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Preface

As is already suggested by the title, the main subject of this thesis is the
study of (a, 3)-geometries. The idea for defining («, 3)-geometries comes
from the study of partial geometries, semipartial geometries, polar spaces
and generalized quadrangles. These structures were studied extensively in
the past by mathematicians from all over the world. F. De Clerck and H.
Van Maldeghem defined the concept of («, )-geometries as a generalization
of all these previously mentioned structures. One of the reasons for this
generalization was that the class of, for example, partial geometries turned
out to be a bit too restrictive, or in other words, not too many examples
exist. The class of («, 3)-geometries is much larger and therefore promises
to overcome this problem. Note that all the previously mentioned structures
are subclasses of the class of (a, §)-geometries and hence their examples are
examples of (a, 3)-geometries too. The (a, 3)-geometries in this thesis are
always fully embedded in projective spaces, as this gives extra conditions
on the («, 8)-geometries and hence provides examples with a nice geometric
structure. The main goals of my research, which resulted in writing this the-
sis, were to construct new («, 3)-geometries, to characterize the known ex-
amples of («, 8)-geometries, and to classify fully embedded («, §)-geometries
in projective spaces. Therefore the most important results of my thesis are
classifications and characterizations of («, 8)-geometries fully embedded in
projective spaces.

In the first chapter some preliminary results are mentioned. It is our aim
to give an overview of some basic definitions and results of mathematical
objects and concepts that will be needed later in the thesis. We have tried
to give all of the definitions needed later in the first chapter. However,
the results in the first chapter are only stated in function of the rest of
this thesis, so they are not meant to be a reference on their own about
the current state of research in the distinct mathematical research fields.
We first define graphs and more specifically, strongly regular graphs. The
reason for this is that with each (a, §)-geometry we can associate a graph,
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namely its point graph. So there is a link between (a, 3)-geometries and
graph theory. Next, some definitions from incidence geometry are given,
and also (o, 3)-geometries and their special cases, being partial geometries,
semipartial geometries, polar spaces, copolar spaces, generalized quadrangles
and partial quadrangles, are defined. As fully embedded («, §)-geometries
in projective spaces are the subject of this thesis, we describe what is known
about full embeddings of the special cases of («, §)-geometries. In the case of
generalized quadrangles and partial geometries, a complete classification is
known, for (0, «)-geometries there exists a partial classification. In the next
section, we mention some results about strongly regular («, 3)-geometries.
These results were obtained by N. Hamilton and R. Mathon; strongly regular
(a, B)-geometries are interesting because of their connection with strongly
regular graphs. The last section contains definitions of various mathematical
objects, that are not always clearly linked with each other, but that appear
later in the thesis and therefore it is useful to define them in this first chapter.

In the second chapter a classification is obtained of fully embedded («, 5)-
geometries in projective spaces, for ¢ odd and « > 1, under some additional
assumptions. This classification is only valid in the case that ¢ is odd. In the
q even case most of the theorems also hold and give examples of fully embed-
ded («, 8)-geometries, but they do not form a complete classification. The
reason for this is that we use the important result of S. Ball, A. Blokhuis and
F. Mazzocca that says that for ¢ odd there do not exist non-trivial maximal
arcs in Desarguesian projective planes. We exclude in our classification also
the case that o = 1, as this is somehow a special case. In the first section
of this chapter, we study (1, 3)-geometries fully embedded in PG(3,¢q) and
prove a non-existence result. In projective spaces of dimension greater than
three, it turned out not to be possible to get a classification of full projective
embeddings of (1, 3)-geometries with the techniques that we have used in
three dimensional spaces.

In the third chapter we have completely classified fully embedded (1, g)-
geometries in PG(n, q), for ¢ # 2. When the values of a and /8 are fixed
from the start, this gives us strong conditions, which makes it easier to get a
complete classification. Since (1,q+1)-geometries are a special class of polar
spaces, their full embeddings in projective spaces were already classified by
F. Buekenhout and C. Lefevre, and for the (0, ¢)-geometries a classification
has been proved by J. I. Hall. Moreover (0, 1)-geometries have been studied
by P. J. Cameron and proper (0, ¢ + 1)-geometries turn out to be a disjoint
union of partial geometries for which o = ¢ + 1. Hence the case of (1, q)-
geometries was the next case to be studied in this sense. In this chapter
we therefore also give an overview of the known results for proper («, )-
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geometries with a, 8 € {0,1,¢q,q + 1}.

In the fourth chapter, we obtain characterization theorems for some of
the (a, B)-geometries discovered in the second chapter. In the first section
we give a characterization of two (g, q + 1)-geometries fully embedded in an
n-dimensional projective space, assuming the axiom of Pasch, also called
axiom of Veblen or axiom of Veblen-Young. The idea for this characteriza-
tion comes from the existing characterization of a certain partial geometry,
by F. De Clerck and J. A. Thas. This partial geometry is indeed very sim-
ilar, from a geometrical point of view, to the (¢, q + 1)-geometries that we
have characterized. In the second section, a characterization is obtained for
the ((¢ — 1)/2,(q + 1)/2)-geometry fully embedded in a three dimensional
projective space, that was constructed by J. A. Thas.
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Chapter 1

Introduction

In this chapter we will briefly summarize some basic concepts on graphs
and incidence structures. We are not aiming to give a full overview, as this
would lead us too far. We will give references to more detailed literature
for the interested reader. One should keep in mind that the main reason
of this introduction is to give some definitions and examples that will be
important for the rest of the thesis and to introduce the notation that we
will use further on.

1.1 Graphs

1.1.1 Some general definitions from graph theory

A finite graph T' = (V, E) consists of a non-empty set V and a set E of
unordered pairs of elements of V. The elements of V' are called the vertices
of the graph I', while the elements of E are called the edges. Two vertices
are called adjacent if they are contained in an edge of I'. If x and y are
distinct adjacent vertices of I', then we write z ~ y. If x and y are distinct
non-adjacent vertices of [, then we write x ¢ y. Furthermore we will always
assume that x £ x, for every vertex x of I'. If E is the set of all unordered
pairs of V', then I' is called the complete graph on v vertices and is denoted
by K,. The complement of a graph T is the graph T'C, that has the same
set V of vertices as I', but in which two distinct vertices  and y of V are
adjacent if and only if z and y are non-adjacent vertices of T'.

Let z and y be two vertices of I'. A path of length m from z to y, is
a sequence of vertices r = xzg,1,Z2,...,Z;,m = y in the graph, such that
Ty # Xz, 0 <i<m—2and z; ~ zjy1, 0 <1 <m—1. If z =y then
any such path of length at least three will be called a circuit. Two distinct

1



2 1. Introduction

vertices  and y of a graph I' are said to be at distance 6(x,y), if there
exists a path of length d(z,y) between x and y, but not a shorter path. By
definition a vertex has distance 0 from itself, and a vertex has distance 1
from all the vertices adjacent to it. We will denote by I';(z) the set of all
vertices of I' at distance i from the vertex z of I'. The set I';(x) will also
be denoted by I'(z), for reasons of convenience. If for all vertices z of I' we
have that |I'(z)| = &k , then T is a regular graph of valency or degree k. A
graph I is called connected if and only if for any two distinct vertices = and
y of [, there is at least one path from z to y. The diameter d of a connected
graph I' is the maximum value of the distance function 6(z,y). The girth of
a graph I' having at least one circuit, is the length of its shortest circuit.

1.1.2 Strongly regular graphs

A strongly regular graph srg(v, k, A, u) is a graph ', that has v vertices, that
is regular of degree k£ and that satisfies the following two conditions.

1. For every two adjacent vertices z and y of I', there are exactly A
vertices of I' that are adjacent with both z and y.

2. For every two distinct non-adjacent vertices x and y or I', there are
exactly p vertices of I' that are adjacent with both = and y.

As we do not want to have to consider disconnected graphs and their
complements, we assume moreover that 0 < 4 < k < v — 1. It is easy to
prove that the complement of a strongly regular graph srg(v,k, A\, ) is a
srg(v,v —k — Lo —2k 4+ p —2,v — 2k + ).

Let I be a graph with v vertices, numbered as 1,...,v. The adjacency
matriz A = (a;;) of T' is the (v x v)-matrix defined as follows:

{aij:ajizl = i~ 1,7 =1,...,v,
aj=aji=0 << Q] Li=1...,0
Clearly the matrix A is a symmetric matrix and a;; =0 fori=1,...,v.

The Bose-Mesner algebra of a strongly regular graph I' is the three dimen-
sional algebra generated by I, J and A, where J is the matrix with all of its
entries equal to 1.

In the following theorem, some properties of a srg(v,k, A, ) are sum-
marized. These properties imply necessary conditions for the existence of
strongly regular graphs. For the proofs and more information on strongly
regular graphs we refer to [5, 57].
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Theorem 1.1.1 If T is a srg(v,k, \, 1), then the following holds.
1. v—2k+p—2>0.
2. k(k—XA—-1)=plv—-—Fk-1).
3. If A is the adjacency matriz of T, then AJ = kJ,
A%+ (= NA+ (n— k) = pl,
and A has three eigenvalues k, r and | such that

_A—pE VA —p)?+ Ak — p)

r,l 5 r >,
with multiplicities respectively
1, fe —k(l+1)(k-1) _k(r+1)(k—=1)
T =0 YT =0

and clearly f and g must be integers.

4. The eigenvalues v > 0 and | < 0 are both integers, except for one
family of graphs, the so-called conference graphs. A conference graph
is a srg(2k + 1, k, % -1, %), for which number 2k 4+ 1 of vertices can be

. . —1
written as o sum of two squares, and the eigenvalues are %ﬁ and
—1—y/v
—5 .

Besides the properties stated in the previous theorem, there are some
other important necessary conditions on the existence of strongly regular
graphs. In the following theorem we mention four such conditions, namely
the Krein conditions, the two absolute bounds , the claw bound and the
Hoffman bound.

Theorem 1.1.2 ([5]) If T is a srg(v, k,\, u), then the following holds.
1. The two Krein conditions:

(r+1)(k+r+2rl)
I+ 1) (k+1+2rl)

(k+7)(1+1)2
(k+1)(r+1)2

2. The two absolute bounds:
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e v < If(f +3), and if there is no equality in the first Krein
condition then v < $f(f + 1),

e v < 1g(g +3), and if there is no equality in the second Krein
condition then v < 3g(g + 1).

3. The claw bound: If i # 12 and p # 1(1+1), then the following inequality
holds: 2(r +1) <I(l+1)(n+1).

4. The Hoffman bound:

e If C is a clique of T, then |C] <1 — %, with equality if and only
if every vertex x ¢ C has the same number of neighbours in C
(this number is then —% ),

e If C is a coclique of T', then |C| < v(1— %)_1, with equality if and
only if every vertex x ¢ C has the same number of neighbours in
C' (this number is then —I[).

1.2 (a,f)-geometries

1.2.1 Definitions

A partial linear space of order (s, t), for some s and ¢, is a connected incidence
structure S = (P, L,I), with P a finite non-empty set of elements called
points, L a family of subsets of P called lines and a symmetric incidence
relation I C (P x £) U (L x P) satisfying the following axioms.

1. Any two distinct points are incident with at most one line.
2. Each line is incident with exactly s 4+ 1 points, s > 1.
3. Each point is incident with exactly ¢ + 1 lines, £ > 1.

If a point p € P is incident with a line L € L, then we also say that
the point p lies on or belongs to the line L, or that the line L contains or
goes through the point p. Two points pi, po € P, are collinear if there
is a line L € £ such that py I L and po I L. Two lines Ly, Ly € L,
are concurrent if there is a point p € P such that p I L; and p I Ly. The
elements of I will also be called the flags of S, while the elements that belong
to ((P x L) U (L x P))\ I will be called the antiflags of S.

The incidence number i(x, L) of an antiflag (z, L) of S is the number,
of points collinear with the point z € P and incident with the line L € L.
The point graph of a partial linear space S is the graph I'(S) with vertices



1.2. (o, f)-geometries 5

the points of § and such that two vertices of I'(S) are adjacent if and only
if the corresponding points of S are collinear in S.

An («, B)-geometry is a partial linear space S = (P, L,1) of order (s,1),
for some s and ¢, such that for any z € P and any L € L,  not incident with
L, we have that i(z, L) = a or i(z, L) = 3, and both cases occur. Although
the concept of an («, 8)-geometry was commonly known for special values
of @ and g, the general definition appeared for the first time in [22].

An (a, B)-geometry is said to be proper if a > 0, f > 0 and «a # .
We will always assume that @ < [, unless in the case &« = 0, where we
will sometimes speak of (0, a)-geometries instead of (0, 3)-geometries. An
(c, B)-geometry is strongly regular if its point graph is a strongly regular
graph (see [32]). We will give some more information on strongly regular
(e, B)-geometries in section 1.3.

An (a, B)-geometry S = (P, L,1) is said to be fully embedded in a pro-
jective space PG(n,q) if P is a subset of the point set of PG(n,q), L is a
subset of the line set of PG(n, q), I is the incidence inherited from PG(n, q)
and s = gq. We require that the points of S span PG(n,q). The subject of
this thesis is to study fully embedded («, 8)-geometries in PG(n, q).

1.2.2 Some special (o, 3)-geometries

Although the terminology of («, 3)-geometries has not been used until re-
cently, several particular (a, 3)-geometries have been the subject of lots of
research in the past.

The first class of («, 3)-geometries being studied extensively was the one
of the polar spaces [9]. It follows from [9] that non-degenerate polar spaces
are in fact nothing else then (1, s+ 1)-geometries. Inspired by this work, J. L.
Hall started studying (0, s)-geometries, which he called copolar spaces [29].
He managed to get a complete classification of the so called reduced (0, s)-
geometries; these are (0, s)-geometries S such that for every two distinct
points z and y of S, I'(z) # I'(y), where I'(S) is the point graph of S.

Another special class of («, 3)-geometries that were studied before are
the generalized quadrangles. Generalized quadrangles are («, §)-geometries
that have a = f = 1. On generalized quadrangles there is a lot of literature.
We refer here to [42], which is a standard work on this topic and in which
other useful references can be found.

A generalization of the class of the generalized quadrangles is the class
of the partial quadrangles. Partial quadrangles are (0,1)-geometries, with
the extra condition that their point graph has to be a strongly regular graph
(see [10]).
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Next, there is the class of the partial geometries. Partial geometries are
(o, B)-geometries that have o = . They are denoted as pg(s, ¢, «). Partial
geometries were introduced by R. C. Bose in [4]. Later on lots of papers on
partial geometries appeared (see for instance [47, 48, 20, 49, 57, 19, 51, 16,
17, 14]). A partial geometry is called proper if 1 < o < min(s, t).

A last special class of (a, §)-geometries is the one of the semipartial ge-
ometries. Semipartial geometries are (0, «)-geometries that have a strongly
regular point graph. Semipartial geometries have been studied for example
by I. Debroey and J. A. Thas (25, 24, 23]), J. A. Thas ([52, 53]) and by M.
Delanote [26]. The paper [15] is a nice summary on the present status of
knowledge on proper partial and semipartial geometries.

1.2.3 Full embeddings of generalized quadrangles in PG(n, q)

Generalized quadrangles fully embeddable in a projective space have been
completely classified.

Theorem 1.2.1 ([7]) Let S = (P,L,1I) be a generalized quadrangle fully
embedded in PG(n,q). Then either

1. n =3 and S is formed by the points and lines of a non-singular hy-
perbolic quadric of PG(3,q), S is formed by the points and lines of a
non-singular Hermitian variety of PG(3,q) (in this case q is a square),
or the points of S are all the points of PG(3,q), while the lines of S
are the lines of PG(3,q) that are totally isotropic with respect to a
symplectic polarity in PG(3,q);

2. n = 4 and S is formed by the points and lines of a non-singular
parabolic quadric of PG(4,q), or S is formed by the points and lines
of a non-singular Hermitian variety of PG(4,q) (in this case q is a
square);

3. n=>5 and S is formed by the points and lines of a non-singular elliptic
quadric of PG(5, q).

The generalized quadrangles that appear in the classification are called
classical generalized quadrangles, because they all are associated with clas-
sical groups.

1.2.4 Full embeddings of partial geometries in PG(n, )

Partial geometries fully embedded in a projective space PG(n, ¢) have been
studied by F. De Clerck and J. A. Thas [20]. They managed to prove that the
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only partial geometry fully embedded in PG(n, ¢q), for which 1 < a < ¢+1
and a < t + 1, is the partial geometry that we will define now, and which
we will denote by Hy. The set P of points of Hy is the set of points of the
projective space PG(n, q), that are not contained in an (n — 2)-dimensional
subspace H of PG(n, q). The set L of lines of Hy is the set of lines of PG(n,q)
that have no point in common with H. The incidence relation I of Hy is the
incidence of PG(n, q) restricted to (P x L) U (L x P). It is easy to prove that
Hy is indeed a partial geometry and that it has the following parameters:
s=qt=q¢" '—1and a =gq.

The following theorem classifies all partial geometries fully embeddable
in a projective space.

Theorem 1.2.2 ([20]) Let S = (P, L,1) be a partial geometry with param-
eters s = q, t and a. Assume that S is fully embeddable in a projective space
PG(n,q). Then the following cases may occur.

1. S is the design of points and lines of PG(n,q), and a = q + 1.

2. S is a classical generalized quadrangle (classified in theorem 1.2.1),
and o = 1.

3. S is a dual design in PG(2,q), and o =t + 1.
4. S=Hy anda=¢q (n>3).

1.2.5 Full embeddings of (0, a)-geometries in PG(n, q)

Full embeddings of (0, «)-geometries in PG(n,q), @ > 1, have been studied
in [21] and [55]. In these papers, a complete classification is obtained, except
for the case of (0, a)-geometries in PG(3, ¢) and the case of (0, 2)-geometries
in PG(n,2), for n > 4.

We will first give an example of a fully embeddable semipartial geometry.
Therefore let @~ (3,2) be a three dimensional elliptic quadric in PG(3,2).
Let P be the set of points of PG(3,2) \ @7 (3,2), let £ be the set of lines
of PG(3,2) that are skew to Q@ (3,2), and let I be the incidence of PG(3,2)
restricted to (P x L)U(L xP). Then § = (P, L,1) is a semipartial geometry
fully embedded in PG(3,2). This (0,2)-geometry is usually denoted by
NQ™(3,2). The same construction can be used in PG(3,2"), but then with
a hyperbolic quadric Q% (3,2") replacing Q~(3,2), h > 2. We denote the
semipartial geometry coming from this construction by NQ¥(3,2"). Also
in PG(4,2), with a parabolic quadric Q(4,2), this construction can be used
and gives a semipartial geometry, that we denote by NQ(4,2).
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It is clear that a (0, «)-geometry fully embedded in a plane PG(2,q)
has to be a partial geometry. The following theorem partly classifies the
(0, a)-geometries, with @ > 1 and fully embedded in PG(3,q), that are not
contained in a plane. The theorem uses the following terminology. Let
S = (P, L,I) be a (0, a)-geometry, a > 1, fully embedded in a PG(3, ¢), but
not contained in a plane. A point p is said to be isolated in a plane 7 if
there are no lines of S in 7 that contain the point p.

Theorem 1.2.3 ([21]) Let S = (P, L,I) be a (0, a)-geometry, a > 1, fully
embedded in a PG(3,q). If there is a plane of PG(3,q) that contains an
antiflag of S and no isolated points, then S is one of the following.

1. a=q+1 and S is the design of points and lines of PG(3,q);
2. a=gq andS:Hg;
3. a=q=2and S =NQ (3,2).

The cases not covered by the previous theorem (that is, if every plane of
PG(3, q) that contains an antiflag of S, contains at least one isolated point)
remain still open.

We consider the following example of a semipartial geometry, which we
will denote by W (n, 2k, q). Let W be a symplectic polarity of rank 2k. Then
W (n,2k,q) = (P, L,I) has points the set of points of PG(n, ¢) \rad W, lines
the set of lines of PG(n, ¢q) that are not totally isotropic with respect to the
polarity W, and incidence that of PG(n, q) restricted to the points and lines
of W(n,2k,q). In [55] it has been conjectured that each (0, a)-geometry,
a > 1, fully embedded in PG(3, ¢), either contains a plane in which there is
an antiflag of S, but no isolated points (and hence it is classified by theorem
1.2.3), or it is one of the following:

1. each plane of PG(3,q) contains an antiflag of S, and & = W (3,4, q);

2. there is a plane containing points of S but no lines of §, and § =
NQ™(3,2").

In the case n > 4 and q # 2, (0, @)-geometries fully embedded in PG(n, q)
are also completely classified. A complete classification of (0, «)-geometries
fully embedded in PG(n,q), n > 3 and ¢ > 2, is given in the following
theorem.

Theorem 1.2.4 ([55]) Let S = (P, L,I) be a (0,a)-geometry, a # 1, fully
embedded in PG(n,q), n >3 and g > 2. Then S is the design of points and
lines of PG(n,q), S = Hy or & = W(n,2k,q).
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A last theorem completely classifies (0, 2)-geometries fully embedded in
PG(4,2). Note that to classify (0,2)-geometries, it suffices to classify re-
duced (0, 2)-geometries, as defined in section 1.2.2. In the next theorem the
following notation is used: Us3(m) is the semipartial geometry with points
the set of all non-ordered pairs of elements of the set {1,...,m}, with lines
the set of all non-ordered triples of elements of the set {1,...,m}, and with
incidence being inclusion.

Theorem 1.2.5 ([55]) If S is a reduced (0,2)-geometry fully embedded in
PG(4,2), then S is one of the following.

1. § =NQ(4,2) (thenv=15,t=3);

2. S is a representation of Uy 3(7) which is unique up to a projectivity of
PG(4,2) (thenv=21,t=4).

The general problem of classifying all (0, 2)-geometries fully embeddable
in PG(n,2), n > 4, turns out to be quite complicated. Note that these ge-
ometries are in fact copolar spaces, as defined is section 1.2.2, and the copolar
spaces are classified (see [29]). An example of a copolar space is Uy 3(m), as
described above. Some full embeddings of U 3(m) in PG(n,q) are known
(see therefore [40]), but not all possible projective embeddings of Us 3(m)
are classified. Moreover the problem of determining all full embeddings of
Us3(m) in PG(n,q) is equivalent to determining (up to equivalence) all bi-
nary codes of length n with all weights even and minimum weight greater
than 4 (for more information see [30]). Hence there is not much hope that
a complete classification will be found in the near future.

1.3 Strongly regular (o, 3)-geometries

In this section we will discuss strongly regular (a, 8)-geometries. The results
mentioned here are taken from a paper of N. Hamilton and R. Mathon [32].

1.3.1 Necessary conditions for existence

By definition an («, 3)-geometry is called strongly regular if its point graph
is a strongly regular graph. Hence from the conditions of existence of a
strongly regular graph, one can deduce similar conditions for the existence
of strongly regular («, 3)-geometries (see theorems 1.1.1 and 1.1.2). Some
other conditions for the existence of («, 3)-geometries are summarized in the
next theorem.
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Theorem 1.3.1 ([32]) Let S be a proper strongly regular (a, 3)-geometry
with parameters (s,t). Then the following conditions hold.

1. B—a | flv—s—1)—st(s+1).
2. v<bands <t.

3. IfB=s+1, then (s+1—«a) | (t+1)(s — a)(t —c), where c is a
constant equal to (st +s—A—1)/(s+1— a).

1.3.2 Strongly regular (o, 5)-reguli

In [53], J. A. Thas defined SPG reguli in order to construct semipartial
geometries. This definition can be generalized to the concept of («, f)-
reguli, which allowed N. Hamilton and R. Mathon to construct strongly
regular (a, B)-geometries.

A strongly regular (o, B)-regulus is a collection R of m-dimensional sub-
spaces of PG(n,¢q), |R| > 1, satisfying the following conditions.

1. m Nmj =0 for every m;, mj € R, m; # ;.

2. If an (m + 1)-dimensional subspace of PG(n, ¢) contains some m; € R,
then it has a point in common with either « or 4 subspaces of R\ {m;}.
Such an (m + 1)-dimensional subspace that meets « (respectively f3)
elements of R\ {m;} is said to be an a-secant (respectively [-secant)
to R at m;.

3. If a point of PG(n,q) is contained in an element 7; of R, then it is
contained in a constant number p of a-secant (m + 1)-dimensional
spaces on elements of R \ {m;}.

4. If a point of PG(n,q) is contained in no element of R then it is con-
tained in a constant number 7 of a-secant (m + 1)-dimensional spaces

of R.

Note that if &« = 0, then a strongly regular (a, )-regulus is an SPG
regulus as defined in [53]. Now with this definition of a strongly regular
(c, B)-regulus, the following theorem can be proved.

Theorem 1.3.2 ([32]) Let R be a strongly regular (o, B)-regulus, such that
the elements of R are contained in PG(n,q) and of dimension m. Embed
PG(n,q) as a hyperplane I1 in PG(n+1, q), and define an incidence structure
S = (P, L,1) of points and lines as follows.
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1. The point set P is the set of points of PG(n + 1,q) \ II.

2. The line set L is the set of all the (m + 1)-dimensional subspaces of
PG(n+1,q) that meet II in an element of R.

3. Incidence 1 is containment.

Then S = (P,L,1) is a strongly regular («, 3)-geometry with parameters
s=q¢" —1and t=|R| - 1.

An interesting example of a strongly regular («, 3)-geometry constructed
from an (a, §)-regulus is the following. Let Q% (2n+1, ¢) be a non-degenerate
hyperbolic or elliptic quadric contained in PG(2n+1, ¢). Assume that there
exists a partition ¥ of the points of PG(2n 4+ 1,¢) \ Q*(2n + 1, ¢) into lines.
Every plane through an element L of ¥ intersects Q*(2n + 1,4) in either
one point or in a conic. Hence every such plane contains ¢> — ¢ —1 or ¢° — 1
points of PG(n,q) \ (QT(2n + 1,q) U L). Tt follows that the partition %
is a strongly regular (a,)-regulus with o = ¢> — ¢ —1 and 8 = ¢ — 1.
Indeed, the first two conditions of the definition of an («, §)-regulus follow
immediately, and the other conditions follow since Q*(2n + 1,¢q) has two
intersection sizes with respect to hyperplanes.

Note that the partition ¥ does not exist for every choice of n and ¢q. It
has been proved by J. A. Thas that such a partition exists for an elliptic
quadric Q@ (2n + 1,q) if and only if n is even, and for a hyperbolic quadric
Q1 (2n + 1,q) if and only if n is odd. Hence we get in this way two classes
of (¢> —q — 1,¢* — 1)-geometries, namely the ones coming from a partition
of the points of PG(4n +1,¢) \ @~ (4n + 1, ¢) into lines and the ones coming
from a partition of the points of PG(4n + 3,q) \ @ (4n + 3, ¢) into lines.

1.4 Some other useful definitions

In this section, we will give the definitions of some mathematical objects
that will appear in later chapters of this thesis. It is not necessary to give
very detailed information here, we will only mention some basic properties,
and give references for whom wants to know more.

A mazimal arc is a set of points K in a projective plane m of order
q, such that on each line of 7 there lie either 0 or d points of L. The
number d is called the order of the maximal arc. It follows immediately
that || = ¢d + d — ¢q. Hence through each point of = not in K there are
g+ 1—¢q/d lines containing d points of /C. This implies that, if not all points
of 7 are points of K, then d|q. A maximal arc K is called trivial if K = ()
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(d = 0), if K consists of exactly one point (d = 1), if K is the set of all
points of an affine plane (d = ¢q) or if K is the set of all points of the plane
7w (d=q+1). A hyperoval is a maximal arc of order 2. Lots of interesting
results on maximal arcs have been obtained. It has been proved by R. H.
F. Denniston [28] that for every d|q and q even, there exists a maximal arc
of order d in PG(2,¢). In the case ¢ odd, it has been proved by S. Ball,
A. Blokhuis and F. Mazzocca that there exists no non-trivial maximal arc
in a Desarguesian projective plane PG(2,q) [1]. For more information and
constructions of maximal arcs that are different from the one given by R.
H. F. Denniston, we refer to the paper of J. A. Thas [50], the paper of R.
Mathon [41] and the one of N. Hamilton and R. Mathon [31].

A hyperplane of a projective space PG(n,q) is an (n — 1)-dimensional
subspace of PG(n,q).

Let m be a projective plane of square order q. A wunital is a set of
qy/q + 1 points in 7, such that every line of m contains either 1 or /g + 1
points of this set. A Baer subplane of m is a subplane of order /g of .
A Baer subplane of 7 has the property that every line of 7 intersects it in
either 1 or /g + 1 points. More detailed information about unitals and Baer
subspaces in Desarguesian projective planes can be found in [34] and the
references that are given there.

A Baer subspace of the projective space PG(n,q) is an m-dimensional
subspace of order /g, with 3 < m < n. In other words, it is a subspace of
the form PG(m, ,/q).

Let § = (P,L,I) be a partial geometry pg(s,t,a). A spread of the
partial geometry S is a partition of the points of S into lines. If S has a
spread, then the number s + 1 of points of S on a line of § has to divide
the total number of points of S. So a partial geometry S can only have a
spread if « | st. An ovoid of the partial geometry S is a set of points O of S
such that every line of S contains exactly one point of O. Counting in two
different ways the pairs (p, L), where p is an element of O and L is a line
of S, we get that (¢t + 1)(st + @)/a = (t + 1)|O|. Hence an ovoid O of the
partial geometry S contains exactly 1 + st/a points of S.

A set of type (r1,7r2,...,75) in a projective space PG(n,q) is a set of
points of PG(n, ¢) such that for each line L of PG(n, ¢) we have that |LNK| €
{r1,r2,...,rs}. A set of type (r1,72,...,75) is also sometimes called a set of
type (r1,72,...,75) with respect to lines or an (r,r2,...,7rs)-set. A subset
KC of points of PG(n, q) is called a quadratic set if

1. K is a set of type {0,1,2,q + 1},

2. for each element p of I, the union of the lines through p that intersect
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K in either 1 element (namely p) or in g + 1 elements, form the tan-
gent space at the point p, which is either a hyperplane or the whole
projective space PG(n, q).

A point p of the quadratic set K is called singular if the tangent space at
the point p is the projective space PG(n,q). If K has a singular point, then
K is called singular. If a quadratic set K does not contain a line, then it is
an ovoid.

1.5 Sets of type (0,1,7,q+ 1) in PG(n,q)

Sets of type (0,1,7,¢q + 1) in a projective space PG(n, q) have been studied
extensively in earlier years and many nice results were obtained. As such
(0,1,7,q + 1)-sets appear at several places in this thesis, we give here a
summary of the results that are known. We however restrict ourselves to
(0,1,7,q + 1)-sets K in PG(n,q) with the property that there is a line of
PG(n,q) that contains 0 points of K, as (1,7,q + 1)-sets do not appear
further in this thesis. If no line of PG(n,q) contains r points of I, then K
is the set of points of a subspace of PG(n, ¢). Hence from now on we always
assume that there is a line of PG(n, q) that contains exactly r points of K.

1.5.1 Sets of type (0,1,2,¢+ 1) in PG(n,q)

In the previous section we have defined what a quadratic set is. From this
definition it follows that a quadratic set is a (0, 1,2, q + 1)-set satisfying an
additional condition. The following theorem classifies non-singular quadratic
sets in PG(n, q).

Theorem 1.5.1 ([35], theorem 22.10.23) A non-singular quadratic set
K in PG(n,q) is a quadric or an ovoid. If IC is an ovoid, then it is one of
the following:

1. a (q+1)-arc in PG(2,q);
2. an ovaloid of PG(3,q), ¢ > 2;

3. an elliptic quadric in PG(3,2).

More in general, (0,1,2,q + 1)-sets that are not necessarily quadratic
sets, have been studied by G. Tallini. He obtained the following results.
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Theorem 1.5.2 ([45]) A set KC of type (0,1,2,q + 1) in PG(n,q), n > 3,

q > 2, such that qnqtl;l > |K| > %, is one of the following:

1. the points of a hyperplane together with the points of an r-dimensional
subspace, for r € {—1,0,1,...,n—1};

2. the points of a (possibly degenerate) parabolic quadric;
3. the points of a (possibly degenerate) hyperbolic quadric;

4. if q is even: the points of a (possibly degenerate) parabolic quadric
Or]Q(n —r — 1,q), for r € {—1,0,1,...,n — 3}, together with the
points of a d-dimensional subspace that is contained in (II[r], z), where
x is the nucleus of a base Q(n —r —1,q).

5. if q is even: the points of a cone with vertez an (n — 3)-dimensional
subspace Il[n — 3] and base a (¢ + 1)-arc K' contained in a plane skew
to Il[n — 3|, together with the points of an r-dimensional subspace con-
tained in (Il[n — 3|, x), where x is the nucleus of K'.

Theorem 1.5.3 ([46]) A (0,1,2,q + 1)-set K in PG(n,q), with ¢ > 3 and
n > 4, such that |K| = % — q97Y, where g is the largest dimension of a
subspace in IC, is one of the following:

1. the points of a (possibly degenerate) elliptic quadric;
2. the points of an (n — 2)-dimensional subspace;

3. if q is even: the points of a cone with vertex an (n — 4)-dimensional
subspace M[n — 4] and base a (¢° +1)-cap in a three dimensional space
skew to I1[n — 4].

The last theorem was improved by C. Lefevre-Percsy as follows.

Theorem 1.5.4 ([37]) In PG(n,q), with ¢ > 3, with n > 3, and q odd, a

set KC of type (0,1,2,q+ 1) with qn;_lfl > |K] > % —q" 24 q¢" 3 is either
a quadric or the union of two subspaces of dimension respectively n —1 and

r, for some r € {—1,0,1,...,n — 1}.

The following result is a corollary of the previous three theorems, re-
stricted to the non-singular case.

Theorem 1.5.5 ([35], theorem 22.11.6) In PG(n,q) with n > 4 and
q > 2, let K be a non-singular set of type (0,1,2,q 4+ 1).
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n+171

LI

> |K| > %, then one of the following holds:

(a) n is even and K is an n-dimensional non-degenerate parabolic
quadric;

(b) n is odd and K is an n-dimensional non-degenerate hyperbolic
quadric;

(c¢) if q is even: K is either a (possibly degenerate) parabolic quadric
Qr]Q(n —r — 1) together with the nucleus of a base Q(n —r — 1)
or K is a cone with vertex an (n — 3)-dimensional space Il[n — 3|
and base a (q + 1)-arc K' in a plane skew to [n — 3], together
with the nucleus of K'.

2. If IK| = qqn_—_ll — 97", where g is the largest dimension of a subspace in
IC, then K is a non-degenerate elliptic quadric.

3. If q is odd, ¢ > 3 and qn;_ll_l > K| > % —q"2+q" 73, then

(a) n is even and K is a non-degenerate parabolic quadric;

(b) n is odd and K is a non-degenerate hyperbolic or elliptic quadric.

1.5.2 Sets of type (0,1,¢,¢+ 1) in PG(n,q)

C. Lefevre-Percsy completely classified sets of type (0,1, ¢,g+1) in PG(n,q).
The case ¢ = 2 is trivial as any set of points in PG(n,2) is a set of type
(0,1,2,3). For ¢ > 2, C. Lefevre-Percsy proved the following theorem.

Theorem 1.5.6 ([38]) Let K be a set of type (0,1,q,q + 1) in PG(n,q),
for q > 2. Then K consists of the set of points not contained in a subspace
II[m] of PG(n,q), 0 < m < n, together with the points of a (0,1,q,q+1)-set
K’ in II[m].

1.5.3 Sets of type (0,1,7) in PG(n,q)

Sets of type (0,1,7) in projective spaces have been studied by J. Ueberberg
in [56]. He obtained a classification of such sets in the case that r > /g +1.
In the next theorem, the classification of (0,1,r)-sets, = > /g + 1, in a
projective plane is given.

Theorem 1.5.7 ([56]) Let K be a set of type (0,1,7) in a projective plane
PG(2,q), such that K is not a mazimal arc. If r > \/q+ 1, then one of the
following possibilities occurs.
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K consists of n collinear points.

e g is a square and K is a Baer subplane of PG(2,q). In particular
r=,/q+1.

e g is a square and K is a unital of PG(2,q). In particular r = \/q+ 1.

e K is a mazximal arc.
If r = \/q + 1, then this theorem has the following corollary.

Corollary 1.5.8 ([56]) Let K be a set of type (0,1,,/q + 1) in PG(2,q).
Then K is a set of \/q+ 1 collinear points, a Baer subplane or a unital.

In the next theorem, the n-dimensional case is treated.

Theorem 1.5.9 ([56]) Let K be a set of type (0,1,7) in a projective space
PG(n,q). Suppose that the points K span a subspace 11 of PG(n,q) of di-
mension at least three. If r > \/q+ 1, then K is a Baer subspace of 11, an
affine subspace of 11, or K is the set of all points of I1.

1.5.4 Sets of type (0,1,7,¢+ 1) in PG(n,q), for 3<r <q¢g—1

C. Lefevre-Percsy studied (0,1,7,¢q + 1)-sets in PG(n,q), for 3 <r < q—1.
She defines a degenerate (0,1,7,q + 1)-set K, for 3 < r < g—1, as a
(0,1,r,q+1)-set that contains a point z such that all points of K\ {z} lie on
a line through z that contains g + 1 points of K. She then proves that each
degenerate (0,1,7,q + 1)-set K, for 3 < r < g — 1, is a cone I[I[m|K’, where
[I[m] is an m-dimensional subspace of PG(n,q) and K’ is a non-degenerate
(0,1,7,¢ + 1)-set in a (n — m — 1)-dimensional subspace skew to II[m], for
3 < r < g—1. Hence it suffices to classify non-degenerate (0, 1,7, g+ 1)-sets,
for 3 < r < g — 1. In the next theorem, a classification of non-degenerate
(0,1,r,q + 1)-sets in PG(n,q) is given, for 3 <r < ¢ — 1.

Theorem 1.5.10 ([39]) Let K be a non-degenerate set of type (0,1,7,q+1)
in PG(n,q), withn >3 and 3 < r < q— 1, that contains a line and such
that no plane of PG(n, q) intersects K in the set of points not contained in a
mazimal arc and no plane of PG(n,q) intersects K in the set of points of a
mazimal arc together with the points of a line exterior to this maximal arc.
Then K is the set of points of a Hermitian variety in PG(n,q).



Chapter 2

On the classification of fully
embedded («, §)-geometries
in PG(n,q), ¢ odd

In this chapter we will give a classification of («, 3)-geometries fully embed-
ded in PG(n, q), under some assumptions that will be explained later. The
classification only works in case ¢ is odd. For g even, most of the results
will remain valid, and give examples of («, 3)-geometries fully embedded in
PG(n, q). However it is possible that there exist much more classes of (o, 3)-
geometries fully embedded in PG(n, q), ¢ even, under our assumptions. All
the results of this chapter are taken from [12, 13].

Let S be an (a, 8)-geometry fully embedded in PG(n, q). If a = 0, then S
is a (0, #)-geometry. Full embeddings of (0, 3)-geometries have been studied
in [21, 55]. Therefore we will exclude here the case & = 0. The case o =1
turns out to be a bit special. The reason for this will become more clear later
in this chapter. In the first section, we will study proper (1, 3)-geometries
in PG(3,q), ¢ even or odd. With the methods we are using, it appeared not
to be possible to classify (1, /)-geometries fully embedded in a projective
space PG(n, q) for every n € N. That is why from the second section on the
case a = 1 is excluded. The case a = 1 will be examined further in the next
chapter, where we will study (1, q)-geometries fully embedded in PG(n, q).

Note that a proper («,3)-geometry S can not be fully embedded in a
projective plane PG(2, ¢). Indeed, in a plane every two lines intersect. Since
S is proper, there is an antiflag (py, L1) of S for which i(p;, L1) = a and an
antiflag (p2, L2) of S for which i(p2, L2) = B. Hence through p; there are o
lines of S, while through po there are 3 lines of S. It follows that t +1 = «

17
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and t+ 1 = 3, where ¢ + 1 is the number of lines of S through a point of S.
This is a contradiction, since ¢t + 1 is a constant and «a # (.

In the first section of this chapter, we will study fully embeddable (1, 5)-
geometries in PG(3, ¢). In the second section an overview will be given of the
results that are proved in the later sections. More precisely a classification
of fully embeddable («, )-geometries in PG(n,q), ¢ odd and a > 1 will be
given there, under certain assumptions that will be explained later. In the
third, fourth and fifth sections the proofs of the classification results of the
second section are given.

2.1 Proper (1,3)-geometries that are fully embed-
dable in PG(3, q)

If S is a (1,8)-geometry fully embedded in a projective space, then the
restriction of S to a plane that contains an antiflag of S, is a partial linear
space, but has not necessarily an order. In case it has an order, it follows
immediately that it is a partial geometry pg(s, 5 — 1,3). The results of [2]
show that the points and lines of a partial geometry fully embedded in a
projective plane are either all points and lines of the plane, or the points
not contained in a maximal arc K of the plane, and the lines exterior to K.
A plane in which the restriction of S is a partial geometry pg(s, 5 — 1, /),
we call a B-plane. A plane, that contains an antiflag of S, in which the set
of lines of S is a set of lines mutually intersecting in one point z, we call
a degenerate plane. The point x will be called the center of the degenerate
plane. A plane that contains an antiflag of S and that is not a degenerate
plane or a (-plane, we call a mized plane. In such a mixed plane, every
point of S is incident with either 1 line or with S lines of S contained in the
plane, and both of the cases occur. It is immediately clear that if a plane
contains an antiflag of S then it must be either a $-plane, a mixed plane or
a degenerate plane.

In this section we will prove that there are no proper (1, 3)-geometries
fully embedded in PG(3, ¢), under the assumption that PG(3, ¢) contains at
least one degenerate plane and at least one §-plane.

Lemma 2.1.1 There exists no proper (1,t+1)-geometry of order (q,t) fully
embedded in PG(3, q).

Proof. Let S be a proper (1,¢ + 1)-geometry fully embedded in PG(3, q).
Since S is proper, there exists a point £ € P and a line L € L for which
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i(z,L) = t+1. So all lines of S through z are contained in the plane (z, L).
Let p; and py be distinct points of L collinear with z. The lines (x,p;)
and L are both lines of S through p; in the plane (z, L). It follows that
i(p1, (z,p2)) # 1, and so i(p1, (x,p2)) =t + 1, i.e. all lines of S through p;
are contained in the plane (z, L). In the same way, one can see that all the
lines of S through ps are contained in (x, L). Assume that there is a line
M € L not contained in (z, L). Let M N (z, L) = {y}. If (z,y) ¢ L, then M
contains 0 points collinear with z, a contradiction. Hence (x,y) € L, and
necessarily (y,p1) ¢ L or (y,p2) ¢ L. Indeed, if (y,p1) € £ and (y,p2) € L,
arguing as before implies that all the lines of S on y are in (z, L), which
is a contradiction. So either p; or ps is collinear with no points of M, a
contradiction. This proves that all the lines of S meeting (x, L) are contained
in (z,L) and since S is connected, all the points of S are contained in
(z,L). So S is contained in a plane of PG(3,¢), a contradiction with the
assumption that the points of S span PG(3,¢). This proves that a proper
(1,t + 1)-geometry fully embedded in PG(3, q), does not exist. O

Remark. From the proof of lemma 2.1.1, it follows that the result of lemma,
2.1.1 also holds in PG(n, q), for n > 3. However, we need it only in PG(3, q)
and hence we restricted the statement of the lemma to this case. Note that
the lemma also holds for a pg(q,t,t + 1) fully embeddable in PG(n,q), for
n > 3.

Lemma 2.1.2 There exists no proper (1,q+ 1)-geometry fully embedded in
PG(3,q).

Proof. Let S be a proper (1,q+ 1)-geometry fully embedded in PG(3, q).
Then from [9] it follows that S is a polar space. The non-degenerate polar
spaces in PG(3,q) are all generalized quadrangles (for which « = 8 = 1).
In a degenerate polar space the number of lines through a point is never a

constant. This proves that there does not exist a proper (1, g+ 1)-geometry
fully embedded in PG(3, q). O

Lemma 2.1.3 If S is a proper (1,3)-geometry fully embedded in PG(3,q),
such that there exists at least one degenerate plane and at least one B-plane,
thent+1=¢qB8+ P —q.

Proof. Let S be a proper (1, 5)-geometry fully embedded in PG(3, ¢), such
that there is at least one degenerate plane m, call its center x, and at least
one f-plane p. From the definition of a S-plane, it follows that the points
and lines of S in p are the points not on a maximal arc of degree ¢/ and
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the lines exterior to this maximal arc. Note that from lemma 2.1.2 it follows
that 8 # ¢ + 1, and hence that S|q.

Assume that the center z of the degenerate plane 7 is incident with r+1
lines of S contained in w. Then |£| =b =1t + 1+ (r + 1)gt, hence in each
degenerate plane the center is incident with r 4 1 lines of S.

Assume that the S-plane p does not contain the center z of the degenerate
plane w. As the line 7 N p is not passing through z, it is not a line of S and
hence it contains g+ 1—¢/g points of S. This implies that r+1 = ¢+1—¢q/p.
Counting the lines of S intersecting 7, we get that b = t+1+(¢+1—q/F)qt.
Counting the lines of S intersecting p, we obtain that b = (¢+1 —q/5)(qt +
g+ t+1—¢gpB). From both expressions it follows that t +1 =¢8+ 3 — q.
Hence, if t # (¢ + 1)(8 — 1), then every S-plane contains all centers of the
degenerate planes.

Let us assume for the rest of the proof that ¢t # (¢ +1)(8 — 1). We will
first prove that r # ¢, i.e. that through the center x of 7 there is a line in 7
that contains exactly one point of S. Assume that r = ¢. Let M be a line in
7 that does not contain z. Then M contains ¢ + 1 points of S, but M ¢ L.
It is clear that M cannot be contained in a [S-plane, since we have proved
that every [-plane contains z. Hence a plane through M is a degenerate
plane, a mixed plane or a plane that contains no antiflag of S.

Assume that there is a mixed plane o through M. We count the number
of lines of § in ¢ in two different ways. Let L be a line of o that is an
element of £. Let a be the number of points on M through which there
are [ lines of S in 0. Let a’ be the number of points on L through which
there are ( lines of S in 0. Counting the lines of § in o intersecting M,
we get that there are af + ¢+ 1 — a lines of S in . Counting the lines of
S in o intersecting L, we get that there are o/(8 — 1) + 1 lines of S in o.
Comparing these two results, it follows that a = o’ — ¢/(8 — 1). Since a and
a' are both integers, this implies that (5 — 1)|q. However, we noted above
that (|q. Hence f = 2. Since M is a line not belonging to S but containing
q + 1 points of S, there are at least ¢ + 1 lines of S contained in o. Since
B = 2, no three lines of § in o are concurrent. This forces the lines of S in
o to be ¢+ 1 lines of a dual oval, M being the nucleus line of this dual oval.
So in a mixed plane there is exactly one line of § through each point of M.
In a degenerate plane through M there is also one line of & through each
point of M. In a plane containing no antiflag of S there are no lines of S.
Hence we may conclude that if there is a mixed plane ¢ through M, then
t+1<qg+1, but as r =g, it follows that t + 1 =g + 1.

Assume that there is not a mixed plane through M. The line M contains
g + 1 points of S, but M ¢ L. So in this case every plane through M is
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either a degenerate plane or a plane that contains no antiflag of S. In a
degenerate plane there is one line through every point of M. In a plane
through M that contains no antiflag of S there are no lines of S. Counting
all the lines of & through a point of M, we get that ¢ +1 < g+ 1, and hence
again it follows that t 4+ 1 =¢g + 1.

Now from the first paragraph of the proof, we know that every g-plane
contains x. Since t = ¢ = r, all of the lines of S through z are contained in
7 and there can not be a S-plane through z. This proves that there cannot
be a (-plane contained in PG(3, ¢), a contradiction with our assumption. It
follows that the degenerate plane 7 has to contain a tangent N at S.

Now we look at the planes through the tangent line N through x in the
degenerate plane 7 with center x. Every plane through N has to be either a
degenerate plane or a plane containing no antiflag of S. A plane spanned by
N and a line through z in the S-plane p that does not belong to S clearly
cannot be a degenerate plane. So such a plane contains no antiflag of S.
Let L' be a line of S in p, with z € L’. Assume that (N, L’) contains no
antiflag of S. Since (N, L') contains L', all lines of (N, L') different from
L' are tangent lines to S. Let y be a point of S, y ¢ L'. The plane (y, L'}
contains an antiflag of S. Let L, be a line of S through y intersecting L'.
Then all the planes through L, different from (L,, L) intersect (N, L) in
a line that is tangent to . This implies that in all these planes there is
exactly one line of S through y, namely L,. Hence, counting the lines of
S through y, we obtain that t +1 < 3, so t + 1 = 8 a contradiction with
lemma 2.1.1. We conclude that (N, L’) is a degenerate plane. Since there
are (3 lines of § in p through z, there are 5 degenerate planes through N.
Counting the lines of S through € N, we obtain that ¢t +1 = (r + 1)4.
Hence

b= (r+1)q((r+1)f-1)+(r+1)5 = qﬁ—q+5+(Q+1)(q—%Jrl)((?”rl)ﬁ—ﬁ)-

Solving this quadratic equation in 7 + 1 yields r +1 = ¢+ 1 — % which
implies ¢ = (¢ + 1)(8 — 1) which is against the assumption, or r +1 = 1
which implies that ¢ + 1 = 3, which is also a contradiction. Hence, if S is a
proper (1, 3)-geometry fully embedded in PG(3, q), such that there exists at
least one degenerate plane and at least one S-plane, thent+1=¢qf+ 5 —q.

