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ON THE LANDAU-LIFSHITZ EQUATION

OF FERROMAGNETISM

Thesis submitted to Ghent University
in candidature for the degree

of Doctor of Philosophy

in mathematics

Ghent University
Faculty of Applied Sciences
Department of Mathematical Analysis
2005
Co-promotors: Marián Slodička, Roger Van Keer
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Preface

Some time ago I read a book on ancient and contemporary coding. About how the
ciphers are developed by encrypters and how decrypters try to break them. Through
the ages as soon as a new cipher was invented, somebody always decrypted it in a
short time. Both decryption and encryption was almost on the same level. Until
the invasion of computers.

Since it is possible to perform millions mathematical operations in a short while,
a new phenomena arose. Using simple algorithms it is easy to encrypt any text such
that decryption becomes almost impossible. I’m speaking about the encryption
methods based on the public and the private key using factorization of big numbers.
Now, the relation between encryption and decryption is not balanced anymore. The
difficulty begins when you do not have the private key. It would take too much time
to find it. Millions of years.

But. Suppose that the decrypter doesn’t play absolutely fair. There are several
ways how to get the private key. For encryption you need a computer. Then, of
course, viruses and Trojan horses in encryption programs can play a key role to find
the private key. But for this you need at least a bug in the computers. However,
there exists another way.

The decrypter, although this name is not appropriate anymore, comes next to
the house of the encrypter, or better: user of an encryption program, with special
equipment hidden in his van. With this equipment he is able to see the text of
the message to be encrypted while the user enters his text via the keyboard. So
actually, no decryption is necessary.

How? The keyboard, the monitor and in fact all electronic devices radiate elec-
tromagnetic waves. To trace them and to decode what was entered via the keyboard
or what is on the screen, is not an easy task. But nowadays special devices are ca-
pable to do this. The construction of such devices would not be possible without a
deep understanding and knowledge of the involved phenomena.

The scientific domain enabling all this magic is called Electromagnetism.
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1 Samenvatting
(As far as the laws of mathematics refer to reality, they are not certain; and as far as

they are certain, they do not refer to reality. Albert Einstein)

De nadruk van dit werk ligt op de numerieke analyse van de Landau-Lifshitz vergeli-
jking (LL-vergelijking). We ontwikkelen verscheidene numerieke schema’s gebaseerd
op tijdsdiscretisatie. De randwaardeproblemen worden niet volledig gediscretiseerd.
De ruimtediscretisatie van alle opgestelde schema’s zal het onderwerp zijn van
toekomstig onderzoek. Studie van de ruimtediscretisatie lijkt echter niet zo uitda-
gend als de studie van tijdsdiscretisatie.

Ons werk bestaat uit drie delen. Eerst, in Hoofdstukken 1 t.e.m. 3 geven we
o.a. een inleiding en bespreken we bondig Whitney-elementen. In het tweede deel
(Hoofdstukken 4 t.e.m. 6) wordt het efective veld Heff beschouwd zonder uitwissel-
ingsenergieterm. In het derde deel (Hoofdstukken 7 t.e.m. 10) wordt wel met deze
term rekening gehouden en bestuderen we de LL-vergelijking met uitwisselingsterm.

Tweede deel

Het geval zonder de uitwisselingsterm beschrijft uniform gemagnetiseerde media of
andere configuraties waarbij de uitwisselingseffecten zeer klein zijn in vergelijking
met andere bijdragen tot Heff .

In Hoofdstuk 4 starten we met het beschrijven van de natuurlijke aanpak van
tijdsdiscretisatie van de LL-vergelijking die gebruikt werd door Joly, Vacus, Monk,
Bertotti en anderen. De gebruikte idee in hun werk kreeg de naam “mid-point rule”.

De LL-vergelijking in de continue vorm heeft de eigenschap dat de modulus
van de magnetisatie constant blijft in de tijd. Uiteraard is er nood aan numerieke
schema’s die deze belangrijke fysische eigenschap bewaren. De implementatie van
de “mid-point rule” laat schema’s toe deze voorwaarde te vervullen.
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3

In Hoofdstuk 5, zie Figuur 2.7, benaderen we dit probleem op een andere manier.
We discretiseren de tijdsafgeleide niet. We laten deze continu veranderen over het
generieke interval (ti−1, ti). We kiezen de andere vectoren op zo’n manier dat de
LL-vergelijking exact kan opgelost worden en dus verkrijgen we een continue ap-
proximatie van de magnetisatie m.

We stellen foutenschattingen op voor de vermelde schema’s, wat nog niet eerder
gedaan werd voor op “mid-point rule” gebaseerde schema’s.

In Hoofdstuk 6 passen we onze schema’s aan met als doel het verhogen van de
convergentiesnelheid, zie Figuur 2.7. Deze aanpassing is gebaseerd op iteraties die
gebeuren bij elke tijdsstap. Deze iteraties convergeren dankzij de samentrekking-
seigenschappen. De limiet, of anders gezegd, het vast punt van deze iteraties be-
nadert de exacte oplossing met hogere nauwkeurigheid. De convergentiesnelheid ligt
hierdoor hoger.

Derde deel

In Hoofdstukken 7 t.e.m. 10 behandelen we de LL-vergelijking waarbij het uitwissel-
ingsveld een deel is van het efective veld Heff . Deze configuratie vormt een uitdag-
ing omdat de uitwisselingsterm aanleiding geeft tot een partiële differentiële LL-
vergelijking. Zonder Heff krijgen we een gewone LL-vergelijking.

Om de convergentieresultaten van de numerieke schema’s te bewijzen is het
noodzakelijk om een gedetailleerde analyse van de LL-vergelijking te maken. In
Sectie 2.4 geven we een overzicht van theoretische en numerieke resultaten voor de
LL-vergelijking. We gebruiken deze gekende resultaten in numerieke analyse, maar
soms is het noodzakelijk ze uit te breiden.

De studie van de LL-vergelijking maakt gebruik van de theorie van harmonische
afbeeldingen. De vorm lijkt sterk op de vergelijking van de harmonisch warmte-
stroming. Struwe heeft een inleiding van de theorie van harmonische afbeeldingen
geschreven in [76]. In [75] verkrijgt hij regulariteitsresultaten die direct kunnen ge-
bruikt worden in het geval van de LL-vergelijking. Het gebruik van deze resultaten
is besproken door Guo en Hong in [36].

Er is een grote leemte in de theorie van harmonische afbeeldingen tussen gek-
ende resultaten van het 2D- en het 3D-geval. De aard van het probleem verandert
drastisch wanneer men meer dan twee dimensies beschouwt. Dit fenomeen heeft als
gevolg dat veel minder gekend is over regulariteitsresultaten van de exacte oplossing
van de LL-vergelijking in 3D dan bij lagere dimensie.

In ons werk bestuderen we eerst de enkelvoudige LL-vergelijking in 3D, zonder
de Maxwellvergelijkingen te beschouwen. In Hoofdstuk 7, zie Figuur 2.7, leiden we
regulariteitsresultaten af, zoals

max
t∈(0,T0)

{

κp‖∂p+1t m‖2 + κ
2p+1

2 ‖∇∂p+1t m‖2 + κp+1‖∆∂p+1t m‖2
}

≤ C,



4 Samenvatting (in Dutch)

met p een niet negatief geheel getal en κ het tijdsgewicht gedefinieerd als

κ(s) =

{
0, voor s < 0,
min{1, s}, voor s ≥ 0.

De sleutelafschatting om dit resultaat te bewijzen is

max
t∈(0,T0)

‖m‖W 2,2 ≤ C,

wat bekomen werd door Carbou en Fabrie in [18].
In het volgend hoofstuk ligt de nadruk op een volledig Maxwell-LL systeem. Om

gelijkaardige resultaten te bekomen als in Hoofdstuk 7 hebben we een afschatting
nodig vergelijkbaar met het hulpresultaat van Carbou en Fabrie. We tonen aan dat

max
t∈(0,T0)

{‖m‖W 2,2 + ‖E‖W 1,2 + ‖H‖W 1,2} ≤ C,

wat een nieuw resultaat is het 3D-geval. Een bewijs wordt gegeven in Sectie 8.5,
zie Figuur 2.7. We bekomen een rij van eindigdimensionale ruimtes die de vector-
ruimtes benaderen waartoe de verwachte oplossingen behoren. Vertrekkend van deze
eindigdimensionale ruimtes construeren we een rij van benaderingen die convergeren
naar de oplossing van de LL-vergelijking.

We bewijzen regulariteitsresultaten voor benaderingen die robuust genoeg zijn
om op de oplossing van de LL-vergelijking getransfereerd te worden. Bovendien
bewijzen we dat de oplossing van de LL-vergelijking lokaal uniek is. Met andere
woorden, dat er een positieve T0 bestaat zodat de oplossing van de LL-vergelijking
uniek is op het interval 〈0, T0〉. Op deze manier verkrijgen we de bovenvermelde
originele afschatting.

Uiteindelijk gebruiken we de resultaten van Hoofdstukken 7 en 8. We introduc-
eren een semi-impliciet schema in 3D. Convergentieresultaten worden bewezen in
Hoofdstuk 9. Dit schema bewaart niet de lengte van de magnetisatie. We weten
enkel dat deze lengte weinig varieert en bovendien afneemt bij dalende discretisati-
estap. Voor meer details verwijzen we naar Stelling 9.2.

In de literatuur zijn andere schema’s beschreven die enkelvoudige LL-vergelij-
kingen of volledige M-LL-systemen behandelen, waarbij de uitwisselingsterm in acht
wordt genomen. Deze schema’s zijn gebaseerd op penalisatietermen, die het verschil
tussen |mi| en |m0| penaliseren. Dergelijk schema leidt tot resultaten die beter zijn
in de zin van het bewaren van de modulus.

Deze methode werd gebruikt door Prohl in [61] voor het 2D-geval. Het is
mogelijk om deze resultaten uit te breiden naar drie dimensies; dit wordt kort
beschreven in Hoofdstuk 10. Daar deze extensie zeer technisch is, laten we hier
de details achterwege.
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Berekeningen

Om de theoretische resultaten te controleren voeren we enkele numerieke berekenin-
gen uit. Hierbij ligt de nadruk eerder op de analyse. We beschouwen vooral
academische voorbeelden. Echt praktische toepassingen worden niet behandeld.
Hiertoe zou speciale, stabiele numerieke software dienen ontwikkeld te worden, wat
zeer tijdsintensief is en buiten de opzet van deze thesis valt.

De software ALBERT werd aangepast aan onze doeleinden. Voor een overzicht
van de mogelijkheden van ALBERT verwijzen we naar [63, 64]. Samen met L’. Baňas
implementeerden we Whitney-elementen om magnetische en elektrische velden te
benaderen. Voor een overzicht van Whitney-elementen verwijzen we naar Hoofd-
stuk 3.



2 Introduction

(Not everything can be described by PDE’s)

Nowadays the study of magnetic materials and its behavior on very small scales is of
huge interest for several technological devices. Applications such as data recording
ask to understand the dynamics of the magnetization at nanometric scales. The
micro-magnetic simulation allow us to predict this behavior with high accuracy.

Next major challenge for the tape recording industry is to move the limits of the
information density stored on the magnetic medium. The amount of information
stored on one workpiece doubles approximately every 18 months. The techniques of
the recording, which were satisfactory 2 years ago, are not sufficient any more. To be
able to improve these techniques one must understand what happens on very small
scales. Micromagnetics suggest a physical model describing dynamics of sub-micron
magnetic systems.

2.1 Maxwell’s equations

In the theory of electromagnetism several vector fields describe the behavior of the
medium and its properties. We consider the case of a time-varying field when electric
and magnetic fields exist simultaneously. Then the following vector fields

H magnetic field intensity (A m−1);

E electric flux intensity (V m−1);

B magnetic flux density (magnetic induction) (Wb m−2);

D electric flux density (C m−2);

6



2.1. Maxwell’s equations 7

J electric current density (A m−2);

and the function

ρ electric charge density (C m−3),

have to be considered to describe the whole process. The properties of the media
involved are described by

ε permitivity of medium (F m−1);

µ permeability of medium H m−1;

σ conductivity of medium (S m−1).

Of course, there are special cases, when the material properties allow us to consider
only some of these vector fields. For a more detailed review on the physical origins
of these vector fields and constants describing material properties we refer to [15,
58, 70, 79].

The equations describing electromagnetics are called Maxwell’s equations. They
can be written in differential form as

∇×H = J+ ∂tD,

∇×E = −∂tB,
∇ ·D = ρ,

∇ ·B = 0,

for general time-varying fields. The fields are linked by so called constitutive laws

D = εE

J = J0 + Jc = J0 + σE

describing macroscopic properties of the medium. The electric current density J
can be split into a field dependent part Jc and a given value J0.

There is one more relation which we did not mention above: the relation between
the magnetic field H and the magnetic flux density B. In several situations one
assumes that

B = µH,

where µ is permeability of the medium. This approach is of course idealistic and is
valid only in a few very special cases. In general the dependence is nonlinear. For
ferromagnetic media the so called Preisach model is widely accepted, for a detailed
description see [6, 55, 80]. However, the model describes the relation between B
and H from a macroscopic point of view. Thus this model is not accurate for the
applications demanding a microscopic description of the phenomena. We introduce
another model based on the microscopic analysis of electromagnetic problems. For
an overview of existing models and their numerical implementations we refer to [46].



8 Introduction

2.2 Micromagnetism and free energy

For the purpose of a better understanding of the problem another vector field is
introduced. We consider a magnetic body, made of a ferromagnetic material, which
temperature is below a critical value, the so called Curie’s temperature depending
on the material. This ensures that thermal effects are negligible, see [49, 85]. The
body is divided in elementary physical volumes ∆V being large enough to contain
many atomic moments. The magnetization vector M is defined as the vector sum
of the dipole moments in a unit volume ∆V . In such a way we can suppose that
the magnetization vectorM, computed as a sum of individual atomic moments, has
the same length for every volume ∆V to which M is associated so that

|M(r)| = M(r), for all r,

where r is a position vector. In general M(r) depends on the position r but for
every r remains constant throughout the time evolution. We consider the case
when M(r) = M is constant in the space, otherwise, we would gain only extra
terms, that are constant in time. Thus this simplification is reasonable. Moreover,
we suppose the elementary volumes ∆V to be small enough that the magnetization
can be considered to be continuous in space. For simplicity we define the normalized
vector with modulus 1 by

m =
M

M
. (2.1)

In a paramagnetic or diamagnetic medium M will be proportional to B, the
constant of proportionality being negative for diamagnetism, positive for paramag-
netism. For a ferromagnetic medium the relationship between M and B is given
by

B = µ(H+M).

Since a new vector field was introduced, we have to add an equation to have a fully
determined system. We will discuss the derivation of this equation in Section 2.3.

Let us have a look on the energy of the whole electromagnetic system. There are
several contributions to the total energy. Each contribution represents a different
property of the material or different phenomena in the whole process.

Magnetostatic energy

To describe clearly the origins of magnetostatic energy let us focus only on a very
simplified and idealistic model. Suppose the magnetic body to be represented as
an assembly of elementary magnetic moments. It is assumed that magnetostatic
interactions are the only relevant mechanism.

The magnetostatic energy represents the mechanical work spent to build up the
body by bringing its magnetic moments, one after the other, from infinity to their
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final position, as depicted in Figure 2.1. Of course, this is an idealistic view and no
one can even imagine building up a piece of iron in this way. But this approach is
very useful as demonstrated in more detail in [6].

Figure 2.1: Locating elementary moments in a macroscopic body.

The magnetostatic energy denoted by Edem can be written as

Edem =

∫

V

〈M,Hdem〉dV,

where Hdem denotes the demagnetizing field. For actual computations of Hdem it is
necessary to take into account the shape of the magnetic workpiece. We again refer
to [6] for a detailed description of origins of demagnetizing field and of ways how
to compute it for different settings. For example, for uniformly saturated samples,
the field may be given in terms of a demagnetizing constant

Hdem = −N ·M.

In particular, for symmetric bodies with symmetry axis coincident with the coordi-
nate axes, N is simply a diagonal matrix.

Anisotropy energy

The properties of a magnetic material are in general dependent on the directions in
which they are measured. In the absence of all external forces, the magnetization
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M would align itself in one or more specific directions in the crystal lattice. We call
these directions easy axes of the material.

To rotate the magnetization away from the easy axis involves energy, namely
anisotropy energy denoted by Eani. The energy density of Eani denoted by fani
depends only on the direction in which the magnetization points out. If M is
aligned with one of the easy directions, the value of fani will be small; otherwise
it will be bigger. To depict this energy density we can draw a surface around the
origin. The value fani(M) is then the distance from the origin to the point on the
surface lying along the direction M, see Figure 2.2. Thus we see in one picture the
whole anisotropy energy for all directions M.

Knowing the energy density fani, we compute the anisotropy energy as

Eani =

∫

V

fanidV.

(   )ani mf

surface of fani

x

m

y

z

θ

φ

Figure 2.2: Graphical representation of anisotropy density
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Uniaxial anisotropy

Let us describe the case when only one preferred direction controls the anisotropy
energy. Suppose this direction is along the z-axis. Denote by θ the angle between
M and the positive part of the z axis. Then the anisotropy energy depends only
on the relative orientation of M with respect to the z axis. Under these conditions,
the anisotropy energy is an even function of the magnetization component along z
axis, m3 = cos θ. It is common to use m2

1 + m2
2 = 1 − m2

3 = 1 − cos2 θ = sin2 θ,
instead of cos2 θ, as the expansion variable. Thus the energy density fani will have
the general expansion

fani = K0 +K1 sin
2(θ) +K2 sin

4(θ) + sin6(θ) + . . . (2.2)

where K1,K2,K3, . . . are the anisotropy constants. For the moment, let us limit our
considerations to the case, where the expansion is truncated after the sin2 θ term.

For one kind of uniaxial anisotropy, when M is aligned with the z-axis, fani
is minimal. If M is perpendicular to the z-axis, the anisotropy energy density is
maximal, see Figure 2.3. Here the anisotropy constants are K0 = 0.1,K1 = 1 and
Ki = 0 for i = 2, 3, . . .
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Figure 2.3: Uniaxial anisotropy for K0 = 0.1 and K1 = 1

It is possible also to consider an inverse setting. Some materials behave in such a
way that an easy axis doesn’t attract but repels the magnetization. In this case the
anisotropy energy density is minimal when M is lying in the plane xy and maximal
when M aligns the z-axis, see Figure 2.4.

Let us consider the case where K1 > 0 and M lies along the easy axis. Let
us take the energy of this state as zero energy level. For small deviations of the
magnetization vector from the equilibrium position, the anisotropy energy density
can be approximated, up to second order in θ, as

fani ∼= K1
∼= 2K1 − 2K1 cos θ

= 2K1 − µ0M
2K1

µ0M
cos θ = 2K1 − 〈M,Hani〉. (2.3)
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The dependency of the energy is the same as if there was a field Hani of strength
2K1/(µ0M) acting along the easy axis. The anisotropy field Hani gives a natural
measure of the strength of the anisotropy effect and of the torque to take the magne-
tization away from the easy axis. Hani will often appear in treatments of magnetic
free energy.
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Figure 2.4: Uniaxial anisotropy for K0 = 1.1 and K1 = −1

For other types of anisotropy see [6].

Exchange energy

In the following we use the normalized vector field m; for its definition see (2.1).

Although the modulus of m is constant, its orientation can vary from point to
point, see Figure 2.5. Because of the interaction between neighboring volumes, it
costs additional energy to change the direction of the magnetization. We call this
the exchange energy. This energy can be measured by the gradient of m and the
simplest approximation of exchange energy can be written as

Eexc =

∫

V

Aexc

[
(∇mx1

)2 + (∇mx2
)2 + (∇mx3

)2
]
dV

=

∫

V

Aexc|∇m|2dV

where Aexc is a material constant, see [6].
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Figure 2.5: Different orientations of the magnetization vectors

Zeeman’s energy

The magnetic system can be influenced by an externally applied field. The same
kind of influence can have also a field caused by electric currents which can be
described by Maxwell’s equations. This type of field is called applied field and we
denote it by Happ. It interacts with the magnetization and creates an energy called
Zeeman’s or applied field energy. This energy contribution is simply given by

Eapp =

∫

v

〈Happ,M〉dV.

Magnetostrictive energy

The mechanisms responsible for crystalline anisotropy also give rise to energy varia-
tions when the relative positions of the magnetic ions in the lattice are modified, that
is, when the lattice is distorted. Due to the presence of magneto-elastic coupling to
the lattice, the system will spontaneously deform in order to minimize its total free
energy, and the ensuing deformation will be function of the magnetic state of the
system. This phenomenon, in which the magnetic system gets deformed when it is
magnetized, is called magnetostriction and the energy involved is magnetostrictive
energy.

A complementary role is played by the so called inverse magnetostrictive effect,
in which, again through magneto-elastic coupling, the deformation produced in
the system by an externally applied stress makes certain magnetization directions
energetically favored, so that the system will tend to align its magnetization to those
directions.

We do not consider this energy term in the next chapters any more. Magne-
tostriction was studied for example in [81, 82] and in [14, 62]. In particular, the
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scheme introduced in Chapter 5, considering also the magnetostrictive energy, was
discussed by Baňas in his PhD thesis [4] and together with Slodička in [5].

