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Abstract. Bound state QED uses the Sommerfeld-Dirac double square root equation to obtain quartics 
(Mexican hat or double well curves), which can give away left-right symmetry or chiral behavior for particle 
systems as in the SM. We now show that errors of Bohr 2D fermion theory are classical H polarization 
dependent wavelength (PDW) shifts. The observed H line spectrum exhibits a quartic with critical n-values for 
phase ½π (90°) and π (180°): phase ½π refers to circular H polarization (chiral behavior), phase π to linear H 
polarization and inversion on the Coulomb field axis. These signatures probe H polarization with 2 natural, 
mutually exclusive hydrogen quantum states ±1, i.e. H and H. The H signatures are consistent with polarization 
angles or phases, hidden in de Broglie’s standing wave equation, which derives from Compton’s early 
experiments with sinusoidal wavelength shifts. We refute the widely spread ban on natural H and prove why 
QED, a quartic generating quantum field theory, classifies as inconsistent on neutral antimatter. 
 Pacs: 
 
 
Introduction 

 

The widely accepted ban on natural H, proclaimed by theorists, led experimentalists to measure 

interval 1S-2S for artificially produced H. Yet, we found unambiguous spectral signatures for H in 

available H line and H2 band spectra [1-5]. This H-controversy could be settled once and for all with 

an ab initio H polarization theory but no such theory exists. This evident failure of theory can never 

mean that H does not exist or that a ban on H is legitimate. On the contrary, since H is field-inverted 

H by definition, polarization dependent wavelength (PDW) shifts can interfere. We prove that errors 

of Bohr H theory are classical sinusoidal polarization dependent (PDW) shifts, leading to spectral 

signatures for H [1-3]. A Bohr-type H polarization theory accounts for PDW shifts (H-signatures) and 

leads to H boson behavior. With its ban on H, QFT proves inconsistent neutral antimatter. This 

mistake finds its origin (i) in wrong interpretations of work by Sommerfeld and Kratzer and by 

Compton and de Broglie, all published around 1920, and (ii) of the Lamb-shift, exposed in 1947. 

 

Generic sinusoidal appearance of polarization 

 

Polarization of light, known for centuries, is a natural phenomenon, understood with a variable phase 

θ between 2 sinusoidal fields a0cosφ+b0cos(φ+θ). A 3D Poincaré sphere polarization model uses poles 

±1 and an equator to account for left-right or chiral properties of radiation: Cartesian frames for poles 

+x and –x are the mutually exclusive pair (left- and right-handed) +x,+y,+z and –x,+y,+z in vector 

calculus. Any H theory based upon a constant phase like Bohr’s orthogonal phase of 90° must always 

fail on H polarization, which requires fields out of phase instead of fields in phase. 
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Polarization of matter and its chirality prove difficult, although observing polarization must be rather 

straightforward with its sinusoidal dependence on phase θ, a fractional angle absolutely confined to 

domain 0≤θ≤2π. Properly scaled sinusoidal effects are easily retraceable, whatever their magnitude. A 

dimension-less cosine law for a numerical field f consisting of 2 sub-fields 

 f(θ)=±√[1+(a/b)2 – 2(a/b)cosθ] ≈ ±[1-(a/b)cosθ…]     (1a) 

(square bracket version valid for b>>a), is a convenient basis to get at polarization in a Poincaré 

sphere. The square root in (1a) gives a tilted polarization ellipse for b≠a but returns an orthogonal 

system for θ=90° or ½π (a circle for a=b). With b>>a like in X-ray experiments for non-resonant 

interactions, (1a) gives sinusoidal fluctuations in function of phase θ, as observed by Compton1 a long 

time ago [6]. Writing (1a) as [1-f(θ)]/(a/b)≈cosθ gives a cosine with generic asymptotes ±1. For the 

electron-proton Coulomb bond in composite H, numerical field (1a) has two variants 

 f(θ)=±1/√[1+(rp/re)2 – 2(rp/re)cosθ] ≈ ±[1+(rp/re)cosθ…]    (1b) 

 f(θ)=±1/√[1+(me/mp)2 – 2(me/mp)cosθ] ≈ ±[1+(me/mp)cosθ…]   (1c) 

Strictly spoken, (1b) is a pair of conjugated unit charges short and (1c) is deceptive on mass as a 

scalar2. Both variants are valid with internal field equations mere=mprp or me/mp=rp/re, the classical 

equilibrium conditions for bound states. Despite their gravitational basis, these are badly needed, even 

in quantum theories, to fix the origin of the reference frame for composite H, without which the basic 

equations for H and its complementary sub-particles cannot be formulated properly.  

Polarization field problems are not solved with STR with orthogonal field f(90°)=±√[1+(a/b)2]. 

Although (1a) belongs to the classical 19th century Stokes-Maxwell-Poincaré view on polarization3, 

bound state QED uses a Dirac-field approach, inspired by Einstein’s orthogonal STR equation  

 f(α/n)=1/√[1+(α/n)2] =1-½(α/n)2+⅜(α/n)2-…     (1d) 

absolutely incompatible with (1a) needed for polarization, due to its lack of sinusoidals. How STR 

field (1d) had to be modified for H bound state QED is shown below. For full resonance of hν 

(photons, boson symmetry and polarization) and H energies E1-E2 (2 fermions) to be possible with 

 hν = E1-E2           (1e) 

atom H must be credited with boson symmetry. Since Bohr’s H is of fermion type, solutions based 

upon (1a)-(1c) for H, involving oscillations typical for boson behavior, must be envisaged. Compton’s 

results led to de Broglie’s the standing wave equation as a condition for resonance (1e) to occur 

 2πr=kλ           (1f) 

which, in turn, led to non-relativistic Schrödinger wave mechanics and relativistic QFTs. In terms of 

field effects (1a-d), resonance condition (1f) hides a numerical quantized field ratio 

 r/λ= k/2π           (1g)  

suggesting that de Broglie’s quantum number k is competitive with phase θ with maximum 2π.  

                                                 
1 which makes Compton polarimetry important for elementary particle physics [7]. 
2 Reduced mass with complementary sub-masses mH=me+mp=me+(mH-me) is not a scalar (see below). 
3 later on complemented with Jones [8] and Mueller matrices [9] 
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For polarization, this has drastic consequences, since rewriting de Broglie’s relation (1g) as 

 r/(½λ)= k/π and r/(¼λ)= k/½π        (1h)  

gives a half wavelength plate with k equal to 180° or π, known to transform left- in right-handed 

radiation, while a quarter wavelength plate acts accordingly in terms of classical optics. 

 

Bohr-type H polarization 

 

Without specifying sub-fields or ratio a/b, using (1a) in Bohr bound state (1-1/n2) theory gives 

 hν=hc/λ=[1/f(θ0)-1/(n2f(θ))]~+{[1+(a/b)cosθ0] –(1/n2)[1+(a/b)cosθ…]} 

   ~+(1-1/n2) +(a/b)(cosθ0-cosθ/n2) +…    (2a) 

for resonance to occur, with θ0 constant. Equation (2a) returns Bohr term (1-1/n2) but adds sinusoidal 

polarization dependent wavelength (PDW) shifts Δp of order a/b. H PDW shifts, exposed with (2a), 

cannot but be interpreted as errors Δp of Bohr theory. Analytically, H PDW shifts obey  

 Δp ~[(1-1/n2) +(a/b)(cosθ0-cosθ/n2) +…]-(1-1/n2)= +(a/b)(cosθ0-cosθ/n2) +… (2b) 

 Δ’p ~[(1-1/n2) - (a/b)cosθ/n2) +…]-(1-1/n2)= -(a/b)cosθ/n2 +…   (2c) 

with Δ’p =Δp-(a/b)cosθ0, and apply for terms (1-1/n2) and energies –1/n2, without affecting the 

sinusoidal appearance. With 1-cosθ=2sin2(½θ) and/or 1+cosθ=2cos2(½θ) for (2), non-sinusoidal 

effects (a/b)/n2 in (2) can appear for H PDW shifts in Bohr-like H polarization theory (2a). 

H PDW shifts, if any, should vary as cosθ/n2. Rewriting (2c) as (b/a)n2Δ’p~cosθ gives generic 

sinusoidal behavior. Generic polarization with phase θ is illustrated in Fig. 1a, using a cosine with 

asymptotes ±1. Maximum phase 2π, divided in 20 parts 2π/20=π/10 is centered as –π,+π and scaled 

to –1,+1. The fractional angle or phase varies with 2(n-1)π/20 when n goes from 1 to 21, which 

makes x- and y-axis commensurate. Fig. 1a for polarization needs some comments. 

(i) Fig.1a exposes the generic relation between phase θ and handedness: linear polarization for cosθ=0 

(0°, parallel fields) or π (180°, antiparallel fields, with a field inversion), circular4 polarization for poles 

+1 and -1, cosθ=½π (90°, say right handed, orthogonal equal fields) or -½π  (-90° or 270°, say left-

handed, orthogonal equal fields) and elliptical polarization in between5. The phase needed to switch 

from left- to right-handed polarization is exactly 180°, implicit in de Broglie’s relation (1h). 

(ii) Sinusoidal pattern in Fig. 1a shows with laser signals in optical fibers [10-12]. When bit-

compression is high (order G-THz), signals are affected by polarization. Distortions in data 

transmitted between Alice and Bob, due to formerly unknown polarization dependent losses [10-12], 

led to practical problems6. With Fig. 1a, observed photon (boson) polarization relates with 

entanglement, quantum computing, Bell-inequalities and EPR-tests using polarization of photons or 

neutral particles, like the kaon [10-11].  

                                                 
4 which also requires 2orthogonal fields of equal magnitude. 
5 Complementary sine can be used for polar shifts, since polar and equatorial axes are assigned by convention.  
6 Restoring signal distortions by PMD losses or PDW shifts relies on fiber Bragg or chiral gratings [12]. 
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(iii) In material system H, sinusoidal effects (2c) diminish with 1/n2. Since the smaller the size, the 

larger the density (compression), this situation compares with bit-density effects for photon 

polarization. For 1/n2 H theory, this gives compacted attenuated sinusoidals like in Fig. 1b-c, where 

cos(πn/10)/n and sin(πn/10)/n (Fig. 1b) and cos(πn/10)/n2 and sin(πn/10)/n2 (Fig. 1c) are plotted 

versus 1/n. In this phenomenological H polarization model, distorted sinusoidals in Fig. 1b-c can be 

extrapolated to the left (expansion, low density) and even beyond n=∞ or 1/n=0, where H no longer 

exists (horizon problem). Extrapolation to the right (compression, high density) goes beyond ground 

state n=1, a strange consequence, discussed below. Attenuated, distorted sinusoidals in Fig. 1b-c only 

seem different from those in Fig. 1a but are related by Bohr packing factors 1/n (odd) or 1/n2 (even).  