O

This leaves us with the case t = (¢+1)(8—1). It will be proved in lemma
2.1.4 that there is no proper (1,3)-geometry fully embedded in PG(3,q),
such that every plane that contains an antiflag of S is either a degenerate
plane or a S-plane. In lemma 2.1.5 we will prove however that under the
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assumption that there is at least a degenerate plane and a S-plane, mixed
planes cannot occur if t = (¢ + 1)(8 — 1).

Lemma 2.1.4 Let S be a proper (1, 3)-geometry fully embedded in PG(3, q),
such that t = (¢ + 1)(8 — 1), then there is at least one mized plane.

Proof. Let & be a proper (1,/)-geometry fully embedded in PG(3,q),
such that ¢t + 1 = ¢8 + B — ¢. Assume that there are no mixed planes. We
will get a contradiction. Since S is proper, there is at least one degenerate
plane 7 and at least one S-plane p.

Assume that the center x of 7 is incident with ¢ + 1 lines of S in 7. Let
M be a line in 7 not through z. Then there cannot be a S-plane through
M. Indeed, in a S-plane the points and lines of S are the points and lines
exterior to a maximal arc. So if M is contained in a B-plane, then since M
contains g+ 1 points of S, it follows that M € L, which is a contradiction. So
every plane through M is either a degenerate plane or a plane that contains
no antiflag of S. Counting the lines of S through a point w € M, we get
that t+1 < ¢+ 1, but since t + 1 = ¢ + 8 — g, this yields a contradiction.
Hence 7 contains a tangent line N to P at z.

We will prove now that there are at least two distinct degenerate planes
through N. All the planes through N are degenerate planes or planes that
do not contain an antiflag of S. By assumption t +1 = g8+ 8 —¢q. In
particular, as 8 > 2, t+1 > g+ . The B-plane p intersects N in a point. If
x ¢ p, then every plane through N in PG(3, q) contains ¢+ 1 — ¢/ points of
S on its intersection line with p. In 7 there are at most ¢ lines of S through
x, hence since t+1 > ¢+ f3, there is a plane through N in PG(3, q), different
from 7, containing a line of S through x. This plane intersects p in a line
containing ¢ + 1 — ¢/ points of S, so it contains an antiflag of S, and hence
it is a degenerate plane. This proves that if ¢ p, there are at least two
distinct degenerate planes through N. If x € p, then § planes through N
that intersect p in a line of &, while the ¢ + 1 — 8 other planes through N
in PG(3,¢q) intersect p in a line containing ¢ + 1 — ¢/ points of S. In 7
there are at most ¢ lines of S through z. Since z € p by assumption and p
cannot contain a tangent line, it follows that the intersection line of 7 and
p is a line of §S. So 7 and p together contain at most ¢ + 5 — 1 distinct
lines of § through z. From ¢+ 1 > ¢ + (3 it follows that there is a plane
through N in PG(3,q), different from 7, containing a line of S through z
and intersecting p in a line through z containing ¢+ 1 — ¢/ points of S. So
this plane contains an antiflag of S and the tangent line N, which implies
that it is a degenerate plane. Hence we may assume that there are at least
two distinct degenerate planes m and 7' through N.
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Let L be a line of S not through z. We will prove that all planes through
L are -planes. We first consider the plane (L, z). It intersects both m and
7' in a line of §. Hence it contains a triangle of lines of S. This proves that
(z, L) is a B-plane.

All planes through L different from (L, z) contain an antiflag of S. In-
deed, they contain the line L of & and a point of § not on L on their
intersection line with 7. Hence they are degenerate planes or S-planes. As-
sume that ¢ 4+ 1 planes through L are g-planes. We denote the point L N«
by z. We count the lines of S through z in the planes through L. The (¢+1)
B-planes through L contain f§ lines of S through z. In each of the (¢ — ¢)
degenerate planes through L there is exactly one line of § through z, namely
L, since the line of that plane through z in © does not belong to S and it
is not a tangent. It follows that t = (¢ + 1)(8 —1) = (¢ + 1)(8 — 1). Hence
¢ = ¢, which means that all the planes through L in PG(3, q) are S-planes.

We will now prove that there exists a plane through N that does not
contain an antiflag of §. By assumption there is a S-plane p contained in
PG(3,q). Let L' be a line of S in p, such that z ¢ L'. From the previous
paragraph it follows that the plane (z,L') is a S-plane. Let n be a plane
through the tangent line N at z and a line through z in (z, L') that does
not belong to S. Then 7 contains a tangent line to S at £ and a line through
x containing ¢ + 1 — ¢/ points of S. Since ¢+ 1 — ¢/ # 1 (otherwise it
follows that S = 1, which is a contradiction), this proves that 1 cannot be
a degenerate plane. It follows that 5 is a plane that does not contain an
antiflag of S.

We will count the points of S in 7 in two different ways. Let L, be a line
of § that intersects n in a point w different from z. By the above argument
we know that all planes through L,, are 8-planes. They intersect 7 in a line
that does not belong to §. Hence all lines through w in 1 contain ¢+1—¢q/f
points of . It follows that 1 contains (¢ + 1)(q — ¢/8) + 1 points of S. Now
we look at the lines through x in 7. If a line through z in 7 contains a
point u of S different from z, then this line contains g + 1 — ¢/ points of
S. Indeed, we can take a line of § through u. By the above argument , all
planes through this line are S-planes. It follows that (z,u) is contained in a
p-plane. Since (z,u) ¢ L, it contains ¢ + 1 — ¢/ points of S. Now assume
that there are ¢’ lines through z in 7 that contain a point of S different from
z. Then the number of points of S in 7 is equal to ¢/(¢ — ¢/B) + 1, which
should be equal to (¢ + 1)(¢ — ¢/B) + 1; hence ¢/ = ¢+ 1 and all the lines
through z in 7 contain ¢+ 1 — ¢/ points of S. This is a contradiction, since
n contains the tangent line N at x to S.

This proves that under the assumption that ¢ = (¢ + 1)(8 — 1), there
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should be at least one mixed plane. O

Lemma 2.1.5 Let S be a proper (1, 3)-geometry fully embedded in PG(3,q),
such that PG(3,q) contains both a degenerate plane and a B-plane. Then
there cannot be a mized plane contained in PG(3,q).

Proof. Let S be a proper (1, 5)-geometry fully embedded in PG(3, ¢), such
that PG(3,¢) contains both a degenerate plane and a S-plane. By lemma
2.1.3 we know that t+1 = ¢S+ 5 — q. We will separate the cases § = ¢ and

B #q.

1. Assume first of all that 8 = ¢, hence t + 1 = ¢? and the incidence
structure of points and lines of § in a g-plane is a dual affine plane.

We will prove that there are no mixed planes contained in PG(3,q).
Assume therefore that o is a mixed plane contained in PG(3, ¢). Hence
o contains an antiflag (w, L) such that i(w, L) = ¢, which means that
there exists a unique point w’ on L such that the projective line (w, w')
is not a line of §. Let p be a point of L such that the projective line
(w,p) is a line of S. Then p is incident with at least two lines of S in
o, and so is incident with 8 = ¢ lines of § in o. Counting the points
of PG(3, q) that do not belong to P on the lines through p and w in o
it follows that either all points of ¢ belong to S, or exactly one point
y in o does not belong to S.

Assume first that all the points of ¢ belong to §. Then through all
the points of o there are 1 or ¢ lines of S. Now, if we dualize, we get a
plane o” in which the lines of S form a set K of points such that every
line of o contains either 1 or ¢ points of K. Hence K is a (1, ¢q)-set
in the plane o”, a contradiction because such a set does not exist (see
[34], theorem 12.3.6).

Assume next that o contains one point y that does not belong to S.
Then, dualizing, we get a plane o” in which the lines of S are a set of
points K such that every line of o” different from y” contains 1 or ¢
points of K, while y” contains 0 points of K. Hence K is a set of type
(1,¢) in the affine plane 0P \ y”. If ¢ > 2 such a set is an affine plane,
but this implies that the incidence structure of points and lines of S
in o is a dual affine plane, which contradicts the assumption that o is
a mixed plane. The case ¢ = 2 is also easily ruled out.

So, if = ¢ then there cannot be a mixed plane contained in PG(3, q).
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2. Assume now that 8 # ¢. By lemma 2.1.2 we may assume that 8 < q.

Also, ¢ has to be even, since for ¢ odd there exists no non-trivial
maximal arc in a Desarguesian projective plane [1]. Since S|q, we
conclude that ¢ = 2" for h € N and that 8 = 2" for an r € N,
0<r<h.
We will prove again that PG(3,¢) cannot contain a mixed plane. As-
sume therefore that PG(3,¢) contains a mixed plane o. Let b, be the
number of lines of § in o. The number of points of o through which
there are [ lines (respectively 1 line) of S contained in o, we denote
by mg (respectively m;). It follows that

{ mi+Bms = (q+1)by
B(ﬁ_l)mﬂ = ba(ba_l)'

So

by (by — 1) by (by — 1)
B(B—1) B—1

Now we count the lines of S through the points of S in 0. We get that
|L] = by + mit +mg(t +1 — B). Counting the lines of S through the
points of § in a S-plane, we get that |[£] = (¢ + 1)(¢+1—q/B)(t +
1—p8)+qB+ B —q. By assumption t + 1 = ¢ + 8 — g. Substituting
these expressions for |£|, ¢t + 1, m; and mg in the equation |£| =
by +mit+mpg(t +1 — ), we get that

(¢/B—q—D2+(*B—¢*+2¢8+B—q+1—q/B)bs
—(g+1-q/B)@*B—*+qB—q+B) =0.

The solutions of this quadratic equation in b, are (with g = 2")

20— 1) +q(2" — 1) + 2
a2 —1) 42

mg = and my = (q+ 1)b, —

and g(2" —-1)+2"

Assume first that b, = QZ(ZT;(IQ):F_‘ZI(?;;TIHZT. Since b, € N, it follows

that ((2"—1)g+2") | (—¢+2"). In particular, (2" —1)g+2" < ¢—2".
Substituting ¢ = 2", we get that 2”71 < 2"~ — 1, which is clearly a
contradiction since r > 1.

Assume next that b, = ¢(2" — 1) +2". Then m; = 0 and hence o is a
B-plane, a contradiction with our assumption.

This proves that also in the case 8 # ¢ there cannot be a mixed plane
contained in PG(3, q).
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Hence in both cases we have found a contradiction. We may conclude
that if S is a proper (1, 5)-geometry, fully embedded in PG(3, ¢), such that
there exists both a degenerate plane and a [-plane, then PG(3,¢q) cannot
contain a mixed plane. O

From all the lemmas above follows the main classification theorem.

Theorem 2.1.6 There exist no proper (1,[3)-geometry, fully embedded in
PG(3,q), under the assumption that there is at least one degenerate plane
and at least one B-plane.

Remark. In the previous theorem, it is assumed that PG(3,¢) contains at
least one degenerate plane and at least one S-plane. The cases not included
in the theorem can be put into 3 categories.

1. Planes containing an antiflag of S are either mixed planes or -planes,
and there is at least one [-plane. Since there is a [-plane, either
B =gqor B =2" foram € N. It will be proved in chapter 3 (see
lemma 3.4.2) that (1, ¢g)-geometries fully embeddable in PG(3,q), for
g # 2 can not contain mixed planes. Hence from the above theorem
it follows that (1, q)-geometries fully embeddable in PG(3,¢q) do not
exist. Hence = 2™ and ¢ = 2", for m,h € N, m < h.

Let 0 be a mixed plane. Let v (respectively vg) be the number of
points of o through which there is 1 line of S in ¢ (resp. there are g
lines of S in o). Let b, be the number of lines of S in o, and let b be
the number of lines of S in PG(n,q). Then, by counting arguments,
one obtains that

v1 + Pog = (¢+1)bs

5(/3 - 1)1)5 = ba(ba - 1)
Ult+v6(t+1_,6)+bg b.

Now let p be a S-plane. Counting the lines of S intersecting p and the
lines of S in p, we get that b = ¢B—q+L+(q+1)(g—q/B+1)(t+1-0).
From these equations, it follows that b, = ¢+ 1 — ¢f/(t + 1). Hence
(t+1) | gB. Let L be a line of § in o and assume that there are a points
of L through which there are S lines of S in 0. Then, counting the lines
of £ in o intersecting L, we get that a = ¢(t +1—8)/((F —1)(t+1)).
So (B—1)]¢q(t+1—p) and hence (8 —1) | gt. Since we proved above
that 8 = 2™ and ¢ = 2", it follows that the greatest common divisor of
(8—1) and g equals 1. So we get that (5—1) | t. Now from (¢+1) | ¢f,
it follows that t4+1 = 2¢ for a ¢ € N. So ¢, 8 and £+ 1 have to be even
prime powers and (5 —1) | ¢.
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2. Planes containing an antiflag of S are either mixed planes or degener-
ate planes, and there is at least one degenerate plane.

3. All planes containing an antiflag of S are mixed planes.

2.2 Classification results on the full embedding of
(e, B)-geometries in PG(n,q), a > 1 and ¢ odd

Let S be an («, 3)-geometry fully embedded in PG(n,q), ¢ odd and a > 1.
As in section 2.1 we examine the behavior of planes containing an antiflag of
S. Such planes can be divided into three types, namely a-planes (in which
the restriction of S is a pg(s,a — 1,a)), B-planes (in which the restriction
of S is pg(s, 8 —1,3)), and mized planes. Let m be an a-plane or a -plane
contained in PG(n,q). Then as before the points and lines of S in 7 are
either all points and lines of 7, or all points not contained in a maximal
arc of m and all lines not intersecting this maximal arc. Now for ¢ odd,
there exist no non-trivial maximal arcs in a Desarguesian projective plane
[1]. Hence the points and lines of S in 7 are either all points and lines of
m, or all points of ™ except one point p and all lines of m not through p.
In what follows we will give a classification of all fully embedded proper
(c, B)-geometries in PG(n,q), ¢ odd and o > 1, under the assumption that
there is at least one a-plane or one (-plane contained in PG(n,q). With
this assumption there are 3 possibilities:

() a=qand f=q+1,
(ii) «a < ¢, in which case there are no a-planes and 5 = ¢ + 1,
(iii) « < ¢, in which case there are no a-planes and g = q.

Our classification is not a complete classification of («, 3)-geometries
fully embedded in PG(n,q), for ¢ odd. The following example illustrates
that there do exist («,3)-geometries fully embedded in PG(n,q), ¢ odd,
that are not included in the classification.

Example 2.2.1 This example of an («,3)-geometry fully embeddable in
PG(3,q), q odd, is due to J. A. Thas (personal communication). Define
an incidence structure S = (P, L,1) as follows: P is the set of points not on
a three dimensional non-degenerate hyperbolic quadric, L is the set of lines
exterior to this quadric and incidence is the one inherited from PG(3,q).
Then S is a ((¢ —1)/2,(q + 1)/2)-geometry fully embedded in PG(3,q).
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The example 2.2.1 is an («, 3)-geometry for which every plane containing
an antiflag of S is a mixed plane. Indeed, every plane containing an antiflag
of § intersects the hyperbolic quadric in a conic. So this is an example of an
(e, B)-geometry fully embedded in PG(3, q), such that PG(3,¢) contains no
a-planes and no S-planes. This shows that there do exist («, §)-geometries
fully embedded in PG(n, q), ¢ odd, that are not covered by our classification.

In the remainder of this section we give an overview of the classification
results for («, 3)-geometries in PG(n, q), ¢ odd, that will be proved later in
the chapter. We also mention the theorems that remain valid in the case ¢
is even.

We will use the notation P(n,q) for the point set of PG(n,q). Further-
more [1[m], Q[m] and A[m| will denote m-dimensional subspaces of PG(n, q),
for -1 <m<n-—1.

Let S = (P, L,T) be a proper («a, 3)-geometry fully embedded in PG(n,q), q
odd and « > 1. Assume that PG(n, ¢) contains at least one a-plane or one
B-plane. Then S is one of the following.

1. Sis a (q,q + 1)-geometry, with points the points of PG(n,q) \ II[m],
for some 0 < m < n — 2, and lines those lines of PG(n,q) that are
disjoint from II[m)].

2. Sisa(q,q+1)-geometry, with points the points of PG(n, q) \II[m], for
0 < m < n—3, and with lines defined as follows. Let ¥ = {o1,...,0;}
be a partition of the points of S, where [ = (¢" ™ — 1)/(qm’*m - 1),
such that for 7 = 1,...,] we have that o; = Q;[m/] \ II[m], with Q;[m/]
an m/-dimensional subspace of PG(n, q) that contains II[m], and with
m+2 < m' < n—2. The lines of S are the lines that intersect
q + 1 distinct elements of > in a point. A necessary and sufficient
condition for this partition and the (g, ¢ 4+ 1)-geometry to exist is that
(m' = m)|(n —m).

3. Sisa (¢—1, q)-geometry, with points the points of PG(n, q) \II[n — 2],
and lines defined as follows. Let ¥ = {o1,...,0,_,} be a partition
of the points of S, such that for ¢ = 1,...n — r we have that o; =
Q;[r]\ II[n — 2], with €;[r] an r-dimensional subspace of PG(n, ¢) that
intersects II[n — 2] in an (r — 2)-dimensional space, for 1 <r <n — 2.
The lines of S are the lines that intersect ¢ 4+ 1 distinct elements of X
in a point. Further, such a partition exists for every 1 < r < n — 2,
and gives a (¢ — 1, ¢)-geometry.

4. Sis a (¢ — 1, g)-geometry with points the points of PG(n, q) not con-
tained in one of the two subspaces II[n — 2] and Q[r] of PG(n,q), for
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1 <r < n—2, for which Q[r] N II[n — 2] is an (r — 2)-dimensional
space. The lines of S are either all lines of PG(n, g) that contain g+ 1
points of S, or they are defined as follows. Let ¥ = {oy,...,0;} be
a partition of the points of S, where [ = (¢"" —1)/(¢*™" — 1), and
such that for ¢ = 1,...,l we have that o; = A;[d] \ (II[n — 2] U Q[r]),
with A;[d] a d-dimensional subspace of PG(n,q) that contains Qr],
and r +2 < d < n — 2. The lines of S are the lines that intersect
q + 1 distinct elements of ¥ in a point. A necessary and sufficient
condition for such a partition to exist is that (d — r)|(n — r). Further,
if (d—r)|(n—r)and n—2 > d > r+ 2, then this partition gives a
(g — 1, q)-geometry.

5. Sisa (¢—+/q,q)-geometry with points the points of a cone II[m]S’ that
are not contained in the vertex I1[m], where II[m] is an m-dimensional
subspace of PG(n,q), for m =n —4 or m = n — 5, and where S’ is
a (¢ — /4, q)-geometry fully embedded in an (n —m — 1)-dimensional
space Q[n —m — 1] skew to II[m] described as follows. The points of
S’ are the points of Q[n —m — 1] that do not belong to an (n —m — 1)-
dimensional Baer subspace of Q[n —m — 1], the lines of " are the lines
of Q[n —m —1] that have no point in common with this Baer subspace.

6. S is a (¢ — \/g,q)-geometry in PG(3,q), with points all points of
PG(3,q), such that if p is a point of S and = is a plane of PG(3, ¢) not
containing p, the lines of S through p intersect 7 in the points not on
a unital, and such that in every plane of PG(3,¢q) the lines of S are
the lines that intersect some unital in this plane in /g + 1 point. It is
not known to us whether such a (¢ — /g, ¢)-geometry exists. If such a
(¢ — /4, q)-geometry exists, then also a cone II[n — 4]S, with II[n — 4]
an (n —4)-dimensional subspace of PG(n, ¢) and S as before, gives rise
to a (¢ — /4, q)-geometry fully embedded in PG(n, q).

7. S is a (¢ — \/q,q)-geometry in PG(3,q), with points all points of
PG(3,q), such that if p is a point of S and 7 is a plane of PG(3,q)
not containing p, the lines of & through p intersect 7 in the points
not contained in a Baer subplane of 7, and such that in every plane of
PG(3, q) the lines of S are the lines that are tangent to a Baer subplane
in this plane. It is not known to us whether such a (¢—,/q, ¢)-geometry
exists. If such a (¢—/q, q)-geometry exists, then also a cone I1[n—4]S,
with II[n — 4] an (n — 4)-dimensional subspace of PG(n,q) and S as
before, gives rise to a (¢— /¢, ¢)-geometry fully embedded in PG(n, q).

For g even, then we obtain the following results in later sections.
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. Let § = (P, L,1) be a (¢q,q+ 1)-geometry fully embedded in PG(n, q),

q even. Assume that every plane of PG(n, ¢) that contains an antiflag
of S is a ¢g-plane or a (¢ + 1)-plane. Then P is the set of points of
PG(n,q) \ I[m], for some 0 < m < n —2 and L is the set of the lines
of PG(n, q) that are disjoint from II[m].

. Let S be a (q,q + 1)-geometry, fully embedded in PG(n,q), g even,

such that there is at least one mixed plane. Then the points of S are
the points of PG(n,q) \ II[m], with 0 < m < n — 3, and the lines are
defined as follows. Let ¥ = {o1,...,0;} be a partition of the points
of S, where I = (¢"™ —1)/(¢™ ~™ — 1), such that for i = 1,...,1 we
have that o; = Q;[m/] \ II[m], with Q;[m] an m’-dimensional subspace
of PG(n,q) that contains II[m], and m + 2 < m/ < n — 2. The lines of
S are the lines that intersect ¢ 4+ 1 distinct elements of 3 in a point. A
necessary and sufficient condition for this partition and the (¢, q + 1)-
geometry to exist is that (m’ —m)|(n —m).

. Let S = (P, L,I) be a (¢ — 1, g)-geometry fully embedded in PG(n, q),

q even, q # 2. Assume that there is no plane that contains an antiflag
of § and two points of P(n,q) \ P. Then the points of P(n,q) \ P are
the points of a subspace II[n — 2], and the lines are defined as follows.
Let ¥ = {o01,...,0n—r} be a partition of the points of S, such that
for i = 1,...,n —r we have that o; = Q;[r] \ I[n — 2], with Q;[r]
an r-dimensional subspace of PG(n,q) that intersects II[n — 2] in an
(r—2)-dimensional space, for 1 < r < n—2. The lines of S are the lines
that intersect ¢ + 1 distinct elements of ¥ in a point. Further, such a
partition exists for every 1 < r < n—2, and gives a (¢—1, ¢)-geometry.

. Let S be a (¢ —1, q)-geometry fully embedded in PG(n, q), ¢ even, but

q # 2. Assume that there is a plane that contains exactly two distinct
points of P(n, q)\ P, while the lines of S are all the lines not containing
one or both of these points. Then the points of P(n, ¢)\P are the points
of two subspaces II[n — 2] and Q[r] of PG(n,q), for 0 < r < n — 2,
with Q[r] N II[n — 2] an (r — 2)-dimensional space. The lines of S are
either all lines of PG(n, ¢) that contain ¢ + 1 points of S, or they are
defined as follows. Let ¥ = {o1,...,0;} be a partition of the points of
S, where | = (¢"" — 1)/(¢?" — 1), such that for i = 1,...,] we have
that o; = A;[d]\ (II[n — 2] UQ[r]), with A;[d] a d-dimensional subspace
of PG(n,q) that contains Q[r], and r + 2 < d < n — 2. The lines of S
are the lines that intersect ¢ + 1 distinct elements of 3 in a point. A
necessary and sufficient condition for such a partition to exist is that
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(d—r)|(n —r). Further, if (d —r)|(n —7) and n —2 > d > r+ 2, then
this partition gives a (¢ — 1, ¢)-geometry.

Remark. The point graphs of the (a,3)-geometries described above are
never strongly regular graphs.

In the next sections of this chapter, the proofs of the results mentioned
above, will be given.

2.3 The case in which every plane of PG(n, q) that
contains an antiflag of S is an a-plane or a
S-plane

Let S be a proper («a, 3)-geometry fully embedded in PG(n,q), a > 1 and ¢
odd. Assume that every plane containing an antiflag of S is an a-plane or a
B-plane, i.e. there are no mixed planes contained in PG(n,q). Since « and
[ both have to occur, there has to be at least one a-plane and at least one
B-plane contained in PG(n, q). As explained in the beginning of section 2.2,
and assuming « < 3, it follows that the points and lines of § in a (-plane
are all the points and all the lines of the plane, and that the points and lines
of § in an a-plane are all the points of the plane except one point p and all
the lines of the plane that do not contain p. Hence 8 =¢g+ 1 and a = q.

The next lemma is valid for both ¢ odd and ¢ even. Again, the point set
of PG(n,q) is denoted as P(n,q), and the notation II[m] is used for fixed
m-dimensional subspace of PG(n,q), —1 <m <n — 1.

Lemma 2.3.1 Let § = (P, L,1) be a (¢,q + 1)-geometry fully embedded in
PG(n,q). Assume that every plane of PG(n,q) that contains an antiflag of
S is either a g-plane or a (q+ 1)-plane. Then

1. a line of PG(n,q), that contains q + 1 points of S, belongs to L;

2. every line in PG(n, q) contains 0, 1, q or g+ 1 points that are elements

of P(n,q) \ P.
Proof.

1. Let M be a line of PG(n,q) that contains ¢ + 1 points of S. Since
t+1 > 1, we can take a line L of § that intersects M in a point. The
plane (L, M) clearly contains an antiflag of S. So it is a g-plane or
a (¢ + 1)-plane. Now, in both a ¢-plane and a (¢ + 1)-plane, a line
containing ¢ + 1 points of S is a line of S. Hence M is a line of S.
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2. Assume that PG(n,q) contains a line M on which there are r points
that are elements of P(n,q) \ P, with » ¢ {0,1,¢,q + 1}. Then M
contains at least two points y; and yo that are elements of P(n,q) \ P
and at least two points p; and ps of S. Since t+1 > 0, there is a plane
through M containing a line L of § through p;. This plane contains
the antiflag (p2, L) of S and hence it is a g-plane or a (¢ + 1)-plane.
However, the plane (M, L) contains the two points y; and ¥, that are
elements of P(n,q) \ P. This is a contradiction. Hence every line in
PG(n, q) contains 0, 1, g or ¢+1 points that are elements of P(n, )\ P.

g

Theorem 2.3.2 Let § = (P, L,I) be a proper (a, 5)-geometry, a > 1, fully
embedded in PG(n,q), for q odd. Assume that every plane of PG(n,q) that
contains an antiflag of S is an a-plane or a B-plane. Then P is the set of
points of PG(n,q) \ II[m], for some 0 < m < n —2 and L is the set of the
lines of PG(n,q) that are disjoint from II[m)].

Proof. Let S be a proper («, 3)-geometry fully embedded in PG(n,q),
for « > 1 and ¢ odd. Assume that PG(n,q) contains no mixed planes. It
follows immediately that « = ¢ and = q + 1.

We will first prove that the points that are elements of P(n,q) \ P are
the points of a subspace II[m] of PG(n,q). Suppose not, and let N be a
line containing at least two points that are elements of P(n,q) \ P and at
least one point p € P. Then from lemma 2.3.1 it follows that N contains ¢
points that are elements of P(n,q) \ P. Since t +1 > 2, we can take a plane
7 through two lines of S intersecting in p. The plane 7 has to be a ¢-plane
or a (g + 1)-plane. So there are q or ¢ + 1 lines of S through p in .

Now we look at the three dimensional space (N, 7). Every plane through
N in (N, w) contains at least ¢ points that are elements of P(n,q) \ P, so
such a plane cannot contain an antiflag of S. There are at least ¢ of these
planes that intersect 7 in a line of S. They contain exactly ¢ points that
are elements of P(n,q) \ P. If the remaining plane through N in (N, )
would contain a point w of S, w ¢ m, then a plane through w and a line of
S in 7 through p contains an antiflag of S and more than two points that
are elements of P(n,q) \ P, a contradiction. We conclude that all points of
(N,7) \ m are elements of P(n,q) \ P.

Since § is connected, there is a line L of S intersecting (IV, ) in a point.
Since all points of S in (N, ) are contained in 7, L intersects 7 in a point.
The planes through L in (L, N, ) partition the points of (L, N, 7). Every
plane through L intersecting (N, ) in a line not contained in 7 contains the
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Figure 2.1: The (q,q + 1)-geometry Hy"™

line L of § and at least ¢ points that are elements of P(n,q) \ P. So every
such plane contains ¢ points that are elements of P(n, q) \ P, being all the
points not on L. Hence all the points of S in the four dimensional space
(L, N, m) are contained in the three dimensional space (L, ).

Continuing in this way, we see that all the points of S in PG(n,q) are
contained in an (n — 1)-dimensional subspace of PG(n, ¢). This is a contra-
diction, because by assumption the points of S span PG(n,q). Hence we
have proved that the points that are elements of P(n,q) \ P are the points
of an m-dimensional subspace II[m] of PG(n,q). It is clear that m <mn — 2,
as otherwise PG(n, q) cannot contain lines of S.

From lemma 2.3.1 it follows that every line that contains ¢+ 1 points of S
belongs to S. Hence the lines of S in PG(n, ¢) are the lines not intersecting
I[m]. If m = n —2 or m = —1, then § would be a partial geometry, a
contradiction since we assumed S to be proper. Hence 0 <m <n —3. O

For ¢ even, we get the following result. It is clear that this theorem also
holds for ¢ odd, as the above theorem for ¢ odd is a stronger result.

Theorem 2.3.3 Let S = (P, L,1) be a (q,q+1)-geometry fully embedded in
PG(n,q). Assume that every plane of PG(n,q) that contains an antiflag of S
is a g-plane or a (q+1)-plane. Then P is the set of points of PG(n, q)\II[m],
for some 0 < m < n—2 and L is the set of the lines of PG(n,q) that are
disjoint from I[m)].

Since the above described (g, g+1)-geometry is very similar to the partial

geometry Hy, we will denote it by Hy™. In chapter 4, a characterization
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of Hy'™ will be given, based on the known characterization result for the
partial geometry Hp that uses the axiom of Pasch (also sometimes called
the axiom of Veblen-Young) [54].

2.4 The case in which there is a mixed plane and
B=q+1

Let S = (P, L,]) be a proper («, ¢+ 1)-geometry fully embedded in PG(n, q),
for @ > 1 and g odd. Assume that there is a mixed plane o.

We will determine what the restriction of S to ¢ can be. To do that,
suppose first that o contains only one point p through which there are ¢+ 1
lines of § in o. Then all points of ¢ belong to S, since through every point
of o there is a line of S. Now in o \ {p} there are @ — 1 lines of S through
every point. Hence the restriction of S to o \ {p} is a partial geometry
pg(q, @ — 2, — 1). Now using the formula for the number of points of a
partial geometry, we get that it contains (¢ + 1)(¢ + 1 — ¢/(a — 1)) points,
which should be equal to (¢ + 1)g, which is the number of points contained
in o\ {p}. So a =¢+1=p, a contradiction since we assumed S to be a
proper (a, g + 1)-geometry.

Now suppose that o contains more than one point through which there
are ¢+ 1 lines of S. Let I be the set of points of ¢ through which there are
q + 1 lines of §. We will prove that X is a maximal arc. Note that, since
o is a mixed plane, K # () and hence all points of o are points of S. Let L
be a line of S in ¢ that contains ¢ points of K. Counting the lines of S in o
intersecting L, it follows that there are 1+c¢q+ (¢+1—c)(a—1) lines of S in
o. Let M be a line of S in o that contains ¢ points of K. Then counting the
lines of S in o intersecting M, we get that there are 1+c'q+(g+1—c)(a—1)
such lines. Comparing these two results tells us that ¢ = ¢’. Hence on every
line of & in o there is a constant number ¢ of points of . It is clear that
on a line in ¢ that does not belong to S, there are 0 points of K. So K is a
maximal arc. Now since ¢ is odd, K has to be trivial (see [1]), or in other
words IC = (), || = 1 or K is the set of all points of an affine or a projective
plane. Since it was assumed that there is more than one point with ¢ + 1
lines of S through it, the points in o with ¢ 4+ 1 lines through them are the
points of an affine plane. This implies that @ = ¢. Hence all the points of o
are points of S, while there is exactly one line of o that does not belong to
S.

We conclude that there are three types of planes containing an antiflag
of S, namely g¢-planes, (¢ + 1)-planes and planes in which all points belong
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PG(m,q)

Figure 2.2: The (g, q + 1)-geometry SHy"™

to S and all lines but one line belong to §. In the next theorem, we use
again the notation P(n,q) \ P for the points set of PG(n, ¢), and II[m] and
A[m] for fixed m-dimensional subspaces of PG(m,q).

Theorem 2.4.1 Let S be a proper (a,q + 1)-geometry, a > 1 and q odd,
fully embedded in PG(n,q), such that there is at least one mized plane. Then
the points of S are the points of PG(n,q) \ II[m], with —1 < m < n —3, and
the lines of S are defined as follows. Let ¥ = {o1,...,01} be a partition of
the points of S, where | = (¢"~™ —1)/(¢"™ ~™ — 1), such that fori=1,... 1
we have that o; = Q;[m/]\ II[m], with Q;[m'] an m'-dimensional subspace of
PG(n,q) that contains II[m], and with m+2 < m' < n—2. The lines of S are
the lines that intersect q + 1 distinct elements of 3 in a point. A necessary
and sufficient condition for this partition and the (q,q+1)-geometry to exist
is that (m' —m)|(n —m).

Proof. Let S be a proper (a,q + 1)-geometry, a > 1 and ¢ odd, fully
embedded in PG(n, q), such that there is at least one mixed plane.
Consider a new geometry S&* = (P*, L£*,1*), with P* = P and with
L* = LU B, where B is the set of all lines of PG(n,q) that contain g + 1
points of S but that do not belong to £. Then §* satisfies the hypotheses of
theorem 2.3.2. So, applying that theorem to &*, it follows that the points of
PG(n, q) that are elements of P(n,q) \ P are the points of a subspace II[m)]
of PG(n,q), for m < n —2. If m = n — 2, then every plane would contain
a point that is an element of P(n,q) \ P, a contradiction since we assumed
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that there is a mixed plane. Hence m < n — 2. Note that, since in this case
there does not necessarily exist an a-plane, it is possible that m = —1.

It remains to prove that the lines of S are the lines not belonging to a
partition of the points of S in m/-dimensional spaces through II[m], inter-
secting pairwise in II[m], with m + 2 < m' < n — 2. By assumption there is
at least one mixed plane in PG(n,q). Such a plane contains a line M of B.

Let o be a plane spanned by M and a point of II[m]. Then o cannot
contain an antiflag of S. So ¢ does not contain a line of S. Since o was a
plane through M and an arbitrary point of II[m], this implies that all lines
contained in the (m + 2)-dimensional space (M, II[m]) and intersecting M,
do not belong to S. Let N be a line in (M, II[m]) that does not intersect M.
Then a plane spanned by N and a point u of M contains ¢+ 1 lines through
u that do not belong to S. This implies that N ¢ L, as otherwise i(u, N)
would be 0. Hence (M, II[m]) contains no lines of S. Through each point of
M, there are at least (¢™2 —1)/(q — 1) lines not belonging to S, namely all
the lines through such a point that are contained in the (m + 2)-dimensional
space (M, II[m]).

Assume that not all lines of B through the points of M belong to
(M,II[m]). Then there is a line M’ € B, that intersects M in a point v/,
such that M’ does not belong to (M, II[m]). In the same way as we did for
M, we get that the (m + 2)-dimensional space (M’ II[m]) contains no lines
of §. Tt follows immediately that the (m + 3)-dimensional space spanned
by (M,II[m]) and (M',TI[m]) does not contain a line of S. Indeed, if there
would be a line L of § in (M, M',1I[m]), then L would intersect both of the
(m+2)-dimensional spaces (M, II[m]) and (M’ ,TI[m]) in a point, as we have
proved above that L can not be contained in (M,II[m]) or in (M’ II[m]).
Now if L is skew to (M, II[m]) N (M',II[m]), then the plane (L, ') contains
no points of P(n,q) \ P. Hence (L,u) is a plane containing an antiflag of
S and at least two lines of B, being its intersection lines with (M, II[m])
respectively (M’ II[m]). This is a contradiction, as such a plane can not
exist. If the line L does intersect (M, II[m]) N (M',II[m]) in a point z, then
let N, be a line of B through z in (M, II[m]). The plane (L, N,) is contained
in the (m 4 3)-dimensional space (M, M’ TI[m]) and hence it intersects the
(m + 2)-dimensional space (M',II[m]) in a line N.. Clearly N. € B, since
(L,N,) is skew to II[m]. Hence (L, N,) is a plane that contains an antiflag
of § and at least two distinct lines of B, a contradiction. This proves that
(M, M' II[m]) does not contain lines of S.

Continuing in this way, we obtain that all lines of B through the points
of M are contained in a subspace PG(m/, q), for m +2 < m' < n — 2, that
contains II[m], and that this subspace A[m'] contains no lines of S. Clearly
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the number of lines through a point of S, on which there lies a point that is
an element of P(n,q) \ P, is a constant.

Since t + 1 is a constant, through every point of S in PG(n, ¢q) there are
a constant number of lines that do not belong to §. Hence through every
point of S there is a constant number of lines of B. It now follows from the
above that the lines of B are the lines contained in a partition of the points
of P(n,q) \ II[m] into m’-dimensional spaces through II[m], that pairwise
intersect in II[m)].

In the above we proved that the points that are elements of P(n,q) \ P
are the points of a subspace II[m] of PG(n,q), m < n — 2. The points of
PG(n,q) \ II[m] are partitioned into m'-dimensional subspaces of PG(n, q),
m+ 2 < m' < n— 2, that intersect pairwise in II[m]. All lines of PG(n, q)
contained in such an m'-dimensional subspace do not belong to S, while all
lines intersecting g + 1 of these subspaces in a point are lines of S.

A necessary and sufficient condition for this configuration to exist is that
the points of PG(n, ) \ II[m] can be partitioned into m'-dimensional spaces
pairwise intersecting in II[m]. Considering the factor space PG(n,q)/Il[m],
this is equivalent to the existence of a partition of an (n —m —1)-dimensional
projective space into (m’ —m — 1)-dimensional subspaces. Such a partition
exists if and only if (m' —m) | (n — m’) ([34], theorem 4.1.1). O

Note that for g even, it does not necessarily follow that o = ¢. Indeed, a
mixed plane o can be a plane containing ¢? + ¢ + 1 points of S, the lines of
S in o being all lines intersecting a (possibly non-trivial) maximal arc. In
this case @« = ¢ + 1 — ¢/d, where d is the order of the maximal arc. Hence
if we do not assume that ¢ is odd, then we have to assume that a = ¢, in
which case the above proof gives the following theorem.

Theorem 2.4.2 Let S be a (q,q+1)-geometry, fully embedded in PG(n,q),
such that there is at least one mized plane. Then the points of S are the
points of PG(n,q) \ I[m], with 0 < m < n — 3, and the lines of S are
defined as follows. Let X = {o1,...,01} be a partition of the points of S,
where | = (¢" ™ — 1)/(qm'*m — 1), such that for i = 1,...,1 we have that
oi = Qi[m'] \ O[m], with Q;[m'] an m'-dimensional subspace of PG(n,q)
that contains M[m], and with m +2 < m' < n —2. The lines of S are the
lines that intersect q + 1 distinct elements of 32 in a point. A necessary and
sufficient condition for this partition and the (q,q + 1)-geometry to exist is
that (m' —m)|(n —m).

In chapter 4, we will give a characterization of this (g, q + 1)-geometry,
that we will denote by SHg"™, because it is similar to the partial geometry
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Hy and the (g,q + 1)-geometry Hy"™ defined in section 2.3.

2.5 The case in which 8 =g¢

Let § = (P, L,1) be a proper («, q)-geometry fully embedded in PG(n, q),
with @ > 1 and g odd. We use again the notation P(n, g) for the point set of
PG(n,q). Assume that PG(n,q) contains a mixed plane 0. We determine
what the restriction of S to o can be. Let K be the set of points of o through
which there are ¢ lines of § in o.

Assume first that no pair of points of /C lie on a line of S. Let p be a
point of K. Then all the other points of K in ¢ lie on the unique line M,
through p that does not belong to S. In the affine plane o\ M, there are «
lines of S through every point. Hence the restriction of S to the affine plane
o\ M, is a partial geometry. From [49] it follows that the points and lines
of S in o\ M, are the points of a net, or that the lines of S in o, together
with the line M), are the lines of a dual hyperoval of the projective closure
of o\ M,. Since ¢ is odd, the hyperoval case can not occur. Hence the points
and lines of S in o \ M), are the points of a net. The points of P(n,q) \ P
in o, which is the projective closure of o \ M), are ¢+ 1 — a points of M,
while the lines of S in o are all lines of o intersecting M, in a point of S.
We therefore call the intersection of & with o the closure of a net.

Assume next that o contains two points of X that lie on a line of S.
Then either all points of ¢ belong to S, or there is exactly one point of o
that does not belong to S.

Assume that o contains one point y of P(n,q)\ P. There are « or ¢ lines
of § in o through every point of o different from y. Now we look at the
dual plane o”. In this plane, every line different from y” contains either «
or ¢ points of the form L”, with L € £. The line y” contains 0 such points.
Hence the set of points {L?|L € £, L C o} is a set of type (, q) in the affine
plane o”\y”. The complement of this set is a (0, g—«)-set in o\ y?, which
is a maximal arc. Since we assumed that ¢ is odd, a non-trivial maximal arc
cannot exist (see [1]). Hence the set {L”|L € L, L C o} is either one point
or all points of the affine plane o\ y”. The last case cannot occur, as it would
imply that o contains no lines of S, a contradiction with the assumptions.
Hence {LP|L € L,L C 0}“ is a point and this point is contained in o \ 3.
Dualizing again we get that o contains exactly one line, not through the
point y, that does not belong to S. It immediately follows that a = ¢ — 1.

Assume next that every point of o belongs to S. Then clearly there are
either ¢ or « lines of S in o through every point of ¢. This implies that in
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the dual plane o every line contains either ¢ or o points that are of the

form LP, with L € £. Hence the set of points {L”|L € L,L C o} is an
(a, q)-set in 0. The complement of this set is a (1,¢+ 1 — a)-set in o. From
([34], theorem 12.17) it follows that {L”|L € £,L C o)} is a unital or a
Baer subplane. This implies that ¢ is a square, and that ¢+1—-a = /g +1,
or thus @ = ¢ — /q. Taking the complement and dualizing again, we get
that the lines of S in o are either the lines intersecting a unital in /g + 1
points, or the lines tangent to a Baer subplane.

We conclude that there are three possibilities for the restriction of S to
a mixed plane o.

1. It is the closure of a net, as defined above.

2. The points of S in o are the points of o \ {z}, for a point z € o, while
the lines of § in ¢ are all lines in ¢ not through z, except for one line
M, such that z ¢ M. In this case « = ¢ — 1.

3. All points of o belong to §. The lines of § in ¢ are either the lines
intersecting a unital in /g + 1 points or the lines tangent to a Baer
subplane. In this case @ = ¢ — /q.

Soif a = ¢—1or a =gq—,/q, then there exist certain mixed planes,
that do not occur for ¢ — /g # o # ¢ — 1. We treat the cases @ = ¢ —1 and

a = q — ,/q separately.

2.5.1 Thecasea=q—1

If « = ¢ — 1, then there are no a-planes contained in PG(n,q). This follows
from the fact that for a maximal arc, the degree d of the maximal arc has
to divide q. As o = ¢ — 1, it is clear that « does not divide ¢. So there are
three different types of planes that contain an antiflag of S.

e Type I are the ¢g-planes.

e Type II are the planes in which the restriction of S is the closure of a
net. Note that, as « = g — 1, these planes contain exactly two points
that do not belong to S.

e Type IIT are the planes that contain one point x of P(n, ¢) \ P and one
line M that does not belong to S, such that = ¢ M.

Remark. Let § be a (¢ — 1, ¢g)-geometry fully embedded in PG(n,q), ¢
even and ¢ > 2. Then the planes containing an antiflag of S are precisely the
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planes of type I, IT and III as defined above. This follows from the previous
paragraphs, where we determined what the restriction of S to a mixed plane
looks like. Note that also for ¢ even, the case that the lines of S are ¢ + 1
lines of a dual hyperoval and the points of S are the points on these lines,
does not occur. Indeed, in this kind of planes there are one or two lines of S
through every point of S. Hence ¢ — 1 = 1, a contradiction as we assumed
that ¢ > 2. For this reason, the results in this section hold for any ¢, ¢ # 2.

Lemma 2.5.1 Let S = (P, L,1) be a (¢ — 1,q)-geometry, q # 2, fully em-
bedded in PG(n,q). Then every line of PG(n,q) contains 0, 1, 2 or ¢+ 1
points of P(n,q) \ P.

Proof. Let & = (P,L,I) be a (¢ — 1,q)-geometry fully embedded in
PG(n,q), with ¢ # 2. Assume that there exists a line M in PG(n,q) that
contains r points of P(n,q) \ P, with r ¢ {0,1,2,q + 1}. Then M contains
at least three points of P(n,q) \ P and at least one point w of S.

Assume first that » < g. Then every plane spanned by M and a line of S
through w contains an antiflag of S and hence it is of type I, IT or ITI. Now it
is clear that in a plane of type I, IT or I1I every line contains 0, 1 or 2 points
of P(n,q) \ P. This is a contradiction, as we assumed that r ¢ {0,1,2}.

Assume next that » = ¢. A plane through M cannot contain an antiflag
of §. In particular, every plane through M contains at most one line of &
through w. Since ¢t + 1 > 1, there are at least two lines of S through w in
PG(n,q). Hence there exists a plane 7 through w that contains an antiflag
of §. We denote the lines through w in 7w by L1,..., Lgy1. At least = ¢—1
of these lines belong to S. So we may assume that Lq,..., L, are lines of
S. The planes (M, L;), for i = 1,...,q — 1, contain a line of S, but they
can not contain an antiflag of S. Hence each of them contains ¢ points of
P(n,q) \ P, namely all the points not on the line L;, for i = 1,...,q — 1.
Now assume that (M, ) contains a point v of S, with u ¢ 7. Let L be a line
of § in 7 not through w. Then clearly the plane (u, L) contains an antiflag
of §. It follows that (u, L) is of type I, IT or III. This implies that (u, L) can
contain at most two points of P(n,q) \ P. However, (u, L) intersects each
of the planes (M, L;), for i € {1,...,q — 1}, in a line that contains ¢ points
of P(n,q) \ P. This is a contradiction. So we have proved that (M, n) \ =
contains no points of S.

If n = 3, then the above gives a contradiction, as the points of & have
to span PG(n, q). So we may assume that n > 4. Let z be a point of S that
does not belong to (M, ). Since S is a (¢ — 1, q)-geometry, there exists a
line N € L through z that intersects (M, ) in a point. Assume that there
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exists a point v’ € P in the four dimensional space (N, M, 7) that is not
contained in the three dimensional space (N, 7). Then (u', N) contains ¢
points of P(n, ¢) \ P on its intersection line with the three dimensional space
(M, 7). Hence (u', N} is a plane containing an antiflag of S and at least ¢
points of P(n,¢) \P. This is a contradiction, because every plane containing
an antiflag of S has to be of type I, II or III. Hence all the points of S in
the four dimensional space (N, M, ) are contained in the three dimensional
space (N, m). If n = 4, then the above gives a contradiction, since the points
of § have to span PG(n,q).

Now assume that II[m] is an m-dimensional subspace of PG(n, q), m > 4,
such that (M,N,n) C II[m] and such that all points of S in II[m] are
contained in a hyperplane Y[m — 1] of II[m]. If n = m then we have found
a contradiction, since the points of S have to span PG(n,q). So we may
assume that n > m. Let p be a point of S, p ¢ II[m]. Since S is connected,
there exists a line N, of S through p intersecting I1[m], and hence Y[m — 1],
in a point. Let I'[m + 1] be the (m + 1)-dimensional subspace spanned by
II[m] and N,. We will prove that all the points of S in I'[m+1] are contained
in the m-dimensional space (p, Y[m — 1]). Assume that there would be a
point p’ € P that is contained in I'[m + 1] but not in (p, Y[m — 1]). Then
the plane (p', N,) intersects II[m] in a line containing ¢ points that do not
belong to S. However (p’, N,) contains an antiflag of S, so it is a plane of
type I, IT or III, and hence it contains at most two points that do not belong
to S. This is a contradiction. It follows that all points of § in I'[m + 1] are
contained in the m-dimensional subspace (N,, Y[m — 1]).

Continuing in this way, after a finite number of steps we get that all the
points of S in PG(n, ¢) are contained in an (n — 1)-dimensional subspace of
PG(n,q). This is a contradiction, because we assumed that the points of S
span PG(n,q). This proves that every line of PG(n,q) contains 0, 1, 2 or
q + 1 points of P(n,q) \ P. O

Theorem 2.5.2 Let S = (P, L,1) be a (¢ — 1, q)-geometry fully embedded
in PG(n,q), with ¢ # 2. Then every plane that contains a line of S is a
plane of type 1, 11 or IIL.

Proof. From lemma 2.5.1 we know that PG(n,q) contains no lines on
which there are ¢ points of P(n, q) \ P. It follows that every plane through
a line of S contains an antiflag of S. So every plane through a line of S is a
plane of type I, II or III. O

Theorem 2.5.3 Let S = (P, L,1I) be a (¢ — 1, q)-geometry fully embedded
in PG(n,q), with ¢ # 2. Assume that all the planes containing an antiflag
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Figure 2.3: Fully embedded (¢ — 1, ¢)-geometry in PG(n, ¢), with no planes
of type II

of S are of type 1 or of type 111. Then the points of P(n,q)\ P are the points
of an (n — 2)-dimensional subspace Il[n — 2]. The lines of S are defined
as follows. Let ¥ = {o1,...,0n_y} be a partition of the points of S, such
that for i = 1,...n —r we have that o; = Q;[r] \ U[n — 2|, with Q;[r] an
r-dimensional subspace of PG(n,q) that intersects Illn — 2] in an (r — 2)-
dimensional space, for 1 < r < n — 2. The lines of S are the lines that
intersect q + 1 distinct elements of 3 in a point. Further, such a partition
exists for every 1 <r < n — 2, and gives a (¢ — 1, q)-geometry.