Above we have described important energy contributions that have to be taken
into account for the total energy of the micromagnetic system. All these energies
have totally different origins and their effect on the system is really dependent on
the setting. We are interested mostly in the exchange, anisotropy, magnetostatic
and applied field energy. To summarize all contributions we get

Etot = Edem + Eani + Eexc + Eapp

= −1

2

∫

V

〈M,Hdem〉dV +

∫

V

2K1 − 〈M,Hani〉dV

+

∫

V

Aexc|∇m|2dV +

∫

v

〈Happ,M〉dV.

For a better understanding of situations when particular energies are large and
when they are minimal, see Table 2.1. The exchange energy is large when the mag-
netization rapidly changes in space. When magnetization vectors are aligned to each
other, then the exchange energy is minimal. For anisotropy effects to appear it is
important that the direction ofM is close to one of the easy axes. When a magnetic
body is symmetrical and the direction of M is opposite in every two symmetrical
points, then the magnetostatic energy vanishes. Finally, if the magnetization aligns
the direction of the applied field, Zeeman’s energy is minimal. When M becomes
perpendicular or even opposite to the applied field then applied field energy rises.

2.3 Landau-Lifshitz equation

In the beginning of Section 2.2 we have mentioned that for a fully determined system
of equations describing the electromagnetic phenomena, we need a new equation for
the magnetization. Let us find out how does this equation looks like.

First, we have to understand that any system can only feel the magnetic field
that results from an energy change. So we have to derive a total effective field,
denoted by Heff , acting on the magnetization as derivative of the total energy Etot

Heff = ∂MEtot.

Denoting the exchange field by Hexc, we define

Hexc = 2Aexc∆m.

Together with the definitions of the anisotropy, applied, and demagnetizing fields,
the derivation of Etot with respect M leads to

Heff = Hdem +Hani +Hexc +Happ.
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Type of energy Minimal values Large values

Exchange energy

Anisotropy energy

easy axes easy axes

Magnetostatic energy

Applied field energy  

 

 

applied field applied field

 

 

 

Table 2.1: Competing energies
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Having an expression for the field acting on the magnetization we are ready to
study the dynamics of m.

Precession of the magnetization

If the field H is acting on an elementary moment mi, it produces a motion of mi

described by

∂tmi = −γmi ×H, (2.4)

where γ is the gyromagnetic factor. For more details we refer to [6, 49, 74]. We
consider the magnetization to be a sum of magnetic moments over the volume ∆V.
Therefore a similar equation as (2.4) will be valid for magnetization and the effective
field

∂tm = −γm×Heff . (2.5)

Let us have a closer look at the previous equation. Denote by a the vector product
γm×Heff . From the properties of a vector products it is clear that a is perpendicular
to m and thus the length of m does not change in time. This corresponds to the
fact that the modulus of magnetization has to remain constant. Furthermore, the
vector a is also perpendicular to Heff and thus a causes a circular movement of m
around Heff , see Figure 2.6. This is not acceptable, because it would mean that
m could never align Heff and the energy could never reach its minimal values. A

 

 

 effH

m

a

φ

b

 

 

 effH

m

a

φ

Figure 2.6: Precession of the magnetization vector around the magnetic field vector.

phenomenological way how to involve the dissipation of the energy is to add a new
term to the equation (2.5)

∂tm = −γm×Heff + b.

Immediately, we know that b has to be perpendicular tom to preserve the modulus
of m. Thus we get b = m × g. Since d should push m towards Heff , we choose
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g = αa, see Figure 2.6. Thus we get the expression

∂tm = −γm×Heff − γαm× (m×Heff). (2.6)

This equation was introduced for the first time by Landau and Lifshitz in [48].
Therefore it is known as the Landau-Lifshitz (LL) equation.

The constant γ is called the gyromagnetic factor and its value is very high, it
can reach 1.67 × 107. The constant α depends on the material and denotes the
damping parameter. Its values typically range between 0 and 1.

Gilbert’s approach

A different approach to this problem was proposed by Gilbert in [34]. His equa-
tion takes the form of the standard precession equation (2.5) with the field term
Heff augmented by a damping term which is proportional to the rate of change of
magnetization

∂tm = −γGm× (Heff − αG∂tm).

The magnitude of the field components in the cross product is then reduced. Thus,
damping is incorporated implicitly as the precession direction is no longer perpen-
dicular to Heff . We write the Gilbert equation in its more familiar form

∂tm = −γGm×Heff + γGαGm× ∂tm. (2.7)

Although these two approaches seem to be different, it can be proven that they are
mathematically equivalent. To see this, compute the cross product of both sides of
(2.6) with m to get

m× ∂tm = −γm× (m×Heff)− γαm× (m× (m×Heff)).

Using the identity
m×Heff = −m× (m× (m×Heff))

which holds because of |m| = 1, we get

−αm× ∂tm = αγm× (m×Heff)− α2γm×Heff .

Summing up the previous equation with (2.6) leads to

∂tm = −γ(1 + α2)m×Heff + αm× ∂tm.

Comparing the last relation with (2.7) and setting

γ(1 + α2) = γG and αG = γ−1
α

1 + α2
,

we get the equivalence, between the Gilbert and the LL equation up to the constants.
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2.4 Theory of the LL equation

The paper of Visintin [83] contains the first theoretical results concerning the LL
equation. He studied the system of Maxwell’s equations coupled with the LL equa-
tion considering both the exchange field and the anisotropy field. The case without
Maxwell’s equations was studied simultaneously in the papers [1] and [36]. They
showed the existence of a global weak solution for the LL equation. Moreover,
Alouges and Soyeur gave an example, in which the LL equation does not have an
unique solution. However, the initial condition in this example doesn’t belong to
the W 2,2(Ω)− space. Therefore the question, if the LL equation has unique solution
when we consider smooth initial condition, is still open.

Later, Guo, Ding and Su in [35, 37] proved the global existence of a weak solution
for the Landau-Lifshitz-Maxwell equations with Neumann boundary conditions in
two and three space dimensions.

In his PhD thesis [65] Seo intensively studies other types of regularity of weak
solutions as well as a priori gradient estimates for weak solutions and well-posedness
of the LL equation.

Guo and Hong discussed the question of uniqueness in two space dimensions in
[36]. The same subject was studied in more detail in [21] and [24] by Chen and
Guo. They proved that any weak solution with finite energy is unique and smooth
with the exception of at most finitely many points. Chen devoted his paper [23] to
the study and localization of these singularity points.

All the above authors have considered the LL equation with an exchange field.

Because of the high nonlinearity of the LL equation it is difficult to establish
rigorous numerical analysis of the methods used for the computations. Prohl and
Kruž́ık have written a survey paper about numerical methods for micromagnetics,
see [46]. The same authors together with Carstensen in [19, 45] proposed methods,
which deal with the nonconvexity of a minimizing functional using Young measures.
A different approach was used by E, Wang and Garcia-Cervera in [31, 84]. They
introduced a numerical scheme for the LL equation and compared this scheme with
other known schemes.

Joly, Komech, Vacus in [41] studied long-time convergence of solutions to the
Maxwell-LL equations. The same authors together with Monk, see [43, 59] are
interested in the numerical modeling of absorbing ferromagnetic materials. They
proposed a numerical scheme which conserves the magnitude of magnetization, but
they did not prove any error estimates in time. For more details we refer also to
[78].

A similar problem was studied by Slodička, Baňas and the author of this thesis
in [71, 72]. They suggested a new numerical scheme conserving the magnitude of
magnetization and they also proved error estimates in time. They considered the
LL equation in a simplified form considering a demagnetizing and anisotropy field
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but without an exchange field. More results on this scheme can be found also in
[26, 27, 28, 73].

We mention also strong numerical analysis of Monk and Vacus, see [60], consid-
ering the full Maxwell-LL system, where the LL equation was considered with an
exchange field. They proved the existence of a new class of Liapunov functions for
the continuous problem, and then also for a variational formulation of the continuous
problem. The authors also showed a special result on continuous dependence.

Next, numerical analysis for the two dimensional LL equation with an exchange
field was done by Prohl in his monograph [61]. The author has proved some new
regularity results for an exact solution of the LL equation. In this thesis we extend
these results to three dimensions. He has also suggested a specific numerical scheme
and he has proved error estimates in 2D. We adapt the scheme so that it becomes
computationally cheaper and moreover we prove error estimates in time in three
dimensions.

Carbou and Fabrie in [18] proved the local existence and uniqueness of regular
solutions to the LL equation in 3D. So in three dimensions, solutions to the LL
equation can blow up in a finite time. We study this case, when the existence and
uniqueness of the solutions to the LL equation is guaranteed by the theory only on
a finite interval.

Symmetrical solutions of LL equation

The single LL equation was intensively studied by Mayergoyz, Bertotti, Serpico and
Magni. We provide a brief overview of their work, with references included in the
text below.

Consider a special setting for the LL equation. Take the exchange field Heff of
the form

Heff = Happ +Hdem +Hani.

Since we do not consider the exchange term, we work only with uniformly magne-
tized sample. Nevertheless, it is shown that in this simple case the system exhibits
complicated nonlinear phenomena such as symmetry breaking, bifurcations, quasi-
periodicity and chaotic behavior. It is then desirable to understand this simple case
before going to the complicated ones.

Moreover, suppose that the domain Ω has a spheroidal shape with the axis of
the symmetry parallel to the z-axis. Furthermore, suppose that the material has
an uniaxial anisotropy with the axis again parallel to the z-axis. Next we use the
symbol ⊥ (‖ respectively.) to express correspondence with the plane xy (axis z,
respectively.) The sample will be subject to the applied field Happ, which will be
constantly rotated around the z-axis with constant magnitude. More specifically
we have

Happ = Ha⊥ +H‖ez,
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where Ha⊥ has a constant amplitude and is rotated with angular frequency ω with
initial angles θx, θy so that

Ha⊥ = exHax cos(ωt+ θx) + eyHaz cos(ωt+ θy).

Next, the demagnetizing field Hdem is of the form

Hdem = −N⊥m⊥ −N‖m‖ez,

where m⊥ denotes component of m perpendicular to the z-axis and m‖ denotes the
length of the component of m parallel to the z-axis. Finally, the anisotropy field
will be given by

Hani = K‖〈m, ez〉ez,
where K‖ is an anisotropy constant. Summarizing all components we arrive at

Heff = Ha⊥(t)−N⊥m⊥ + ez[H‖ − (N‖ −K‖)m‖].

With this setting the authors are able to derive analytical solutions when the
applied field is circular, which is guaranteed when Hax = Hay , see [12, 13]. An
analytical expression for the solutions of the LL equation is very useful for testing
numerical schemes, as can be seen in Chapter 6. If the field Happ is considered
to be constant and applied in the plane perpendicular to the anisotropy axis, the
problems seem to be simpler, but this is not the case. In [11] the authors perform a
rigorous analysis of the precessional magnetization and they again derive analytical
solutions. The closed formulas in terms of Jacobi elliptic functions are based on the
exact integration of the LL equation.

As soon as the values ofHax andHay are different, the mathematical formulation
is not rotationally symmetric in the xy plane. However, it can be easily verified that
this formulation is invariant with respect to reflection around the origin of the plane
xy. The study of this case was done in [67].

We refer to [7, 52, 54, 56, 66] for further studies of the LL equation.
When the field Ha⊥ consists not only from one circularly rotated field, but

consists of two circularly rotated fields in opposite directions, we speak about a
radio-frequency field. To analyze this case a perturbation technique was developed
in [8]. The study of spin-wave instabilities is provided in [9, 10]. The authors study
in a analytical way the stability of large magnetization motions in systems with
uniaxial symmetry under a circularly polarized radio-frequency field. They derive
instability conditions valid for arbitrary values of the amplitude and frequency of
the driving field. Moreover, they show that the input powers capable of inducting
spin-wave instabilities are bounded both from below and above. It means that
sufficiently large motions are always stable.

In [53] eddy-current effects were included in the previous model. The coupling
between the LL equation and eddy currents was discussed in [57]. The system is a
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metallic thin disk lying in the xy-plane and therefore the total in-plane contribution
will include also the Heddy field computed from the general eddy-current law. The
exact analytical solutions were derived under the assumption of small thickness of
the material.

Concerning numerical techniques an interesting scheme was introduced in [68].
The scheme takes also into account the exchange field and is similar to those de-
scribed in Chapter 4. However, the authors do not mention any convergence results
or error estimates. They indeed prove quadratic accuracy of the scheme and provide
a number of numerical experiments.

2.5 Overview of the thesis

In this work we focus on the numerical analysis of the LL equation. We develop
several numerical schemes based on time stepping. The problem is not fully dis-
cretized. The space discretization of all schemes mentioned here can be considered
as work for the future. However, we think, that the space discretization of the LL
equation is not an equally challenging part of the problem as the time discretization.

Our work can be split in three parts. First, in Chapters 1–3 we summarize the
generalities. In the next part (Chapters 4 to 6) we are interested in the case when
the effective field Heff is considered without the exchange energy term. In the third
part (Chapters 7 to 10) we include this term and we study the LL equation with
the exchange field.

Second part

The case without the exchange term describes a uniformly magnetized medium or
other settings, when the exchange effects are very small in comparison to the other
contributions of Heff .

In Chapter 4 we first describe the natural approach to the time discretization
of the LL equation which was followed by Joly, Vacus, Monk, Bertotti and others.
The idea used in their work is the called mid-point rule.

The LL equation in the continuous form has a property that the modulus of the
magnetization remains constant in time. Then, of course, natural demand on nu-
merical schemes is to preserve this important physical feature. The implementation
of mid-point rule enables the schemes to fulfill this requirement.

The idea of the mid-point rule is based on an the well-known fact that if the
scalar product 〈a − b,a + b〉 vanishes then the modulus of a is the same as the
modulus of b.

Let us discretize the LL equation in time in the following way. Imagine that a
corresponds to m in time ti; denote this value by m

i, and let b correspond to mi−1
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Then, the expression (a − b)/τ corresponds to the time derivative of m. Next, of
course, the expression (a+b)/2 corresponds to m in time ti+1/2. We show that it is
possible to implement the previous expressions into the LL equation in such a way
that we obtain

〈
(mi −mi−1)/τ, (mi +mi−1)/2

〉
= 0,

which gives the desired relation |mi| = |mi−1|. For more details on this topic see
Chapter 4.

In Chapter 5, see Figure 2.7, we use a different approach to this problem. We
do not discretize the time derivative. We let the time vary continuously through
the interval (ti−1, ti). We fix the other vectors in such a way that the LL equation
is of the form

∂tu = d× u in (ti−1, ti),

where d is a constant vector on (ti−1, ti). This ordinary differential equation can be
solved exactly. Thus we get a continuous approximation of m. We also introduce a
modification of this scheme where the LL equation has a quadratic form

∂tu = d× u+ (g× u)× u in (ti−1, ti),

which can be solved exactly on (ti−1, ti) too. For more details see Chapter 5.
For both schemes we derive error estimates, which is not the case for the schemes

based on the mid-point rule.
In Chapter 6 we modify our schemes to obtain a better rate of convergence, see

Figure 2.7. The modification is based on the iterations that are made on every time
step. These iterations converge thanks to the contraction properties. The limit,
or better, the fixed point of these iterations, approximates the exact solution with
higher accuracy and therefore the rate of convergence is higher.

Third part

In Chapters 7 to 10 we deal with the LL equation when the exchange field is a part
of the effective field Heff . This setting is quite challenging because the exchange
term makes the LL equation to be a partial differential equation. Without Heff the
LL equation was an ordinary differential equation.

For the proofs of convergence results for the numerical schemes it is necessary
to have a detailed analysis of the LL equation. In Section 2.4 we have mentioned
the overview of theoretical and numerical results on the LL equation. We use these
results in numerical analysis, but in some cases it is necessary to extend them.

The study of the LL equation can benefit from the theory of harmonic mappings.
Its form is very close to the equation of the harmonic heat flow. Struwe introduced
the theory of harmonic mappings in [76]. In [75] he derives a regularity result that
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can be directly used in the case of the LL equation. The application of these results
was summarized by Huo and Hong in [36].

There is a big gap in the theory of harmonic mappings between known results
for the 2D case and for the 3D case. The nature of the problem changes when
going from two to higher dimensions. This phenomena causes also that much less
is known for regularity results of the exact solution to the LL equation in 3D than
in the lower dimensional case.

In our work we first study the single LL equation in 3D without considering
Maxwell’s equations. In Chapter 7, see Figure 2.7, we derive regularity results
which can be written using standard symbols and notations, see List of symbols,
page 170, as

max
t∈(0,T0)

{

κp‖∂p+1t m‖2 + κ
2p+1

2 ‖∇∂p+1t m‖2 + κp+1‖∆∂p+1t m‖2
}

≤ C, (2.8)

where p is a nonnegative integer and κ is the time weight defined by

κ(s) =

{
0, for s < 0,
min{1, s}, for s ≥ 0.

The key estimate for proving (2.8) was found to be

max
t∈(0,T0)

‖m‖W 2,2 ≤ C, (2.9)

which was obtained by Carbou and Fabrie in [18].
In Chapter 8 we focus on the full Maxwell-LL system. To establish a similar

results as in Chapter 7 we need an estimate similar to (2.9)

max
t∈(0,T0)

{‖m‖W 2,2 + ‖E‖W 1,2 + ‖H‖W 1,2} ≤ C. (2.10)

This result for the 3D case was not known before. In Chapter 8 we prove it, see
Figure 2.7. We establish a sequence of finite-dimensional spaces approximating the
vector spaces to which the solutions are expected to belong. Then, we construct a
sequence of approximations from these finite-dimensional spaces, converging to the
solution of the LL equation.

We prove regularity results for the approximations, which are robust enough to
be transfered to the solution of the LL equation itself. Moreover, we prove that the
solution is locally unique, in other words we prove that there exist a positive T0
such that the solution of the LL equation is unique in the interval 〈0, T0〉. In such a
way we obtain the estimate (2.10).

Finally, we use the results from Chapters 7 and 8. We introduce a semi-implicit
scheme in 3D. We prove convergence results in Chapter 9. This scheme, however,
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does not preserve the length of magnetization. The only result we know is that, in
some sense, this length changes very little and that with decreasing discretization
step also the change of the length becomes smaller. For more details see Theorem
9.2.

In the literature exist other schemes dealing with the single LL equation or
the full M-LL system, considering the nonzero exchange term. These schemes are
based on penalty terms, which penalize the difference between |mi| and |m0|. Such
a scheme gives better results with respect to the conservation of the modulus.

This approach was used by Prohl in [61] for the 2D case. It is possible to extend
his results also in three dimensions. We suggest how to do this in Chapter 10.
However, this extension is more-less straightforward and we don’t go into details.

Computations

For the verification of the theoretical results it is desirable to perform real compu-
tations. However, this thesis is oriented more on the analysis. We provide most
calculations on academic examples. We do not focus on highly practical applica-
tions. For that aim it would be necessary to invest much more time in developing
of robust numerical software.

For our purposes we adapted the software ALBERT. For the overview of AL-
BERT’s features we refer to [63, 64]. Together with Baňas we implemented Whitney
elements in order to approximate magnetic and electric field. For an overview of
Whitney elements see Chapter 3.
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3 Whitney elements

(Although this may seem a paradox, all exact science is dominated by the idea of

approximation. Bertrand Russell)

This chapter can be considered to be independent from the other chapters. There-
fore it can be skipped. We summarize basis of the theory of Whitney elements. For
a more exhaustive introduction to Whitney elements we refer to [15].

In Section 3.1 we introduce some notations and define the orientation of tetrahe-
dral simplices. In Sections 3.2–3.5 we build up four classes of Whitney elements and
we point out some interesting metric properties which help to develop a computer
code.

Next, in Section 3.6 we approve the use of Whitney elements for approximating
the fields E and B. We confirm that this kind of elements satisfy continuity con-
ditions when going from one element to the other, which is an important physical
feature of the fields E and B.

Finally, we mention the embedding properties of the spaces build on the Whitney
elements in Section 3.7. These embedding properties are equivalent to those for
spaces H1(Ω),H(curl; Ω),H(div; Ω) and L2(Ω).

3.1 Notations

Each tetrahedra will be denoted by T . (E.g. T1, T3, . . .) We use numbered symbols
n for vertices of any tetrahedra. (E.g. n2, n5, . . .) We sometimes simply write 0,
1, 2 for vertices. For edges we use a numbered letter e, for faces a numbered letter
f . Let us introduce Nh as a set of all vertices of the mesh, Eh a set of all edges of
the mesh, Fh a set of all faces and finally Th a set of all tetrahedra.

26
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Orientation of the simplices

Every component (except of vertices) has its own orientation. Edge e = {01} is
oriented from the vertex 0 to the vertex 1. Thus, in a point of the edge one can say
which one from two possible directions along the edge is the positive one.

In a point of a face one can say which one from two possible rotations is positive.
If we have for example the face f = {012}, as is depicted in Figure 3.1 (left), the
positive rotation is from the vector 01 to the vector 02. It means that the specified
direction in the figure is negative.

One can define the orientation of the face f = {012} as following: If you make a
vector product ν = 01× 02, the vector ν defines the orientation of the face. Then
if we have a positively oriented tetrahedra T = {0123}, its boundary is oriented
outside from the tetrahedra and one can say if the orientation of the face f matches
with the orientation of boundary of T . In the case depicted in Figure 3.1 (right),
they don’t match.

0
1

2

3

2

1

0

x

 

 

 

 

Figure 3.1: Orientation of the face

The orientation of the tetrahedra T = {0123} follows from the rule of the right
hand. We place vertex 0 to the palm of right hand. If it is possible to set the
hand in such a way that vector 01 (02, 03, respectively) follows the direction of
the thumb (forefinger, middle finger, respectively), then tetrahedra T is oriented
positively. Otherwise it has a negative orientation.