(iv) For resonant interactions between radiation and matter, all details in Fig. 1a for boson polarization 

will have to match exactly all those of fermion system H for resonance to be possible with (1e). If 

radiation showed left-right behavior, H must show this behavior too when its spectrum is measurable. 

Simplest atom H is a prototype for resonant interactions and cannot be an exception. On the contrary, 

the H spectrum is the simplest tool imaginable to get at polarization for the so-called electron-proton 

Coulomb bond, its sinusoidal effects (1a-c) and, eventually, its boson (photon) behavior.  

(v) Observed line profiles (including wavelength shifts), are affected by an atom’s environment. Field 

effects can be eliminated by extrapolation to zero field (Zeeman, Stark). Interatomic interactions of a 

resonating atom with identical or foreign neighbors also affect line profiles. If sinusoidal [13], these 

can be eliminated with extrapolation towards the difficult single atom case. Even so, their influence 

can be minimized using field effects for a couple of closely spaced lines, extrapolated to zero-field. 

This reliable procedure was used for 2 nearly degenerate lines (see the Lamb-shifts below).   

(vi) With sinusoidal environmental effects accounted for, information on intra-atomic polarization is 

assessable. This brings in H, forbidden in nature, because of charge anti-symmetry and annihilation in 

the Dirac-sense, although H is also electrically neutral. Theorists argue that H, the right- (left-) handed 

version of left- (right-) handed H, is forbidden, although the two are just the natural, mutually 

exclusive quantum states ±1, H and H, possible for a polarized H atom. The 2 atom states correspond 

with the 2 quantum states ±1 for bosons (radiation) or even with the generic cosine asymptotes ±1 as 

depicted in Fig. 1a. Instead of vetoing H, one should at least have admitted a long time ago that both 

states H and H are theoretically possible and allowed for natural, neutral, stable composite Coulomb 

atom hydrogen, when polarized. If 2 quantum states ±1 for hydrogen are both stable, they must be 

described with an inversion along the Coulomb field axis (bipolar view), i.e. with attraction of 2 unit 

charges –e1e2, say +1, inverted to –e2e1, say –1. These are linear sum- and difference-states in (1a), i.e. 

1±me/mp in (1c) and 1±rp/re in (1b). A permutation on an axis is a rotation exactly by 180° or π for 

one of 2 complementary parts in H. For (2a) to give (a+b), cosθ =-1 or θ=π is required, while for 

difference (a-b) cosθ=+1 or θ=0, vector sum and difference having different orientations in space. 

For full resonance between H and radiation to be possible with (1e), H should be credited with some 

boson behavior. 
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(vii) If polarized H-states have always been observed from the 19th century on, these are in full 

resonance with radiation in the absence of (strong) external fields. If so, only the H spectrum can 

decide on H polarization, on boson behavior and on the fate of H. Theoretically possible, plausible 

state H can never be forbidden, before the H spectrum is tested, without prejudice or bias, for generic 

H polarization effects like those in Fig. 1a.  

 

Testing the H spectrum for sinusoidal effects using planar Bohr R/n2 fermion theory 

 

The advantage of simple Bohr 1/n2 theory for fermions is that it is exclusively planar 2D (rotational 

freedom), without the preferential direction, needed for polarization. Bohr’s circular model uses a 

constant unit field 1/√(cos2φ+sin2φ)=1/√(cos2φ+1-cos2φ)=1/√(1-sin2φ+sin2φ)=1 with constant phase 

90° between sine and cosine, which means that it is a constant Rydberg R theory –R/n2. A variable 

phase θ as in (1a) creates problems for circular orbits, since 1/√[cos2φ+1-cos2(φ+θ)] is equal to 1 only 

for θ=0°. Strange as it may seem, these difficult theoretical problems with polarization, caused by a 

variable not constant phase θ, make Bohr -R/n2 fermion theory a unique tool to quantify H behavior 

beyond 2D, i.e. when polarization with variable phase would show as in (2a) [2]. Theoretical level 

energies (in cm-1)  

 -En(2D) = R/n2
B cm  or 1/nB

-1
B = ±√(-En(2D)/R)      (3) 

with Bohr’s nB an integer and constant R, are easily confronted with observed energies En(exp), denoted 

in a similar way with effective or experimentally observed numbers nexp or 

 -En(exp) = R/n2
exp cm-1 or 1/nexp = ±√(-En(exp)/R)      (4a) 

This gives simple numerical relations 

 En(2D)/En(exp)=(nexp/nB)2 or ±(nexp/nB) =±√(En(2D)/En(exp))    (4b) 

Using Rydbergs RB and Rexp in cm-1 with integers nB in either case leads to an alternative test  

 Rexp=RH(n) =(En(exp)/En(2D))RB =En(exp)n2
B cm        (4c) B

-1

based running Rydbergs RH(n) instead of constant R [2]. Differences Δn between nB in (3) and nexp in 

(4), not necessarily an integer if sinusoidal (2) is in operation, obey dimension-less numerical relations 

 Δn=1/nB –1/nB exp= (nexp-nB)/nBnexp= ±[√(-En(2D)/R)-√(-En(exp)/R)]   (5a) 

 Δ’n=1/n2
B-1/n2

exp=(1/nB-1/nexp)(1/nB+1/nexp)=(n2
exp-n2

B)/n2
BnB 2

exp

  =[(-En(2D)/R)-(-En(exp)/R)]        (5b) 

implying that Δ’n/Δn≈2/n. Rexp in cm-1 in (4c) as well as numbers Δ in (5a-b) must all be of sinusoidal 

type, for H polarization (2a), H boson behavior and its 2 quantum states H and H to make sense.  

At the time, it was expected that results for the H spectrum using Einstein’s STR-field (1d) 

 Δ(STR)= En(2D)- μc2[1/√(1+(α/n)2)-1]       (5c) 

would be better than with constant R, the Bohr field. In reality and despite these high expectations, 

testing STR field (1d) with (5c) proves this orthogonal field is much less precise than naïve Bohr 
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theory, as we show below. This summarizes the status of H bound state theories around the 1920s as 

well as the theoretical possibilities available at the time to test Bohr theory beyond its 2D limit. 

 

Observed sinusoidal effects in the H line spectrum and Bohr-type polarization theory 

 

The H Lyman series ns½ and np½ are available for testing with Kelly’s observed terms (errors of 

0,0001 cm-1) [14] or with Erickson’s energies, according to QED calculations (errors 0,0000001 cm-1) 

[15]. R, needed in (5), is 109678,7737 cm-1 in [14] and 109678,773704 cm-1 in [15]. Data are in Table 1. 

Since the consistency of H bound state QED is at stake, we use QED data [15], although Kelly data 

[14] give similar results. The 4th order fit of the 2 series [15] with 1/n gives respectively  

 -Ens=-4,365136/n4+5,552171/n3 +109677,586807/n2-0,000143/n+0,000005 cm-1  (5d) 

 -Enp =-4,377663/n4+5,842957/n3+109677,585445/n2-0,000008/n cm-1  (5e) 

The fits return energies with average errors of only 7,8 kHz and 0,8 kHz respectively. Kelly terms Tns 

[14] are compatible with (5d). As an example, fitting his observed ns-terms [14] gives 

 Tns=4,365740/n4-5,553058/n3-109677,586558/n2+0,000133/n+109678,773744 cm-1(5f) 

which matches (5d) when comparing coefficients. 

Neglecting the smaller terms in (5d) and using (4c), observed running Rydbergs for ns obey 

 Rexp=-Ensn2 =-4,365136/n2+5,552171/n +109677,586807 cm-1    (5g) 

Tests (4c) and (5) on H symmetries or on the constancy of R lead to straightforward conclusions. 

(i) The parabolic result for running Rydbergs (4c) in Fig. 2a immediately falsifies Bohr’s constant 

Rydberg thesis R/n2 for a fermion model as it reproduces (5g). The similar result in Fig. 1 of [2]7 is 

repeated here for (4c) with the harmonic Rydberg (109679,35 cm-1) included. This Rydberg is tangent 

to the complete series and can be considered constant in the spirit of the circular orbits of Bohr 

fermion 2D theory and phase 90° for sine and cosine. It touches the parabola at n0=½π [2] but 

deviates, in a sinusoidal manner, from this critical value8. The absence of a preferential direction in 

Bohr theory is visualized with horizontal lines, parallel to the x-axis in Fig. 2a, like the dashed line for 

n=1, the so-called H ground state at R1=109678,7737 cm-1. The classical H anchor at the extreme in 

Fig. 2a is obtained by removing Bohr’s attenuation factor 1/n2 using (4c). The observed result for R is 

strikingly similar with that with the cosine for generic polarization in Fig. 1a. Comparing curves, it is 

evident that the curves for H Rydbergs in Fig. 2a are of type (1-cosθ)=2sin2(½θ). Its square root 

implies that observed H symmetries depend on sin(½θ)√2, in agreement with polarization theory. 

These straightforward implications of Fig. 2a led us directly to H and justify the brief report of 2002 

[2,4]. 

                                                 
7 There is a typo in its Eqn. (1). 
8 This angle of 90° remains constant in planar circular models but does not show explicitly, since complementary sine and 
cosine are used. At first sight, retrieving this angle with a spectrum seems a logical consequence of the reality of 2 
orthogonal fields and circular orbits. Yet, finding out that this angle is no longer constant in a complete series but critical 
instead is a true signature for H polarization [2]. This relies on deviations from 90° instead of remaining constant. 
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(ii) Parabolic behavior of running Rydbergs in Fig. 2a points to sinusoidal behavior, since in first order 

1-cosθ=1-(1-½θ2+…)≈½θ2. Since this suggests boson behavior, Fig. 2a shows that a boson-like H 

atom appears when Coulomb attraction sets in at 1/n=0. It reaches its maximum at n0=½π upon 

compressing the 2 H fermions (electron and proton), and then gradually diminishes. In terms of H 

fermion-boson symmetries, the extreme marks a transition between different H symmetries, while 

only H fermion symmetry can be considered as constant in the full interval, pending the choice of the 

asymptote ±1 to describe it. The choice of an asymptote, +1 or –1, is purely conventional but can 

never mean that one of them does not exist – see sine and cosine--, which also puts question marks 

on a veto on H). The appearance of H boson symmetry is now understandable, since it is essential for 

full resonance between system H and radiation (a boson structure) to be possible by virtue of (1e). 