Proof. Let & = (P,L,I) be a (¢ — 1,q)-geometry fully embedded in
PG(n,q), with ¢ # 2. Assume that all the planes containing an antiflag
of § are of type I or of type III. From lemma 2.5.1 it follows that every line
of PG(n, q) contains 0, 1, 2 or g + 1 points of P(n,q) \ P. Since we assumed
that there are no planes of type II, there cannot be lines in PG(n,q) that
contain two points of P(n, g) \ P. It follows that the points of P(n,q)\ P are
the points of a subspace II[m] of PG(n, ¢) of dimension m, with m < n — 2.
Now let L be a line of §. We will prove that all points of S are contained in
(L,II[m]). Assume therefore that x is a point of S that is not contained in
(L,TI[m]). The plane (z, L) contains an antiflag of S and hence it contains
no point of P(n,q)\P. This is a contradiction, as by assumption every plane
containing an antiflag of S is of type I or III. Hence all the points of S are
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contained in the (m + 2)-dimensional space (L, II[m]). Since the points of S
span PG(n, q), this proves that m =n — 2.

Let B be the set of lines of PG(n,¢) that contain ¢ + 1 points of S but
that do not belong to §. There are ¢ + 1 lines of S through every point of
S and there are (¢" ! —1)/(g — 1) lines through a point of S that intersect
the subspace II[n — 2] in a point. So the number of elements of B through a
point of S equals ¢" ' —¢—1 and hence it is constant. It is clear that B # 0,
as otherwise it follows that S is a partial geometry Hy, a contradiction since
we assumed that S is a (¢ — 1, ¢)-geometry.

If through every point of S in PG(n,q) there is exactly one line of B,
then the elements of B are the lines of a line spread of PG(n,q) \ I[n — 2].

If through a point z of S there are two lines Ny and N» of B, then the
plane spanned by N7 and Ny can not contain a line of §, as otherwise this
plane would contain an antiflag of S, but a plane containing an antiflag of S
can not contain two lines of B. So all lines of (N1, N2) not through the point
(N1, No) NII[n —2], belong to B. If all elements of B through z are contained
in (N7, No), then through every point of S there has to be a plane containing
all elements of B through this point and all these planes are disjoint or their
intersection belongs to II[n — 2]. Hence the lines of S are the lines that are
skew to II[n — 2] and that are not contained in a partition ¥ of the points
of PG(n,q) \ II[n — 2] into planes intersecting II[n — 2] in a point.

If there is a line N3 of B through z, such that N3 is not contained in the
plane (N7, No), then the three dimensional space spanned by Ny, Ny and
N3 contains no lines of S. Indeed, assume that there would be a line L,
of § through z in (N7, Na, N3). The plane (Ni, No) contains no lines of S.
The plane (L,, N3) intersects (N1, No) in a line of B through z or in a line
that contains a point of II[n — 2]. In the first case, it follows that the plane
(L., N3) contains an antiflag of S and at least two lines of B, a contradiction
since every plane containing an antiflag of S is of type I or III. In the second
case, (L., N3) is a plane of type III. The plane (L,, N1) contains an antiflag
of § and a line of B, hence it is also a plane of type IIL. Let L’ be a line of S
through z in (L,, N1), L!, # L, (L, exists since ¢ # 2). The plane (L, N3)
then intersects (N1, N3) in a line of B. This is again a contradiction, since
(L', N3) cannot contain an antiflag of S and two lines of B. It follows that
all lines through z in (N7, N2, N3) are lines of B. Now if there would be a line
M of § in (N1, Ny, N3) not through z, then there would be 0 lines through
z that intersect the line M, a contradiction since S is a (¢ — 1, ¢)-geometry.
So we have proved that (N1, Ny, N3) contains no lines of S. If all elements
of B through z are contained in (N7, N2, N3) then through every point of
S there has to be a three dimensional space that contains all the lines of
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B through this point, and all these three dimensional spaces are disjoint or
their intersections are contained in II[n — 2]. Hence the lines of S are the
lines that are skew to II[n — 2] and that are not contained in a partition ¥ of
the points of PG(n,q) \ II[n — 2] into three dimensional spaces intersecting
[I[n — 2] in a line.

Now assume that I'[d] is a d-dimensional subspace of PG(n,q) through
z, d > 3, that contains no lines of S, such that I'[d] intersects PG(n,q)
in a (d — 2)-dimensional space. If all lines of B through z are contained
in T'[d], then through every point p of S there has to be a d-dimensional
space, intersecting II[n — 2] in a (d — 2)-dimensional space, and containing
all elements of B through p. Moreover all such d-dimensional spaces are
disjoint or their intersection belongs to II[n — 2]. If there is a line Ny of B
through z, Ny not contained in I'[d], then (I'[d], Ng4) contains no lines of S.
Indeed, by assumption I'[d] contains no lines of S. If there would be a line
L, of 8 through z, L, C (I'[d], Ng), then the plane (L,, N;) would intersect
I'[d] in a line of B or in a line that contains a point z of I1[n — 2].

In the first case, the plane (L., Ng) would contain a line of S and two
lines of B through z. This is a contradiction, since every plane containing
an antiflag of S is of type I or III.

In the second case, (L,, Ny) is a plane of type III. The plane (L,, N;)
contains an antiflag of S and a line of B, hence it is a plane of type III. Let
L’ be a line of S through z in (L,, Ny), L' # L, (L exists since ¢ # 2).

Then (L, N3) intersects I'[d] in a line of B. Indeed, the three dimensional
space (L, N3, N;) intersects I'[d] in the plane (Ny,z). Since the points of
P(n,q)\ P are the points of a subspace of PG(n, ¢), and N; does not contain
a point of P(n,q) \ P, = is the only point of P(n,q) \ P in (N1, z). Clearly
z ¢ (L', N3). Hence (L', N3) intersects T'[d] in a line of B. This is again a
contradiction.

So we have proved that (I'[d], N4) contains no lines of S through z. If
there would be a line M’ of S in (I'[d], Ng), z ¢ M', then it would follow from
the above that i(z, M') = 0, a contradiction since S is a (¢ — 1, ¢)-geometry.
So (I'[d], Ng) is a (d + 1)-dimensional space through z that contain no lines
of S.

Continuing in this way, we get that all the elements of B through z are
contained in an r-dimensional space through z intersecting II[n — 2] in an
(r — 2)-dimensional space and that this space does not contain lines of S, for
1 <r <n—1. Since the number of elements of 5 through a point of S is a
constant, it follows that the lines of S are the lines that are skew to II[n — 2]
and that do not belong to a partition 3 of the points of PG(n, ¢)\II[n—2] into
r-dimensional spaces intersecting II[n—2] in (r—2)-spaces, for 1 <r < n-—1.
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It remains to prove that such a partition ¥ of r-dimensional spaces exists
for each r, with 1 <r <n — 2.

It is clear that r # n—1, as otherwise 3 would be the set consisting of the
g+ 1 (n — 1)-dimensional spaces on II[n — 2], as in PG(n, ¢) any two (n —1)-
dimensional spaces intersect in a subspace of dimension at least (n — 2).
However we have proved in the previous paragraph that the intersection of
an element of ¥ with II[n —2] has to be (n — 3)-dimensional, a contradiction.
Hence r <n — 1.

If r = 1, then ¥ is a partition of PG(n,q) \ II[n — 2] into lines. In other
words, ¥ is a partial spread of PG(n,q). In [3] a partial spread A of lines
of PG(n, q) such that each line of A is skew to a given (n — 2)-dimensional
space is constructed as follows. Embed PG(n,q) in a (2n — 3)-dimensional
space PG(2n — 3,¢). In PG(2n — 3,q) one can take a spread A’ of (n — 2)-
dimensional spaces such that II[n — 2] € A’. The elements of A"\ {II[n — 2]}
intersect PG(n,q) in a partial spread A of lines such that every point of
PG(n,q) \ II[n — 2] is contained in a line of A and such that every element
of A is skew to II[n — 2]. So for r = 1, the partition ¥ is this partial spread
A.

Assume that 2 < r < n —2. We know that every element of ¥ intersects
II[n — 2] in an (r — 2)-dimensional space. Now let Y[r — 2] be an (r — 2)-
dimensional subspace of II[n — 2]. Let Q[n —r + 1] be an (n — r + 1)-
dimensional subspace of PG(n, ¢) skew to Y[r—2]. Then Q[n—r+1]NII[n—2]
is an (n — r — 1)-dimensional space. In the same way as in the previous
paragraph, we can take a partial spread A of lines of Q[n — r + 1] such that
every element of A is skew to Q[n — r + 1] N II[n — 2] and such that every
point of Q[n — r + 1] \ II[n — 2] belongs to an element of A. Now the set
Y= {(Y[r—2], M)|M € A} is a partition of the points of PG(n, g) \II[n—2]
into r-dimensional spaces through Y[r — 2]. Hence also for 2 < r < n — 2,
the partition Y exists.

That such a partition gives rise to a (¢ — 1, q)-geometry is easy to show.

O

Remark. If r # 1, then the elements of the partition ¥ of the points of
PG(n,q) \ II[n — 2] are not necessarily disjoint. Indeed, it is possible that
two different elements of ¥ both contain a point z of II[n — 2]. Note that
in the example given in the proof of the theorem, all elements of ¥ intersect
II[n—2] in the same (r —2)-dimensional space. If » = 1, then the elements of
Y are lines that are skew to II[n — 2]. Hence in the case r = 1, the elements
of ¥ are pairwise disjoint.
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Lemma 2.5.4 Let S be a (q — 1,q)-geometry fully embedded in PG(n,q),
for q # 2. Assume that PG(n,q) contains a plane 7 of type 1I. Let u be a
point of S, u ¢ w. Then the points of P(n,q) \ P in the three dimensional
space (m,u) are the points of two subspaces of PG(n,q), one of them being
a line, while the other one is a point or a line.

Proof. Let S be a (¢ — 1,q)-geometry fully embedded in PG(n,q), for
g # 2. Let w be a plane of type II. Let y; and ys be the two points of 7
that do not belong to S. Since ¢+ 1 is a constant, we know that n > 2. The
points of S span PG(n, ¢), so there is a point u of S not contained in 7. Let
p be a plane through u and a line of § in w. Then p contains an antiflag of
S. Hence p is of type I, II or III.

We denote the intersection point of the line (y;,y2) with the plane p by
w. Since p intersects 7 in a line of S, w is a point of S. Let L be a line
of § in p through w, such that L is not contained in 7. By theorem 2.5.2
we know that all planes through L contain an antiflag of S. Hence in every
plane through L there are one or two points of P(n,q) \ P. Denote the set
of points of P(n,q) \ P that are contained in (m, p) by X. Then it follows
that ¢ +2 < | X| < 2¢ + 2.

Through the line (y1,y2) there are at least ¢ — 1 planes that intersect p
in a line of S. Hence at least ¢ — 1 planes through (y;,y2) are of type II.
This implies that all the points of P(n,q) \ P in (7, p) are contained in at
most two planes through (y1,ys).

Assume first that all the points of P(n,q) \ P in (rm,p) are contained
in one plane 7. From lemma 2.5.1 it follows that every line of PG(n,q)
contains 0, 1, 2 or ¢+ 1 points of P(n,q) \ P. We will prove that 71 contains
a line on which there are no points of S. Assume therefore that every line
of 7y contains a point of S. Then every line of 7y contains 0, 1 or 2 points of
P(n,q)\P. We proved above that there are at least ¢+2 points of P(n, q)\ P
in (m, p). It follows that the points of P(n,q) \ P in 7, are the points of a
hyperoval. Let L, be a line of 71 that contains no points of P(n,q) \ P.
Then the ¢ planes through L;, in (7, p) different from 7y, contain an antiflag
of § and no point of P(n, g) \ P. This is a contradiction. So we have proved
that 7; contains a line on which there are ¢ + 1 points of P(n,q) \ P. Now
as on every line there are 0, 1, 2 or ¢ + 1 points of P(n,q) \ P, and as
q+2 < |X| <2¢+2, we can conclude that the points of P(n,q) \ P in r
are either the points on one line together with an extra point, or the points
on two intersecting lines.

Assume next that all points of P(n,q) \ P in (7, p) are contained in two
distinct planes 71 and 79, but not in one plane. Then both 73 and 79 cannot
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contain an antiflag of S.

We will prove that either 7 or 79 contains a line on which there is no
point of §. Assume that 7y contains no such line. Then from lemma 2.5.1
it follows that every line in 7; contains 0, 1 or 2 points of P(n,q) \ P, and
hence the points of P(n,q) \ P in 71 are the points of a (subset of an) arc.
This implies that 7 contains a line N on which there are ¢ + 1 points of
S. Since 71 does not contain an antiflag of S, the line N ¢ L£. All planes
through N different from 7| intersect 7 in a line of S. Hence these ¢ planes
contain an antiflag of S. As the line IV is contained in each of these planes,
they all have to be of type III, which means that they contain exactly one
point of P(n,q)\ P. As all points of P(n, )\ P are contained in 71 and 72, it
follows that 75 contains exactly ¢+ 2 points of P(n, ¢)\P. From lemma 2.5.1
it follows that every line in 75 contains 0, 1, 2 or ¢ + 1 points of P(n,q) \ P,
and hence the points of P(n,q) \ P in 7o are either the points of one line
together with one extra point or it are the points of a hyperoval.

Now assume the latter case. Let N N 7o be the point p. Then through p
we can take a line N, in 79 that contains no point of P(n,q) \ P. It follows
that the plane (N, N,) contains no point of P(n,q) \ P. However, in the
three dimensional space (, p) the plane (IV, N,) has to intersect 7 in a line.
Since (N, N,) does not contain points of P(n,q) \ P, this line belongs to
S. Hence (N, N,) contains an antiflag of S and no point of P(n,q) \ P, a
contradiction as every plane containing an antiflag of S is of type I, II or
ITI. This proves that the points of P(n,q) \ P in 7o are the points on one
line together with one extra point. This proves that either 7; or 7o contains
a line on which there is no point of S.

Hence we may assume that the line (y;, y3) contains no points of S, with
ys € T, Y1 # ys # y2. By assumption not all points of P(n,q) \ P are
contained in 71. Hence there is a point y4 of P(n,q) \ P in 72, y1 # y4 # yo.
Every plane in (7, p) through the line (y2,y4) contains at least 3 points of
P(n,q) \ P, hence every such plane contains no lines of S. Now let o be
a plane through L that does not contain yo or y4, with L again a line of
S through w in p, L ¢ m. Then o intersects the line (y2,y4) in a point z.
All the lines through z in o are contained in some plane through (yo,y4)
in (m,p), so there are no lines of S through z in ¢. This implies that
z ¢ P; since if z € P, then there would be 0 lines through z that intersect
L, a contradiction since S is a (¢ — 1, q)-geometry. Hence the line (yo,y4)
contains at least 3 points of P(n,q) \ P. From lemma 2.5.1 it follows that
(y2,y4) contains ¢ + 1 points of P(n,q) \ P. Hence (7, p) contains at least
2¢q + 2 points of P(n,2) \ P, namely the points of the disjoint lines (y, y3)
and (y2,y4). Since we have proved above that |X| < 2¢+ 2, these points are
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all points of P(n,q) \ P in (r, p). So the points of P(n,q) \ P are the points
of two disjoint lines in (7, p).

We conclude that the points of P(n, ¢) \ P in the three dimensional space
(m, p) are the points of two subspaces of PG(n, q) of dimension less than or
equal to 1 and that at least one of these subspaces is a line. O

Note that, since m was an arbitrarily chosen plane of type IT and (7, p) an
arbitrarily chosen three dimensional space through = and a point of § not in
m, it follows from the above lemma that for every three dimensional subspace
of PG(n, q) through a plane of type II, the points of P(n,¢) \ P in this three
dimensional subspace are the points of two subspaces of dimension less than
or equal to one, and that at least one of these subspaces has dimension one.

Lemma 2.5.5 Let S be a (q — 1,q)-geometry, for q # 2, fully embedded in
PG(n,q). Assume that PG(n,q) contains a plane of type 11. Then the points
of P(n,q) \ P are the points of two distinct subspaces of PG(n,q). One of
these subspaces has dimension n — 2, the other one has dimension less than
or equal to n — 2.

Proof. Let S be a (¢ — 1,¢)-geometry fully embedded in PG(n,q), for
q # 2. Let m be a plane of type II. Let y; and y» be the two points of
P(n,q) \ P that are contained in 7. Let w be a point of S, w ¢ . Then
from lemma 2.5.4 it follows that the points of P(n,q) \ P in (m,w) are the
points of two distinct subspaces of dimension at most one, one of them being
a line.

If n = 3, then the lemma is proved. So we may assume that n > 3.
Now let II[m] be an m-dimensional subspace of PG(n, q), m > 3, such that
the points of P(n,q) \ P in II[m] are the points of two subspaces Y[m — 2]
and Q[r] of dimension m — 2 and r respectively, with 0 < r < m — 2, and
such that (m,w) C II[m]. If m = n, then the lemma is proved. So we may
assume that m < n. Let II'[m + 1] be an (m + 1)-dimensional subspace of
PG(n, q) through II[m] and a point v’ of S in PG(n, ¢) \ II[m]. Such a point
u’ exists because the points of S span PG(n,q). We will prove that the
points of P(n,¢) \ P contained in IT'[m + 1] are the points of two subspaces
of TI'[m + 1] of dimension m — 1 and 7' respectively, with 0 <7’ <m — 1.

It immediately follows that IT'[m + 1]\ II[m] contains a point y that does
not belong to . Indeed, assume that all the points of ITI'[m + 1] \ II[m]
would belong to S. Then a plane in II'[m + 1] that intersects II[m] in a line
of S contains no point of P(n,q) \ P (Note that II[m] contains lines of S,
since (m,w) C II[m]). This is a contradiction because we know that every
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Figure 2.4: Step 1. Assume that (y, Y[m — 2]) contains a point v of S.

plane that contains an antiflag of S is of type I, II or III. So not all points
of IT'[m + 1] \ II[m] belong to S.

Step 1. We will prove that there is an (m—1)-dimensional space through
T[m — 2] that contains no point of S.

Assume therefore that the subspace (y, T[m — 2]) contains a point v of
S. We will construct an (m — 1)-dimensional subspace A[m — 1], such that
Alm — 1] # (y, Y[m —2]) and such that A[m — 1] does not contain a point of
S. Let (y,v) N YT[m — 2] be the point y. Let L, be a line of § in II[m]. The
plane (v, L,) is a plane containing an antiflag of S. So in (v, L,) there are
at least ¢ —1 lines of S through v that intersect II[m]. We denote these lines
by Li,...,L4 1. By theorem 2.5.2, the plane (L;,y) contains an antiflag of
S. It contains the points y and § of P(n,q) \ P, so it is a plane of type IL
Hence (y,v, L,) is a three dimensional space that contains a plane of type
II. From lemma 2.5.4, it follows that the points of P(n,q)\ P in (y,v, L,) are
either the points of two lines or one point and one line. The plane (v, L,)
contains one or two points of P(n,q) \ P. Let y, be a point of P(n,q) \ P
in (v, Ly). Then either (y,y,) or (7,y,) is a line containing ¢ + 1 points of
P(n,q) \ P. Note that if (v, L,) is of type II, then through both y and g
there is a line containing ¢ + 1 points of P(n,q) \ P. The three dimensional
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space (y,v, L,) intersects II[m] in a plane containing an antiflag of S. Now
there are two possibilities.

The first possibility is that the three dimensional space (y,v,L,) is dis-
joint from Q[r]\T[m—2]. Then clearly the point {u} = (y, y,)NII[m] belongs
to S. Hence the line (7, y,) is a line containing g 4+ 1 points of P(n,q) \ P.
There is a line L, of S through w in II[m]. Indeed, since (w,7) C II[m)],
II[m] contains lines of S. So if there are no lines of S through v in II[m],
then i(u, L) = 0 for a line L of S in II[m], which is clearly a contradiction.
The plane (y, L,) contains two points of P(n,q) \ P, namely y and y,. By
theorem 2.5.2 every plane through L, contains an antiflag of S. So the plane
(y, L) is a plane of type II. Hence by lemma 2.5.4, the points of P(n,q) \ P
in every three dimensional space through (y, L,,) and a point of T[m — 2] are
either the points of two lines or it are the points of one line together with
an extra point. Since (y,y,) does not contain ¢ + 1 points of P(n,q) \ P,
this implies that for each point Z of Y[m — 2] either (Z,y) or (Z,y,) is a line
containing no points of S.

Now we will prove that for every & € Y[m — 2], the line (y,, Z) does not
contain a point of S. Let Nj be a line through ¢ in Y|[m — 2]. Then Ny
contains ¢ + 1 points of P(n,q) \ P. We look at the plane (y, Ng). Since
(y,y) contains the point v of S, lemma 2.5.1 implies that either y and the
points of the line Nj are all points of P(n,q) \ P in (y, Nj), or the points of
P(n,q) \ P in (y, Nj) are the points of Ny and the points of a line through
y. Hence there are at least ¢ points 21 = ¢, 22,..., 2, on Nj for which the
lines (y, z1), ..., (y, zg) contain points of S. By the previous paragraph, we
know that for every z € T[m — 2] either (y, Z) or (yy, Z) is a line that does
not contain points of S. Since (y, z1),...,(y, 2,) are all lines that contain
points of S, we may conclude that (y,,21),..., (yu, zy) are lines that contain
no points of S. Now we look at the plane (y,, Nj). It contains the lines
(Yo, 21), - -5 (Yu, 2¢). By lemma 2.5.1, this implies that (y,, Ngj) contains no
points of S. Since Ny was an arbitrarily chosen line through g in Y[m — 2],
it follows that every point of (y,, Y[m — 2]) does not belong to S. Hence
(yy, T[m —2]) is an (m — 1)-dimensional subspace of II'[m + 1] that contains
no points of S.

The second possibility is that the three dimensional space (y,v,L,) con-
tains a point p of Qr]\ Y[m — 2]. In this case 7 is a point of T[m — 2]\ Q[r].
From lemma 2.5.4, it follows that the points of P(n,q) \ P in the three di-
mensional space (y,v, L,) are either the points of two lines or one points
and one line. Since (y, ) and (7, p) both contain points of S, the line (y, p)
has to be a line that contains g + 1 points of P(n,q) \ P.
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Assume first that < m — 2. Then the dimension of (7, Q[r]) is less than
or equal to m — 2. So there is a line L C II[m], L € L, that is skew to
(g,9Q[r]). The plane (L,y) is disjoint from Q[r] and contains an antiflag of
S. Hence, by the previous part of the proof, the result follows, replacing the
plane (v, L,) by the plane (v, L).

Now assume that r = m — 2. Take a line through ¢ and a point p’' of
Q[r]\Y[m—2]. Then (g,p’) contains a point w’ of S. Through w' we can take
a line L,y of S. The plane (L, ) contains two points of P(n,q) \ P, hence
it is of type II. From lemma 2.5.4, it follows that the points of P(n,q)\ P in
the three dimensional space (L, ¥,y) are either the points of two lines or
it are the points of one line together with an extra point. Since (7,y) and
(7,p") both contain points of S, this implies that (y,p’) is a line containing
g + 1 points of P(n,q) \ P. Since p' was arbitrary chosen in Q[r]\ Y[m — 2],
every line through y and a point of Q[r] \ T[m — 2] is a line containing
no point of §. From lemma 2.5.1, it follows that no line of PG(n,q) can
contain ¢ points of P(n,q) \ P. Hence we get that the space (y,Q[r]) can
not contain a point of S. Since by assumption r = m — 2, the space (y, Q[r])
is (m — 1)-dimensional.

Hence we proved that IT'[m~+1] contains an (m—1)-dimensional subspace
(7, Y[m — 2]) of points of P(n,q) \ P, with g € II'[m + 1] \ I[m].

Step 2. It remains to prove that the points of P(n,q) \ P in II'[m + 1]
are the points of two subspaces of dimension less than or equal to m — 1.

If all points of P(n,q) \ P are contained in Q[r] U (g, T[m — 2]), then the
lemma is proved. So assume that there is a point Z of P(n, ¢) \ P that is not
contained in Q[r] U (g, Y[m — 2]). Let (y,Zz) NII[m] be the point .

Assume first that T is a point of P(n,q) \P. Then the line (7,Z) contains
3 points of P(n,q) \ P. From theorem 2.5.2 it follows that (y,Z) contains
no points of §. We will now prove that every line through Z and a point
of T[m — 2] \ Q[r] contains ¢ — 1 points of S. Indeed, let 7, be a point of
Tim — 2]\ Q[r]. Since T € Q[r]\ YT[m — 2], the line (y;,7) contains ¢ — 1
points of S. Now we look at the plane (7, 7,7;). It contains the lines (7, Z)
and (7,7;), on which there are no points of S. It contains also the line
(71, T) on which there are ¢ — 1 points of S. By lemma 2.5.1 we know that
the plane (7,7,7;) can not contain other points of P(n,q) \ P. Hence the
line (y;,Z) contains ¢ — 1 points of S. Since §; was an arbitrary point of
T[m—2]\ Q[r], all lines through Z and a point of Y[m — 2]\ Q[r] contain ¢—1
points of S. Now, let p be a point of Q[r]\ Y[m — 2], p # T. Let Ny be a line
through p that intersects Y[m — 2] \ Q[r]. Through a point of S on Ny we
can take a line Ly of S in II[m]. The plane (Lg, Np) is of type II. By lemma
2.5.4, we know that the points of P(n,q) \ P in the three dimensional space
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Figure 2.5: Assume that Z is a point of P(n,q) \ P, Z not contained in
(,T[m —2]) UQ[r]

(Lp, Ny, Z) have to be either the points of two lines or the points of one line
together with an extra point. We have already shown that for every point
xz € Y[m —2]\ Q[r] the line (Z, z) contains points of S. Hence (Z,p) is a line
containing no point of S. Since p was an arbitrary point of Q[r] \ T[m — 2],
we get that (z,Q[r]) contains no point of S (here we also use lemma 2.5.1
to prove that also the subspace (z,Q[r] N Y[m — 2]) contains no points of
S). Since § € (z,Q]r]), we get that the subspaces (g, Y[m — 2]) and (7, Q[r])
contain no point of S.

If all points of P(n,q) \ P are contained in (g, Q[r]) and (g, Y[m — 2]),
then the lemma is proved. Assume therefore that there is a point Z’ of
P(n,q) \ P that does not belong to either (g, Y[m — 2]} or (g, [r]). Clearly
the line (7,Z') intersects II[m] in a point Z’' of S. Through Z' we can take a
line Ly of S, Ly C II[m]. Let p’ be a point of Q[r]\ T[m — 2]. The plane
(P, Lw) m contains two points of P(n,q) \ P, namely the point 7’ and a
point 7' of Y[m — 2]\ Q[r]. Hence it is a plane of type II. From lemma
2.5.4, it follows that the points of P(n,q) \ P in the three dimensional space
(L ,5,p') are either the points of two lines or the points of one line together
with an extra point. However, this three dimensional space contains the two
lines (7,7') and (7,p’) that contain no point of S, and the point Zz’. This is
a contradiction. So the points of P(n,q) \ P in II'[m + 1] are the points of
the two subspaces (g, Y[m — 2]) and (g, Q[r]). The subspace (g, T[m — 2])
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is (m — 1)-dimensional, while (7, Q[r]) has dimension less than or equal to
m — 1.

Assume next that T is a point of S. Let Lz be a line of § through ¥ in
II[m]. The plane (g, Lz) contains two points of P(n,q) \ P, namely 7 and Zz.
So it is of type II. Using theorem 2.5.2, we see that all planes through Lz
in II[m] contain an antiflag of S. Let p’ be a point of Q[r]\ T[m — 2]. Then
(P, Lz) is a plane of type II. The three dimensional space (', 7, Lz) contains
two planes through Lz of type II, namely (7, Lz) and (p, Lz). By lemma
2.5.4, the points of P(n,¢) \ P in this three dimensional space are the points
of two lines or the points of one line together with an extra point. Since
(7,Z) contains points of S, and (g, Y[m — 2]) contains no points of S, the
line (Z,7') has to contain ¢+ 1 points of P(n,q) \ P. Since ' was arbitrarily
chosen in Q[r] \ T[m — 2], we know that every line through z and a point
of Q[r] \ Y[m — 2] contains no point of S. Lemma 2.5.1 then tells us that
(Z,[r]) contains no point of S. If all points of P(n,q) \ P are contained in
(z,Q[r]) or (g, Y[m —2]), then the lemma is proved. Assume now that there
is a point z* of P(n, q) \ P that does not belong to (y, Y[m — 2]) or (z, Q[r]).
If (g,z*) intersects II[m] in a point of Q[r]|, then we can apply the previous
part of the proof, replacing z* by z. It follows that (y, Q[r]) contains no point
of S. However, it also would follow that all points of P(n,¢) \ P in IT'[m + 1]
belong to (g, T[m — 2]) and (g, [r]), a contradiction since by assumption
(7,Z) intersects II[m] in a point of S and Z € P(n,q) \ P. Hence we may
assume that the line (g,z*) intersects II[mn] in a point ' € P. In the same
way as we did for Z, one can prove that (z*,{2[r]) contains no points of S.
Now (z,Q[r]) and (z*, Q[r]) span an (r +2)-dimensional space Q'[r+2]. The
space Q'[r + 2] intersects (7, Y[m — 2]) in a space of dimension at least r.
Hence there are points of (7, T[m — 2]) \ Q[r] contained in Q'[r + 2].

Suppose first that the (r+1)-dimensional space Q'[r+2]NII[m] is disjoint
from Y[m — 2]\ Q[r]. Let §; be a point of (g, Y[m — 2]) \ Q[r] in Q'[r + 2].
Then by the assumption 7; does not belong to II[m]. A line through 7, in
Q'[r + 2] disjoint from Q[r] contains at most ¢ points of P(n,q) \ P, since
it intersects II[m] in a point of S. Moreover this line contains at least 3
points of P(n,q) \ P, namely the point 7; and its intersection points with
the spaces (Z, Q[r]) and (', Q[r]). This is in contradiction with lemma 2.5.1.

Suppose next that the (r + 1)-dimensional space '[r + 2] N II[m] is
not disjoint from Y[m — 2]\ Q[r]. Let 7, be a point of Y[m — 2]\ Q[r] in
Q[r + 2] NII[m]. Then every line through 7, in the space Q'[r + 2] that
does not contain a point of Q[r], contains at least 3 points of P(n,q) \ P.
By lemma 2.5.1, every such line has to contain ¢ + 1 points of P(n,q) \ P.
Now let My, be a line through 7, that intersects Q[r] \ T[m — 2] in a point.
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Then My, contains ¢ — 1 points of S. Take a plane through My, in Q'[r 4 2],
that intersects II[mn] in the line Mg,. The points of P(n,¢) \ P in this plane
are the points of an affine plane together with two extra points. By lemma
2.5.1, such a plane can not exist. This proves that all points of P(n,q) \ P
have to be contained in (g, T[m — 2]) or in (Z,Q[r]). So we have proved
that the points of P(n,q) \ P in II'[m + 1] are the points of two subspaces
of dimension at most m — 1 and that one of the subspaces has dimension
m — 1.

If m = n+ 1, then the lemma is proved. So assume from now on that
m < n —1. Let I'[m + 2] be an (m + 2)-dimensional subspace containing
II'[m + 1] and a point of § not in II'[m + 1]. In the same way as above, we
can prove that the points of P(n,q) \ P in I'[m + 2] are the points of two
subspaces, of dimension m resp. r”, for 0 < r” < m.

After a finite number of steps, we obtain that the points of P(n,¢) \ P in
PG(n,q) are the points of two subspaces of PG(n, q) of dimension at most
n — 2 and that one of these subspaces has dimension n — 2. O

Lemma 2.5.6 Let S be a (¢ — 1,q)-geometry, q # 2, fully embedded in
PG(n,q). Assume that PG(n,q) contains a plane of type 11. Let Il[n — 2]
and Q[r] be the two subspaces of points of P(n,q)\ P, of dimension n—2 and
r respectively, for 0 < r < n —2. Let B be the set of lines of PG(n,q) that
contain q + 1 points of S and that do not belong to S. Assume that B # (.
Then the elements of B in PG(n,q) through a point u € P are contained in
an l-dimensional subspace ¥, [l] of PG(n,q), for r+2 <1 < n—2, such that
(u, Qr]) C U,[l]. Moreover U,[l] contains no lines of S.

Proof. Let S be a (¢ — 1,¢)-geometry fully embedded in PG(n,q), for
q # 2. Then from lemma 2.5.5 it follows that the points of P(n,q) \ P are
the points of two subspaces II[n — 2] and Q[r] of dimension n — 2 and r
respectively, for 0 < r < n — 2. Let B be the set of lines of PG(n,q) that
contain ¢ + 1 points of S but do not belong to S. Assume that B # ().

Let M; be a line of B in PG(n,q). Let u € M;. We will prove that the
subspace (M7, Q[r]) contains no lines of S. Assume therefore that (M, Q[r])
contains a line L € L. From theorem 2.5.2 we know that every plane through
L contains an antiflag of S. Let y be a point of Q[r] \ II[n — 2]. Then the
plane (L,y) contains an antiflag of S and two points of P(n,q) \ P, namely
y and its intersection point with II[n — 2]. So (L,y) is a plane of type IIL.
This implies that (L, y) does not contain a line of B.

Assume first that Q[r] NII[n — 2] is non-empty. Then Q[r] NII[n — 2] is
(r — 1)-dimensional or (r — 2)-dimensional. In the (r 4+ 2)-dimensional space
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(M1,[r]), the plane (L, y) intersects the subspace (M7, Q[r] NII[n — 2]) in
a point or in a line. This implies that there exists a point v of S in (L, y),
v ¢ L, such that the plane (M, v) contains a point of Q[r]\ II[n — 2]. Hence
(v, M1) contains the line M; of B and two points of P(n,q) \ P. It follows
that there are no lines of S contained in the plane (v, My).

Let N be a line through v in the plane (v, M7) not through a point of
P(n,q) \ P. Then N is a line of B. Now we look at the three dimensional
space spanned by N and (L,y). It intersects 2[r] in a line through y. Since
y is a point of Q[r] \ II[n — 2], we can choose a point y’ on this line that
also belongs to Q[r] \ II[n — 2]. The plane (y', N) then contains two points
of P(n,q) \ P and the line N of B. Hence it can not contain a line of S.
However, the plane (y', N) intersects the plane (y, L) in a line, since these
two planes belong to a three dimensional space. This line does not contain
the point y, since y ¢ (y', N). If this line contains no point of II[n — 2], then
it is a line of £. In that case we have found a contradiction, since (y', N)
can not contain a line of . If this line contains a point of II[n — 2], then we
replace y' in the previous argument by a point y” of Q[r] \ II[n — 2] on the
line (y, '), y # y" # /. Note that 3" exists as by assumption ¢ < 3. We get
a plane (y”, N) that contains two points of P(n,q) \ P, the line N of B and
a line of S on its intersection with the plane (L,y). This is a contradiction.
We conclude that (M, Q[r]) cannot contain a line of S.

Assume next that Q[r] NII[n — 2] = (. Then Q[r] is a point or a line. If
Q[r] is a point, then the plane (M7, Q[r]) contains two points of P(n,q) \ P
and the line M; of B. Hence it does not contain a line of S. If [r] is a line,
then (M, Q[r]) is a three dimensional space intersecting II[n — 2] in a line.
Hence this three dimensional space contains two lines with ¢ + 1 points of
P(n,q) \ P. Every plane through M; contained in it then clearly contains
two points of P(n,q) \ P. Hence every line of (M, Q[r]) that intersects M
does not belong to S. Now assume that (M, Q[r]) contains a line L of S,
L skew to My. Then for a point z € M, it follows that i(z, L) = 0, which
is clearly a contradiction. We conclude that also in this case (M, [r]) can
not contain a line of S.

So we have proved that (Mp,Q[r]) does not contain a line of S. Now
assume that Y[d] is a d-dimensional subspace of PG(n,q) containing u and
Q[r], such that Y[d] contains no lines of S, for r +2 < d < n —2. If all
elements of B through u are contained in YT[d], then the lemma is proved,
since v was an arbitrarily chosen point of S. So assume that there is a line
M; of B through u that is not contained in Y[d]. We will prove that the
(d + 1)-dimensional space (Y[d], M2) cannot contain a line of S.
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From the first part of the proof, it follows that the (r 4+ 2)-dimensional
space (2[r], M2) contains no lines of S. Let I'[r+2] be an (r+2)-dimensional
subspace of T[d] that contains v and Q[r]. Then I'[r+2] intersects (M2, Q[r])
in the (r 4+ 1)-dimensional space (u, Q[r]). Define A[r + 3] = (['[r + 2], Mo).
We will prove that Alr + 3] contains no lines of S. Assume therefore that
Alr + 3] contains a line L' of S.

The space II[n — 2| intersects A[r + 3] in an (r 4+ 1)-dimensional space,
and it intersects I'[r42] and (My, Q[r]) in an r-dimensional space. There are
(¢"*t?—1)/(g—1) planes through L' in A[r+3]. At most 3(¢"*'—1)/(¢—1)—
2(¢"t—1)/(g—1) planes through L’ in A[r+ 3] contain a point of P(n,q)\ P
on their intersection line with I'[r + 2] or with (My, Q[r]). It follows that
there are (¢"+2 — 1)/(g— 1) = 3(¢"* — 1)/(g— 1)+ 2(¢" 1 — 1)/(g— 1) planes
through L' in A[r + 3] that intersect both I'[r + 2] and (M3, Q2[r]) in a line of
B. Since (¢ ~ 1)/(g — 1) 3(¢"* — 1)/(g — 1) +2(¢" L ~ 1)/ (g 1) > 0,
there exists a plane containing an antiflag of S and two elements of B, a
contradiction. This proves that A[r 4+ 3] can not contain a line of S.

Now let I''[r+3] be an (r+3)-dimensional subspace of YT[d] that contains
['[r+2]. Then I''[r+3] intersects A[r+3] in the (r+2)-dimensional subspace
[[r + 1]. Let A'[r + 4] be the (r + 4)-dimensional subspace spanned by
Alr + 3] and I'[r + 3]. Assume that A'[r + 4] contains a line L” of S. There
are (¢"T3 — 1)/(q — 1) planes through L" in A’[r + 4]. At most 2(¢" 2 —
D/(g—1)+ (¢ =1)/(g—1) —2(¢" ' —1)/(qg — 1) planes through L" in
A'[r +4] contain a point of P(n, ¢)\ P on their intersection line with I''[r+ 3]
or with A[r + 3]. Tt follows that there are (¢"*3 —1)/(¢ — 1) — 2(¢" "2 —
/(g =1) = (@ =1)/(¢g—1) +2(¢"" = 1)/(g — 1) planes through L"
in A'[r + 4] that intersect both I'[r 4+ 3] and A[r + 3] in a line of B. Since
(@ =1)/(g=1)=2(¢""*~1)/(¢=1)~(¢""" =1)/(g=1)+2(¢" " ~1)/(¢—1) >
0, there exists a plane containing an antiflag of S and two elements of B,
a contradiction. This proves that A’[r + 4] cannot contain a line of S.
Continuing in this way, we get after a finite number of steps that the (d+1)-
dimensional space (Y[d], M2) can not contain a line of S.

Using induction on the dimension d, we get that all elements of B through
u are contained in an [-dimensional subspace U,[l] of PG(n,q) through u
and Q[r], for 7 +2 <[ < n — 2 and that this subspace contains no lines of
S. O

Remark. In the previous lemma we associate with every point u of S
a subspace ¥[l] containing u. Note that the dimension [ of ¥[[] is not
necessarily the same for all points u of S.
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Figure 2.6: Fully embedded (q — 1, ¢)-geometries in PG(n, q) with planes of
type II

Theorem 2.5.7 Let S be a (q — 1, q)-geometry fully embedded in PG(n,q),
for q # 2. Assume that there is a plane of type II. Then the points of
P(n,q) \ P are the points of two subspaces II[n — 2] and Qr] of PG(n,q), of
dimension n —2 and r respectively, for 1 <r < mn—2, with Q[r]NIln—2] an
(r—2)-dimensional space. The lines of S are either all lines of PG(n, q) that
contain q+1 points of S, or they are defined as follows. Let ¥ = {o1,...,01}
be a partition of the points of S, where | = (¢"™" —1)/(¢%" — 1), and such
that for i =1,...,1 we have that o; = A;[d] \ (II[n — 2] U Q[r]), with A;[d] a
d-dimensional subspace of PG(n,q) that contains Q[r], and r+2 < d < n—2.
The lines of S are the lines that intersect q + 1 distinct elements of ¥ in a
point. A necessary and sufficient condition for such a partition to exist is
that (d —r)|(n —r). Further, if (d —7)|(n —71) andn —2>d > r+2, then
this partition gives a (q — 1, q)-geometry.

Proof. Let S be a (¢ — 1, q)-geometry fully embedded in PG(n,q), for
q # 2. Assume that there is a plane of type II. In lemma 2.5.5 we have
proved that the points of S are the points of PG(n, ¢) not contained in two
subspaces [1[n—2] and Q[r] of PG(n, g), of dimension n—2 and r respectively,
with 0 < r < n—2. Now we want to determine which lines belong to S. Let
B be the set of lines of PG(n, q) that contain ¢ + 1 points of S but that do
not belong to §. We distinguish two cases.

Case 1. Assume that Q[r| intersects II[n — 2] in an (r — 1)-dimensional
space, r > 0.

Then (Q[r],II[n — 2]) is an (n — 1)-dimensional space. We denote it by
Y[n—1]. Through a point of S contained in Y[n—1], exactly (¢" 1—1)/(g—1)
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lines contain a point of P(n,q) \ P. Through a point of S not contained in
Y[n—1], there are (¢"~' = 1)/(¢= 1)+ (¢ = 1)/(¢=1) = (¢" - 1)/ (¢~ 1) =
("' —1)/(q — 1) + ¢" lines that contain a point of P(n,q) \ P. So it is
clear that B # (), as otherwise the number of lines of S through a point of
S would not be a constant.

Now we count the number of elements of B through a point v € P.
From lemma 2.5.6 it follows that the elements of B through v are contained
in some d-dimensional subspace ¥[d] containing v and [r]. It is clear that
U[d] ¢ Y[n — 1], as otherwise there would be no elements of B through the
points of § in ¥[d], and then ¢ + 1 would not be constant. Hence Y[n — 1]
meets U[d] in a hyperplane of ¥[d]. If v € (Y[n — 1] N ¥[d]), then there are
(¢ =1)/(g—1)— (g "' =1)/(g — 1) = ¢?! elements of B through v. If
v € (¥[d] \ T[n — 1]), then there are (¢ —1)/(q — 1) — (¢* ' = 1)/(g — 1) —
(' =1)/(g—1)+(¢"=1)/(g—1) = ¢*~' —¢" elements of B through v. Now,
since t+1 is a constant, if through a point of Y[n — 1] there are ¢ elements of
B, then through a point not contained in Y[n — 1] there are ¢ — ¢" elements
of B. This implies that the dimension of the subspace of elements of B has
to be the same for every point of S. Hence the subspaces containing the
elements of B through the points of S are the elements of a partition ¥ of
the points of S, and every element of 3 has the same dimension d. Clearly
r+2<d<n-2.

There are ¢"+¢"~! —¢" points of S in PG(n, q). Let ¥[d] be an arbitrary
element of ¥. We count the number of elements of P that are contained
in U[d]. We know that ¥[d] is a d-dimensional subspace of PG(n,¢) that
intersects II[n — 2] in a (d —2)-dimensional space. Indeed, ¥[d] contains lines
of B, and so the dimension of II[n — 2] N ¥[d] can not be more than d — 2.
Hence the points of S in ¥[d] are all points of ¥[d] that are not contained
in Q[r] and neither in II[n — 2] N ¥[d]. So we get that there are

qd+1 -1 qdfl -1 qT+1 -1 qr -1

qg—1 qg—1 g—1 g—1’

d—1

or thus ¢? + ¢! —¢" points of S in ¥[d]. Since ¥[d] was an arbitrary chosen

element of S, there are ¢? 4 ¢4~ — ¢ points of S contained in every element
of 3. Hence
n n—1 _ . r
=Lt =1 (2.1)
q“+q - q

Every element of ¥ intersects Y[n — 1] in a (d — 1)-dimensional space. There

are ¢"~! — ¢" points of S in Y[n — 1]. There are ¢°~! — ¢" points of S in the
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(d — 1)-dimensional intersection of an element of ¥ with Y[n — 1]. It follows
that
qnfl _ qr

Y| = ————. 2.2
Rl == (2.2)

From (2.1) and (2.2) it follows that d = n. This implies that there are no
lines of S in PG(n, ¢), a contradiction. Hence if Q[r] intersects II[n — 2] in
an (r — 1)-dimensional space, then § can not be a (¢ — 1, g)-geometry fully
embedded in PG(n,q).

Case 2. Assume that Q[r| intersects II[n — 2] in an (r — 2)-dimensional
space, r > 1.

Then (Q[r],II[n — 2]) = PG(n,q). Let v be a point of S. We count
the number of lines through v on which there are points of P(n,q) \ P.
The (r 4 1)-dimensional subspace (v, Q[r]) intersects II[n — 2] in an (r — 1)-
dimensional space. Hence there are (¢"—1)/(q—1)—(¢" 1=1)/(q—1) = ¢"*
lines through v that contain 2 points of P(n,q) \ P. All the other lines
through v contain at most one point of P(n,q) \ P. It follows that there
are (¢"7' = 1)/(g-1)+ (@ -1)/(g-1) (¢ -1)/(¢-1)-¢" =
(q"1—1)/(qg—1)+q" lines through v on which there are points of P(n, ¢)\P.
Since v was an arbitrary point of S, this is valid for every point of S. The
number of elements of B through a point of S equals the total number of
lines through this point minus ¢ + 1 minus the number of lines on which
there are points of P(n,q) \ P. This implies that the number of elements of
B through a point of S is also a constant.

If B =0, then t+ 1 is a constant. Hence in this case S is a (¢ — 1,q)-
geometry fully embedded in PG(n, ¢), and every line containing g+ 1 points
of § is a line of S.

If B # 0, then from lemma 2.5.6 it follows that the elements of B through
a point v of S are contained in a d-dimensional subspace ¥[d] through v and
Q[r]. Since we have proved that the number of elements of B through a point
of § is a constant, it follows that the subspaces containing the elements of
B through the points of S are the elements of a partition 3 of the points of
S, and that every element of ¥ has the same dimension d.

There are ¢" — ¢"~! — ¢" — ¢"~! points of S in PG(n,q). As in the first
part of the proof, we can count that there are ¢ + ¢% ' — ¢" — ¢"~! points
of § contained in an element of ¥. Now the remainder of the division of
qn _ qnfl _ qr _ qrfl by qd 4 qdfl _ qr _ qrfl equals qnfcd+cr +qnfcd+cr71 _
q" —¢" 7', where ¢ > 0 is a positive integer. This remainder will be equal to
0 if and only if (d — r)|(n — d) or thus (d — r)|(n — ).
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Moreover if (d — r)|(n — r), then the partition ¥ always exists. Indeed,
let I'ln —r — 3] be an (n — r — 3)-dimensional subspace of I1[n — 2| disjoint
from Q[r] NI[n — 2]. Then (Q[r],I'[n —r — 3]) is an (n — 2)-dimensional
space. Since Q[r| is contained in (Q[r],['[n — r — 3]), the intersection of
(Q[r],T'[n —r — 3]) and [I[n — 2] is an (n — 4)-dimensional space. Let IT*[3]
be a three dimensional space skew to this (n — 4)-dimensional space. Then
[[n — 2] and (Q[r],C[n —r — 3]) intersect II*[3] each in a line M; resp. My
and these two lines are disjoint. In IT*[3] it is possible to take a third line
M3 disjoint from M; and from Ms. Then the (n —r — 1)-dimensional space
(M3,I'[n —r — 3]) is skew to Q[r] and it intersects II[n — 2] in I'[n — r — 3].
Now let A[d—r —3] be a (d—r — 3)-dimensional subspace of I'[n —r — 3] and
let A'[n —d+1] be an (n — d+ 1)-dimensional subspace of (M3, '[n —r — 3])
skew to A[d —r —3]. Then A'[n —d+ 1] intersects II[n — 2] in an (n —d — 1)-
dimensional space. Indeed, A'[n —d+1]NTII[n —2] is contained in I'[n —r — 3]
so if its dimension would be greater than or equal to n — d, then it would
intersect Al[d —r — 3] in a point, a contradiction because we have chosen
AN'[n—d+1] skew to A[d—r —3]. Now by [3] there exists a partial spread ¥,
of lines of A'[n —d+1]\II[n —2]. Let X9 be the set of (d —r — 1)-dimensional
spaces spanned by Ald —r — 3] and a line of ¥;. Then the elements of the
partition 3 are the d-dimensional spaces spanned by an element of 35 and
Q[r].

Hence the lines of & are all the lines that contain ¢ + 1 points of S or
they are the lines not contained in a partition ¥ of the points of S, where
each element of ¥ is d-dimensional and contains Q[r]. This partition exists
if and only if (d — r)|(n — r), and always gives a (¢ — 1, ¢)-geometry. O

2.5.2 The case a =q—/q

It is clear that in this subsection ¢ will always be a square.