If e1 = {01} belongs to Eh, then edge {10} doesn’t belong to Eh. The same holds
with faces and tetrahedra.
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Tangential and normal part of the vector field

We will introduce the term tangential part and normal part of a vector field. Con-
sider vector field h and some surface S. In point x we make a tangential plane Tx to
the surface S. The normal part of h is the projection of h to the normal direction
of the plane Tx. The tangential part of the vector h is projection of h to the plane
Tx, see Figure 3.2.

h

h

h
n

T

S

x

x

t

Figure 3.2: Tangential and normal part of the vector field

3.2 Nodal Whitney elements (WE)

Whitney elements are special kind of finite elements. We will study the 3D-case on
a tetrahedra mesh. We will discuss finite elements which are linear on one element.
The purpose of this study is to describe electromagnetic fields. The notation comes
from the dimension of simplex to which WE belong. We consider four kinds of
components of tetrahedra: vertex (node), edge, face and tetrahedra itself. Thus
Whitney elements will be denoted as 0-elements (nodal elements), 1-elements (edge
elements), 2-elements (facial elements) and 3-elements (tetrahedra elements).

In Galerkin approximations we have one basis function for each vertex n of the
mesh. It is the only one continuous, linear function which has value 1 in the vertex
n and 0 in other vertices. The equipotential levels are depicted in Figure 3.3. We
call this element nodal Whitney element and we denote this function by wn. It is
worth to notice that

wni(nj) = δij , ∀i, j.
The latter implies that wn(x) = 0 on a tetrahedra that does not contain vertex n.
This feature causes the sparseness of the system matrices.

Let us study the gradient of w0. The gradient of a linear function is a constant
vector. The direction of the gradient is perpendicular to the plane {123}, see Figure
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0 0

0

1

0.5

 

0.25

0.75

Figure 3.3: Equipotential levels of the nodal basis function

3.4. We compute the circulation of ∇w0 along the height A0 of the tetrahedra by
two different ways. Let us denote the unit directional vector of A0 by t. Then

∫ 0

A

〈∇w0, t〉 = |∇w0|〈t, t〉 =
∫ 0

A

|∇w0||t|2 = |A0||∇w0|.

Using the fact that we are integrating the derivative of the function w0 along the
curve A0 we can write

∫ 0

A

〈∇w0, t〉 = w0(0)− w0(A) = 1− 0 = 1.

Subsequently, the equation for the length of the gradient w0 reads as

|∇w0|h0 = 1, (3.1)

where h0 is the height of the tetrahedra from the vertex 0. The unit normal vector
t of the plane {123} can be rewritten as

τ =
1

|13× 12|13× 12.

The doubled area 2 |f | of the face f = {123} is equal to |13 × 12| and the volume
|T | of the tetrahedra T = {0123} can be computed as 1

3 |f | .h0. Therefore we have

∇w0 = |∇w0|t =
1

h0

1

|13× 12|13× 12

=
|f |
3 |T |

1

2 |f |13× 12 =
1

6 |T |13× 12.
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Figure 3.4: Gradient of the nodal function

Some identities

The following identities hold in tetrahedra T = {0123} and face f = {123}:

|T | =

∫

T

wi, i = 0, 1, 2, 3, (3.2)

|f | = 3 |T | |∇w0|, f = {123}, (3.3)

|01| = 6 |T | |∇w2 ×∇w3|, (3.4)

1 = 6 |T | det(∇w1,∇w2,∇w3), (3.5)
∫

T

(w1)
i(w2)

j(w3)
k = 6 |T | i!j!k!

(i+ j + k + 3)!
, (3.6)

∫

f

(w0)
i(w1)

j = 2 |f | i!j!

(i+ j + 2)!
, (3.7)

∇× (wm∇wn) = ∇wm ×∇wn, (3.8)

∇w2 ×∇w3 =
01

6 |T | . (3.9)

From the above equations we can also derive identities for other edges and faces by
cyclic replacement. For tetrahedra T = {0123} we have

∇w1 ×∇w0 =
32

6 |T | ,

∇w2 ×∇w0 =
13

6 |T | ,

∇w3 ×∇w0 =
21

6 |T | .
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0

 

1

 

Figure 3.5: Tetrahedra with nonzero we

3.3 Edge Whitney elements

Using these elements we approximate the electric field. The reason will be given
later. We define a vector field we associated with the edge e = {01} on tetrahedra
T = {0123} by the following relation

we = w0∇w1 − w1∇w0. (3.10)

On all tetrahedra that do not contain vertex 0, both w0 and ∇w0 are equal to 0.
Therefore, we is zero. This is true for the vertex 1, too. It means that we is nonzero
only on a tetrahedra that contain the edge e = {01}, see Figure 3.5. Thus we have
again the property, which causes the spareness of the system matrix.

There is a geometric interpretation of we, depicted in Figure 3.6. We can see
that in the vertex 0 the value of w1 is zero and the value of w0 is one. Thus we(0) is
in fact the vector ∇w1, similarly we(1) is the vector −∇w0. Moreover it is a linear
function on the tetrahedra.

Why this definition of the basis function? Let us compute the circulation of we

along the edge e. Realizing that the directional vector of the edge e = {01} is the

vector t = 01
|01| , we write the first part of the integral

∫

e

〈t, w0∇w1〉 =
∫

e

〈 01|01| , w0∇w1〉 =
1

|01| 〈01,∇w1〉
∫

e

w0. (3.11)

The scalar product 〈01,∇w1〉 is equal to |01||∇w1| cosα, where α is the angle
between the vectors 01 and∇w1, see Figure 3.7. Because of the identity |01| cosα =
h1, we can write

〈01,∇w1〉 = |01||∇w1| cosα = h1|∇w1| = 1, (3.12)
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due to equation (3.1). Thus, we can complete the computation of the first part of
the circulation of we along the edge e with

∫

e

〈t, w0∇w1〉 =
1

|01| 〈01,∇w1〉
∫

e

w0 =
1

|01|

∫

e

w0. (3.13)

This together with the second part of we gives

∫

e

〈t, we〉 =

∫

e

〈t, w0∇w1〉 −
∫

e

〈t, w1∇w0〉 = (3.14)

∫

e

〈t, w0∇w1〉+
∫

−e

〈t, w1∇w0〉 = (3.15)

=
1

|01|

(∫

e

w0 +

∫

e

w1

)

= 1, (3.16)

because w0 + w1 = 1 on the edge e.
We see that if we compute the circulation of we along the edge e′, it is zero if

e′ 6= e and it is one if e′ = e. Thus we have an analogue to the similar property of
nodal Whitney elements.

w

w0

1

e

0

1

Figure 3.6: Geometric interpretation of we

3.4 Facial Whitney elements

To approximate the electric induction B, we define facial elements. One element
is linked to the face f = {123} of the tetrahedra T = {0123} by two equivalent
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w1

1

h1

α

0

 

Figure 3.7: Computation of the scalar product

relations

wf = 2(w1∇w2 ×∇w3 + w2∇w3 ×∇w1 + w3∇w1 ×∇w2), (3.17)

wf =
1

3 |T | (w101+ w202+ w303). (3.18)

Notice, that the facial element is nonzero only on two tetrahedra with a common
face. The latter definition of wf is valid only if the orientation of the face f matches
with the orientation of boundary of T . In the latter case they match. The definition
of wf on the tetrahedra T ′ = {4321} will be different. T ′ is positively oriented, his
boundary is oriented outside from T ′ and doesn’t match with the orientation of the
face f = {123}. Thus, the definition of wf on tetrahedra T ′ is

wf = −2(w1∇w2 ×∇w3 + w2∇w3 ×∇w1 + w3∇w1 ×∇w2), (3.19)

wf = − 1

3 |T | (w141+ w242+ w343). (3.20)

The equivalence of the definitions comes from the vectorial identities

∇w2 ×∇w3 = (03× 01)× ∇w3
6 |T | =

〈03,∇w3〉01− 〈01,∇w3〉03
6 |T | =

01

6 |T | ,

because vectors 01 and w3 are perpendicular, thus 〈01,∇w3〉 = 0, and because
〈03,∇w3〉 = 1, which comes from (3.12). The geometric interpretation is depicted
in Figure 3.8.
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4
 

1 3

2

0

Figure 3.8: Facial WE

We can easily see that the flux of this vector field through the faces {012}, {023}
and {031} is zero, because the normal part of this vector field on these faces is zero.
Let us compute the flux through the face f = {123}. The normal vector nf of the
face f can be written as −∇w0/|∇w0|. We can easily verify that

∫

f

wi =
1

3
|f | .

Then
∫

f

〈wf , nf 〉 = − 1

3 |T |
1

|∇w0|
(∫

f

〈w101,∇w0〉+
∫

f

〈w202,∇w0〉

+

∫

f

〈w303,∇w0〉
)

.

The equation (3.12) gives 〈0i,∇wi〉 = −1, for i=1,2,3. If we notice that 3 |T | |∇w0| =
|f | , see equation (3.3), we can write

∫

f

〈wf , nf 〉 =
1

3 |T |
1

|∇w0|
(
1

3
|f |+ 1

3
|f |+ 1

3
|f |) = 1.

3.5 Tetrahedral Whitney elements

We use constant functions for approximating L2(Ω). The basis function wT will
be such a constant on tetrahedra T that after integrating this constant over the
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tetrahedra T , the result is 1. This leads to

wT =
1

|T | .

3.6 Continuity properties

For a good approximation of physical fields it is necessary to demand some kinds
of continuity properties on approximating elements. We will use edge Whitney
elements for the approximation of the magnetic intensity field H. This field has the
property of continuity of the tangential part. It is important that our approximating
element also have a tangential part continuous while moving from one tetrahedra
to another one.

Tangential part of the edge elements

 

 

 

 

3

1

4

0

2

H

H’

V

v’

v

α

Figure 3.9: Tangential part of edge WE

If we have an edge element we = w0∇w3 − w3∇w0, it is sufficient to show that
the tangential part of ∇w0 is continuous through the faces, because of the continuity
of wi. Let us have two tetrahedra with common face. The vector ∇w0 is constant
on one tetrahedra. Denote by v the vector ∇w0 on the first tetrahedra and by v′ on
the second. We will make projections of the vectors v and v′ on the plane {023}.
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In tetrahedra T = {0124} and T ′ = {0243} we consider the heights 0H and 0H ′,
see Figure 3.9. Denote by α the plane containing the vectors 0H and 0H’. This
plane is also perpendicular to the edge {23} because both directional vectors 0H
and 0H’ of the plane are perpendicular to this edge. We cut the tetrahedron with
the plane α and we denote by V the intersection of α and the edge {23}.

The projection vp of v now appears on the line 0V . The length |vp| of this pro-
jection will be |v|. cosH0V. Because |v|.|0H| = 1, we have |vp| = cosH0V/|0H| =
1/|0V|. We can see that the length of the projection vp depends only on the value
of |0V|, which is same for both v and v′. Thus, the tangential part of ∇w0 is
continuous through the face {023}. Also the same holds for the face {031}. The
tangential part of we on the faces that do not contain edge e is zero. We have now
proved that the tangential part of the edge element we is continuous through any
face.

Normal part of the facial elements

x H
1

0

2

3

α

Figure 3.10: Normal part of facial WE

Consider the tetrahedra T = {0123} and the face f = {123}. From the definition
of the facial element wf , it is clear that the normal part of wf on the faces {012},
{023} and {031} is zero. Let us look at the face f = {123}. From (3.18) it is easy
to see that

wf (x) =
1

3 |T |0x,

because wf (i) =
1

3|T |0i, for i = 1, 2, 3 and because wf is linear.

For an arbitrary point x from the face f we make the projection P ( ~0x) to the
normal vector of the face (123). The length of this projection will be exactly the
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height h of the tetrahedra. Thus, the length of projection of the vector wf (x) will
be 1

3|T | .h = 1
|f | . We can see that it depends only on the area of the face f . Therefore

the normal part of wf is continuous through the face.

3.7 Embedding properties

When working with Maxwell’s equations one is confronted with the following func-
tion spaces

H1(Ω), H(curl; Ω), H(div; Ω), L2(Ω),

or with appropriate subspaces when considering boundary conditions. The entities
involved in Maxwell’s equations such as the electric field E, the magnetic field
H, the magnetic induction B, or the magnetization M, belong to these spaces or
its subspaces. When approximating some function spaces by finite dimensional
spaces it is desirable that the approximating spaces have similar properties as the
approximated spaces. In particular this is the case when the properties are derived
from physical phenomena.

Let us look at these function spaces in more detail. It is well known that curls
of gradients vanish. But is it reciprocal? Is every curl-free field a gradient of some
other function? The same question can be asked about divergence. We know that
curls are divergence-free. But is every divergence-free field also a curl of some other
field? A classical result of Poincaré, see for example [15, Appendix A], asserts that,
in a contractible domain Ω, a smooth curl-free (divergence-free, respectively) field is
a gradient (curl, respectively). A contractible domain is a simply connected domain
with a connected boundary.

For further discussion we introduce some notations. A family of vector spaces
is denoted by X0, X1, · · · , Xd. By Ap we denote a linear map from Xp−1 to Xp,
p = 1, · · · , d. We say that the sequence {Xp}dp=0 is an exact sequence at the level of
Xp if img(Ap) = ker(Ap+1) in case 1 ≤ p ≤ d − 1, if A1 is injective in case p = 0,
and if Ad is surjective in case p = d. An exact sequence is one which is exact at all
levels. We use the following diagram

A1 A2 Ad

X0 → X1 → · · · → Xd−1 → Xd

for a exact sequence. Using this diagram we can state the following result coming
from Poincaré lemma, see [15, Chapter 5].

For a contractible domain Ω, the sequence

grad curl div

H1(Ω) → L2(curl; Ω) → L2(div; Ω) → L2(Ω),
(3.21)
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is exact at levels 1 and 2.
Let us go back to Whitney elements. The question is if finite dimensional

spaces build from Whitney elements will satisfy a diagram similar to that above.
For a given mesh, we can construct four classes of Whitney elements for the sets
Nh, Eh,Fh, Th. We then obtain basis functions denoted by wn, we, wf , wT . Let us
denote by W 0,W 1,W 2,W 3 approximation spaces build from each class of Whitney
basis functions. The embeddings

W 0 ⊂ H1(Ω), W 1 ⊂ L2(curl; Ω), W 2 ⊂ L2(div; Ω), W 3 ⊂ L2(Ω), (3.22)

are clear from the way how we have obtained W 0,W 1,W 2,W 3.
Next, we can prove that

∇W 0 ⊂ W 1,

∇×W 1 ⊂ W 2,

∇ ·W 2 ⊂ W 3.

The first statement follows from the fact that ∇wn is a linear (constant) vector
function on T , thus can be expressed by a linear combination of edge Whitney
elements.

The second statement follows from the identity (we take tetrahedra T = {0123}
and edge e = {01}):

∇× we = 2∇w0 ×∇w1 =
23

3 |T | ,

which can be verified by direct computation using the equation (3.4). The continuity
of ∇× we can be shown using the same technique as in Section 3.6

Direct computation of ∇ · wf shows the third statement

∇ · wf =
1

3 |T |
(

〈∇w1,01〉+ 〈∇w2,02〉+ 〈∇w3,03〉
)

=
1

|T | ,

because by equation (3.1) we have

〈∇wi,0i〉 = 1.

Finally, we have shown that the spaces satisfy the diagram

grad curl div
W 0 → W 1 → W 2 → W 3 (3.23)

To complete this section we combine the diagrams (3.21), (3.22) and (3.23) to get
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a so-called Rham diagram

grad curl div
W 0 → W 1 → W 2 → W 3

∩ ∩ ∩ ∩
grad curl div

H1(Ω) → L2(curl; Ω) → L2(div; Ω) → L2(Ω),

where also the embeddings (3.22) are included.



II

Effective field without
exchange

40



4 Maxwell-LL system

(Since the mathematicians have invaded the theory of relativity, I do not understand it

myself anymore. Albert Einstein)

In the LL equation plays a key role the term describing the total effective field
Heff . In general it consists of several contributions and moreover every contribution
features different behavior, as we have described already in Section 2.2. The case
when the effective field consists of static applied fieldHapp, anisotropy fieldHani and
field coming from Maxwell’s equations H was intensively studied by Joly, Métivier,
Rauch, Komech, Vacus and Monk in [39, 40, 41, 42, 43, 59, 60].

They consider the case when

Heff = H+Happ −KP (M),

whenK is a constant characterizing anisotropy of the medium and P (M) = 〈p,M〉p
denotes the projection of the vector M into one specified direction represented by
a fixed vector p, see Figure 4.1. The anisotropy is thus uniaxial.

They neglect the exchange field Hexc having in mind applications such as mod-
eling radar absorbing materials for stealth applications when this contribution is
not important. For more detailed description of the model see [16, 50].

Joly and Vacus in [42, 43] have established existence and uniqueness of the
solution for the system

∂tE−∇×H = −J0,
∂tH+∇×E = −∂tM, (4.1)

∂tM =
γ

1 + α2
(Heff ×M+ α

M

|M| × (Heff ×M)).

41
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m

p

(m)P

Figure 4.1: Anisotropy of the material

They proposed a finite difference scheme in 2D and 3D for the computation a solu-
tion of the M-LL system in one dimension and prove the convergence of this scheme.
In [59] the authors construct three-dimensional finite element methods for the full
system. They show how a certain class of finite element can be used to approximate
the M-LL system while preserving energy decay and the norm M. They prove error
estimates.

After providing the space discretization, full space-time discretization of the
problem is studied, too. When discretizing the LL equation in time, several problems
arise. High nonlinearity of the LL equation causes troubles. There are two main
conditions that should be fulfilled by any approximation scheme.

1. It should be possible to prove error estimates, if not, at least convergence to
the solution.

2. Time stepping should conserve the magnitude of the magnetization M.

In the sequel we present a time-discretization scheme used in the papers mentioned
above. However, the authors do not prove convergence results for this scheme. In
Chapter 5 we propose a new scheme discretizing the M-LL system, which fulfills
both conditions.

4.1 Numerical scheme

We provide a standard equidistant time discretization with the step τ. The number of
discretizing points is denoted by N. Let the tripleMn,En,Hn be the approximating
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solution on every time level. Denote by VM , VE , VH a finite-dimensional spaces
in which we look for the solution Mn,En,Hn. These spaces are derived from a
particular finite element method which we are using. Since we do not focus on the
spatial discretization, we will not specify the spaces VM , VH , VE closer anymore.

We denote the right-hand side of the LL equation by f(M,H) to make the text
simpler.

We will compute the approximations of fields H and M in half steps such that
Hn+1/2 is the approximation of H(tn+1/2) and Mn+1/2 is the approximation of
M(tn+1/2) where tn = nτ and tn+1/2 = (n+ 1/2)τ. From the initial date we know
E0 = E(0) and using for example explicit Runge-Kutta method we find H1/2 and
M1/2. From then on the triple Mn+3/2,En+1,Hn+3/2 is determined by

En+1 −En

τ
−∇×Hn+1/2 = J(tn+1/2), (4.2)

Hn+3/2 −Hn+1/2

τ
+∇×En+1 = −Mn+3/2 −Mn+1/2

τ
, (4.3)

Mn+3/2 −Mn+1/2

τ
= f(Hn+1,Mn+1), (4.4)

where

Hn+1 =
1

2
(Hn+1/2 +Hn+3/2) and Mn+1 =

1

2
(Mn+1/2 +Mn+3/2).

The equalities (4.2)–(4.4) are considered in a weak sense in function spaces
VM , VH , VE . This scheme seems to be explicit-implicit. The field En+1 is com-
puted explicitly and other two fields Mn+3/2 and Hn+3/2 are computed implicitly.
However, the authors point out that due to the special features of this scheme it
is possible to write down an explicit form for Mn+3/2 and Hn+3/2. Then it is not
necessary to use, for example, Newton’s method on every time level. This scheme
in combination with finite differences or finite elements becomes very fast.

The question if this scheme conserves the magnitude of Mn can be answered
positive. If we rewrite (4.4) we get up to constants

Mn+3/2 −Mn+1/2

τ

= Heff ×
Mn+3/2 +Mn+1/2

2

−α (Mn+3/2 +Mn+1/2)/2
∣
∣(Mn+3/2 +Mn+1/2)/2

∣
∣
×
(

Heff ×
Mn+3/2 +Mn+1/2

2

)

.
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Multiplying the previous equation by (Mn+3/2+Mn+1/2)/2, the right-hand side
vanishes and on the left-hand side we get

|Mn+3/2|2 − |Mn+1/2|2
τ

= 0,

which guarantees the conservation of the norm Mn+1/2.
However, it is not known if it is possible to derive error estimates. In the next

chapter we introduce scheme which is comparable in computational efficiency and
we prove error estimates for it.



5 Numerical analysis of the
M-LL system

(For those who want some proof that physicists are human, the proof is in the idiocy of

all the different units which they use for measuring energy. Richard Feynman)

A substantial part of this chapter was already published by author of this thesis
and Slodička in [28, 72].

We consider quasi-static Maxwell equations of the form

∇×H = σE+ J0,
∂tH+∇×E = −∂tM,

(5.1)

where J0 is the current density and σ > 0 denotes the conductivity of a medium.
The case of full M-LL system was studied by Slodička and Baňas in [71] and in the
PhD thesis of Baňas [4].

