(g) =−EP(−g) for all real-valued maps g
on Y , one is completely determined if the other is known. Below, we concentrate on upper
expectations. Any upper expectation E = EP associated with some credal set P satisfies the
following properties [see, e.g. 33, Section 2.6.1]:

E1. ming≤ E(g)≤maxg for all g in L (Y ) (boundedness);

E2. E(g1 +g2)≤ E(g1)+E(g2) for all g1 and g2 in L (Y ) (subadditivity);

E3. E(λg) = λE(g) for all real λ ≥ 0 and all g in L (Y ) (non-negative homogeneity);

E4. E(g+ µIX ) = E(g)+ µ for all real µ and all g in L (Y ) (constant additivity);

E5. if g1 ≤ g2 then E(g1)≤ E(g2) for all g1 and g2 in L (Y ) (monotonicity);

E6. if gn→ g point-wise then E(gn)→ E(g) for all sequences gn in L (Y ) (continuity);

E7. E(g)≥−E(−g) = E(g) for all g in L (Y ) (upper–lower consistency).

Conversely, for any real functional E that is defined on L (Y ) and that satisfies the condi-
tions (E1)–(E3), there is a unique credal set P ⊆ ΣX such that E coincides with the upper
expectation EP , namely P =

{
p ∈ ΣY : (∀ f ∈L (Y ))Ep( f )≤ E( f )

}
. Such an E there-

fore automatically also satisfies conditions (E4)–(E7). It therefore make sense to call upper
expectation any real functional E on L (Y ) that satisfies properties (E1)–(E3).

What is the upshot of all this for the Markov chain problem we are considering here?
First of all, in the initial situation �, corresponding to time n = 0, rather than a single
initial probability mass function m1, we now have a local credal set M1 of candidate mass
functions m1 for the state X(1) that the system will be in at time k = 1. We denote by E1 the
upper expectation associated with M1:

E1(h) := max
{

∑
x∈X

h(x)m1(x) : m1 ∈M1

}
for all h ∈L (X ). (14)

Also, in any situation x1:n ∈ X n corresponding to time n = 1,2, . . . ,N − 1, instead of a
single transition mass function qn(·|xn), we now have a local credal set Qn(·|xn) of candidate
conditional mass functions qn(·|xn) for the state X(n + 1) that the system will be in at time
n+1. We denote by En(·|xn) the upper expectation associated with Qn(·|xn), i.e.:

En(h|xn) := max
{

∑
x∈X

h(x)q(x) : q ∈Qn(·|xn)
}

for all h ∈L (X ). (15)

We call the resulting model an imprecise Markov chain. Figure 4 gives an example of a
probability tree for an imprecise Markov chain. It is an imprecise-probability tree where the
local conditional models satisfy the Markov Condition:

Q(·|x1:n) = Q(·|xn) for all x1:n ∈X n and n = 1,2, . . . ,N−1. (16)

A classical, or precise, Markov chain is an imprecise one with credal sets that are singletons.
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Figure 4: The tree for the time evolution of an imprecise Markov chain that can be in two
states, a and b, and can change state at each time instant n = 1,2.

How, then, can a sensitivity analysis be performed for such an imprecise Markov chain? We
choose, in each non-terminal situation x1:k of the above-mentioned event tree, a local transition
probability mass q(·|x1:k) in the set of possible candidates Qk(·|xk).10 For k = 0, we get the
initial situation �, where we choose some element m1 in the set of possible candidates M1.
By making a choice of local model for each non-terminal situation in the event tree, we
obtain what we call a compatible probability tree, for which we may calculate all (conditional)
expectations and probability mass functions:

E( f |x1:n) = ∑
xn+1:N∈X N−n

f (x1:n,xn+1:N)
N−1

∏
k=n

q(xk+1|x1:k), (17)

E( f ) = ∑
x1:N∈X N

f (x1:N)m1(x1)
N−1

∏
k=1

q(xk+1|x1:k), (18)

for n = 1, . . . ,N−1, and for all real-valued maps f on X N . As we have just come to realise,
the probability trees that are compatible with an imprecise Markov chain are no longer
necessarily (precise) Markov chains themselves. It is still possible to calculate the E( f |x1:n)
and E( f ) in Eqs. (17) and (18) using backwards recursion [29, Chapter 3], but the formulae for
doing so will be more complicated than the ones for precise Markov chains given by Eqs. (7)
and (8).

If we repeat this for every other choice of the m1 in M1 and the q(·|x1:k) in Qk(·|xk), we
end up with an infinity of compatible probability trees,11 for which the associated (conditional)
expectations and probability mass functions turn out to constitute closed convex sets. We
denote their corresponding upper expectation functionals on L (X N) by E(·|x1:n) and E.
These upper expectations, and the conjugate lower expectations, are the final aim of our
sensitivity analysis.

The procedure we have just described is computationally very complex. When the closed
convex sets M1 and Qk(·|x) each have a finite number of extreme points (are polytopes), we
can limit ourselves to working with these sets of extreme points, rather than with the infinite
sets themselves. But even then, the computational complexity of this approach will generally
be exponential in the number of time steps.

However, we will see in Section 3 that the upper expectations E and E(·|x1:n) associated
with the closed convex sets of (conditional) probability mass functions for the compatible
probability trees of an imprecise Markov chain can be calculated in the same way as the
expectations E and E(·|x1:n) in a precise one: using counterparts of the backwards recursion
formulae (7)–(9). Because of this, making inferences about the mass function of the state at

10These local transition probability masses themselves depend on the situation x1:k they are attached to, but the sets
Qk(·|xk) they are chosen from only depend on the last state xk , as the Markov Condition (16) tells us.

11Except when all the credal sets are singletons, of course.
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time n, i.e., finding the upper envelope En of the En given in Eq. (9) now has a complexity that
is linear, rather than exponential, in the number of time steps n. This is our first contribution.

Our second contribution in this paper is a Perron–Frobenius Theorem for a special class
of so-called regularly absorbing stationary imprecise Markov chains: in Section 5 we prove
a generalisation of Theorem 1.1, which tells us that under fairly weak conditions, the upper
expectation operators En converge to limits that do not depend on the initial upper expectation
operators E1. Our result also extends a number of other related convergence theorems for
imprecise Markov chains in the literature [13–15, 32].

3 Sensitivity analysis of imprecise Markov chains
We can now take our most important step: deriving the backwards recursion formulae for the
conditional and joint upper expectations in an imprecise Markov chain. We first define upper
transition operators Tn and Tn. The operator Tn : L (X )→L (X ) is defined by

Tnh(xn) := En(h|xn) (19)

for all real-valued maps h on X , and all xn in X . In other words, Tnh is the real-valued map
on X , whose value Tnh(xn) in xn ∈X is the conditional upper expectation of the random
variable h(X(n+1)), given that the system is in state xn at time n. More generally, we also
consider the maps Tn from L (X n+1) to L (X n), defined by

Tn f (x1:n) :=
(
Tn f (x1:n, ·)

)
(xn) = En( f (x1:n, ·)|xn) (20)

for all x1:n in X n and all real-valued maps f on X n+1. Of course, we can also consider lower
expectations and lower transition operators, which are related to the upper expectations and
upper transition operators by conjugacy. As is the case for upper expectations, it is possible
to introduce the notion of an upper transition operator directly, by basing it on a number of
defining properties, rather than by referring to an underlying imprecise Markov chain. We
refer to the Appendix for more details.

The upper expectations E(·|x1:n) and E on L (X N) can be calculated very easily by
backwards recursion, cfr. (7) and (8).

Theorem 3.1 (Concatenation Formula). For any x1:n in X n, n = 1, . . . ,N− 1, and for any
real-valued map f on X N:

E( f |x1:n) = TnTn+1 . . .TN−1 f (x1:n) (21)

E( f ) = E1(T1T2 . . .TN−1 f ). (22)

Call, for any non-empty subset I of {1 . . . ,N}, a real-valued map f on X N I-measurable
if f (x1:N) = f (z1:N) for all x1:N and z1:N in X N such that xk = zk for all k ∈ I. In other
words, an I-measurable f only depends on the states X(k) at times k ∈ I. As an example, an
{n}-measurable map h only depends on the state X(n) at time n, and we identify it with a map
on X (but remember that it acts on states at time n). The following proposition tells us that all
conditional upper expectations satisfy a Markov Condition (cfr. (1)).

Proposition 3.2 (Markov Condition). Consider an imprecise Markov chain with finite state
set X and time horizon N. Fix n ∈ {1, . . . ,N−1}. Let x1:n−1 and z1:n−1 be arbitrary elements
of X n−1, and let xn ∈X . Let f be any {n,n+1, . . . ,N}-measurable real-valued map on X N .
Then E( f |x1:n−1,xn) = E( f |z1:n−1,xn), so we may write E( f |x1:n−1,xn) = E |n( f |xn).

The index ‘|n’ is intended to make clear that we are considering an expectation conditional on
the state X(n) at time n.

9



If we apply the joint upper expectation E to maps h that only depend on the state X(n)
at time n, we get the marginal upper expectation En(h) := E(h), and En is a model for the
uncertainty about the state X(n) at time n. More generally, taking into account Proposition 3.2,
we use the notation En|`(h|x`) := E |`(h|x`) for the upper expectation of h(X(n)), conditional on
X(`) = x` with 1≤ ` < n. With notations established in Eq. (15), En+1|n(h|xn) = En(h|xn) =
Tnh(xn). Such expectations can be found using simpler recursion formulae than Eqs. (21)
and (22), as they are based on the simpler upper transition operators Tk.