Assuming ¢ to be odd, there exists no non-trivial maximal arc in a
Desarguesian plane [1], i.e. there can not be (¢ — \/g)-planes contained in
PG(n,q). As in the previous subsection, we distinguish three types of planes
that contain an antiflag of S.

e Type I are the g-planes.

e Type II are the planes in which the restriction of S is the closure of a
net. Note that such planes contain /g 4 1 points of P(n,q) \ P.

e Type III are the planes in which all points belong to S and lines of §
are the secant lines to a unital or the tangent lines to a Baer subplane.
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Remark. Let S be a (¢ — /g, q)-geometry fully embeddable in PG(n,q),
for ¢ = 2?", h € N, h > 1. Then every plane containing an antiflag of S is
a plane of type I, IT or IIT as defined above. This follows in the same way
as in the case a = ¢ — 1. Note that also in this case a-planes can not exist.
Indeed, if ¢ # 4, then ¢ — ,/q does not divide g, so a maximal arc of degree
q — 4/q does not exist. However not everything what follows will be valid
for g even, since sometimes theorems are used that are not true in case ¢ is
even. In those cases it will be mentioned explicitly that ¢ has to be odd.

Lemma 2.5.8 Let S = (P, L,I) be a (¢ — \/q,q)-geometry fully embedded
in PG(n,q), with q a square, ¢ # 4. Every line of PG(n,q) contains 0, 1,
Va+1 orq+1 points of P(n,q) \ P.

Proof. One proves this lemma in the same way as lemma 2.5.1. O

Let II[n — m — 1] be an (n — m — 1)-dimensional subspace of PG(n,q).
We define II[n —m —1]S to be the cone with vertex II[n —m — 1], projecting
a (¢ — /4, q)-geometry S fully embedded in an m-dimensional subspace of
PG(n,q) skew to II[n —m —1].

Lemma 2.5.9 Let S = (P, L,1) be a (¢ — \/q,q)-geometry fully embedded
in PG(m,q), with q a square. Let PG(n,q) be an n-dimensional projective
space containing PG(m,q), m < n. Let 8* = (P*,L*,T*) be the incidence
structure defined as follows: P* is the set of points of the cone II[n—m —1]S
that are not contained in the vertex Illn —m — 1], L* is the set of lines that
are contained in some plane (x, L), for any x € llln—m—1] and any L € L,
and that do not contain x, T* is the restriction of the incidence of PG(n,q)
to S*. Then S* is a (q — /4, q)-geometry fully embedded in PG(n,q).

Proof. It is immediately clear that the number of points of S* on a line
of §* is equal to ¢ + 1. The number of lines through a point of §* is also
a constant, since this is true for the (¢ — /g, q)-geometry S. In particular,
if t + 1 is the number of lines of § through a point of S, then the number
of lines of §* through a point of S* equals (¢ + 1)¢" ™. Now let p € P*,
L € £*, such that p ¢ L. Then either (p, L) contains a point of II[n —m — 1]
or it is skew to II[n —m — 1]. In the first case, (p, L) is a ¢-plane and hence
i(p,L) = q. In the second case, (p,L) is contained in a base of the cone
I[n — m — 1]S, hence p and L both belong to a (¢ — /g, ¢)-geometry fully
embedded in an m-dimensional space skew to II[n —m — 1]. It follows that
i(p,L) = q—/q or i(p, L) = q. This proves that §* is a (¢ —+/q, ¢)-geometry
fully embedded in PG(n, q). O
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We call a (¢ — /g, q)-geometry TI[n —m — 1]S projecting a (¢ — /4, q)-
geometry S fully embeddable in an m-dimensional subspace of PG(n,q)
skew to Il[n —m — 1], m < n, a degenerate (¢ — \/q,q)-geometry. It is clear
that it suffices to classify all non-degenerate (¢ — /g, ¢)-geometries.

In the next two theorems, we consider the case in which no line of
PG(n,q) contains /g + 1 points of P(n,q) \ P. We will prove that either
n =3, or § is degenerate.

Theorem 2.5.10 Let S be a (¢ — \/q, q)-geometry that is fully embedded in
PG(n,q), with q a square, q # 4. Assume that no line of PG(n,q) contains
Va+1 points of P(n,q)\'P, and that |P(n,q)\P| # 0. Then S is a degenerate

(¢ — /4, q9)-geometry.

Proof. Let S be a (¢ — /g, q)-geometry fully embedded in PG(n, ¢), with
q a square. Assume that no line of PG(n,q) contains /g + 1 points of
P(n,q) \ P. From lemma 2.5.8 it follows that in this case the points of
P(n,q) \ P are the points of a (0,1,q + 1)-set, or in other words it are the
points of an m-dimensional subspace II[m] of PG(n,q), 0 <m <n — 2.

Let B be the set of all lines of PG(n, q) that contain ¢ + 1 points of S,
but that do not belong to S. It is clear that B # (), as otherwise S would
be a (q,q + 1)-geometry. Let N € B. Then the (m + 2)-dimensional space
(N,II[m]) does not contain a line of . Indeed, if there would be a line L of
S in (N, II[m]), L intersecting N, then (L, N) would be a plane containing
an antiflag of S, a line of B and a point of II[m], a contradiction as such
a plane can not exist. This implies that (/V,II[m]) contains no lines of S,
as otherwise for such a line L' of S, i(z, L") = 0, for a point z € N. Hence
the (m 4+ 2)-dimensional spaces through II[m] in PG(n, q) either contain no
lines of S, or they contain no lines of B.

Let Q[n —m — 1] be a subspace of PG(n,q) skew to II[m]. Then each
(m + 2)-dimensional subspace of PG(n,q) that contains II[m], intersects
Qn —m — 1] in a line M. If M € B, then (M,II[m]) contains no lines of
S. If M € L, then (M,II[m]) contains no lines of B. We will prove now
that S intersects Q[n —m — 1] in a (¢ — /g, g¢)-geometry S'. It is clear that
every line of § in Q[n —m — 1] contains ¢ + 1 points of S and that for every
antiflag (p, L) of S in Q[n — m — 1], we have that i(p, L) = ¢ — \/q or ¢q. So
we only need to prove that the number of lines of § in Q[n —m — 1] through
a point of S in Q[n —m — 1] is a constant. Let u be a point of Q[n —m —1].
If Ly is a line of S through w in Qn —m — 1], then (L;,II[m]) contains
1+(¢g—-1) qn:_ll_l = ¢™*! lines of S through u. If Ly is a line of S through
win Qn —m — 1], Ly # Ly, then (L1,II[m]) and (Lg,II[m]) intersect in
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the (m + 1)-dimensional space (u,II[m]) that clearly contains no line of S.
Hence each line of S through u belongs to exactly one (m + 2)-dimensional
space (L,M[m]) through (u,M[m]). Tt follows that ¢t + 1 = ¢™* (¢, + 1),
where t,, +1 is the number of lines of S through u contained in Q[n —m —1].
Since t+1 is a constant, it follows that also ¢, + 1 is a constant, independent
of the choice of the point u € Q[n —m — 1]. This proves that S intersects
Qn—m —1] in a (¢ — /g, q)-geometry S'.

Hence PG(n, g) contains a cone II[m]S’, projecting a (¢—/q, ¢)-geometry
S’ fully embedded in an (n — m — 1)-dimensional subspace Q[n —m — 1] of
PG(n, q) skew to II[m]. Points of S are the points of this cone that are not
contained in II[m], lines of S are the lines that contain ¢+ 1 points of S and
are contained in a plane (z, L), for z € II[m]| and L € L. By definition S is
a degenerate (¢ — /g, q)-geometry. O

Theorem 2.5.11 If n > 3, then there is no (¢ — \/q,q)-geometry S =
(P, L,1), fully embeddable in PG(n,q), q a square, q # 4, such that P =
PG(n,q).

Proof. Let S be a (¢ — /g, q)-geometry fully embedded in PG(n, ¢), with
q a square, ¢ # 4 and n > 3. Let P = P(n,q). It follows that every plane
containing an antiflag of S is of type I11. Let BB be the set of lines containing
q + 1 points of S but not belonging to L.

Let p be an arbitrary point of PG(n, q). Let II[n — 1] be a hyperplane of
PG(n, q) not through p. The elements of B through p intersect II[n — 1] in a
set of points, which we denote by K. Since every plane through p contains
1, \/g+1or g+1 elements of B through p, the set L isa (1,,/g+1,q+1)-set
of TI[n — 1]. If there is a line of II[n — 1] containing /g + 1 points of K,
then the points of I are the points of a Hermitian variety, a Baer subplane,
a cone with base either a Hermitian variety or a Baer subplane, or \/q + 1
hyperplanes intersecting in an (n — 2)-dimensional space ([35], theorems
23.5.1 and 23.5.19). If no line of II[n — 1] intersects K in /g + 1 points, then
the points of K are the points of a hyperplane of II[n — 1].

Assume that there is a plane 7 in II[n — 1] for which the points of K in
7 are all the points that lie on /g + 1 concurrent lines. We denote these
lines by Ly,...,L gy1- Let w be the intersection point of Ly,..., L /41
We look at the three dimensional space spanned by p and w. The plane
(p,Ls), for i € {1,...,\/q + 1}, contains ¢ + 1 elements of B through p.
Hence it can not contain a line of S, as if there was a line L of S in this
plane, then i(p, L) = 0, a contradiction. Suppose that there is a line L' of
S, L' C (p,n), such that L' is skew to the line (p,w). Let p be a plane
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through (p,w) in (p,n) different from (p,L;), for all i € {1,...,/q + 1}.
Let L' N p be the point z. The plane p contains an antiflag of S, hence it
is of type III. Through x we can take a line N of B such that N C p. The
lines N and (p,w) intersect in a point y. Now we look at the plane (L', y).
It contains the line L' € £ and at least /g + 2 elements of B through y,
namely the intersection lines of (L', y) with (p, L;) (i =1,...,,/g+ 1) and
the line N. So i(y,L') < g — /g — 1, a contradiction. We conclude that all
the lines of S in (p,m) are contained in the (¢ — ,/q) planes through (p, w)
and a line through w in 7 different from L, ... L jg+1- Now let M; and
Ms be two lines of S in (p, w) that contain p, such that the planes (p, w, M)
and (p,w, M) are distinct. Then (M, M>) is a plane containing an antiflag
of §. However, from the above it follows that all the lines of S in this plane
contain the point p. This is a contradiction as a = ¢ — /g and 8 = q. So
no plane of II[n — 1] can intersect X in /g 4 1 concurrent lines, that each
contain ¢ + 1 points of K.

Hence we have shown that the points of K have to be the points of
a Baer subplane, a unital in some plane of II[n — 1] or a hyperplane of
II[n — 1]. Indeed, both a (possibly) singular Hermitian variety with n > 3
and a cone with base a Baer subplane contain planes that intersect it in
V/q + 1 concurrent lines.

Assume first that K is the set of points of a unital or a Baer subplane of
[I[n — 1]. It follows that n = 3, since every line of II[n — 1] contains at least
one point of K. This is a contradiction, as we assumed n > 3.

Assume next that K is the set of points of a hyperplane of ITI[n —1]. Then
clearly t +1 = ¢"~'. We denote the hyperplane containing the points of K
by I'[n — 2]. The (n — 1)-dimensional space (p, ['[n — 2]) contains no lines of
S. Indeed, if there would be a line L, of S contained in this subspace, then
i(p,Ly) = 0, a contradiction. Let p’ be an arbitrary point of (p,I'[n — 2]).
Since t + 1 = ¢™ !, the lines of S through p’ are all the lines through p’
not in (p,T'[n — 2]). It follows that the lines of S in PG(n,q) are all lines
of PG(n,q) not in (p,'[n — 2]). However, this implies that for a point u’ of
PG(n,q), v’ ¢ (p,T'[n —2]) there are g+ 1 lines of S intersecting each line of
S not through «'. This is a contradiction since S is a (¢ — /g, ¢)-geometry.
Hence the points of K can not be the points of a hyperplane of II[n — 1].

We conclude that for n # 3 a (¢ — /¢, q)-geometry fully embedded in
PG(n,q), such that P(n,q) \ P = (), does not exist. d

Remark. The previous theorem does not give a classification of (¢—/q, q)-
geometries fully embedded in PG(3,¢q), for ¢ a square and point set P =
PG(3,q). If there exists such a (¢ — /g, q)-geometry S, then one of the
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following would hold.

e t+1=gq,/q+1. The lines of S through a point p of PG(3, ¢) intersect
each plane not through p in the points not on a unital and the lines
in each plane of PG(3,q) are the lines that intersect a unital in that
plane in /g + 1 points.

et+1=gq+,/qg+ 1 The lines of S through a point p of PG(3,q)
intersect each plane not through p in the points not contained in a
Baer subplane and the lines in each plane of PG(3,q) are the lines
that are tangent to a Baer subplane in that plane.

It is not known to us whether such a (¢ — /g, ¢)-geometry S fully embedded
in PG(3, ) does exist. If S exists, then from lemma 2.5.9 it follows that a
cone II[n — 4]S gives rise to a (¢ — /¢, ¢)-geometry in PG(n,q).

Now let us look at the case in which PG(n,q) does contain a line on

which there lie exactly /g + 1 points of P(n,q) \ P. If no line of PG(n, q)
contains ¢ + 1 points of P(n,q) \ P, then from lemma 2.5.8 it follows that
the points of P(n,q) \ P are the points of a (0,1,,/g 4 1)-set. In the next
two lemma’s we will describe what a (0,1, /g + 1)-set in PG(n, ¢) can look
like. In lemma 2.5.15 it will then be proved that either S is non-degenerate
and it contains no line on which there are ¢ + 1 points of P(n,q) \ P, or it
is degenerate and its base does not contain a line on which there are ¢ + 1
points of P(n, q) \ P.
The results of lemma’s 2.5.12 and 2.5.13 follow also immediately from a
more general result of J. Ueberberg on regular {v,m}-arcs (a {v,m}-arc
is a (0,1,m)-set with respect to lines that has v points) (corollary 1.5.8
and theorem 1.5.9). We included a proof of the lemma’s, since our proof is
slightly different from the one in [56]. Note that we only treat the special
case m = /q + 1, since this is the only case that we will need for the proof
of the next theorem.

Lemma 2.5.12 Let K be a set of type (0,1,,/q + 1) with respect to lines in
PG(n,q), n > 2. Then each plane of PG(n,q) intersects K in 0 points, a
singleton, \/q + 1 collinear points, a unital or a Baer subplane.

Proof. Let K be a (0,1,,/q + 1)-set with respect to lines in PG(n,q),
n > 2. Let m be a plane of PG(n, ¢). If 7 contains no line on which there are
0 points of I, then the points of K in 7 form a (1,,/q + 1)-set in 7. Hence
K intersects 7 in a unital or a Baer subplane (see [34], theorem 12.17). So,
from now on we may assume that 7w contains a line I on which there are no
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points of K. We denote by myg (resp. m1 and m_ g1) the number of lines
of m that contain 0 (resp. 1 and /g + 1) points of K. Then it follows that

mg+m1+m\/q+1 = q2+q+1
m1+ (Vg+1)m g = (¢+1)[K] (2.3)
ViVa+Om g = |K[(K] = 1).

The first equation we obtain by counting all lines of 7, the second by counting
pairs (p, M), with p a point of K in 7, M a line of 7 and p € M, the third
equation we get by counting triples (p,p’, M), with p and p' points of K in
m,p#p, M aline of 7 and p,p’ € M.

Let x be a point of K, z € w. Counting the points of K on the lines
through = in 7, we get that |K| = a,/g + 1, where a is the number of lines
through = in m on which there are /g + 1 points of K. It is clear that
0<a<qg+1. Ifa=0,then K is a single point. Assume from now on that
a > 0. From (2.3) it follows that

m\/a+1 = a2+3:a21
q+
my aq\/§+a\/§+q+1—a2\/§—a )
mg = qQ—aq\/a—a\/a+a2\/§+a—a2—%il.

Since mo and m, g1 have to be integers, we get that /g + 1| a? — a.
Also, it is clear that mg > 0. From the above we get that mo(,/q + 1) =
q(a — q)(a — /g — 1), so either a < 1+ ,/q, or a > ¢. Since by assumption
1 <a < g+ 1, there are the following cases to consider.

1. @ =q+ 1. Then the condition /g + 1 | a® — a is not satisfied.

2. a = ¢. Then |K| = ¢\/g + 1 and from (2.3) it follows that mg = 0,
giving a contradiction, as we assumed that mg > 0.

3. a = ,/q+1. Then || = ¢+ /g+1. From (2.3) it follows that mg = 0,
again a contradiction.

4. a = 1. Then the points of K in the plane 7 are /g +1 collinear points.

5. 2 < a < ,/q. By definition, a is equal to the number of lines of 7
through a point x of K containing ,/q+ 1 points of K. Now take a line
through 2 points of K in 7 that does not contain x. This line contains
at least 2 points of K and at most ,/q such points, since at most /g
lines through x contain points of K. This is a contradiction, since K
is a (0,1,,/q + 1)-set. Hence this case does not occur.
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This proves that every plane in PG(n, q) intersects K in 0 points, one point,
/4 + 1 collinear points, a Baer subplane or a unital. O

Lemma 2.5.13 Let K be a set of type (0,1,,/q + 1) with respect to lines in
PG(n,q), n > 3 and q # 4. Assume that there is a line that contains \/q+ 1
points of K. Then K is a Baer subspace of PG(n,q), a Baer subspace of
some subspace of PG(n,q), \/q + 1 collinear points, or a unital in a plane
of PG(n,q).

Proof. From lemma 2.5.12 it follows that every plane of PG(n, ¢) intersects
K in 0 points, a singleton, ,/g+1 collinear points, a Baer subplane or a unital.

We will prove that if there exists a plane 7y in PG(n, ¢) that intersects
K in a unital, then L C 7. So let 7y be a plane intersecting X in a unital,
and assume that there is a point p of I that does not belong to w7. Suppose
first that (p, 7)) contains a line L that is exterior to K. Let L N7y = {x}.
Let M be a line of myy through x that intersects K in /g + 1 points. The
plane (L, M) contains /g + 1 collinear points of I and a line exterior to K.
From lemma 2.5.12 it follows that (L, M) intersects K in /g + 1 collinear
points. Hence p ¢ (L, M). In (L, M) there are q lines through = that are
exterior to KC, while in 7y there are ¢ — ,/q lines through x that contain
/@ + 1 points of K. Hence in the three dimensional space (p,my) there is
a plane p through the line (p,z) that contains an exterior line to K and
/4 + 1 collinear points of K on its intersection line with 7;;. So p contains
an exterior line to C and at least /g +2 points of K, a contradiction (lemma
2.5.12). Tt follows that every line of (p, ;) contains a point of . Hence
K intersects (p, 7yr) is a (1, /g + 1)-set. From ([35], theorem 23.5.1) we get
a contradiction, as every (1,,/g + 1,q + 1)-set in a three dimensional space
contains lines on which there are ¢ + 1 points of K. We conclude that if
PG(n,q) contains a plane 7y that intersects K in a unital, then I C 7.

Now suppose that PG(n, ¢) does not contain a plane that intersects K in
a unital. From lemma 2.5.12 it follows that every plane of PG(n, ¢) intersects
K in 0 points, one point, /g +1 collinear points or a Baer subplane. We will
prove that IC has to be a Baer subspace of PG(n,¢). From now on we call
the lines that contain ,/q + 1 points of I, K-lines. To prove that the points
of K and the K-lines are the points and lines of a projective geometry, we
check whether the axioms of Dembowski hold (see [27]).

1. Through every 2 points of K there has to be exactly one K-line. This
follows immediately from the fact that K is a (0,1, /g 4 1)-set.

2. On every K-line there have to be at least 3 points of K. This is true,
because every K-line contains /g + 1 > 3 points of K.
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3. Let L and M be two K-lines that intersect in the point p € K. Let
u,v € L and w,z € M be 4 different points of K. Assume that
u#p #vand w # p # z. Then the lines (u,w) and (v,z) of K
intersect in a point p’ of K. Indeed, two intersecting K-lines span a
plane that intersects K in a Baer subplane. Since p’ lies on two K-lines,
which are Baer sublines, p’ clearly belongs to the Baer subplane and
hence also to .

Hence the points and lines of K are the points and lines of a projective
geometry. Since there are /g + 1 points of K on a line of K, it now follows
that K is a Baer subspace of PG(n, q), a Baer subspace of some subspace of
PG(n,q), or /g + 1 collinear points. O

Lemma 2.5.14 Let S be a (¢—+/q,q)-geometry fully embedded in PG(n,q),
with q a square, ¢ %= 4. Assume that there is a line that contains exactly
Vq+ 1 points of P(n,q) \'P. Then every line of PG(n,q) that contains q+1
points of S, is a line of S.

Proof. Let & = (P,L,I) be a (¢ — /g, q)-geometry fully embedded in
PG(n,q), with ¢ a square, ¢ # 4. Assume that there is a line M, that
contains exactly /g + 1 points of P(n,q) \ P. Let B be the set of lines
containing ¢ + 1 points of S, but not belonging to S. Assume that B # 0.
Let N € B. Let z be a point of S. The plane (N, z) is a plane of type III,
or it contains no lines of S. If (N, z) is a plane of type III, then it contains
a line N, of B through z, since in a plane of type III there is at least one
line of B through every point of this plane. If (N, z) contains no lines of S,
then from lemma 2.5.12 it follows that (IV, z) contains at most ,/g+ 1 points
of P(n,q) \ P. So there is a line N, through z in (N, z) that contains no
point of P(n,q) \ P. Hence also in this case there is a line N, of B through
z in (N, z). Let L, be a line of S through z. The plane (L,, N,) contains
an antiflag of S and a line of B, hence it is a plane of type III. The plane
(L,, M,) is a plane of type II. The plane (N,, M,) contains a line of B and
points of P(n,q) \ P, hence it can not contain lines of §. Moreover from
lemma 2.5.12 it follows that this plane contains exactly /g + 1 points of
P(n,q) \ P, namely the points of P(n,q) \ P on the line M,. Each plane
through N, in the three dimensional space (L,, N,, M,), different from the
plane (N,, M,), intersects the plane (L,, M,) in a line of S. Hence every
such plane is a plane of type III. This implies that the points of P(n,q) \ P
in (L,,N,, M,) are exactly the \/g + 1 points of P(n,q) \ P on M,.

Let y; and y9 be points of P(n,q) \ P on M,. Let N be a line of B
in (L,,N,), such that z ¢ N. Let L be a line of S in (L,, N,), such that
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z ¢ L. The plane (N,y;) contains a line of B and a point of P(n,q) \ P,
hence it contains no lines of S. The plane (L, y,) is a ¢g-plane, so it contains
no lines of B. However, these two planes belong to the three dimensional
space (N, L., M,), hence they intersect in a line. It is clear that this line
contains ¢+ 1 points of S, hence it is a line of B or a line of S. In both cases
we get a contradiction. This proves that B = (). 0

Lemma 2.5.15 Let S be a (¢—+/q, q)-geometry fully embedded in PG(n,q),
with q an odd square. If there is a line that contains \/q + 1 points of
P(n,q)\ P, then the points of P(n,q)\'P are the points of a cone with vertex
an m-dimensional subspace II[m] (it is possible that TI[m] = ) and base a
non-degenerate (0,1,,/q + 1)-set contained in an (n —m — 1)-dimensional
subspace of PG(n,q) skew to II[m].

Proof. Let S be a (¢ — /g, q)-geometry fully embedded in PG(n, ¢), with
q an odd square. Assume that PG(n,q) contains a line M gy1 on which
there are /g + 1 points of P(n,q) \ P. From lemma 2.5.14 it follows that
every line that contains ¢ 4+ 1 points of S, is a line of §. From lemma 2.5.8
it follows that the points of P(n,q) \ P form a (0,1,,/q + 1,¢q + 1)-set. If
PG(n,q) contains no line on which there are ¢ + 1 points of P(n,q) \ P,
then the lemma is proved. So we may assume that PG(n,q) contains such
a line. A plane through M, that contains an antiflag of S is a plane
of type II. Let p1 and ps be two planes of type II through M 51 (there
exist two planes through M /5, containing an antiflag of S since S is not
contained in a plane). We will prove that the points of PG(n,q) \ P in the
three dimensional space (p1, p2) are the points of a three dimensional Baer
subspace PG(3,/q), of a Baer subplane, of a unital or of \/g+ 1 concurrent
lines in a plane.

Assume first that (p1, p2) contains two points yi, y2 € P(n,q) \ P, such
that (y1,y2) is skew to M gzy1. The line (y1,y2) intersects p; in a point of
S. From lemma 2.5.8 it follows that (yi,y2) contains exactly /g + 1 points
Y1,Y2,- - Y, q+1 of P(n,¢) \ P. From lemma 2.5.12 and [34] theorem 19.4.4,
it follows that each plane (y;, M 411) (i = 1,...,/qg+1) intersects P(n, q)\P
in the points of a unital or a Baer subplane, or in /g + 1 lines through a
point. Hence (p1, p2) contains at least (/g+1)g+/g+1= (¢+1)(\/g+1)
points of P(n,q) \ P. Now let L be a line of S in p;. Every plane through L
is of type I, IT or II1. Hence each plane through L in (p;, p2) contains at most
V/@+1 points of P(n, ¢)\P. This proves that there are at most (¢+1)(,/g+1)
points of P(n, ¢)\ P contained in (p1, p2). From these two inequalities we get
that (p1, p2) contains exactly (¢+1)(y/g+ 1) points of P(n, ¢) \ P and hence
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that every plane (y;, M 511) (i = 1,...,/g + 1) intersects P(n,q) \ P in a
Baer subplane, while the other planes through M 5.1 in (p1, p2) intersect
P(n,q) \ P in the \/g + 1 points of P(n,q) \ P on M 1. This implies that
no line of (p1, p2) contains ¢ + 1 points of P(n,q) \ P. Hence from lemma
2.5.13 it follows that the points of P(n,q) \ P in (p1, p2) are the points of a
three dimensional Baer subspace in (p1, p2).

It is clear that not all the points of P(n,q) \ P in (p1, p2) lie on the line
M, /7+1. Indeed, otherwise (p1, p2) contains planes in which there is no point
of P(n,q) \ P. Such planes contain lines of B, which is a contradiction with
lemma 2.5.14.

Assume now that the points of P(n,q) \ P in (p1, p2) are contained in a
plane (y, M /1) through M 5., and a point y of P(n,q) \ P, y ¢ M ;1.
There is no line L of S contained in (y, M, z41) (lemma 2.5.12). Hence the
points of P(n,q) \ P in (p1,p2) are the points of a (1,,/q + 1,q + 1)-set
contained in the plane (y, M g11). From [35] theorem 19.4.4, it follows that
such a set is a unital, a Baer subplane, or a set of \/g + 1 concurrent lines.

So we have proved that the points of P(n,q)\ P in (p1, p2) are the points
of a three dimensional Baer subspace, of a Baer subplane, of a unital or of
V/q + 1 concurrent lines in a plane. If n = 3, then the lemma is proved. So
assume that n > 3. Let u be a point of S, u ¢ (p1, p2). Define I'[4] to be
the four dimensional space spanned by wu, p; and p2. We will now describe
the possibilities for the intersection of P(n,q) \ P with T'[4].

Assume first that the points of P(n,q) \ P in (p1,p2) are the points
of a three dimensional Baer subspace. If I'[4] contains no lines on which
there are ¢ + 1 points of P(n,q) \ P, then from lemma 2.5.8 it follows that
the points of P(n,q) \ P in I'[4] are the points of a (0,1,,/q + 1)-set. So
the points of P(n,q) \ P in I'[4] are the points of a four dimensional Baer
subspace (lemma 2.5.13). If I'[4] does contain a line M on which there are
g + 1 points of P(n,q) \ P, then let M N (p1, p2) be the point z. Every line
through z in (p1, p2) contains 1 or /g +1 points of P(n,¢) \ P. From lemma
2.5.8 it follows that the points of P(n,q) \ P in a plane through M are the
points of a (1,,/g 4+ 1,q + 1)-set. Hence the points of P(n,q) \ P in each
plane through M in I'[4] are either the points on M, or it are all the points
of \/g + 1 concurrent lines (see [35], theorem 19.4.4).

Now suppose that there would be two planes 71 and 7o through M in
I'[4], such that in m the /g + 1 lines containing no points of S intersect
in the point x1, while in 7y these lines intersect in the point zo, 21 # zs.
Then in the three dimensional space (w1, m2) every line contains a point of
P(n,q)\P. Indeed, if there would be a line N in (71, m2) containing no points
of P(n,q) \ P, then a plane through N in (7, 72) that does not contain z;
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or x2, contains at least 2,/g+ 1 points of P(n, ¢) \ P. This is a contradiction
with lemma 2.5.12. So the points of P(n, ) \ P in (m, m2) are the points of
a set of type (1,,/g +1,q+ 1), which is a non-degenerate Hermitian variety
H(3,q) (see [35], section 23.5). However, (m,m2) intersects (pi,p2) in a
plane, and (p1, p2) contains no planes in which the points of P(n,q) \ P are
the points of a unital or of /g + 1 concurrent lines. So we have found a
contradiction.

Hence in each plane through M in I'[4] that contains /g + 1 concurrent
lines on which there are no points of S, these lines intersect in the same point
y of M. This proves that the points of P(n,¢) \ P in I'[4] are the points of a
cone with vertex y and base the three dimensional Baer subspace contained
in <:01a PQ)-

Assume next that the points of P(n,q) \ P in (p1, p2) are contained in a
plane 7. Note that from the above it follows that the points of P(n,q) \ P
in (p1, p2) are the points of a Baer subspace, a unital or /g + 1 concurrent
lines in 7.

If T'[4] contains no line on which there are ¢ + 1 points of P(n,q) \ P,
then from lemma 2.5.8 it follows that the points of P(n,q) \ P in I'[4] are
the points of a set of type (0,1,,/g + 1). From lemma 2.5.13 and the fact
that every plane of I'[4] contains at least one point of P(n,q) \ P, it follows
that the points of P(n,q) \ P in ['[4] are the points of a four dimensional
Baer subspace.

If I'[4] contains a line M on which there are ¢+1 points of P(n, ¢)\ P, then
we may assume that M ¢ (p1, p2). Indeed, since every plane contains at least
one point of P(n, q) \ P, there is a point  of P(n,¢)\P in I'[4]\ (p1, p2). If M
would be contained in (p1, p2), then the plane (M, z) intersects P(n,q) \ P in
V/@+1 concurrent lines, and /g of them are not contained in (p;, p2). So we
may assume from now on that M ¢ (p1, p2). As in the previous paragraph,
it follows that the points of P(n,q) \ P in every plane through M in the
three dimensional space (M, 7) are the points of M or the points of /g + 1
concurrent lines. This implies again that every line in (M, 7) contains at
least one point of P(n,q) \ P.

If not all lines containing ¢ + 1 points of P(n,q) \ P in (M, 7) intersect
in the same point, then from [35] theorem 23.5.1, we know that the points
of P(n,q) \'P in (M, 7) are the points of a non-degenerate Hermitian variety
H(3,q). If all such lines intersect in the same point g, then the points of
P(n,q) \ P in (M, T) are the points of a cone with vertex the point § and
base the intersection of P(n, q)\P in 7. If not all points of P(n,q) \ P in I'[4]
would be contained in (M, 7), then there would be a point 3’ of P(n,q) \ P
in I'[4] \ (M, 7). From the previous it follows that the points of P(n,q) \ P
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in (y, ) are the points of a set of type (1,,/g+1,¢+1). Let L be a line of S
in (p1, p2). Then L intersects 7 in a point u. Let M\%-H be a line through
v in (M, T) containing exactly /g + 1 points of P(n,q) \ P and such that
M ¢ 7. The plane (L, M\u/6+1> intersects (y/, 7) in a line, and from the
previous it follows that this line contains at least one point of P(n,q) \ P.
This is a contradiction, since (L, M\“/a 41) contains an antiflag of S, so it
cannot contain more than /g + 1 points of P(n,q) \ P. So all points of
P(n,q) \ P in I'[4] are contained in (M, 7).

We conclude that the points of P(n,q) \ P in I'[4] are the points of a
four dimensional Baer subspace, a cone with vertex a point z and base a
three dimensional Baer subspace, a cone with vertex a point z and base
a Baer subplane, a cone with vertex a line M and base a Baer subline, a
non-degenerate three dimensional Hermitian variety or a cone with vertex a
point z and base a unital in a plane. If n = 4, then the points of P(4,¢) \ P
cannot be contained in a three dimensional subspace of PG(4,q). Indeed,
we have proved in lemma 2.5.14 that PG(4, ¢) contains no lines of B, and so
if the points of P(4, q) \ P are contained in a three dimensional subspace of
PG(4,q), then the number ¢ + 1 of lines of S through a point of S cannot
be a constant. So if n = 4, then the points of P(4,¢q) \ P in PG(4,q) are
the points of a four dimensional Baer subspace or the points of a cone with
vertex a point x and base a three dimensional Baer subspace, and hence the
lemma is proved.

Now assume that n > 4. Let I'[m] be an m-dimensional subspace of
PG(n,q), 4 < m < n — 1, such that ['[4] C I''[m]. Assume that in the
m-dimensional subspace I'[m] of PG(n,q), the points of P(n,q) \ P either
span I'[m] and are the points of a Baer subspace or of a cone with vertex a
subspace and base a Baer subspace of dimension greater than or equal to 3;
or these points span an (m — 1)-dimensional subspace Y [m — 1] of I'[m] and
not I"[m] and it are the points of a (possibly degenerate) Hermitian variety
or a cone with vertex a subspace and base a Baer subplane or a Baer subline.
Let A[m + 1] be an (m + 1)-dimensional subspace of PG(n, q) through I'[m)]
and a point u € P, u ¢ I'[m] (such a point exists since the points of S span
PG(n,q))). We will describe how P(n,q) \ P can intersect A[m + 1].

Assume first that the points of P(n, ¢)\ P in I''[m] span I''[m]. If A[m+1]
would not contain a line on which there are ¢+ 1 points of P(n, q) \ P, then
the points of P(n, ¢)\ P in A[m+1] are the points of a set of type (0,1, ,/g+1)
(lemma 2.5.8), so it are the points of an (m + 1)-dimensional Baer subspace
(lemma 2.5.13). Now assume that A[m + 1] contains a line M on which
there are ¢ + 1 points of P(n,q) \ P. If IV[m] intersects P(n,q) \ P in an
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m-~dimensional Baer subspace, then as we did in the case n = 4, one proves
that the points of P(n, ¢) \ P in A[m + 1] are the points of a cone with vertex
a point and base the set of points of P(n,q) \ P in I'[m]. If I'[m] intersects
P(n,q)\ P in a cone with vertex an r-dimensional subspace ¥[r| and base an
(m —r —1)-dimensional Baer subspace contained in a subspace X[m —r —1],
then we may assume that M is not contained in I'[m]. Indeed, let z be
a point of P(n,q) \ P in a plane through a line L of S in I''[m], such that
(L,z) ¢ T'[m]. If M would be contained in I''[m], then the plane (M, z)
intersects P(n,q) \ P in /g + 1 concurrent lines, and /g or them are not
contained in I'[m]. So we may assume that M ¢ I''[m].

Suppose first that no line of A[m + 1] on which there are ¢ + 1 points of
P(n,q) \ P, is skew to ¥[r]. Then each (m — r)-dimensional subspace skew
to ¥[r] in A[m + 1] intersects P(n,q) \ P in an (m — r)-dimensional Baer
subspace. If there would be a line M , on which there are exactly \/q + 1
points of P(n, q) \ P, that intersect ¥[r| in a point g, then let N be a line in
I[m] containing g + 1 points of P(n,q) \ P and intersecting X[m —r — 1] in
a point. The plane (N, M) intersects P(n,¢) \ P in all the points of Va+1
concurrent lines intersecting in a point that is different from the point 3.
So there is a line containing ¢ + 1 points of P(n,q) \ P and skew to ¥[r], a
contradiction with our assumption. This proves that every line intersecting
U[r] contains 1 or ¢+ 1 points of P(n,q) \ P. Hence the points of P(n,q) \ P
in A[m + 1] are the points of a cone with vertex the subspace ¥[r] and base
an (m — r)-dimensional Baer subspace contained in an (m — r)-dimensional
subspace of A[m + 1] skew to ¥[r].

Suppose next that there is a line M in A[m + 1] on which there are ¢+ 1
points of P(n,q) \ P, M skew to ¥[r]. Each plane through M intersects
P(n,q) \ P in the points on M, the points on /g + 1 lines, or all points
of the plane. We will prove that no two planes 71 and 7y through M can
intersect P(n,¢) \ P in /g + 1 concurrent lines through the point z; and
respectively, with x1 # z2. Assume therefore that there would exist such
planes m; and 7. As we did in the case n = 4, one proves that (m,ms)
intersects P(n,q) \ P in the points of a non-degenerate Hermitian variety
H(3,q). Clearly (mi,m2) intersects I''[m] in a plane w containing /g + 1
concurrent lines through a point z’, on which there are ¢ + 1 points of
P(n,q) \ P. Now let o1 be a three dimensional subspace of I'[m| through w
intersecting P(n,q) \ P in a cone with vertex the point 2’ and base a Baer
subplane. Then oy and o3 = (71, 72) contain no lines of S. Let o1,...0441
be the three dimensional spaces through w in (o1,09). Assume that o;
(1 € {3,...,q+ 1}) contains a line L of S. As in the case n = 3, it follows
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that the points of P(n,q) \ P in o; are contained in w. Let u be a point of
S in w. Let M, ¢ w be a line through « in o, containing /g + 1 points
of P(n,q) \ P. Let m, be a plane through M, in (o1,02), m, ¢ o2. Then
7y N o1 contains at least one point of P(n,q) \ P, while m, N o; is a line
of §. So m, contains at least /g + 2 points of P(n,q) \ P and a line of S,
a contradiction with lemma 2.5.12. This proves that o; (i = 3,...,¢+ 1)
cannot contain a line of S, and hence (o1,09) contains no lines of §. So
from lemma 2.5.8 it follows that P(n,q) \ P intersects (o1,02) in a set of
type (1,\/g + 1,¢ + 1). From [35] theorem 23.5.19, it follows that such a
set is the set of all points of a Hermitian variety. This is a contradiction,
since there are planes in (o1, 09) intersecting P(n, ¢) \ P in a Baer subspace.
So there is a point ¥ € M such that in each plane through M, the lines
containing ¢ + 1 points of P(n, q) \ P go through 7. Hence no line through g
can contain exactly \/q + 1 points of P(n,q) \ P. Since M is skew to W[r] it
follows that 7 € A[m+1]\I"[m]. This proves that the points of P(n,q)\P in
A[m + 1] are the points of a cone with vertex the subspace (g, U[r]) and base
the (m — r)-dimensional subspace of points of P(n,q) \ P in X[m —r — 1].

Assume next that the points of P(n,q) \ P in I'[m] are contained in
an (m — 1)-dimensional subspace ¥[m — 1] of I'[m]. By assumption I'[m)]
contains a line M on which there are ¢ + 1 points of P(n,q) \ P. Let z
be a point of P(n,q) \ P in A[m + 1] \ I'[m]. The plane (z, M) intersects
P(n,q) \ P in the points of \/g + 1 concurrent lines (lemma 2.5.8 and [35],
theorem 19.4.4). Let M' C (x, M), M’ # M, be a line containing no points
of §. Then M’ ¢ T"[m]. Let ¥[r] be the vertex of the cone of the points of
P(n,q) \ P in I'[m] (it is possible that ¥[r] = 0).

If every line of (z, T[m —1]) on which there are ¢+ 1 points of P(n, q)\ P,
intersects U[r] in a point, then as in the previous case it follows that the
points of P(n,q) \P in (z, T[m —1]) are the points of a cone with vertex ¥[r]
and base a three dimensional Baer subspace, a Baer subplane or a unital.
If there would be a point y of P(n,q) \ P in A[m + 1]\ (z, Y[m — 1]), then
let M, be a line through z in (z, Y[m — 1]) that contains ¢ + 1 points of
P(n,q) \ P. The plane (M,,y) intersects P(n,q) \ P in all points of /g + 1
concurrent lines. These ,/g+1 lines each contain a point of U[r], as otherwise
(M, y) intersects I'[m] in a line that contains /g + 1 points of P(n,q) \ P,
a contradiction since we have assumed that all points of P(n,q) \ P in I'[m)]
are contained in Y[m — 1]. So (y, Y[m — 1]) intersects P(n,q) \ P in a cone
with vertex the subspace ¥[r] and base a unital or a Baer subplane or a three
dimensional Baer subspace. It follows that the points of P(n,q) \ P in each
m-dimensional subspace through Y[m — 1] in A[m + 1] are either contained
in Y[m — 1], or they are the points of a cone with vertex the subspace ¥[r]
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and base a unital or a Baer subplane or a three dimensional Baer subspace.
This proves that the points of P(n,¢) \ P in A[m+ 1] are the points of a cone
with vertex the subspace U[r| and base a Baer subspace or a unital. If all
points of P(n,q) \ P in A[m + 1] are contained in a hyperplane of A[m + 1],
then the base is a Baer subline, a Baer subplane or a unital (in this case
this hyperplane cannot contain lines of S). If the points of P(n,q) \ P in
A[m + 1] span A[m + 1] then the base is a Baer subspace of dimension at
least three (since I''[m] C A[m + 1]).

Assume next that A[m + 1] contains a line M on which there are ¢ + 1
points of P(n, ¢)\'P, such that M is skew to [r]. It is clear that M intersects
YT[m — 1] in a point. Let M N Y[m — 1] be the point §. Let M, /541 be a line
through ¢ in Y[m — 1] that contains exactly /g + 1 points of P(n,q) \ P.
Assume that (¥[r], M) would contain a line L of S. Let u € M ;41 be a
point of §. There is a line L, of § through v intersecting L in a point.
The plane (L., M \/54_1) is a plane of type II. From the first part of the proof

(case n = 3), we get that all the points of P(n,q) \ P in (Ly, M g1, M)
are contained in a plane 7. This is a contradiction, as (M, M \/6+1> and
(Luy M 11, M) N Y[m — 1] are two different planes in (Ly, M, g1, M) that
contain points of P(n,q) \ P not on M, z1. Hence (M, T[m — 1]) contains

no lines of S. So the points of P(n,¢)\ P in (M, Y[m —1]) are the points of a
set of type (1,,/g+1,¢+ 1) (lemma 2.5.8), which is a (possibly degenerate)
Hermitian variety or a cone with vertex a subspace and base a Baer subplane
or a Baer subspace. If £ would be a point of P(n,q) \ P that is contained
in Afm + 1]\ (M, Y[m — 1]), then the plane (&, M) would intersect T[m]
in a line N containing \/g + 1 points of P(n,q) \ P, N ¢ Y[m — 1]. This
is a contradiction, as by assumption I''[m] \ Y[ — 1] contains no points of
P(n,q) \ P. Hence all points of P(n,q) \ P in A[m + 1] are contained in
(M, Y[m — 1]).

We conclude that the points of P(n, ¢)\ P in A[m+1] either span A[m+1]
and are the points of a Baer subspace or a cone with vertex a subspace
and base a Baer subspace of dimension at least three; or these points are
contained in a hyperplane of A[m + 1] and are the points of a set of type
(1,/g+1,g+1). If n = m+ 1, then the points of P(n,q)\ P span Alm + 1],
as otherwise the number ¢ + 1 of lines of S through a point of S would not
be a constant. So in case n = m + 1, the lemma is proved.

Continuing in this way, after a finite number of steps, the result of the
theorem follows. 0

So we have proved that if S is a non-degenerate (¢ — /g, q)-geometry
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fully embedded in PG(n, q), ¢ an odd square, such that PG(n, q) contains a
line on which there are exactly /g + 1 points of P(n,q) \ P, then the points
of P(n,q) \ P are the points of a (0,1, ,/q + 1)-set in PG(n, q). We are now
able to completely classify the non-degenerate (¢ — /g, q)-geometries fully
embedded in PG(n,q), such that PG(n,q) contains a line on which there
are /q + 1 points of P(n,q) \ P, with ¢ an odd square.

Theorem 2.5.16 Let S = (P, L,1) be a (9—+/q, q)-geometry fully embedded
in PG(n, q) that is non-degenerate, with q an odd square. Assume that there
is a line contained in PG(n,q) on which there are exactly \/q + 1 points
of P(n,q) \ P. Then n = 3 or n = 4 and there ezists an n-dimensional
Baer subspace PG(n, /q) of PG(n,q) such that P is the set of all points of
PG(n,q) \ PG(n,/q), L is the set of all lines not intersecting PG(n,/q)
and incidence is the one of PG(n,q).

Proof. Let S be a non-degenerate (q — /g, ¢)-geometry fully embedded in
PG(n,q), with ¢ an odd square. Assume that PG(n,q) contains a line on
which there are exactly /g + 1 points of P(n,q) \ P. From lemma 2.5.15 we
know that no line of PG(n,q) can contain ¢ + 1 points of P(n,q) \ P. From
lemma 2.5.8 it then follows that the points of P(n,q) \ P are the points of a
(0,1,,/q + 1)-set of PG(n,q). From lemma 2.5.13 we get that the points of
P(n,q)\ P are the points of a Baer subspace of PG(n, q), of a Baer subspace
of some subspace of PG(n,q), /g + 1 collinear points, or a unital in some
plane. From lemma 2.5.14 it follows that every line that contains ¢ + 1
points of S, is a line of S§. This implies that the points of P(n,q) \ P span
PG(n,q), as otherwise the number of lines of S through a point of S cannot
be constant. It follows that the points of P(n, q)\ P are the points of a Baer
subspace PG(n, ,/q) of PG(n,q). Every plane containing an antiflag of S is
of type I or of type II, which implies that every plane containing an antiflag
of § contains at least one point of P(n,q) \ P. For n > 5, it is clear that
PG(n, q) contains planes skew to PG(n,/q). For n < 4, there are no planes
skew to PG(n,,/q) contained in PG(n,q). Since B = (), L is the set of all
lines of PG(n, ¢) not containing a point of PG(n, \/g). It follows immediately
that S = (P, L,I), with P the set of points of PG(n,q) \ PG(n,/q), L the
set of lines of PG(n, ¢) not intersecting PG(n,/q), is indeed a (¢ — /¢, q)-
geometry for n = 3 or 4. O

In the following theorem, the case in which PG(n,¢) contains a line on
which there are /g + 1 points of P(n,q) \ P, and ¢ is an odd square, is
summarized.
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Theorem 2.5.17 Let S = (P, L,1) be a (¢—+/q, q)-geometry fully embedded
in PG(n,q), with q an odd square. Assume that PG(n,q) contains a line on
which there are exactly \/q+1 points of P(n,q) \'P. Then PG(n,q) contains
a cone I[n —m — 1]S', projecting a (q — \/q, q)-geometry S fully embedded
in an m-dimensional subspace T'[m] skew to II[n — m — 1], with m = 3
or m = 4. Points of S' are the points of I'[m] not contained in a Baer
subspace PG(m,/q) of T'[m], lines of S’ are lines skew to PG(m,\/q). The
points of S are the points of the cone II[n—m—1]S’ that are not contained in
I[n—m—1], while L is the set of all lines that lie on the cone Il[n—m—1]S’
and that contain q+ 1 points of S.

Proof. This follows immediately from theorem 2.5.16 and lemma 2.5.9.
O

For q even, ¢ # 4, lemma, 2.5.15 also holds if we assume that no plane of
PG(n, q) intersects P(n,q) \ P in the points of a maximal arc of degree ,/gq
union the ¢ + 1 points of a line exterior to this maximal arc. Hence we get
the following theorem in the even order case.

Theorem 2.5.18 Let S = (P, L,1) be a (¢—/q, q)-geometry fully embedded
in PG(n,q), with ¢ = 2*", h € N and h > 1. Assume that PG(n,q) contains
a line on which there are ezactly \/q + 1 points of P(n,q) \ P, and that no
plane of PG(n, q) intersects P(n,q)\P in the points of a mazimal arc of order
V4 together with the q+1 points of a line exterior to this maximal arc. Then
PG(n,q) contains a cone Iln —m — 1]S', projecting a (¢ — \/q,q)-geometry
S’ fully embedded in an m-dimensional subspace I'[m] skew to II[n —m —1],
with m = 3 or m = 4. Points of S' are the points of T'[m] not contained in a
Baer subspace PG(m, \/q) of T'[m], lines of " are lines skew to PG(m, \/q).
The points of S are the points of the cone Illn — m — 1|8’ that are not
contained in II[n —m — 1], while L is the set of all lines that lie on the cone
II[n —m — 1)8" and that contain q + 1 points of S.

2.5.3 Thecaseq—1#a#q—./q

Let S be a proper (q, q)-geometry fully embedded in PG(n, ¢), ¢ odd and
a > 1, for which ¢ — 1 # a # ¢ — \/q. Then every plane that contains an
antiflag of S is either a ¢-plane, or it intersects S in the closure of a net.
Hence every plane containing an antiflag of S contains one point or g+ 1 —«
collinear points of P(n,q) \ P.
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Lemma 2.5.19 Let S be a proper (a,q)-geometry, q odd and o > 1, fully
embedded in PG(n,q), for which ¢ —1 # o # q — \/q. Then every line of
PG(n,q) contains 0, 1, g+ 1 — « or g+ 1 points of P(n,q) \ P.

Proof. One proves this lemma in exactly the same way as lemma 2.5.1.
O

Theorem 2.5.20 There exists no proper («,q)-geometry fully embedded in
PG(n,q), ¢ odd and a > 1, for which ¢ — 1 # a # q — \/q.