The coupling between M and H is given by the LL equation of the form

∂tM =
γ

1 + α2
(Heff ×M+ αM× (Heff ×M)) =: f(H,M) (5.2)

The vector Heff represents the total magnetic field in the ferromagnet

Heff = H+Happ +KP (M), (5.3)

where Happ is a given static applied field. The constant K is a constant charac-
terizing the material. We discuss the case of a ferromagnetic crystal with uniaxial
anisotropy represented by a unit vector p, |p| = 1. The symbol P (M) was defined
in the previous chapter.
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Let us note that we have neglected the exchange magnetic field in (5.3). For a
more complete discussion of the model see, e.g., [2, 35, 37, 77, 83].

We know already that the LL equation conserves the modulus of M, thus for
any time t > 0 we have

|M(t)| = |M(0)|. (5.4)

Eliminating B and E in (5.1) and assuming σ = const, we get the following
M-LL system

µ0∂tH+ σ−1∇×∇×H = σ−1∇× J0 − µ0∂tM,
∂tM = f(H,M).

(5.5)

Ω

Γ

ΓD

N

Figure 5.1: Definition of the domain Ω

The boundary Γ of Ω is split into two non-overlapping parts ΓD and ΓN , see
Figure 5.1. For simplicity, we consider homogeneous boundary conditions for H of
the type

ν × ν ×H = 0 on ΓD,
ν ×H = 0 on ΓN ,

(5.6)

where ν stands for the outward unit normal vector on the boundary.
We assume that the fields H and M are specified at time t = 0, i.e., H(0) = H0

and M(0) = M0. We tacitly presume that they are sufficiently smooth for our
purposes. For physical reasons we suppose that

∇ · (H0 +M0) = 0 in Ω,

which ensures that B is divergence free.
A single LL equation has been intensively studied by many authors, e.g., [22,

23, 31, 87]. One dimensional M-LL problem has been considered for example in
[38, 41, 42].
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The main purpose of this chapter is to present two new approximation schemes
for the time discretization of a quasi-static M-LL system. We design a linear (see
Section 5.2) and a nonlinear (see Section 5.4) numerical algorithm for the computa-
tion of the vector fieldM. Both schemes conserve the length ofM. We derive exact
formulas for the approximation of M, see Lemmas 5.1 and 5.4. We use Rothe’s
method for the time discretization for H. Assuming that the exact solution of a
M-LL system is bounded, we derive the error estimates for the proposed numerical
schemes, cf. Theorems 5.1 and 5.2. In Section 5.6 we present a numerical example
in order to demonstrate suggested algorithms.

5.1 Preliminaries

For ease of exposition we put σ = µ0 = α = K = 1, γ = 2 and J0 = Happ = 0 in
the theoretical part of the chapter, but not in the numerical one.

Let us introduce the following space of test vector-functions

V = {φ ∈ H(curl; Ω); φ = 0 on ΓD,ν × φ = 0 on ΓN}.
Throughout the rest of the paper we assume the following regularity of an exact
solution to the boundary value problem (5.5), (5.6)

∂tH ∈ L2
(
(0, T ),L2(Ω)

)
,

H ∈ L∞ ((0, T ),H(curl; Ω)) ∩ L∞ ((0, T )× Ω) ,

∂tM ∈ L∞
(
(0, T ),L2(Ω)

)
,

M ∈ L∞ ((0, T )× Ω) .

(5.7)

Let us note that the assumption H ∈ L∞ ((0, T )× Ω) together with (5.4) guarantee
the Lipschitz continuity of the right-hand side f of (5.2) (see [59, Lemma 2.2], thus
also the uniqueness of a solution.

The variational formulation of (5.5) reads as

(∂tH,ϕ) + (∇×H,∇×ϕ) = − (∂tm,ϕ) ,
(∂tM,ψ) = (f(H,M),ψ)

(5.8)

for any ϕ ∈ V and any ψ ∈ L2(Ω).

5.2 Linear approximation scheme

We divide the time interval [0, T ] into n equidistant subintervals [ti−1, ti] for ti = iτ ,
where τ = T

n for any n ∈ N.
We suggest the following recurrent linear approximation scheme for i = 1, . . . , n,

see Figure 5.2. In this chapter the notation m has no link with the normalized
magnetization M/M.
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t t
i−1 i

t t
i−1 i

Given h i−11.

Given m i−11.
Set m = m(t )i i3.

2. Find m(t) as an exact solution of ODE

4. Find  h  as a solution of PDEi

Figure 5.2: Algorithm 1 (linear)

Algorithm 1 (linear)
1. We start from hi−1 and mi−1 taking into account h0 = H0 and m0 =M0.

2. We solve the linear ordinary differential equation (ODE) with an unknown
m(t) on the subinterval [ti−1, ti]

∂tm = [hi−1 + P (mi−1)]×m
+ m
|mi−1|

× ([hi−1 + P (mi−1)]×mi−1) .
(5.9)

3. We set mi :=m(ti).

4. We solve the partial differential equation (PDE) for hi

(δhi,ϕ) + (∇× hi,∇×ϕ) = − (∂tm(ti),ϕ) (5.10)

for ϕ ∈ V.
Suppose that hi−1 andmi−1 are given. A scalar multiplication of (5.9) bym implies

〈∂tm,m〉 = 1
2∂t|m|2 = 0.

The time integration over [ti−1, ti] immediately gives

|mi−1| = |m(t)| for t ∈ [ti−1, ti].

Thusm preserves its modulus. Further, the equation (5.9) admits a unique solution
for any x ∈ Ω which is given by the following lemma for u0 = mi−1 and a =
hi−1 + P (mi−1)− [hi−1 + P (mi−1)]× mi−1

|mi−1|
.
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Lemma 5.1 Let a and u0 be any vectors in R
3. Then the unique solution of

∂tu(t) = a× u(t) t > 0,
u(0) = u0

(5.11)

is given by

u(t) = u
‖
0 + u⊥0 cos (|a|t) + a

|a| × u⊥0 sin (|a|t) ,

where u0 = u⊥0 + u
‖
0, u

‖
0 is parallel to a, and u

⊥
0 is perpendicular to a. Moreover,

the vector field u(t) preserves its modulus, i.e., |u(t)| = |u0| for any time t > 0.

Proof:
The assertion of Lemma 5.1 for a = 0 is trivial. Now, we suppose that a 6= 0. Let
us introduce the notation for any k ∈ N

a0 × u0 := u0,

ak × u0 := a× (ak−1 × u0).

A simple calculation gives (see Figure 5.3)

a2k × u0 = (−1)k|a|2ku⊥0 ,
a2k+1 × u0 := (−1)k|a|2ka× u⊥0 .

The solution of (5.11) is given by

u(t) = eat × u0

=
∞∑

k=0

ak × u0
k!

tk

= u
‖
0 +

∞∑

k=0

a2k × u0
t2k

(2k)!
+

∞∑

k=0

a2k+1 × u0
t2k+1

(2k + 1)!

= u
‖
0 + u⊥0

∞∑

k=0

(−1)k (|a|t)
2k

(2k)!
+

a

|a| × u⊥0

∞∑

k=0

(−1)k (|a|t)
2k+1

(2k + 1)!

= u
‖
0 + u⊥0 cos (|a|t) + a

|a| × u⊥0 sin (|a|t) .

The vector field u(t) conserves its norm. One can easily see that

|u(t)| =
√

|u‖0|2 + |u⊥0 |2 cos2 (|a|t) + |u⊥0 |2 sin2 (|a|t) = |u0|.

The uniqueness of a solution follows from the linearity of (5.11). ¤

From (5.9) we easily deduce that

|∂tm| ≤ C|mi−1| (|hi−1|+ |mi−1|) ≤ C (|hi−1|+ 1) . (5.12)
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Figure 5.3: Rotations of u⊥0

Therefore, if hi−1 ∈ L2(Ω), then (5.10) admits a unique solution hi ∈ V. This
follows from Lax-Milgram lemma (see [20]). In this way we successively obtain mi

and hi for all i = 1, . . . , n. The next step is to prove suitable a priori estimates.
Here, we use standard Rothe’s technique to get uniform energy estimates for the
approximations hi with respect to the index i.

Lemma 5.2 Let j ∈ {1, . . . , n}. Then there exists a positive constant C such that

‖hj‖2 +
j
∑

i=1

‖hi − hi−1‖2 +
j
∑

i=1

‖∇ × hi‖2 τ ≤ C.

Proof:
We set ϕ = hiτ in (5.10) and sum the equation for i = 1, . . . , j. We have

j
∑

i=1

(hi − hi−1,hi) +

j
∑

i=1

‖∇ × hi‖2 τ = −
j
∑

i=1

(∂tm(ti),hi) τ. (5.13)

The first term on the left can be written as

j
∑

i=1

(hi − hi−1,hi) =
1
2

(

‖hj‖2 − ‖h0‖2 +
j
∑

i=1

‖hi − hi−1‖2
)

.
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For the right-hand side of (5.13) we use Cauchy’s and Young’s inequalities and
(5.12). We get

∣
∣
∣
∣
∣

j
∑

i=1

(∂tm(ti),hi) τ

∣
∣
∣
∣
∣
≤ C

j
∑

i=1

(1 + ‖hi−1‖) ‖hi‖ τ

≤ C

(

1 +

j
∑

i=1

‖hi‖2 τ
)

.

Summarizing all estimates we get

‖hj‖2 +
j
∑

i=1

‖hi − hi−1‖2 +
j
∑

i=1

‖∇ × hi‖2 τ ≤ C

(

1 +

j
∑

i=1

‖hi‖2 τ
)

.

The desired result follows from Gronwall’s lemma. ¤

We have needed H0 ∈ L2(Ω) in Lemma 5.2. When H0 ∈ V, then we are capable
to get better a priori estimates.

Lemma 5.3 Let j ∈ {1, . . . , n} and H0 ∈ V. Then there exists a positive constant
C such that

j
∑

i=1

‖δhi‖2 τ + ‖∇ × hj‖2 +
j
∑

i=1

‖∇ × [hi − hi−1]‖2 ≤ C.

Proof:
Setting ϕ = hi − hi−1 in (5.10) and summing up for i = 1, . . . , j we get

j
∑

i=1

‖δhi‖2 τ +
j
∑

i=1

(∇× hi,∇× [hi − hi−1]) = −
j
∑

i=1

(∂tm(ti), δhi) τ. (5.14)

The second term on the left can be written as

j
∑

i=1

(∇× hi,∇× [hi − hi−1]) = 1
2

(

‖∇ × hj‖2 − ‖∇× h0‖2
)

+ 1
2

j
∑

i=1

‖∇ × [hi − hi−1]‖2 .

For the right-hand side of (5.14) we use Cauchy’s inequality, (5.12), Lemma 5.2 and
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Young’s inequality. We obtain

∣
∣
∣
∣
∣

j
∑

i=1

(∂tm(ti), δhi) τ

∣
∣
∣
∣
∣
≤ C

j
∑

i=1

(1 + ‖hi−1‖) ‖δhi‖ τ

≤ C

j
∑

i=1

‖δhi‖ τ

≤ Cε + ε

j
∑

i=1

‖δhi‖2 τ.

Choosing a sufficiently small positive ε and collecting all estimates, we arrive at

j
∑

i=1

‖δhi‖2 τ + ‖∇ × hj‖2 +
j
∑

i=1

‖∇ × [hi − hi−1]‖2 ≤ C,

which concludes the proof. ¤

t0 t1 t2 t3 t4

f1

f2
f3

f4

f1 f2

f3
f4

Curved line is the function f(t)

Figure 5.4: Definition of step functions related to a general function f(t)

5.3 Sub-linear convergence

Now, let us introduce the following piecewise linear in time vector field hn (i =
1, . . . , n) see Figure 5.4

hn(0) = H0,
hn(t) = hi−1 + (t− ti−1)δhi for t ∈ (ti−1, ti],
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and the step vector fields hn,mn and ∂tmn

hn(0) = H0, hn(t) = hi,
mn(0) =M0, mn(t) =mi,

∂tmn(0) = ∂tM(0), ∂tmn(t) = ∂tm(ti), for t ∈ (ti−1, ti].

Further we define the vector field mn as follows

mn(t) =m(t) for t ∈ [ti−1, ti]

and for all i = 1, . . . , n.

Using the new notation we rewrite (5.10) into the following form, which is more
convenient for our purposes

(∂thn,ϕ) +
(
∇× hn,∇×ϕ

)
= −

(
∂tmn,ϕ

)
(5.15)

for any ϕ ∈ V.

Now, we are in a position to derive the error estimates for the linear approx-
imation scheme (5.9), (5.10). We use the standard proof-technique for parabolic
equations. The only difficulty will be the handling of the right-hand side.

Theorem 5.1 There exist positive constants C and τ0 such that

(i) max
t∈[0,T ]

‖H(t)− hn(t)‖2 +
∫ T

0

∥
∥∇×

[
H− hn

]∥
∥
2 ≤ Cτ,

(ii) max
t∈[0,T ]

‖M(t)−mn(t)‖2 +
∫ T

0

‖∂tM− ∂tmn‖2 ≤ Cτ,

hold for any 0 < τ < τ0.

Proof:
(i) Using the definitions of the vector fields M and mn we can write for any time t

∂tM(t) −∂tmn(t) = [H(t) + P (M(t))]×M(t)

+
M(t)

|M(t)| × ([H(t) + P (M(t))]×M(t))

−
[
hn(t− τ) + P (mn(t− τ))

]
×mn(t)

− mn(t)

|mn(t)|
×
([
hn(t− τ) + P (mn(t− τ))

]
×mn(t− τ)

)

= R1 +R2 +R3 +R4 +R5,

(5.16)
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where

R1 = [H(t) + P (M(t))]× (M(t)−mn(t))

R2 =
(
[H(t) + P (M(t))]−

[
hn(t− τ) + P (mn(t− τ))

])
×mn(t)

R3 =
M(t)

|M(t)| × ([H(t) + P (M(t))]× [M(t)−mn(t− τ)])

R4 =
M(t)−mn(t)

|M(t)| × ([H(t) + P (M(t))]×mn(t− τ))

R5 =
mn(t)

|M(t)| × ([H(t) + P (M(t))]×mn(t− τ))

−mn(t)

|M(t)| ×
([
hn(t− τ) + P (mn(t− τ))

]
×mn(t− τ)

)
.

Taking into account the fact that both H and M are bounded in L∞ ((0, T )× Ω),
we get in a straightforward way

|∂tM(t)− ∂tmn(t)| ≤ C
(
|H(t)− hn(t− τ)|+ |M(t)−mn(t)|

)

+C|M(t)−mn(t− τ)|
≤ C

(
|H(t)− hn(t)|+ |hn(t)− hn(t− τ)|

)

+C (|M(t)−mn(t)|+ |mn(t)−mn(t− τ)|) .
(5.17)

The fields mn and M are continuous in time and they start from the same initial
datum M0. Therefore

M(t)−mn(t) =

∫ t

0

∂tM− ∂tmn.

In virtue of (5.17) and Lemma 5.3 we can write

‖M(t)−mn(t)‖ ≤
∫ t

0

‖∂tM− ∂tmn‖

≤ C

∫ t

0

(τ + ‖H− hn‖+ τ ‖∂thn‖+ ‖M−mn‖)

≤ C

(

τ +

∫ t

0

(‖H− hn‖+ ‖M−mn‖)
)

,

because of the inequality

‖mn(t)−mn(t− τ)‖ ≤
∫ t

t−τ

‖∂tmn‖ ≤ Cτ.

Gronwall’s argument gives

‖M(t)−mn(t)‖ ≤ C

(

τ +

∫ t

0

‖H− hn‖
)

. (5.18)
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This together with (5.17) give

∫ t

0

‖∂tM− ∂tmn‖2 ≤ C

(

τ2 +

∫ t

0

‖H− hn‖2
)

. (5.19)

Now, we subtract (5.15) from (5.8a), set ϕ = H−hn and integrate the equation
over the time interval (0, t). We get

1
2 ‖H(t)− hn(t)‖2 +

∫ t

0

∥
∥∇×

(
H− hn

)∥
∥
2

=

∫ t

0

(
∇×

(
H− hn

)
,∇×

(
hn − hn

))
+

∫ t

0

(
∂tmn − ∂tM,H− hn

)
.

(5.20)

We estimate the first term on the right-hand side using Cauchy’s and Young’s
inequalities and Lemma 5.3 as follows

∫ t

0

(
∇×

(
H− hn

)
,∇×

(
hn − hn

))

≤
∫ t

0

∥
∥∇×

(
H− hn

)∥
∥
∥
∥∇×

(
hn − hn

)∥
∥

≤ ε

∫ t

0

∥
∥∇×

(
H− hn

)∥
∥
2
+ Cε

∫ t

0

∥
∥∇×

(
hn − hn

)∥
∥
2

≤ ε

∫ t

0

∥
∥∇×

(
H− hn

)∥
∥
2
+ Cετ.

(5.21)

For any t ∈ [ti−1, ti] we can write

∥
∥∂tmn(t)− ∂tM(t)

∥
∥ ≤ ‖∂tmn(ti)− ∂tM(ti)‖+ ‖∂tM(ti)− ∂tM(t)‖ . (5.22)

The difference ∂tM(ti)−∂tM(t) can be estimated using [59, Lemma 2.2] due to the
assumption H ∈ L∞ ((0, T )× Ω), namely,

‖∂tM(ti)− ∂tM(t)‖ ≤ C (‖M(ti)−M(t)‖+ ‖H(ti)−H(t)‖)

≤ C

(

τ +

∫ ti

ti−1

‖∂tH‖
)

.



56 Numerical analysis of the M-LL system

For the term ∂tmn(ti)− ∂tM(ti) we apply (5.17), triangle inequality and (5.18)

‖∂tmn(ti)− ∂tM(ti)‖ ≤ C (‖H(ti)− hn(ti−1)‖+ ‖M(ti)−mn(ti)‖)
+C ‖m(ti)−mn(ti−1)‖
≤ C (‖H(t)− hn(t)‖+ ‖m(ti)−mn(ti)‖)

+C

(

τ +

∫ ti

ti−1

‖∂tH‖+
∫ ti

ti−1

‖∂thn‖
)

≤ C

(

‖H(t)− hn(t)‖+
∫ t

0

‖H− hn‖
)

+C

(

τ +

∫ ti

ti−1

‖∂tH‖+
∫ ti

ti−1

‖∂thn‖
)

.

Taking the second power in (5.22) and integrating over the time, we deduce

∫ t

0

∥
∥∂tmn − ∂tM

∥
∥
2 ≤ C

(

τ2 +

∫ t

0

‖H− hn‖2
)

.

For the last term on the right in (5.20) we deduce using Cauchy’s and Young’s
inequalities

∣
∣
∣
∣

∫ t

0

(
∂tmn − ∂tM,H− hn

)
∣
∣
∣
∣
≤
∫ t

0

∥
∥∂tmn − ∂tM

∥
∥
2
+

∫ t

0

‖H− hn‖2

≤ C

(

τ2 +

∫ t

0

‖H− hn‖2
)

.

(5.23)

Summarizing (5.20), (5.21), (5.23) and choosing a sufficiently small positive ε, we
arrive at (τ < τ0 ≤ 1)

‖H(t)− hn(t)‖2 +
∫ t

0

∥
∥∇×

(
H− hn

)∥
∥
2 ≤ C

(

τ +

∫ t

0

‖H− hn‖2
)

.

Applying the Gronwall’s lemma, we conclude the proof.
(ii) The assertion immediately follows from the just proved part (i) and the

relations (5.18), (5.19). ¤

5.4 Nonlinear approximation scheme

As a second possibility, we design the following recurrent nonlinear approximation
scheme for i = 1, . . . , n
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Algorithm 2 (nonlinear)
1. We start from hi−1 and mi−1 taking into account h0 = H0 and m0 =M0.

2. We solve the quadratic ODE with an unknownm(t) on the subinterval [ti−1, ti]

∂tm = [hi−1 + P (mi−1)]×m
+ m
|m| × ([hi−1 + P (mi−1)]×m) .

(5.24)

3. We set mi :=m(ti).

4. We solve the PDE for hi

(δhi,ϕ) + (∇× hi,∇×ϕ) = − (∂tm(ti),ϕ) (5.25)

for ϕ ∈ V.
The approximation of M is now nonlinear (compare with (5.9)). The conservation
of the modulus for m can be proved exactly in the same way as it has been done
for the linear algorithm.

Let u(t) be the solution of

∂tu = a× u+ cu× (a× u) t > 0,
u(0) = u0.

(5.26)

Due to the properties of any rotation R we have the identity

R(x× y) = Rx×Ry,
which is valid for any vectors x and y. Therefore, we can write

∂tRu = Ra×Ru+ cRu× (Ra×Ru) t > 0

along with Ru(0) = Ru0. Hence we see that it is enough to study the solvability
of (5.26) for a vector a being parallel to (1, 0, 0)T .

Let us fix any X ∈ Ω. The existence of m on [ti−1, ti] follows from the next
lemma. First, we set ũ0 =mi−1, ã = hi−1+P (mi−1) and c =

1
|m| , then we perform

a rotation R of the coordinate system in such a way that a := R(ã) = |ã|(1, 0, 0).
Then we denote u0 := R(ũ0) and a = |ã|.
Lemma 5.4 Let a, c ∈ R, u0 = (x0, y0, z0)

T be any vector in R
3. Then the solution

u(t) = (x(t), y(t), z(t))T of (5.26) for a = a(1, 0, 0)T is given by

x(t) = |u0|
eact|u0|(|u0|+ x0)− e−act|u0|(|u0| − x0)

eact|u0|(|u0|+ x0) + e−act|u0|(|u0| − x0)
,

y(t) = 2|u0|
y0 cos(at)− z0 sin(at)

eact|u0|(|u0|+ x0) + e−act|u0|(|u0| − x0)
,

z(t) = 2|u0|
y0 sin(at) + z0 cos(at)

eact|u0|(|u0|+ x0) + e−act|u0|(|u0| − x0)
.
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Proof:
Let us denote by R = |u0| =

√

x20 + y20 + z20 . A scalar multiplication of (5.26) by
u(t) gives

〈∂tu(t),u(t)〉 = 1
2∂t|u(t)|2 = 0,

which after the time integration yields |u(t)| = R for all t > 0.