Corollary 3.3. For any real-valued map h on X , and for any 1≤ ` < n≤ N and all x` in X :

En|`(h|x`) = T`T`+1 . . .Tn−1h(x`) and En(h) = E1(T1T2 . . .Tn−1h). (23)

This offers a reason for formulating our theory in terms of real-valued maps rather than events:
suppose we want to calculate the upper probability En(A) that the state X(n) at time n belongs
to the set A. According to Eq. (23), En(A) = E1(T1 . . .Tn−1IA), and even if Tn−1IA can still be
calculated using upper probabilities only, it will generally assume values other than 0 and 1,
and therefore will generally not be the indicator of some event. Already after one step, i.e.,
in order to calculate Tn−2Tn−1IA, we need to leave the ambit of events, and turn to the more
general real-valued maps; even if we only want to calculate upper probabilities after n steps.

For joint upper and lower probability mass functions, however, we can remain within the
ambit of events:

Proposition 3.4 (Chapman–Kolmogorov Equations). For an imprecise Markov chain, we
have for all 1≤ n < m≤ N and all (xn,xn+1:m) ∈X m−n+1 that

E |n({xn+1:m}|xn) =
m−1

∏
k=n

TkI{xk+1}(xk), (24)

and for all 1≤ m≤ N and all x1:m ∈X m that

E({x1:m}) = E1({x1})
m−1

∏
k=1

TkI{xk+1}(xk). (25)

There are analogous expressions for the lower expectations.

4 Accessibility relations
From now on, and for the rest of the paper, we mainly consider stationary imprecise Markov
chains with an infinite time horizon. This means that for each time n ∈ N, we consider the
same upper transition operator Tn = T.

The classification of the states of such a stationary (im)precise Markov chain can be
fruitfully started by introducing a so-called accessibility relation · · ·: let x and y be any two
states in X and let n be a number of steps in N0 := N∪{0}, then x n

 y expresses that y is
accessible from x in n steps. To be an accessibility relation, a generic ternary relation · · · has
to satisfy the defining properties:

(∀x,y ∈X )x 0
 y⇔ x = y, (26)

(∀x,y,z ∈X )(∀m,n ∈ N0)x
n
 y and y m

 z⇒ x n+m
 z. (27)

(∀x ∈X )(∀n ∈ N)(∃y ∈X )x n
 y. (28)

An accessibility relation is classically derived from the transition matrix of a stationary
Markov chain; in Section 4.2 we will associate such a relation with a stationary imprecise
Markov chain. But for any (abstract) accessibility relation satisfying the conditions (26)–(28),
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we can draw all the following conclusions, no matter what transition matrix or operator it was
derived from, or whether it comes about in any other way; Kemeny & Snell [19, Section 1.4]
give a detailed justification. In what follows, we use the terminology introduced by Kemeny
& Snell, but we want to remind the reader that the terms we use may also have various other
meanings in different parts of the literature.

4.1 Abstract accessibility relations
Accessibility relations give rise to many interesting concepts, which we discuss below. We
refer to Figure 5 for a graphical representation.

D3

D1 D2

D4 D5
C1

D8

D6 D7

C2
D9

C3
X

Figure 5: Three increasingly finer partitions of the state set X for a particular stationary
(im)precise Markov chain, or more generally, for an accessibility relation · · ·. No transition
between states of the classes C1, C2, and C3 is possible, and these classes can be seen as separate
(im)precise Markov chains. The equivalence classes Dk for the communication relation are
partially ordered by the relation  , whose (Hasse) diagram is represented by the upward
arrows. Maximal classes are D4, D5, D8, and D9, the other classes are transient. If D4, D5,
D8, and D9 are aperiodic, the accessibility relation restricted to respectively C1, C2, and C3 is
respectively maximal class regular, top class regular, and regular.

Consider any two states x and y in X . Then y is accessible from x, which we denote as
x y, if there is some n ∈N0 such that x n

 y. If x and y are accessible from one another, then
we say that x and y communicate, which we denote as x! y.

It follows from Eqs. (26) and (27) that the binary relation on X is a preorder, i.e., is
reflexive and transitive. The binary relation! on X is the associated equivalence relation.
This communication relation! partitions the state set X into equivalence classes D of states
that are accessible from one another, called communication classes. The preorder induces a
partial order on this partition, also denoted by .

Undominated or maximal states with respect to the preorder  are states x such that
x y⇒ y x for any state y in X . This means that a maximal state has access only to
other maximal states in the same communication class, and to no other states. Collections of
maximal states, such as the communication classes they belong to, are also called maximal.
The other states and collections of them, such as the communication classes they belong to,
are called transient. If all maximal states communicate, or in other words if there is a unique
maximal communication class, this class is called the top class. It is made up of those states
that are accessible from any state.

Consider, for any x and y in X , the set

Nxy := {n ∈ N : x n
 y}, (29)
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i.e., those numbers of steps after which y is accessible from x. We call the period dx of a
state x the greatest common divisor of the set Nxx, i.e., dx := gcd{n ∈ N : x n

 x}. Because, by
Eq. (27), Nxx is closed under addition, we can rely on a basic number-theoretic result (see, e.g.,
Kemeny & Snell [19, Theorem 1.4.1]) which tells us that Nxx is, up to perhaps a finite number
of initial elements, equal to the set of all multiples of dx.

Now consider an equivalence class D of communicating states, and any two states x and y
in that class. Then it is not difficult to show that they have the same period: x! y⇒ dx = dy.
We denote by dD the common period of all elements of the equivalence class D.

Proposition 4.1. Consider arbitrary x and y in some maximal communication class D. Then
there is some 0≤ txy < dD such that n ∈ Nxy⇒ n≡ txy (mod dD), i.e., n and txy are equal up
to some multiple of dD. Moreover,

(∃n ∈ N)(∀k ≥ n) txy + kdD ∈ Nxy. (30)

For any x, y and z in this equivalence class D, txy + tyz ≡ txz (mod dD), and therefore tyz = 0
if and only if txy = txz. This implies that ‘tyz = 0’ determines an equivalence relation on this
equivalence class D, which further partitions it into dD subsets, called cyclic classes. In such
a cyclic class, all states y give the same value to txy, for any given x in D. Within D, the
system moves from cyclic class to cyclic class, in a definite ordered cycle of length dD. If D is
transient, then in some cyclic classes it is possible that, rather than moving to the next cyclic
class, the system moves to (a state in) another equivalence class D′ for the communication
relation that is a successor to D for the partial order .

If dD = 1, or in other words if txy = 0 for all x,y ∈ D, then there is only one cyclic class
in D, and we call the communication class D, and all its states, aperiodic. If D is moreover
maximal, then D is called regular. The following general characterisation of regularity is easily
derived from Proposition 4.1; see also Kemeny & Snell’s arguments [19, Chapters 1 and 4].

Proposition 4.2. A communication class D⊆X is regular under the accessibility relation
· · · if and only if

(∃n ∈ N)(∀k ≥ n)(∀x,y ∈ D)x k
 y. (31)

An interesting special case obtains when there is only one equivalence class for the commu-
nication relation (namely X ), so X is maximal, and there is only one cyclic class (namely X ),
meaning that all states are aperiodic. In that case, the accessibility relation · · · is called
regular as well. If all maximal communication classes are regular (aperiodic), the accessibility
relation is called maximal class regular. If there is only one maximal communication class,
and if this top class is moreover regular (aperiodic), then the accessibility relation is called top
class regular. Top class regularity has the following simple alternative characterisation.

Proposition 4.3. An accessibility relation · · · is top class regular if and only if the corre-
sponding set R of so-called maximal regular states is non-empty:

R = {x ∈X : (∃n ∈ N)(∀k ≥ n)(∀y ∈X )y k
 x} 6= /0; (32)

and in that case this set R is the top communication class.

4.2 Accessibility relations for imprecise Markov chains
Because we now only consider stationary imprecise Markov chains, this means that for each
time n ∈N, we consider the same transition models Qn(·|x) = Q(·|x), x ∈X , or equivalently,
for the upper transition operators: Tn = T and Tn = T.

Let us denote by Pn
xy the upper probability of going in n steps from state x to state y. For

n = 0, P0
xy = I{y}(x), and for n≥ 1, Pn

xy = Ek+n|k({y}|x), where—because of stationarity—the
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right-hand sides does not depend on k ∈ N. By Corollary 3.3, we find that Pn
xy = TnI{y}(x) for

all n ∈ N0. The following two propositions allow us to associate an accessibility relation with
the upper transition operator. They are immediate generalisations of similar results involving
(precise) probabilities in (precise) Markov chains:

Proposition 4.4. For all x, y and z in X , and for all n and m in N0,

Pn+m
xy ≥ Pn

xz Pm
zy . (33)

Proposition 4.5. For all x in X , and for all n in N0, there is some y in X such that Pn
xy > 0.

Because of these results, which ensure that Eqs. (27) and (28) are satisfied [Eqs. (26) is trivially
satisfied because P0

xy = I{y}(x)], we can define an accessibility relation · ·→ · using the Pn
xy : for

any x and y in X and any n ∈ N0:

x n→ y⇔ Pn
xy > 0⇔ TnI{y}(x) > 0. (34)

Clearly, x n→ y if there is some compatible probability tree in which it is possible (meaning
that there is a non-zero probability) to go from state x to y in n time steps. In other words,
x n→ y if it is not considered impossible in the context of our imprecise-probability model to
go from x to y in n steps: we then say that y is accessible from x in n steps; and if x→ y then y
is accessible from x.

The following notion will be essential for the convergence result we present in the next
section. It involves both lower and upper transition probabilities.

Definition 4.1 (Regularly absorbing). A stationary imprecise Markov chain is called regularly
absorbing if it is top class regular (under→), meaning that

R→ :=
{

x ∈X : (∃n ∈ N)(∀k ≥ n)(∀y ∈X )TkI{x}(y) > 0
}
6= /0, (35)

and if moreover for all y in X \R→ there is some n ∈ N such that TnIR→(y) > 0.

In particular, an imprecise Markov chain that is regular (under→, meaning that the accessibility
relation→ is regular) is also regularly absorbing (under→) in a trivial way.