(iii) More details on H behavior beyond 2D are exposed with the curves for differences (5a)-(5b), 

shown in Fig. 2b,c. These are extrapolated, since it is uncertain how restricted observable domain for 

H, i.e. 2≥n≤∞ or ½≤1/n≥0, will comply with the full domain 2π for phase θ (see further below). 

Compacting effects, illustrated in Fig. 1b-c, are now clearly visible with the H spectrum. Attenuation 

by 1/n or 1/n2 must not distract from the sinusoidal character of Δn. In fact, the H spectrum shows 

that all perfectly sinusoidal curves for 1/n (5a) in Fig. 2b and for 1/n2 (5b) in Fig. 2c are consistent 

with parabola (5g) for Rexp, given in Fig. 2a and in Fig. 1 of [2]. 

Visual inspection of all Fig. 2 proves beyond any doubt that deviations from Bohr’s 2D fermion 

model for H are sinusoidal, which confirms the existence of sinusoidal field fluctuations (2), needed 

for polarization to appear in natural neutral Coulomb system H. With Fig. 1 and 2, observation [14] as 

well as bound state QED theory [15] both point to sinusoidal Compton-like wavelength shifts (1) in 

H, which led to de Broglie’ equation (1f) and generic polarization angles like (1h).  

To prove that these are indeed H PDW shifts, conform Fig. 1a for the polarization of light, the phase 

correlation of Fig. 1a must be retraced identically in the H spectrum: phase ±½π for circular and 

phase 0 or π for linear H polarization are both required, as argued in [2-3]. With Fig. 1-2, our earlier, 

rather bold conclusions on the existence of natural H-states are fully justified [2].  

However, the origin of pertinent H-signatures must be retraced in bound state QED. We remind that 

orthogonal STR field (1d) had to be modified drastically to account for the very same H-states in Fig. 

2a-b. In fact, Fig. 2d shows the result of test (5c) for STR. Highly praised STR field (1d) is worse than 

Bohr’s: it simply proves disastrous9. Repulsive term in 1/n4 creates errors, much larger than those of 

simple Bohr -R/n2 theory, as shown in Fig. 2d. STR errors are 12 and 27 times larger than Bohr’s for 

respectively np and ns (not shown). To undo the damage of the STR field, large attractive corrections 

of order -5,84/n3 cm-1 for np and –5,55/n3 cm-1 for ns were needed (see below). Fig. 2d is illustrative 

for the history of theoretical physics. Perhaps theorists were misled: they were preoccupied with the 

great errors of the H STR-field (upper 2 closely spaced curves in Fig. 2d), which could have made 

                                                 
9 This flagrant erratic behavior of STR for H (Fig. 2d) is never mentioned, it certainly was not in Einstein Year 2005 [1] 
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them overlook the small errors of Bohr theory, wherein harmonic and quartic behavior already shows 

(lower 2 curves in Fig. 2d). Even with moderate spectral accuracy, the large errors of STR were clearly 

visible, the smaller ones of Bohr theory far less (Fig. 2d).  

How to remove these large STR errors had a great impact on theorists but may well have distracted 

their attention from the real problem: H polarization. It was probably not realized that Bohr theory is 

so reliable and powerful to disclose 3D effects beyond 2D, e.g. H polarization effects (Fig. 2d). This 

makes the history of these attractive corrections, so badly needed for erratic STR bound state H field 

theory (1d), quite remarkable. 

 

Origin of Sommerfeld’s double square root equation and quartics in bound state QED 

 

Classical Coulomb and polarization models for composite H differ in that the first is planar (2D), due 

to a central field approximation, whereas the second points to out of plane effects with a bipolar view, 

essential to arrive at H polarization. Although Bohr’s 1/n2 H 2D fermion theory is fairly accurate 

(parts in 107 for terms, 300 MHz), replacing it with its also highly praised 3D Schrödinger wave 

mechanical version proved unsatisfactory [1], as the accuracy was no better10: Schrödinger returned 

the very same energy levels of Bohr’s 1/n2 theory, without any correction term added. 

In the early 20th century and before Schrödinger, physicists like Sommerfeld, Kramers, Bohr… were 

all occupied with the discrepancies between -R/n2 theory and experiment. Theoretical corrections, 

inspired by Einstein’s (1d), led to even greater errors than with a naïve, constant Bohr field (see Fig. 

2d) and caused a great dissatisfaction with highly praised STR theory amongst notorious relativists.  

Even with moderate accuracy, positive as well as negative deviations from a constant Rydberg 

hypothesis -R/n2 suggested fluctuating deviations (see Fig. 2d). Sommerfeld’s azimuthal quantum 

number ℓ=n-1 and his 2D elliptical model, useful for classifying states, did not improve the accuracy 

either.  

Unlike Schrödinger, Sommerfeld must have realized at a very early instance that only parabolic 

oscillatory behavior (e.g. tilted instead of planar ellipses) would account for remaining discrepancies 

and that, at the same time, only a large attractive term -1/n3 would restore the damage by STR (see 

Fig. 2) of great concern for relativists and theoretical physicists. 

Knowing this, Sommerfeld suggested his pupil Kratzer11 to work on a numerical parabola [17] 

                                                 
10 Apparently, wave mechanical H does not improve -R/n2 theory [1]. This procedure has angular dependencies in phase to 
get at resonance (and to remain soluble), instead of out of phase to get at polarization-states needed for full resonance.  
11 Rigden [16] does not mention that Kratzer was Sommerfeld’s pupil. Kratzer’s potential V(r)=-e2/r +b/r2 and V(r0)=-
½e2/r0 figures at length in Sommerfeld’s famous monograph [18]. It is probably the most underestimated potential in 
physics and chemistry [19](see also Appendix). A molecular Kratzer potential is universal. It is superior to Morse’s and 
accounts smoothly for lower order spectroscopic constants of 300 diatomics X2 [19-20]. Kratzer’s potential (6) refers to 
the 19th century ionic Coulomb X+X-, not to the covalent asymptote XX. This seems to favor old-fashioned classical 
Coulomb ionic bonding –e2/r but, in reality, it gives away atom-antiatom or XX bonding [1,20], although a ban on H 
implies a ban on HH and on HH-oscillations [21]. The conventional argument, often used, against XX bonding is that it 
contradicts mainstream physics and chemistry! 
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 Ep ~ (1-n0/n)2          (6) 

where n0 is a critical internal quantum number for H, missing in Bohr-Schrodinger theories. Although 

at the time, Kratzer’s potential (6) was considered typical for oscillations between atoms in 

molecules12 (see Appendix), Sommerfeld knew it would automatically improve the precision of a new 

theory, in which Bohr-Schrödinger 1/n2 term had to remain. His own quantum number ℓ=n-1 and  

 α=e2/ħc = 1/137,035999…         (7) 

his numerical field scale factor (the fine structure constant, first referred to in 1915), should be 

conserved too. The Sommerfeld-Kratzer connection is now easily understood. Sommerfeld’s number 

ℓ=n-1 is connected with Kratzer’s potential (6): with n0=ℓ, (6) is degenerate with Bohr’s 1/n2=(1-

ℓ/n)2=[1-(n-1)/n)]2=(1-1+1/n)2=1/n2. But for ℓ=0 (circular orbits), the effect of (6) with integer n 

would vanish identically. Even with constant n0, (6) gives results equivalent to Bohr’s, for any 

intermediary asymptote (Rydberg), virtual or not, we would choose. Putting R/n2=A(1-n0/n)2, always 

returns an exact numerical relation between a scaled asymptote √(R/A)=n-n0, without loss of 

precision. The procedure (not shown) is easily verified with a plot of terms or levels versus n0/n or 

versus (n0/n-1), with n0 integer or not. The linear 1/n procedure is exemplified with (5a) and Fig. 2b. 

With this evidence in mind, Sommerfeld, a reputed convinced relativist, also knew too well that the 

Einstein-STR expansion for H on the basis (1d), used for (5c) 

   -En/μc2=[1/fSTR(n)-1]=1/√(1+α2/n2)-1=1-½α2/n2+⅜ α4/n4-…-1=(-½α2/n2)(1-¾α2/n2-…)(8) 

can never give parabolic behavior of type (6). Term +⅜ α4/n4 in (8) may be small indeed and of the 

required magnitude, it remains exclusively repulsive. For H, it creates rather than solves problems for 

Bohr 1/n2 theory, as shown in Fig. 2d. Sommerfeld associated the more visible Kratzer parabola (6) 

with higher order attractive terms in an STR expansion, to arrive at terms of mixed type  

 Ep ~(α4/n2)(1-n0/n)2         (9) 

intimately connected also with his quantum number ℓ as shown above. 

The challenge for Sommerfeld was that STR (8) had to be modified drastically, while he was forced to 

retain Bohr, Kratzer (6) and Einstein STR (8) theories as well as his own quantum number ℓ. To get 

agreement between a modified STR field and observation was now a matter of mathematical skills, 

just like those of Sommerfeld. Not surprisingly, these led him to a remarkable, ingenious double 

square root13 solution for H with reduced mass14 μ, i.e. 

 En,j =μc2[f(n,j)-1] =μc2f(n,j)-μc2         (10) 

  f(n,j) ={1+ α2/[√((j+½)2–α2)+n-j-½)]2}-½     (11)  

This new STR-like field factor f(n,j) in (11), today textbook material and once considered as the latest 

                                                 
12 Sommerfeld obviously made oscillations (bosons) interfere with rotations (fermions): this makes him the pioneer of 
supersymmetry (SUSY, MSSM), although, at the time, the fermion-boson symmetry concept was not used. 
13 More than a century ago, Ramanujan, once at Trinity, found a connection between double square roots and quartics [22]. 
14 It is strange that (10) uses μ, although at n=∞, an electron with mass me instead of μ is set free. There is no reason to 
use reduced mass in STR based (10), as remarked by Cagnac et al. with some irony [23]. They write that the only 
justification (sic)[used by Cagnac] to use reduced mass μ in (10) is that it makes this equation consistent with experiment 
[23] (see below).  
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real cornerstone of theoretical physics, is similar to fSTR(n) in (1d) or (8) but different. Its validity, if 

confirmed by the H spectrum, would immediately flaw original Einstein STR equation (1d) or (8), as 

evident with Fig. 2d. Also, j is the total angular quantum number, with values j =+½ for ℓ=0 and j 

=ℓ±½ for ℓ≠0, where ℓ=n-1 is Sommerfeld’s number. It is retrieved exactly in (10)-(11) for atom 

states obeying j+½=1, for which n-j-½=n-(j+½)=n-1=ℓ. Looking at Fig. 2d, these derivations place 

the famous double square root equation (10)-(11) of modern bound state QED in a different context: 

it was simply needed by Sommerfeld to fit his azimuthal quantum number and oscillatory (boson) 

behavior (6) into a very badly performing relativistic Bohr-Einstein (fermion) rotator (8) because of 

sinusoidal errors remaining for H with Bohr’s planar 1/n2 theory15. 