Further, a simple computation implies

a× u = (a, 0, 0)T × (x, y, z)T = a(0,−z, y)T

and

u× (a× u) = a(y2 + z2,−xy,−xz)T .

Therefore, (5.26) for the x-coordinate reads as

∂tx = ac(y2 + z2) = ac(R2 − x2),
x(0) = x0.

This ordinary differential equation can be explicitly solved. We demonstrate it for
|x| < R. The case |x| = R is trivial. Thus, we can write

∂tx

(
1

R− x
+

1

R+ x

)

= 2acR.

We integrate this equation over (0, t) and get

ln
R+ x(t)

R− x(t)
= ln

R+ x0
R− x0

+ 2acRt,

or an equivalent form
R+ x(t)

R− x(t)
=
R+ x0
R− x0

e2acRt.

The solution of this algebraic equation is

x(t) = R
eacRt(R+ x0)− e−acRt(R− x0)

eacRt(R+ x0) + e−acRt(R− x0)
.

Once we have the formula for the x-coordinate, we have to solve the system of
ordinary differential equations for the y- and z-coordinate, which has the form

∂ty = −az − acxy,
∂tz = ay − acxz,
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along with the starting data (y0, z0). This system can also be explicitly solved, e.g.,
by MAPLE, which gives the solution of the form

y(t) = 2R
y0 cos(at)− z0 sin(at)

eacRt(R+ x0) + e−acRt(R− x0)
,

z(t) = 2R
y0 sin(at) + z0 cos(at)

eacRt(R+ x0) + e−acRt(R− x0)
.

¤

Further we follow the same way as we did for the linear algorithm. We can show
the existence of all hi for i = 1, . . . , n and we can get the same a priori estimates as
in Lemmas 5.2 and 5.3. The following theorem derives the error estimates for the
nonlinear algorithm.

Theorem 5.2 There exist positive constants C and τ0 such that

(i) max
t∈[0,T ]

‖H(t)− hn(t)‖2 +
∫ T

0

∥
∥∇×

[
H− hn

]∥
∥
2 ≤ Cτ,

(ii) max
t∈[0,T ]

‖M(t)−mn(t)‖2 +
∫ T

0

‖∂tM− ∂tmn‖2 ≤ Cτ,

hold for any 0 < τ < τ0.

Proof:
We use the definitions of the vector fields m and mn and we write for any time t

∂tM(t) −∂tmn(t) = [H(t) + P (M(t))]×M(t)

+
M(t)

|M(t)| × ([H(t) + P (M(t))]×M(t))

−
[
hn(t− τ) + P (mn(t− τ))

]
×mn(t)

− mn(t)

|mn(t)|
×
([
hn(t− τ) + P (mn(t− τ))

]
×mn(t)

)

= R̃1 + R̃2 + R̃3 + R̃4 + R̃5,

(5.27)
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R
g  (s)

0

R

Figure 5.5: Definition of a cut-off function gR

where

R̃1 = [H(t) + P (M(t))]× (M(t)−mn(t))

R̃2 =
(
[H(t) + P (M(t))]−

[
hn(t− τ) + P (mn(t− τ))

])
×mn(t)

R̃3 =
M(t)

|M(t)| × ([H(t) + P (M(t))]× [M(t)−mn(t)])

R̃4 =
M(t)−mn(t)

|M(t)| × ([H(t) + P (M(t))]×mn(t))

R̃5 =
mn(t)

|M(t)| × ([H(t) + P (M(t))]×mn(t))

−mn(t)

|M(t)| ×
([
hn(t− τ) + P (mn(t− τ))

]
×mn(t)

)
.

Further we follow exactly the same line as in the proof of Theorem 5.1, therefore
we omit the rest. ¤

5.5 Linear convergence

Up to now, we have proved in Theorems 5.1 and 5.2 a sub-linear convergence of
the algorithms, see [72]. As for the linear algorithm also for the nonlinear one we
are able to improve error estimates and obtain linear convergence. This result was
published in [28]. We denote by R upper bound for H satisfying

|H(t,x)| ≤ R a.e. in QT .

We introduce a real function gR, see Figure 5.5, as

gR(s) =

{
0 for s < 0,
min(s,R) else,
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and the vector function

w(H) =
H

|H|gR(|H|).

Using this cut-off function we can slightly change the problem in weak formulation
such that its solution thanks its boundedness does not change. First we modify
right hand side

fR(H,M) =
|γ|

1 + α2

(

w(Heff)×M+ α
M

|M| × (w(Heff)×M)

)

. (5.28)

And now the system:

(∂tH,ϕ) + (∇×H,∇×ϕ) = −(∂tM,ϕ), (5.29)

(∂tM,ψ) = (fR(H,M),ψ), (5.30)

for any ϕ ∈ V and any ψ ∈W.
Both algorithms will change only in the step 2. So in Algorithm 1 will be the

equation (5.9) replaced by

∂tm = w (hi−1 + P (mi−1))×m

+
m

|mi−1|
× (w (hi−1 + P (mi−1))×mi−1) . (5.31)

In Algorithm 2 will be the equation (5.24) replaced by

∂tm = w (hi−1 + P (mi−1))×m

+
m

|mi−1|
× (w (hi−1 + P (mi−1))×m) .

We will prove the following lemmas.

Lemma 5.5

|∂tm(t)| ≤ C (5.32)

|∂t(m(ti)−m(ti−1))| ≤ |hi−1 − hi−2|+ τC. (5.33)

Proof:
First statement can be directly verified from (5.31) taking into account the bound-
edness of m and w(hi). Then
∣
∣∂t (m(ti)−m(ti−1))

∣
∣ ≤

∣
∣w(hi−1 + P (mi−1))×m(ti)

− w(hi−2 + P (mi−2))×m(ti−1)
∣
∣

+

∣
∣
∣
∣

m(ti)

|m(ti−1)|
× (w(hi−1 + P (mi−1))×m(ti−1))

− m(ti − 1)

|m(ti−2)|
× (w(hi−2 + P (mi−2))×m(ti−2))

∣
∣
∣
∣
.
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We have boundedness of w(hi + P (mi−1)). Together with the fact that mi is
bounded too we have

∣
∣∂t (m(ti)−m(ti−1))

∣
∣ ≤

∣
∣hi−1 − hi−2

∣
∣+
∣
∣mi −mi−1

∣
∣+
∣
∣mi−1 −mi−2

∣
∣. (5.34)

We rewrite two last terms for k ∈ {i, i− 1}

mk −mk−1 =

∫ tk

tk−1

∂tm ≤ τC,

because of the first statement of the lemma. It concludes the proof. ¤

In the next we need the following compatibility condition:

(∂tH(0),ϕ) + (∇×H0,∇×ϕ) = −(∂tM(0),ϕ),

for any ϕ ∈ V. It means that Maxwell’s equations are satisfied in time t = 0.

Lemma 5.6 If the compatibility condition is satisfied and ∇ × H0 ∈ V then the
following estimate holds

||∂tH(0)|| ≤ C

for some positive C.

Proof:
Take (5.29) for t = 0 and set ϕ = ∇×∇×H(0). Then we get

∂t||∇ ×H0||2 + ||∇ ×∇×H0||2 = −(∂tM(0),∇×∇×H0),

and subsequently

∣
∣∂t||∇ ×H0||2

∣
∣ ≤ ||∇ ×∇×H0||2 + ||∂tM(0)|| ||∇ ×∇×H0||

≤ 3

2
||∇ ×∇×H0||2 + C.

We have used Young’s inequality. Now we set ϕ = ∂tH0 in (5.29) and use again
Young’s inequality and previous to obtain

||∂tH0||2 + ∂t||∇ ×H0||2 = −(∂tM(0), ∂tH0),

||∂tH0||2 ≤
∣
∣∂t||∇ ×H0||2

∣
∣+

1

2
||∂tM(0)||2 + 1

2
||∂tH0||2

≤ 3||∇ ×∇×H0||2 + C.

The last statement concludes the proof of lemma. ¤



5.5. Linear convergence 63

Lemma 5.7 Let j ∈ {1, . . . , n}. Then there exists a positive constant C such that

||δhj ||+
j
∑

i=1

||δhi − δhi−1||+
j
∑

i=1

||∇ × δhi||2τ ≤ C

Proof:
If we define δh0 = ∂tH(0), the equation (5.10) is valid also for i = 0 because of
the compatibility conditions. We take (5.10) for i and i − 1 and we subtract both
equations. We set ϕ = δhiτ and then we get

(δhi − δhi−1, δhi)τ + (∇× (hi − hi−1),∇× (hi − hi−1))

= −(∂t(m(ti)−m(ti−1)),hi − hi−1)

Applying

(δhi − δhi−1, δhi) = 1/2
(
||δhi||2 − ||δhi−1||2 + ||δhi − δhi−1||2

)

we get

τ

2

[
||δhi||2 − ||δhi−1||2

]
+
τ

2
||δhi − δhi−1||2 + ||∇ × (hi − hi−1)||2

≤ ||∂t(m(ti)−m(ti−1))|| ||hi − hi−1)||. (5.35)

We sum up (5.35) for i = 1, . . . , j, then we apply Lemma 5.5, (5.33) and Young’s
inequality to obtain

j
∑

i=1

||∂t(m(ti)−m(ti−1))|| ||hi − hi−1||

≤
j
∑

i=1

(
τC + ||hi−1 − hi−2||

)
||hi − hi−1||

≤
j
∑

i=1

τC||hi − hi−1||+
j
∑

i=1

||hi−1 − hi−2|| ||hi − hi−1||

≤ 1

2

j
∑

i=1

τ2C2 +
1

2

j
∑

i=1

||hi − hi−1||2 +
j
∑

i=1

||hi − hi−1||2

≤ τC2 +
3

2

j
∑

i=1

||hi − hi−1||2 = τC2 +
3

2
τ2

j
∑

i=1

||δhi||2.

Together with (5.35) we have

τ

2

j
∑

i=1

[
||δhi||2 − ||δhi−1||2

]
+

j
∑

i=1

τ

2

[
||δhi − δhi−1||2

]
+ τ2

j
∑

i=1

||∇ × δhi||2
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≤ τC2 +
3

2
τ2

j
∑

i=1

||δhi||2.

After division by τ/2 we arrive to

||δhj ||2 +
j
∑

i=1

||δhi − δhi−1||2 + 2τ

j
∑

i=1

||∇ × δhi||2 ≤ 2C2 + 4τ

j
∑

i=1

||δhi||2.

The desired result comes from Gronwall’s lemma. ¤

Lemma 5.8 Let j ∈ {1, . . . , n}. Then there exists a positive constant C such that
j
∑

i=1

||δhi − δhi−1||2 +
τ

2
||∇ × δhj ||2 +

j
∑

i=1

τ

2
||∇ × (δhi − δhi−1)||2

≤ τC +
τ

2
||∇ × δh1||2

Proof:
We take (5.10) for i and i−1 and we subtract both equations. We set ϕ = δhi−δhi−1

and then we get

||δhi − δhi−1||2 + τ(∇× δhi,∇× (δhi − δhi−1))

= −(∂t(m(ti)−m(ti−1)), δhi − δhi−1)

Using similar technique for the second term on the left side as in the proof of Lemma
5.5 and applying results from Lemma 5.5, (5.33) and Lemma 5.7 we arrive at

||δhi − δhi−1||2 +
τ

2
(||∇ × δhi||2 − ||∇ × δhi−1||2)

+
τ

2
||∇ × (δhi − δhi−1)||2 ≤

(
τC + τ ||δhi−1||

)
||δhi − δhi−1||

≤ τC||δhi − δhi−1||

Summing up for i = 1, . . . , j and applying result from Lemma 5.7 we get

j
∑

i=1

||δhi − δhi−1||2 +
τ

2
||∇ × δhj ||2 +

j
∑

i=1

τ

2
||∇ × (δhi − δhi−1)||2

≤ τC

j
∑

i=1

||δhi − δhi−1||+
τ

2
||∇ × δh1||2 ≤ τC +

τ

2
||∇ × δh1||2

It concludes the proof of lemma. ¤
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Theorem 5.3 There exist positive constants C and τ0 such that

max
t∈[0,T ]

||H(t)− hn(t)||2 ≤ Cτ2,

max
t∈[0,T ]

||M(t)−mn(t)||2 ≤ Cτ2.

Proof:
We use the same definitions for mn(t),mn(t),hn(t) and hn(t).

For any time we can write

|∂tM(t)− ∂tmn(t)| ≤ C
(
|H(t)− hn(t)|+ |hn(t)− h(t− τ)|

+|M(t)−mn(t)|+ |mn(t)−m(t− τ)|
)
.

Following the steps in [72] we get

||M(t)−mn(t)|| ≤ C

(

τ +

∫ t

0

||H− hn||
)

, (5.36)

and ∫ t

0

||∂tM− ∂tmn||2 ≤ C

(

τ2 +

∫ t

0

||H− hn||2
)

. (5.37)

Next we subtract equations (5.29) and (5.10). We set ϕ = H− hn to obtain

1

2
||H(t)− hn(t)||2 +

∫ t

0

||∇ × (H− hn)||2

≤
∣
∣
∣
∣

∫ t

0

(∇× (H− hn),∇× (hn − hn))

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

0

(∂tmn − ∂tM,H− hn)

∣
∣
∣
∣
. (5.38)

We estimate the first term on the right hand side using Young’s inequality:
∣
∣
∣
∣
∣

∫ t

0

(∇× (H− hn),∇× (hn − hn))

∣
∣
∣
∣
∣

≤
∫ t

0

||∇ × (H− hn)|| ||∇ × (hn − hn)||

≤ ε

∫ t

0

||∇ × (H− hn)||2 + Cε

∫ t

0

||∇ × (hn − hn)||2

≤ ε

∫ t

0

||∇ × (H− hn)||2 + Cετ
2.
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We have used the result of Lemma 5.7. We have to estimate the last term in (5.38):

||∂tmn − ∂tM|| = ||∂tmn(ti)− ∂tM||
≤ ||∂tmn(ti)− ∂tmn(t)||+ ||∂tmn(t)− ∂tM(t)|| (5.39)

The first term on right-hand side includes two functions. They are both solutions
of the same ODE, but taken in different times. That’s why we have

||∂tmn(ti)− ∂tmn(t)|| ≤ C||mn(ti)−mn(t)|| ≤ Cτ.

Now take the second power of (5.39) and integrate the result in time, then using
(5.37) we get

∫ t

0

||∂tmn − ∂tM||2 ≤
∫ t

0

Cτ2 +

∫ t

0

||∂tmn(s)− ∂tM(s)||2

≤ Cτ2 +

∫ t

0

||H− hn||2.

Finally we are able to estimate the last term in (5.38)

∣
∣
∣
∣
∣

∫ t

0

(∂tmn − ∂tM,H− hn)

∣
∣
∣
∣
∣
≤

∫ t

0

||∂tmn − ∂tM||2 +
∫ t

0

||H− hn||2

≤ Cτ2 + C

∫ t

0

||H− hn||2.

We turn back to (5.38) by writing

1

2
||H(t)− hn(t)||2 +

∫ t

0

||∇ × (H− hn)||2 ≤ Cετ
2 + cτ2 + C

∫ t

0

||H− hn||2.

Gronwall’s lemma concludes the proof of the first inequality from the theorem. The
second inequality follows directly from the first one and (5.36). ¤

5.6 Numerical experiments

In this section we present two numerical examples. The first one simulates an
applied situation, but here we do not have any exact solution. The second example
with a prescribed solution demonstrates the convergence rates.
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Example 1

Consider a ferromagnetic sample occupying a rectangular cuboid with the length
dl = 4, the width dw = 0.5 and the height dh = 0.5. There is an electrical
wire wrapped around it, see Figure 5.6. When the electrical current starts to flow
through the wire, the induced electromagnetic field influences the magnetizationM.
We apply the nonlinear algorithm in order to simulate the evolution of M and H.

Figure 5.6: Model situation

First, we split the domain into small blocks with ∆x = 0.25 and ∆y = ∆z = 0.5
6 .

Then we divide each block into 6 tetrahedra. For the approximation of the magnetic
field H we use Whitney edge elements, cf. Bossavit [15], Cessenat [20]. Recall that
the approximation ofM can be settled down at any point X from the approximation
of the LLG equation, see (5.24). For computations we use the time step τ = 0.02.

The material constants appearing in the problem setting are µ = σ = 1, α =
0.3, γ = 1.5,K = 10 and the easy magnetization axis is given by p = (1, 0, 0)T .
The static magnetic field Hs vanishes and J0 = 0. Further we set f = 0.5 and
Hamp = 50.

We consider the following boundary conditions for H

ΓD: H(t) = (H(t), 0, 0)T for H(t) = Hamp cos(2πft) on the long boundary parts
(with the size dl×dw and dl×dh). This boundary condition can be interpreted
as ν×H×ν = 0 because of (ν×φ) · (∇×H) = [ν× (ν×φ)] · [ν× (∇×H)] =
φ · [(∇×H)× ν].

ΓN : ν ×H = 0 on the small boundary parts (with the size dh× dw).

Thus, the boundary conditions are periodical with the period Tper = 2. Initial data
are H0 = (Hamp, 0, 0)

T and m0 = (0, 1, 0)T .
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Consider a vertical cross-section S of the magnet through its barycenter. We
define

M̂(t) = average M(t) :=
1

|S|

∫

S

M(t) · ν,

Hint(t) = integral H(t) :=

∫ t

0

H(s) ds,

where |S| is the 2D-measure of S and ν stands for the unit normal vector on
S. As physically relevant curves characterizing the ferromagnetic material, we
can take

(
M̂(t), H(t)

)
- and

(
M̂(t), Hint(t)

)
-loops, where H(t) describes the x-

coordinate ofH on ΓD. Figure 5.7 describes point-wiseH–m dependence and depicts
(
M̂(t), H(t)

)
-loop. In Figure 5.8 you can see integral H–m dependence represented

by
(
M̂(t), Hint(t)

)
-loop.

average M

H

–1

–0.5

0.5

1

–40 –20 20 40

Figure 5.7: Point-wise H–m dependence

Let us note that the area of such a loop describes the energy losses in the
ferromagnet due to the hysteresis effects. In Figure 5.7 we arrive in a short time at
a stable regime, which is represented by the closed curve.

Figure 5.9 shows the movement of M(t) at the barycenter of the ferromagnet
in the stable regime. The length of M(t) remains constant, thus we associated the
starting point of m(t) with the origin and the end point travels on the unit sphere.
Gray arrows point out the end points of the trajectory, which is denoted by the bold
curve.
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average M

integral H

–1

–0.5

0.5

1

–15 –10 –5 5 10 15

Figure 5.8: Integral H–m dependence

Example 2

We performed two computations on different domains. First, consider a ferromagnet
of a cubic shape such that Ω1 = [0, 1]3. Second shape of the domain was taken
Ω2 = [0, 1]2 × [0, 3]. We have computed following problems

µ0∂tH+ σ−1∇×∇×H = Ri − µ0∂tM,
∂tM = f(H,M) + Si,

(5.40)

for i = 1, 2 on the interval (0, T ) in the domain Ωi, where the vector fields Ri and
Si are chosen in such a way that the exact solution takes the form

Hexact1 = 0.1 sin(t)





sin(x) + 0.5 cos(y) + sin(z) + cos(z)
sin(x) + cos(x) + 2 cos(y) + 0.5 sin(z)
0.5 cos(x) + sin(y) + cos(y) + 2 sin(z)



 ,

Mexact1 =





sin(|x|t) cos(t)
cos(|x|t) cos(t)

sin(t)



 .

Hexact2 = 0.1 sin(t)





0.5 cos(x1) + 1.5 cos(x2) + sin(x3)
sin(x1) + 2 cos(x1) + 0.5 sin(x3)

sin(x2) + 0.5 cos(x3)



 ,

Mexact2 =





sin(|x|t) sin(t)
cos(|x|t) sin(t)

cos(t)



 .
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Figure 5.9: Time evolution of m

We consider Neumann boundary conditions and use the following constants:

α = µ0 = σ = γ = 1,K = 0, T = 0.5.

The results in Table 5.1 for problem considering R1,S1,Ω1 were obtained on a
uniform grid with 16 939 unknowns associated with the Whitney edge elements. The
results in Table 5.2 for problem considering R2,S2,Ω2 were obtained on a uniform
grid with 11 457 unknowns. We have computed the absolute and the relative errors

eH,τ
absi

= max[0,T ] |Hexacti −Hcomputedi |
eM,τ
absi

= max[0,T ] |Mexacti −Mcomputedi |
eH,τ
reli

= max[0,T ]
|Hexacti

−Hcomputedi
|

|Hexacti
|

eM,τ
reli

= max[0,T ]
|Mexacti

−Mcomputedi
|

|Mexacti
|

as well as the convergence rates

ωH,τ
i =

log

[
eH,2τ
absi

eH,τ

absi

]

log 2
, ωM,τ

i =

log

[
eM,2τ
absi

eM,τ

absi

]

log 2
.