5 Convergence for stationary imprecise Markov chains
We call an upper expectation E on L (X ) T-invariant whenever E ◦T = E, so whenever
E(Th) = E(h) for all h ∈L (X ).

Theorem 5.1 (Perron–Frobenius Theorem, Upper Expectation Form). Consider a stationary
imprecise Markov chain with finite state set X that is regularly absorbing. Then for every
initial upper expectation E1, the upper expectation En = E1 ◦Tn−1 for the state at time n
converges point-wise to the same upper expectation E∞:

lim
n→∞

En(h) = lim
n→∞

E1(Tn−1h) =: E∞(h) for all h in L (X ). (36)

Moreover, the limit upper expectation E∞ is the only T-invariant upper expectation on L (X ).

Let us compare this convergence result to what exists in the literature.
The classical Perron–Frobenius Theorem 1.1 is of course a special case of our Theorem 5.1,

because if (the transition operator of) a precise stationary Markov chain is regular in the sense
of Theorem 1.1, then it is also regular (under→), and therefore regularly absorbing.

Other authors have presented convergence results for stationary imprecise Markov chains,
namely Hartfiel & Seneta [13], Hartfiel [14, 15], and Škulj [32]. They all use the following
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approach. They consider some set T of (one-step) transition matrices T , and deduce from
that a corresponding set T n of n-step transition matrices given by

T n := {T1T2 . . .Tn : T1,T2, . . . ,Tn ∈T } . (37)

Hartfiel calls the sequence T n, n ∈ N a Markov set chain. If we also have a set M1 of
(marginal) mass functions m1 for X(1), then they take the corresponding set Mn of (marginal)
mass functions for X(n) to be

Mn =
{

m1T : m1 ∈M1 and T ∈T n−1} , (38)

where, as before, we also denote by m the row vector corresponding to the mass function m. If
we furthermore also denote by h the column vector corresponding to the values h(x) of the
real-valued map h in all x ∈X , then we find that the corresponding set En(h) of expectations
of h(X(n)) is given by

En(h) =
{

m1T h : m1 ∈M1 and T ∈T n−1} . (39)

Incidentally, these are also the formulae that can be obtained by considering imprecise Markov
chains to be special cases of so-called credal networks under a strong independence assumption;
for more details, see Cozman’s work [7, 8] for instance.

Škulj [32] considers the set T of transition matrices T corresponding to a so-called interval
stochastic matrix, meaning that T is the set of all transition matrices such that T ≤ T ≤ T ,
where T and T are so-called lower and upper transition matrices; see also Section 6.3 for the
related model in terms of upper transition operators. Hartfiel [14] considers arbitrary sets of
transition matrices, but in his book [15] he also focuses mainly on interval stochastic matrices.

What is the relationship between the Markov set-chain model and the model involving up-
per transition operators we have studied and motivated above? Consider a stationary imprecise
Markov chain with upper transition operator T. For each state x, as Th(x) has been defined as
a conditional upper expectation E(h|x), there is a corresponding credal set QT(·|x) given by

QT(·|x) :=
{

q(·|x) ∈ ΣX : (∀h ∈L (X ))Eq(·|x)(h)≤ Th(x)
}

, (40)

and then also
Th(x) = max

{
Eq(·|x)(h) : q(·|x) ∈QT(·|x)

}
. (41)

With these credal sets, we can associate a set of transition matrices TT:

TT :=
{

T ∈ RX ×X : (∀x ∈X )(∃q(·|x) ∈QT(·|x))(∀y ∈X )Txy = q(y|x)
}

. (42)

In other words, each row Tx· of any such transition matrix is formed by the transition proba-
bilities corresponding to some element of QT(·|x). The elements T of TT are the transition
matrices that can be constructed using the one-step information contained in the conditional
credal sets QT(·|x) and therefore in the (one-step) upper transition operator T. More generally,
the set TTn contains all n-step transition matrices that correspond to the n-step upper transition
operator Tn (see the Appendix for more details about why we can also consider Tn to be an
upper transition operator).

Proposition 5.2. Consider a stationary imprecise Markov chain with upper transition opera-
tor T and let n ∈ N. Then

(i) T n
T
⊆TTn ;

(ii) For all real-valued maps h on X there is some T ∈ T n
T

such that for all x ∈ X ,
Tnh(x) = (T h)x;
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(iii) For all real-valued maps h on X and all x ∈X ,

Tnh(x) = max
{
(T h)x : T ∈T n

T

}
and Tnh(x) = min

{
(T h)x : T ∈T n

T

}
. (43)

We gather from the following counterexample that for n > 1, T n
T

can be strictly included in TTn .
This shows that the model based on imprecise-probability trees and upper transition operators
that we have been using, is more detailed than the Markov set chain model. Nevertheless, as
Proposition 5.2(iii) indicates, both models yield very strongly related (if not identical) results
as far as the calculation of marginal expectations for X(n) is concerned.

Example 5.1. Consider T := (1− ε) id+IX ε max, where 0 ≤ ε ≤ 1 and id is the identity
operator, which leaves its argument real-valued map h unchanged: idh = h. This corresponds to
a special case of the contamination models (47) discussed in Section 6.1. For the corresponding
2-step transition operator, we find that T2 = (1−δ ) id+IX δ max, with δ := ε(2− ε).

Let |X |= 2, then the sets of corresponding transition matrices are

TT =
{[

1− ε1 ε1
ε2 1− ε2

]
: 0≤ ε1,ε2 ≤ ε

}
and TT2 =

{[
1−δ1 δ1

δ2 1−δ2

]
: 0≤ δ1,δ2 ≤ δ

}
.

(44)
We now show that the set T 2

T is strictly contained in TT2 . Any element of T 2
T is given by[

1− ε1 ε1
ε2 1− ε2

][
1− ε3 ε3

ε4 1− ε4

]
=
[

1− ε1− ε3 + ε1ε3 + ε1ε4 ε1 + ε3− ε1ε3− ε1ε4
ε2 + ε4− ε2ε4− ε2ε3 1− ε2− ε4 + ε2ε4 + ε2ε3

]
(45)

for some 0≤ ε1,ε2,ε3,ε4 ≤ ε , and therefore clearly belongs to TT2 . But is is straightforward
to check that no choice of ε1,ε2,ε3,ε4 in [0,ε] corresponds to the element of TT2 with
δ1 = δ2 = δ = ε(2− ε). �

Škulj [32] calls a compact set T of transition matrices regular if there is some n > 0 such
that Txy > 0 for all T ∈T n and all x,y ∈X . He then shows that for such regular T and for
all compact M1, the corresponding sequence of compact sets Mn converges in Hausdorff
norm to the same compact (and invariant) set M∞. It follows that for all h and all compact M1,
the sequence of compact sets En(h) will converge to the same compact set E∞(h). This is
a clear generalisation of the classical Perron–Frobenius Theorem 1.1. But it follows from
Proposition 5.2 that for a given stationary imprecise Markov chain with upper transition
operator T, the set TT is regular in Škulj’s sense if and only if for some n ∈ N, TnI{y}(x) > 0
for all x,y ∈X . This is much stronger than even our strongest convergence requirement of
regularity (under→), which only involves the condition TnI{y}(x) > 0 for all x,y ∈X . Škulj
also proves a convergence result for conservative (too large) approximations of the En, in the
special case of a regular (under→) imprecise Markov chain whose upper transition operator
is 2-alternating; see Section 6.3 for further details.

We now turn to Hartfiel’s [13–15] results. The strongest general convergence result seems
to appear in his book [15, Sec. 3.2], where he uses the coefficient of ergodicity τ(T ) of a
transition matrix T , defined by

τ(T ) =
1
2

max
x,y∈X ∑

z∈X
|Txz−Tyz|= 1− min

x,y∈X ∑
z∈X

min{Txz,Tyz}. (46)

A transition matrix is called scrambling if τ(T ) < 1. Hartfiel calls a compact set T of transition
matrices product scrambling if there is some m ∈ N such that τ(T ) < 1 for all T ∈ T m. He
then shows that for such product scrambling T and for all compact M1, the corresponding
sequence of compact sets Mn converges in Hausdorff norm to the same compact (and invariant)
set M∞. Again, this is a generalisation of the classical Perron–Frobenius Theorem, and it
includes Škulj’s above-mentioned result as a special case. We believe, however, that this
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approach, based on the coefficient of ergodicity, has a number of drawbacks that our treatment
does not have: the condition seems quite hard to check in practise, and it it is hard to interpret
directly. We now also argue that it is too strong, at least from our point of view.

Proposition 5.3. Consider a stationary imprecise Markov chain with upper transition opera-
tor T. If TT is product scrambling, then the chain is regularly absorbing.

Moreover, as the following counterexample shows, it is easy to find examples of stationary
imprecise Markov chains that are regularly absorbing but for which the corresponding set
TT is not product scrambling. Another, perhaps more involved, such counterexample will be
presented near the end of Section 6.4.
Example 5.2 (Vacuous imprecise Markov chain). Consider an arbitrary state set X with
at least two elements, and the upper transition operator T defined by Th = IX maxh for all
real-valued maps h on X . The set TT that corresponds to this upper transition operator is the
set of all transition matrices Tall, and consequently TTn = T n

T
= Tall for all n ∈ N as well.

Consider the unit transition matrix T defined by Txy = δxy [Kronecker delta], so the system
remains with probability one in any state x that it is in. This T belongs to TTn = Tall for all
n ∈ N, but τ(T ) = 1, so Tall is not product scrambling.

But the chain is regularly absorbing! It is even regular (under →), in a trivial way:
TnI{y}(x) = 1 for all n ∈ N and all x,y ∈ X . Observe that Tn = IX max and therefore
E∞ = max for all E1. �

6 Examples
In this section, we indicate how the theory developed in the previous sections can be applied in
a number of practical situations. For each of these, the upper expectations are of some special
types that are described in the literature on imprecise probabilities. We present concrete and
explicit examples, as well as a number of simulations.