Proof. Let S be a proper («, ¢)-geometry fully embedded in PG(n,q), ¢
odd and « > 1, for which ¢ — 1 # a # ¢ — ,/q. Then every plane containing
an antiflag of S is a g-plane or a plane intersecting P(n, q) \ P in the closure
of a net (these planes we will call planes of type II). It follows immediately
that there are no lines of B, since a plane containing an antiflag of S cannot
contain a line of B. Hence each plane contains at least one point of P(n, ¢)\P.

There is at least one plane 7 of type II, since S is proper. Let M be the
line of 7 that contains ¢ + 1 — « points of P(n,q) \ P. Let u be a point of
S, u ¢ 7. We will prove that all points of P(n,q) \ P in (u, 7) are contained
in a plane. Assume that this is not the case. Then at least two planes
through M contain points of P(n,q) \ P that do not lie on M. From lemma
2.5.19 it follows that at least ¢ + 1 — « planes through M contain points of
P(n,q) \ P that do not lie on M. Since o # ¢ — /g, a plane through M
and a point of P(n,q) \ P, intersects P(n,q) \ P in the points of ¢ + 1 — «
concurrent lines (see [35], theorem 19.4.4). Hence (u,7) contains at least
(g—1)(g+1—a)?+2(q¢+1—«) points of P(n,q) \ P. Now let L be a line of
S in 7. Then every plane through L contains either 1 or ¢+ 1 — « points of
P(n,q) \ P. It follows that (u,7) contains at most (¢ + 1)(¢ + 1 — ) points
of P(n,q) \ P. So we have found the following inequality

(g-D(g+1-a)’+2(q+1-0a) < (g+1(g+1-a)
(¢—a)(g—1) < 0

This is a contradiction. It follows that all points of P(n,q) \ P in (u,7) are
contained in a plane and it are the points of ¢ + 1 — « concurrent lines.
Next, let II[m] be an m-dimensional subspace, 3 < m < n—1, containing
(u, T), such that all points of P(n, ¢) \ P in II[m] are contained in an (m — 1)-
dimensional subspace Y[m — 1]. Let I'lm + 1] be an (m + 1)-dimensional
subspace through II[m] and a point v € P, u ¢ II[m]. Assume that not
all points of P(n,q) \ P are contained in an m-dimensional subspace of
I'[m + 1]. Then there is a line M in I'[m + 1] that is skew to Y[m — 1] and



2.5. The case in which g =¢ 79

that contains at least two points of P(n,q) \ P. The line M intersects II[m)]
in a point of §, hence from lemma 2.5.19 it follows that M contains ¢+1—«
points of P(n,q) \ P. Let M' be a line of T[m — 1] that contains ¢+ 1 — «
points of P(n,q) \ P. (Note that M’ exists, since (u,7) C II[m]). The three
dimensional space spanned by M and M’ intersects II[m] in a plane of type
IT through M'. So (M, M') contains a plane of type II and not all points of
P(n,q)\P in this three dimensional space are contained in a plane. This is a
contradiction with the first part of the proof. Hence all points of P(n,q) \ P
in I'[m + 1] are contained in an m-dimensional subspace of I'[m + 1].
Continuing in this way, after a finite number of steps, we get that all
points of P(n,q) \ P in PG(n,q) are contained in an (n — 1)-dimensional
subspace of PG(n,q). This gives a contradiction, as it implies that the
number ¢ 4+ 1 of lines of S through a point of S is not a constant. 0

The reader is reminded that all of the results proved in the sections 2.3,
2.4 and this section were summarized in section 2.2.






Chapter 3

Full projective embeddings
of proper (a, 3)-geometries,
for which «o,5 € {0,1,q,q+ 1}

In this chapter we will study proper («, 3)-geometries for some special values
of @ and S, that are fully embedded in PG(n,q). This topic has caught the
attention of many people in the last few decades, although the concept of
an («, 3)-geometry was not defined in general until recently. For the values
(,8) = (1,g+ 1), (o, B) = (0,¢9) and (a,B) = (0,1), results have been
published by respectively F. Buekenhout and E. Shult [9], J. I. Hall [29] and
P. J. Cameron [10]. We will include their results in this chapter. Next we
will recall the classification of (g, q + 1)-geometries fully embeddable in a
projective space, that was given in chapter 2 (see also [13]). The case of
fully embeddable (0, ¢ + 1)-geometries will be mentioned shortly, since such
(a, B)-geometries can never be connected. In the last section, we will give
a complete classification of fully embedded (1,q)-geometries in PG(n,q),
for ¢ # 2. Hence for all o, € {0,1,q,q + 1}, a # [, a classification of
the corresponding proper fully embeddable («, 3)-geometries is given in this
chapter. The results of this chapter have been published in [11].

3.1 (1,q+ 1)-geometries and (0, g)-geometries

The (1,q + 1)-geometries are a special class of the so-called Shult spaces.
A Shult space is defined to be an incidence structure S of points and lines
together with an incidence relation, such that for each point p and each
line L, p not incident with L, p is collinear with either 1 or all points of L.

81
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However, the number of lines of a Shult space that are incident with a point
of this Shult space, is not necessarily the same for each point of the Shult
space. This is the reason why not every Shult spaces is a (1, ¢+ 1)-geometry.
Every (1,q + 1)-geometry is a Shult space of order (g,¢). A Shult space S
is called non-degenerate if no point of S is collinear with all other points
of S. A subspace II of a Shult space S is a set of pairwise collinear points
such that each line of § that meets II in at least two points, is completely
contained in II. A Shult space S is said to have rank n if n is the largest
integer for which there is a chain Iy C IIy C ... C II,, of distinct subspaces
Iy = 0,114, ..., IL,.

The next theorem characterizes all non-degenerate Shult spaces, all of
whose lines have cardinality at least three. To understand this theorem, we
need to define what a polar space is. A polar space of rank n, n > 3, is a
set P of elements called points together with a set of distinct subsets called
subspaces, with the following properties.

1. A subspace together with the subspaces contained in it is a d-dimen-
sional projective space, with —1 < d <n — 1.

2. The intersection of any two subspaces is a subspace.

3. Given a subspace 7 of dimension n — 1 and a point p € P \ m, there
exists a unique subspace 7’ containing p such that the dimension of
7w Nx is n — 2. The subspace ' contains all points of © which are
joined to p by some subspace of dimension 1.

4. There exist disjoint subspaces of dimension n — 1.

A polar space of rank 2 is a generalized quadrangle.

Theorem 3.1.1 ([9]) A non-degenerate Shult space of rank n, n > 3, all
of whose lines have cardinality at least three, together with its subspaces, is
a polar space of rank n. A Shult space of rank 2, all of whose lines have
cardinality ot least three and all of whose points are contained in ot least
three lines, is a generalized quadrangle.

The full embeddings of Shult spaces of rank n > 3 in projective spaces
have been classified in [8] and in [36]. It follows from this classification
that each Shult space fully embedded in PG(n,¢) has an order, and hence
it is a (1,q + 1)-geometry fully embedded in PG(n,q). In particular, the
following theorem completely classifies fully embedded (1, ¢ 4+ 1)-geometries
in PG(n,q).
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Theorem 3.1.2 ([8, 36]) Let S be a proper (1,q + 1)-geometry fully em-
bedded in PG(n,q). Then one of the following holds.

1. The points and lines of S are the points and lines of a non-singular
quadric of PG(n,q).

2. The points and lines of S are the points and lines of a non-singular
Hermitian variety of PG(n,q) (in this case q is a square).

3. The points of S are all the points of PG(n,q), while the lines of S are
the lines of PG(n,q) that are contained in the totally isotropic (%)—
dimensional spaces with respect to a symplectic polarity of PG(n,q)

(in this case n is odd).

The (0, q)-geometries, for ¢ € N, ¢ > 2, have been studied extensively
by J. I. Hall (see [29]). The remainder of this section recalls the results of
[29]. A (0,q)-geometry has been called a proper A-space by Higman [33].
He observed that the property that for each point p and each line L either
i(p, L) = 0ori(p, L) = q, is more or less the converse of the defining property
of a polar space. This is the reason why J. I. Hall calls a (0, ¢)-geometry a
copolar space (see [29]).

The copolar spaces of order (1,t) are graphs which contain no triangles.
A copolar space of order (2,t) is better known as a cotriangle space.

A copolar space S is called indecomposable if and only if S is not the
union of two or more copolar spaces on disjoint point sets. A reduced copolar
space is an indecomposable copolar space such that for all vertices z and y
in the point graph of S, I'(z) = I'(y) implies z = y.

Remark that a semipartial geometry with parameters ¢, t, « = ¢ is a
copolar space of order (q,t). Of course the dual of a net is also a copolar
space, and since there is no hope of classifying these partial geometries, we
assume from now on that there exists at least one antiflag (z, L) such that
i(z,L) =0.

In [29] the finite reduced copolar spaces of order (g, t), ¢ > 2, are classified
up to isomorphism. It turns out that every reduced copolar space of order
(g,t) is a semipartial geometry. In the next theorem, this classification is
given. The semipartial geometries Uz 3(n), W (2n+1,¢) and NQ*(2n —1,2)
were defined in section 1.2.5. To define the semipartial geometry M (k),
k € {2,3,7,57}, we first need to define the concept of a Moore graph. A
Moore graph is a strongly regular graph with valency £ > 1, with A = 0,
1 = 1 and with the minimum number of vertices, which is k2 4+ 1. Note that
this definition implies that Moore graphs have neither 3-cycles nor 4-cycles,
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but they do have 5-cycles. It is known that necessarily k € {2,3,7,57}.
However a Moore graph with & = 57 is not known to exist. Now, with
each Moore graph I' there is associated a semipartial geometry, which we
will denote by W, in the following way. The point set P is the set of
vertices I', the line set £ is the set {I'(z)||x € P}, and I is the natural
incidence relation. The semipartial geometry (P, L,I) defined in this way,
has parameters ¢ =t =a =k — 1, u = (k — 1)? (see for instance [24]), and
is denoted by M (k).

Theorem 3.1.3 ([29]) If S = (P, L,]), is a finite reduced copolar space of
order (s,t), s > 2, then S is isomorphic to one of the following semipartial
geometries:

1. M(k), k € {2,3,7,57},
2. Uaz(n),
4. NQ*(2n —1,2).

Remark. The cotriangle spaces were in fact classified by [44], an earlier
version of which was proved by [43].

3.2 (0,1)-geometries and (0, ¢ + 1)-geometries

Full embeddings of (0, 1)-geometries have not been classified yet, and their
classification seems to be a very complicated problem. From each general-
ized quadrangle S = (P, L,I) a (0,1)-geometry can be constructed in the
following way (see [6]). Let M be any line of S, let P(M) be the set of the
g+ 1 points of S on M and let L(M) be the set of lines of S intersecting M,
including the line M itself. The incidence structure S, = (Pp, £p,1,) with
Pp=P\P(M), L, =L\ LIM), and with L,=I N((P, x L) U (L, x Pp)) is
clearly a (0, 1)-geometry of order (s,¢—1). If the generalized quadrangle S is
fully embeddable in a projective space, then clearly also the (0, 1)-geometry
will be fully embeddable in this projective space.

A subclass of the (0,1)-geometries, the so-called partial quadrangles,
have been studied by P. J. Cameron in [10]. Partial quadrangles are de-
fined to be (0, 1)-geometries with the property that for every two distinct
points z and y of the partial quadrangle, there are exactly p points collinear
with both 2 and y. Hence their point graph is a strongly regular graph.
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Also the classification of fully embedded partial quadrangles is an open, but
very complicated problem. Recently, F. De Clerck, N. Durante and J. A.
Thas have studied the embedding of dual partial quadrangles in a three
dimensional projective space (see [18]).

A (0,q+ 1)-geometry S can never be connected. Indeed, let p be a point
of S and L be a line of S such that i(p, L) = 0. For every line L' intersecting
L, it also follows that i(p, L) = 0, as p is not collinear with the intersection
point of L and L', so i(p,L') # ¢+ 1. Now let P’ be the set of the points
of L union all the points that lie on a line of S that intersects L. Let £’ be
the set of all lines of S that contain ¢ + 1 points of P'. Let p; and py be
two points of P'. If p; or ps lies on L, then by the definition of P’ it follows
that (p1,p2) € L'. If p; and py both are not contained in L, then let u be
a point of L. By the definition of P’, it follows that the lines (u,p;) and
{u, p2) belong to L'. Since p; is collinear with at least one point (namely u)
of the line (u,py), we get that i(p1, (u,p2)) = ¢+ 1 and hence that (p;,p2) is
a line of S. Moreover, since u is collinear with py, it follows that every point
of the line (p1,p2) is collinear with the point u € L, and hence all points
of (p1,p2) belong to P’. This implies that (pi,p2) € L. So we proved have
that every two points of P’ lie on a line of £'. It follows that ' = (P', L', T'),
with I’ the restriction of T to the points and lines of &', is a partial geometry
pg(q,t,q + 1). Hence every (0,q + 1)-geometry consists of a disjoint union
of a number of partial geometries pg(q,t,q + 1). Since we do not study
disconnected («, 3)-geometries, a (0,q + 1)-geometry would be equal to a
pg(q,t,q + 1), and hence not a proper (o, 3)-geometry. So this case is not
very important for us.

3.3 (gq,q+ 1)-geometries that are fully embeddable
in PG(n,q)

In chapter 2 of this thesis, a complete classification of (¢q,q + 1)-geometries
fully embedded in PG(n, ¢), is obtained. We will repeat our two classification
theorems here. The notation II[m] is used for an m-dimensional subspace
of PG(n, q).

Theorem 3.3.1 Let S = (P, L,1I) be a (q,q + 1)-geometry fully embedded
in PG(n,q). Assume that every plane of PG(n,q) that contains an antiflag
of S is a g-plane or a (q+1)-plane. Then S is the geometry Hy"™ with point
set P the set of points of PG(n,q)\II[m], for some 0 < m < n—2, and line

set L the set of the lines of PG(n,q) that are disjoint from II[m].
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Theorem 3.3.2 Let S = (P, L,1) be a (q,q+1)-geometry fully embedded in
PG(n,q), such that there is at least one mized plane contained in PG(n,q).
Then S is the geometry SHy"™ with point set P the set of points of PG(n, q)\
[m], with —1 < m < n — 4. Moreover there exists a partition of the points
of S in m'-dimensional subspaces of PG(n,q) through II[m], such that each
element of the partition contains II[m], m +2 < m' < n — 2. The lines of
SHZ’m are the lines that intersect ¢ + 1 of these m/-dimensional spaces in a
point. A necessary and sufficient condition for this partition to exist is that
(' — m)|(n — ).

3.4 (1,q9)-geometries (¢ > 2) fully embeddable in
PG(n,q)

In [11], we have studied the case (a, ) = (1,q). We have obtained a com-
plete classification of (1, ¢)-geometries fully embedded in PG(n, q), for g # 2.
In the next subsection a new construction of (1, g)-geometries is described
using fully embedded generalized quadrangles. In the last subsection it is
then shown that these are the only (1,¢)-geometries fully embeddable in
PG(n,q), for q # 2.

Let II[n —m —1] be an (n—m — 1)-dimensional subspace of PG(n, q). We
define II[n — m — 1]GQ to be the cone with vertex II[n —m — 1], projecting
a generalized quadrangle GQ fully embedded in an m-dimensional subspace
of PG(n,q) skew to II[n —m — 1] (m = 3,4,5). We will prove the following
main theorem which completely classifies (1, ¢)-geometries fully embeddable
in PG(n,q), g # 2.

Main theorem ([11]) Let S = (P, L,1) be a (1, q)-geometry fully embedded
in PG(n,q), for ¢ # 2. Then the points of S are the points that lie on a
cone I1ln —m —1]GQ, (m = 3,4,5), but that are not contained in the vertex
II[n —m — 1]. The lines of S are the lines that contain q + 1 points of S.

3.4.1 Construction of a (1, ¢)-geometry, ¢ # 2, fully embedded
in PG(n,q)

In this subsection we construct a (1, ¢)-geometry S, that is fully embedded
in PG(n,q), g > 2.

Theorem 3.4.1 Let P be the set of points of PG(n,q), with q > 2, that
lie on a cone I[n —m — 1]GQ, (m = 3,4,5), but that are not contained in
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m]

Figure 3.1: The cone II[n — m — 1]GQ (m = 3,4,5)

II[n —m —1]. Let L be the set of lines of PG(n,q) that lie on this cone and
that contain q + 1 points of S. Let 1 be the incidence of PG(n,q). Then
S = (P,L]T) is a (1,q)-geometry fully embedded in PG(n,q).

Proof. Let I'[m] be an m-dimensional subspace of PG(n, ¢) that is skew
to II[n — m — 1]. Then I'[mn] intersects S in a generalized quadrangle.
From the definition of S, it follows immediately that each line of S
contains ¢ + 1 points of S. It follows also that the number of lines of S
through a point of § is a constant. Indeed, since the points of the vertex
II[n —m — 1] of the cone II[n —m — 1]GQ do not belong to S, it is clear that
every point of § plays the same role. The number ¢+1 of lines of § through a
point of S can easily be counted as follows. Let u be a point of SNI'[m]. For
each line M,, of § through u, M, not contained in I'[m], there exists exactly
one line L through w in I'[m], such that the plane (L, M,) contains a point
of the vertex II[n — m — 1]. Indeed, (M,,'[m]) is an m + 1-dimensional
projective space, and since I'[m] is chosen to be skew to II[n — m — 1],
(M, T'[m]) intersects II[n —m — 1] in exactly one point z. By the definition
of S, the plane (z, M,) intersects I'[m] in a line L of S. Now assume that
there exists a second line L' of S in I'[mn] through u, such that the plane
(L', M) intersects II[n — m — 1] in a point z'. It is clear that z # z’. The
planes (L, M) and (L', M,) span a three dimensional space, and hence the
plane (L, L') intersects the line (z,z') in a point. This is a contradiction,
since (L, L") C T'[m] and (z,2') C II[n — m — 1], and by assumption I'[m)]
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and II[n — m — 1] are disjoint subspaces of PG(n,q). Hence every line of
S through u belongs to exactly one plane of the form (L, z), where L is
a line of S through w in I'lm] and z a point of the vertex II[n — m — 1].
Now let L, be a line of S through w in I'[m]. Every plane through L,
and a point of the vertex II[n — m — 1] contains ¢ lines of S through w.
Since |[II[n — m — 1]| = (¢"™ — 1)/(¢ — 1), in this way we have found
("™ —1)+1=¢" ™ lines of S through u. So if I'[m| NS is a generalized
quadrangle of order (g,t'), then there are ¢"~™(¢' + 1) lines of S through w.
This proves that t +1 = ¢" (' + 1). Now let p be a point of S and let L
be a line of S, p ¢ L. The plane (p, L) intersects II[n —m — 1] in a point or
it is skew to II[n —m — 1]. In the first case, it follows from the definition of
S that (p, L) is a ¢-plane and hence i(p, L) = ¢. In the second case, (p, L)
is contained in an m-dimensional subspace of PG(n,q) intersecting S in a
generalized quadrangle GQ. So i(p, L) = 1. Hence for every point p of S
and every line L of S either i(p, L) = 1 or i(p, L) = ¢, and both cases occur.
This proves that S is a (1, ¢)-geometry fully embedded in PG(n, q). O

Remark. This construction also holds for ¢ = 2. However, in the case
q = 2, not every plane containing an antiflag of S has to be a ¢-plane or a
degenerate plane. Indeed, when ¢ = 2, a plane containing an antiflag of S
can intersect S in the points of 3 lines of S that are not concurrent. There
do exist (1,2)-geometries fully embedded in PG(n,2) different from the one
described in the theorem above. For example let P be the set of points of
PG(n,2) not contained in an (n — 2)-dimensional subspace of PG(n,2), and
let £ be the set of lines of PG(n,2) containing 3 points of S, that are not
contained in a spread X of the points of § in PG(n,2). Then S = (P, L,])
is a (1, 2)-geometry fully embedded in PG(n,2). In fact, in the case ¢ = 2, a
(1, g)-geometry is the same as an (¢ — 1, ¢)-geometry, which we have studied
in section 2.5.

3.4.2 The intersection of a (1, ¢)-geometry fully embedded in
PG(n,q), ¢ # 2, with a plane

To classify (1, q)-geometries fully embeddable in PG(n,q), g # 2, we first
need to consider how a plane of PG(n, q), that contains an antiflag of S, can
intersect S. Therefore let 7 be a plane of PG(n, ¢) that contains an antiflag
of §. Note that if 7 contains 3 lines of S that are not concurrent, then every
point of § in m must be on either 1 or ¢ lines of § in 7.

Assume first that 7« contains at least two distinct points p; and po
through which there are ¢ lines of § in 7. We may assume that p; and
po are collinear in S. Indeed, if p; and py are not collinear then let p3 be



3.4. (1, q)-geometries (¢ > 2) fully embeddable in PG(n,q) 89

a point of 7 such that the lines (p1,p3) and (py,p3) are lines of S. Then
clearly ps ¢ (p1,p2). Since there are at least two distinct lines of S through
ps in 7 and since S is a (1, ¢)-geometry, there have to be ¢ lines of S through
p3 in . So in this case p; and p3 are two collinear points of § in 7 through
which there are ¢ lines of S in 7. Hence we may assume that p; is collinear
with py in §. Let M; (i = 1,2) be the line in 7 through p; that does not
belong to S. Let z be the intersection point of M; and M in 7. As every
point of 7 different from x lies on a line of S, we may conclude that all the
points of 7\ {z} belong to S.

Suppose first that z ¢ S. We will show that in this case the points and
lines of S in 7 are the points and lines of a partial geometry pg(q,q — 1, q).
We count the number of lines of S in w (which we denote by b;) in two
different ways. Let ¢ be the number of points of My through which there
is exactly one line of § in . Then, counting the number of lines of § in 7
intersecting Mo, we get that

br=c+(qg—c)g=¢q" +c(1—q). (3.1)

Now let L be a line of S in 7 through p; different from (p1,ps). Let y be
the intersection point of L and M,. Every point of L\ {y} is incident with
at least two lines of § in 7, and hence with ¢ lines of § in 7. Counting the
number of lines of S in 7 that intersect L, we get that

br=qlg—1)+1=¢*—q+1 or by =q(qg—1)+q= ¢’

depending on whether there are 1 or ¢ lines of § through y in 7. In the
first case, from (3.1) it follows that ¢ = 1. This means that there is exactly
one point (namely y) on Ms through which there is one line of § in 7. By
assumption ¢ > 2, hence there is a line L' of § in 7w through p; different
from L and (p1, p2). The line L' intersects My in a point y' different from v,
so through 4’ there are ¢ lines of § in 7. Counting the number of lines of S
in 7 intersecting L', we get that b, = (¢+1)(¢—1)+1 = ¢?, a contradiction.
Hence we are left with the second case b, = ¢% and from (3.1) it follows that
in this case ¢ = 0. Hence through every point of My \ {z} there are ¢ lines
of § in 7. It follows immediately that through every point of S in 7 there
are ¢ lines of S in 7. Hence the points and lines of § in 7 are the points and
lines of a partial geometry pg(q,q — 1, q).

Suppose next that z € S. We will obtain a contradiction. Let ¢ be the
number of points of Ms through which there is exactly one line of § in .
Then, counting the number of lines of S in 7 intersecting My, we get that

br =c+(g+1—c)g=¢ +q+c(l—q). (3.2)
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Let L be a line of S in 7 through p; different from (pq,p2), and let y be
the intersection point of L with Ms. Then, counting the lines of S in 7
intersecting L we get that by = ¢> — ¢ + 1 or b, = ¢°, depending on the
number of lines of S through y in 7. Using (3.2), we get in the first case
that ¢ =2+ 1/(¢ — 1) and in the second case ¢ = ¢/(¢ — 1). Since ¢ # 2, in
both cases ¢ ¢ N, a contradiction.

So if m contains at least two distinct points through which there are
q lines of S, then the points and lines of S in 7 form a partial geometry
pg(g,q —1,9).

Now assume that 7 contains at most one point through which there are ¢
lines of S in 7. By assumption 7 contains an antiflag of S, hence 7 contains
two intersecting lines L; and Ly of S. Let {p} = L1 N Ly. If there were a
line Ly of § in 7 not through p, then through p there would be ¢ lines of
S in w. Also, through the intersection point of Ls and L; there would be ¢
lines of § in . So 7 contains two distinct points through which there are ¢
lines of S in 7, a contradiction with our assumption. Hence all lines of S in
7 contain p, i.e. the lines of S in 7 form a subset of a pencil of lines.

In the previous paragraphs, we have proved that there are two possible
ways of intersection of S with a plane containing an antiflag of S. Either S
intersects a plane 7 of PG(n,q), 7 containing an antiflag of S, in a partial
geometry pg(q,q — 1, ¢), in which case we call m a g-plane with nucleus the
unique point in 7 that is not a point of S, or § intersects 7 in a subset
of a pencil of lines, and then we call 7 a degenerate plane with center the
intersection point of the lines of S in . Note that a degenerate plane
contains at least two different lines of S, since it contains an antiflag of S.

3.4.3 Classification of (1, ¢)-geometries, ¢ # 2, fully embedded
in PG(n,q)

The remainder of this chapter is devoted to the classification of (1,q)-
geometries fully embedded in PG(n, q), ¢ # 2.

Lemma 3.4.2 There ezists no (1,q)-geometry that is fully embedded in
PG(3,9), ¢ # 2.

Proof. Let S = (P,L,I) be a (1, q)-geometry fully embedded in PG(3, q),
for ¢ # 2. We have proved in the previous section that every plane of
PG(3,¢q) that contains an antiflag of S, is either a g-plane or a degenerate
plane. Since § is not a generalized quadrangle, PG(3, ¢) contains at least one
g-plane and at least one degenerate plane. From theorem 2.1.6 it follows that
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if PG(3,q) contains a g-plane as well as a degenerate plane, then S cannot
exist. This proves that there exists no (1, g)-geometry fully embeddable in
PG(3,q), for g # 2. O

Lemma 3.4.3 Let S = (P,L,1) be a (1,q)-geometry fully embedded in
PG(n,q), for g # 2. Then PG(n,q) contains a q-plane and a degenerate
plane that intersect in a line of S.

Proof. Let S = (P, L,I) be a (1, g)-geometry fully embedded in PG(n, q),
for g # 2. Since S is not a generalized quadrangle, it follows that PG(n, q)
contains a g-plane p and a degenerate plane w. Assume that 7 and p do not
intersect in a line of §. Then a plane 7 through a line L of S in 7 and a
point u of S in p, u ¢ m, is either a degenerate plane or a g-plane. If 71 is a
g-plane, then 7 and 7; are a degenerate plane and a g-plane intersecting in
a line of S. If 7 is a degenerate plane, then let 7o be a plane through a line
of § through v in 7 and a line of § through v in p. The plane 75 contains
an antiflag of S, hence it is a ¢g-plane or a degenerate plane intersecting both
the ¢g-plane p and the degenerate plane 7 in a line of S. So either 7 and
T9 or 79 and p are a degenerate plane and a g-plane intersecting in a line
of §. This proves that PG(n, q) contains a g-plane and a degenerate plane
intersecting in a line of S. U

Lemma 3.4.4 Let S be a (1,q)-geometry fully embedded in PG(n,q), for
q # 2. Let w be a degenerate plane consisting of v lines of S through its
center p and let p be a g-plane with nucleus x. Assume that p and w intersect
in a line M of S. Then the points of S in A = (m, p) are the points different
from x in r planes through (z,p), while the lines of S in A are all lines not
through = contained in these planes.

Proof. Since p is the center of =, it follows that p € M. It is clear that
r > 1, since m contains an antiflag of §. There are two cases to consider,
namely r = g and 1 # q.

Suppose first that r # q. We will prove that every line of S contains a
point of the line (z,p). Let y be a point of S in p, y ¢ (x,p). Let 3’ be the
intersection point of (z,y) and M (if y € M then y = 3’). Then all lines
through ¢’ in 7 different from M contain r points of S. Hence the ¢ planes
through (x,y) different from p in the three dimensional space A contain a
line on which there are ¢ points of S and a line on which there are r # ¢
points of S. These planes can clearly not be g-planes and neither degenerate
planes. Hence they contain no antiflag of S and in particular no lines of S.
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Figure 3.2: The intersection of S with A

This proves that all lines of S through y in A are contained in p and hence
they intersect the line (z,p) in a point. As y was any point of SN p and as
every line of S N A has at least one point in common with p it follows that
all lines of S intersect the line (z,p) in a point.

A plane through (z,p) in A intersects 7 in either a line of S or a line
containing ¢ points that do not belong to S. The plane p is a g-plane through
(xz,p). A plane T through (z,p) intersecting 7 in a line that does not belong
to & can not contain an antiflag of S. Indeed, it contains a line on which
there are ¢ points of S and a line on which there are ¢ points which are
not points of S, but neither a g-plane nor a degenerate plane can contain
both such lines. So 7 contains no lines of S. Further all points of S in 7 are
points of the line (z, p). Indeed, if there were a point w of S 'in 7, w ¢ (x, p),
then since all lines of S in A intersect (x,p), i(w, L) would be 0 for a line L
of S in p, a contradiction since S is a (1,¢q)-geometry. A plane 7' through
(x,p) intersecting 7 in a line of S is clearly a g-plane. Indeed, if 7/ were a
degenerate plane, then through a point w’ in 7'\ (z,p), w' different from
the center of 7/, there would be exactly one line L, of S in 7/. Let L be
a line of S in p skew to L,s. Then i(w', L) = 0, a contradiction. So 7’ is a
g-plane. Hence the planes through (x,p) in A are either g-planes or planes
that contain ¢ 4+ 1 points that do not belong to S. This proves that for
r # ¢ the points of S in A are all points in r planes through (z, p), different
from z, while the lines of S in A are all lines that do not contain = and are
contained in these planes.
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Suppose next that r = q. Let N be the line in 7 through p that does not
belong to S. We will prove that the points of S in the plane (N, z) are the
points of (z,p) different from x. Clearly (IV, z) contains no antiflag of S and
hence no lines of S. Assume that z is a point of S in (N, z), z ¢ (x,p). The
line (z,xz) contains at least two points that do not belong to S, namely z
and the point of intersection of (z,z) with N. A plane through (z,z) and a
line of SN A through z intersects m and p both in a line containing ¢ points
of §. So this plane is degenerate with center z and hence z is the only point
of S on the line (z,z). It follows that on every line through z in (N, z)
different from (z,p) there is at most one point of S. Hence the plane (N, z)
contains at most 2¢ points of S. Now a line through z in (N, z) different
from (z,x) and (z,p) contains ¢ points of S, since it is contained in a plane
intersecting p in a line of S and 7 in a line containing ¢ points of S. So,
counting the points of S in (N, z) on the lines through z we get that there
are at least (¢ —1)2+1 = ¢> — 2¢ + 2 points of S in (N, z). Assuming ¢ > 3,
the inequality ¢* — 2¢ 4+ 2 < 2q gives a contradiction.

For ¢ = 3, let u, v, p and z be the points of (z,p), let w be the point of
S on (z,u) and let w’' be the point of S on (z,4'), 2 # w # u, z # w' # u'.
Since there are at most 2¢ = 6 points of S in (IV, z), the line (z,p) contains
exactly two points of S, i.e. z and p. Hence the line (w, u') intersects (z, p) in
a point that does not belong to S. So (w,u') is a line in (N, z) not through
z or p that contains ¢ — 1 = 2 points of §. This is a contradiction, since we
already proved that every such line contains ¢ = 3 points of S.

So we proved that (N,z) \ (z,p) contains no points of S. This implies
that all lines of S N A intersect the line (x,p) in a point. It immediately
follows that all planes through (z,p) are ¢g-planes, for otherwise they would
contain a point w of S such that i(w, L) = 0 for a line L of S in p. So also
for r = ¢ we proved that the points of SN A are the points different from z
in r planes through (z,p), while the lines of S N A are all lines not through
z contained in these planes. O

Remark. We will denote the incidence structure described in the theorem
above by M?(r), where M = (z,p).

Theorem 3.4.5 Let S = (P, L,I) be a (1,q)-geometry fully embedded in
PG(n,q), for q # 2. Let X be a four dimensional subspace of PG(n,q) that
contains both a q-plane p and a degenerate plane w. Let p be the center of
m and let x be the nucleus of p. Assume that 3 contains a line R of S that
is skew to (x,p). Then the following cases can occur.

1. The points of S are the points of a cone I1[0]GQ, different from I1[0],
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Figure 3.3: A possible intersection of & with ¥

while the lines of S are the lines that lie on this cone and that do not
contain the vertez I1[0].

2. There is a plane T that contains g* points of S and g+ 1 points that do
not belong to S that lie on a line M. The points of S are all points of
some three dimensional spaces through T, that do not lie on M., while
the lines of S are all lines in these three dimensional spaces that are
skew to M., .

Proof. From lemma 3.4.3 it follows that we may assume that 7 and p
intersect in a line of S. From lemma 3.4.4 it follows that the points of S in
A = (m,p) are the points of some planes through the line (x, p), while the
lines of S in A are all lines not through z and contained in these planes. We
denote the intersection point of R with A by u. By assumption u ¢ (z, p).
We may assume also that u ¢ p, since A contains at least two g¢-planes
through (z,p), so if R intersects p in a point, then we replace p by another
g-plane through (z,p) in A.

First we will prove that every three dimensional space through p in X
intersects S in either a partial geometry Hg or in an incidence structure
M?*(r), with M a line of p that contains z. Let z be a point of R, z # u.
If the three dimensional space (z, p) contains a degenerate plane, then from
lemma 3.4.4 it follows that the points and lines of S in (z,p) define an
incidence structure M*(r), where M is a line (z,p’), with p’ a point of S
in p. Assume now that (z,p) contains no degenerate plane. Then every
plane in (z, p) that contains an antiflag (w, L,,) of S is a g-plane, and hence
i(w, Ly) = q. Let w' be a point of S in (z,p). Then there is a g-plane in
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(z,p) that does not contain w'. Indeed, if w’ ¢ p, then p is a g-plane not
through w'. If w' € p, then let L' be a line of S in p, w' ¢ L'. The plane
(2, L") is a g-plane not through w'. So let 7 be a g-plane in (z, p) not through
w'. In 7, there are ¢2 lines of S. In the three dimensional space (z, p), every
line through w' intersects 7 in a point. Counting the lines of S through w’
intersecting 7, we get that there are ¢? such lines. Since w' was an arbitrary
chosen point of S in (z, p), it follows that through every point of S in (z, p)
there are g2 lines of S in (z, p). So the points and lines of S in (2, p) form a
partial geometry pg(q,¢> — 1,¢). From [20] it follows that S N (z,p) is the
partial geometry Hg.

Let o1,...,0441 be the three dimensional spaces through p in ¥, with

o1 = (m, p). Now we distinguish two cases.
Case 1. Suppose that none of 01, ..., 0441 intersects S in a partial geometry
Hg. Then the incidence structure of points and lines of S in oy,...,0441 is
of the form M;"(r;), where z is the nucleus of p. We will call M; (which is
a line of p but not of §) the nuclear line of o;.

We will prove now that each oy, (i = 1,...,¢+ 1), has a distinct nuclear
line. Assume therefore that some o; and o; both have (z,v) as nuclear line,
with v € p\ {z}. Let w be a point of p not on (z,v). We look at the plane
(w, R). There are at least two lines through w in (w, R) that do not belong
to S, namely the intersection lines of (w, R) with o; respectively o; (since
w does not belong to the nuclear line of o; and o;). Since S is a (1,q)-
geometry, it follows that w is collinear with exactly one point of R. This
implies that (w,z) is the nuclear line for exactly one oy, i # k # j. Since w
was an arbitrary point of p not on (x, v}, it follows that the ¢ lines through
z in p different from (z,v) are each of them nucleus for one of the three
dimensional spaces o1, ...,0441. Since each o; (i = 1,...,¢+ 1) has exactly
one nuclear line, it follows that each line through z in p is the nuclear line
of exactly one of the o; (1 = 1,...,8+ 1). This is a contradiction with the
assumption that o; and o; have the same nuclear line (z,v). It follows that
each o, (1 =1,...,q + 1) has a distinct nuclear line through z in p.

Next we prove that for the incidence structures M;”(r;) in o; (i =
1,...,q + 1) the parameter r; is a constant r, i.e. for each o; the points
and lines of § in this space lie in r ¢-planes through the nuclear line M;. Let
p; be any point of S on M; (i =1,...,q+1). Consider the plane (p1, R). It
intersects o1 in a line of S, while it intersects oy, (1 = 2,...,¢+ 1), in a line
containing g + 1 — r; points that do not belong to S. It follows that (p1, R)
is a degenerate plane. Hence ¢+ 1—1r; =q+1—r,fori=2,...,¢g+ 1 and
r a constant. Considering the plane (p, R), in the same way as above it
follows that r1 = r. So in each o; there are r g-planes through the nuclear
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line L; = (p;,x), fori=1,...,q+ 1.

Now let N be a line of S in p. Let Y x[3] be a three dimensional subspace
of ¥ containing N but not containing z. Then Y y[3] intersects o;, for
1=1,...,g+ 1 in a plane 7; through N. The line NV intersects the nuclear
line M; (1 =1,...,¢+ 1) in one point. So in every plane 7; all lines of S are
concurrent. Since 7; is a plane of g;, the lines of § in 7; are r lines through
the point M; N N. Hence every 7; is a degenerate plane. This implies that
in Y x[3] there are ¢ + 1 degenerate planes through the line N of §. From
lemma 3.4.4 it follows that Y [3] contains no ¢-planes. Hence i(w,L) =1
for every antiflag (w, L) of S in Tn[3]. Now we count the number of lines
of § through a point of S contained in Yy[3]. If z € N, then z € M;
for exactly one ¢ € {1,...,q + 1}. So z is the center of exactly one of the
degenerate planes through N, namely the plane 7;. Hence there are r lines
of § through z in YTy[3]. If 2/ € Tn[3] \ N, then 2’ ¢ p. So 2’ € 7; for
exactly one j € {1,...,¢+1}. As Tx[3] contains no g-planes, 2’ is collinear
with exactly one point of each of the r — 1 lines of S different from N in
T, for k # j. In 7; there is exactly one line of S through 2. So 2’ is
incident with 7 lines of S in Y x[3]. Hence the number of lines of S through
a point of S in YT x[3] is a constant r. It follows that S intersects Y y[3] in
a generalized quadrangle of order (¢, — 1). Hence S N T [3] is one of the
following (see theorem 1.2.1): the points and lines of a hyperbolic quadric
Q1 (3,q), the points and lines of a Hermitian variety H(3,q) (in which case
q is a square), or all the points and the totally isotropic lines of a symplectic
polarity W (3, q).

If L is a line of S in 74, for s = 1,...,q + 1, then (z, L) is a g-plane.
Let L' be a line of S in Tx[3], L' skew to N. Let zi,..., 2,41 be the points
of L', with z; € 7. Then (M;,z2;) is a g¢-plane, for i = 1,...,¢g + 1. In
particular, the line (z,z;) contains g points of S. Hence the plane (L', x)
contains exactly one point that does not belong to S, namely the point z.
So (L',z) is a g-plane. This proves that all the points of the cone with
vertex z, projecting a generalized quadrangle contained in Y y[3], different
from z, are points of §. Suppose that there were a point v of § in X that
does not belong to this cone. Then the line (z,v) intersects Y x[3] in a point
that does not belong to S. However from the above we know that every line
through x contains either 0 or ¢ points of S. This implies that v can not
exist. Hence the points different from x of the cone with vertex = projecting
a generalized quadrangle in T n[3], are the only points of S in 3. We proved
that for every line L of the generalized quadrangle in Ty[3], (z,L) is a ¢-
plane. Hence every line that does not contain z and that lies on the cone
with vertex z projecting the generalized quadrangle in Y x[3], is a line of S.
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These are the only lines of S, since all other lines of ¥ contain points that
do not belong to §. This proves that the points of § in ¥ are the points of
A\ {z}, where A is the set of points of the cone with vertex z projecting
a generalized quadrangle in a three dimensional space skew to z, while the
lines of S in ¥ are all lines that lie on this cone and that do not contain z.
Case 2. Suppose now that at least one of the three dimensional spaces
O1,...,0¢4+1 intersects S in a partial geometry Hg. Let oy = (m,p) and
assume that o441 intersects S in a partial geometry Hg. Let r be the number
of g-planes through M; = (z,p) in 0. Let y1,...,yq, = be the points of the
line H, or in other words the points of 0,41 that do not belong to S.

Assume first that r # q. As before, let R be a line of S skew to p.
Then the planes (R,y;), (i = 1,...,q), intersect p in a point of the line
(z,p). Indeed, assume that the plane (R,y;) would intersect p in a point
w ¢ (z,p). The plane (R,y;) contains an antiflag of S. Since w does not
belong to the nuclear line of o1, the plane (R, y;) intersects o; in a line that
contains exactly r points of S. On the other hand (R,y;) intersects o441
in a line containing ¢ points of §. This is a contradiction, since neither a
g-plane nor a degenerate plane can contain both of these lines. This proves
that the plane (R, y;) has to intersect p in a point of (x,p).

It follows that every line of S in ¥ intersects the plane (p, H) in a point.
Indeed, if there were a line M’ of S that intersects o441 in a point u, u ¢
(p, H), then, replacing R by M’ in the previous paragraph, we would get a
contradiction.

Now we prove that o4 is the only three dimensional space through p
in 3 that intersects S in a partial geometry Hg. Let w’ be a point of p,
w' ¢ (z,p). The plane (R, w') intersects o441 in a line of S, and o0 in a line
containing exactly r # ¢ points of S. Hence (R, w') is a degenerate plane
with center different from w’. This implies that there are ¢ lines through
w' in (R,w') that contain r # ¢ points of S. Hence each o, (i = 1,...,q),
contains a line on which there are r # ¢ points of §. This implies that o;,
(1 =1,...,q) does not intersect S in a partial geometry Hg. So the points
and lines of S in 0y, (i = 1,...,¢), are the points and lines of an incidence
structure M;*(r). Since w was an arbitrarily chosen point of p \ (z,p), it
follows that the nuclear line M; of o; (i = 1,...,q) is the same line (p,z)
for each i € {1,...,q}.

Now we look at the three dimensional spaces through (p, H) in . One
of them is o441, with o441 NS being a partial geometry Hg. Let L be a line
of § in o1, L not contained in p. Then L intersects the line (p, ) in a point.
The plane (L,z) is a g-plane. The planes (L,y;), for i = 1,...,q, are all
g-planes, as (z,p) is the nuclear line of o1,...,04. So the three dimensional
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space (L, H) contains g + 1 ¢-planes through L. Hence the points of (L, H)
that do not belong to S are the points of the line H. So (L, H) can not
contain a degenerate plane. Hence every plane in (L, H) that contains an
antiflag of S is a ¢-plane. It follows that (L, H) intersects S in a partial
geometry Hg. Now let N be a line in oy that intersects (x,p) in a point z,
z#x, N ¢S. Then N contains ¢ points that do not belong to S. The plane
(N, z) contains g% + 1 points that do not belong to S. The planes (N,y;),
for i = 1,...,q, contain the line NV with ¢ points that do not belong to S,
and a line through y; in o441 that contains ¢ points of S. So the planes
(N,y;), for i = 1,...,q, can not contain an antiflag of S. Since z € (x, p),
every line through z not in o, either belongs to S or it contains ¢ points
that do not belong to S. It follows that all points of S in (N, y;) lie on
the line (y;, z), (¢ = 1,...,q). This implies that all points of S in the three
dimensional space (N, H) are contained in the plane (p, H). This proves
that the points of § in X are all the points of some three dimensional spaces
through (p, H), not contained in the line H, while the lines of S in ¥ in are
the lines contained in these three dimensional spaces and skew to the line
H.

Assume next that r = q. Then we may assume that each oy, (i =
1,...,q + 1), that contains a degenerate plane, has ¢ g-planes through its
nuclear line, for otherwise we can apply the previous case with ¢; instead of
o1. Let RN ogyq1 be the point 2. We will prove that H is contained in the
plane (z,p,z). Assume therefore that y; ¢ (z,p,z). Let (z,y;) N p be the
point z’. Then the intersection lines of (R, z') with o) and with 0,4, each
contain one point that does not belong to S. It follows that i(z’, R) = 1,
so (', R) is a degenerate plane, with center different from z. Since r = g,
(7', R) contains exactly ¢ collinear points that do not belong to S. Now let
M, be a line through z in (z/, R) that contains exactly one point z’ that
does not belong to S, with 2’ ¢ o1 and M, # (z,y;). We count the points
of ¥ that do not belong to & in the planes through the line M,.

Every line through x contains 1 or ¢ + 1 points that do not belong to S.
Since M, contains exactly ¢ points of S, the plane (M,,z) contains ¢ + 1
points that do not belong to S, namely the points of the line (z,z').

In the planes (M, w), forw € p,w ¢ (p,z) andy; ¢ (z,w), (i =1,...,q),
the line (w, z) is a line of S, while (M, w) intersects o in a line containing
one point that does not belong to S. Hence (M,,w) contains an antiflag
of § and at least two points that do not belong to §. This implies that
(M,,w) is a degenerate plane that contains ¢ points that do not belong to
S. Now there are ¢> — ¢ possible choices for the point w, so in total we find
q(q — 1) + 1 points that do not belong to S.
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The planes (M, v), with v € p, y; € (z,v), (j =1,...,q), are contained
in the three dimensional space (R,z,v), for we have chosen M, to be a
line of the plane (R,y;). The plane (R, z) is a g¢-plane, while (R,v) is a
degenerate plane. So from lemma 3.4.4, it follows that the points and lines
of § in the three dimensional space (R, x,v) are the points and lines of an
incidence structure M?(r) with nuclear line M being contained in the plane
(R,z). The line M, is clearly skew to the nuclear line M, since it contains
exactly one point that does not belong to § and this point is different from
x. Hence the planes (M,,v), with v € p, y; € (z,v), are all degenerate, and
they contain exactly ¢ points that do not belong to &. Since there are ¢
such planes, there are g(q¢ — 1) + 1 points that do not belong to S in these
planes.

The planes (M,,p'), for p' € (z,p) \ {z} intersect o; in a line of S. So
they contain an antiflag of S and hence they are either degenerate planes
containing ¢ points that do not belong to S or they are ¢g-planes. Assume
that ¢ of these planes are g-planes. Then in these planes there are exactly
(g —¢)(¢ — 1) + 1 points that do not belong to S.

So the number of points of ¥ that do not belong to S equals

1+q+q(g—1)7+qlg—1)+(g—c)g—1)=¢*+1—c(g—1). (3.3)

Now we count the points that do not belong to & in another way: in o
there are ¢° + 1 such points, in o4+1 there are ¢ + 1 such points and in oy,
for 1 # i # g+ 1, there are ¢> + 1 or ¢+ 1 such points. Assume that (¢’ + 1)
three dimensional spaces through p do not intersect S in a partial geometry.
Then the number of points of 3 that do not belong to S equals

1+ +q+d@+(g—1-)g=2¢"+1+(¢* — q). (3.4)

From (3.3) and (3.4) it follows that ¢ = ¢* — ¢'q — ¢*/(q¢ — 1). Since ¢ € N,
it follows that (¢ — 1) | ¢>. This implies that ¢ = 2, a contradiction with
our assumption. This proves that y; € (z,p,z), fori = 1,...,q. It follows
also that every line of § in ¥ intersects the plane (p, H) in a point, and that
each o;, for i = 2,...,q, that contains a degenerate plane, has the line (z, p)
as nuclear line. Indeed, if o;, for j € {1,...,q}, would have a nuclear line
(x,p'), with p’ ¢ (x,p), then in the same way as above we can prove that
y; € (z,p',2), for i = 1,...,q. However we proved above that the line H
belongs to the plane (z,z,p). So p' € (x,p), a contradiction. Hence (z,p) is
the nuclear line for each o;, (i =1,...,q).

Now we prove that each o;, (i = 2,...,q), contains a degenerate plane.
Let w € 0441 \ p be a point of S, w ¢ (p, H). Let Ly, be a line of S through
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w in g4 and skew to (z,p). Let L, N p be the point v. Let N, be a line
through w and a point of S in o7 \ p. Then N,, does not belong to S, since
it does not meet (p, H). The plane (L,,, N,,) contains an antiflag of S and
two lines that do not belong to S through the point N, N o (the second
line being (N, Ly) N o1). Hence it is a degenerate plane with center o'
different from the point v. So in (L,,, Ny,) there is one line M, through o'
on which there are ¢ points that do not belong to §. Let M, N N, be the
point z*. Then z* lies in a oy, for k € {2,...,q}. Now the ¢ lines through v
in (Ly, Ny), different from L, contain a point of M, that does not belong
to S. Hence for i = 1,...,¢q, each line o; N (L, Ny) contains a point that
does not belong to S. Now there are g> — ¢ possible choices for the line L,
of S through w in o411, Ly, skew to (z,p). Hence each oy, (i = 2,...,q),
i # k, contains at least ¢° — g points that do not belong to S. Now for ¢ > 2,
q®> — q > q + 1, which implies that no o;, (i = 2,...,q), i # k, intersects S
in a partial geometry Hg. To prove that o contains a degenerate plane, we
argue in the same way, replacing Ny, by a line N, through w and a point of
S in oy \ p.

In the same way as in the case r # ¢, it can be shown that every three
dimensional space in ¥ through the plane (p, H) intersects S either in a
partial geometry Hg, or in the points of the plane (p, H) not on the line
H. Hence the points of S are all points of a set of three dimensional spaces
through (p, H), not contained in the line H, while the lines of S are all lines
in these three dimensional spaces skew to H.

So we have proved that S intersects X as follows.

1. The points of S are the points of a cone £GQ, different from z, with
GQ a generalized quadrangle fully embedded in a three dimensional
space not containing x, while the lines of S are the lines that lie on
this cone and that do not contain the vertex z.