In fact, the difference between (10) and (8) may be subtle, the connection with ℓ and Kratzer’s (6) is 

obvious. For j+½ =1 with ℓ=0 and ℓ=1, terms between square brackets in (11) simplify as 

  [√((j+½)2–α2)+n-j-½)]2=[√(1-α2)+(n-1)]2=[√(1-α2)+ℓ]2

  =(n-½α2)2≈n2-nα2=n2(1-α2/n)        (12) 

 f(n,j+½) ={1+ (α2/n2)/(1-α2/n}-½={1+(α2/n2)(1+α2/n)}-½    (13) 

Expanding these like in (8) generates a parabola for H of the required Kratzer form (6), since 

 En,½ /μc2=[f(n,j)-1]={1+(α2/n2)(1+α2/n}-½-1 

  =-½(α2/n2)(1+α2/n)+⅜(α4/n4)(1+α2/n)2 -…≈-½α2/n2 -½α4/n3+⅜α4/n4 -… 

  =(-½α2/n2)[1+α2(1/n-¾/n2 )-…]      (14) 

In first order, the final parabolic compact energy level equation for H becomes 

 En,½ =(-½μα2c2/n2)[1+α2(1/n-¾/n2 )-…] 

 =(-R/n2)[1+α2(1/n-¾/n2 )-…]        (15) 

much more accurate than Bohr’s leading 2D -R/n2 term, still preserved. It is too easily forgotten that 

bound state formula (15) is due to Sommerfeld, not to Dirac, and that it remains at the basis of 

modern bound state QED [24].  

With (15) and numerical dimension-less ratio -En,½/R, errors δn for Bohr theory like Δn in (5) are easily 

quantified by a clearly visible quartic (in cm-1) 

.  δn=-En,½ -½μα2c2/n2 = α2R(1/n-¾/n2 )/n2 cm-1      (16) 

for H np½ states. This justifies equations (4c) and (5a-b), the curves in Fig. 2 and in [1,3] but also gives 

the attractive term -α2R/n3=-5,84/n3 cm-1 needed to remove the STR errors in Fig. 2d (see above). 

Sommerfeld-QED quartic (16) transforms in numerical variants δn/Rα2, nδn/Rα2 and n2δn/Rα2, shown 

in Fig. 3. The Mexican hat shape shows only with extrapolation as in Fig. 2. Using (16), cubic nδn/Rα2 

is harmonic between a parabola with n0 and a quartic with n2, since nδn/Rα2= √[(δn/Rα2)(n2δn/Rα2)] 

and explains why all curves converge to the same critical points (Fig. 3). With Sommerfeld’s, unjustly 

called Dirac’s equations (14)-(15), running Rydbergs (4c) are parabolic 

                                                 
15 Einstein’s original non-sinusoidal orthogonal STR (1d) can be modified for bound H states with an amended form like 
f’(α/n) =[1+ (α/n)2/√(1-α2/n)2]-½=[1+ α2(1+α2/n)/n2]-½, the parabolic Sommerfeld variant hidden in (14)-(15). This 
variant suggests that the real harmonic H field would derive from a series expansion of a series. 
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 R(n)≈R[1+α2(1/n-¾/n2 )]         (17) 

as argued in [2]. With R=109677,5854 cm-1 as in (5e) and (7) for np½, Rydbergs and energies become 

 R(n)≈109677,5854+5,8405/n –4,3805/n2 cm-1     (18a) 

 -En,½=–4,3805/n4 +5,8405/n3 +109677,5854/n2 cm-1     (18b) 

in perfect agreement with fit (5e). Before 1947, this impressive precision for H got Sommerfeld’s, not 

Dirac’s, bound state theory (15) even the status of an absolute theory. This had major consequences 

for metrology, based on the Rydberg meα2c2, still in vigor today [23]. It is evident that Sommerfeld16 is 

responsible for this status, since he succeeded in safeguarding Einstein’s highly praised STR formalism 

for bound states. Unfortunately, the obvious link with H boson behavior and its possible impact for H 

polarization was never made. The irony is that Sommerfeld almost unwillingly proved that simple 

oscillating H fields (1a-c), say a simple cosine law, are far better than Einstein’s original orthogonal 

STR field, which, by definition, can never cope with polarization (see above).  

 

Hidden Kratzer oscillatory potential and harmonic Rydbergs in fermion-boson system H  

 

With this pragmatic origin of the famous double square root equation (10), Kratzer’s potential (6), 

showing in (10)-(11), retains its classical (boson) implications even when superimposed on fermionic 

H (see Appendix). Apart from factor α2 and a shift, Sommerfeld-Kratzer potentials (6) and (15) give 

 -(1-n0/n)2=-1+2n0/n –n0
2/n2  ~ +1/n-¾n2      (19) 

The numerical Kratzer parabola (6) hidden in H np½ refers to a critical n-value n0=3/2, half integer 

and constant, instead of running ℓ=n-1. The Kratzer potential needed for np½-states becomes 

 Ep = -(1/3)(1-n0/n)2= -(1/√3-½√3/n)2=-1/3+1/n-¾n2    (20) 

which, in turn, refers to a different asymptote E’p, shifted numerically by 

 E’p = -(1/3)(1-n0/n)2+1/3 =-1/3(1-1)+1/n-¾n2=+1/n-¾n2    (21a) 

This asymptote shift can be dealt with using classical physics and remains mathematically exact using a 

virtual particle-antiparticle pair asymptote difference (1-1)/3 in (21). This freedom of asymptote for H 

is connected with the form of Kratzer’s oscillatory potential (6), i.e. with or without constant 

asymptote shift, governed by n0 in (6). 

An important aspect of asymptote shifts, never mentioned in bound state QED and by NIST [2], is 

the appearance of harmonic Rydbergs Rharm. For H ns½, Rharm=109679,3522 cm-1, while for n=1, the 

ground state, R1=109678,7737 cm-1 [2] (see also below). For np½ with (21), shift α2R/3 =1,94 cm-1 

gives R’harm109677,58+1,94=109679,52 cm-1, whereas for its ground state at n=1, shift α2R/4 gives 

109679,04 cm-1. The R-parabola in Fig. 2a learns that underlying linear H field of type a-b/n or 

sin(½θ)√2 (see around Fig. 2), never discussed in bound state QED, will have to be understood from 
                                                 
16 It is too easily forgotten also that Sommerfeld’s work was much admired. For 1901-1950, this got him the highest 
number of nominations (81) for a Nobel prize but never received it (Bohr got 20 nominations) [25]. A. Kratzer and E. 
Fues but also P. Debye, W. Pauli, W. Heisenberg and H. Bethe belonged to Sommerfeld’s school (http://www.lrz-
muenchen.de/~sommerfeld). 
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first principles in ab initio H polarization theory [26]. For np, R’harm is shifted by α2/3, which is 

important to understand observed distorted quartics, extracted from the lines. Fig. 4 shows that the 

invisible theoretical harmonic quartic δn, scaled with α2, or 

 δn/(α2)=(1/3)(1-1,5/n)2/n2        (21b) 

is symmetrical and critical at n=3, whereas the clearly visible observed anharmonic quartic  

 (1/3)[(1-1,5/n)2 -1]/n2  (giving observed +1/n3 -¾/n4 after inversion)   (21c) 

is not only asymmetrical but also its shape is markedly different. This also shows how linear asymptote 

shifts can affect the shape of the quartics, hidden in the H line spectrum, as argued above.  

Exposing harmony with parabolas relies on scaling effects on coefficients and the value of 

asymptotes. Forms (a-b/n)2=a2[1-(b/a)/n]2=b2[(a/b)-1/n]2=2ab[√(½a/b)-√(½b/a)/n]2 are all 

equivalent. Rewriting the latter with ratio r=(b/a) gives harmonic relation 2(ar)2(½/r2 –1/n +½r2/n2) 

as it is observed (21c).  

However, exposing details on H symmetries also suffers from the natural limits imposed on 

observation. Due to (1e), observable lines are limited to the quantum domain between n=2 and n=∞ 

(or between 1/n=0,5 and 1/n=0) as indicated with the 2 vertical lines in Fig. 4.  

With this natural limitation of (1e), it is apparent that, to expose all the details of harmonic H-behavior 

(boson symmetry), extrapolation17 beyond this observable region is essential [3], as argued also above.  

These details all derive from Sommerfeld’s decision to introduce Kratzer’s oscillator potential (6) in a 

bound state H theory. This important Sommerfeld-Kratzer connection on classical rotator-oscillator 

(now fermion-boson) physics is never mentioned in the history of H bound state QED. On the 

contrary, QED, the QFT for the electromagnetic field, is connected almost exclusively with Dirac18. 

Sommerfeld’s double square root equation (10) cannot but refer to Mexican hat curves for bound 

Coulomb H states, whereas the link between quartics and chirality was known already with 19th 

century chemistry [27-28].  

Why all this was nevertheless persistently overlooked in QED, is difficult to understand: it was well 

known that radiation cannot but act like a boson system, which exhibits chiral behavior. This makes 

oscillator contributions (6) for resonant polarized H-states quite plausible, the more since also 

polarization angles or phases were already available with de Broglie’s (1f). 

At this stage, it is not yet evident to correlate quartic (16) with chiral behavior of polarized H, since 

quartics apply for most transitions in 2 level systems like order-disorder transitions (see below). 

A direct link between H spectrum and H polarization like in Fig. 1a, can only be provided if and only 

if critical de Broglie polarization angles 90° and 180° are retrieved exactly from the H line spectrum. 