6.1 Contamination models
Suppose we consider a precise stationary Markov chain, with transition operator T. We
contaminate it with a vacuous model, i.e., we take a convex mixture with the upper transition
operator IX max of Example 5.2. This leads to the upper transition operator T, defined by

Th = (1− ε)Th+ IX ε maxh, (47)

for all h ∈L (X ), where ε is some constant in the open real interval (0,1). The underly-
ing idea is that we consider a specific convex neighbourhood of T. Since for all x in X ,
minTI{x} = (1− ε)minTI{x}+ ε > 0, this upper transition operator (or the associated impre-
cise Markov chain) is always regular (under→), regardless of whether T is regular (in the
sense of Theorem 1.1)! We infer from Theorem 5.1 that, whatever the initial upper expectation
operator E1 is, the upper expectation operator En for the state X(n) at time n ∈ N will always
converge to the same E∞.

What is this E∞ is for given T and ε? For any n≥ 1,

Tnh = (1− ε)nTnh+ IX ε

n−1

∑
k=0

(1− ε)k maxTkh, (48)

and therefore

En+1(h) = (1− ε)nE1(Tnh)+ ε

n−1

∑
k=0

(1− ε)k maxTkh. (49)
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If we now let n→ ∞, we see that the limit is indeed independent of the initial upper expecta-
tion E1:

E∞(h) = ε

∞

∑
k=0

(1− ε)k maxTkh. (50)

Example 6.1 (Contaminating a cycle). Consider for instance X = {a,b}, and let the precise
Markov chain be the cycle with period 2, with transition operator T given by Th(a) = h(b)
and Th(b) = h(a). Then T2nh = h and T2n+1h = Th, and therefore maxT2nh = maxT2n+1h =
maxh, whence E∞(h) = maxh. So the limit upper expectation is vacuous: we lose all informa-
tion about the value of X(n) as n→ ∞. �
Example 6.2 (Contaminating a random walk). Consider a random walk, where X = {a,b}
and Th = IX

h(a)+h(b)
2 . Then we find that E∞(h) = ε maxh+(1− ε) h(a)+h(b)

2 . �
Example 6.3 (Another contamination model). To illustrate the convergence properties of
an imprecise Markov chain, let us look at a simple numerical example. Again consider
X = {a,b} and let the stationary imprecise Markov chain be defined by an initial credal
set M1 =

{
m ∈ Σ{a,b} : 0.6≤ m(a)≤ 0.9

}
, and a contamination model of the type (47), with

ε = 0.1, and for which the precise transition operator T is defined by the transition matrix

T :=
[

q(a|a) q(b|a)
q(a|b) q(b|b)

]
=
[

0.15 0.85
0.85 0.15

]
.

In Figure 6 we have plotted the evolution of En({a}) and En({a}), the upper and lower
probability for finding the system in state a at time n, which can be calculated efficiently using
Eq. (49).

En({a})
En({a})

En({a})

n
1 5 10 15 20

0.0
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Figure 6: The time evolution of (i) the upper and lower probability of finding the imprecise
Markov chain of Example 6.3 in the state a (outer plot marks and connecting lines); and
of (ii) the probability of finding the classical Markov chain of Example 6.3 in the state a
(inner plot marks and connecting lines). The filled area denotes the hull of the evolution of
this probability, under the contamination model of Example 6.3, for all possible initial mass
functions.

For comparison, we have also plotted the evolution of En({a}), the probability for finding
the system in state a at time n, for a (precise) Markov chain defined by probability mass
functions that lie on the boundaries of the credal sets defining the above imprecise Markov
chain; to wit, its initial mass function is given by the row vector m1 := [m1(a) m1(b)] =
[0.9 0.1] and its transition matrix is

[
0.135 0.865
0.865 0.135

]
. Here E∞({a}) = E∞({b}) = 0.5. �

6.2 Belief function models
The contamination models we have just described are a special case of a more general and
quite interesting class of models, based on Shafer’s [28] notion of a belief function. We can
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consider a number of subsets Fj, j = 1, . . . ,n of X , and a convex mixture of the vacuous
upper expectations relative to these subsets:

E(h) =
n

∑
j=1

m(Fj)max
x∈Fj

h(x), (51)

with m(Fj) ≥ 0 and ∑
n
j=1 m(Fj) = 1. In Shafer’s terminology, the sets Fj are called focal

elements, and the m(Fj)’s the basic probability assignment.12

We can now consider imprecise Markov chains where the local models, attached to the
non-terminal situations in the tree, are of this type. The general backwards recursion formulae
we have given in Section 3 can then be used in combination with the simple formulae of the
type (51) for an efficient calculation of all conditional and joint upper and lower expectations
in the tree. We leave this implicit however, and move on to another example, which is rather
more popular in the literature.

6.3 Models with lower and upper mass functions
An intuitive way to introduce imprecise Markov chains [3, 15, 21, 31] goes by way of so-
called probability intervals, studied in a paper by de Campos et al. [2]; see also Walley [33,
Section 4.6.1] and Hartfiel [15, Section 2.1]. It consists in specifying lower and upper bounds
for mass functions. Let us explain how this is done in the specific context of Markov chains.

For the initial mass function m1, we specify a lower bound m1 : X → R, also called a
lower mass function, and an upper bound m1 : X → R, called an upper mass function. The
credal set M1 attached to the initial situation, which corresponds to these bounds, is then given
by

M1 := {m ∈ ΣX : (∀x ∈X )m1(x)≤ m(x)≤ m1(x)} . (52)

Similarly, in each non-terminal situation x1:k ∈X k, k = 1, . . . ,N−1 we have a credal
set Qk(·|xk) that is defined in terms of conditional lower and upper mass functions qk(·|xk)
and qk(·|xk). Here, for instance, qk(xk+1|xk) gives a lower bound on the transition probability
qk(xk+1|xk) to go from state X(k) = xk to state X(k +1) = xk+1 at time k.

Under some consistency conditions (for more details, see [2]) the upper expectation
associated with M1 is then given in all subsets A of X by

E1(A) = min
{

∑
z∈A

m1(z),1−∑
z∈X \A

m1(z)
}

, (53)

This E1 is 2-alternating: E1(A∪B)+ E1(A∩B) ≤ E1(A)+ E1(B) for all subsets A and B
of X . This implies (see [33, Section 3.2.4] and [6, Theorem 8 and Corollary 17]) that for all
h ∈L (X ) the upper expectation E1(h) can be found by Choquet integration:

E1(h) = minh+
maxh∫

minh

E1({z ∈X : h(z)≥ α})dα, (54)

where the integral is a Riemann integral. Similar considerations for the 2-alternating Ek(·|xk)

12Usually, in Shafer’s approach, Eq. (51) is only considered for (indicators of) events, and it then defines a so-called
plausibility function, whose conjugate lower probability is a belief function. Eq. (51) gives the point-wise greatest
(most conservative) upper expectation that extends this plausibility function from events to real-valued maps.
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lead to formulae for the upper transition operators Tk: for all xk in X ,

TkIA(xk) = min
{

∑
z∈A

qk(z|xk),1−∑
z∈X \A

qk(z|xk)
}

(55)

Tkh(xk) = minh+
maxh∫

minh

TkI{z∈X : h(z)≥α}(xk)dα. (56)

Using E1 and the Tk, all (conditional) expectations in the imprecise Markov chain can now be
calculated, by applying Theorem 3.1 and Corollary 3.3.

Rather than using this backwards recursion method, Škulj [31, 32] uses forward prop-
agation, which, reformulated using our notations, amounts to the following. The marginal
expectation E2 is calculated by E2 = E1 ◦ T1, E3 by E3 = E2 ◦ T2, and more generally,
En+1 = En ◦Tn. Even though it appears quite natural, this approach has an important draw-
back, especially in the context of the probability interval approach described above. In order
to calculate, say E3(h), we first need to find the upper expectation E2, and calculate its value
in the map T2h. But E2, as the composition of two 2-alternating models E1 and T1, is no
longer necessarily 2-alternating, and therefore its value in the map T2h cannot generally be
calculated from the values it assumes on events, using Choquet integration, as in Eqs. (54)
and (56). Indeed, Choquet integration will generally give too large a value for E3(h), and will
therefore lead to conservative approximations. These are the difficulties that Škulj is faced
with in his work [31, 32].

They can be circumvented by our backwards recursion approach. Indeed, in order to
find En(h), we begin by calculating h1 := h and hk+1 := Tkhk, k = 1, . . . ,n−1, using Eq. (56).
Finally, En(h) = E1(hn) is calculated using Eq. (54). Our calculations use Choquet integration
but are tight, and not conservative approximations, because at all times, the intervening local
upper expectations are 2-alternating.

Example 6.4 (Close to a cycle). Consider a three-state stationary imprecise Markov model with
X = {a,b,c} and with marginal and transition probabilities given by probability intervals. It
follows from Eqs. (55) and (56) that the upper transition operator T is fully determined by the
lower and upper transition matrices:

T :=

q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

=
1

200

 9 9 162
144 18 18

9 162 9

 ,

T :=

q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

=
1

200

 19 19 172
154 28 28
19 172 19

 ,

where the numerical values are particular to this example. We have depicted the credal sets
Q(·|a), Q(·|b) and Q(·|c) corresponding to this upper transition operator in Fig. 7.

c

ba Q(·|a)

c

ba Q(·|b)

c

ba Q(·|c)

c

ba

Figure 7: The credal sets Q(·|a), Q(·|b) and Q(·|c) in the simplex Σ{a,b,c}, corresponding to
the upper transition operator T in Example 6.4.
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Similarly, the initial upper expectation E1 is completely determined by the row vectors
m1 := [m1(a) m1(b) m1(c)] and m1 := [m1(a) m1(b) m1(c)]. In Figure 8, we plot conservative
approximations for the credal sets Mn corresponding to the upper expectation operators En.

n = 1 n = 2 n = 3 n = 4 n = 5

n = 6 n = 8 n = 11 n = 22 n = 1000

Figure 8: Evolution in the simplex Σ{a,b,c} of the credal sets Mn for the near-cyclic transition
operator from Example 6.4 for three different choices of the initial credal set M1.