2. There is a plane 7 that contains ¢> points of S and ¢+ 1 points that do
not belong to &, that lie on a line M,. The points of S are all points
of a set of three dimensional spaces through 7, that do not lie on M,
while the lines of S are all lines in these three dimensional spaces that
are skew to M.

g

Corollary 3.4.6 Let S = (P,L,1) be a (1,q)-geometry fully embedded in
PG(4,q), for g # 2. Then the points of S are the points of a cone II[0]GQ,
different from the vertez 11[0]. The lines of S are the lines that lie on this
cone and contain q+ 1 points of S.
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Proof. Since S is not a partial geometry, PG(4,q) contains both a degen-
erate plane m with center p and a g-plane p with nucleus z. From lemma
3.4.3 it follows that we may assume that 7 and p intersect in a line of
S. Then from lemma 3.4.4 we get that the points and lines of S in (m, p)
are the points and lines of an incidence structure M*(r), with nuclear line
M = (p,z). The points of S span PG(4,¢q), so let v be a point of S in
PG(4,q) \ (m,p). Since S is a (1, g)-geometry there is a line R of S through
u intersecting (7, p) in a point w. We may assume that w ¢ (x,p). Indeed,
through the points of S in (, p) \ (z, p) there are less lines of S in (7, p) than
through the points of (z,p) \ {z}. Since S is a (1, s)-geometry, the number
t + 1 of lines of & through a point of S is a constant. Hence we can choose
R such that w ¢ (z,p). Now we can apply theorem 3.4.5. The result of this
corollary then immediately follows, again since the number ¢ + 1 of lines of
S through a point of S, has to be a constant. O

Let S be a (1, g)-geometry fully embedded in PG(n,q), ¢ # 2. Let Y[d]
be a d-dimensional subspace of PG(n,q), 4 < d < n. Assume that the
incidence structure of points and lines of S in Y[d] is one of the following
two incidence structures.

1. Let Ald —2] be a (d — 2)-dimensional subspace of Y[d] and let ¥[d — 3]
be a hyperplane of A[d — 2]. The points of S in T[d] are all points not
contained in ¥[d—3] of some (d—1)-dimensional spaces through A[d—2]
in YT[d]. The lines of S in Y[d] are all lines in these (d — 1)-dimensional
spaces skew to U[d — 3]. We say that this incidence structure Y[d]NS
is of type I, and call ¥[d — 3] its nuclear subspace.

2. The points of S in Y[d] are all points of a cone Q[d —m — 1]GQ, that
are not contained in the vertex Q[d —m — 1]. The lines of S are all
lines that lie on this cone and that contain no point of Q[d — m — 1].
In this case we say that Y[d] NS is of type IL.

Lemma 3.4.7 Let S = (P,L,1) be a (1,q)-geometry fully embedded in
PG(n,q), forq > 2 andn > 4. Assume that for every l-dimensional subspace
T[] of PG(n,q), with 4 <1 < n, Y[l] containing a g-plane and a degenerate
plane, T[IINS is of type 1 or of type 1. Let T'[l+1] be an (I+1)-dimensional
space containing Y[l] and a point u of S, u ¢ Y[l]. Then T[l+1]NS is also
of type 1 or of type I1.

Proof. Let Y[l] be an I-dimensional subspace of PG(n,q) that contains

both a degenerate plane and a g-plane. Let u € S, u ¢ Y[l]. Let I'll + 1] =
(Y[l],u). Now we determine how S intersects I'[l + 1].
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Assume first that Y[I] NS is of type II. Then the points of S in T[{] are
all the points of a cone Q[l —m —1]GQ, (m = 3,4,5), that are not contained
in the vertex Q[l — m — 1]. The lines of S are all lines that lie on this
cone and that contain no point of Q[l —m — 1]. We consider first the case
m = 3. If T'[l + 1] contains a g-plane p’ that intersects Y[/] in a line M of
S, then I'[l 4+ 1] contains an /-dimensional subspace Y'[l] for which Y'[[]NS
is of type I. Indeed, let y be the point of p’ that does not belong to S. Let
z € Q[l —4]. Then (z,p') is a three dimensional space that contains two
g-planes (z, M) and p' that intersect in the line M of S. From lemma 3.4.4,
it follows that (z,p’) contains no degenerate planes. So (z,p’) intersects S
in a partial geometry H}. Hence the line (x,y) contains no point of S. Since
x € Q[ — 4] was arbitrarily chosen, it follows that (y, Q[l — 4]) contains no
point of S and moreover all points of (p', [l — 4]) that do not belong to S
are contained in (y, Q[ —4]). So (p/, [l — 4]) contains no degenerate plane.
Hence (p/, Q[l —4]) intersects S in a partial geometry Hfl_l. Now let Y'[I] be
an [-dimensional subspace of I'[l 4 1] that contains (p’, Q[l —4]) and a line of
the generalized quadrangle GQ intersecting (p/, [l —4]) in one point. Then
T'[l] contains a degenerate plane, since it intersects GQ in a plane. Hence
T'[I] NS is of type I or II. Since Y'[I] contains an (I — 1)-dimensional space
intersecting S in a partial geometry, Y'[I]] NS is of type I. This proves that
['[l+1] contains an [-dimensional subspace Y'[[] for which Y'[I]NS is of type
I. We will treat this case later. So we may assume for now that I'[l + 1] does
not contain a ¢g-plane that intersects Y[/] in a line of S.

Let I1[3] be a three dimensional subspace of Y[l] skew to [l — 4]. Then
II[3] N S is a generalized quadrangle. Let u € S again be a point of I'[l 4+
1]\ Y[l]. Then (u,II[3]) is a four dimensional space containing no s-planes
(since by assumption no g-plane in I'[l 4+ 1] intersects Y[l] in a line of S and
since no line in I1[3] contains exactly ¢ points of S). Hence for every antiflag
(z, M) of § in (u,II[3]), we have that i(z, M) = 1. It follows immediately
that the number of lines of S through a point of S in (u,II[3]) is a constant.
Hence S intersects (u,II[3]) in a generalized quadrangle. Since u was an
arbitrary point of I'[l + 1] NS, every four dimensional subspace of I'[l + 1]
skew to Q[l — 4] intersects S in a generalized quadrangle.

Let M be a line of S in I'[l + 1]. Let z € Q[l —4]. Assume that (z, M) is
not a ¢g-plane. Then clearly M does not belong to Y[I]. So (z, M) intersects
T[l] in a line on which there are ¢ points of S. Hence (z, M) contains an
antiflag of S and so it is a degenerate plane. It follows that in (x, M) there
is exactly one line through z on which there are ¢ points that do not belong
to S. Let N’ be a line of (z, M) that contains a point that does not belong
to S, z ¢ N'. We proved above that a four dimensional space through
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N' skew to Q[ — 4] intersects S in a generalized quadrangle. However, in
a generalized quadrangle no line contains exactly one point that does not
belong to S, a contradiction. Hence for every line M of S in I'[l + 1] and
every x € Q[ — 4], the plane (x, M) is a g-plane. This proves that every
point of the cone with vertex Q[l — 4], projecting a generalized quadrangle
contained in a four dimensional space skew to Q[l — 4], not contained in
Q[l — 4], belongs to S. It follows that I'[l + 1] N S is of type II, with a four
dimensional generalized quadrangle as base of the cone.

Consider next the case m = 4. Assume first that I'[l + 1] contains a
g-plane p’ that intersects Y[I] in a line of S. Then as in the previous case
we can prove that (p/,Q[l — 5]) intersects S in a partial geometry Hf]*2.
Let Y'[l] be an [-dimensional subspace of T'[l + 1] containing (o, Q[l — 5])
and a line of S in GQ, intersecting (p',Q[l — 5]) in a point. Then Y'[I]
contains a degenerate plane and hence Y'[[]NS is of type I or II. Since Y'[I]
contains the (I —2)-dimensional space (o, Q[l —5]) intersecting S in a partial
geometry Hf;2, it follows that Y'[[]NS is of type IT with a three dimensional
generalized quadrangle as base of the cone, or Y'[[] NS is of type I. The
first case we dealt with above and the second case we will deal with later.
If I'[l + 1] contains no s-plane that intersects Y[!] in a line of S, then as in
the previous paragraph, one proves that I'[l + 1] NS is of type II with a five
dimensional generalized quadrangle as base of the cone.

In the case m = 5, as in the previous cases, it follows that either I'[l 4 1]
contains an [-dimensional subspace Y'[I], such that Y'[]]NS is of type II with
a four dimensional generalized quadrangle as base of the cone, or Y'[[]NS is
of type I (the first case we dealt with above and the second case we will deal
with later), or I'[l + 1] NS is of type II with a six dimensional quadrangle as
base of the cone, a contradiction since there exists no generalized quadrangle
that is fully embedded in a six dimensional projective space and that is not
contained in a five dimensional subspace.

So if T[I] NS is of type II, then I'[l + 1] N'S is either also of type II, or
I'[l + 1] contains an [-dimensional subspace Y'[l], for which Y'[I] N S is of
type L

Assume next that Y[I)NS is of type I. Then we proceed in the same way
as we did in theorem 3.4.5. Let T[l — 1] be an (I — 1)-dimensional subspace
of Y[I] that contains Al — 2] and such that Tl — 1] NS is a partial geometry

Hffl. Let 01,...,0441 be the [-dimensional subspaces of I'[l + 1] containing
T[l — 1]. Assume that o7 = Y[l]. Then as in theorem 3.4.5, one can prove
that for ¢ = 1,...,q 4+ 1, 0; intersects S either in a partial geometry HfI or

that all points of SNo; are contained in some (/ — 1)-dimensional subspaces
around (p;, ¥[l — 3]), with p; € T[l — 1] \ Y[l — 3], while the lines of S N o;
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are the lines contained in these subspaces that contain ¢+ 1 points of S. In
the last case, we call (p;, ¥[l — 3]) the nuclear subspace of o;.

Case 1. Suppose that none of 01, ..., 0441 intersects S in a partial geometry
Hf]. Then oy,...,0441 intersect S in a number of (I — 1)-dimensional spaces
containing (p;, ¥[l — 3]), for p; € T[l — 1] \ ¥[l — 3], which intersect S in a
partial geometry Hfl_l.

As in theorem 3.4.5 one can prove that o1, ..., 0441 each have a different
nuclear subspace (p;, ¥[I—3]), (i = 1,...,q), and that each o; has a constant
number r of (I—1)-dimensional spaces through its nuclear subspace (p;, V[l —
3]).

Now we count the number of lines of S through a point in I'[l + 1].
Let u; be a point of § in T'[l — 1]. Then u; € (p;, Y[l — 3|) for just one
i €{1,...,q+1}. Soall lines of S in I'[l + 1] through u; are contained in o;.
Hence the number of lines of S through wy in T'[l 4 1] is r¢' 2. Let uz be a
point of S not in T'[l —1]. Then uy € o; for some i € {1,...,g+1}. Let L be
a line of § in o, for j # 4, such that L does not belong to T'[l —1]. The plane
(ug, L) intersects oy, for k # j, in a line containing s+ 1—g¢ points that do not
belong to S. Hence it is a degenerate plane and in particular i(ug, L) = 1.
Since L was an arbitrarily chosen line of o; \ T'[l — 1], i(ug, L) = 1 for each
line L of S in 0\ T'[l — 1]. Now let ¢ be the number of points of o \ Tl — 1]
collinear with us. We count in two different ways the flags (z, L,), for z ~ us
and L, a line of o; \ T[l — 1]. We get that ¢ 2c = 1¢?4(r — 1) or thus
¢ = ¢ %(r —1). In o; there are ¢! =2 lines of S through uy. Hence in total
there are r¢!~2 lines of S through uy in T'[[41]. This proves that the number
of lines of S through a point of S in I'[l + 1] is a constant. Hence the points
and lines of S in I'[l + 1] form a (1, ¢)-geometry in I'[l 4 1].

In the same way as in theorem 3.4.5, one proves that the (1, ¢)-geometry

S NT[l + 1] has points the points of a cone with vertex ¥[l — 3], projecting
a generalized quadrangle in a three dimensional subspace of I'[l + 1] skew to
U[l — 3], not contained in V[l — 3], and its lines are the lines on this cone
that contain ¢ 4+ 1 points of S.
Case 2. Suppose that at least one oy, for i =1,...,¢ + 1, intersects S in a
partial geometry Hf]. Let (y, V[l — 3]) be the (I —2)-dimensional subspace of
points that do not belong to § in one such a ¢;. Then in the same way as
in theorem 3.4.5, it follows that the points of S in I'[l + 1] are the points of
some [-dimensional spaces through (A[l—2], y1) not contained in (V[{—3], 1),
while the lines of S in I'[l 4+ 1] are the lines in these /-dimensional spaces
that are skew to (¥[l — 3],y1).

So we proved that I'[l + 1] NS is also of type I or of type II. This proves
the lemma. D



3.4. (1, q)-geometries (¢ > 2) fully embeddable in PG(n,q) 105

Theorem 3.4.8 Let S = (P, L,I) be a (1,q)-geometry fully embedded in
PG(n,q), for ¢ # 2. Then the points of S are the points of a cone Il[n —
m — 1]GQ, (m = 3,4,5), that are not contained in the vertex II[n —m — 1].
The lines of S are the lines that lie on this cone and contain q + 1 points of

S.

Proof. From theorem 3.4.5 it follows that a four dimensional subspace %
of PG(n, q), that contains both a g-plane and a degenerate plane, intersects
S in one of the following.

1. The points of S are the points of a cone £GQ, different from z, while
the lines of S are the lines that lie on this cone and that do not contain
the vertex.

2. There is a plane 7 that contains ¢ points of S and ¢ + 1 points that
do not belong to S, that lie on on a line M. The points of S are all
points of some three dimensional spaces through 7, that do not lie on
M., while the lines of S are all lines in these three dimensional spaces
that are skew to M,.

Applying lemma 3.4.7 a finite number of times we get that PG(n, q) inter-
sects S in one of the following.

1. The points of § are the points of a cone II[n —m —1]GQ, not contained
in IT[n — m — 1], while the lines of S are the lines that lie on this cone
and contain ¢ + 1 points of S.

2. There is an (n — 2)-dimensional subspace IT'[n — 2] and the points of
S in IT'[n — 2] are the points of the affine space IT'[n — 2] \ ¥'[n — 3],
with ¥'[n—3] an (n — 3)-dimensional subspace of II'[n —2]. The points
of § in PG(n,q) are all points of a set of (n — 1)-dimensional spaces
through IT'[n — 2], not contained in ¥'[n — 3]. The lines of S are all
lines in these (n — 1)-dimensional spaces, that are skew to ¥'[n — 3].

The second case can not occur, since the number of lines of S through a
point of S is not a constant there. This proves the theorem. O






Chapter 4

Characterizations of some
(ar, B)-geometries

In the previous chapters we have discovered some classes of («, §)-geometries
that are fully embeddable in PG(n,q). For three of these classes of («, 3)-
geometries we will give a characterization theorem in this chapter. One
of them is the one we have denoted as Hy™. This (q,q + 1)-geometry
is closely related to the partial geometry Hy. A characterization of the
(¢, ¢+1)-geometry SHi"™ will follow out of the same theorem as the one that
gives a characterization of Hy"™. The third class is the (45, 2t1)-geometry
NQ*(3,q), q odd, that has point set the points of PG(3,q) that are not
contained in a non-degenerate hyperbolic quadric Q7 (3, q) of PG(3,¢q), and
line set the lines that are exterior to this quadric Q™ (3, q).

4.1 The (q,q+ 1)-geometries H;'™ and SH;"™

4.1.1 Description of H}"™ and SH"™

In [13, 12] (and in chapter 2) we introduced the two (v, 3)-geometries Hy"™
and SHg’m, for 0 < m < n — 2. Both of them are fully embeddable in a
projective space PG(n, q). The (g, g+1)-geometry Hy”™ has points the points
of PG(n,q) that are not contained in an m-dimensional subspace II[m] of
PG(n,q), while its lines are the lines of PG(n,q) that are skew to II[m].
Note that Hy"™ will only be a proper («,8)-geometry if 0 < m < n — 2,
since for m = —1 and m = n — 2 we get a partial geometry. The partial
geometry H"" 2 is usually denoted by Hy. The (q,q + 1)-geometry SHy™
has the same point set as Hy™, while its lines are the lines of PG(n,q)
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M M,

Figure 4.1: The axiom of Pasch

that are skew to II[m] and not contained in an element of a partition of the
points of PG(n, ¢) \ II[m] into m’-dimensional spaces that pairwise intersect
in O[m), form+2 <m' <n—1.

4.1.2 A characterization of the partial geometry Hj

In [54], J. A. Thas and F. De Clerck gave a characterization of the partial
geometry Hy. In this characterization of Hy, the axiom of Pasch appears,
which is also known as the axiom of Veblen or the axiom of Veblen-Young.
We will define the axiom of Pasch for any («a, 8)-geometry, since we will need
it later. So let & = (P, L,I) be an («, §)-geometry. If the points z,y € P
are collinear in S, then we write z ~ y. If the lines L, M € L are concurrent
in S, then we write L ~ M. An («, 8)-geometry S = (P, L,1) satisfies the
aziom of Pasch if

VLi,Lo,My,My € L,Ly # Lo, L1 121 Ly, x ¢ My, ¢ Mo,
Li ~ Mj for all i,5 € {1,2} : My ~ M.

Note that for « = 8 =1 and for « = 8 =t + 1, the axiom of Pasch is
trivially satisfied.

In their characterization of Hy, J. A. Thas and F. De Clerck introduced
the notion of a regular partial geometry. To define what is a regular partial
geometry, first some other definitions are needed.

Let & = (P, L,I) be a partial geometry satisfying the axiom of Pasch,
with @ ¢ {1,¢+1}. Let L and M, L # M, be two concurrent lines of S with
intersection point z. Then the substructure S(L, M) = (P*,L*,T*) of S is
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defined as follows: L£* is the set of the s(a — 1) lines N, such that z ¢ N
and L ~ N ~ M, together with the set of the « lines through z that are
concurrent with at least one of these s(a — 1) lines; P* is the set of points
of § that lie on the lines of £* and I*=I N((P* x L£*) U (L* x P*)). Since
S satisfies the axiom of Pasch, it follows that S(L, M) = (P*, L*T*) is a
pg(s,a — 1,a). Note that for Ny, Ny € L*, N3 # Nj, the substructures
S(N1, Na) and S(L, M) coincide. Also note that for any pair (z, N), z € P,
N € L,z ¢ N, there is exactly one substructure S(L, M) that contains both
z and N. This substructure we will denote by S(z, N).

We assume from now on that o ¢ {1,s+ 1,¢+ 1}. Let z and y be two
non-collinear points of S. It follows from the previous paragraph that there
are (t + 1)/a subgeometries S(L, M) of S that contain both z and y. We
denote these subgeometries by S = (P, L;,IF), for i = 1,...,(t+1)/c.

1771

The line of the second type (z,y) is defined to be the set Py N... ﬂPE‘H_I)/a.
From the construction it follows that no two distinct points of the line (z, y)
are collinear in S. Indeed, suppose that z1, 29 € (z,y), 21 # 22, are two
collinear points of §. The line L of § through z; and 2z has to be an
element of £ for each ¢ € {1,...,(t +1)/a}. If z ¢ L, then S(z, L) is the
only substructure containing x and L. However, x and L are contained in
the (¢t +1)/a > 1 different substructures S}, for i = 1,...,(t + 1)/c. This
is a contradiction. So z € L. In the same way one proves that y € L.
Hence z is collinear with y in &, a contradiction with the assumption. This
proves that no two distinct points of (z,y) are collinear in S. It follows
immediately that for z1, zo € (z,y), the lines (z1,29) and (x,y) coincide.
Since (z,y) is a set of two by two non-collinear points of the partial geometry
Sfie{l,...,(t+1)/a}, |(z,y)| is at most the number of points of an ovoid
of Sf. Hence |(z,y)| < s+1—-s/a. If (z,y)|=s+1—s/aforall z,y €S,
z not collinear with y, then the partial geometry S is called regular.

It is easy to check that Hy is a pg(q, "' — 1,q). Since Hy is fully
embedded in PG(n,q), it satisfies the axiom of Pasch. Moreover it is the
only known partial geometry that satisfies the axiom of Pasch in a non-trivial
way. J. A. Thas and F. De Clerck have proved the following theorem.

Theorem 4.1.1 ([54]) The partial geometry S = (P, L,1) with parameters
(s,t,a), such that a # 1, t+ 1, s + 1, is isomorphic to an Hy if and only if

1. S satisfies the axiom of Pasch;
2. § is regular;

3. 25 > st —as? + a?s% + s — 2.
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Remark. The third condition of the theorem is in fact a very strong
condition. If a # s, this condition is almost never satisfied.

4.1.3 (o, 3)-geometries satisfying the axiom of Pasch

Let § = (P, L,1) be a proper («, 3)-geometry of order (s,t), satisfying the
axiom of Pasch, with 1 < o < f < t+ 1. Let L and M be two distinct
concurrent lines of S, with LN M = {z}. Then a substructure S(L, M) =
(P*,L*,1*) of S can be defined exactly in the same way as is done for
a partial geometry S in the previous paragraph. However, since S is an
(o, B)-geometry, for every point p of S* and every line L, of S*, such that p
is not incident with L, there are either « or 3 points on L, that are collinear
with p. Hence it is possible that $* contains a point z; through which there
are « lines of §* and a point 22 through which there are g lines of §*. If
this is the case, then §* is clearly not an («, 3)-geometry, as the number
of lines through a point in an (q, 3)-geometry has to be a constant. If the
number of lines of §* through a point of §* is a constant, then it follows that
S(L, M) is either a pg(s,a— 1, @) or a pg(s, 3 — 1, ). This is easy to prove,
using the assumption that S satisfies the axiom of Pasch. If the number of
lines of S* through a point of §* is not a constant, then S(L, M) is not a
partial geometry. A substructure S(L, M) that is a pg(s,«— 1, ) we call an
a-substructure or an a-subgeometry, and a substructure S(L, M) that is a
pg(s, 8 —1,8) we call a B-substructure or a [3-subgeometry. A substructure
S(L, M) that is not a partial geometry, we call a mized substructure. Note
that also in this case for every two distinct elements Ny and Ny of L*, we
have that S(Ni,Ny) = S(L,M). Moreover for any pair (z,N), z € P,
N € L, z not incident with N, there is exactly one substructure S(L, M)
containing x as a point and N as a line. This substructure will be denoted by
S(z, N). In the following, we will denote a substructure S(L, M) sometimes
as m, p or o.

Since the number of lines through a point z in a substructure S(L, M)
through « can be either « or 8, the number of substructures through two
distinct non-collinear points of S is not necessarily a constant. In the fol-
lowing lemma we will prove that this number is a constant in the case that
B=s+1.

Lemma 4.1.2 Let S be a proper (a,s + 1)-geometry of order (s,t), a #
1, t+ 1, s+ 1, that satisfies the azxiom of Pasch. Then the number of
substructures S(L, M) through two distinct non-collinear points of S is a
constant.
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Proof. Assume that S is a proper (a, s+1)-geometry of order (s,t), a # 1,
t+ 1, s + 1, that satisfies the axiom of Pasch. Let z and y be distinct non-
collinear points of S. Let L be a line of S through z. Since z and y are
not collinear in § and 8 = s + 1, it follows that exactly « points of L are
collinear with y. Hence, counting the points of S collinear with both x and
y, we get that there are p = (¢ + 1)« such points. So there are exactly
(t + 1)/« substructures S(L, M) that contain both z and y. Since z and
y were arbitrarily chosen distinct non-collinear points of S, it follows that
there are exactly (¢t+1)/« substructures S(L, M) through every two distinct
non-collinear points of §. This proves the lemma. O

Let S be a proper («, s + 1)-geometry of order (s,t), that satisfies the
axiom of Pasch, and for which 1 < a < s+ 1 < t+ 1. From lemma 4.1.2
it follows that through every two distinct non-collinear points of S there is
a constant number ¢ = (¢t + 1)/« of substructures S(L, M). Now we define
a line of the second type through two distinct non-collinear points = and y
of § as the intersection of all substructures S(L, M) containing both z and
y. Note that there are at least two distinct substructures through z and v,
since t + 1 > a. We denote the line of the second type through z and y by
(z,y).

It immediately follows that any two distinct points of (z,y) are non-
collinear in S. Indeed, let S = (P}, L, 1) (i = 1,...,c) be the substruc-
tures S(L, M) of S containing = and y. Suppose that there would be two
points z; and 2o contained in (x,y), with z; # 29 and 21 ~ 2z9. Let L be
the line of & that is incident with z; and z;. Then L is an element of L7,
for all ¢ = 1,...,c. If z is not incident with L, then there is exactly one
substructure S(L, M) through = and L. Since z and L are contained in
¢ > 1 such substructures, we get a contradiction. Hence z I L. In the same
way one proves that y I L. So = ~ y, a contradiction with the assumption.
This proves that every two distinct points of the line (z,y) of the second
type are non-collinear in §. Moreover from lemma 4.1.2, it follows that for
two distinct points z; and z; of the line (x,y), the lines (z1, z9) and (z,y)
coincide.

Assume that there is an a-subgeometry S(L, M) contained in S. Then
S(L,M) is a pg(s,a—1,a). Let z and y be two non-collinear points of S in
S(L,M). Note that S(L, M) contains non-collinear points since o < s + 1.
The points of the line (z,y) of the second type are two by two non-collinear
points of S(L, M). Tt follows that |[(z,y)| < s+ 1 —s/a.

An («, s+ 1)-geometry S of order (s,t), with 1 < a < s+1 < t+1, that
satisfies the axiom of Pasch, is called reqular with respect to non-collinear
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points if and only if every line of the second type and every line of S that are
both contained in a substructure S(L, M), intersect in at least one point.
Note that it follows immediately that every line of S and every line of the
second type, that are both contained in a substructure S(L, M), intersect in
exactly one point, for a line of the second type can not contain two points
that are collinear in S.

Now assume that S is a proper («, s + 1)-geometry of order (s,t), for
which 1 < a@ < s+1 < t+1, satisfying the axiom of Pasch and being regular
with respect to non-collinear points. Assume moreover that S contains
an a-substructure S(L, M). Since a < s + 1, the substructure S(L, M)
contains two non-collinear points. Let z, y € S(L, M), = not collinear with
y. Since § is regular with respect to non-collinear points, the points of
the line (z,y) form an ovoid in the partial geometry S(L, M), which is a
pg(s,a — 1,). We have defined ovoids of partial geometries in 1.4. Tt
follows that |(z,y)| = s+ 1 — s/a. Hence afs.

In order to prove our characterization theorem for Hg™ and SHy™, we
will prove in the next lemma that for a proper (a, s+ 1)-geometry S of order
(s,t), 1 < a < s+1<t+1, satisfying the axiom of Pasch and regularity
with respect to non-collinear points, it follows that o = s.

Remark. The definition of regularity with respect to non-collinear points
can be given also in the case § # s+ 1. Let S be a proper («, §)-geometry of
order (s,t), for which 1 < o < 8 < ¢+ 1, that satisfies the axiom of Pasch,
that is regular with respect to non-collinear points and such that there is no
mixed substructure S(L, M). If for every two distinct non-collinear points z
and y of §, the number pu of points of § that are collinear with both = and vy,
is a constant, then we say that S satisfies the u-condition. Now assume that
S does satisfy the p-condition. Then it immediately follows that 8 = s + 1.
Indeed, let z and y be two distinct non-collinear points of S. If there is an
a-subgeometry S(L, M) containing both z and y, then from the regularity
with respect to non-collinear points it follows that |(z,y)| = s+ 1 —s/a. If
there is a -subgeometry through x and y, then in the same way we get that
|{z,y)| = s+ 1 — s/B. Since by assumption a # S, this implies that = and
y cannot be contained in both an a-subgeometry and a S-subgeometry. We
are also assuming that there is no mixed substructure. Since S is proper,
it follows that there is an a-subgeometry S(L, M). Since a < 8 < s+ 1,
S(L, M) contains two distinct non-collinear points z; and y;. From the
above it follows that every substructure through both z; and y; is an «-
subgeometry. Hence on every line of § through z;, there are exactly «
points which are collinear with the point y;. It follows that u = (¢ + 1)a.
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However, again since we assumed that there is no mixed substructure and
since S is proper, it follows that there is a [-substructure S'(L, M). If
B # s+ 1, then S'(L, M) contains two distinct non-collinear points x2 and
yo. Again, it follows that every substructure that contains both xzo and yo
is a B-substructure and hence u = (¢ + 1)5. Since a # 3, we have found a
contradiction. This proves that 8 = s+ 1. So it is not necessary to assume
that 6 = s+ 1 from the beginning, since the conditions are chosen such that
this follows immediately from them. However, to keep the formulation more
readable and simple, we will assume 8 = s + 1 in what follows.

Lemma 4.1.3 Let S be a proper (a,s + 1)-geometry of order (s,t), such
that 1 < a < s+ 1 <t+ 1, satisfying the following conditions:

1. Pasch aziom,
2. regularity with respect to non-collinear points,
3. there is at least one a-subgeometry,

then oo = s.

Proof. Let S be a proper (a,s + 1)-geometry of order (s,t), 1 < a <
s+ 1 < t+ 1, satisfying the conditions of the lemma. Assume first that
there is no mixed substructure S(L, M). Then every substructure S(L, M)
of § is an a-subgeometry or an (s + 1)-subgeometry. Since S is a proper
(a, s + 1)-geometry, both an a-subgeometry and an (s + 1)-subgeometry
exist.

We have to prove that a = s. Let S(L, M) be an a-subgeometry, and
let (z,y) be a line of the second type contained in S(L,M). Then every
subgeometry through (z,y) is an a-subgeometry and since o < ¢t + 1, there
are at least two distinct subgeometries m; = S(L, M) and 7wy through (z,y).
Let p be a point of S contained in m, p ¢ (z,y). Let N be a line of §
contained in mo. Since S is an («, s+ 1)-geometry, there are either o or s+ 1
lines through p intersecting IV in a point. Since a > 1, there exists a line
Ly of § through p intersecting N in a point, such that L; is not contained
in 1. Let Lo be a line of S contained in m; and not incident with p. Then
L, intersects the line (x,y) (and hence also m5) in a point. Define P’ to be
the set of points of UfillS(xi,Lz), with z; a point of Ly, fori =1,...,s+1.
Since m; = S(p, Lg), and p € Ly, all points of m; belong to P’. In particular
every point of (z,y) belongs to P’.

Now we prove that every line of S containing at least two points of P’, is
entirely contained in P’. Let z and 2’ be points of P’, z # 2'. Suppose that
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z ~ 7. We denote the line of S containing z and 2z’ by M. We need to show
that all points of M are points of P’. Assume first that z I L. Since 2’ € P/,
Z' is contained in S(Lg,x;), for a point z; of L;. Clearly z € S(Lo,z;). So
the line M spanned by z and 2’ is also contained in S(Lsy, ;). This proves
that every point of M belongs to P'. If M = Ly, or if 2’ € S(z, Ls), then the
result follows immediately. So from now on we suppose that 2’ ¢ S(z, Ls),
M # Ly and that z is not incident with Lo. We distinguish two cases:

1. Ly ~ M. Let w be the point of L that is contained in the substructure
S(7',Lo). Let 2" € M, z # 2" # 2'. We have to prove that 2" € P'.
If 2" € Ly, then clearly z” € P’. So suppose that z” is not incident
with Ly. Since w, 2’ € S(2', Ls), the line (w,z') (which can be either
a line of S or a line of the second type) has a point u in common with
Ly. The line (u, z") (which can be either a line of S or a line of the
second type) has a point w' in common with Ly, since both (u,2")
and L; belong to the substructure S(Li, M). All the points of this
line (u, 2"y = (u,w') are elements of S(w', Ly). Hence 2" is a point of
S(w',Ly), w' € Ly, and so 2" € P'.

2. L1 # M. Let M’ be a line that does not belong to 7y, such that z T M’,
Ly ~ M' and M' skew to Ly. (Note that M’ exists, since there are
either « or ( lines through z intersecting L; and since p ¢ Lo at most
one of these lines can contain a point of Ly). From the previous case
it follows that the s + 1 points of M’ are contained in P’. Moreover,
the s+ 1 substructures S(z;, L), for z; I Ly (i = 1,...,s+1), coincide
with the s 4 1 substructures S(z}, Lo), for z; T M' (i =1,...,s+ 1).
Hence from the previous case, it now follows that any point of the
line M is contained in one of the substructures S(z}, Ls), for 2 € M’
(1=1,...,5+1). We conclude that every point of M is contained in
P

Hence every point of the line spanned by z and 2’ belongs to P’. Now
define £’ to be the set of lines of S containing at least two distinct points of
P'. Let 8" = (P', L', 1), with I' the restriction of I to (P' x L) U (L' x P).
We distinguish two cases.

Assume that there is an (s + 1)-subgeometry p through Ly in S'. By
assumption 8 = s + 1, so we know that every two points of S in p are
collinear in §. Let u be a point of p not incident with L;. The point u
is contained in §’, hence u € S(z', L) for a point 2’ T Ly. Since u and
2’ belong to p, the line (z/,u) is a line of S contained in S(z', L2). Every
two lines of S in a substructure of S intersect, hence (z',u) intersects Lo
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in a point v. So p contains the point v of Ls. Since Lo C my, v € 7.
Moreover p contains the point p that is the intersection point of L; and
m1. It follows that p intersects 71 in the line (v,p). Since (v,p) belongs
to p, it is a line of S. In m; the line (v,p) intersects the line (z,y) of the
second type in a point w (here we use the regularity of S with respect to
non-collinear points). Let LY = (v,p),..., LY ; (i =1,...,5 4+ 1), be the
s + 1 lines through w in p. Every substructure S(L,z) (i =1,...,5s+1)
contains the line (z,y) of the second type, and hence it is an a-substructure.
So the substructures S(z, L") (1 =1,...,s + 1) are (s + 1) a-substructures
through (z,y) in §’. These substructures contain all points of §’. Through
w there are (s 4+ 1)« lines of S in &', namely « lines in each substructure
S(z,LY¥) (i =1,...,s +1). Now we count the lines of S through w in &’
in another way. Let therefore IV, be a line of § through w in m;, with
Ny # (p,v). Then in each substructure through N, in S’ there are «
or 3 lines of § through w. By the previous paragraph, we know that p
intersects m; in the line (p,v). Since w € (p,v), the line N, intersects p
in the point w. The s+ 1 lines L (i = 1,...,s + 1) through w in p give
s + 1 substructures S(N,, LY) through N,, in §’. Now counting the lines of
S through w in the substructures S(N,, L") (i =1,...,s + 1), we get that
there are ¢(f—1)+(s+1—¢)(a—1)+1 lines of S through w in &', for ¢ € N,
0 <c<s+1. It follows that (s+1)a=¢(f—1)+(s+1—-c¢c)(e—1)+1, or
¢ = s/(f — ). From the previous we know that § = s+ 1. So (s+ 1 — a)ls,
and since a # 1, it follows that s/2+ 1 < «. Since S is regular with respect
to non-collinear points and there exists an a-substructure, it follows that
als. This proves that a = s.

Assume next that there is no [-subgeometry through Ly in S'. Then
either S’ contains a [-subgeometry not through L;, or &' contains no /-
subgeometry. Assume first that there is a -subgeometry contained in S’.
This S-subgeometry in 8’ can not contain the line (z,y) so it contains a
line N of S that is skew to (z,y). Then N is not contained in m;. If
N is contained in one of the substructures S(x;, Ls), where z; 1 Ly for
i =1,...,s+ 1, then clearly N intersects Lo and hence also 7; in a point.
If N is not contained in any of the substructures S(z;, Lo), where z; T Ly
for i = 1,...s + 1, then it contains at most one point of each S(z;, Ls).
Indeed, if N would contain two points of S(z;, Ly) for a j € {1,...,s + 1},
then by definition of a substructure S(L, M) it follows that N is contained
in S(z;, L2), a contradiction with our assumption. Hence each of the s 41
points of N is contained in a different substructure S(x;, Ls), for 2; T Ly
and i = 1,...,s+ 1. Since m; = S(p, L2), with p a point of the line Ly, it
follows that N intersects m; in a point. Let N’ be a line of S in m, such



116 4. Characterizations of some (o, 3)-geometries

that N’ is skew to N. The s + 1 substructures S(z;, Lo), for x; I Ly, for
i=1,...,s+1, coincide with the s+ 1 substructures S(z}, N'), for z; I N,
for i = 1,...,5+ 1. So, replacing L1 by N and Ly by N’ in the previous
paragraph, we get that & = s. Assume next that there is no S-subgeometry
contained in §’. Since S is a proper (a, s + 1)-geometry and there are no
mixed S(L,M), S contains a [-substructure p’. Let L, be a line of S
through z intersecting p’ in a point w'. The substructure S(L,,y) contains
the line (x,y) of the second type, hence it is an a-subgeometry. In S(Ly,y)
there are s + 1 — « lines of the second type through w'. Let (w',u') be such
a line of the second type through w'’. Let M; and Ms be two lines of S
through w' in p’. Then S(u', M) and S(u’, M3) are both a-subgeometries
intersecting p' in the lines My and Ms of S. Let p’ be a point of S(u', Ms),
p' ¢ (u,w'). Let L, be a line of S through p’ intersecting M; in a point
different from w'. Let M3 be a line of S in S(u', M3), M3 skew to L. Let
P* be the set of all the points of S contained in the substructures S(z;, M3),
forx; € Ly (i =1,...,s+1). Let £* be the set of all lines intersecting P* in
at least two points. As before, it follows that all points of S on the lines of
S* are contained in §*. Let I* be the restriction of I to (P* x L*)U(L* x P*).
Then, replacing &' = (P', L', T') by §* = (P*, L*,T*), the result follows in
the same way as in the previous paragraph. This proves that s = a.

From the previous paragraphs it follows that, if there is no mixed sub-
structure, then a« = s, and hence in this case the lemma is proved. Now
assume that there is a mixed substructure o in §. Let p be a point of o
through which there are « lines of S in 0. Let L be a line of S in ¢ not
through p. Since a@ < s + 1, L contains a point p’ that is not collinear in
S with p. Hence (p,p’) is a line of the second type through p. Let u be
a point of o through which there are 3 = s + 1 lines of S. Let L' be a
line of o not through u. Then every point of L' is collinear with u. Since
S is regular with respect to non-collinear points, a line of the second type
through v in o has to contain a point of L', a contradiction since a line of the
second type can not contain collinear points. Hence there is no line of the
second type through v in o. In particular u ¢ (p,p’), and so (p,p’) contains
exactly one point of each of the s+ 1 lines through v in o. It follows that
|{p,p')| = s+ 1. Now counting the lines of S in o that intersect (p,p’), we
get that there are (s + 1) such lines. These lines are all the lines of S in o,
since S is regular with respect to non-collinear points. Counting the lines
of § in o intersecting the line L of § in ¢ in a point, it follows that there
are ¢c(a¢ — 1)+ (s + 1 —¢)s + 1 such lines, forac € N, 0 < ¢ < s+ 1. Since
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every two lines of S in o intersect, these are all the lines of S in 0. Hence

a(s+1) = cla—1)+(s+1—-¢)s+1
sat+a = s24+s+14cla—s—1)
c(s+1—a) = ’+s+1—sa—a
l1-a
c = s+
s+1—-a
s
c = s+1-
s+1—-«a

It follows that either (s +1—a)|s. Sos+1—a=sors+1—a <s/2. In
the first case, we get that a = 1, a contradiction. In the second case we get
that s/2+1 < o

By assumption there is an a-subgeometry contained in S. It follows from
the above that an a-subgeometry in S contains a line of the second type on
which there are s +1 — s/« points of S. Hence als. So a = s or a < 5/2.
Combining these conditions with the one of the previous paragraph, we get
that @ = s. So also in the case that there is a mixed substructure, the result
of the lemma follows. 0

Remark. The previous lemma together with the remark that precedes it,
have the following corollary.

Let S be a proper («, 3)-geometry of order (s,t), such that 1 < a < 8 <
t + 1, satisfying the following conditions:

1. Pasch axiom,

2. p-condition,

3. regularity with respect to non-collinear points,
4. there is no mixed substructure,

then =541 and a = s.

4.1.4 A characterization of Hf;’m and SHZ”"

Let S be a proper («a, s+ 1)-geometry of order (s, t), that satisfies the axiom
of Pasch, that is regular with respect to non-collinear points and such that
there is at least one a-subgeometry. From lemma 4.1.3 it follows that o =
s. We will now count the number of points and lines of S in an (s + 1)-
substructure, an s-substructure and a mixed substructure, assuming that
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such substructures would exist (it is not necessarily the case that each of
these substructures do appear).

By definition, the points and lines of S in an (s + 1)-substructure form
a partial geometry pg(s,s,s + 1). Therefore we will use from now on the
term projective plane instead of (s+ 1)-substructure, which will simplify the
notation. In a projective plane p, every two points of S are collinear in S.
It follows that p contains s2 + s + 1 points of S and s? 4 5 + 1 lines of S.

The points and lines of § in an s-substructure are the points and lines
of a pg(s,s — 1,s). Hence we will use the term dual affine plane instead
of s-substructure, again to simplify the notation. In a dual affine plane T,
there are s? + s points of S and s? lines of S. Through each point p of S in
7 there is exactly one line of the second type (lines of the second type were
defined in section 4.1.3). Indeed, let L be a line of § in 7, L not incident
with p. Then the s lines of S in 7 each intersect L in a point. Let z be the
point of L that is not collinear with p. Then (p, z) is a line of the second type
through p in 7. Moreover it is the unique line of the second type through
p in 7, since every line of the second type in 7 has to contain a point of L.
Since § is regular with respect to non-collinear points, it follows that a line
of the second type in 7w contains s points of S.

A mixed substructure contains exactly one line of the second type. In-
deed, let o be a mixed substructure and let y be a point of S in o through
which there are s lines of S in . Then o contains a line (y, z) of the second
type through y. Let p be a point of o through which there are s+1 lines of S.
By regularity with respect to non-collinear points, a line of the second type
in o has exactly one point in common with each line of S in 0. So (y, z) has
exactly one point in common with each of the s+1 lines of § through p in o.
Hence |(y, z)| = s+1. Now let L be a line of S in 0. Counting the lines of S
in o that intersect L, we get that there are 1 +cs+(s+1—c)(s—1) = s?+c¢
such lines, where ¢ is the number of points of L through which there are
s+ 1 lines of § in . Since every two lines of § in ¢ intersect, it follows that
o contains s? + ¢ lines of S. Now also every line of S in o intersects (y, z) in
exactly one point (since S is regular with respect to non-collinear points).
Through each point of (y, z) there are s lines of S in 0. Hence counting the
lines of S in ¢ that intersect (y, z), we have that there are (s+1)s such lines.
It follows that ¢ = s or thus L contains exactly one point through which
there are s lines of S in ¢. Since S is regular with respect to non-collinear
points, this proves that o contains exactly one line of the second type, since
every line of the second type in ¢ has to intersect L in a point. It follows
that o contains s2 + s + 1 points of S and s? + s lines of S. From now on
we will speak of a punctured affine plane instead of a mixed substructure.
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Theorem 4.1.4 Let S be a proper (a, s + 1)-geometry of order (s,t), such
that 1 < a < s+ 1 <t+1, satisfying the following conditions:

1. Pasch aziom,
2. regqularity with respect to non-collinear points,
3. there is at least one a-subgeometry,

then S is isomorphic to Hy'™ or SHp™.

Proof. Let S be a proper (a,s + 1)-geometry of order (s,t), 1 < a <
s+ 1 < t+1, that satisfies the conditions of the theorem. Then from lemma,
4.1.3 we know that a = s.

Let (x,y) and (z,z) be two different lines of the second type. Then y is
not collinear with z. Indeed, if y ~ z then on the line (y, z) of S there are
at most s — 1 points collinear with z, a contradiction since S is an (s, s+ 1)-
geometry. In other words, non-collinearity is transitive. On (z,y) there are
either s or s+ 1 points of S. Also on (x, z) there are either s or s+ 1 points
of §. We consider the different possibilities separately.

1. The case |(z,y)| = s and |(z, 2)| = s.

Let L be a line of S through z. Then S(y,L) and S(z,L) are dual affine
planes. Let M be a line of S through y in S(y,L). Let N be a line of S
through z intersecting M in a point, such that N is not contained in S(z, L).
Then N is skew to L. Let P’ be the set of points of the substructures S(z;, L),
for zz € N (i =1,...,s+1). Then as in lemma 4.1.3 we can prove that
every line containing at least two points of P’ is contained in P’. Let £’ be
the set of lines intersecting P’ in at least two points. Let 8" = (P', L', T),
with I’ the restriction of T to (P’ x L") U (L' x P').

We will first prove that all substructures S(L,z;), for z; € N (i =
1,...,s8+1), are dual affine planes. Let w be a point of the line (y, z) of the
second type. If w ~ x, then there would be at most s — 1 lines of S through
y intersecting (x,w), a contradiction since S is an (s, s+ 1)-geometry. Hence
w is not collinear with z. Since w was an arbitrarily chosen point of (y, z),
no point of (y, z) is collinear with z. So if |(y,z)| = s + 1, then each of the
substructures S(L, z;), for z; € N (i = 1,...,s + 1), contains a line of the
second type through z. Assume now that |(y,z)| = s. Then each of the s
substructures S(L, z;), z; € N, that contains a point of (y, z), contains a line
of the second type through z. Let S(L,Z) be the remaining substructure
through L and a point Z of N. Denote the intersection point of M and L
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by u. Then y,z,u € S(M,N). Clearly u ¢ (y,z), since u ~ y and (y, )
is a line of the second type. Moreover it follows that S(M,N) is a dual
affine plane, since by assumption |(y, z)| = s. By regularity with respect to
non-collinear points, we know that every line of S through u in S(M, N)
contains exactly one point of the line (y,z). So the s lines of S through u
in S(M, N) intersect (y, z) in a point. Hence S(L, Z) intersects S(M, N) in
the line of the second type through u. So every substructure S(L,z;), for
zi € N (i=1,...,s+1), contains a line of the second type, where s of these
lines are incident with z and one of them is incident with = or u.

Assume first that s # 2. Let 2’ € L, © # 2’ # u. In the dual affine
plane S(y, L) and S(z, L), there is a line of the second type through z'. We
denote these lines by (z',4y') and (2, 2’) respectively. Since non-collinearity
is transitive, the line (y/,2’) is also a line of the second type. Let M’ be
a line of § through 4’ in S(y, L) such that u,z ¢ M’ (there is such a line
since s > 2). Let N’ be a line through 2’ intersecting M’ in a point, such
that N’ is skew to L. Then in the same way as we did above (replace
x, M,N,y,zbyz',M' N ¢ 2", it follows that either all S(z;, L), for z; € N
(i=1,...,5+1), contain a line of the second type through z’, or s of them
contain a line of the second type through z' and the remaining one contains
a line of the second type through u', for a point v’ € L, z # «' # u and
u' # x'. In either case, all S(z;, L), for z, € N (i =1,...,s+ 1), contain at
least two different lines of the second type and hence they are all dual affine
planes.

Assume next that s = 2. We know that S(y,L) and S(z, L) are dual
affine planes. The other substructure S(z;, L), for z; € N, we denote as
S(p, L). Assume that there are 3 lines of S through z in S(p, L). We denote
them by L, L' and L". Then S(y,L), S(y,L') and S(y, L") contain the
line (z,y) of the second type, with |(z,y)| = 2. Hence they are all dual
affine planes. A dual affine plane contains s? + s = 6 points, so we get that
|P'| = 14. Now S(y,L) and S(z,L) contain together 9 different points of
P’. So S(p, L) has to contain 5+ 3 = 8 points of S. This is a contradiction,
since a substructure S(L, M) contains at most s> 4+ s + 1 = 7 points of S.
So S(p, L) contains a line of the second type through z. Let 2’ be a point
of L, ¥’ # z. In the same way as above we prove that there is a line of the
second type through z’ in S(p, L). So S(p, L) contains at least two lines of
the second type. This proves that S(p, L) is a dual affine plane. Hence every
substructure S(L, z;), for z; € N (i = 1,2,3), is a dual affine plane.

Now we will prove that all the substructures contained in S’ are dual
affine planes.

Assume first that there would be a projective plane p contained in S’.
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From the previous part of the proof, it follows that p does not contain the
line L. Since p is contained in &', every point of p is contained in the
substructures S(L, z;), for z; € N (1 =1,...,5+ 1). So p contains at least
two points of a S(L, %), for Z € N, since there are s 4 s+ 1 points of S in p
contained in the s 4+ 1 substructures S(L, z;), for z; € N (i =1,...,s+ 1).
The line through these two points intersects L in a point z”. So pN L is the
point z”. Now let w be a point of L, w # z”. In p there are s + 1 lines of S
through z”. Since every substructure S(L, z;), for z; € N (i=1,...,s+ 1),
is a dual affine plane, on each of the lines of S through z” in p there are s
points collinear with w. Hence counting the lines of £’ through w, we get
that there are (s+1)(s—1)+1 = s2 such lines. Since p is a projective plane,
we know that there are s> 4+ s 4 1 lines of S in p. Assume that c of these
lines contain s points collinear with w. Then

cs+(s+s+1—c)(s+1)=(s+1)s°,

since there are s? lines through w intersecting p. It follows that ¢ = s% +
2s + 1, a contradiction since ¢ has to be less than or equal to the number of
lines of S in p, which is s? + s + 1. This proves that there is no projective
plane contained in S'.