We have used a modified linear Algorithm 1 in computations. The modification
was caused due to the presence of the vector field Si in the LL equation. This
straightforward change was necessary, because we have prescribed an exact solution.
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τ eH,τ
rel1

[%] eH,τ
abs1

ωH,τ
1 eM,τ

rel1
[%] eM,τ

abs1
ωM,τ
1

0.1 28.53 0.135 - 2.48 0.061 -
0.05 16.21 0.0763 0.82 1.42 0.0348 0.81
0.025 7.22 0.0341 1.16 0.698 0.0171 1.02
0.0125 3.72 0.0176 0.95 0.363 0.0089 0.94
0.00625 2.07 0.0098 0.84 0.200 0.0049 0.86

Table 5.1: Absolute and relative errors for R1,S1,Ω1

τ eH,τ
rel2

[%] ωH,τ
1 eM,τ

rel2
[%] ωM,τ

1

0.2 20.93 1.27
0.1 5.41 0.36
0.05 1.96 0.098
0.025 0.72 0.032
0.0125 0.35 0.0117

Table 5.2: Relative errors for R2,S2,Ω2

We are not aware of any known example of (5.5) with a given exact solution, i.e.,
for Si = 0.

Inspecting Tables 5.1 and 5.2 we see that the actual convergence rates for the ap-
proximations ofH andM correspond to the theoretical results obtained in Theorem
5.3.

We have not tested the nonlinear Algorithm 2 on an example with a prescribed
solution. The reason is that Lemma 5.4 is valid for a homogeneous equation (5.26)
and a generalization to a non-homogeneous case is not an easy matter.



6 Fixed point technique for
higher convergence rate

(This paper gives wrong solutions to trivial problems. The basic error,however, is not

new. Clifford Truesdell)

We suggest a new numerical algorithm (6.5) for computations of the single LL equa-
tion. In fact, we use relaxation iterations at each time point of a time partitioning.
The basis for the development of (6.5) was a non-iterative algorithm (5.9) from
Chapter 5, which was introduced in [71, 72]. We prove the convergence of iterations
at each time step using a fixed point argument, see Lemma 6.1. In practice, the
relaxation process stops when a given tolerance is achieved. We derive error esti-
mates for our scheme in Theorem 6.2 taking into account the stopping criterion. At
the end we present a numerical example with a known solution, where we confirm
the theoretical results from Theorem 6.2, i.e., the second-order of convergence. Let
us note that our algorithm conserves the modulus of M, which is a very important
feature from the physical point of view.

These results were published by author of this thesis and Slodička in [27].

6.1 Approximation scheme

For ease of exposition we again put α = K = 1 and γ = 2 in the theoretical part of
the chapter, but not in the numerical one.

The following error estimate has been proved for algorithm (5.9)

max
t∈[0,T ]

‖M(t)−mn(t)‖2 +
∫ T

0

‖∂tM− ∂tmn‖2 ≤ Cτ2, (6.1)

72
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for the vector field mn defined as

mn(t) =m(t) for t ∈ [ti−1, ti]

and for all i = 1, . . . , n. The crucial assumption was H ∈ L∞((0, T ) × Ω), which
implies the global Lipschitz continuity of the right-hand side in (5.2) (see [59, Lemma
2.2]).

One can easily see that (5.9) preserves the modulus of m. We recall that (5.9)
admits a unique solution, which follows from Lemma 5.1 for

u0 =mi−1 and a = hi−1 + Pmi−1 − [hi−1 + Pmi−1]×
mi−1

|mi−1|
.

Iteration scheme

Throughout the rest of this chapter we assume that

H ∈ C2([0, T ]),
0 < c0 < |M0| < C.

(6.2)

One can easily deduce from (5.2) and (5.3) that

|M(t)| ≤ C,

|∂tM| ≤ C

(

1 + max
[0,T ]

|H|
)

≤ C,

|∂ttM| ≤ C

(

1 + max
[0,T ]

|H|+ |∂tH|
)

≤ C.

(6.3)

Consider any sufficiently smooth function f on [a, b]. Let Qf be defined as a
quadrature operator on [a, b] satisfying

∫ b

a

f = (b− a) Qf +O
(
(b− a)3

)
.

Simplest examples are (which are also considered in the proofs)

• Qf = f
(
a+b
2

)

• Qf = f(a)+f(b)
2 .

Thus, in both cases we have for any i = 1, . . . , n

|f −Qif | ≤ Cτ,
∣
∣
∣
∣
∣

∫ ti

ti−1

(f −Qif)

∣
∣
∣
∣
∣
≤ Cτ3,

(6.4)
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mi,k−1

mi−1

mi

mi,k

k:=k+1

mi,kmax i= m

mi,0 i−1= m

Inner iteration
index k

a i,k−1Set 

δtm
i,k= ai,k−1x m i,kSolve 

Time step i−1 Time step i

Figure 6.1: Inner iterations

where Qif is the quadrature operator on [ti−1, ti] and f ∈ C2([0, T ]).
We will modify the algorithm (5.9) in the following way, see Figure 6.1. The

approximate solution mi,k ≈ M on [ti−1, ti] is obtained in an iteration process
with respect to the relaxation parameter k. The linearized scheme for a fixed i ∈
{1, . . . , n} and running k = 1, . . . , ki,max reads as

∂tm
i,k =

(
QiH+QiPm

i,k−1
)
×mi,k

+
mi,k

|mi,k| ×
[(
QiH+QiPm

i,k−1
)
×Qim

i,k−1
] (6.5)

for
mi,0 =mi−1,ki−1,max ,
m0,k =M0,

mi,k(ti−1) =mi−1,ki−1,max(ti−1).

(6.6)

The iteration process stops when the following condition is satisfied

|mi,k(ti)−mi,k−1(ti)| ≤ τβ (6.7)

for a given β, which will be specified later.
A short inspection of (6.5) and (6.6) gives

|mi,k(t)| = |mi,k(ti−1)| = |mi−1,ki−1,max(ti−1)| = . . . = |M0| ≤ C,

|∂tmi,k| ≤ C

(

1 + max
[0,T ]

|H|
)

≤ C,

|∂ttmi,k| ≤ C

(

1 + max
[0,T ]

|H|
)

|∂tmi,k| ≤ C.

(6.8)
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Auxiliary problem

Let us consider the following temporary nonlinear problem for t ∈ [ti−1, ti]

∂tu
i =

(
QiH+QiPu

i
)
× ui +

ui

|ui| ×
[(
QiH+QiPu

i
)
×Qiu

i
]
,

ui(ti−1) =mi−1,ki−1,max(ti−1).
(6.9)

One can easily deduce that

|ui(t)| = |ui(ti−1)| = |mi−1,ki−1,max(ti−1)| = |M0| ≤ C,

|∂tui| ≤ C

(

1 + max
[0,T ]

|H|
)

≤ C,

|∂ttui| ≤ C

(

1 + max
[0,T ]

|H|
)

|∂tui| ≤ C.

(6.10)

We will show that limk→∞mi,k = ui(= mi,∞), more exactly we prove the
following lemma.

Lemma 6.1 (contraction) There exist τ0 > 0 and 0 < q = q(τ0) < 1 such that

max
[ti−1,ti]

|mi,k − ui| ≤ q max
[ti−1,ti]

|mi,k−1 − ui|

holds for any k, any i and any τ < τ0.

Proof:
First, we denote

ai,k = QiH+QiPm
i,k −

(
QiH+QiPm

i,k
)
× Qim

i,k

|M0|
,

ai = QiH+QiPu
i −
(
QiH+QiPu

i
)
× Qiu

i

|M0|
.

Therefore, we have for the difference

ai,k−1 − ai = QiP (mi,k−1 − ui) +
(
QiH+QiPu

i
)
× Qi(u

i −mi,k−1)

|M0|
−QiP (mi,k−1 − ui)× Qim

i,k−1

|M0|
.

Using the triangle inequality and the definition of Qi we deduce

|ai,k−1 − ai| ≤ |QiP (ui −mi,k−1)|+
∣
∣Qi

(
H+ Pui

)∣
∣
|Qi(u

i −mi,k−1)|
|M0|

+
∣
∣QiP

(
mi,k−1 − ui

)∣
∣

≤ C max
[ti−1,ti]

|ui −mi,k−1|,
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which implies
max

[ti−1,ti]
|ai,k−1 − ai| ≤ C max

[ti−1,ti]
|ui −mi,k−1|. (6.11)

Using (6.5), (6.9) and applying the new notation we can write for t ∈ [ti−1, ti]

∂t(m
i,k − ui) = ai,k−1 × (mi,k − ui) + (ai,k−1 − ai)× ui,

(mi,k − ui)(ti−1) = 0.

The semi-group theory gives

(mi,k − ui)(t) =

∫ t

ti−1

ea
i,k−1(t−s) ×

[
(ai,k−1 − ai(s))× ui(s)

]
ds.

Hence, for the absolute value we deduce

|(mi,k − ui)(t)| ≤
∫ t

ti−1

∣
∣
∣ea

i,k−1(t−s) ×
[
(ai,k−1 − ai(s))× ui(s)

]
∣
∣
∣ ds

=

∫ t

ti−1

∣
∣(ai,k−1 − ai(s))× ui(s)

∣
∣ ds

≤ Cτ max
[ti−1,ti]

|ai,k−1 − ai|.

This together with (6.11) yields

|(mi,k − ui)(t)| ≤ Cτ max
[ti−1,ti]

|ui −mi,k−1|

and
max

[ti−1,ti]
|mi,k − ui| ≤ Cτ max

[ti−1,ti]
|ui −mi,k−1|.

Hence, for τ < τ0 we conclude the proof. ¤

The vector field ui is continuous in [ti−1, ti], but there are discontinuities between
ui and ui+1

ui(ti) 6= ui+1(ti)
‖ ‖

mi,∞(ti) 6= mi,ki,max(ti).

According to Lemma 6.1 and (6.7) we successively deduce

|mi,ki,max(ti)− ui(ti)| ≤ |mi,ki,max(ti)−mi,ki,max+1(ti)|
+|mi,ki,max+1(ti)− ui(ti)|
≤ τβ + q|mi,ki,max(ti)− ui(ti)|,

which implies

|ui+1(ti)− ui(ti)| = |mi,ki,max(ti)− ui(ti)| ≤
τβ

1− q
≤ Cτβ . (6.12)

This estimate will keep the discontinuity between ui+1(ti) and u
i(ti) under control.
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6.2 Error estimates

Let us denote by a the following expression

a = H+ PM− (H+ PM)× M

|M| .

Then, using (5.2), (6.9) and the new notation we obtain on [ti−1, ti]

∂t(M− ui) = ai × (M− ui) + (a− ai)×M, (6.13)

where ai was introduced in the proof of Lemma 6.1. We apply the semi-group theory
and get

(M− ui)(t) = ea
i(t−ti−1) × (M− ui)(ti−1)

+

∫ t

ti−1

ea
i(t−s) × [(a− ai)×M](s) ds.

(6.14)

Now, we are in a position to derive the error estimates for M− ui.

Theorem 6.1 Assume (6.2) and β = 3. Then there exist positive constants C and
τ0 such that

|(M− ui)(ti)| ≤ Cτ2

holds for any 1 ≤ i ≤ n and any 0 < τ < τ0.

Proof:
We use (6.14) for t = ti and we apply the integration by parts formula to the integral
term. We get

(M− ui)(ti) = ea
iτ × (M− ui)(ti−1) +

∫ ti

ti−1

(a− ai)×M

+

∫ ti

ti−1

ai ×
[

ea
i(ti−s) ×

∫ s

ti−1

(a(ξ)− ai)×M(ξ) dξ

]

ds

= A1 +A2 +A3.

(6.15)

For the first term we have

|A1| = |(M− ui)(ti−1)|. (6.16)

The second term can be written as

A2 =

∫ ti

ti−1

(a− ai)×M

=

∫ ti

ti−1

[a×M−Qi(a×M)] +

∫ ti

ti−1

(Qia− ai)×QiM

+

∫ ti

ti−1

ai × (QiM−M) +

∫ ti

ti−1

[Qi(a×M)−Qia×QiM]

= A21 +A22 +A23 +A24.

(6.17)
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According to the properties of the quadrature operator Qi - see (6.4) - we deduce

|A21| ≤ Cτ3,

|A23| =

∣
∣
∣
∣
∣
ai ×

∫ ti

ti−1

(QiM−M)

∣
∣
∣
∣
∣
≤ Cτ3.

(6.18)

In the case when Qif = f
(
ti−1+ti

2

)

, we have A24 = 0. For the second event

Qif = f(ti−1)+f(ti)
2 , we have

Qi (a×M) = Qia×QiM+
a(ti−1)− a(ti)

2
× M(ti−1)−M(ti)

2
.

Hence, we deduce

|A24| ≤
∫ ti

ti−1

|Qi (a×M)−Qia×QiM|

≤ C

∫ ti

ti−1

∫ ti

ti−1

|∂ta|
∫ ti

ti−1

|∂tM|

≤ Cτ3.

(6.19)

We rewrite a− ai into a different form

a− ai = H−QiH−QiPu
i + PM

−(H−QiH−QiPu
i + PM)× M

|M0|
−(QiH+QiPu

i)× M−Qiu
i

|M0|
.

For the absolute value we successively deduce

|a− ai| ≤ C
(
|H−QiH|+ |PM−QiPM|+ |QiPM−QiPu

i|
+|M−QiM|+ |QiM−Qiu

i|
)

≤ C
(
τ + |QiM−Qiu

i|
)

≤ C

(

τ + |(M− ui)(ti−1)|+
∫ ti

ti−1

|∂t(M− ui)|
)

≤ C
(
τ + |(M− ui)(ti−1)|

)
.

(6.20)

Using (6.13) and (6.20) we obtain

|∂t(M− ui)| ≤ C
(
τ + |M− ui|+ |(M− ui)(ti−1)|

)

≤ C
(
τ + |(M− ui)(ti−1)|

)
.

(6.21)
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If w(t) and v(t) are any vector fields with bounded derivatives with respect to the
time variable, then

Qi(w× v)−Qiw×Qiv = O
(
τ2
)
.

Therefore, in virtue of the definition of ai we can write

ai −Qia = Qi(Pu
i − PM)

+Qi

[

(PM− Pui)× M

|M0|
+ (H+ Pui)× M− ui

|M0|

]

+O
(
τ2
)

and for the absolute value we get

|ai −Qia| ≤ C|Qi(M− ui)|+ Cτ2.

According to this inequality and (6.21) we deduce for A22 the following

|A22| ≤ C

∫ ti

ti−1

|Qia− ai)|

≤ C

∫ ti

ti−1

|Qi(M− ui)|+ Cτ3

≤ Cτ

(

|(M− ui)(ti−1)|+
∫ ti

ti−1

|∂t(M− ui)|
)

+ Cτ3

≤ C
(
τ3 + τ |(M− ui)(ti−1)|

)
.

(6.22)

Finally, we have to estimate the term A3. We use the relation (6.20) and obtain

|A3| ≤ C

∫ ti

ti−1

∫ s

ti−1

|a− ai| ≤ C
(
τ3 + τ2|(M− ui)(ti−1)|

)
. (6.23)

Collecting (6.15)-(6.19), (6.22), (6.23) and applying (6.12) we arrive at the recursion
formula

|(M− ui)(ti)| ≤ Cτ3 + (1 + Cτ)|(M− ui)(ti−1)|
≤ Cτ3 + (1 + Cτ)|(M− ui−1)(ti−1)|+ C|(ui − ui−1)(ti−1)|
≤ Cτ3 + (1 + Cτ)|(M− ui−1)(ti−1)|.

This implies

|(M− ui)(ti)| ≤ Cτ3
i−1∑

j=0

(1 + Cτ)j ≤ Cτ2,

which concludes the proof. ¤

The following theorem shows the main result of this chapter.
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Theorem 6.2 Let the assumptions of Theorem 6.1 be fulfilled. Then there exist
positive constants C and τ0 such that

(i)

|(M−mi,ki,max)(ti)| ≤ Cτ2,

(ii)

|(M−mi,ki,max)(t)| ≤ Cτ2, t ∈ [0, T ]

hold for any 1 ≤ i ≤ n and any 0 < τ < τ0.

Proof:
(i) The assertion is a consequence of the triangle inequality, Theorem 6.1 and (6.12).

(ii) We subtract (6.5) from (5.2) and get

∂t(M−mi,ki,max) = ai,ki,max × (M−mi,ki,max) + (a− ai,ki,max)×M, (6.24)

where ai,ki,max was introduced in the proof of Lemma 6.1. We rewrite a− ai,k into
a different form

a− ai,ki,max = H−QiH−QiPm
i,ki,max + PM

−(H−QiH−QiPm
i,ki,max + PM)× M

|M0|
−(QiH+QiPm

i,ki,max)× M−Qim
i,ki,max

|M0|
.

For the absolute value we successively deduce

|a− ai,ki,max | ≤ C (|H−QiH|+ |PM−QiPM|
+|QiPM−QiPm

i,ki,max |
+|M−QiM|+ |QiM−Qim

i,ki,max |
)

≤ C
(
τ + |QiM−Qim

i,ki,max |
)

≤ C
(
τ + |(M−mi,ki,max)(ti−1)|

)

+C

∫ ti

ti−1

|∂t(M−mi,ki,max)|

≤ C
(
τ + |(M−mi,ki,max)(ti−1)|

)
.

(6.25)

Using (6.24) and (6.25) we obtain

|∂t(M−mi,ki,max)| ≤ C|M−mi,ki,max |
+ C

(
τ + |(M−mi,ki,max)(ti−1)|

)

≤ C
(
τ + |(M−mi,ki,max)(ti−1)|

)
.

(6.26)
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Finally, we apply the triangle inequality, (6.26), Theorem 6.2 (i) and we have for
any t ∈ [ti−1, ti]

∣
∣(M−mi,ki,max)(t)

∣
∣ =

∣
∣
∣
∣
∣
(M−mi,ki,max)(ti−1) +

∫ t

ti−1

∂t
(
M−mi,ki,max

)

∣
∣
∣
∣
∣

≤
∣
∣(M−mi,ki,max)(ti−1)

∣
∣+

∫ ti

ti−1

∣
∣∂t
(
M−mi,ki,max

)∣
∣

≤ Cτ2,

which concludes the proof. ¤

6.3 Numerical experiment

In this section we demonstrate on an example with an exact solution that the
iteration scheme (6.5) really has a second order of convergence. The scheme (5.9)
without iterations (which gave an theoretical background for the development of
(6.5)) has only the first order of convergence.

Exact solution of the LL equation

We consider the following equation

∂tM = −M×Heff − αM× (M×Heff) , (6.27)

where Heff = Happ +Hdem +Hani. The applied field Happ is a given spatially uni-
form function in time and other terms represent the magneto-static and anisotropy
fields, respectively. For numerical tests we have used an exact analytical solution
introduced in [13], which was derived for non-conducting ferromagnetic bodies with
a symmetry axis. Rotational symmetry, see Figure 6.2, leads to the following con-
ditions

(i) The shape of a body is spheroidal with a symmetry axis along z.

(ii) The dissipative parameter α is a positively defined function of Heff , in our
case identically equal to 1, and M = (mx,my,mz) invariant with respect to
rotations of the reference frame around the z axis.

(iii) Crystal anisotropy is uniaxial with respect to the z axis, i.e.,Hani = (2K1/µ0M
2)mzez

(ez is the unit vector along z).

(iv) The external field is of the form Happ = Ha⊥(t) + hazez. The component
hazez is constant in time, whereas Ha⊥(t) is a circularly rotated component
with an angular frequency ω and a constant amplitude ha⊥ perpendicular to
the z axis.
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y

z

anisotropy axis

rotational symmetry
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Figure 6.2: The setting for the numerical experiment

We consider the case with an demagnetizing term of the form Hdem = N⊥M⊥−
Nzmzez, whereNz andN⊥ represent the z axis and its perpendicular demagnetizing
factors, respectively.

Therefore, the effective field takes the form

Heff = Ha⊥(t) + (haz + κeffmz)ez,

where κeff = 2K1/µ0M
2
s +N⊥ −Nz.

Because of the rotational symmetry it is much simpler to rewrite the equations in
the terms of spherical coordinates. We introduce spherical coordinates with respect
to rotated applied field Happ in such a way that this field remains constant. Let
us denote by φ the lag of M⊥ with respect to Ha⊥ and by θ the angle between M
and the z axis. Thus, we are looking for M in the form mx = sin θ cos(ωt − φ),
my = sin θ sin(ωt−φ), mz = cos θ. The equation (6.27) becomes the following form
in terms of (θ, φ)

∂tθ − α sin θ∂tφ = κeff [b⊥ sinφ−B sin θ] ,
α∂tθ + sin θ∂tφ = κeff [b⊥ cos θ cosφ− (bz + cos θ) sin θ] ,

(6.28)

where bz = (haz − ω)/κeff , b⊥ = ha⊥/κeff and B = αω/κeff . We set the values in
such a way that

bz = mz(v − 1),

|b⊥| = B
sin θ

sinφ
,
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where v = B cotφ.
Following the motivation in [13] it is easy to see, that the right-hand sides of

(6.28) are equal to zero and functions φ and θ are constant. Thus, also the left-hand
sides of (6.28) vanish and the equations are fulfilled.

τ kmax = 1 kmax = 2 kmax = 3 kmax = 4

10−1 3.66E−01 6.46E−02 2.15E−02 2.83E−02
10−2 3.20E−03 9.82E−05 1.77E−04 1.76E−04
10−3 3.01E−05 1.69E−06 1.76E−06 1.76E−06
10−4 2.99E−07 1.75E−08 1.76E−08 1.76E−08
10−5 2.99E−09 1.76E−10 1.76E−10 1.76E−10
10−6 2.99E−11 1.77E−12 1.77E−12 1.77E−12

Table 6.1: Iteration scheme (6.5). Discrete error ‖M−mi,kmax‖L1([0,T ]).