Each approximation is based on the constraints that can be found by calculating E1(Tn−1I{x})
and E1(Tn−1I{x}) using the backwards recursion method, for x = a,b,c. The Mn evolve
clockwise through the simplex, which is not all that surprising as the lower and upper transition
matrices are quite ‘close’ to the precise cyclic transition matrix

T :=

q(a|a) q(b|a) q(c|a)
q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

=

0 0 1
1 0 0
0 1 0

 ,

as is also evident from Fig. 7. After a while, the Mn converge to a limit that is independent
of the initial credal set M1, as can be predicted from the regularity of the upper transition
operator. �

A biological application of imprecise Markov models can be found in Dhaenens’s Master’s
thesis [9]. He used the sensitivity analysis interpretation of imprecise Markov models to
investigate the legitimacy of using PAM matrices in amino acid and DNA sequence alignments.
Roughly speaking, PAM (point accepted mutation) matrices describe the chance that one amino
acid mutates into another amino acid over a given evolutionary time span. However, the actual
value of PAM matrix components are based on an estimation using an evolutionary model
(i.e., amino acid substitutions are actually counted on the branches of a phylogenetic tree),
hence the need to perform a sensitivity analysis. Dhaenens [9] observed in simulations that
the imprecision due to the estimation did not blow up even after a large number of steps; he
concluded that using PAM matrices over large evolutionary timescales is still reasonable.

6.4 A k-out-of-n:F system with uncertain reliabilities
Reliability theory is one field where Markov chains are used extensively. It concerns itself
with questions of the type: What is the probability of failure of a system with n components?
In the simplest case, where each component is either working or not working, answering this
question would involve assessing the failure probabilities of the 2n possible configurations of
component states. However, as shown by Koutras [20], a great variety of reliability structures
can be evaluated quite efficiently using their so-called embedded Markov chain. Amongst
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these are precisely those systems that fail as soon as any k out of the n components fail, also
known as k-out-of-n:F systems.

For such systems, the embedded Markov chain is constructed as follows. Its state space X
is given by {0,1,2, . . . ,k}, where each number represents the number of components that fail
in the system. System failure is therefore represented by the event {k}, and a fully functioning
system by the event {0}. Koutras [20] shows that the failure probability (or unreliability) Fn
and the reliability Rn = 1−Fn of a Markov chain embedded system are determined by the
expectation form expression:

Fn := En+1(I{k}) = E1(T1T2 . . .TnI{k}), (57)

where the initial distribution E1 represents a system in perfect working condition, so E1(h) =
h(0) for all real-valued maps h on X . The transition matrix Ti corresponding to the transition
operator Ti is fully determined by the reliability pi of the i-th component:

Ti =


pi 1− pi 0 . . . 0 0
0 pi 1− pi . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . pi 1− pi
0 0 0 . . . 0 1

 , (58)

where (Ti)`,m = TiI{m}(`) and `,m ∈ {0,1, . . . ,k}.
Precise assessments of the individual reliabilities of the components pi are often difficult

to come by, as for example, they might depend on climatological parameters, age or maybe
even on the failure of other (external) components. However, experts might still be able to
give conservative bounds on the individual reliabilities pi. In this case, the embedded Markov
chain becomes imprecise, but the corresponding bounds on the reliability and unreliability can
still be computed by applying our sensitivity analysis formulas derived above:

Fn = 1−Rn = E1(T1T2 . . .TnI{k}) and Fn = 1−Rn = E1(T1T2 . . .TnI{k}). (59)

When this embedded Markov chain is stationary (meaning that the uncertainty models for the
reliability of all components are assumed to be the same), the failure probability bounds are
simply computed by Fn = E1(TnI{k}) and Fn = E1(TnI{k}).

To give a very simple example, let us assume that an expert provides the same range [r,r]
for all component failure probabilities pi, where 0≤ r ≤ r ≤ 1. This leads to a special case of
the models considered in Section 6.3, and if we apply the formulas derived there, we get, after
some manipulations that

Th(`) =

{
rh(`)+(1− r)h(`+1)+(r− r)max{h(`),h(`+1)} if ` = 0,1, . . . ,k−1
h(k) if ` = k

(60)

for all real-valued maps h on X . If h is non-decreasing in the sense that h(0)≤ h(1)≤ ·· · ≤
h(k−1)≤ h(k), then so is Th, and it therefore follows that

Fn =
[
1 0 . . . 0 0

]


r 1− r 0 . . . 0 0
0 r 1− r . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . r 1− r
0 0 0 . . . 0 1


n

0
0
...
0
1

 (61)

=
n

∑
`=k

(
n
`

)
rn−`(1− r)` = 1−

k−1

∑
`=0

(
n
`

)
rn−`(1− r)`, (62)
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and there is a completely similar expression for Fn where r is substituted for r. See Fig. 9 for
a graphical illustration of these expressions.

If 0 < r ≤ r ≤ 1, then this stationary imprecise Markov chain is regularly absorbing with
regular top class {k} (under→), and E∞(h) = E∞(h) = h(k) for all real-valued maps h on X .
Nevertheless, as soon as r = 1, Hartfiel’s product scrambling condition is no longer satisfied,
as the identity matrix will then belong to all TTn .

The chain ceases to be regularly absorbing if r = 0 and r = 1, and in that case it is easy
to see that Tk+nh(m) = maxk

`=m h(`) for all n ≥ 0 and all real-valued maps h on X , and
therefore the limit upper expectation E∞ will depend on the initial upper expectation E1. For
the particular initial expectation E1 we use in this example, we see that E∞(h) = maxh.

r = 0.9
ε

Fn, Fn

n = 10

n = 20

n = 40

0 0.1

0.0

0.2

0.4

0.6

0.8

1.0

r = 0.95
ε

Fn, Fn

n = 10

n = 20

n = 40

0 0.05

0.0

0.2

0.4

0.6

0.8

1.0

r = 0.975
ε

Fn, Fn

n = 20
n = 40

0 0.025

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Upper failure probability (Fn, full line) and lower failure probability (Fn, dashed
line) for a 3-out-of-n:F system, for different numbers of components n as a function of
the imprecision ε := (r− r)/2 of the component reliability, for three different values of
r := (r + r)/2. As can be expected, the failure bounds widen with increasing imprecision,
decrease with increasing reliability (characterised by r), and increase for a greater number of
components n.

6.5 General models
When the (conditional) upper expectation operators that define an imprecise Markov chain do
not fall into any of the special cases we discussed and illustrated above, recourse must taken
to more general calculation rules.

Let us consider the typical case of a credal set P that is specified by giving, for a finite
number of real-valued maps f collected in the set K ⊂L (X ), consistent upper bounds U( f )
on the expectations E( f ). Then the upper expectation for any map h ∈L (X ) can be found
by solving the following linear program [see, e.g., 33, Section 3.1.3]:

EP(h) = min
[

µ +∑
f∈K

λ fU( f )
]

subject to h≤ µ +∑
f∈K

λ fU( f )

where λ f ≥ 0 and µ ∈ R.

(63)

As the number of upper expectations to compute, and thus the number of linear programs
to solve, increases, it will eventually become profitable to take a second (dual) approach. Any
credal set P specified by a finite number of constraints (bounds on expectations) is a convex
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polytope, i.e., has a finite set extP of extreme points. Vertex enumeration algorithms such as
the one by Avis et al. [1] can be used to obtain this set of extreme points from the given set of
constraints. We can then use a practical version of Eq. (13) to find the corresponding upper
expectations, namely [see 33, Section 3.1.3]:

EP(h) := max
{

Eq(h) : q ∈ extP
}

. (64)

We can now consider imprecise Markov chains where the local models, attached to the
non-terminal situations in the tree, are of this type. The general backwards recursion formulae
we have given in Section 3 can then be used in combination with the formulae of the type (63)
and (64) for the calculation of all conditional and joint upper and lower expectations in the
tree.

7 Conclusions
To conclude, we (i) reflect on what type of convergence results could be obtained for imprecise
Markov chains that are not regularly absorbing, (ii) we pay attention to the important issue of
interpretation of imprecise-probability models, and (iii) we compare Hartfiel’s approach [15]
to our own regarding their practical applicability to deal with expectation problems.

It is a reasonably weak requirement for a stationary imprecise Markov chain with upper
transition operator T to be regularly absorbing, but we have seen that it is strong enough to
guarantee that the upper expectation for the state at time n converges to a uniquely T-invariant
upper expectation E∞, regardless of the initial upper expectation E1.

Even when an imprecise Markov chain is not regularly absorbing, it is not so hard to see
that its upper transition operator T is still non-expansive under the supremum norm given for
every h ∈L (X ) by ‖h‖∞ := max|h|, as

‖Tg−Th‖∞ ≤ ‖T(g−h)‖∞ ≤ ‖g−h‖∞. (65)

Moreover, the sequence ‖Tnh‖∞ is bounded because ‖Tnh‖∞ ≤ ‖h‖∞. It then follows from
non-linear Perron–Frobenius theory [26, 30] that the sequence Tnh has a periodic limit cycle.
More precisely, there is a ξh ∈L (X ) such that Tphξh = ξh i.e., ξh is a periodic point of T
with (smallest) period ph, and such that Tnphh→ ξh (point-wise) as n→ ∞. It would be a very
interesting topic for further research to study the nature of the periods and periodic points of
upper transition operators.