 

 

                                                 
17 Bohr theory is based on extrapolation too to get at ground state n=1 in a wavenumber or 1/λ view. This avoids the 
infinity with (1e) for state n=1 in a wavelength or λ view (Angstrom), the spectral unit in vigor in the 19th century. 
18 In the latest review on H bound state QED [24], Dirac is mentioned 116 times, Sommerfeld and Kratzer not once.  
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H polarization and H chirality: PDW shifts and spectral signatures for H 

 

Quantitative signatures for H polarization, and hence for natural H, only appear with the Lyman ns½ 

series. With j+½=1, these states also comply with Sommerfeld’s secondary quantum condition ℓ=n-1. 

If (15) were the result of an absolute theory, as commonly believed at the time, ns½ should be 

degenerate with np½ and both should obey (18).  

This theoretically predicted degeneracy was, however, flawed for interval 2S½-2P½ by Lamb and 

Retherford [29]: the terms differ by more than 1000 MHz or 0,035 cm-1, in line with what many other 

physicists already suspected earlier [29]. Immediately after its publication in 1947, the shift caused a 

great turmoil in theoretical physics, since the almost sacred, so-called absolute Sommerfeld-Dirac 

formula (10) and (15) proved wrong. The shift initiated the search for a new physics and later, 

following Bethe’s first explanation for the shift [30], led to modern quantum field theories and 

eventually the Standard Model as we know it today. How important the Lamb shift may have been for 

theoretical physics [16,24], it is even more important for the fate of natural H, although this was never 

mentioned, until 2002 [2]. Its importance becomes apparent with ns½ fit (5d) 

 -Ens½=-4,3651/n4+5,5522/n3+109677,5868/n2 cm-1     (22) 

with slightly different higher order coefficients than in (18) [2]. These small differences correspond 

with the Lamb-shifts between the 2 series.  

Instead of critical n0=3/2 for np½, the derivative of (22) leads to a critical n0 for its Kratzer potential 

(6) and for its running Rydbergs n2Ens½ at [2]  

 n0=1,572 ≈½π          (23) 

Reminding polarization Fig. 1a, phase (23), typical for orthogonal models with complementary sine 

and cosine of the same angle like Bohr’s, is nevertheless also the critical angle for circular H 

polarization, pointing towards left- and right-handed configurations H and H.  

The Sommerfeld-Kratzer super-symmetric quartic correction for H Lyman ns½ gives for shifts (2c)  

 HPDW shifts ~(1/√π-½√π/n)2/n2 = (1/π)(1-½π/n)2/n2    (24) 

instead of quartic (16) and parabola in (20) for np½. Classically, and apart from trivial n0=∞, this 

quartic for H PDW shifts is not only critical for n0=½π in (23) but also for n’0=π, instead of 3/2 and 3 

for np½. This shift in critical behavior for ns½ provides with the 2 ultimate spectral signatures for H 

polarization and for natural H. With quartic (24), not only ½π in (23) for circular H polarization but 

also critical angle of π or 180° for linear H polarization shows up unambiguously as 

 n’0=π           (25) 

as with de Broglie’s theoretical polarization angles (1f).  

This finally proves that observed H wavelength shifts, i.e. errors with respect to Bohr 2D fermion 

1/n2 theory, are polarization dependent wavelength (PDW) shifts in important H Lyman’s ns½-series. 

Angle (25) for a simple Coulomb H bond provides with an absolute, generic signature for an internal 

permutation (by rotation), i.e. an inversion on the axis from →, say +1, to ←, say –1. Without (strong) 
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external fields or with data extrapolated to zero-field (Lamb-Retherford) and with oscillations 

projected on a Coulomb field axis, inversion (25), implicit with (1a), i.e. H acting as a half wavelength 

plate in de Broglie theory (1f), must take place between the 2 charges, conventionally assigned to 

electron and proton, which formally become anti-electron (positron) and antiproton. If state +1 

stands for a natural, stable Coulomb H-state with attraction –e1e2/r, inverse –1 must stand for a 

natural stable Coulomb H-state with attraction –e2e1/r.   

Nevertheless, natural H is still forbidden by the physics establishment, while bound state QED uses 

the very same Sommerfeld quartic generating field equation (10). Failing to see critical H phase19 ½π 

and π, hidden in de Broglie’s equation, at an earlier instance had devastating consequences for physics 

[1]. Apart from an unjust ban on natural H, many other important issues are affected: CPT, WEP, 

existence of antimatter, cosmology, hole-theory, Dirac sea, matter-antimatter asymmetry, Big Bang, 

HH bonding, HH oscillations, geometric phase, phase transitions, entanglement…. [1,21].  

 

Results 

 

(i) Precision 

To test the reliability of and the precision behind the π-dependence for the ns½ series, compared with 

that on 3 for the np½-series, we verify that, with (20) and (24), parabolic Rydberg ΔR corrections are 

 ΔR(np) =α2R(1/√3-½√3/n)2 =+1,946827-5,840480/n+4,380360/n2 cm-1  (26a) 

 ΔR(ns) =α2R(3/π)(1/√π-½√π/n)2  =+1,775293-5,577248/n +4,380360/n2 cm-1 (26b) 

with α2R=109677,58545/137,0359992=5,840480 cm-1. In as far as a number 3-based n-theory (26a) is 

of first principles character, a rescaled version with π instead of 3 is a derived first principle’s theory 

also, as evident with (26b). The theoretical Rydbergs are plotted versus the observed ones Fig. 5. 

Linear fits give 

 R(np)=109679,533968 –1,001024ΔR(np) ≈ 109679,533968 -ΔR(np)    (27a)  

 R(ns)=109679,353174 –0,995566ΔR(ns) ≈ 109679,353174 -ΔR(ns)    (27b)  

The 2 harmonic Rydbergs differ by 109679,53-109679,35=0,18. With (26ab), level energies become 

-E(np)=(109679,533968-ΔR(np))/n2=109677,5854/n2+5,840480/n3-4,380360/n4 cm-1  (28a) 

-E(ns)=(109679,353174-ΔR(ns))/n2=109677,5854/n2+5,577248/n3-4,380360/n4 cm-1 (28a) 

which give an absolute error of 2,04 and 0,64 MHz for ns and np respectively. Using the fits in (27), 

the errors reduce to 0,24 and 0,18 MHz (some 0,000007 cm-1) as shown in Table 2. Part of the 

remaining small errors is due to adaptations in constants and conversion factors since [15]. 

To the best of my knowledge, this is by far the simplest accurate one-parameter theory ever to account 

for observed Lamb-shifts from first principles. The explanation for the Lamb shift in standard QED 

is one of the most complex exercises in theoretical physics. This complexity shows when it comes to 
                                                 
19 Herbst [31] uses critical ½π as a Friedrichs extension for a one-particle Hamiltonian in Coulomb potential V(r)=-n0/n, 
with lower bounds E ≥ mc2√[1-(½πn0)2] in the range 0≤n0<2/π (see [32] for a discussion).  
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calculate H line intensities, intimately connected with H polarization. Bound sate QED is not a closed 

but an open theory, which adds to the ambiguity surrounding its labyrinth of terms created with the 

expansions for (10).  

The rationale behind our simple solution for Lamb-shifts is H polarization, persistently but unjustly 

overlooked in QED/QFT [1]. 

 

(ii) The 21 cm H line and natural H

The two harmonic quartics for the Lyman ns½- and np½-series are shown in Fig. 6 but an important 

observed internal anchor for H is added, the 21 cm line. The observed hyperfine splitting of ground 

state 1S½ 1420,4058 MHz (21,1061133 cm) is 0,04737964 cm-1, as in Fig. 6 (horizontal line). This 

usually faint line, important for cosmology, is easily measured, since H is so dominant in the Universe 

(CBR). It is easily computed in QED with electron and proton magnetic moments. However, QED 

cannot place this line, important for H-related polarization effects in the Universe, within the context 

of a polarized H atom, where it really belongs, since QED is internally inconsistent exactly where it 

matters: H polarization.  

Barrier-heights in its Mexican hat curves reflect all of the basic symmetries in H. Fig. 6 shows that the 

famous 21 cm line is exactly in between barriers in ns½- and np½-quartics, with respective heights 

0,044649 at n=π and 0,054273 cm-1 at n=3. This novel but unexpected result again calls for a generic 

H polarization or CSB theory, with due respect for this 21 cm line [26]. 

 

(iii) Role of π in quantum rules and de Broglie quantization 

Kratzer’s potential allows rotations and/or oscillations (see Appendix), while Bohr’s theory only gives 

rotations. Their difference must show in quantum rules. In Bohr’s quantum hypothesis 

 (mvr)B =nħ          (29a) 

Planck’s quantum of action h is scaled with the circumference of a unit circle 2π, giving ħ. Since 

quantum numbers are projections on the axis, Bohr’s hypothesis hides the possibility that, for linear 

H, oscillations along an axis obey a rescaled quantum hypothesis of type 

 (mvr)SK =(k/2π)h         (29b) 

which could be called the Sommerfeld-Kratzer quantum hypothesis, if it were not already available 

with de Broglie’s quantum recipe for fields (1e). Obviously, k is related to Bohr’s n by scaling only or 

 k = n/2π          (29c) 

in line with de Broglie’s (1e) and appears with Rydbergs RSK or H-state energies scaled accordingly. 

Results (29a) and (29b) warn against improper use of ħ in so-called absolute theories with ħ=c=1. 

For a de Broglie state with n=π, i.e. for the classical anchor of H in the ns-series, k=½ is a constant 

half integer quantum number, not only typical for H harmony but also for H, acting as a half 

wavelength plate. In second order, this value is also given away by half integer spin for fermions and is 

exposed as such by atom H, when its spectrum is measured in (strong) external fields.  
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If H harmony were expressed with n=π or k=½, harmonic scale factor 1/π2 affects conventional H 

views by a factor of some 1/10. Conventional recoil being 60 cm-1 (109677,58/1836 cm-1), recoil in a 

de Broglie harmonic state is only 6 cm-1, close to α2R=5,84 cm-1 in (26a). We return to all this in [26]. 

 

(iv) Classical phase transition in atom H 

Inversion within system H at critical n=π implies that a phase transition occurs from state +1 or phase 

θ=0 to state –1 or phase θ=π, the rationale behind the H quartics or Mexican hat curves above.  

If not bound to chirality, double well curves give away an internal phase transition in a 2 level 

quantum system (order-disorder, state of aggregation…). These H potential energy curves (PECs) are 

obtained with energy differences, i.e. H PDW shifts, plotted versus 1/n (see Fig. 1 in [3]). Taking 

energy differences from the Bohr ground state n=1 gives the slightly distorted Mexican hat curve of 

Fig. 7a, instead of the harmonic quartic for H PDW shifts with the harmonic Rydberg [3]. To illustrate 

the effect of asymptote of R-shifts, curves for intermediate and more extreme R>Rharm are also shown.  