τ ‖M−mn‖L1([0,T ])

10−1 6.23E−01
10−2 1.24E−01
10−3 1.42E−02
10−4 1.43E−03
10−5 1.44E−04
10−6 1.44E−05

Table 6.2: Scheme (5.9). Discrete error ‖M−mn‖L1([0,T ]).

Numerical implementation

We have chosen parameters in the following order

1. arbitrary values of angles θ, φ and variables B, κeff and ω,

2. bz = (B cotφ− 1) cos θ and b⊥ = |B sin θ (sinφ)−1|,

3. haz = bzκeff + ω, ha⊥ = κeffb⊥ and α = Bκeffω
−1.

Thus, we arrived at (6.27), where Heff takes the form

Heff = ha⊥ cos(ωt)ex + ha⊥ sin(ωt)ey + (haz + κeffmz)ez,
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with the exact analytical solution

M = sin θ cos(ωt− φ)ex + sin θ sin(ωt− φ)ey + cos θ ez.

In the calculations we have used the values: T = 2π, θ = π
3 , φ = π

4 , B = 1,

ω = 2, κeff = 1. The quadrature operator Q was chosen as Qf = f(a)+f(b)
2 on any

interval [a, b].
We have performed computations for scheme (6.5) for a given number of itera-

tions kmax at each time step ti. The results for ‖M−mi,kmax‖L1([0,T ]) are shown in
Table 6.1. Then, we have used the algorithm (5.9) for a comparison, see Table 6.2.
We see that (5.9) has the first order of convergence, while (6.5) shows the second-
order. Let us note that the length of M is conserved by computations, which is an
important feature especially for engineers.

Further, we have performed computational tests with the stopping criterion (6.7)
for β = 3. They showed that this condition was fulfilled for ki,max = 2 for all time
points of the time partitioning and we also got the second-order of convergence.

For better visual comparison see Figure 6.3.

quadratic scheme - k_imax=1
quadratic scheme - k_imax=2
linear scheme
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Figure 6.3: Comparison of quadratic and linear algorithm
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7 Regularity results for single
LL equation

(”Obvious” is the most dangerous word in mathematics. Eric Temple Bell)

This chapter is theoretical. Therefore we work with normalized magnetization

m =
M

|M| .

We consider single LL equation

∂tm = −γm×Heff − αγm× (m×Heff), m|t=0 =m0, (7.1)

where α is a positive constant, called Gilbert damping constant, and γ denotes the
gyromagnetic factor. The unknown m stands for a spin vector of magnetization
and Heff denotes the effective field.

For the purposes of mathematical analysis we can skip the gyromagnetic factor
γ. It disappears after a time rescaling of the LL equation.

For the sake of simplicity we consider the effective field Heff of the form that
corresponds to the pure isotropic case without any external field. Then,Heff = ∆m.
However it would be no serious obstacle to add also terms describing anisotropy,
magneto-static energy or applied magnetic field.

After these assumptions the problem we are interested in reads as

∂tm = −m×∆m− αm× (m×∆m) in R
+ × Ω, (7.2)

∂m

∂ν
= 0 on R

+ × ∂Ω, (7.3)

m(0, .) =m0 in Ω. (7.4)

86
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Simple multiplication of (7.2) gives us directly that the modulus of m remains
constant in time. Thus, we can use throughout the text the inequality

‖m‖L∞ ≤ C. (7.5)

Then, (7.2) according to [18] becomes equivalent to

∂tm− α∆m = −m×∆m+ α|∇m|2m. (7.6)

Our aim in this section is to derive estimates for the time derivatives of the
solution m.

7.1 Regularity results

G. Carbou and P. Fabrie in [18] have proved the following result for the solution to
the LL equation:

Theorem 7.1 Supposing m0 ∈W 2,2(Ω), there exists a positive T0 such that for the
solution m to the problem (7.2)-(7.4) the following estimate is valid:

max
t∈(0,T0)

‖m(t)‖W 2,2(Ω) ≤ C. (7.7)

Remark 7.1 Using (10.12) we can get

max
t∈(0,T0)

‖∇m(t)‖4 ≤ C, (7.8)

since m is bounded in the W 2,2(Ω) norm.

In [61] the author has derived and proved new-type regularity results for the exact
solution of the LL equation introducing a time weight κ(s) = min{1, s}. This weight
helps to get the highly nonlinear terms under control at the beginning of the time
interval on which we solve the problem (7.2)-(7.4). This reduces requirements on
the regularity of initial data. The estimates were proved for the first and the second
time derivatives of the exact solution, as well as for the gradient and the second
space derivatives of the exact solution. The author obtained these regularity results
in two dimensions.

We extend these results in the following way. We consider the problem in
three space dimensions and we prove estimates for time derivatives ∂p

tm,∇∂ptm
and ∆∂ptm for arbitrary value of p, not only for p = 1, 2 as was considered for 2D in
[61]. The author of this thesis and Van Keer deal with this problem in [29]. These
results constitute a first step in higher order analysis of the LL equation in three
dimensions.

We prove the following theorem.
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Theorem 7.2 (Regularity theorem) The solutionm to the problem (7.2)-(7.4),
taking T0 from Theorem 7.1, satisfies the following estimates for any positive p ∈ Z

max
t∈(0,T0)

{

κp‖∂p+1t m‖2
}

+

(
∫ T0

0

κ2p‖∇∂p+1t m‖22ds
) 1

2

≤ C(p, α,Ω), (7.9)

max
t∈(0,T0)

{

κp‖∆∂ptm‖2
}

≤ C(p, α,Ω), (7.10)

max
t∈(0,T0)

{

κ
2p+1

2 ‖∇∂p+1t m‖2
}

+

(
∫ T0

0

κ2p+1‖∆∂p+1t m‖22ds
) 1

2

≤ C(p, α,Ω), (7.11)

(
∫ T0

0

κ2p+1‖∂p+2t m‖22

) 1
2

≤ C(p, α,Ω), (7.12)

where κ is a time weight equal to κ(s) = min{1, s} and C(p, α,Ω) is a constant
depending only on p, α and Ω.

From now on we do not explicitly write the dependence of the constant C(p, α,Ω)
on p, α and Ω.

We introduce similar theorem, which includes the statement of Theorem 7.2 for
p = 0 and the inequality (7.15). It helps to keep the text more readable.

Theorem 7.3 For the solution m to the problem (7.2)-(7.4), taking T0 from
Theorem 7.1, the following estimates are valid:

max
t∈(0,T0)

‖∂tm‖2 +
(
∫ T0

0

‖∇∂tm‖22ds
) 1

2

≤ C, (7.13)

max
t∈(0,T0)

√
κ‖∇∂tm‖2 +

(
∫ T0

0

κ
{
‖∂2tm‖22 + ‖∆∂tm‖22

}
ds

) 1
2

≤ C, (7.14)

∫ T0

0

‖∂2tm‖W−1,2ds ≤ C, (7.15)

where κ is a time weight equal to κ(s) = min{1, s}.
Proof of inequality (7.13):
The time derivation of (7.6) leads to

∂2tm− α∆∂tm = 2α〈∇m,∇∂tm〉R9m+ α|∇m|2∂tm− ∂tm×∆m−m×∆∂tm.
(7.16)
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Now, we test this with the function ∂tm to find

1

2
∂t‖∂tm‖22 + α‖∇∂tm‖22 = C(A1 +A2 +A3 +A4), (7.17)

where the definitions of A1, . . . , A4 are in the text below.
The integrals over the boundary always vanish thanks to the homogeneous Neu-

mann boundary conditions.
We make use of Lemma 10.4 to estimate the terms A1, A2, A3 and A4. At the

beginning of every estimate we use some of the inequalities stated in Lemma 10.3
and then we apply the estimate (7.7) or (7.8). Thus we have

|A1| := 2|(〈∇m,∇∂tm〉R9m, ∂tm)| ≤ C‖∇m‖4‖∇∂tm‖2‖∂tm‖4‖m‖L∞
≤ C‖∂tm‖W 1,2‖∂tm‖4. (7.18)

We apply the inequality (a2 + b2)
1
2 ≤ a + b to the first factor. To estimate the

L4 norm of ∂tm we use inequality (10.11) and then we separate the terms by the
Young inequality with exponents 4 and 4/3 and appropriate weights ε and Cε:

‖∂tm‖4 ≤ C‖∂tm‖2 + C‖∂tm‖
1
4
2 ‖∇∂tm‖

3
4
2 ≤ Cε‖∂tm‖2 + ε‖∇∂tm‖2. (7.19)

Together we get

|A1| ≤ C(‖∂tm‖2 + ‖∇∂tm‖2)(Cε‖∂tm‖2 + ε‖∇∂tm‖2) ≤ Cε‖∂tm‖22 + ε‖∇∂tm‖22,

where ε is a generic small constant, which could be changed if needed. To estimate
the term ‖∂tm‖24 in A2 we again use the same technique as we have used in
(7.19). Then we get

|A2| := α(|∇m|2, |∂tm|2) ≤ C‖∇m‖24‖∂tm‖24 ≤ C(Cε‖∂tm‖2 + ε‖∇∂tm‖2)2
≤ Cε‖∂tm‖22 + ε‖∇∂tm‖22.

For the term A3, it is simply

|A3| := |(∂tm×∆m, ∂tm)| = 0.

In the following estimates we perform integration by parts. In virtue of homogeneous
Neumann boundary conditions we can write

|A4| := |(m×∆∂tm, ∂tm)| = |(∇(m× ∂tm),∇∂tm)| = |(∇m× ∂tm,∇∂tm)|.

We make use of inequality (10.8) and we arrive to the following:

|A4| ≤ ‖∇m‖4‖∂tm‖4‖∇∂tm‖2 ≤ C‖∂tm‖W 1,2‖∂tm‖4.
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On the right-hand side of the inequality appears the same expression as in (7.18).
Therefore we can directly end up at

|A4| ≤ ‖∇m‖4‖∂tm‖4‖∇∂tm‖2 ≤ Cε‖∂tm‖22 + ε‖∇∂tm‖22.

Since we have successfully bounded the terms A1, A2, A3 and A4, we can now
continue in (7.17) setting 3ε = α/2 to get

1

2
∂t‖∂tm‖22 + α‖∇∂tm‖22 ≤ α

2
‖∇∂tm‖22 + 3C‖∂tm‖22,

1

2
∂t‖∂tm‖22 +

α

2
‖∇∂tm‖22 ≤ 3C‖∂tm‖22.

Using Gronwall’s lemma in the previous relation we obtain the following result

‖∂tm‖2 +
(
∫ T

0

‖∇∂tm‖22ds
) 1

2

≤ C,

which completes the proof of inequality (7.13). ¤

Proof of inequality (7.14):
Now we begin the proof starting again with (7.16). We make a formal step by
testing the relation (7.16) with function −∆∂tm. This can be done rigorous by dif-
ference quotient method. We make similar steps also further. Because of vanishing
Neumann boundary conditions we get

1

2
∂t‖∇∂tm‖22 + α‖∆∂tm‖22 ≤ C(B1 +B2 +B3 +B4). (7.20)

We deal with terms B1, B2, B3 and B4 independently. First we have

B1 := |(〈∇m,∇∂tm〉R9m,−∆∂tm)|
≤ ‖∇m‖4‖∇∂tm‖4‖m‖L∞‖∆∂tm‖2
≤ (‖∂tm‖4 + ‖∇∂tm‖4)‖∆∂tm‖2. (7.21)

To estimate L4 norms, we apply inequalities (10.11) and (10.12) and then we
separate the individual L2 norms by applying the Young inequality with exponents
4 and 4/3 and appropriate weights ε and Cε:

‖∂tm‖4 + ‖∇∂tm‖4 ≤ C(‖∂tm‖2 + ‖∂tm‖
1
4
2 ‖∇∂tm‖

3
4
2

+‖∇∂tm‖2 + ‖∇∂tm‖
1
4
2 ‖∆∂tm‖

3
4
2 )

≤ Cε‖∂tm‖2 + Cε‖∇∂tm‖2 + ε‖∆∂tm‖2. (7.22)
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We can now continue in (7.21) using two times the weighted Young inequality to
conclude

B1 ≤ (Cε‖∂tm‖2 + Cε‖∇∂tm‖2 + ε‖∆∂tm‖2)‖∆∂tm‖2
≤ Cε‖∂tm‖22 + Cε‖∇∂tm‖22 + ε‖∆∂tm‖22.

We proceed with estimate for B2:

B2 := α|(|∇m|2∂tm,−∆∂tm)| ≤ C‖∇m‖24‖∂tm‖L∞‖∆∂tm‖2
≤ C‖∂tm‖L∞‖∆∂tm‖2.

Now we make use of inequality (10.14) to arrive at the same situation as in (7.21):

B2 ≤ C(|∂tm‖4 + ‖∇∂tm‖4)‖∆∂tm‖2 ≤ Cε‖∂tm‖22 + Cε‖∇∂tm‖22 + ε‖∆∂tm‖22.

To estimate B3, we use the same technique as for B2:

B3 := |(∂tm×∆m,−∆∂tm)| ≤ ‖∂tm‖L∞‖∆m‖2‖∆∂tm‖2 ≤ ‖∂tm‖L∞‖∆∂tm‖2
≤ C(|∂tm‖4 + ‖∇∂tm‖4)‖∆∂tm‖2
≤ Cε‖∂tm‖22 + Cε‖∇∂tm‖22 + ε‖∆∂tm‖22.

Finally, for B4 we have simply

B4 := |(m×∆∂tm,−∆∂tm)| = 0.

After applying these estimates, we continue in (7.20) setting 3ε = α/2:

1

2
∂t‖∇∂tm‖22 + α‖∆∂tm‖22 ≤

α

2
‖∆∂tm‖22 + C‖∇∂tm‖22 + C‖∂tm‖22.

We can get rid of the coefficients 1/2 and α by dividing the equation by
min{1/2, α}. Applying the inequality (7.13) and multiplying by the time weight
κ(s) = min(1, s) leads to

κ(s)∂t‖∇∂tm‖22 + ακ(s)‖∆∂tm‖22 ≤ Cακ(s) + Cακ(s)‖∇∂tm‖22.

We integrate both sides of the previous equation. Integration by parts gives

[

κ(s)‖∇∂tm(s)‖22
]t

0

−
∫ t

0

(κ′(s))‖∇∂tm‖22 +
∫ t

0

κ(s)‖∆∂tm‖22

≤ Cε

∫ t

0

κ(s) + Cε

∫ t

0

κ(s)‖∇∂tm‖22.
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Using κ′(s) ≤ 1 we have

κ(t)‖∇∂tm(t)‖22 +
∫ t

0

κ(s)‖∆∂tm‖22

≤
∫ t

0

‖∇∂tm‖22 + Cα + Cα

∫ t

0

κ(s)‖∇∂tm‖22.

Now we use (7.13) and we arrive at the formula

κ(t)‖∇∂tm(t)‖22 +
∫ t

0

κ(s)‖∆∂tm‖22 ≤ Cα + Cα

∫ t

0

κ(s)‖∇∂tm‖22.

We are ready to use Gronwall’s lemma to obtain

√
κ‖∇∂tm‖2 +

(
∫ T

0

κ‖∆∂tm‖22

) 1
2

≤ C. (7.23)

Next we take (7.16) and test it with the function ∂2tm to get

‖∂2tm‖22 +
α

2
∂t‖∇∂tm‖22 ≤ C(D1 +D2 +D3 +D4). (7.24)

The boundary terms vanish. We estimate D1, D2, D3, D4 as follows. First

D1 := |(〈∇m,∇∂tm〉R9m, ∂2tm)|
≤ ‖∇m‖4‖∇∂tm‖4‖m‖L∞‖∂2tm‖2
≤ C(‖∂tm‖4 + ‖∇∂tm‖4)‖∂2tm‖2. (7.25)

Now we use (7.22) together with the weighted Young inequalities to get

D1 ≤ Cε(‖∂tm‖2 + ‖∇∂tm‖2 + ‖∆∂tm‖2)‖∂2tm‖2
≤ Cε‖∂tm‖22 + Cε‖∇∂tm‖22 + Cε‖∆∂tm‖22 + ε‖∂2tm‖22.

Using inequality (10.14) we estimate the terms D2 and D3

D2 := |(|∇m|2∂tm, ∂2tm)| ≤ ‖∇m‖24‖∂tm‖L∞‖∂2tm‖2
≤ (‖∂tm‖4 + ‖∇∂tm‖4)‖∂2tm‖2,

D3 := |(∂tm×∆m, ∂2tm)| ≤ ‖∂tm‖L∞‖∆m‖2‖∂2tm‖2
≤ (‖∂tm‖4 + ‖∇∂tm‖4)‖∂2tm‖2.

Notice that the expressions at the ends of the previous two inequalities are the same
as the expression at the end of (7.25). Therefore we use the upper bounds obtained
for D1 also for the terms D2 and D3.
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For D4 we have the following result using the weighted Young inequality:

D4 := |(m×∆∂tm, ∂2tm)| ≤ ‖m‖L∞‖∆∂tm‖2‖∂2tm‖2 ≤ Cε‖∆∂tm‖22 + ε‖∂2tm‖2.

Now using the previous estimates we can continue in (7.24) setting 4ε = α/4:

‖∂2tm‖22 +
α

2
∂t‖∇∂tm‖22 ≤

α

4
‖∂2tm‖22 + C‖∆∂tm‖22 + C‖∇∂tm‖22 + C‖∂tm‖22.

Coefficients α/2, α/4 can be absorbed on the left-hand side. Multiplication by
κ(s) followed by time integration now leads to

∫ t

0

κ(s)‖∂2tm‖22 + κ(t)‖∇∂tm‖22 ≤ C

∫ t

0

κ(s)‖∆∂tm‖22 + C

∫ t

0

κ(s)‖∇∂tm‖22

+C

∫ t

0

κ(s)‖∂tm‖22.

Using (7.23) and (7.13) leads us to the desired result

∫ t

0

κ(s)‖∂2tm‖2 + κ(t)‖∇∂tm‖22 ≤ C.

This completes the proof of inequality (7.14). ¤

Proof of inequality (7.15):
In order to show (7.15) we employ the previous results. First, we make use of (7.16)
and estimate

∫ T

0

‖∂2tm‖2W−1,2 = ‖∂2tm‖L2(I,W−1,2)

≤ sup
ϕ∈L2(I,W1,2),
‖ϕ‖

L2(I,W1,2)
≤1

∫ T

0

|(α∇∂tm,∇ϕ) + E1 + · · ·+ E4| ds. (7.26)

The first term on the right-hand side of (7.26) can be split using the Young inequal-
ity:

∫ T

0

|(α∇∂tm,∇ϕ)|ds ≤ C

∫ T

0

‖∇∂tm‖22 + ‖∇ϕ‖22ds ≤ C. (7.27)

The boundedness of the first part comes from (7.13). The definition of ϕ in the
supremum guarantees the boundedness of the second part.

The terms E1, . . . , E4 can be bounded separately. For the term E1, we write
∣
∣
∣
∣
∣

∫ T

0

E1

∣
∣
∣
∣
∣
≤ C

∫ T

0

|(〈∇m,∇∂tm〉R9m,ϕ)|
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≤ C

∫ T

0

‖∇m‖4‖∇∂tm‖2‖m‖L∞‖ϕ‖4

≤ C

∫ T

0

‖∇∂tm‖22 + ‖ϕ‖2W 1,2 .

We see similar terms as in (7.27). This allows us to use the same arguments to

estimate also the term
∫ T

0
E1.

Applying the embedding W 1,2 ↪→ L4, we get the following estimate for E2:
∣
∣
∣
∣
∣

∫ T

0

E2

∣
∣
∣
∣
∣
≤ C

∫ T

0

|(|∇m|2∂tm,ϕ)| ≤ C

∫ T

0

‖∇m‖24‖∂tm‖4‖ϕ‖4

≤ C

∫ T

0

‖∂tm‖22 + ‖∇∂tm‖22 + ‖ϕ‖2W 1,2 . (7.28)

We make use of (7.13) to estimate the first two terms. The last term is bounded

from the definition. Thus we get boundedness of the term
∣
∣
∣

∫ T

0
E2

∣
∣
∣ . We continue

with E3:
∣
∣
∣
∣
∣

∫ T

0

E3

∣
∣
∣
∣
∣

=

∫ T

0

|(∂tm×∆m,ϕ)| =
∫ T

0

|(∇(ϕ× ∂tm),∇m)|

≤
∫ T

0

‖∇ϕ‖2‖∂tm‖4‖∇m‖4 +
∫ T

0

‖ϕ‖4‖∇∂tm‖2‖∇m‖4.