In our discussions, for instance in Section 3, we have consistently used the sensitivity
analysis interpretation of imprecise-probability models such as upper expectations. Upper and
lower expectations can also be given another, so-called behavioural interpretation, in terms of
some subject’s dispositions towards accepting risky transactions. This is for instance Walley’s
[1991] preferred approach. The results we have derived here remain valid on that alternative
interpretation, and the concatenation formulae (21) and (22) can then be shown to be special
cases of so-called marginal extension procedure [23], which provides the most conservative
coherent (i.e., rational) inferences from the local predictive models Tk to general lower and
upper expectations. In another paper [4], we give more details about how to approach a process
theory using imprecise probabilities on a behavioural interpretation.

On a related matter: the imprecise Markov chains we are considering here can be seen as
special credal networks [7, 8, 24]: the generalisation of Bayesian networks to the case where
the local models, associated with the nodes of the network, are credal sets. The corresponding
‘independence’ notion that should then be used for the interpretation of the graphical structure
of the network is Walley’s epistemic irrelevance [33, Chapter 9]. Interestingly, Hartfiel’s
Markov set-chain approach corresponds to special credal nets where the independence concept
involved is a different one: that of strong independence [7]. Nevertheless, both approaches
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yield the same results if we restrict ourselves to calculating the marginal upper expectations for
variables X(n), as we have proved in Proposition 5.2. But in any case, for the actual calculation
of expectations, the set of transition matrices approach suffers from a combinatorial explosion
of computational complexity that can be avoided using our upper transition operator approach.
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A Proofs
In this Appendix, we have gathered proofs for the results in the paper.

Before we go on, it will be useful to discuss and collect a number of properties of the
upper transition operators associated with imprecise Markov chains. They follow immediately
from the corresponding properties (E1)–(E7) of upper expectations, so we omit the proof.

Proposition A.1 (Properties of upper transition operators). Consider an imprecise Markov
chain with a set of states X and upper transition operators Tk. Then for arbitrary h, h1, h2,
hn in L (X ), real λ ≥ 0 and real µ:

T1. IX minh≤ Tkh≤ IX maxh (boundedness);

T2. Tk(h1 +h2)≤ Tkh1 +Tkh2 (subadditivity);

T3. Tk(λh) = λTkh (non-negative homogeneity);

T4. Tk(h+ µIX ) = Tkh+ µIX (constant additivity);

T5. if h1 ≤ h2 then Tkh1 ≤ Tkh2 (monotonicity);

T6. if hn→ h point-wise then Tkhn→ Tkh point-wise (continuity);

T7. Tkh≥−Tk(−h) = Tkh (upper–lower consistency).

Consider any operator T: L (X )→L (X ) that satisfies (T1)–(T3). Then for each x ∈X ,
the real functional E(·|x) defined on L (X ) by E(h|x) = Th(x) is an upper expectation,
because it satisfies (E1)–(E3). This means that we can consider T as an upper transition
operator associated with some imprecise Markov chain. It therefore make sense to call any
operator T that satisfies (T1)–(T3) an upper transition operator. Clearly, if T1, . . . Tn are upper
transition operators, then so is their composition T1 . . .Tn.

We are now ready to proceed with the proofs of all results in the body of the paper.
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Proof of Theorem 3.1. We first prove by induction that the left-hand sides are dominated by
the right-hand sides in Eqs. (21) and (22). To get the induction process started, we observe that
Eq. (21) holds trivially for n = N−1. Next, we prove that if the desired inequality in Eq. (21)
holds for n = k +1, it also holds for n = k, where k is any element in {1,2, . . . ,N−2}. Let us
fix x1:k ∈X k, then we have to prove that

E( f |x1:k)≤ TkTk+1 . . .TN−1 f (x1:k), (66)

where we can use that, in particular, for all xk+1 ∈X :

E( f |x1:k,xk+1)≤ Tk+1Tk+2 . . .TN−1 f (x1:k,xk+1). (67)

We have fixed x1:k, so we can regard E( f |x1:k, ·) as a real-valued map on X , depending only
on the state X(k +1) at time k +1. We denote this map by hk+1.

Now consider any compatible probability tree. In particular, let q(·|x1:k) ∈Qk(·|xk) be the
corresponding local probability mass function for the uncertainty about the state X(k +1) in
the situation x1:k we are considering. It follows from the Law of Iterated Expectations that in
this probability tree

E( f |x1:k) = E(E( f |x1:k, ·)|x1:k), (68)

and since E( f |x1:k, ·)≤ E( f |x1:k, ·) = hk+1, by definition of the upper expectations in the tree,
we may derive from the monotonicity of expectation operators that E( f |x1:k)≤ E(hk+1|x1:k).
Now, hk+1 is a function of X(k+1) only, so its conditional expectation E(hk+1|x1:k) in situation
x1:k can be calculated using the local conditional model q(·|x1:k) for X(k +1), i.e.,

E(hk+1|x1:k) = ∑
xk+1∈X

hk+1(xk+1)q(xk+1|x1:k)≤ Ek(hk+1|xk), (69)

where the inequality follows from Eq. (15). Hence E( f |x1:k)≤ Ek(hk+1|xk) and therefore

E( f |x1:k)≤ Ek(hk+1|xk) = Tkhk+1(xk)

≤ Tk
(
Tk+1Tk+2 . . .TN−1 f (x1:k, ·)

)
(xk) = TkTk+1Tk+2 . . .TN−1 f (x1:k), (70)

where the first inequality follows from the definition of the upper expectations in the tree, the
first equality follows from Eq. (19), the second inequality from Eq. (67) and the monotonic-
ity (T5) of upper transition operators, and the second equality from Eq. (20).

In a completely similar way, but now using the model M1 rather than the model Qk(·|xk),
we can prove that the desired inequalities hold for n = 0, given that they hold for n = 1. So now
we know that the left-hand sides are dominated by the right-hand sides in Eqs. (21) and (22).

It remains to prove the converse inequalities. Fix any path in the tree. We denote the succes-
sive situations on this path by�, x1:1, x1:2, . . . , x1:N−1, x1:N . First, consider the situation x1:N−1
and the partial map hN := f (x1:N−1, ·), then we know, because the credal set QN−1(·|xN−1) is
convex and closed, that there is some probability mass function in QN−1(·|xN−1), which we
denote by q̂(·|x1:N−1), such that

∑
xN∈X

hN(xN)q̂(xN |x1:N−1) = EN−1(hN |xN−1) = TN−1 f (x1:N−1, ·)(xN−1)
= TN−1 f (x1:N−1), (71)

and therefore
TN−1 f (x1:N−1) = ∑

xN∈X
f (x1:N−1,xN)q̂(xN |x1:N−1). (72)

Next, consider the situation x1:N−2 and the partial map hN−1 := TN−1 f (x1:N−2, ·). Again we
know, since QN−2(·|xN−2) is convex and closed, that there is some probability mass function
in QN−2(·|xN−2), which we denote by q̂(·|x1:N−2), such that

∑
xN−1∈X

hN−1(xN−1)q̂(xN−1|x1:N−2) = EN−2(hN−1|xN−2) = TN−2
(
TN−1 f (x1:N−2, ·)

)
(xN−2)

= TN−2TN−1 f (x1:N−2) (73)
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and therefore

∑
xN−1∈X

TN−1 f (x1:N−2,xN−1)q̂(xN−1|x1:N−2) = TN−2TN−1 f (x1:N−2). (74)

If we combine Eqs (72) and (74), we find that

∑
xN−1:N∈X 2

f (x1:N−2,xN−1:N)q̂(xN−1|x1:N−2)q̂(xN |x1:N−1) = TN−2TN−1 f (x1:N−2). (75)

We can obviously continue in this manner until we reach the root of the tree. We have then
effectively constructed a compatible probability tree for which the associated conditional and
joint expectation operators satisfy for all situations (n = 1, . . . ,N−1)

E( f |x1:n)≥ Ê( f |x1:n) := ∑
xn+1:N∈X N−n

f (x1:n,xn+1:N)
N−1

∏
k=n

q̂(xk+1|x1:k) = TnTn+1 . . .TN−1 f (x1:n), (76)

E( f )≥ Ê( f ) := ∑
x1:N∈X N

f (x1:N)m̂1(x1)
N−1

∏
k=1

q̂(xk+1|x1:k) = E1(T1T2 . . .TN−1 f ). (77)

This tells us that the converse inequalities in Eqs. (21) and (22) hold as well. �

Proof of Proposition 3.2. We use Eq. (21). It is clear from the definition (20) of the Tk that
if f is {n,n+1, . . . ,N}-measurable, then TN−1 f is {n,n+1, . . . ,N−1}-measurable, and then
TN−2TN−1 f is also {n,n+1, . . . ,N−2}-measurable; so by continuing the induction, we find
Tn+1 . . .TN−1 f is {n,n+1}-measurable, and finally, Tn . . .TN−1 f is {n}-measurable. �

Proof of Corollary 3.3. We use Eqs. (21) and (22) with f defined as follows: f (x1:N) := h(xn)
for all x1:N ∈X N . Then, also using (T3), the non-negative homogeneity of upper transition
operators, we find after subsequently applying TN−1, . . . , T` that

TN−1 f (x1:N−1) = TN−1(h(xn)IX )(xN−1) = h(xn)
...

Tn . . .TN−1 f (x1:n) = Tn(h(xn)IX )(xn) = h(xn)

Tn−1 . . .TN−1 f (x1:n−1) = Tn−1h(xn−1)

Tn−2 . . .TN−1 f (x1:n−2) = Tn−2Tn−1h(xn−2)
...