However, when these same small energy differences, i.e. H PDW shifts, are plotted versus n as in Fig. 

7b, the resulting curves not only loose their typical harmonic quartic shape. Quite surprisingly, typical 

Vander Waals-Maxwell patterns show up for all curves in the H quantum interval n=1 to n=∞. The 

upper continuous curve for ideal behavior, i.e. the ideal gas law of the 19th century, refers to the ideal 

Coulomb law in Bohr’s version –R/n2 for the quantum world. The relevance of Fig. 7b is improved 

with the 21 cm H line included as reference. The inverted Van der Waals n-view in Fig. 7b calls for an 

explanation of the H system with density fluctuations upon compressing the original electron-proton 

system by decreasing their separation [5, 33].  

Mass or density fluctuations along the radial Coulomb field axis are usually not considered but readily 

appear when with reduced mass, instead of total mass (see Appendix). Moreover, the procedure 

applied to go from the H quartic in Fig. 7a to the Vander Waals-type curve in Fig. 7b is readly 

inverted. To get at a classical Vander Waals curve in a P,V diagram, pressure data P are plotted versus 

volume V, as in Fig. 7b. The classical Maxwell, double well or Mexican hat curve immediately shows 

when plotting the same pressure data versus 1/V instead, as in Fig. 7a [33].  

Since critical points in the H spectrum in whatever analytical relation refer to relative contributions of 

fermion and boson symmetries in H, the puzzling result in Fig. 7b must relate to atomic BECs (Bose-

Einstein condensates) [33]. With this phenomenological analysis, a striking one-by-one correlation 

appears between (i) macroscopic 19th century Vander Waals-Maxwell behavior of neutral systems with 

2 phases (water-ice for H20) and their classical phase transition and (ii) the microscopic phase 

transition between to different phases H and H of the same two level quantum system, natural and 

neutral atomic species hydrogen [33].  
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Discussion 

 

H-signatures (23) and (25), theoretically allowed by de Broglie’s standing wave equation, were already 

overlooked in the earliest days of quantum field theory and especially in the aftermath of the Lamb-

shift. If the H line spectrum were interpreted along these lines, a theoretical ban on natural H and on 

HH would never have appeared. In QFT, handedness or helicity is connected with particle spin ±½ in 

a dynamic approach. Yet, with quantum condition j+½=1 for equation (10), dynamic effects of half 

integer spin vanish, which means that parabolic, sinusoidal variations (23) for the ns½ series of natural, 

neutral and stable species H can only be accounted for with a generic H polarization or CSB theory, 

classically and quantitatively in line with cosine law (1) for 2 internal harmonic H fields. This model 

underlies our Bohr-like H polarization theory (2a) in beta-version [26]. To the best of my knowledge, 

no ab initio H polarization theory exists today (see Introduction). In a first principles theory, field 

ratio a/b and fractional polarization angle θ in (1a-c) must be identified analytically [26].  

The use of more or less constrained Bohr and Kratzer potentials reduces to physical differences 

between mathematically equivalent descriptions of circles (see Appendix). In Bohr’s standard central 

field approximation, a circle is described with a freely rotating radius r (0,+1) and a phase of 90° 

between 2 orthogonal fields (radial and angular fields or static and dynamic fields). In the 

mathematically equivalent bipolar view, the circle is described with a diameter 2r and two poles (+1,-1) 

with a phase of 180° between 2 parallel or antiparallel fields (linear 2 field case, electron- and proton 

Coulomb fields), as suggested with de Broglie’s equation (1g). In [26], we analyze 2 internal sub-field 

models: (i) cosine law (1a), which implies sinusoidal fluctuations between field sum and field 

difference, both having different directions in space and (ii) its linear bipolar variant acosα+bcosβ, for 

which asinα=bsinβ and (α+β)=π-θ, which implies fluctuations of the origin instead (vacuum 

fluctuations). These equations appear for all harmonic periodic motions, governed by cosα+sinβ. 

Equivalent numerical field equations (1a-c) for H, add to the confusion about the improper use of 

reduced mass in bound state QED (10), as remarked above, in the Appendix and referred to in [34]. 

In fact, for harmonic reduced mass to appear in bound state theories on a gravitational basis, total 

mass mH looses its scalar behavior (see Appendix). The rationale is that recoil transforms exactly from 

multiplicative to additive in 

 1/(1+me/mp) ≡ 1 – me/mH        (30a) 

which is important for field sum and difference in (1c) [26]. The derived symmetry behind (30a) for 

reduced mass leads to  

  (1+me/mH)/(1 – me/mH) = 1,0011…        (30b) 

numerically close the anomalous electron mass [2]. In this form, H line splitting in function of 

  1 ± me/mH          (31) 

would make total H mass mH indirectly responsible for the breaking of left-right symmetry for boson 

system H and, by extension, for a 2 unit charge Coulomb bond between 2 fermions. Not surprisingly, 

G. Van Hooydonk, H probed with observed H PDW shifts...      1st version October 15 2006,      p.  17 



this is consistent with observation as argued before on a phenomenological basis [34]. An objection to 

(31) could be that recoil (me/mp)R gives about 60 cm-1, too large to account for the H observed 

oscillations in QED of order α2R ≈6 cm-1 or 10 times less. This conventional argument on recoil is, 

however, deceptive for harmonic H states, as shown in the foregoing paragraph. 

An argument in favor of recoil20 as a symmetry breaker is that its oscillations with frequency ω, instead 

of rotations with angular frequency ω/2π, compares well with a rescaled fine structure constant, 

although this effect is not manifest in de Broglies’ original standing wave equation (1e). 

Confronting Coulomb and radiative fields e2/r and hν=hc/λ=2πħc/λ=2π(e2/α)/λ gives 

 λ/r=2π(e2/α)/e2=2π/α= 6,28·137= 861      (32) 

the hidden scale factor behind de Borglie’s variant (1f). We notice that twice recoil is (1836/2)=918 

gives a difference of about 57 with (32) but also that α/2π=r/λ in (32) appears as the leading term in 

the Schwinger expansion for the so-called anomalous electron mass [35]. Corrections for anomalous 

electron mass are also used in bound state QED [24], which strengthens the confusion about the real 

role, played by recoil. With (32), a bound Coulomb state, obeying virial ½e2/r0, will absorb a frequency 

λ0, deriving from 

 ½λ0/r0=4π/α=2·861=1722 ≈ 1836       (33) 

a field scale factor, perfectly compatible with inverse recoil 1836/1.  

These strange but unavoidable consequences for recoil, fine structure constant and number π must all 

be seen in a context of H polarization and of the de Broglie standing wave equation (1e). Combining 

these intriguing elements and using first principles will result in a generic, system independent 

polarization theory, easily applied to H and compatible with the equations above [26]. 

 

Conclusion 

 

For more than 50 years and without any difficulty, theorists admitted that the H Lyman np½-series is 

based on numbers (ratios, proportions, symmetries) 1,5 and 3 deriving from Sommerfeld-Dirac QED 

equation (10). If so, theorists should have no difficulty either to admit that a slightly different H 

Lyman ns½-series relies on slightly different numbers ½π (1,57) and π (3,14), given already away with 

de Broglie’s equation, when interpreted in terms of polarization angles (phases). These small 

differences account for the observed Lamb-shifts and were, eventually, responsible for major new 

developments in theoretical physics, where polarization remains a central issue. There is a world of 

difference between the two sets of critical data for the same stable system H: only with de Broglie or 

Lamb-numbers ½π and π, natural phenomenon polarization appears for the H Coulomb bond but, 

for reasons extremely difficult to understand, this was never appreciated in the past [1-5].  

                                                 
20 Instead of R in cm-1, recoil for 1/R in cm or Å, equal to 108/109677,58=911,7633 Å, gives 911,7633/1836,15267 = 
0,49656 Å of the expected numerical magnitude, reminding rH=re+rp=re(1+me/mp) Å, with R=½e2/re cm-1 but 
1/R=2re/e2 cm. We return to this problem elsewhere [26]. 
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On the experimental side, H polarization theory must have access to as much as possible precisely 

measured H Lyman terms, more than the few available today like [36]. Since line profiles are not only 

affected by PDW shifts, line intensities should be measured also with great precision, since it proves 

extremely difficult to calculate intensities with present bound state QED. If there is any logic in the 

analysis above, H polarization must affect H line intensities, which should also exhibit critical behavior 

(fluctuations) at the critical n-values, given above. In the end, a family of related H lines with the same 

rotational symmetry is more useful to disclose H chiral behavior than a single line21. This puts 

question marks on the artificial H-experiments at CERN to get at single line 1S-2S, as argued before 

[5]. Rather than pursuing their impossible dream with artificial H, the physics community would be 

better served with many more H lines and their profiles, measured with the greatest precision possible. 

The history of quantum theory before Schrödinger’s time (Bohr-Sommerfeld-Kratzer-Compton-de 

Broglie) and of bound state QED, the observation of the Lamb shifts, the CBR line,… easily falsify 

the unjust fate of natural H. Although QFT prescribes H Mexican hat curves and uses these typical 

bound state patterns at length in the SM to understand elementary particle behavior and chirality, it 

has persistently failed to make this obvious connection for the most essential [16] element hydrogen: 

H quartics, H polarization and H chirality must all be intimately and quantitatively connected. It is 

undeniable that errors of 2D Bohr 1/n2 fermion theory classify as sinusoidal polarization dependent 

wavelength (PDW) shifts, in line with Compton’s non-resonant X-ray experiments and de Broglie’s 

equation. Unambiguous spectral signatures for natural H, ½π and π, only show for the Lamb-shifted 

H Lyman ns½ series. While QED uses the very same quartic-generating double square root 

Sommerfeld-Kratzer function for atom hydrogen, it nevertheless puts a ban on natural H, which 

classifies QFT as internally inconsistent on neutral antimatter22.  
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Appendix. Kratzer potential and reduced mass fluctuations in fermion-boson system H 

Chemists know for long that, in composite quantum systems, rotations interfere with vibrations and hope to 

find a universal potential to explain the order observed for molecular spectroscopic constants [19,20]. In this 

respect, simple molecular Kratzer potential (6) is superior to Morse’s [19]. Numerically equivalent forms are 

 V(n) = -A/n +B/n2 = A(-1/n +(B/A)/n2) = (-A/n)(1-b/n)    (A1) 

Eqn. (A1) appears for running Rydbergs (17) in Sommerfeld H theory (see text). With A=-e2; n=r and A=hc; 

n=λ, (A1) can apply for Coulomb and radiative fields, either for unit mass systems (m=1) or for systems 

without specifying particle masses. In this more general view, Coulomb field –e2/r becomes 

 V(r) = -e2/r +b/r2          (A2) 

Particle mass does not show but must behave in an harmonic way, the problem for this Appendix.  