Assume next that there is a punctured affine plane o contained in S’.
Then o contains exactly one line (wy, w9} of the second type, with |(wy, we)| =
s 4+ 1. From the previous we know that L is not contained in o. It is clear
that o contains a point v of L. Indeed, o contains s? + s + 1 points of S,
hence there are two distinct points of o that are contained in the same sub-
structure S(L, z;), for z; € N i € {1,...,s+1}. The line through these two
points intersects L in a point. Let Z be a point of L, & # uw. Through % there
are s2 lines of S contained in S’, namely s in each dual affine plane S(L, z;),
for z; € N (i =1,...,s + 1). Clearly there are s + 1 lines through  in o,
since (w1, ws) can not be contained in a dual affine plane. Each of these lines
is contained in a different S(L, z;), for z; € N (i =1,...,s+1). Now all lines
through 7 in 8’ are contained in the S(L, 2;), for z; € Ni=1,...,s+1, and
so they intersect a line of o through  in a point. Hence all lines through
T intersect 0. Now there are s? + s lines of S in ¢. Let ¢ be the number of
lines of ¢ on which there are s points collinear with Z. Then we get that

s+ (s°+s—c)(s+1) = as+ (s> —a)(s+1)

c = 32+s+a,

where a is the number of points of o, collinear with z, through which there
are s lines of S in 0. Now ¢ < 52 + s, and thus ¢ = 0. This implies that
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through every point of o, that is collinear with Z, there are s+1 lines of S in
o. Hence every point of the line (wy,ws) of the second type is not collinear
with Z. Now let T be a point of L, u # T # Z. Then in the same way as above
we get that every point of (w;,ws) is not collinear with . Since (w;,ws2)
is contained in &', it follows that w; € P’. So wy € S(L, z), for a 2z € N.
Now S(L, zi) is a dual affine plane, containing two lines of the second type
through wq, namely (w1, Z) and (wq,Z). This is a contradiction, since in a
dual affine plane there is exactly one line of the second type through every
point. This proves that there can not be a punctured affine plane contained
inS'.

We conclude that every substructure contained in &’ is a dual affine
plane. There are s + 1 dual affine planes through L. In every dual affine
plane there is one line of the second type through z containing s points, so
in total there are (s + 1)(s — 1) = s — 1 points non collinear with z in S'.
Now let P* be a set of s? points of S’, containing = and the s? — 1 points of
S’ that are not collinear with z. Since non-collinearity is transitive, every
two points of P* are non-collinear. From transitivity of the non-collinearity,
it follows that every line of the second type containing at least two points
of P*, contains s points of P*. Let L* be the set of lines of the second type
containing at least two points of P*. Let I* be the natural incidence relation.
Then §* = (P*,L£*,1*) is a 2 — (s2, 5, 1) design, i.e. an affine plane of order
s. Since an affine plane is generated by any of its triangles, it follows that
S* is independent of the choice of S'.

2. The case |(z,y)| = s+ 1 and |(z,2)| = s + 1.

Let L be a line of § through . Then S(y,L) and S(z, L) are punctured
affine planes. Let M be a line of § through y in S(L,y). Let M N L be the
point u. Let N be a line of S through z intersecting M in 4/, v # u. Let
S§' = (P', L', T) be the incidence structure defined as follows: P’ is the set of
points of the substructures S(L, z;), for z; € N (i = 1,...,s+1), L' is the set
of lines of £ containing at least two points of P’, and I’ is the restriction of 1
to (P x LYU(L'xP")). Then every point of (y, z) is contained in a different
substructure S(L, z;), fora z; € N (i = 1,...,s+1), since (y, z) has no point
in common with L. Every point of (y,z) is not collinear with x because of
the transitivity of non-collinearity. Hence at least s substructures S(L, z;),
forz; € N (i =1,...,s+1), contain a line of the second type through x. If at
least two substructures S(L, z1) and S(L, z2), for 21,29 € N, are dual affine
planes, then as in the first case that was treated above, we can prove that all
S(z, L), for z; € N (i =1,...,s+1), are dual affine planes. This is clearly a
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contradiction since S(L,y) and S(L, z) are punctured affine planes. Hence at
most one of the S(z;, L), for z; € N, is a dual affine plane, and at least (s—1)
of the substructures S(z;, L), for z; € N, i € {1,...,s + 1}, are punctured
affine planes. Also we know that at most one of the substructures S(z;, L),
for z; € N, is a projective plane, since at least s of these substructures
contain a line of the second type through x. We deal with each of the
remaining possibilities separately.

(2a) Assume that exactly one of the substructures S(z;, L), for z; € N
(i=1,...,841), is a dual affine plane and exactly one of the S(z;, L),
for zi € N (i =1,...,s + 1), is a projective plane. In a dual affine
plane there are s?+s points of S, in a projective plane and a punctured
affine plane there are s? + s + 1 points of S. It follows that

P = (s—1)s*+s>—1+s>+s+1
= 34545

The line (z,y) is a line of the second type contained in a punctured
affine plane through L. Let Ny,...,Nsi+1 = L be the s + 1 lines of
S through z in the projective plane through L in &’. Then S(y, N;)
(i =1,...,8+ 1), are punctured affine planes, since they contain the
line (z,y) of the second type, with |(z,y)| = s+ 1. Clearly every point
of S(y,N;) (i =1,...,s4 1), is contained in §’. Now counting again
the points of S', we get that |P/| > (s+1)s? +s+1 =53 +s2+s5+1,
clearly a contradiction.

(2b) Assume that exactly one of the substructures S(z;, L), for z; € N
(i =1,...,s+ 1), is a projective plane and none of them is a dual
affine plane. Then |(y,z)| = s. Indeed, if |(y,2)| = s + 1, then the
line (y, z) would have a point § in common with the projective plane
through L in §&’. Hence (z,7) would be a line of the second type
contained in a projective plane, a contradiction since in a projective
plane every two points of S are collinear in S. Now let L, be a line
of § through z in S(z,L), with L, " L = {u}. Then S(y,L,) is a
dual affine plane, since it contains the line (y,z) of the second type
with |(y,z)| = s. So through u there are s lines of S in S(y, L,) and
each of these lines contains a point of (y,z). The line of the second
type through u in S(y, L,) then has to be contained in the projective
plane through L. This is clearly a contradiction, as a projective plane
contains no lines of the second type.
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(2¢) Assume that none of the substructures S(z;, L), for zi € N (i =

1,...,s 4+ 1), is a dual affine plane or a projective plane. Then all
S(zi, L), for z; € N (i = 1,...,s + 1), are punctured affine planes.
Counting the points of §' we get that

Pl=(s+1)s’+s+1=s"+s"+s+1.

Let L1 = L,...Ls be the s lines of S through z in S(L,z). Then
S(y,Li) (i =1,...,s), are s punctured affine planes. Together they
contain s(s?) +s+1 = s34+ 5+ 1 points of S’. Hence there are exactly
52 points not contained in one of the s punctured affine planes S(y, L;)
(i =1,...,5). Let P* be the set of these s? points, together with the
points of the line (z,y). Then |P*| = s+ s+ 1. All lines of the second
type through z and a point of (y, z) different from y, are not contained
in the s punctured affine planes S(y, L;) (i = 1,...,s), since (z,y) is
the only line of the second type contained in these s punctured affine
planes. If a point p € P*, p # y, would be collinear with y in S, then
S(z, (y,p)) would be a punctured affine plane through (z,y). Since
|P*| = s + s+ 1, S(z, (y,p)) contains all the points of P*. Hence
z € S(z, (y,p)) and thus there are at least two lines of the second type
through = in S(z, (y,p)), namely the lines (z,y) and (z,z). This is
clearly a contradiction. Hence all points of P* are non-collinear with
y. By transitivity of the non-collinearity, it follows that every two
points of P* are non-collinear in S. So the points of P* are s? + s+ 1
pairwise non-collinear points. Note that P* is the set of all points of
S’ not collinear with z, union z, since in each S(L,z), for z; € N
(1=1,...,s+1), there are exactly s points that are not collinear with
x.

Assume first that S’ contains a dual affine plane 7. Then the s + s
points of 8’ in 7 are contained in the substructures S(L, z;), for z; € N
(1=1,...,8+1). So there is a substructure S(L, zx), for z; € N, that
contains two points of w. The line through these two points intersects
L in a point u. Hence 7 intersects L in the point u. Since 7 is a dual
affine plane, we know that there is a line (u,w) of the second type
through u, with |(u,w)| = s. Since u € L, (u,w) is contained in an
S(L,zj), for a z; € N. This is a contradiction, since by assumption
S(L,zj) is a punctured affine plane and hence it can not contain the
line (u, w) of the second type, for which |(u,w)| = s. This proves that
S’ does not contain a dual affine plane. It follows that every line of
the second type contained in §’, contains s + 1 points of S’.
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(2d)

Assume next that S’ contains a projective plane p. As before, one
proves that p contains a point v of L. Since |p| = s> +s+ 1, and |[pN
S(L,z)| <s+1,forz; € N (i =1,...,s+1), it follows that p intersects
S(L,y) inaline N through v. Since N C p, N isalineof S. In S(L,y),
N has to intersect the line (x,y) of the second type. So p contains a
point u of (x,y). Through u there are s + 1 lines of S in p. We denote
them by Ly, ..., Ls11. The substructures S(L;, (x,y)) (i =1,...,5+1)
are s + 1 punctured affine planes. These substructures contain all
points of §’. Hence z is contained in a punctured affine plane through
(x,y). This is clearly a contradiction, since in a punctured affine plane
there can not be two lines of the second type through z. This proves
that there is no projective plane contained in S'.

We conclude that every substructure contained in S’ is a punctured
affine plane. Now we define §* = (P*, L*,T*) as follows: P* is the set
of points of 8’ containing = and the points of S’ that are not collinear
with z, £* is the set of lines of the second type containing at least two
points of P* (and hence all points of S on the lines of £L* are points
of P*), and T* is the natural incidence relation. Then it is easy to see
that S* is a 2 — (s + 5+ 1,5 + 1,1)-design, hence S* is a projective
plane. Since a projective plane is defined by any three of its points,
we know that S* does not depend on the choice of S'.

Assume that exactly one of the substructures S(z;, L), for z; € N,
(i=1,...,841) is a dual affine plane and none of them is a projective
plane. Let m be the dual affine plane through L. Through every point
of L there is a line of the second type in m. All these lines of the
second type contain s points of S, hence they are not contained in
projective planes or punctured affine planes. Let ¢ be a punctured
affine plane S(L, z;) through L, for a z; € N. Let (u1,u2) be the line
of the second type contained in o. Then (u1, ug) intersects L in a point
v. Let (w1, ws) be a line of the second type in 7 not through v. Let
(w1, ws) N L be the point v'. Through v' there are s+1 lines of S in o.
Hence through (wq,ws) there are s + 1 dual affine planes in §’. This
proves that every point of S’ is contained in a dual affine plane through
(w1, ws). Hence through every point of S’ there is a line of the second
type containing s points of S. Assume that there would be two lines
of the second type containing s points of S through a point p € S'.
Let L, be a line of S’ through p. It follows that through L, there are
at least two dual affine planes contained in §’. As in the first part
of the proof, we can prove that then all substructures contained in &’
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are dual affine planes, a contradiction since by assumption there are
punctured projective planes in 8’. Hence every point of S’ is contained
in exactly one line of the second type that contains s points of S’.

Now we define an incidence structure $* = (P*, £*,T*) as follows: P*
is the set of all the points of &’ that are not collinear with z, £* is the
set of all lines of the second type containing at least two points of P*,
and I* is the natural incidence relation. Since there are s punctured
affine planes and one dual affine plane through L, it follows that there
are s lines of the second type through z containing s + 1 points of S,
while the remaining line of the second type through = contains s points
of §. Note that the line of the second type in each of the punctured
affine planes through L is incident with z. For the punctured affine
planes containing a point of (y, z), this is immediately clear. Moreover
if |(y, z)| = s, and there is a punctured affine plane S(L, z;), for z; € N,
that contains no point of (y, z), then in the unique dual affine plane
S(L, z), for z; € N, the line through = and the intersection point u
of (y,z), contains s points of S. Hence through u there are two lines
containing s points of S, a contradiction with the previous paragraph.
Hence |P*| = s? + s. By transitivity of non-collinearity, we know that
every two points of P* are non-collinear. Moreover through every point
of P* there is exactly one line of £* on which there are s points of §
by the previous argument. Hence the lines of £* containing s points
of § partition the points of P*. Now we add a new point w to P*, and
we define w to be incident with every line of £L* that contains s points
of S. Then clearly S* = (P*N{w}),L* *isa2—(s2+s+1,s+1,1)
design, hence a projective plane. Since w was not a point of S, it
follows that S* = (P*, L*,1*) is a dual affine plane. A projective plane
is uniquely defined by any three of its points, hence $* is independent
of the choice of S’.

3. The case |(z,y)| = s and |[(z,2)| = s+ 1.

Let L be a line of S through 2. Then S(L,y) is a dual affine plane, and
S(L,z) is a punctured affine plane. Let N be a line of S intersecting both
S(L,y) and S(L, z) in a point not on L. If there are two dual affine planes
or two punctured affine planes S(L, z;) and S(L, z;), for z;, z; € N, z; # 2,
then we can apply one of the previous paragraphs. So we may assume that
there is exactly one dual affine plane through L and a point of N (containing
(z,y)) and exactly one punctured affine plane (containing (x, z)). All other
substructures through L and a point of N are projective planes. Let p be a
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projective plane through L. Since x € L, there are s + 1 lines of S through
z in p. We denote them by Ly = L,...,Lgy;. The substructures (y, L;),
(t=1,...,s+1), contain the line (z,y) of the second type, with |(z,y)| = s
and so they are all dual affine planes. Hence |P'| = (s+1)s?+s = s3+52+s.
Now counting the points of P’ in the s+ 1 punctured affine planes S(z, L;),
(i=1,...,5+1), we get that |P'| = (s +1)s®’+s+1=53+52+s+1. This
gives us a contradiction. Hence this case does not occur.

We have now studied all the different possibilities.

From now on, we call the incidence structures S* = (P*, £*,T*), with P*
a set of non-collinear points as defined above, planes of type IV, V and VI,
when §* is respectively a projective plane, an affine plane and a dual affine
plane.

Next we will define parallelism among the lines of the second type con-
taining s points of §. Two lines of the second type containing s points of
S are parallel if they coincide or if they are disjoint subsets of either a dual
affine plane or a plane of type V or VI. Clearly the parallelism defined in
this way is reflexive and symmetric. It remains to prove that it is also tran-
sitive. Let therefore (x,y), (u,v) and (p, w) be three lines of the second type
containing s points of §. Suppose that (z,y) is parallel with (u,v), that
(z,y) is parallel with (p,w), and that no two of them coincide. From the
definition of parallelism, it follows that the lines (z,y) and (u,v) are both
contained in a dual affine plane, a plane of type V or a plane of type VI.
In the same way, we get that the lines (z,y) and (p,w) are both contained
in a dual affine plane, a plane of type V or a plane of type VI. We have to
consider three cases.

1. Assume that both the plane containing (z,y) and (u,v) and the one con-
taining (x,y) and (p,w) are dual affine planes.

Let m (respectively ms) be the dual affine plane containing (z,y) and
(u,v) (respectively (z,y) and (p,w)). If m = w9, then (u,v) and (p,w) are
contained in the dual affine plane 7;. By definition of parallelism it follows
that (u,v) and (p,w) are parallel. So we can assume that m; # my. In this
case the lines (u,v) and (p,w) are clearly disjoint, since they are contained
in different dual affine planes through (x,y) and so they are both skew to
(z,y).

Let M be a line of S in m; and let N be a line of S in 7y skew to M.
Then we can define an incidence structure S’ = (P’, L', T') as follows: P’ is
the set of points contained in the S(M, z;), with z; e N (i =1,...,s+1); L'
is the set of lines containing at least two (and hence s + 1) points of P, T’ is
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the restriction of I to (P’ x L") U (L' x P’"). Now let L, be a line of S through
p in my. Then L, intersects (z,y) in a point w. Let L,, be a line of S in m;
through w'. The substructure S(Ly, L,) is a dual affine plane, a projective
plane or a punctured affine plane. So it contains either s or s + 1 lines of §
through p and at most one line of the second type. We denote these lines
by N1 = Lyp,...,Ns41, where Ny can be a line of S or a line of the second
type. The substructures S(w,N;) (i = 1,...,s) are s dual affine planes,
since each of them contains the line (p,q). The substructure S(q, Ns41), is
either a dual affine plane, or it is a plane of type V or VI. These planes
intersect m; each in a line of the second type. Indeed, if they would intersect
71 in a line L of S, then L would intersect (z,y) in a point u', hence (p, q)
intersects (z,y) in the point u', a contradiction with the assumption. Now
71 contains exactly s+ 1 lines of the second type. Hence (u,v) is one of the
lines of the second type contained in either S(w, Ny), for a k € {1,...,s},
or it is contained in the plane S(w, Ngy1), which can be a dual affine plane,
or a plane of type V or VI. By definition of parallelism, it follows in every
case that (p,w) is parallel with (u,v).

2. Assume that the plane containing (x,y) and (u,v) is a dual affine plane
but the plane containing (x,y) and (p,w) is not a dual affine plane.

Then (z,y) and (p,w) are contained in a plane of type V or type VI.
We call this plane of type V or VI the plane w, while we call the dual affine
plane through (z,y) and (u,v) the plane w. Let N be a line of S in 7. Let
M be a line of S through the point p € w that intersects NV in a point. Let
M’ be a line of S intersecting both S(M,z) and S(M,y) in a point not on
M. Let 8" = (P, L',T') be the incidence structure defined as follows: P’ is
the set of points of S contained in the substructures S(M, z;), for z; on M’
(i =1,...,5+1), L is the set of lines of S containing at least two points
of P and I is the restriction of I to (P’ x L) U (L' x P’). Then S’ contains
both 7 and w, since it contains three points of each of them.

The line (z,p) is a line of the second type through x in w. Let Nj be a
line of S through z in 7. Then S(p, N) is a dual affine plane or a punctured
affine plane. So p is collinear with the s points of Ny different from z. Let
My, ... M be the s lines of S through p and a point of Ny. Then S(w, M;)
(i =1,...,s), are s dual affine planes containing the line (p,w). Clearly
they can not intersect m in a line of &, for otherwise this line would have
a point in common with (p, w) and so (x,y) and (p, w) would have a point
in common, a contradiction. Hence they each intersect 7 in a line of the
second type different from (z,y). Now in the dual affine plane 7 there are
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exactly s + 1 lines of the second type. So (u,v) has to be one of the lines
contained in a dual affine plane S(w, M;), for ai € {1,...,s}. By definition
it now follows that (w, q) is parallel with (u,v).

3. Assume that none of the two planes containing (z,y) and (u,v) respec-
tively containing (x,y) and (p,w) is a dual affine plane.

In this case the points of the lines (z,y), (p, w) and (u,v) belong to an
equivalence class C' of non-collinear points of S. Suppose that w ¢ C. Then
w' is collinear with every point of C. In particular w’ is collinear with z.
The plane S({w', z),y) is a dual affine plane. It contains a line of the second
type through w' that is parallel to (z,y). We denote this line by (w’, 2).
From the preceding case it follows that (w', z) is parallel to both (u,v) and
{p, w).

The plane containing (z,y) and (p,w) is not a dual affine plane by as-
sumption. It follows that the line (z,p) is a line of the second type. So
S((w',z),p) is a dual affine plane or a punctured affine plane. Let L, be
a line of S through p in S((w',z),p). Let L, be a line of S through y in
S((w',z),y), such that L, is skew to L,. Then we can again define an inci-
dence structure &' = (P’, L',T') as follows: P’ is the set of points contained
in the S(Lyp, z;), with z; € Ly, (i =1,...,s + 1); L' is the set of lines con-
taining at least two (and hence s + 1) points of P’, I' is the restriction of
Ito (P x L") U (L" x P'). Since the plane containing (z,y) and (p,w) is a
plane of type V or VI, and since from the previous we know that there is
exactly one plane of type V or VI in &’ through the point p, it follows that
the plane containing (w', z) and (p,w) is a dual affine plane. In the same
way one proves that (w',z) and (u,v) are contained in a dual affine plane.
From the first case it now follows that (p, w) and (u,v) are parallel.

So we proved that the parallelism defined above is also transitive, and
hence it is an equivalence relation. Note that every parallel class is a parti-
tion of the point set of S. The parallel classes are called points of the second
type, and the set of these classes is denoted by P*.

Now we will define parallelism among the planes of type V. Suppose
therefore that w is a plane of type V. Let z be a point of S, z ¢ w. Since we
proved that the parallel classes of lines partition the points of S, we know
that through z there are s + 1 lines (z,v1),..., (z,ys+1) parallel to lines of
w. We will prove that the lines (x, 1), ..., (z,ys1+1) are contained in a plane
of type V.

First we assume that there is a line L of S containing = and a point u of w.
Let (u,u') and (u,u”) be two lines of the second type through v in w. Then
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|{u,u")] = s and |(u,u")| = s. Hence S(L,u') and S(L, u") are two dual affine
planes through L. Let N be a line of S intersecting S(L,u') and S(L,u")
in a point not on L. Then we define an incidence structure 8’ = (P, L', T)
as follows: P’ is the set of points of S contained in S(L,z;), for z; € N
(i=1,...,8+1), L is the set of lines of S containing at least two points of
P’ and T’ is the restriction of I to (P’ x L") U (L' x P"). Clearly x belongs to
S'. Moreover S(L,u') and S(L,u") belong to 8’ and hence 8’ contains three
distinct points u, v’ and «” of w. So w is contained in S’. From the previous
part of the proof, it follows that every substructure S(L,z;), for z; € N
(it =1,...,s+ 1), is a dual affine plane. The lines (z,y1),...,{(z,ys+1),
are each contained in a different dual affine plane S(L, 2;), for z; € N (i =
1,...,8 + 1). Indeed, these lines are lines through x parallel to lines of w
and in each of the dual affine planes S(L, z;), for z; e N (i =1,...,s+ 1),
there is exactly one line of the second type containing s points of S through
x that is parallel with a line of w. By definition of parallelism of the lines of
the second type containing s points of S, we know that there can not be two
different lines through z parallel to the same line of S in w. Let P” be the
set of points of S’ that are not collinear with z, union z. Let £” be the set
of lines of the second type containing at least two points of P”. It follows
that all the points of S on a line of £” are contained in P”. Let I” be the
restriction of I' to (P” x L") U (L" x P"). Then 8" = (P",L",1") contains
each of the lines (x,y;), for (1 = 1,...,s+1). From the previous part of the
proof it follows that S” is a plane of type V.

Next we assume that there is no line of S through z and a point of
w. In this case z and the points of w belong to an equivalence class C' of
non-collinear points in §. Suppose that v ¢ C. Then v is collinear with z
and with each point of w. Let (v,21),...,(v,2s41) be the lines containing
v and parallel to (z,y1),...,(z,ys+1). From the preceding case it follows
that the points on these lines are the points of a plane of type V. Indeed,
(v,21),...,(v,zs41) are parallel to lines of w and v is collinear in & with
every point of w. As (v, z) is a line of S, the same argument shows that the
points on (z,y1),...,(x,ys+1) are points of a plane of type V.

So we have proved that the points of the lines (z,y1),...,(z,ys+1) are
the points of a plane of type V. Now we define parallelism between planes
of type V as follows: two planes w and w' of type V are parallel if some line
of the second type in w is parallel to a line of the second type in w’. The
so defined parallelism is an equivalence relation, which follows immediately
from the definition of parallelism for lines of the second type containing s
points of §. Each parallel class of planes of type V partitions the point set
of §. The parallel classes are called lines of the third type, and the set of
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these classes is denoted by L*.

Next we introduce a new incidence structure S = (P, £,I), with P =
P UP*, L is the set of all lines of S, all lines of the second type and all lines
of the third type and with incidence relation I defined as follows:

l.foreePand LeL: 21 L < z1L;

2. for z € P and (y,z) a line of the second type, |(y,z)| = sor s+ L:
z1{y,z) < z€(y,2);

3. for x € P and [w] € £*: z is not incident with [w];
4. for [(y,z)] € P* and L € L: [(y, z)] is not incident with L;

5. for [(y,z)] € P* and (u,v) a line of the second type, |(u,v)| = s:
(u,

[( 2 T{u,v) = (u,0) € [(y,2)];

6. for [(y,z)] € P* and (u,v) a line of the second type, |(u,v)| = s+ 1:
[(y, z)] is not incident with (u,v);

7. [{y,2)] € P* and [w] € L*: [{y,2)] I [w] if and only if the line (y, z) of
the second type is parallel to a line of the second line that is contained
in the plane w.

It remains to prove that S is the design of points and lines of a projective
space. We first prove that every two different points of S are incident with
exactly one line of S. We distinguish three cases.

1. Assume that p1, p2 € P, p1 # pa. Then either p; is collinear in S with
p2, in which case there is exactly one line of S through p; and ps and no
other line of S contains p; and po, or p; and ps are not collinear in which
case they are on a line of the second type and on no other line of S.

2. Assume that p; € P, [(z,y)] € P*. In this case the unique line of S
through p; and [(z,y)] is the line of the second type through p; that belongs
to the parallel class of (z,y).

3. Assume that [(z,y)], [(u,v)] € P*, [(z,y)] # [(u,v)]. If (z,y) and (u,v)
have a point in common, then z,y,u,v are contained in a plane w of type
V. Note that it cannot be a plane of type VI, because in a plane of type
VT all lines of the second type containing s points of S belong to the same
parallel class. So clearly [(z,y)] and [(u,v)] are two points of the line |w]
and this is the only line through them. If (x,y) and (u,v) have no point in
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common, then we can always choose a line in [(z,y)] that does have a point
in common with (u,v) (namely the line through » and [(z,y)]). So the same
argument as before shows that [(z,y)] and [(u,v)] are on exactly one line of

S.

Next we prove that every three distinct points of S, that are not inci-
dent with a common element of £, generate a projective plane. From the
definition of S it follows that an dual affine plane, a projective plane and a
punctured affine plane induce projective planes. Also planes of type IV, V
and VI are projective planes, containing no lines of S but lines of the second
type and lines of £*. Now we consider the following cases.

1. Assume that py, ps, p3 € P. Then clearly there is either a dual affine
plane, a projective plane, a punctured affine plane or a plane of type IV, V
or VI containing p;, p2 and ps. Hence in any case p;, p2 and ps are in a
projective plane.

2. Assume that py, po € P and [(z,y)] € P*. The lines (p1, [(z,y)]) and
(p2, [(x,y)]) are lines of the second type containing s points of S. If (p1,p2)
is a line of S, then S((p1, p2), [(x, y)]) is a dual affine plane, and hence a pro-
jective plane. If (p1,po) is a line of the second type containing s points of
S, then let L, be a line of S through p;. The substructures S(L,,,p2) and
S(Lyp,, [{z,y)]) are both dual affine planes. Let M be a line of S contained
in S(Lp,,p2). Let N be a line of S contained in S(L,,, [(z,y)]), N skew to
M. Then we define an incidence structure 8’ = (P’, £',T') as follows. Let P’
be the set of points of S contained in S(M, z;), for z; a point of N, let L' be
the set of lines of S containing at least two points of P and let I is the re-
striction of I to (P’ x L") U (L' x P’). Then &' contains the dual affine planes
S(Ly,,p2) and S(Ly,, [(z,y)]). Since (pi,p2) is a line of the second type
containing s points of &, it follows that there is a plane of type V through
p1, p2 and [(z,y)]. If (p1,p2) is a line of the second type containing s + 1
points of S, then as in the previous case we can define an incidence structure
S’. Tt then follows that there is a plane of type VI through py, p2 and [(z, y)].

3. Assume that p € P and [(z,9)], [(u,v)] € P*. The lines (p, [(z,y)]) and
(p, [(u,v)]) are lines of the second type that contain s points of S. We have
proved above that there is a line [w] of the third type, that contains both
[(z,y)] and (u,v). We have also proved that every point of S belongs to
a plane w’ of type V with parallel class [w]. Hence there is a plane wj, of
type V through p with parallel class [w]. The plane w, is a projective plane
containing the points p, [(z,y)] and (u,v).
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4. Assume that [(z,y)], [(u,v)], [(p,q)] € P*. Let w be a point of P. The
line through w and [(x,y)] (respectively [(p,q)] and [(u,v)]) is a line of the
second type that contains s points of S. Let r; (respectively ro and r3)
be a point of S on this line, that is different from w. Let L be a line of
S through w. The substructures S(L,r) and S(L,r2) are both dual affine
planes, since they contain a line of the second type on which there are s
points of S. As we did before, we can prove that the points w, r1 and ry
are contained in a plane w of type V. Hence (r1,r2) is a line of the second
type containing s points of S, while [(z,y)] and [(p, ¢)] are both contained
in the line [w] that is an element of £*. Moreover for every point z of the
line (r1,7r2), z € P, the line (w, z) is a line of the second type containing s
points of S and the point [(w, z)] belongs to the line [w]. The plane through
r1, ro and r3 is a projective plane (since r1, r9 and r3 are points of P, this
follows from the previous). We denote this plane by n. The line (r3,r;)
intersects (r1,72) in the point r; point of S. The line (w,r3) is a line of the
second type containing s points of S. Hence the substructures S(L,r;) and
S(L,r3) are both dual affine planes. As we did before, we can prove that
the plane through w, r; and r3 is a plane ' of type V. It follows that the
line [w'] is an element of £*, and it intersects [w] in the point [(w,r1)].

Let p = (P, Lw, L) be the incidence structure defined as follows. The
point set P, is the set of points of P* that lie on a line of £* that intersects
both [w] and [w'], together with the points of the lines of £* through [(z, y)]
that intersect a line [w”] in a point, [w”] being a line of £* that intersects
both [w] and [w] in a different point, £,, is the set of all lines of L* containing
two points of P* (and from the definition of P, it follows that every point
of such a line belongs to P,), and I, is the restriction of I*.

We will now prove that this plane p is a projective plane. Let 2z’ be an
arbitrary point of S in the plane 7. If 2’ is a point of (ry,r3), then we know
that the line (w, 2’} contains a point of the line [w], which is a point of P,,.
Assume now that 2z’ ¢ (r,72). The line (2, r3) either intersects (ry,72) in a
point of S, or it is parallel to (r1,r2), in which case it is a line of the second
type containing s points of §. Assume first that (2/,r3) intersects (r1,72) in
a point 2" of S. Then 2" is a point of the plane w of type V, hence (w, 2"}
is a line of the second type containing s points of S. Also (w,r3) is a line of
the second type containing s points of S. Hence the substructures S(L, 2")
and S(L,r3) are both dual affine planes.

As we did before, we can prove that the plane through w, z” and r3
is a plane w* of type V. It follows that (w,z’) is a line of the second type
containing s points of S. The line [w*] intersects [w] in the point [(w, 2")],
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and it intersects [w'] in the point [(w,r3)]. Hence [w*] is a line of £,,. The
point [(w, z')] lies on this line, hence it is a point of P,,. Assume next that
(#',r3) and (ry,r2) are parallel. Then these two lines both contain the point
[(z',73)] of P*. The line through w and [(2',73)] is a line of the second type
containing s points of S. Let Z be a point of S on this line, Z # w. The
substructures S(L, Z) and S(L,r3) are both dual affine planes. It follows
that the plane containing w, r3 and Z is a plane @ of type V. The line [@]
is an element of £*. This line intersects [w] in the point [(z',73)], while it
intersects [w'] in the point [(w,r3)]. Hence [@] is an element of L, and
the point [(w, 2')] is an element of P,. So with each point z of the plane
(r1,r9,73) there corresponds a point [(w, z)] of p, and this point is unique.
This proves that p is isomorphic with the projective plane (ri,rs,r3). It
follows that p is a projective plane. So [(z,v)], [(p, ¢)] and [(u,v)] generate
a projective plane.

Hence S is the design of points and lines of a projective space PG(n, s).
Since every two distinct points of P* generate a line of L£*, it follows that
S* = (P*,L*,T*) is the design of points and lines of a projective subspace
U[m] of PG(n, s). Since not every line of S contains a point of P*, it is clear
that m <n — 2.

Assume that there is no punctured affine plane. The lines of S are the
lines of S, the lines of the second type containing s points of S and a point
of §*, and the lines of the form [w], with w a plane of type V. So P is the
set of all points of PG(n, s)\ ¥[m], L is the set of all lines skew to ¥[m] and
I is the incidence of PG(n,s). This proves that S is isomorphic to Hg"™. If
m = 0 or m =n — 2, then § is a partial geometry, a contradiction. Hence
0<m<n—2.

Assume next that there is a punctured affine plane. Then S contains
lines on which there are s + 1 points of S, that are not lines of S. Let B
be the set of all these lines. Since S is a (¢,q + 1)-geometry of order (s,t),
the number of lines of § through a point is a constant ¢ + 1. The points of
S* are the points of a subspace PG(m,s) of PG(n, s), hence the number of
lines through a point of S that contain a point of §*, is also a constant. It
follows that the number of lines of B through a point of S is a constant. A
punctured affine plane contains exactly one line of B. Neither a dual affine
plane, nor a projective plane can contain a line of B. Hence a plane that
contains two lines of B, can not contain a line of §. This proves that the
lines of B through a point z of S are the lines through z in an r-dimensional
subspace II;[r] of PG(n, s), and this subspace contains no lines of S through
z. It immediately follows that the subspace II;[r] can not contain lines of
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S, since on such a line L of S there would be no points that are collinear
with z, a contradiction since S is an (s, s + 1)-geometry. Let y be a point
of I, [r], y different from z. Then the subspace II,[r'] coincides with II;[r].
Indeed, all lines through y in II,[r] are lines that do not belong to S, so
surely II,[r] C II,[r']. Now assume that IT,[r'] is not a subspace of I [r].
Then II,[r] would contain a line L of § through z. By definition of II,[r'],
it follows that no point of L is collinear with y in §. This is a contradiction,
since S is an (s, s + 1)-geometry. This proves that IT,[r'] = II,[r]. Hence
for every point z of S, the dimension of II,[r"] is 7. Now ¥[m] C II,[r], for
every point z of S. Indeed, if ¥[m] would not be contained in II,[r], then let
N be a line of B through z and let (z,y) be a line through z that contains
a point y of ¥[m], such that the plane through y and N contains a line of
S through z. This gives us a contradiction. Indeed, since N € B, it would
follow that (y, N) is a punctured affine plane and a punctured affine plane
does not contain a point of ¥[m]. This proves that ¥[m] C II,[r], for each
point z of S. Hence r > m + 2. Two subspaces II, [r] and II,,[r] either
coincide, or they have no point of S in common. Hence the subspaces II,[r],
for r € S, partition the points of PG(n,s) \ ¥[m]. So P is the set of all
points of PG(n,s) \ ¥[m], for 0 < m < n — 2, £ is the set of all lines of
PG(n,s) skew to ¥ and not contained in a partitioning 3 of the points of
PG(n,s) \ ¥[m] into r-dimensional, for m +2 < r < n — 1. We conclude
that S is isomorphic to SHy"™. O

Note that the (g, ¢ + 1)-geometry SHy*™ contains no dual affine plane in
case m = —1. So for the case m = —1, SH;"™ is not characterized by the
previous theorem. In fact also in chapter 2 the case m = —1 was excluded,
as in this case every plane of PG(n,q) is a punctured affine plane.

Remark. If we do not assume 8 = s 4+ 1 from the beginning, then the
previous theorem and the remarks given above prove the following theorem.

Let S be a proper (a, 3)-geometry of order (s,t), 1 < a < < t+1,
satisfying the following conditions:

1. Pasch axiom,

2. p-condition,

3. regularity with respect to non-collinear points,
4. there exists no punctured affine plane.

Then § is isomorphic to Hy"™.



136 4. Characterizations of some (o, 3)-geometries

4.2 The (4}, 2)-geometry NQ*(3,q), ¢ odd

4.2.1 Description of NQ*(3,¢), for ¢ odd

The (;1 ﬂl) -geometry NQ™ (3, ¢) was constructed by J. A. Thas (personal
communication). It is described as follows. Let P be the set of all points of
the projective space PG(3,¢q), ¢ odd, that are not contained in a hyperbolic
quadric Q*(3,q). Let £ be the set of the lines of PG(3, ¢q) that are skew to
Q1 (3,q). Let I be the incidence of PG(3, q) restricted to (P x L) U (L x P).
Then it is easy to check that the incidence structure § = (P, L,I) is a
(%, ﬂl) -geometry. This geometry is denoted as NQT(3,q). Note that
this notation is also used for the semipartial geometry NQ*(2n — 1, 2), that
is defined in a similar way.

4.2.2 A useful lemma

Lemma 4.2.1 Let S be a (q;l, ﬂl) -geometry fully embedded in PG(n,q),
q odd and q > 3. Let  be a plane of PG(n,q) that contains an antiflag of
S. Then the points of S in m are the points not contained in a conic C of
m, and the lines of S in w are the lines in 7 that contain no point of C.

Proof. Let S bea (41, 2t1)-geometry fully embedded in PG(n,q), ¢ odd.
Let m be a plane of PG(n q) that contains an antiflag of S. Through every
point of § in 7, there are either %1 or %1 lines of S in 7. We will prove
now that m contains at least one point through which there are q%l lines
of § in m. Assume therefore that = contains no points of S through which
there are q;l lines of S in w. Then the restriction of S to 7 is a partial
geometry pg(q, 1, ﬂ). From [20] it follows that the points and lines of
a partial geometry fully embedded in a projective plane, are the points not
contained in a maximal arc K of order %1, and the lines that contain no
point of L. However, for ¢ odd, a non-trivial maximal arc does not exist.
It follows that m does contain points through which there are 45~ L lines of
S in 7. In the same way one can prove that 7w contains at least one point
through which there are %1 lines of S in 7.

Assume first that 7 contains a line NV on which there are ¢ + 1 points of
S, but that is not a line of §. Then we count the number of lines of § in
7 that intersect V. Let therefore ¢ be the number of points of N through

which there are q%l lines of S in 7. Then the number of lines of S in 7 equals

it +(g+1-co) = % —c. Now let L be a line of S in 7. Let a be
the number of points of L through which there are q%l lines of S in w. Then
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the number of lines of S in 7 equals 1 + a— +(g+1- a)% = q2;“1 —a.
So we get that
(g +1)? @ +1
= —c = —a
2 2
c = qg+a

Now 1 < a < ¢, since a is a constant for every line L of S in m and

7 contains points through which there are q— lines of § in 7 and points

through which there are L lines of S in . We also know that 0 < ¢ < g+1,
since N has s + 1 points of S. So from ¢ = q + a, it follows that a = 1 and
¢ = g+ 1. In other words, through every point of N there are %1 lines
of §. Assume now that 7 would contain a point p, p ¢ N, through which
there are q%l lines of §. Then every line through p in 7 intersects N in a
point. Hence every such line contains two points through which there are
'12;1 lines of S. However, we have proved above that every line of S in 7
contains exactly one point through which there are q%l lines of § in 7. So
there can be no lines of § through p in 7, a contradiction. We conclude
that through every point of © not on N there are %1 lines of S. Now we
define a new incidence structure S’ = (P', L',T') as follows: P’ = P N,
L' = (LNm)U{N}, and I' the restriction of I to §’. Then S’ is a partial
geometry pg(q, L5 1, qul) fully embedded in the projective plane 7. This is
again a contradiction as by assumption ¢ is odd and hence there exists no
non-trivial maximal arc in 7 [1], which implies that also a partial geometry
pe(q, & 1, il) does not exist. This proves that 7 can not contain a line N
on which there are ¢ + 1 points of S, but that does not belong to S.

Let v, (respectively vg) be the number of points of 7 through which there
are q%l (respectively %) lines of S in 7. Let v, and by be the number of
points and lines of S in 7. Then clearly v, + vg = v;. Moreover we have

the following equations.

1
Vo + vg = (g+ )b, (4.1)

() () () ()mmcn

The first equation is obtained by counting the flags (p, L), for p and L a
point and a line of § in 7, in two different ways. The second equation we
obtain by counting triples (p, L, L"), for p, L and L' a point and two lines of
S in 7, p incident with both L and L'.
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From (4.1) it follows that

q-+ 1 U8
=2 (by — 2). 4.3
=250, - D) (4.3
Substituting (4.3) in (4.2), we get that
2y (by — 1)
= 20O =) 3)b, 4.4
-9 (4.4
Now substituting (4.4) in (4.3), it follows that
2b;(br — 1
va=@+4ﬁw———L——l- (4.5)
q—1
From the equation v, + vg = v;, we obtain
2
q — b7r
= 4br———. 4.
v q2 -1 ( 6)

Now let L be a line of S in w. Assume that L contains a points through
which there are q%l lines of § in w. Then again 1 < a < ¢, since we have
proved above that 7w contains points through which there are q%l lines of S
in m as well as points through which there are qu lines of § in 7. Counting
the lines of § in 7 that intersect L, we get that

be = l+al24(g+1-a)2

+1
2
Substituting this result into (4.6), it follows that
4a(l — a)
q° -1

vp=q>+ 1+ (4.7)

The number of pomts of 7 that do not belong to S clearly equals ¢>+q+1—v.
So there are g+ ( ) such points. Since a > 1, we get that ¢+ 4a(a 1) >q.
From a < ¢, it follows that

dafa—1) _4q(g—1) _ 4q
@?-1 — ¢2-1 q+1°

Since q/(q¢ +1) < 1, we get that

da(a — 1)

<q+4
gs-1 97
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We conclude that the number of points of 7w that do not belong to S, equals
g, q+1,g+2o0rqg+3.

Assume that 7 contains a line M on which there are ¢ points of S. We
will prove that in this case there are exactly ¢ 4+ 1 points in 7 that do not
belong to S§. Let ¢ be the number of points of M through which there are
‘12;1 lines of § in m. Then 0 < ¢ < g. Counting the lines of § in m through
the points of M, we get that

q
bﬂ:c2
@ +q

2

Let L be a line of S in w. Let a be the number of points of L through which
there are ‘12;1 lines of § in w. Then 1 < a < ¢. Counting the lines of &
through the points of L, it follows that

¢ +1
= —a

br 5

From these two equations it follows that

Now we prove that a > %1. Assume therefore that a < %1. Then

oo < (52) ()

— da(a—1) < ¢F -1

4a(a — 1
— —s < 1.
g —1
However, from (4.7) we know that 4’;(2'1:11) € N. This is a contradiction. So

a > %1. Substituting this in (4.8), we get that ¢ > ¢. By definition, ¢ < q.
Soc=gqand a = %1. Substituting this value for a in (4.7), we obtain
vy = ¢°. This proves that there are exactly ¢ + 1 points of 7 that do not
belong to S, if © contains a line on which there are exactly ¢ points of S.
Assume first that the number of points of 7 that do not belong to S,
equals ¢. Let x be a point of 7 that does not belong to S. The ¢ + 1 lines
through z in 7 contain the ¢ — 1 remaining points of 7 that do not belong to
S. Tt follows that there is a line through z in 7 on which there lies no other
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point that does not belong to §. Hence 7 contains a line on which there are
exactly ¢ points of S. From the previous paragraph it follows that v, = ¢2,
a contradiction since we assumed that 7 contains exactly ¢ points that do
not belong to S.

Assume next that 7 contains g+ 2 points that do not belong to S. Since
q is odd, a hyperoval does not exist. Hence there is a line M in 7 that
contains r points of S, 0 # r £ 2. If r = 1, then 7 contains a line on which
there lie exactly g points of S. As in the previous paragraph, this gives us a
contradiction. If » > 3, then let « be a point of M that does not belong to
S. The q lines through z in 7 different from M contain at most ¢ — 1 points
that do not belong to §. Hence also in this case there is a line through z
that contains ¢ points of S. It follows that v, = ¢, a contradiction since we
assumed that 7 contains ¢ + 2 points that do not belong to S.

Assume finally that 7 contains ¢ 4+ 3 points that do not belong to S.
Then on each line of w there are at most 3 points that do not belong to S,
as otherwise there would be a line containing exactly s points of S, which
would give us a contradiction as in the previous paragraph. Let mi, mo and
ms be the number of lines of 7 that contain respectively 1, 2 and 3 points
that do not belong to S. Counting the lines of =, the flags (z, M) for z
a point of 7 that does not belong to S and M a line of 7, and the triples
(xz,y, M) for  and y points of w that do not belong to § and M a line of ,
such that z, y € M, we get the following equations.

by +mi1+mo+m3 = q2+q+1
m1 + 2mg + 3ms = (¢g+1)(¢+3)
2m2 + 6m3 = (q +3)(q + 2).

If m; > 0, then from the previous it would follow that v, = ¢, a contradic-
tion since we assumed that 7 contains ¢ + 3 points that do not belong to S.
Hence m1 = 0. So we get that

2
br 5-%
_ q+3
my = L
+3
ma q(q2 )

We will now count the number b, of lines of S in 7 in another way. From
(4.7) it follows that v, = ¢® + 1 + %. By assumption the plane 7
contains ¢ + 3 points that do not belong to S. So v, = ¢?> — 2. Hence

4a(a —1)
-1 7
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SO
4a? —4a —3¢> +3=0.

LRV

Solving this quadratic equation in a, we get that a =

2_./302_
stituting this in the equation b, = q2;-1 — a, we get that b, = %.
So

q_2_5q _ q_2_ 3¢2—2
2 2 2

w|& o
|

w

%

|

b

25¢> = 9(3¢° —2)
q = 3.

Hence ¢ = 3. This is a contradiction, since we assumed ¢ > 3. Hence 7 can
not contain g + 3 points that do not belong to S.

From the previous paragraphs it follows that the number of points that
do not belong to S, equals ¢ + 1. So a = 'IQLI, and b, = @. If 7 would
contain a line M on which there are at least 3 points that do not belong
to S, then counting the lines of S through the points of 7, we get that

2— — . . . . .
br < (q— 2)% = 'ITH. This is a contradiction, since we proved above

that b, = @. Hence every line of 7 contains 0, 1 or 2 points that do not
belong to §. We conclude that the points of 7 that do not belong to S are
the points of a conic C. It also follows from the previous that the lines of S
in 7 are the lines that contain no point of C'. This proves the lemma. O

4.2.3 Characterization of NQ* (3, ), for ¢ odd

Theorem 4.2.2 Let S be a ('12;1, %)—geometry of order (q,t) fully embed-

dable in PG(3,q), for ¢ odd and ¢ > 3. Then S = NQ'(3,q).

Proof. Let S be a (52, %)—geometry of order (gq,t) fully embeddable in
PG(3,q), for ¢ odd and g > 3. From lemma 4.2.1 it follows that every plane
that contains an antiflag of S, intersects S in the points not on a conic C
and the lines that contain no point of C.

We will first prove that PG(3, q) contains exactly (¢4 1)? points that do
not belong to S. If PG(3, ¢) does not contain two lines of S that are disjoint,
then every two lines of S in PG(3,q) intersect. It follows that the lines of
S in PG(3, g) are contained in a plane, or that they are a subset of a pencil

of lines through a point p. Both of these possibilities give a contradiction,
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as the number of lines through a point would not be constant. So we may
assume that PG(3,¢q) contains two lines L and L' of S that are skew to
each other. Now every plane through L in PG(3,¢q) contains an antiflag
of §. From lemma 4.2.1 it follows that every plane through L in PG(3,q)
contains ¢ + 1 points that do not belong to §. Since L is a line of S, it
contains no points that do not belong to §. Hence, counting the points of
PG(3, q) that do not belong to S in the planes through L, we get that there
are exactly (¢ + 1)? such points.

We will now prove that the points of PG(3,¢) that do not belong to S,
are the points of a non-singular quadratic set, as defined in section 1.4. We
first prove that every line of PG(3,q) contains 0, 1, 2 or ¢ + 1 points that
do not belong to §. Assume therefore that M is a line on which there are
r points of S, 3 < r < g— 1. Then M contains two points u; and ug of S.
Let L be a line of S through u;. The plane (M, L) contains an antiflag of
S. From lemma 4.2.1 it follows that the points of (M, L) that do not belong
to S, are the points of a conic. This is a contradiction, since M contains 7
points of S, 3 < r < ¢ — 1. Hence PG(3, ¢g) can not contain a line on which
there are r points that do not belong to S, 3 < r < ¢ — 1. Assume now that
PG(3,q) contains a line M’ on which there are ¢ points that do not belong
to S. If there is a plane through M’ that contains an antiflag of S, then we
get again a contradiction. So every plane through M’ contains no antiflag
of 8. Now let u be the point of M’ that belongs to S. Since ¢t +1 > 2,
there are at least two lines of S through u in PG(3,q). A plane through
M and a line of S through u contains ¢? points that do not belong to S
(since it contains no antiflag of S). It follows that PG(3, ¢) contains at least
2(q?> — q) + q = 2¢*> — ¢ points that do not belong to S. We have proved in
the previous paragraph that PG(3,q) contains exactly (¢ + 1)? points that
do not belong to S. So (¢ + 1) > 2¢%> — q, or thus ¢ < 3. Since ¢ is assumed
to be odd, it follows that ¢ = 3. However, we assumed that ¢ > 3. Hence
no line of PG(3, ¢) contains ¢ points that do not belong to S. We conclude
that every line of PG(3, ¢) contains 0, 1, 2 or ¢+ 1 points that do not belong
to S.

Let K be the set of all points of PG(3,¢) that do not belong to S. We
call a line of PG(3,q) a tangent line of K if it contains either 1 or ¢ 4+ 1
points of K. We prove now that the tangent lines through a point = of I,
are the (¢ + 1) lines through z contained in a plane through x.