T` . . .TN−1 f (x1:`) = T`T`+1 . . .Tn−1h(x`),

(78)

and therefore T` . . .TN−1 f (x1:`−1, ·) = T`T`+1 . . .Tn−1h. Applying Proposition 3.2 then leads
to the first desired equality. If, for ` = 1, we now also apply the upper expectation E1 to both
sides of this equality, the proof is complete. �

Proof of Proposition 3.4. As an example, we prove Eq. (24), by applying Eq. (21) with its
parameters chosen as f = I{xn+1:m} and N = m. We then see that for any z1:m−1 ∈X m−1,

Tm−1I{xn+1:m}(z1:m−1) = Tm−1
(
I{xn+1:m−1}(zn+1:m−1)I{xm}

)
(zm−1)

= I{xn+1:m−1}(zn+1:m−1)Tm−1I{xm}(zm−1)

= I{xn+1:m−1}(zn+1:m−1)Tm−1I{xm}(xm−1), (79)
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where we have used the non-negative homogeneity (T3) of upper transition operators. There-
fore Tm−1I{xn+1:m} = I{xn+1:m−1}Tm−1I{xm}(xm−1). Consequently, for any z1:m−2 ∈X m−2,

Tm−2Tm−1I{xn+1:m}(z1:m−2) = Tm−2
(
Tm−1I{xn+1:m}(z1:m−2)

)
(zm−2)

= Tm−2
(
I{xn+1:m−2}(zn+1:m−2)I{xm−1}Tm−1I{xm}(xm−1)

)
(zm−2)

= I{xn+1:m−2}(zn+1:m−2)Tm−1I{xm}(xm−1)Tm−2I{xm−1}(zm−2)

= I{xn+1:m−2}(zn+1:m−2)Tm−1I{xm}(xm−1)Tm−2I{xm−1}(xm−2), (80)

again using (T3), and therefore

Tm−2Tm−1I{xn+1:m} = I{xn+1:m−2}Tm−1I{xm}(xm−1)Tm−2I{xm−1}(xm−2). (81)

Continuing in this fashion eventually leads to Eq. (24). �

Proof of Proposition 4.3. Suppose R 6= /0. Consider any maximal state y [there always is at
least one, because X is finite] and any x ∈R , then it is clear from the definition of R 
that y x. Since y is maximal, it follows that also x y, and therefore x! y. We conclude
that R is included in all maximal communication classes. This means that there is only one
such maximal class, and R is included in this top class. To show that R is equal to this
top class, consider any maximal element y and any x ∈R . Then we know that there is some
n ∈ N such that for all k ≥ n and all z ∈X , z k

 x. But we have seen above that x! y, so
there is some ` ≥ 0 such that x `

 y, and therefore z k+`
 y for all z ∈X . This implies that

y ∈R , so R is indeed the top class. We show that it is regular. For each x in R there is
an nx ∈ N such that y k

 x for all k ≥ nx and all y ∈X . If we define n := max{nx : x ∈R },
then we see that x k

 y for all k ≥ n and all x,y ∈R , so R is regular by Proposition 4.2,
and therefore · · · is top class regular.

Conversely, assume that · · · is top class regular. Consider any state x in the top class, and
any y ∈X . Then there is some `y ≥ 0 such that y

`y
 x, and it follows from Proposition 4.2

that there is some n ∈ N such that x k
 x and therefore y

`y+k
 x for all k ≥ n. So if we let

m := n+max
{
`y : y ∈X

}
, then we see that y k

 x for all k≥m and all y ∈X , and therefore
x ∈R , whence R 6= /0. �

Proof of Proposition 4.4. Fix x, y and z in X . Since Pm
uy = TmI{y}(u)≥ 0 for all u ∈X , we

have that
TmI{y} = ∑

u∈X
TmI{y}(u)I{u} ≥ TmI{y}(z)I{z}. (82)

If we now apply the upper transition operator T n times to both sides of this inequality, and
repeatedly invoke its monotonicity (T5) and non-negative homogeneity (T3), we find that
Tn+mI{y} ≥ TmI{y}(z)TnI{z} and hence indeed Tn+mI{y}(x)≥ TnI{z}(x)TmI{y}(z). �

Proof of Proposition 4.5. Fix x in X . Boundedness (T1) and subadditivity (T2) guarantee
that 0 < 1 ≤ TnIX (x) ≤ ∑y∈X TnI{y}(x). So there must be some y ∈X for which Pn

xy =
TnI{y}(x) > 0. �

The following lemma provides a characterisation for top class regularity (under→) that is
somewhat simpler than the one implicit in Proposition 4.3.

Lemma A.2. A stationary imprecise Markov chain is top class regular (under→) if and only
if

R→ = {x ∈X : (∃n ∈ N)(∀y ∈X )y n→ x} 6= /0. (83)
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Proof. Let R ′→ := {x ∈X : (∃n ∈ N)(∀y ∈X )y n→ x}, then by Proposition 4.3 it suffices to
prove that R→ = R ′→. It is clear that R→ ⊆R ′→, so we concentrate on the converse inequality.
Consider any x∈X and n∈N such that y n→ x for all y∈X . Then it suffices to prove that also
y n+1→ x for all y ∈X . Fix y, then there is some z ∈X such that P1

yz > 0, by Proposition 4.5.
But since we know that for this z also Pn

zx > 0, we infer from Proposition 4.4 that indeed
Pn+1
yx ≥ P1

yz Pn
zx > 0. �

Before we come to the upper expectation form of the Perron–Frobenius theorem (Theo-
rem 5.1), we first prove the following lemmas.

Lemma A.3. Let T be an upper transition operator associated with some stationary imprecise
Markov chain, meaning that it satisfies (T1)–(T7). Consider any h ∈L (X ). Then the real
sequence minTnh, n ∈ N is non-decreasing and converges to some limit l(h) ∈ R. Similarly,
the real sequence maxTnh, n ∈ N is non-increasing and converges to some limit L(h) ∈ R. Of
course, minh≤ l(h)≤ L(h)≤maxh.

Proof. Fix h in L (X ) and consider any n in N0. From IX minTnh≤ Tnh≤ IX maxTnh [by
(T1)] we deduce using (T5) that T(IX minTnh) ≤ Tn+1h ≤ T(IX maxTnh), and therefore,
using (T3) and (T4), that IX minTnh≤ Tn+1h≤ IX maxTnh. Consequently,

minh≤minTnh≤minTn+1h≤maxTn+1h≤maxTnh≤maxh. (84)

This tells us that the real sequence maxTnh is non-increasing and bounded below (by minh).
It therefore converges to some real number L(h). Similarly, the real sequence minTnh is
non-decreasing and bounded above (by maxh), and therefore converges to some real number
l(h). That minh≤ l(h)≤ L(h)≤maxh follows from the inequalities in Eq. (84) by taking the
limit n→ ∞. �

Lemma A.4. Let T be an upper transition operator associated with some stationary imprecise
Markov chain, meaning that it satisfies (T1)–(T7). Consider any h ∈ L (X ). Then there
is some xo in X such that for all n ∈ N there is some kn > n for which L(h) ≤ Tknh(xo).
Moreover, limn→∞ Tknh(xo) = limsupn→∞ Tnh(xo) = L(h).

Proof. Suppose, ex absurdo, that for any x ∈X there is some nx ∈ N such that for all k > nx,
Tkh(x) < L(h). Since X is finite, this implies that there is some n := max{nx : x ∈X } such
that for all k > n, maxTkh < L(h). This contradicts the conclusion maxTnh↘ L(h) obtained
in Lemma A.3.

Next, we show that limn→∞ Tknh(xo) = L(h). For all n ∈ N, L(h)≤ Tknh(xo)≤maxTknh,
and since the subsequence maxTknh converges to the same limit L(h) as the convergent
sequence maxTnh, we see that the sequence Tknh(xo) converges to L(h) as well.

To conclude, we show that limsupn→∞ Tnh(xo) = L(h). Since the limit superior of a
sequence is the supremum of the limits of all its convergent subsequences, and since moreover
we have just proved that limn→∞ Tknh(xo) = L(h), we infer that limsupn→∞ Tnh(xo) ≥ L(h).
For the converse inequality: starting from Tnh(xo)≤maxTnh and taking the limit superior on
both sides of the inequality yields limsupn→∞ Tnh(xo)≤ limsupn→∞ maxTnh = L(h), where
the equality follows from Lemma A.3. �

Lemma A.5. Let T be an upper transition operator associated with some stationary imprecise
Markov chain, meaning that it satisfies (T1)–(T7). Consider any h ∈L (X ). If the imprecise
Markov chain is regularly absorbing, then l(h) = L(h).

Proof. Since the imprecise Markov chain is in particular top class regular (under →), we
have by Proposition 4.3 that R→ 6= /0. Consider any x ∈ R→, then we first prove that
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limn→∞ Tnh(x) = l(h). We know from the definition of R→ that there is some nx ∈ N such
that minTnx I{x} > 0. Also, for any n≥ 0,

0≤
[
Tnh(x)−minTnh

]
I{x} ≤ Tnh−minTnh, (85)

and if we apply T nx times to all sides of these inequalities, we get

0≤
[
Tnh(x)−minTnh

]
Tnx I{x} ≤ Tn+nx h−minTnh, (86)

after repeated use of (T5), (T4) and (T3). Taking the minimum of all sides of these inequalities
leads to

0≤
[
Tnh(x)−minTnh

]
minTnx I{x} ≤minTn+nx h−minTnh. (87)

If we now let n→∞, we see that since the term on the right converges to zero [see Lemma A.3],
so must the middle term. Since minTnx I{x} > 0, this implies that Tnh(x)−minTnh converges
to zero, whence indeed limn→∞ Tnh(x) = limn→∞ minTnh = l(h).

As a next step, we infer from Lemma A.4 that there is some xo in X and some strictly
increasing sequence kn of natural numbers, such that L(h) ≤ Tknh(xo) for all n ∈ N, and
moreover limsupn→∞ Tnh(xo) = L(h).

There are now two possibilities. The first is that xo ∈ R→. Then it follows from the
discussion above that limn→∞ Tnh(xo) = l(h). But since we also have that limn→∞ Tnh(xo) =
limn→∞ Tknh(xo) = L(h), where the last equality follows from Lemma A.4, we infer that in
this case indeed l(h) = L(h).