                                                 
21 Trying to determine handedness for a single line requires that absolute handedness is assessable, which is still impossible. 
22 If so, my claim for the discovery of natural H [4] should be validated. 
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Putting the first derivative of (A1) equal to 0 at critical separation r0 gives e2/r20-2b’/r30=0, which means 

 b = ½e2r0 and V(r0) = -½e2/r0        (A3) 

Shifting the asymptote to make the minimum coincide with 0, natural difference potentials for Coulomb -1/r 

and radiative +1/λ fields become 

 V(r)-V(r0) = -e2/r +½e2r0/r2 + ½e2/r0 = (½e2/r0)(1-r0/r)2 =A(1-n0/n)2   

 V(λ0)-V(λ) = hc/λ -½hcλ0/λ2 - ½hc/λ0 =(-½hc/λ0)(1-λ0/λ)2 =-A’(1-n0/n)2   

 -[V(λ0)-V(λ)] = A’(1-n0/n)2        (A4) 

the basis behind (6) and which leads to the different parabolic equations, discussed in the text.  

Unconstrained by mass, second order Kratzer term |b/n2| represents in a generic way the harmonic relations 

between frequency and wavelength νλ=c for radiation, between frequency and separation ωr=v for oscillations 

in linear and between angular frequency ω and radius r for rotations in circular systems  

 d(-e2/r)/dr=+e2/r2; dν/dλ=-c/λ2; dω/dr=-v/r2      (A5) 

These harmony relations (A5) justify Kratzer’s second order term ±b/n2.  

The 2nd derivative for r=r0 gives force constants k for harmonic systems, still without specifying masses. In fact, 

d2V(r)/dr2=-2e2/r3+6b/r4=-2e2/r3+3e2r0/r4 returns k equal to 

 kC=+e2/r30 and kR=+hc/λ30        (A6) 

for attractive harmonic Coulomb and radiative fields, consistent with (A4). With (A6), Kratzer’s procedure 

obeys Hooke’s law -½kr2 for harmonic equilibrium, since-½kr20=-½e2/r0 as it should. 

This brings us to Kratzer’s treatment of harmonic particle mass. For bound, stable systems with masses in 

harmonic motion and with periodicities governed by sine and cosine, force constant k for inverse harmonic 

fields relates to reduced mass μ with frequency ω 

 k=μω2 or ω=√(k/μ)         (A7) 

Reduced mass μ=m1m2/(m1+m2)=m1m2/M applies for any complementary mass system M=m1+m2. The only 

constraint on particle mass in harmonic systems is that it requires reduced, not total mass. Theoretically 

possible generalized algebraic reduced mass fields are always of form23

 μ=Mf(γ±) or μ/M=f(γ±)=±γ-γ2         (A8) 

Upon a real or virtual division of total mass mH, reduced mass is no longer a scalar (see text). As with numerical 

polarization fields (1a)-(1c), the hidden numerical mass field 

 f(γ±)=±γ-γ2           (A9) 

automatically imposes parabolic, if not sinusoidal behavior for any complementary mass (quantum) system. As 

a result, generic parabolic behavior of reduced mass or density fluctuations in (A9) resemble the curve in Fig. 2a 

for the running H Rydbergs. While γ=0 and γ=1 both stand for undivided total mass, but not for a system with 

zero total mass, γ=½ is the value for a perfectly symmetrically divided system with mass parts ½M each. With 

fermion-boson symmetries in mind, γ small (≈1/1836) but not equal to zero implies 1-γ≈+1 for its 

                                                 
23 Reduced mass μ requires harmony for m1 and m2: μ=m1m2/(m1+m2)=m1m2/M is equivalent with μ/M=m1m2/M2 or 
μM=m1m2. Scaling parts gives μ=(γ-γ2)M=γ(1-γ)M since m1m2/(m1+m2)2=m1(M-m1/)/M2=(m1/M)(1-m1/M)=(γ-γ2)=γ(1-
γ) is exact. With the law of association, permutation +1=-m1/M +(1+m1/M) is valid but gives -γ(1+γ) instead. This leads 
to algebraic reduced masses, as in reduced mass field f(γ±) in (A8). An inverse view on mass mX=C/rX, used in classical 
and quantum physics, transforms linear mass relation M=m1+m2 into harmonic size rX=r1r2/(r1+r2)=r1r2/rX or rX=√(r1r2), 
the basis of (1b) and (1c). The common sense behind complementary mass is that we can decide at will whether or not to 
divide a system: M=m1+m2 with m1=0 (no bisection) returns M undivided but makes reduced mass zero (see [X] for a 
preliminary discussion). We deal with this important case of complementary systems elsewhere [26].  
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complementary part, which corresponds with fermion-behavior (Bohr-Kratzer view, rotations). Intermediary γ, 

near ±½, gives boson behavior (Kratzer view, oscillations). Looking at atom H as a boson gives reduced mass 

μH=¼mH. While force constant k is usually considered a constant (like R in Bohr R/n2 theory), this overlooks 

parabolic reduced mass effects, if not density fluctuations (A8). Harmonic mass-related effects, when real, will 

be reflected in observable frequencies of harmonic systems, by virtue of (A7). 

To simplify the discussion and to avoid this extra degree of freedom of parabolic form for reduced, harmonic 

mass, associated with (A9), we proceed with Kratzer’s potential in the hypothesis of constant reduced mass. 

With v2=ω2r2 and kC in (A6), equilibrium for an harmonic Coulomb system with constant reduced mass obeys 

 μω2r20=μv2=e2/r0         (A10) 

Therefore, Kratzer’s potential (6) not only gives equilibrium condition (A10) for mass-systems when in 

oscillatory harmonic motion but does not put constraints on the mass-distribution (reduced mass), which can 

apply for any value of γ in the domain 0<γ<1. This includes extreme fermion as well as intermediary boson 

behavior for atomic system H. 

In the former case, (A10) is formally degenerate with Bohr’s first equilibrium condition for the rotating electron 

in the Coulomb field μv2r0=e2 for radial velocity v on a Coulomb field axis. Bohr’s central field approximation  

 VBohr(r)=-e2/r +½μv2=-e2/r +½μω2r2       (A11)  

led to valid rotator levels En=(-½e2/r0)/n2=-R/n2, constrained by fermion behavior as well as by his quantum 

hypothesis (29a) for angular frequencies ω and angular velocities, perpendicular to the field axis. Bohr’s 

potential (A11) does not relate to oscillations between complementary parts along a field axis, applying for 

boson-type harmonic H. The Kratzer potential is essentially an harmonic field for any harmonic system, divided 

in any harmonic way.  

Kratzer boson-type oscillations in H rely on vibrations between 2 neutral, complementary parts of atom H, 

with maximum mass ½mH each. Bisecting H atom mass in the boson way is more classical, since it proceeds on 

a gravitational basis, difficult to understand at first sight but perfectly in line with classical equilibrium 

conditions mere=mprp or me/mp=rp/re (see text). In a Coulomb view, bisection is achieved with 2 unit charges 

on 2 fermions, an extreme bisection of atom H in 2 complementary parts. A Bohr H-state (-,+) with a charge 

conjugated fermion particle pair me, mp (rotations) can nevertheless go over in an intermediate state with 

neutral boson particle pair ½mH, ½mH (oscillations), the classical rationale behind Sommerfeld’s oscillatory 

corrections to the orthogonal STR field (see text) to end finally in a charge-inverted fermion state H (+,-), the 

so-called forbidden state in QFT. 

Whatever the meaning of (A9), harmonic Kratzer oscillations of boson type (6) on a single field axis can, 

nevertheless, interfere with Bohr rotations of fermion type with 2 orthogonal axes. When properly combined 

and scaled in composite fermion-boson system H, these lead to a Poincaré 3D polarization sphere for H and 

eventually, to the de Broglie polarization angles (1g), available for almost a century. We return to some of these 

problems elsewhere [26]. 

 
 
 
 
 
 
 