From the previous we know that || = (¢ + 1)2. So on the ¢ + ¢+ 1
lines through z in PG(3, q), there lie ¢* + 2¢ points of K. Since every line
through = in PG(3, ¢) contains 0, 1 or ¢ points of I\ {z}, it follows that
there is a line V through x on which there are ¢ 4+ 1 points of /L. Now let a
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(respectively ¢) be the number of lines through z on which there are ¢ + 1
(respectively 2) points of . Then ag+cl = ¢>+qand a+c < ¢®>+q+1. If
a =1, then ¢ = ¢> + ¢ and hence a+c = ¢*> + ¢+ 1. Tt follows that there is no
line through x that contains exactly one point of K. This is a contradiction,
since the plane (z, L) intersects K in a conic and hence it contains a line
through z that contains no point of I\ {z}. This proves that there are at
least two lines through z that contain ¢ 4+ 1 points of K.

So let N’ be a line through z containing g + 1 points of K, N # N.
Every line through z in the plane (N, N') is a tangent line of K. Indeed, if
not there would be a line through z in (N, N} containing exactly two points
z and y of K. Every line through y in (N, N) different from (z,y), contains
at least 3 points of K, namely y and its intersection point with N and N'.
Hence every line through y in (N, N'), different from (z,y), contains ¢ + 1
points of K. Let u be a point of (z,y),  # u # y. Then the lines through
u in (N, N'), different from (z,y), contain exactly ¢ points of K. This is a
contradiction, since we have proved that every line of PG(3, ¢) contains 0,
1, 2 or g + 1 points of K. This proves that every line through z in (N, N')
is a tangent line of K.

Assume that (N, N’} contains a line N” through z, N # N"” # N’, on
which there are ¢ + 1 points of K. Then every line of (N, N') not through
x contains at least 3 points of . Hence each such line has to contain
q + 1 points of K. It follows that all points of (N, N') belong to K. This
is a contradiction, as every line of PG(3,q) intersect the plane (N, N') in
a point, so it would follow that PG(3,¢) contains no lines of S, which is a
contradiction. We conclude that the points of K in (N, N') are the points
of the lines N and N'.

Now assume that there would be a line M through x, M not contained
in (N, N'), that is tangent to K. Then M contains either 1 or ¢ + 1 points
of IC. Assume first that M contains exactly 1 point of . Let L be a line of
S that intersects M in a point. The plane (L, M) contains an antiflag of S.
From lemma 4.2.1 it follows that the points of K in (L, M) are the points
of a conic. Now the intersection line of (L, M) and (N, N') is a tangent
line through x different from M. Hence (L, M) contains two tangent lines
through z at the conic C, which is clearly a contradiction. Assume next
that M contains g+ 1 points of K. From the above it follows that every line
through x that is not contained in (N, N'), contains 2 or ¢ + 1 points of K,
while the plane (N, N') contains 2¢ + 1 points of K. So in total K contains
at least 14 3¢ + (¢> — 1) = ¢* + 3q points. This is a contradiction, since we
have proved above that |K| = ¢? +2¢+ 1. This proves that all lines through
z that are not contained in (N, N'), contain 2 points of K.
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In the previous paragraphs we proved that K is a non-singular quadratic
set. From [35] (theorem 22.10.23) it follows that K is either a quadric, or
a (¢ + 1)-arc in a plane, or an ovaloid of PG(3,q), ¢ > 2. Since PG(3,q)
contains lines on which there are ¢ + 1 points of K, it follows that I is a
quadric. Since |[K| = (g + 1)2, it is clear that K is a hyperbolic quadric
Q" (3,q). We conclude that the points of S in PG(3,¢) are the points that
do not lie on a hyperbolic quadric Q™ (3, q), and the lines of S are the lines
that contain no point of QT (3,q). Hence S = NQ(3,¢). O

Theorem 4.2.3 Let S be a (%, %)—geometry of order (q,t), fully embed-
ded in PG(n,q), for q odd and ¢ > 3. Then S = NQ"(3,q).

Proof. Let S be a (%1, %i)—geometry of order (g,t), fully embedded in
PG(n,q), for ¢ odd and g > 3. From theorem 4.2.3 it follows that if n = 3,
S =NQ7"(3,q). So we assume from now on that n > 3.

Let K be the set of points of PG(n, ¢) that do not belong to S. We will
prove that every line of PG(n,q) contains 0, 1, 2 or ¢ + 1 points of K.

Assume therefore that there is a line M containing r points of K, 3 <
r < q—1. Then M contains two points u; and us of S. Let L be a line of
S through uy, L # M. The plane (L, M) contains an antiflag of S. From
lemma 4.2.1 it follows that the points of I in (L, M) are the points of a
conic. This is a contradiction, since M contains r points of IC, 3 < r < ¢g—1.
Hence no line of PG(n, ¢) contains r points of IC, 3 <r < ¢ — 1.

Assume next that there is a line M’ that contains ¢ points of K. Let
u be the point of S on M’. Let L; be a line of S through u. The plane
(L1, M') can not contain an antiflag of S, as otherwise the points of K in
(L1, M') would be the points of a conic, a contradiction since M’ contains ¢
points of K. Hence (Li, M') contains ¢ points of . Let Lo be a line of S
through u, Ly # Li. Then the plane (Ly, M') also contains ¢? points of K.
Let p be a point of the three dimensional space (M', L1, Lo), p ¢ (L1, Lo).
If p € P, then there are at least (¢ — 1)/2 lines of S through p that intersect
L. Let L, be a line of S through p intersecting L; in a point different from
u. Then L, intersects the plane (Ly, M') in a point p’ that is not contained
in Ly. Hence p’ € K. This is a contradiction, as the line L, of S can not
contain points of K. So p ¢ P. It follows that every point of S in the three
dimensional space (M', Ly, Ls), is contained in the plane (L1, Ls).

Let L3 be a line of S intersecting (L1, Ly) in a point z. It is clear that
L3 exists, since S is connected and the points of S span PG(n,q). From
the previous it follows that Lj is not contained in (M', Ly, Ly). Every plane
through L3 and a line M, through z in (M’, L1, Ly}, M, not contained in
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(L1, Ly), contains ¢? points of K (since M, contains q points of k). Hence all
points of S in the four dimensional space (M’ Ly, Lo, L3) are contained in
the three dimensional space (L1, Lo, L3). Continuing in this way, it follows
that all points of S in PG(n,q) are contained in an (n — 1)-dimensional
subspace of PG(n,q). This is a contradiction, since the points of S span
PG(n,q). So PG(n,q) can not contain a line M’ on which there are ¢ points
of K. This proves that every line of PG(n, q) contains 0, 1, 2 or ¢+ 1 points
of K.

Let L be a line of S in PG(n,q). Since no line of PG(n, q) contains ¢
points of S, every plane through L contains an antiflag of S. From lemma
4.2.1 it follows that every plane through L contains ¢ + 1 points of K. So,
counting the points of K in the planes through L, we get that

n—1

q pa—
K="
k==

(g+1).

Let z be a point of . A line N of PG(n,q) is called a tangent line at
K in z, if N contains = and 0 or ¢ other points of . We will prove that
the tangent lines through x at IC are the lines through z in a hyperplane
of PG(n,q) through x. Let therefore N; and Ny be two lines of PG(n,q)
through z that are tangent to L. Then N; contains either 1 or ¢ 4+ 1 points
of K. Also N, contains either 1 or ¢+ 1 points of . We will deal with each
of the possibilities separately.

Assume first that N7 and N both contain ¢ + 1 points of L. Assume
that (N1, No) would contain a line M through x that contains exactly one
other point y of L. Then every line through y in (N7, No), different from
(z,y), contains at least 3 points of I, namely y and the intersection points
of this line with Ny and N». Hence every such line contains ¢ + 1 points
of K. It follows that the points of S in (N1, Na) all lie on the line (z,y).
Let u € (z,y) be a point of S. Then there is a line through u in (N7, No)
that contains ¢ points of K. This is a contradiction, since we have proved
in the previous paragraph that each line contains 0, 1, 2 or ¢ + 1 points of
K. Hence every line through z in (Ni, N2) is a tangent line to K.

Assume next that IV contains g+1 points of KC, while N5 contains exactly
one point of K. Assume that the plane (N7, Ny) contains a line M through
x on which there are exactly two points = and y of K. Let u be a point of
S, u € Ny. Let L, be a line of § through u. Then it is clear that L, is not
contained in the plane (N7, No). Since we have proved above that no line
can contain ¢ points of I, it follows that every plane through L, contains
an antiflag of S, and hence every such plane contains exactly ¢+ 1 points of
K (see lemma 4.2.1). So the three dimensional space (Ny, Na, L,) contains
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exactly (¢ + 1)? points of K. It follows that (N7, No, L,) contains a line N3
through = on which there are (¢ + 1) points of K. Indeed, otherwise on each
of the g% + ¢ lines through x in (N, Ny, L,,), different from Ny, there would
lie at most one point of I\ {z}. On the line Ny there lie no points of IC\ {z}.
So it would follow that |[KX N (N, No, Ly)| < (¢ +1) + ¢*> + ¢ — 1. This is a
contradiction, since we have proved above that [ICN (Ny, N, L, )| = (¢+1)2.
So there is a line N3 through z in (N, N9, L,) that contains ¢ + 1 points
of I, N3 # N;. From the previous paragraph it follows that the plane
(N1, N3) contains ¢ + 1 tangent lines through z at . The plane (N, N3)
clearly contains points of &, as it is contained in the three dimensional
space (Np, No, L, ), that contains the line L, of S. Hence the points of K
in (N1, N3) are the points of the lines N; and N3. Now assume that there
would be a tangent line Ny through x in (N7, N3, L,,), such that Ny is not
contained in the plane (Ni, N3) and such that N4 contains ¢ points of S.
Through a point w of § on Ny, there is a line L,, of § that intersects L, in
a point (since S is a (¢,q + 1)-geometry). The line L,, is contained in the
three dimensional space (N1, No, L, ), hence it intersects the plane (N1, N3)
in a point w' of S. The plane (N4, w') is a plane containing an antiflag of S
and two tangent lines through = at I (namely N4 and the intersection line
of (Ng,w') and (N7, N3)). This is in contradiction with lemma 4.2.1. Hence
there can not be a tangent line Ny through x at I in (N7, Ny, L,,), that is
not contained in the plane (N7, No) and that contains ¢ points of S. From
| N (N1, Na, L,)| = (¢ + 1)2, it now follows that all tangent lines through
x in (N1, Ny, L,,) are contained in the plane (N1, N3). However, the plane
(N1, No) is contained in (Ny, Ny, L,) and it contains two tangent lines N;
and Ny through z at K. Hence (N1, N3) = (N1, N3), a contradiction since
(N1, No) contains by assumption the line M on which there lie exactly two
points z and y of K. It follows that the plane (N7, No) can not contain a
line through x on which there lie exactly two points of K. Hence every line
through z in the plane (N1, N2) is a tangent line to K.

Assume finally that N7 and N both contain exactly one point of K.
From lemma 4.2.1 it follows that the plane (Nj, No) can not contain an
antiflag of S, since it contains two tangent lines through z at K. Hence
every line of the plane (N1, N3) has to contain a point of . We have proved
above that every line contains 0, 1, 2 or ¢ + 1 points of . It follows that
the plane (Np, N3) contains a line N3 through x on which there lie ¢ + 1
points of IC. Hence we can apply the previous part of the proof to the plane
(N1, No). This proves that every line through x in (N7, N) is a tangent line
to KC.
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In the previous paragraphs we have proved that every plane spanned by
two tangent lines through z at K, contains ¢ + 1 tangent lines through =
at /C. Hence the tangent lines through z at I are all lines through z in
a subspace T, of PG(n,q). Since every plane of PG(n,q) through z that
contains an antiflag of S, contains exactly one tangent line through z, it
follows that Y, is (n — 1)-dimensional.

Hence K is a non-singular quadratic set. From [35] it follows that £ is
the set of points of a quadric in PG(n, ¢q). However, since n > 3, in PG(n, q)
there are planes that contain exactly one point of the quadric L. Such planes
contain an antiflag of &, hence from lemma 4.2.1 we get a contradiction. It
follows that for n > 3, S can not exist. Hence n = 3, and from theorem
4.2.3 we get that S = NQ™ (3, q). O

Remark. In theorem 4.2.2 and theorem 4.2.3, we use the result of theorem
1.5.1 on quadratic sets. However, as J. A. Thas noted, the proofs could be
shortened using the results of G. Tallini (theorem 1.5.2 and 1.5.3) instead.






Appendix A

Nederlandstalige
samenvatting

A.1 Inleiding

In de inleiding worden eerst grafen gedefinieerd, en daarna ook het speciaal
geval van de sterk reguliere grafen. Dat doen we omdat met elke (o, 3)-
metkunde een graaf kan geassocieerd worden, dat we het puntgraaf van
deze (a, f)-meetkunde zullen noemen, en er dus verbanden bestaan tussen
de theorie van de grafen en de theorie van de («, §)-meetkunden. Een graaf
I' = (V, E) bestaat uit een niet-ledige (eindige) verzameling V' van toppen,
samen met een verzameling F van bogen, zodanig dat elke boog precies
twee verschillende toppen bevat en elke twee toppen in hoogstens één boog
bevat zijn. Een graaf I' wordt verbonden genoemd als er voor elke twee
verschillende toppen x en y van I' er toppen z; = x, 29, ..., 2z, = y bestaan,
voor r € N, zo dat z; adjacent is met z;11 (1 = 1,...,7—1). Het complement
van een graaf I' is het graaf I'C, dat dezelfde toppenverzameling heeft dan T,
maar zo dat twee verschillende toppen = en y adjacent zijn als en slechts als
x en y niet-adjacent zijn in I'. Een sterk regulier graaf srg(v,k,\, u) is een
graaf I’ met v toppen, zodanig dat elke top in precies k verschillende bogen
is bevat en zo dat ook nog aan de volgende twee voorwaarden is voldaan.

1. Voor elke twee toppen z en y, die tot eenzelfde boog van I behoren,
zijn er precies A toppen z waarvoor zowel (z, z) als (y, z) bogen van I'
zijn.

2. Voor elke twee verschillende toppen z en y, die niet tot eenzelfde boog
van I' behoren, zijn er precies p toppen z waarvoor zowel (z,z) als
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(y,z) bogen van T' zijn.

Aangezien we geen niet-verbonden grafen of hun complementen willen
beschouwen, veronderstellen we verder dat 0 < p < k < v — 1.

Daarna definiéren we het begrip parti€le lineaire ruimte. Een partiéle
lineaire ruimte van de orde (s,t) is een incidentiestructuur S = (P, L, 1),
met P # () een verzameling van punten, £ een verzameling van rechten en I
een incidentierelatie die aan de volgende voorwaarden voldoet.

1. Elke twee punten zijn incident met hoogstens één rechte.
2. Elke rechte is incident met precies s + 1 punten, s > 1.
3. Elk punt is incident met precies ¢ + 1 rechten, ¢ > 1.

Twee punten x en y van S, worden collineair genoemd als er een rechte
L € L bestaat zodanig dat z I L en y I L. Twee rechten L; en Ls van S,
worden concurrent genoemd als er een punt p € P bestaat zo dat p I L,
en p 1 Ly. Een antivlag van S is een koppel (p, L), met p een punt van
S, L een rechte van S, en zo dat p niet incident is met L. Het inciden-
tiegetal i(p, L) van een antivlag (p, L) is het aantal punten dat incident is
met de rechte L en collineair met het punt p. Een (o, 8)-meetkunde is een
parti€le lineaire ruimte van de orde (s,t) die voldoet aan het volgende ax-
ioma: voor elke antivlag (p, L) geldt er dat i(p, L) = « of i(p,L) = 3, en
beide komen voor. Een echte («, 3)-meetkunde voldoet aan 0 < o < 3. Het
puntgraaf van een (v, 3)-meetkunde is het graaf met als toppen de punten
van de (o, f)-meetkunde, waarbij twee toppen tot een boog behoren als de
twee overeenkomstige punten van de (a, 3)-meetkunde tot een rechte van de
(c, B)-meetkunde behoren. Een (a, 3)-meetkunde wordt sterk regulier ge-
noemd als zijn puntgraaf een sterk regulier graaf is. Een («, 5)-meetkunde
S = (P, L,1) is volledig ingebed in een projectieve ruimte PG(n,q), als P
een deelverzameling is van de puntenverzameling van PG(n,q), als £ een
deelverzameling is van de rechtenverzameling van PG(n,q), als I de restric-
tie van de incidentie van PG(n,q) is en als s = q. We veronderstellen ook
dat de punten van S niet bevat zijn in een hypervlak van PG(n, q).

In het verleden werden een aantal (¢, 3)-meetkunden met “speciale”
parameters bestudeerd. In het bijzonder zijn dit de polaire ruimten of
(1, g+1)-meetkunden, de copolaire ruimten of (0, ¢)-meetkunden, de partiéle
meetkunden (waarvoor o = 8 # 1), de veralgemeende vierhoeken (waarvoor
a = = 1), en de semipartiéle meetkunden (dit zijn (0, 3)-meetkunden
met sterk regulier puntgraaf). Al deze incidentiestructuren vormen een
deelverzameling van de verzameling van alle (o, )-meetkunden. Van de
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meeste ervan zijn de volledige inbeddingen in PG(n, q) bestudeerd en vaak
ook geclassificeerd. In stellingen 1.2.2, 1.2.1, 1.2.3, 1.2.4, 1.2.5 van de En-
gelstalige tekst worden deze gekende classificaties dan ook vermeld, zonder
bewijs.

In een volgend deel van de inleiding wordt er aandacht besteed aan
sterk reguliere (o, f)-meetkunden. Deze zijn interessant omdat ze aanlei-
ding geven tot meetkundig mooie structuren en een meer directe veral-
gemening zijn van partiéle meetkunden en semipartiéle meetkunden, die
immers ook een sterk regulier puntgraaf hebben. In stelling 1.3.1 wor-
den allereerst een aantal bestaansvoorwaarden voor sterk reguliere (o, (3)-
meetkunden gegeven. In sectie 1.3.2 wordt het begrip («, §)-regulus gedefi-
nieerd aan de hand waarvan sterk reguliere (a, §)-meetkunden kunnen wor-
den geconstrueerd. Er wordt ook een voorbeeld van een dergelijke construc-
tie van een sterk reguliere (o, §)-meetkunde gegeven, namelijk het volgende.
Zij QF(2n + 1,q) een niet-ontaarde hyperbolische of elliptische kwadriek
in PG(2n + 1,q). Onderstel dat er een partitie ¥ bestaat van de punten
van PG(2n + 1,¢) \ Q*(2n + 1,¢) in rechten. Elk vlak door een element L
van ¥ snijdt de kwadriek Q*(2n + 1,¢) in een punt of in een kegelsnede.
Er volgt dat elk dergelijk vlak ofwel ¢> — g — 1 ofwel ¢> — 1 punten van
PG(2n+1,q)\ (QT(2n+1,q) UL) bevat. Zij nu PG(2n+2,q) een (2n + 2)-
dimensionale projectieve ruimte die PG(2n + 1,¢) als hypervlak I1[2n + 1]
bevat. Zij P de verzameling van de punten van PG(2n+2, ¢) \ [I[2n+1]. Zij
L de verzameling van alle vlakken in PG(2n + 2, ¢) die II[2n + 1] in een ele-
ment van ¥ snijden, en die niet in I1[2n + 1] bevat zijn. Zij I de natuurlijke
incidentie. Dan is S = (P, L,I) een sterk reguliere (¢> — ¢ — 1,¢> — 1)-
meetkunde.

Tenslotte worden enkele definities gegeven van wiskundige objecten die,
hoewel ze niet het onderwerp van dit proefschrift zijn, in latere hoofdstukken
zullen voorkomen. Een mazimale boog K in een projectief vlak 7 is een (0, d)-
verzameling m.b.t. rechten, d.w.z. K is een verzameling van punten van
zodanig dat elke rechte van m 0 of d punten van K bevat. Een maximale
boog wordt triviaal genoemd als d € {0,1, ¢,q + 1}, met andere woorden als
K = 0, K bestaat uit één enkel punt, K is de verzameling van de punten
van een affien vlak of K is de verzameling van alle punten van een projectief
vlak. Een Baer deelruimte van een n-dimensionale projectieve ruimte van
de orde ¢, q een kwadraat, is een m-dimensionale projectieve deelruimte van
de orde /g, voor 1 < m < n. Een wunitaal U in een projectief vlak =, ¢
een kwadraat, is een verzameling van ¢,/q + 1 punten, zo dat elke rechte
van 7 precies 1 of /g + 1 punten van U bevat. Een duaal net van de orde
s+ 1 en met afwijking t + 1 — s (> 0) is een partiéle meetkunde waarvoor
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a = s. De orde van het duaal net is het aantal punten dat op een rechte is
gelegen. Verder is de afwijking het aantal rechten door een punt p dat niet
concurrent is met een gegeven rechte L, waarbij p niet incident is met L.

A.2 Volledige inbeddingen van (a, §)-meetkunden
in PG(n, q¢), onder welbepaalde voorwaarden

In het tweede hoofdstuk van dit proefschrift worden volledige inbeddingen
van («, #)-meetkunden in projectieve ruimten bestudeerd. Allereerst merken
we op dat echte («, 3)-meetkunden niet volledig ingebed kunnen zijn in een
projectief vlak PG(2,¢q), vermits in een vlak elke twee rechten snijden, en
hieruit zou volgen dat « = 8 =t + 1.

Het geval a = 1 wordt afzonderlijk behandeld in het eerste deel van dit
hoofdstuk. Als @ = 1, dan kan een vlak de (1, 3)-meetkunde snijden in een
(deel van) een rechtenwaaier. Een dergelijk vlak noemen we ontaard. We
bestuderen enkel de inbeddingen van (1, 5)-meetkunden in PG(3, ¢), omdat,
althans met de door ons gebruikte methodes, de classificatie in algemene n-
dimensionale projectieve ruimten zeer omslachtig zou zijn en er wellicht een
betere bewijsmethode bestaat. We veronderstellen ook dat er zowel een [3-
vlak als een ontaard vlak bevat is in PG(3, ¢). We bewijzen dan de volgende
stelling.

Stelling A.2.1 (Stelling 2.1.6) Er bestaat geen (1,)-meetkunde, 5 # 1,
die volledig ingebed is in PG(n,q), onder de voorwaarde dat PG(n,q) zowel
een ontaard viak als een B-vlak bevat.

Beschouwen we nu het geval & > 1. We gaan na hoe een («, #)-meetkun-
de een vlak 7 kan snijden. Daarvoor zijn er verschillende mogelijkheden. Als
m geen antivlag van S bevat, dan bevat m geen punten van S, ofwel bevat 7
een aantal punten van S, maar geen rechten van S, ofwel bevat 7 én rechte
van S, en alle punten van S in 7 liggen op die rechte. Als 7 wel een antivlag
van S bevat, dan is w NS een partiéle meetkunde pg(s,t, ), een partiéle
meetkunde pg(s,t,3), of m bevat twee antivlaggen (p1, L1) en (py, Ly) van
S, zodanig dat i(p1,L1) = « en i(pa, L2) = B. In het eerste geval noemen
we 7 een a-vlak, in het tweede geval wordt m een S-vlak genoemd, en in het
laatste geval spreken we van een gemengd vlak. Het doel van de rest van dit
hoofdstuk is om een classificatie van volledig ingebedde («, 8)-meetkunden
te bekomen, voor ¢ oneven en a # 1, onder de voorwaarde dat PG(n,q) een
a-vlak of een f3-vlak bevat.
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De veronderstelling ¢ oneven is nodig voor het volgende. Een parti€le
meetkunde ingebed in een projectief vlak heeft als punten de punten niet
bevat in een maximale boog K, en als rechten alle rechten die geen punten
van K bevatten. Voor g oneven bestaan er echter geen niet-triviale maximale
bogen [1]. Daaruit volgt dat de enige mogelijke S-vlakken (en natuurlijk ook
a-vlakken) de volgende zijn: alle punten en rechten van het vlak behoren
tot S, en dan is 8 = q + 1; er is precies één punt van het vlak dat niet tot
S behoort en de rechten van S zijn alle rechten van het vlak die dit punt
niet bevatten, in dit geval is 5 = ¢ (of @ = ¢). Met onze veronderstellingen
hebben we dus de volgende mogelijkheden: @« = gen =g+ 1, of @ < ¢
(en dan zijn er geen a-vlakken) en 8 = ¢+ 1 of 8 = ¢. In het geval ¢
even bestaan er wel degelijk niet-triviale maximale bogen en dus gaat deze
redenering niet op. Wel blijven veel van onze stellingen ook gelden in geval
q even, maar ze maken geen deel uit van een complete classificatie.

In wat volgt worden de notaties II[m], Q[m] en A[m| gebruikt voor een
(vast gekozen) m-dimensionale deelruimte van PG(n,q). Verder is II[m]S
een kegel met als top de deelruimte II[m] van PG(n, ¢) en als basis de («, 8)-
meetkunde S, volledig ingebed in een (n — m — 1)-dimensionale deelruimte
disjunct met II[m].

Onze classificatie van volledig ingebedde («, 3)-meetkunden in PG(n, q),
q oneven en o # 1, onder de voorwaarde dat PG(n,q) een a-vlak of een
B-vlak bevat, is een complete classificatie, behalve voor één specifiek geval,
namelijk het geval van een (¢ — /g, q)-meetkunde S volledig ingebed in
PG(3, ¢) zodanig dat alle punten van PG(3, ¢) ook punten van de meetkunde
zijn. Als een dergelijke (¢ — /g, ¢)-meetkunde zou bestaan, dan zou &' =
(P', L', T') een (¢ — /g, q)-meetkunde volledig ingebed in PG(n, ¢) zijn, met
P’ de verzameling van de punten van de kegel II[n —4]S, die niet tot II[n—4]
behoren, £’ de verzameling van de rechten die ¢+ 1 punten van P’ bevatten,
en I' de restrictie van de incidentie van PG(n, ¢). Een dergelijke (¢ — /g, q)-
meetkunde S’ noemen we ontaard. In wat volgt citeren we onze classificatie
en we vermelden daarbij ook de resultaten die geldig blijven voor g even.

Stelling A.2.2 (Sectie 2.2, Stelling 2.3.2, Stelling 2.4.1, Stelling
2.5.3, Stelling 2.5.7, Stelling 2.5.17)

Zig § = (P, L,1) een echte (a, B)-meetkunde, volledig ingebed in PG(n,q),
met a # 1 en q oneven. Onderstel dat PG(n,q) minstens één a-vlak of één
B-vlak bevat. Dan is S één van de volgende (v, B)-meetkunden.

1. S is een (q,q+ 1)-meetkunde, met als punten de punten die bevat zijn
in PG(n,q) \ II[m], voor 0 < m < n — 2, en als rechten de rechten die
disjunct zijn met Il[m]. We noteren S als Hy™.
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S is een (q, g+ 1)-meetkunde, met als punten de punten die bevat zijn in
PG(n,q) \II[m], voor 0 < m < n—3, en waarvoor de rechten als volgt
zign gedefinieerd. Zij ¥ = {o1,...,0,} een partitie van de punten van
S, metl = (¢""™—1)/(¢™ ~™—1), zodanig dat er voori =1,...,1 geldt
dat o; = Q;[m/|\I[m], waarbij Q;[m'] een m'-dimensionale deelruimte
is van PG(n, q) die II[m] bevat, en m+2 < m' < n—2. De rechten van
S zign dan de rechten die ¢ + 1 verschillende elementen van ¥ in een
punt snijden. Een nodige en voldoende voorwaarde opdat de partitie en
dus ook de (q,q+ 1)-meetkunde zou bestaan is dat (m' —m) | (n —m').
We noteren S als SHy”™.

S is een (¢ — 1, q)-meetkunde, met als punten de punten die bevat zijn
in PG(n,q)\II[n—2], en waarvoor de rechten als volgt zijn gedefinieerd.
Zij ¥ ={o1,...,0n_r} een partitie van de punten van S, zodanig dat
ervoori=1,...,n—r geldt dat o; = Q;[r]\I[n—2], waarbij Q;[r] een
r-dimensionale deelruimte is van PG(n,q) die II[n — 2] snijdt in een
(r —2)-dimensionale deelruimte, voor 1 < r < n—2. De rechten van S
zign de rechten die ¢+1 verschillende elementen van X in een punt van
S snigden. FEen dergelijke partitie 3 bestaat voor elke 1 <r <n—2en
geeft een (q — 1, q)-meetkunde.

. S is een (q — 1,q)-meetkunde, met als punten de punten van PG(n,q)

die niet bevat zijn in twee deelruimten Il[n — 2] en Q[r] van PG(n,q)
van dimensie respectievelijkn —2 enr (1 < r <n—2), en zodanig dat
II[n — 2] N Q[r] een (r — 2)-dimensionale ruimte is. De rechten van S
zign ofwel alle rechten die g + 1 punten van S bevatten, ofwel zijn ze
als volgt gedefinieerd. Zij ¥ = {o1,...,01} een partitie van de punten
van S, met | = (¢" " —1)/(¢*" — 1), zodanig dat er voori=1,...,1
geldt dat o; = A;[d]\ (I1[n—2]UQ[r]), waarbij A;[d] een d-dimensionale
deelruimte is van PG(n,q) die Q[r] bevat, en r +2 < d <n—2. De
rechten van S zijn de rechten die ¢+ 1 verschillende elementen van £
elk in een punt van S snijden. FEen nodige en voldoende voorwaarde
opdat een dergelijke partitie, en dus ook de (q — 1,q)-meetkunde, zou
bestaan, is dat (d —r) | (n —r).

S is een (¢ —/q,q)-meetkunde met als punten de punten van een kegel
II[m]S" die niet bevat zign in de top II[m], voor m = n—4 of m = n—35,
en als basis een (¢ — \/q, q)-meetkunde S’ die volledig is ingebed in een
(n — m — 1)-dimensionale deelruimte Qn —m — 1] van PG(n,q) die
disjunct is met II[m], en waarbij S’ als volgt kan worden beschreven.
De punten van S’ zijn de punten van Qn —m — 1] die niet bevat zijn
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in een (n —m — 1)-dimensionale Baerdeelruimte van Q[n —m — 1], en
de rechten van S8’ zijn de rechten van Qn —m — 1] die geen punt van
deze Baerdeelruimte bevatten.

6. S is een (q — \/q, q)-meetkunde volledig ingebed in PG(3,q), met als
punten alle punten van PG(3,q), en de rechten zo gekozen dat voor
elk punt p € P de rechten van S door p elk vlak niet door p snijden
in de punten niet bevat in een unitaal, en zo dat de rechten van S in
elk vlak de rechten zijn die een unitaal in dat vlak in \/q + 1 punten
snijden. We weten niet of een dergelijke (q¢ — \/q,q)-meetkunde al
dan niet bestaat. Als zo een (q — \/q,q)-meetkunde bestaat, dan is
S'= (P, L\T) een (q—+/q, q)-meetkunde volledig ingebed in PG(n,q),
met P’ de verzameling van de punten van de kegel I[n — 4]S, die niet
bevat zijn in de top Il[n — 4], en L' de verzameling van de rechten die
g+ 1 punten van S' bevatten, waarbij S de (¢ — \/q,q)-meetkunde is
die hiervoor werd beschreven.

7. S is een (q — \/q,q)-meetkunde volledig ingebed in PG(3,q), met als
punten alle punten van PG(3,q), en de rechten zo gekozen dat voor
elk punt p € P de rechten van S door p elk vlak niet door p snijden
in de punten die niet bevat zijn in een Baerdeelvlak, en zo dat de
rechten van S in elk vlak de rechten zijn die een Baerdeelvlak in dat
vlak in één punt snijden. We weten niet of een dergelijke (q — \/q,q)-
meetkunde al dan niet bestaat. Als deze meetkunde bestaat, dan is
S'= (P, LT) een (q—+/q, q)-meetkunde volledig ingebed in PG(n,q),
met P’ de verzameling van de punten van de kegel I[n — 4]S, die niet
bevat zijn in de top Il[n — 4], en L' de verzameling van de rechten die
q + 1 punten van S bevatten, waarbij S de (q — \/q, q)-meetkunde is
die hiervoor werd beschreven.

Voor q even verkregen we de volgende resultaten.

Stelling A.2.3 (Sectie 2.2, Stelling 2.3.3) Zij S een (q,q+1)-meetkun-
de wvolledig ingebed in PG(n,q), voor q even. Veronderstel dat elk vlak van
PG(n,q) dat een antivlag van S bevat, een q-vlak of een (q+1)-vlak is. Dan
heeft S als punten de punten van PG(n,q) \ II[m], voor 0 <m <n —2, en
als rechten de rechten die geen punt met I1lm] gemeen hebben.

Stelling A.2.4 (Sectie 2.2, Stelling 2.4.2) Zij S een (q,q+1)-meetkun-
de volledig ingebed in PG(n,q), voor q even. Veronderstel dat PG(n,q) een
gemengd vlak bevat. Dan heeft S als punten de punten die bevat zijn in
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PG(n,q) \ II[m], voor 0 < m < n — 3, en dan zijn de rechten van S als
volgt gedefinieerd. Zij ¥ = {o1,...,01} een partitie van de punten van S,
met | = (¢" ™ — 1)/(qm'*m — 1), zodanig dat er voor i = 1,...,1 geldt
dat o; = Q;[m/] \ U[m], waarbij Q;[m'] een m'-dimensionale deelruimte is
van PG(n,q) die II[m] bevat, en m +2 < m' < n — 2. De rechten van S
zign dan de rechten die q + 1 wverschillende elementen van X in een punt
snijden. FEen nodige en voldoende voorwaarde opdat deze partitie, en dus
ook de (q,q + 1)-meetkunde, zou bestaan is dat (m' —m) | (n —m').

Stelling A.2.5 (Sectie 2.2, Stelling 2.5.3) Zij S een (q—1, q)-meetkun-
de volledig ingebed in PG(n,q), voor q even, q # 2. Veronderstel dat er geen
vlak is dat een antivlag van S bevat en precies twee punten die niet tot S
behoren. Dan heeft S als punten de punten van PG(n,q) \ II[n — 2], en dan
zign de rechten van S als volgt gedefinieerd. Zij ¥ = {o01,...,0n_r} een
partitie van de punten van S, zodanig dat er voor i = 1,...,n —r geldt dat
o; = Qi[r] \ Uln — 2], waarbij Q;[r] een r-dimensionale deelruimte is van
PG(n,q) die Il[n — 2] snijdt in een (r — 2)-dimensionale deelruimte, voor
1 <r <n-—2. De rechten van S zijn de rechten die q + 1 verschillende
elementen van 3 in een punt van S snijden. FEen dergelijke partitie 3 bestaat
voor elke 1 <r < n —2 en geeft een (q — 1, q)-meetkunde.

Stelling A.2.6 (Sectie 2.2, Stelling 2.5.7) Zij S een (q—1, q)-meetkun-
de volledig ingebed in PG(n,q), voor q even, q # 2. Veronderstel dat er een
vlak is dat een antivlag van S bevat en precies twee verschillende punten y1 en
yo die niet tot S behoren. Dan zijn de punten van S de punten van PG(n,q)
die niet bevat zijn in twee deelruimten Il[n — 2] en Q[r] van PG(n,q) van
dimensie respectievelijk n—2 enr (1 <r < n-—2), zodanig dat II[n—2]NQ[r]
een (r — 2)-dimensionale ruimte is. De rechten van S zijn ofwel alle rechten
die g+ 1 punten van S bevatten, ofwel zijn ze als volgt gedefinieerd. Zij 3 =
{o1,...,00} een partitie van de punten van S, met | = (¢" " —1)/(¢%" —1),
zodanig dat er voor i = 1,...,1 geldt dat o; = N;[d] \ (I[n — 2] U Q[r]),
waarbij A;[d] een d-dimensionale deelruimte is van PG(n,q) die Q[r] bevat,
enr+2 < d<n—2. Derechten van S zijn de rechten die g+ 1 verschillende
elementen van X elk in een punt van S snijden. Een nodige en voldoende
voorwaarde opdat een dergelijke partitie, en dus ook de (¢ — 1,q)-meetkunde,
zou bestaan, is dat (d —1) | (n —1).
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A.3 (a,f)-meetkunden ingebed in PG(n,q), voor
a,f €{0,1,¢,¢+1}

In dit derde hoofdstuk worden volledige inbeddingen van («, §)-meetkunden
in PG(n, ¢q) verder onderzocht, maar deze keer voor “extreme” waarden van
aen 3. Voor (o, ) = (1,q+1) en (o, 8) = (0, q) is een volledige classificatie
bekend (het gaat hier om respectievelijk de polaire en de copolaire ruimten).
De (0, 1)-meetkunden of partiéle vierhoeken zijn nog niet geclassificeerd, en
de (0, g+ 1)-meetkunden zijn in feite disjuncte copién van partiéle meetkun-
den met & = g+ 1. De (g, ¢+ 1)-meetkunden werden in het vorige hoofdstuk
bestudeerd en geclassificeerd.

Wij slaagden erin een volledige classificatie te bekomen van de (1,q)-
meetkunden, voor ¢ # 2, wat het volgende “extreme” geval lijkt te zijn.
In de volgende stelling wordt deze classificatie gegeven. Er wordt gebruik
gemaakt van de volgende definitie. Zij II[n — m — 1] een (n — m — 1)-
dimensionale deelruimte van PG(n, q). Zij GQ een veralgemeende vierhoek
die volledig ingebed is in een m-dimensionale deelruimte van PG(n, q), die
disjunct is met II[n —m—1]. Dan is II[n —m —1]GQ bij definitie de kegel met
basis de ruimte II[n —m — 1], die de veralgemeende vierhoek GQ projecteert.

Stelling A.3.1 (Stelling 3.4.8) Zij S = (P, L,I) een (1, q)-meetkunde die
volledig ingebed is in PG(n,q), voor q # 2. Dan zijn de punten van S de
punten van een kegel Illln —m — 1]GQ (m = 3,4,5), die niet bevat zijn in de
top II[n —m — 1]. De rechten van S zijn de rechten die ¢+ 1 punten van S
bevatten en op deze kegel gelegen zijn.

In het geval ¢ = 2 is onze classificatie niet geldig. De voorgaande stelling
geeft wel een voorbeeld van een (1,2)-meetkunde in PG(n,2), maar dit is
zeker niet het enige voorbeeld. Dat blijkt namelijk uit het feit dat een (1, 2)-
meetkunde in PG(n,2) ook een (¢ — 1,¢q)-meetkunde is, en van (¢ — 1, q)-
meetkunden zijn er andere voorbeelden gegeven in het voorgaande hoofd-
stuk. We halen hier een dergelijk voorbeeld aan uit het vorige hoofdstuk.
Punten van S zijn de punten van PG(n, 2) die niet bevat zijn in een (n — 2)-
dimensionale deelruimte van PG(n,2). Verder is er een partiéle spread 3
van de punten van § in rechten. De rechten van S zijn dan de rechten die 3
punten van S bevatten en niet tot ¥ behoren.
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A.4 Karakterisaties van bepaalde klassen van vol-
ledig ingebedde («a, )-meetkunden

In dit laatste hoofdstuk van dit proefschrift worden een aantal karakterisaties
gegeven van in de vorige hoofdstukken besproken (¢, 5)-meetkunden.

In het eerste deel van dit hoofdstuk wordt een karakterisatie gegeven van
twee klassen van (g,q + 1)-meetkunden. We beginnen met de definities te
geven van deze (q,q + 1)-meetkunden. Zij daartoe H een m-dimensionale
deelruimte van PG(n, q), voor 0 < m < n—3. De (g, g+1)-meetkunde Hy"™ is
dan als volgt gedefinieerd. De punten van Hy"" zijn de punten van PG(n, q)
die niet bevat zijn in de m-dimensionale deelruimte H. De rechten van Hy"™
zijn de rechten van PG(n, q) die ¢+ 1 punten van S bevatten. Voor m = —1
en m = n — 2 zou deze constructie een parti€le meetkunde opleveren. De
partiéle meetkunde H~>" wordt traditioneel als HY genoteerd. Een andere
(¢,q + 1)-meetkunde, die toch heel sterk op Hy"™ gelijkt, is de meetkunde
SHy™, die als volgt is gedefinieerd. De punten van SH"™ zijn opnieuw de
punten van PG(n, ¢) \ H. Verder is er een partitie S die de punten van SHy""™
partitioneert in m/-dimensionale ruimten, voor m +2 < m/ < n — 2, en zo
dat elk element van de partitie S de ruimte H bevat. Merk op dat hieruit
volgt dat de dimensie m van H nu strikt kleiner moet zijn dan n — 3. De
rechten van SHZ’m zijn de rechten die ¢ + 1 punten van S bevatten en niet
bevat zijn in een element van de partitie S.

Voor de parti€le meetkunde Hy bestaat al geruime tijd een classificatie
aan de hand van het axioma van Pasch [54]. Het axioma van Pasch voor
een partiéle meetkunde pg(s,t, «) is het volgende.

VLi,Lo,My,My € L,Ly # Lo, L1 121 Ly, x ¢ M,z ¢ Mo,
Li ~ Mj for all i,5 € {1,2} : My ~ M.

Verder werd ook gebruik gemaakt van een nieuw ingevoerd begrip, namelijk
requlariteit. Daartoe worden eerst deelstructuren van S als volgt gedefi-
nieerd. Zij L en M twee verschillende rechten van S, die elkaar snijden in
het punt z. Zij L* de verzameling van de s(a — 1) rechten die zowel L als M
snijden in een punt verschillend van z, samen met de a rechten door z die
minstens één van deze s(« — 1) rechten snijden. Zij P* de verzameling van
de punten die op een van de rechten van £* zijn gelegen. Zij I* de restrictie
van de incidentie van S tot (P* x £*) U (L£* x P*). Dan kan men, gebruik
makend van het axioma van Pasch bewijzen dat S(L, M) = (P*, L*,T*) een
pg(s,a—1,a) is. Zij nu z en y twee niet-collineaire punten van S, z # y. De
(nieuwe) rechte door x en y (0ook rechte van de tweede soort genoemd) wordt
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dan gedefinieerd als de verzameling van punten die in de doorsnede zit van
alle deelmeetkunden van S die zowel z als y bevatten. Deze nieuwe rechte
door x en y is een verzameling van punten die twee aan twee niet-collinear
zijn in § en bevat hoogstens ¢ + 1 — ¢/« punten. De partiéle meetkunde
S, die aan het axioma van Pasch voldoet, wordt regulier genoemd als en
slechts als elk zulke rechte door twee niet collineaire punten van S precies
g + 1 — ¢/« punten bevat.

Stelling A.4.1 ([54]) De partiéle meetkunde S = (P, L,1) met parameters
(s,t, ), zo dat « # 1,t + 1,8 + 1, is isomorf met Hy als en slechts als

1. S voldoet aan het azioma van Pasch;
2. S 1is regulier;
3. 25 > st —as® + a?s? + a’s — 2at.

Merk op dat de laatste voorwaarde in stelling A.4.1 een zeer sterke voor-
waarde is. In de praktijk is er aan deze voorwaarde bijna nooit voldaan als
a # s. Voor het geval dat a = s bestaat er de volgende stelling.

Stelling A.4.2 ([54]) Zij S een duaal net van de orde s+1 en met deficién-
tiet+1—s (> 0). Als S aan het axioma van Pasch voldoet, dan is S isomorf
met Hy.

Wij hebben deze classificatie veralgemeend tot een classificatie voor Hy"™
en SHy™. Het axioma van Pasch blijft natuurlijk gelden voor een wil-
lekeurige (o, 3)-meetkunde. Het begrip regulariteit moet enigszins worden
uitgebreid. Een (a, #)-meetkunde wordt regulier t.o.v. rechten van de tweede
soort (dit zijn nieuwe rechten gedefinieerd door twee niet-collineaire punten,
op dezelfde manier als in het geval van partiéle meetkunden) genoemd als
en slechts als elke rechte van de tweede soort en elke rechte van S, die tot
eenzelfde deelmeetkunde van S behoren, elkaar snijden. Met deze definities
verkregen we de volgende classificatie voor Hy"™ en SHy™.

Stelling A.4.3 (Stelling 4.1.4) Zij S een echte (a, s + 1)-meetkunde van
de orde (s,t), zo dat 1 < a« < s+ 1 en a < t+ 1, die aan de volgende
voorwaarden voldoet:

1. het axioma van Pasch;

2. regqulariteit t.o.v. rechten van de tweede soort;
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3. er is minstens één a-deelstructuur bevat in S.

Dan is S isomorf met Hy'™ of SHy™.

Een tweede klasse van («a, §)-meetkunde waarvan een classificatie wordt
gegeven in dit hoofdstuk is de ((¢ — 1)/2, (¢ + 1)/2)-meetkunde NQ* (3, g),
q oneven, die als volgt is gedefinieerd. Zij Q" (3,q) een driedimensionale
hyperbolische kwadriek in PG(3, q). De punten van NQ™ (3, ¢) zijn de punten
van PG(3,q) \ Q@7 (3,q). De rechten van NQ*(3,¢) zijn de rechten die g + 1
punten van NQ™ (3, ¢) bevatten.

Voor deze ((¢ — 1)/2, (g + 1)/2)-meetkunde bekwamen wij de volgende
classificatie.

Stelling A.4.4 (Stelling 4.2.3) Zij S een (45, %) -meetkunde volledig

ingebed in PG(n,q), voor q oneven. Dan is S isomorf met NQ™ (3, q).
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List of Notations

For a graph I

x ~ 1y the vertex z is adjacent with the vertex y

x %y the vertex x is not adjacent with the vertex y
re the complement of I’

[(z) the set of all vertices of I adjacent with z

For a projective space

PG(n,q)
S=(P, LI
7rD

II[m]

Q(n,q)

Q" (n,q)

Q" (n,q)
H(n,q)

the n-dimensional projective space over the field
GF(q), ¢ a prime power

an incidence structure, with P a set of elements
called points, £ a set of elements called lines,
and I C (P x £) U (L x P) an incidence relation
the dual plane of 7

an m-dimensional subspace of PG(n, q)
parabolic quadric in PG(n, ¢), n even
hyperbolic quadric in PG(n, g), n odd

elliptic quadric in PG(n, ¢), n odd

Hermitian variety in PG(n, q), ¢ a square

For (o, 3)-geometries

x ~y  the point z is collinear with the point y

z %y  the point z is not collinear with the point y

L ~ M the line L is concurrent with the line M

L o M the line L is not concurrent with the line M

i(z,L) the number of lines through the point  that intersect
the line L
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pg(s,t, a)
H’I’L

n,m
Hq

SHI™

GQ

a partial geometry with parameters s,? and «

the partial geometry fully embedded in PG(n, q) with
points the points not contained in an (n — 2)-dimen-
sional subspace II[n — 2], and lines the lines skew to
[n — 2]

the (¢,q + 1)-geometry fully embedded in PG(n, q)
with points the points not contained in an m-dimensio-
nal subspace II[m], 0 < m < n — 3, and lines the lines
skew to II[m]

the (¢,q + 1)-geometry fully embedded in PG(n, q)
with points the points not contained in an m-dimensio-
nal subspace II[m], =1 < m <n — 4, and lines the lines
skew to II[m] that are not contained in a partitioning
¥ of the points of PG(n,¢) \ II[m] into m’-dimensional
spaces, each of them containing II[m)]

the semipartial geometry with points the points not on
Q™ (2n — 1,2) and lines the lines skew to Q™ (2n — 1,2)
the semipartial geometry with points the points not on
Q" (2n — 1,2) and lines the lines skew to QT (2n — 1,2)
the semipartial geometry with points the points not on
(Q(4,2) and lines the lines skew to Q(4,2)

the (%, %)—geometry, g odd, with points the points
not on Q*(3,¢q) and lines the lines skew to Q7 (3, q)
cone with vertex II[m], projecting an (o, 3)-geometry
S fully embedded in an (n — m — 1)-dimensional
subspace of PG(n, q) skew to II[m]

a generalized quadrangle fully embedded in PG(n, q)

For a set of points K in PG(n,q)

(ri,72,...,75)-set a set of points of PG(n, q) such that for each line L

]CC

of PG(n,q) we have that |[L N K| € {r1,re,...,7s}
the complement of the set I, or in other words,
the set of points of PG(n,q) \ K
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Index

adjacency matrix, 2
(a, B)-geometry, 5
degenerate, 59
fully embedded, 5
Hy™, 31, 81, 103
line of the 2"¢ type, 107
proper, 5
regular, 108
SHy™, 35, 82, 103
strongly regular, 5, 9
(e, B)-regulus, 10
a-plane, 25
a-substructure, 106
antiflag, 4

Baer subplane, 12
Baer subspace, 12
(B-plane, 16, 25
[B-substructure, 106
Bose-Mesner algebra, 2

center, 16, 86
closure of a net, 36
copolar space, 5, 79

degenerate plane, 16, 86
dual affine plane, 114

flag, 4

generalized quadrangle, 5, 78
classical, 6
full embeddings, 6

graph, 1
adjacency, 1
complement, 1
complete, 1
connected, 2
Moore graph, 79
valency, 2

hyperoval, 12
hyperplane, 12

incidence number, 4

maximal arc, 12

order, 12

trivial, 12
mixed plane, 16, 25
mixed substructure, 106
p-condition, 108

nuclear line, 91
nuclear subspace, 97
nucleus, 86

partial geometry, 6
full embeddings, 7
Hy, 7
line of the 2"¢ type, 105
ovoid, 12
regular, 105
spread, 12
substructure, 105
partial linear space, 4



partial quadrangle, 5, 80
Pasch axiom, 104

point graph, 4

polar space, 5, 78
projective plane, 114
punctured affine plane, 115

g-plane, 86
quadratic set, 13

semipartial geometry, 6
M(k), 79
NQ(4,2), 8
NQ*(3,2"), 8
NQ~(3,2), 8
U2,3 (m), 9
W(”? 2k7 q)? 8

set of type (r1,...,7s), 13

Shult space, 77

strongly regular graph, 2
Hoffman bound, 3
absolute bound, 3
claw bound, 3
Krein conditions, 3

unital, 12
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