The second possibility is that xo /∈R→, but then it follows from the assumption that there
is some no ∈ N such that Tno IR→(xo) > 0. We have for all n ∈ N that

0≤
[

maxTnh− max
y∈R→

Tnh(y)
]

IR→ ≤maxTnh−Tnh, (88)

and if we apply T no times to all sides of these inequalities, we get

0≤
[

maxTnh− max
y∈R→

Tnh(y)
]

Tno IR→(xo)≤maxTnh−Tno+nh(xo), (89)

after repeated use of (T5), (T4), (T3) and (T7), some rearranging, and evaluating in xo. If we
now take the limit inferior for n→ ∞ of all sides in these inequalities, we find:

0≤ Tno IR→(xo) liminf
n→∞

[
maxTnh− max

y∈R→
Tnh(y)

]
≤ liminf

n→∞

[
maxTnh−Tno+nh(xo)

]
. (90)

Since maxTnh→ L(h) and maxy∈R→ Tnh(y)→ l(h) [by the reasoning above, Tnh(y)→ l(h)
for all y ∈R→], we infer that liminfn→∞

[
maxTnh−maxy∈R→ Tnh(y)

]
= L(h)− l(h) from

the properties of the liminf operator . It also follows for similar reasons that

liminf
n→∞

[
maxTnh−Tno+nh(xo)

]
= lim

n→∞
maxTnh− limsup

n→∞

Tno+nh(xo) = L(h)−L(h). (91)

So we infer from Eq. (90) that Tno IR→(xo)[L(h)− l(h)] = 0, and therefore that also in this
case l(h) = L(h), since by assumption Tno IR→(xo) > 0. �

Proof of Theorem 5.1. Since IX minTnh≤ Tnh≤ IX maxTnh, and by Lemma A.5, both se-
quences minTnh and maxTnh converge to the same real limit, which we denote by µh, it
follows that Tnh converges (point-wise) to IX µh: limn→∞ Tnh = IX µh. If we use the continu-
ity of the upper expectation operator E1, as well as (T4) and (T3), we get

lim
n→∞

E1(Tn−1h) = E1

(
lim
n→∞

Tn−1h
)

= E1(IX µh) = µh, (92)
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and this limit is indeed independent of the choice of E1. Hence we find for the limit that
E∞(h) = µh.

To complete the proof, consider any upper expectation E1 on L (X ) and any h in L (X ),
then for all n ∈ N, E1(Tnh) = E1(Tn−1Th). If we let n→ ∞ on both sides of this equality,
we find that E∞(h) = E∞(Th), showing that E∞ is indeed T-invariant. Now let E i be any
T-invariant upper expectation on L (X ). Then we find for any h in L (X ), and for all
n ∈N, that E i(Tn−1h) = E i(h), and if we let n→ ∞ on both sides of this equality, we find that
E∞(h) = E i(h). �

Proof of Proposition 5.2. We begin with the first statement. It clearly suffices to prove that
for any k ∈ N, with obvious notations, TT ·TTk ⊆TTk+1 . In other words, consider any R ∈TT
and any S ∈TTk , then we have to show that T := RS ∈TTk+1 . By Eq. (42), R ∈TT means that
for all x ∈X there is some r(·|x) ∈QT(·|x) such that Rxy = r(y|x) for all y ∈X . Similarly,
by Eq. (42), S ∈ TTk means that for all y ∈X there is some s(·|y) ∈ QTk(·|y) such that
Syz = r(z|y) for all z ∈X . Now for all x ∈X and all h ∈L (X ),

Tk+1h(x) = T(Tkh)(x)

≥ Er(·|x)(T
kh) = ∑

y∈X
r(y|x)Tkh(y)

≥∑
y∈X

r(y|x)Es(·|y)(h) = ∑
y∈X

r(y|x)∑
z∈X

s(z|y)h(z) = ∑
y,z∈X

RxySyzh(z) = ∑
z∈X

Txzh(z),

where both inequalities follow from Eq. (40). If we now consider, for each x ∈X , the mass
function q(·|x) given by q(z|x) := Txz = ∑y∈X s(z|y)r(y|x) for all z ∈X , then this means that
Tk+1h(x)≥ Eq(·|x)(h) for all h ∈L (X ), and therefore q(·|x) ∈QTk+1(·|x), for all x ∈X , by
Eq. (40). Hence indeed T ∈TTk+1 , by Eq. (42).

On to the second statement. We give a proof by induction. We first show that the statement
holds for n = 1. We know from the definition (40) of QT(·|x) and Eq. (41) that for each x in X
there is some q(·|x) ∈QT(·|x) such that Th(x) = ∑y∈X q(y|x)h(y). Therefore the transition
matrix T , defined by Txy := q(y|x) for all x,y ∈X , belongs to TT [see Eq. (42)] and satisfies
Th(x) = ∑y∈X Txyh(y) = (T h)x.

Next, we show that if the statement holds for n = m [the induction hypothesis], it also
holds for n = m+1, where m ∈ N. Consider the real-valued map g := Tmh, then Tm+1h = Tg.
We know from the reasoning above that there is some T1 ∈ TT such that Tg(x) = (T1g)x
for all x ∈X . And the induction hypothesis tells us that there is some T2 ∈ T m

T
such that

g(y) = Tmh(y) = (T2h)y for all y ∈X . Hence we find that for all x ∈X :

Tm+1h(x) = Tg(x) = ∑
y∈X

(T1)xyg(y)

= ∑
y∈X

(T1)xy ∑
z∈X

(T2)yzh(z) = ∑
z∈X

(T1T2)xzh(z) = (T1T2h)x, (93)

and clearly T1T2 ∈T m+1
T

. This concludes the proof of the second statement.
The third statement is an immediate consequence of the first and second statements. �

Finally, we turn to the proof of proposition 5.3. We first prove an alternative characterisation
of the product scrambling property.

Lemma A.6. A set T of transition matrices is product scrambling if and only if

(∃n ∈ N)(∀k ≥ n)(∀T ∈T k)(∀x,y ∈X )(∃z ∈X )Txz > 0∧Tyz > 0. (94)
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Proof. Recall that T is called product scrambling if

(∃n ∈ N)(∀T ∈T n)τ(T ) < 1. (95)

Since the coefficient of ergodicity satisfies the submultiplicative property [15, Section 1.2]:

τ(T1T2)≤ τ(T1)τ(T2) for all transition matrices T1 and T2, (96)

we see that the product scrambling condition is equivalent to [see also [15, Lemma 3.2] for a
related result]:

(∃n ∈ N)(∀k ≥ n)(∀T ∈T k)τ(T ) < 1. (97)

Now use Eq. (46). �

Proof of Proposition 5.3. Assume that TT is product scrambling. We prove that this implies
that the corresponding stationary imprecise Markov chain with upper transition operator T is
regularly absorbing: (a) it is top class regular and (b) for every y not in the top class R→, there
is some n ∈ N such that TnIR→(y) > 0.

We first prove that the Markov chain has a top class under→. It follows from the charac-
terisation (94) of the product scrambling condition in Lemma A.6 that

(∀x,y ∈X )(∃z ∈X )x→ z∧ y→ z, (98)

if we also take into account Proposition 5.2. For any x,y ∈C, where C ⊆X is the [always
non-empty] set of all maximal states, we know that x→ z⇒ z→ x and y→ z⇒ z→ y for all
z ∈X , so we infer from Eq. (98) that both x→ y and y→ x, so x and y communicate. This
means that the whole of C forms one single communication class: C is the top class.

We now show that this top class C is regular, i.e., consists of a single cyclic subclass, if
we recall our discussion of periodicity in Section 4.1. Let dC be the period of the top class C,
and consider any x and y in C. Using the same reasoning as above, we infer from Eq. (94) and
Proposition 5.2 that for large enough k:

(∃zk ∈C)x k→ zk ∧ y k→ zk (99)

[that zk ∈C follows from the fact that x and y are maximal]. Moreover, Proposition 4.1 tells
us that for large enough ` and `′, tzkx + `dC ∈ Nzkx and tzky + `′dC ∈ Nzky, and therefore also
k+ tzkx +`dC ∈ Nxx and k+ tzky +`′dC ∈ Nyy. This implies that tzkx = tzky, and therefore txy = 0:
x and y belong to the same cyclic class. This holds for all x,y ∈C, so C consists of only one
cyclic class (under→). The top class C is in other words aperiodic and therefore regular. This
proves (a).

To prove (b), assume the stationary imprecise Markov chain is top class regular but not
regularly absorbing. We show that the set of transition matrices TT cannot be product scram-
bling. By Definition 4.1, we know that there is some y0 ∈X \R→ such that TnIR→(y0) = 0
for all n ∈N. If we now also invoke Eq. (43) in Proposition 5.2, we see that for all n ∈N, there
is some T ∗n ∈T n

T
such that:

(∀u ∈R→)(T ∗n )y0u = 0. (100)

Now consider any x0 in the top class R→ [this is possible since by assumption R→ 6= /0]. Since
x0 cannot communicate with any element outside R→, we infer in particular from Eq. (43) in
Proposition 5.2 that for all n ∈ N:

(∀v ∈X \R→)(T ∗n )x0v = 0. (101)

But Eqs. (100) and (101) taken together imply [see Eq. (46)] that τ(T ∗n ) = 1 for all n ∈ N, so
the set TT is not product scrambling. �

33


	1 Introduction
	1.1 A short analysis of classical Markov chains
	1.2 The Perron–Frobenius Theorem for classical Markov chains

	2 Towards imprecise Markov chains
	3 Sensitivity analysis of imprecise Markov chains
	4 Accessibility relations
	4.1 Abstract accessibility relations
	4.2 Accessibility relations for imprecise Markov chains

	5 Convergence for stationary imprecise Markov chains
	6 Examples
	6.1 Contamination models
	6.2 Belief function models
	6.3 Models with lower and upper mass functions
	6.4 A k-out-of-n:F system with uncertain reliabilities
	6.5 General models

	7 Conclusions
	A Proofs