G. Van Hooydonk, H probed with observed H PDW shifts...      1st version October 15 2006,      p.  21 



References 
 
[1] G. Van Hooydonk, Eur. J. Phys. D 35, 299 (2005); physics/0506190 
[2] G. Van Hooydonk, Phys. Rev. A 65, 044103 (2002); physics/0501144; Proc. PSAS2002, Ed.: S.G. 
 Karshenboim, V.B. Smirnov, E.N. Borisov and V.A. Shelyuto, St Petersburg, 2002 
[3] G. Van Hooydonk, Acta Phys Hung. NS 19, 385 (2004); physics/0501145; Proc. Wigner Centennial, 
 Ed. M. Koniorczyk and P. Adam, Pecs, 2002 
[4] see for instance http://www.physorg.com/news/3226.html 
[5] G. Van Hooydonk, physics/0502074 
[6] A.H. Compton, Phys. Rev. 21, 483 (1923) 
[7] L.A. Page, Rev. Mod. Phys. 31, 759 (1959), M. Woods, Int. J. Mod. Phys. A 13, 2517 (1998); hep-
 th/9802009; G. Moortgat-Pick et al., hep-ph/0507011 
[8] R.C. Jones, J. Opt. Soc. Am. 31, 488 (1941) 
[9] H. Mueller, J. Opt. Soc. Am. 38, 661 (1948) 
[10] N. Gisin and A. Go, Am. J. Phys. 69, 3 (2001)  
[11] P. Zoller et al., Eur. J. Phys. D 36, 203 (2005) 
[12] G.P. Agarwal, Fiber-optic communication systems, New York, Wiley, 2002; O.V. Belai et al. physics/0611039; 
 V.I. Kopp et al., Science, 305, 74 (2004) 
[13] N. Allard and J. Kielkopf, Rev. Mod. Phys. 54, 1103 (1982), H. Margenau and W.W. Watson, Rev. 
 Mod. Phys. 8, 22 (1936) 
[14] R.L. Kelly, J. Phys. Chem. Ref. Data Suppl. 16, 1 (1987) 
[15] G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977) 
[16] J.S. Rigden, Hydrogen, The Essential Element, Cambridge, Harvard University Press, 2003 
[17] A. Kratzer, Z. Phys. 3, 289 (1920); Ann. Phys. 67, 127 (1922) 
[18] A. Sommerfeld, La constitution de l’atome et les raies spectrales, 3d edition, Paris, Blanchard, 1923 (1st edition, 
 Atombau und Spektrallinien, Braunschweig, Vieweg&Sohn, 1919) 
[19] G. Van Hooydonk, Eur. J. Inorg. Chem. 1999, 1617 (1999) 
[20] G. Van Hooydonk, Spectrochim. Acta A 56, 2273 (2000); physics/0001059; physics/0003005 
[21] G. Van Hooydonk, physics/0506190; physics/0508043; physics/0510108; physics/0511052; 
 physics/0511115; physics/0512018 
[22] G. Boros and V.H. Moll, J. Comp. Appl. Math. 130, 337 (2001); V.H. Moll, Not. Am. Math. Soc. 49, 
 311 (2002). For S. Ramanujan, see http://en.wikipedia.org/wiki/Ramanujan 
[23] B. Cagnac, M.D. Plimmer, L. Julien and F. Biraben, Rep. Prog. Phys. 57, 853 (1994) 
[24] M.I. Eides, H. Grotch and V.A. Shelyuto, Phys. Rep. 342, 63 (2001); hep-ph/0002158 
[25] E. Crawford, The Nobel Population: A Consensus of Nominators and Nominees for the Prizes in Physics and Chemistry 
 1901-1950, Tokyo, Universal Academy Press, 2001, also at http://physicsweb.org/articles/world 
[26] G. Van Hooydonk, in preparation 
[27] G. Van Hooydonk, physics/0504040 
[28] F. Hund, Z. Phys. 43, 805 (1927) 
[29] W. Lamb Jr. and W.C. Retherford, Phys. Rev. 72, 241 (1947), Phys. Rev. 79, 549 (1950) 
[30] H. Bethe, Phys Rev. 72, 339 (1947) 
[31] I. Herbst, Comm. Math. Phys. 53, 285 (1977) 
[32] R.L. Hall and W. Lucha, J. Phys. A Math. Gen. 39, 11531 (2006); math-ph/060259 
[33] G. Van Hooydonk, physics/0502098 
[34] G. Van Hooydonk, physics/0503133 
[35] J. Schwinger, Phys. Rev. 73, 416 (1948) 
[36] M. Niering et al., Phys. Rev. Lett. 84, 5496 (2000) 
 

G. Van Hooydonk, H probed with observed H PDW shifts...      1st version October 15 2006,      p.  22 



Table 1. Data for ns and np (terms [14] and energies [15]). Energies used for running Rydbergs RH(n) in (4c) and for quantum 
number differences for ns (5a) 106Δn and (5b) 106Δ’n (all data in cm-1) 
 
n Termsa) ns Terms np -Ensb) -Enp RH(n) ns RH(n) np 106Δn nsc) 106Δ’n ns
1 (0)  (109678,773704) 109678,773704  0,0000 0,0000
2 82258,9559 82258,9206 27419,8178352 27419,8531233 109679,271341 109679,412493 1,1343 1,1343
3 97492,2235 97492,2130 12186,5502372 12186,5607410 109678,952135 109679,046669 0,2711 0,1808
4 102823,8549 102823,8505 6854,9188454 6854,9232846 109678,701526 109678,772554 -0,0823 -0,0411
5 105291,6329 105291,6306 4387,1408809 4387,1431560 109678,522023 109678,578899 -0,2295 -0,0918
6 106632,1518 106632,1505 3046,6219504 3046,6232675 109678,390214 109678,437630 -0,2914 -0,0971
7 107440,4413 107440,4405 2238,3324513 2238,3332810 109678,290114 109678,330769 -0,3149 -0,0900
8 107965,0517 107965,0511 1713,7220592 1713,7226151 109678,211786 109678,247368 -0,3202 -0,0801
9 108324,7225 108324,7221 1354,0512214 1354,0516120 109678,148936 109678,180570 -0,3165 -0,0703
10 108581,9928 108581,9925 1096,7809744 1096,7812592 109678,097442 109678,125916 -0,3083 -0,0617
11 108772,3435 108772,3433 906,4302025 906,4304165 109678,054506 109678,080394 -0,2981 -0,0542
12 108917,1208 108917,1207 761,6529040 761,6530688 109678,018175 109678,041907 -0,2870 -0,0478
13 109029,7916 109029,7914 648,9821718 648,9823015 109677,987041 109678,008948 -0,2759 -0,0424
14 109119,1923 109119,1922 559,5814289 559,5815327 109677,960068 109677,980411 -0,2649 -0,0378
15 109191,3163 109191,3162 487,4574955 487,4575799 109677,936478 109677,955466 -0,2544 -0,0339
16 109250,3444 109250,3443 428,4293581 428,4294276 109677,915674 109677,933476 -0,2445 -0,0306
17 109299,2655 109299,2654 379,5082948 379,5083528 109677,897191 109677,913948 -0,2350 -0,0277
18 109340,2618 109340,2617 338,5119774 338,5120262 109677,880663 109677,896489 -0,2262 -0,0251
19 109374,9569 109374,9569 303,8168028 303,8168443 109677,865795 109677,880789 -0,2178 -0,0229
20 109404,5791 109404,5791 274,1946309 274,1946665 109677,852350 109677,866592 -0,2100 -0,0210
a) series limit 109678,7737 cm-1

b) ground state –E1=109678,773704 cm-1 

c) similar data for np not shown but used for Fig. 2b and Fig. 2c 
 
Table 2. For series ns½: theoretical Rydberg fluctuations (26b) H PDW shifts and erros of Bohr theory. Precision test of 
polarization theory: data with and without fit, see (27b) (all data in cm-1)  
 
n -Ens[15] ΔR 

(26b)(theo) 
H PDW shifts 

(theo) 
Errorsa) Bohr 

theory
Errorsb) (theo, 

no fit)
Errorsc) (theo 

with fit)
1 109678,7737040 0,578405 0,001069 (0,00000) (-0,001065) (-0,003629)
2 27419,8178352 0,081759 0,124429 0,124410 -0,000018 -0,000109
3 12186,5502372 0,402917 0,019617 0,019826 0,000209 0,000010
4 6854,9188454 0,654754 -0,004705 -0,004511 0,000194 0,000013
5 4387,1408809 0,835058 -0,010223 -0,010067 0,000156 0,000008
6 3046,6219504 0,967428 -0,010777 -0,010652 0,000124 0,000005
7 2238,3324513 1,067938 -0,009969 -0,009869 0,000100 0,000003
8 1713,7220592 1,146580 -0,008861 -0,008780 0,000081 0,000002
9 1354,0512214 1,209677 -0,007780 -0,007713 0,000067 0,000001

10 1096,7809744 1,261372 -0,006819 -0,006763 0,000056 0,000000
11 906,4302025 1,304472 -0,005992 -0,005944 0,000048 0,000000
12 761,6529040 1,340942 -0,005288 -0,005247 0,000041 0,000000
13 648,9821718 1,372193 -0,004691 -0,004655 0,000036 0,000000
14 559,5814289 1,399267 -0,004183 -0,004151 0,000031 0,000000
15 487,4574955 1,422945 -0,003749 -0,003721 0,000028 0,000000
16 428,4293581 1,443826 -0,003376 -0,003352 0,000025 0,000000
17 379,5082948 1,462377 -0,003055 -0,003033 0,000022 0,000000
18 338,5119774 1,478966 -0,002776 -0,002756 0,000020 0,000000
19 303,8168028 1,493888 -0,002533 -0,002515 0,000018 0,000000
20 274,1946309 1,507382 -0,002320 -0,002303 0,000016 0,000000
a) Bohr theory, error for 19 levels 379,11 MHz 
b) Polarization theory, error for 19 levels without fit 2,04 MHz, improvement by 380/2=190 
c) Polarization theory, error for 19 levels with fit 0,24 MHz, improvement by 380/0,25=1520 
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Fig. 1a Generic, system independent polarization: cos (full), sin (dashed) 
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Fig. 1b Generic polarization attenuated by Bohr factor 1/n: cos (full), sin (dashed) 
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Fig. 1c Generic polarization attenuated by Bohr factor 1/n2: cos (full), sin (dashed) 
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Fig. 2a Running Rydbergs curves: ns (full, extrapolated), np (dashed, not extrapolated), 

horizontal lines Rharm (full), ground state –E1=R1 (dashed) 
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Fig. 2b Linear quantum number differences (5a): ns (full), np (dashed) 
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Fig. 2c Quadratic quantum number differences (5b): ns (full), np (dashed) 
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Fig. 2d Large repulsive errors (in cm-1) with STR: upper right curves ns (o, full), np (+,dashed) and  

small sinusoidal errors with Bohr theory: lower right curves ns (o, full) and np (+, dashed) 
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Fig. 3 Extrapolation beyond observed region: from parabola to cubic and to quartic 
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Fig. 4 Effect of asymptote shift on the shape of quartics:  

observed with ground state Rydberg (dashed) and theoretical with harmonic Rydberg (full) 

G. Van Hooydonk, H probed with observed H PDW shifts...      1st version October 15 2006,      p.  26 



109677,6

109678

109678,4

109678,8

109679,2

109679,6

0,00 0,50 1,00 1,50 2,00

Theoretical parabolas

O
bs

er
ve

d 
ru

nn
in

g 
Ry

db
er

gs

 
Fig. 5 Observed versus theoretical Rydberg differences:  
ns (o, full), fit RH(ns)= 109679,353174 - 0,995566ΔRtheo

np (+, dashed) fit RH(np)= 109679,533968-1,001024ΔRtheo

0,00

0,02

0,04

0,06

0,08

0,10

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0

(pi/n-1)

H
ar

m
on

ic
 H

 q
ua

rti
cs

 
Fig. 6 H PDW shifts, the 21 cm line (horizontal) and harmonic H quartics: ns (o, full), np (+, dashed) 
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Fig. 7a. Mexican hat curves from HPDW shifts plotted versus 1/n: bottom curve for ground state (o), 

intermediary (-, dashed), for harmonic R (*,dashed) as in Fig. 6, upper for large R (-, dashed) 
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Fig. 7b. Van der Waals-Maxwell curves from HPDW shifts plotted versus n: bottom curve for ground state (o), 

intermediary (-, dashed), for harmonic R (*,dashed), upper for higher R (-, dashed). Full: 21 cm H line 
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