We get rid of the term ‖∇m‖4 thanks to (7.8). The embedding W 1,2 ↪→ L4 used
for the L4 norms in both terms followed by application of the Young inequality
gives us

∣
∣
∣
∣
∣

∫ T

0

E3

∣
∣
∣
∣
∣
≤

∫ T

0

‖ϕ‖W 1,2‖∂tm‖W 1,2 +

∫ T

0

‖ϕ‖W 1,2‖∂tm‖W 1,2

≤
∫ T

0

‖ϕ‖2W 1,2 + ‖∂tm‖22 + ‖∇∂tm‖22,

which is the same upper bound as in (7.28) and confirms the boundedness of the

term
∣
∣
∣

∫ T

0
E3

∣
∣
∣ . For the term E4, we write

∣
∣
∣
∣
∣

∫ T

0

E4

∣
∣
∣
∣
∣

=

∫ T

0

|(m×∆∂tm,ϕ)| =
∫ T

0

|(∇(ϕ×m),∇∂tm)|

≤
∫ T

0

‖∇ϕ‖2‖m‖L∞‖∇∂tm‖2 +
∫ T

0

‖ϕ‖4‖∇m‖4‖∇∂tm‖2.
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Now we can do the same tricks as we did above for the term
∫ T

0
E3 to get

∣
∣
∣
∣
∣

∫ T

0

E4

∣
∣
∣
∣
∣
≤

∫ T

0

‖ϕ‖W 1,2‖∂tm‖W 1,2 +

∫ T

0

‖ϕ‖W 1,2‖∂tm‖W 1,2

≤
∫ T

0

‖ϕ‖2W 1,2 + ‖∂tm‖22 + ‖∇∂tm‖22 ≤ C,

which finally concludes the proof of boundedness of
∫ T

0
‖∂2tm‖2W−1,2 and completes

the proof of inequality (7.15). ¤

7.2 Notations

Before we prove Theorem 7.2 we summarize necessary inequalities needed in the
proofs.

By Xp and Yp we denote the following sets:

Xp =
{
(i, j, k) : i, j, k ∈ Z,

0 ≤ i ≤ p, 0 ≤ j ≤ p, 0 ≤ k ≤ p, i+ j + k = p
}
,

Yp = {(i, j) : i, j ∈ Z, 0 ≤ i ≤ p, 0 ≤ j ≤ p, i+ j = p}.

Denote A = 〈∇m,∇m〉m and B = m×∆m. For the time derivatives of A and B
we can write

∂ptA =
∑

Xp

〈∇∂itm,∇∂jtm〉∂ktm, (7.29)

∂pt B =
∑

Yp

∂itm×∆∂jtm. (7.30)

We can formally take the r-th derivative in time of the LL equation to get

∂r+1t m− α∆∂rtm = α∂rtA− ∂rtB. (7.31)

7.3 Proof of regularity theorem

We use the notation P(p) for the statement of Theorem 7.2 for specific value of p.
We will prove the theorem by mathematical induction. First we prove P(0). We
deal with this also in [25]. Then we prove P(p) using P(0), . . . ,P(p− 1).
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First step in the proof by mathematical induction

This step is in fact included in the proof of Theorem 7.3.

Second step in the proof of mathematical induction

We prove all four inequalities (7.9)–(7.12) sequentially. It means that in the proof
of (7.9) we use P(m) for m ≤ p− 1 only, whereas in the proof of (7.10) we can use
(7.9) from P(p), too. Finally, in the proof of (7.12) we will use (7.9)–(7.11) from
P(p).
Proof of Inequality (7.9):
We take the (p+ 1)-th derivative of the LL equation (7.31). Then we multiply the
result by κ2p∂p+1t m and finally we integrate it over Ω

κ2p(∂p+2t m, ∂p+1t m)− ακ2p(∆∂p+1t m, ∂p+1t m)

= ακ2p(∂p+1t A, ∂p+1t m)− κ2p(∂p+1t B, ∂p+1t m).

Because of the following identity

κ2p(∂p+2t m, ∂p+1t m) =
1

2
∂t(κ

2p‖∂p+1t m‖22)− pκ2p−1‖∂p+1t m‖22, (7.32)

together with integration by parts in the term ακ2p(∆∂p+1t m, ∂p+1t m), we can de-
duce

1

2
∂t

(

κ2p‖∂p+1t m‖22
)

+ ακ2p‖∇∂p+1t m‖22
= pκ2p−1‖∂p+1t m‖22 + ακ2p(∂p+1t A, ∂p+1t m)

−κ2p(∂p+1t B, ∂p+1t m). (7.33)

In Lemmas 7.1 and 7.2 we estimate absolute value of terms κ2p(∂p+1t A, ∂p+1t m) and
κ2p(∂p+1t B, ∂p+1t m).

Lemma 7.1 For any fixed ε the following estimate holds

∫ T0

0

∣
∣
∣κ2p(∂

p+1
t A, ∂p+1t m)

∣
∣
∣ ≤ C + ε

∫ T0

0

κ2p‖∇∂p+1t m‖22 + Cε

∫ T0

0

κ2p‖∂p+1t m‖22.

Proof:
From the definition of A we have

|κ2p(∂p+1t A, ∂p+1t m)| ≤ κ2p
∑

Xp+1

|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+1t m)|. (7.34)
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Value of
Class k i j
1a p+ 1 0 0
1b 0 p+ 1 (or 0) 0 (or p+ 1)
1c p 0 (or 1) 1 (or 0)
1d ≤ p− 1 ≤ p ≤ p

Table 7.1: Classes of indices i, j, k when 2i− 1 + 2j − 1 + 2k = 2p.

We divide the proof of lemma in several steps. All possible choices of values k, i, j,
such that i+ j+k = p+1, can be put in four classes, see Table 7.1. We study these
cases separately.

Class 1a
When k = p+ 1 in (7.34), we have the following estimate using (7.7)

|(〈∇m,∇m〉∂p+1t m, ∂p+1t m)| ≤ ‖∇m‖24‖∂p+1t m‖24 ≤ C‖∂p+1t m‖24. (7.35)

Now, we first apply (10.11) and then the Young inequality with exponents 4/3 and
4 to get

|(〈∇m,∇m〉∂p+1t m, ∂p+1t m)| ≤ ‖∂p+1t m‖22 + ‖∂p+1t m‖
1
2
2 ‖∇∂p+1t m‖

3
2
2

≤ Cε‖∂p+1t m‖22 + ε‖∇∂p+1t m‖22.

Class 1b
When i = p+ 1 or j = p+ 1, we can estimate the corresponding terms in (7.34) as
follows, using (7.8) and the Young inequality,

|(〈∇∂p+1t m,∇m〉m, ∂p+1t m)| ≤ ‖∇∂p+1t m‖2‖∇m‖4‖m‖L∞‖∂p+1t m‖4
≤ C‖∇∂p+1t m‖2‖∂p+1t m‖4
≤ ε‖∇∂p+1t m‖22 + Cε‖∂p+1t m‖24. (7.36)

For the term Cε‖∂p+1t m‖24 we can use the same technique as in (7.35). Then we get

|(〈∇∂p+1t m,∇m〉m, ∂p+1t m)| ≤ ε‖∇∂p+1t m‖22 + Cε‖∂p+1t m‖22.

Class 1c
In this case we have k = p and i + j = 1. Without loss of generality we assume
i = 0. Then we have

κ2p|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+1t m)| ≤ κ2p‖∇m‖4‖∇∂tm‖4‖∂ptm‖4‖∂p+1t m‖4
≤ κ2p‖∇∂tm‖24‖∂ptm‖24 + ‖∂p+1t m‖24,
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where we used the embedding W 2,2 ↪→ W 1,4, the boundedness of m in W 2,2 norm
and the Young inequality. The term ‖∂p+1t m‖24 was already successfully estimated
in (7.35) and (7.36). We now apply the embeddings W 2,2 ↪→W 1,4 and W 1,2 ↪→ L4

to get

κ2p|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+1t m)|
≤ Cκ(‖∆∂tm‖22 + ‖∇∂tm‖22)κ2p−1(‖∇∂ptm‖22 + ‖∂ptm‖22)

+Cε‖∂p+1t m‖22 + ε‖∇∂p+1t m‖22. (7.37)

We use P(p− 1) and P(0) to get

κ2p−1‖∇∂ptm‖22 ≤ C,

κ2p−1‖∂ptm‖22 ≤ κ2p−2‖∂ptm‖22 ≤ C,

κ‖∇∂tm‖22 ≤ C,

which can be applied in (7.37) to arrive at

κ2p|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+1t m)|
≤ C + Cκ‖∆∂tm‖22 + Cε‖∂p+1t m‖22 + ε‖∇∂p+1t m‖22.

After the time integration we use (7.11) for P(0), which completes the case that
k = p.

Class 1d
We have k ≤ p− 1. For the terms on the right-hand side of (7.34) we have

F1 := κ2p|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+1t m)|
≤ κ2p‖∇∂itm‖2‖∇∂jtm‖4‖∂ktm‖L∞‖∂p+1t m‖4

Further, we have to estimate the term ‖∂ktm‖L∞ . We use the embedding W 1,4 ↪→
L∞ and then we obtain ‖∂ktm‖L∞ ≤ C(‖∇∂jtm‖4+‖∂jtm‖4). To be exact we should
go on with the previous inequality but we proceed only with estimating worse term,
namely with the term ‖∇∂jtm‖4. It is clear that if we successfully estimate this
term, then better term ‖∂jtm‖4 would not cause any problems. And in such a way
we rapidly decrease the length of the text. Similar technique we use more times on
different places. Thus we get

F1 ≤ κ2p‖∇∂itm‖22‖∇∂jtm‖24‖∇∂ktm‖24
+κ2p‖∂p+1t m‖24,

where we have used the Young inequality and the embedding W 1,4 ↪→ L∞. We use
estimates, which we have already proved in (7.35) for the term κ2p‖∂p+1t m‖24. Note
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that 2i − 1 + 2j − 1 + 2k = 2p. Now we use the embedding W 2,2 ↪→ W 1,4, (10.11)
and (10.12) to get

F1 ≤ κ2i−1‖∇∂itm‖22κ2j−1(‖∇∂jtm‖22 + ‖∆∂jtm‖22)
κ2k(‖∇∂ktm‖22 + ‖∆∂ktm‖22)
+Cεκ

2p‖∂p+1t m‖22 + εκ2p‖∇∂p+1t m‖22. (7.38)

Since k ≤ p− 1, i ≤ p, j ≤ p, using P(k),P(i− 1) and P(j − 1), we have

κ2i−1‖∇∂itm‖22 ≤ C,

κ2j−1‖∇∂jtm‖22 ≤ C,

κ2k‖∇∂ktm‖22 ≤ κ2k−1‖∇∂ktm‖22 ≤ C,

κ2k‖∆∂ktm‖22 ≤ C,

which can be applied in (7.38) to get

F1 ≤ C + Cκ2j−1‖∆∂jtm‖22 + Cεκ
2p‖∂p+1t m‖22 + εκ2p‖∇∂p+1t m‖22.

After time integration we use (7.11) from P(j − 1) for the term κ2j−1‖∆∂jtm‖22,
which completes the proof of the lemma. ¤

Lemma 7.2 For any fixed ε the following estimate holds
∫ T0

0

|κ2p(∂p+1t B, ∂p+1t m)| ≤ C + ε

∫ T0

0

κ2p‖∇∂p+1t m‖22 + Cε

∫ T0

0

κ2p‖∂p+1t m‖22.

Proof:
The definition of B gives

|κ2p(∂p+1t B, ∂p+1t m)| ≤ κ2p
∑

Yp+1

|(∂itm×∆∂jtm, ∂p+1t m)|. (7.39)

Now we make another distribution of possibilities for the values of i, j such that
i+ j = p+ 1. See Table 7.2.

Class 2a
When i = p+ 1 we have

(∂p+1t m×∆m, ∂p+1t m) = 0.

Class 2b
When j = p+ 1 we can estimate

|(m×∆∂p+1t m, ∂p+1t m)| = |(∂p+1t m×m,∆∂p+1t m)|
≤ |(∇∂p+1t m×m,∇∂p+1t m)|

+|(∂p+1t m×∇m,∇∂p+1t m)|,
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Value of
Class i j
2a 0 p+ 1
2b p+ 1 0
2c ≤ p ≤ p

Table 7.2: Classes of indices i, j when 2i− 1 + 2j − 1 = 2p.

where we have applied integration by parts. The boundary terms vanish. In the
next step we use (7.8) and (10.11)

|(m×∆∂p+1t m, ∂p+1t m)|
≤ |(∂p+1t m×∇m,∇∂p+1t m)|
≤ ‖∂p+1t m‖4‖∇m‖4‖∇∂p+1t m‖2
≤ C(‖∂p+1t m‖2 + ‖∂p+1t m‖

1
4
2 ‖∇∂p+1t m‖

3
4
2 )‖∇∂p+1t m‖2.

Now we apply the Young inequality first with both exponents equal to 2 and next
with the exponents taking the value 4/3 and 4, respectively. We get

|(m×∆∂p+1t m, ∂p+1t m)| ≤ Cε‖∂p+1t m‖22 + ε‖∇∂p+1t m‖22.
Class 2c

When i ≤ p and j ≤ p we have

|(∂itm×∆∂jtm, ∂p+1t m)|
= |(∂p+1t m× ∂itm,∆∂jtm)|
≤ |(∇∂p+1t m× ∂itm,∇∂jtm)|+ |(∂p+1t m×∇∂itm,∇∂jtm)|
≤ ‖∇∂p+1t m‖2‖∂itm‖4‖∇∂jtm‖4 + ‖∂p+1t m‖4‖∇∂itm‖2‖∇∂jtm‖4
≤ ‖∇∂p+1t m‖2(‖∂itm‖22 + ‖∇∂itm‖22)

1
2 (‖∇∂jtm‖22 + ‖∆∂jtm‖22)

1
2

+(‖∂p+1t m‖22 + ‖∇∂p+1t m‖22)
1
2 ‖∇∂itm‖2(‖∇∂jtm‖22 + ‖∆∂jtm‖22)

1
2 ,

where we have used the embeddings W 1,2 ↪→ L4,W 2,2 ↪→ W 1,4 and (10.11). Now,
from Young’s inequality we get

κ2p|(∂itm×∆∂jtm, ∂p+1t m)|
≤ εκ2p‖∇∂p+1t m‖22

+Cεκ
2p(‖∂itm‖22 + ‖∇∂itm‖22)(‖∇∂jtm‖22 + ‖∆∂jtm‖22)

+εκ2p‖∂p+1t m‖22 + Cεκ
2p‖∇∂itm‖22(‖∇∂jtm‖22 + ‖∆∂jtm‖22)

≤ εκ2p‖∇∂p+1t m‖22 + εκ2p‖∂p+1t m‖22
+Cεκ

2i−1(‖∂itm‖22 + ‖∇∂itm‖22)κ2j−1(‖∇∂jtm‖22 + ‖∆∂jtm‖22).
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Note that 2i− 1 + 2j − 1 = 2(i+ j)− 2 = 2p. Since j ≤ p and i ≤ p, we have from
P(j − 1) and P(i− 1) that

κ2i−1‖∂itm‖22 ≤ κ2i−2‖∂itm‖22 ≤ C

κ2i−1‖∇∂itm‖22 ≤ C,

κ2j−1‖∇∂jtm‖22 ≤ C.

Thus, we get

κ2p|(∂itm×∆∂jtm, ∂p+1t m)|
≤ εκ2p‖∇∂p+1t m‖22 + εκ2p‖∂p+1t m‖22 + C + Cεκ

2j−1‖∆∂jtm‖22.

We integrate the previous inequality in time. Then we use (7.11) from P(j − 1) to
estimate the term κ2j−1‖∆∂jtm‖22. This completes the proof of the lemma. ¤

Proof of Inequality (7.9) (Continuation):
Now, we can pass to the proof of inequality (7.9). From Lemma 7.1 and Lemma
7.2 we can estimate the terms |ακ2p(∂p+1t A, ∂p+1t m)| and |κ2p(∂p+1t B, ∂p+1t m)| in
(7.33). After time integration we find

κ2p‖∂p+1t m(T )‖22 + α

∫ T

0

κ2p‖∇∂p+1t m‖22

≤ p

∫ T

0

κ2p−1‖∂p+1t m‖22

+α

∫ T

0

|κ2p(∂p+1t A, ∂p+1t m)|+
∫ T

0

|κ2p(∂p+1t B, ∂p+1t m)|

≤ p

∫ T

0

κ2p−1‖∂p+1t m‖22

+(α+ 1)

[

T.C + Cε

∫ T

0

κ2p‖∂p+1t m‖22 + ε

∫ T

0

κ2p‖∇∂p+1t m‖22
]

.

Taking ε sufficiently small and using P(p− 1) for the term
∫ T

0
κ2p−1‖∂p+1t m‖22, we

get

κ2p‖∂p+1t m(T )‖22 +
∫ T

0

κ2p‖∇∂p+1t m‖22 ≤ C(α, p) + C(α, p)

∫ T

0

κ2p‖∂p+1t m‖22.

After applying Gronwall’s lemma we complete the proof of inequality (7.9) for
P(p). ¤

Proof of Inequality (7.10):
Take the p-th derivative of the LL equation (7.31) and multiply it by −κ2p∆∂ptm.
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Value of
Class k i j
3a p 0 0
3b 0 p (or 0) 0 (or p)
3c ≤ p− 1 ≤ p− 1 ≤ p− 1

Table 7.3: Classes of indices i, j, k when 2i+ 2j + 2k = 2p.

We find

−κ2p(∂p+1t m,∆∂ptm) + ακ2p‖∆∂ptm‖22
= −ακ2p(∂ptA,∆∂ptm) + κ2p(∂pt B,∆∂ptm).

Using Young’s inequality we get

ακ2p‖∆∂ptm‖22 ≤ ακ2p|(∂ptA,∆∂ptm)|+ κ2p|(∂pt B,∆∂ptm)|
+Cεκ

2p‖∂p+1t m‖22 + εκ2p‖∆∂ptm‖22.

We take ε small. Since we have proved (7.9) for P(p), we can estimate the term
κ2p‖∂p+1t m‖22 by C to get

ακ2p‖∆∂ptm‖22 ≤ ακ2p|(∂ptA,∆∂ptm)|+ κ2p|(∂pt B,∆∂ptm)|+ Cε. (7.40)

The terms κ2p|(∂ptA,∆∂ptm)| and κ2p|(∂pt B,∆∂ptm)| are estimated in Lemmas 7.3
and 7.4.

Lemma 7.3 For any fixed ε the following estimate holds

κ2p|(∂ptA,∆∂ptm)| ≤ Cε + εκ2p‖∆∂ptm‖22.

Proof:
From the definition of A we have the following

|κ2p(∂ptA,∆∂ptm)| ≤ κ2p
∑

Xp

|(〈∇∂itm,∇∂jtm〉∂ktm,∆∂ptm)|. (7.41)

We again split all possible combinations of values i, j, k into several classes, see Table
7.3.

Class 3a
When k = p in (7.41) we have the following estimate:

|(〈∇m,∇m〉∂ptm,∆∂ptm)| ≤ ‖∇m‖24‖∂ptm‖L∞‖∆∂ptm‖2
≤ Cε‖∇∂ptm‖24 + ε‖∆∂ptm‖22, (7.42)
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where we have used the boundedness of m in the W 2,2 norm, the embedding
W 1,4 ↪→ L∞ and Young’s inequality. We have estimated again only the worst
terms, namely the terms with highest space derivative. Using first (10.12) and next
Young’s inequality with coefficients 4 and 3/4 we find

κ2p|(〈∇m,∇m〉∂ptm,∆∂ptm)|
≤ Cεκ

2p‖∇∂ptm‖22 + Cεκ
2p‖∇∂ptm‖

1
2
2 ‖∆∂ptm‖

3
2
2 + εκ2p‖∆∂ptm‖22

≤ Cεκ
2p‖∇∂ptm‖22 + εκ2p‖∆∂ptm‖22. (7.43)

From P(p− 1) we have

κ2p‖∇∂ptm‖22 ≤ κ2p−1‖∇∂ptm‖22 ≤ C.

Then we arrive at

κ2p|(〈∇m,∇m〉∂ptm,∆∂ptm)| ≤ Cε + εκ2p‖∆∂ptm‖22.

Class 3b
When i = p or j = p we can estimate the corresponding terms in (7.41) as follows

|(〈∇∂ptm,∇m〉m,∆∂ptm)| ≤ ‖∇∂ptm‖4‖∇m‖4‖m‖L∞‖∆∂ptm‖2
≤ C‖∇∂ptm‖4‖∆∂ptm‖2
≤ Cε‖∇∂ptm‖24 + ε‖∆∂ptm‖22.

We end up with the same terms as on the right-hand side of (7.42).
Class 3c

When i ≤ p − 1, j ≤ p − 1 and k ≤ p − 1, on the right-hand side of (7.41) the
following argument can be used

G1 := κ2p|(〈∇∂itm,∇∂itm〉∂ktm,∆∂ptm)|
≤ κ2p‖∇∂itm‖4‖∇∂jtm‖4‖∂ktm‖L∞‖∆∂ptm‖2
≤ Cεκ

2p‖∇∂itm‖24‖∇∂jtm‖24‖∇∂ktm‖24
+εκ2p‖∆∂ptm‖22,

where we invoked the embedding W 1,4 ↪→ L∞ and Young’s inequality estimating
only the terms with the highest space derivative.

Note that 2i+ 2j + 2k = 2p. Now, we use the embedding W 1,2 ↪→ L4 to get

G1 ≤ Cεκ
2i(‖∇∂itm‖22 + ‖∆∂itm‖22)κ2j(‖∇∂jtm‖22 + ‖∆∂jtm‖22)

κ2k(‖∇∂ktm‖22 + ‖∆∂ktm‖22)
+εκ2p‖∆∂ptm‖22. (7.44)
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Value of
Class i j
4a 0 p
4b p 0
4c ≤ p− 1 ≤ p− 1

Table 7.4: Classes of indices i, j when 2i+ 2j = 2p.

Since i ≤ p− 1, j ≤ p− 1 and k ≤ p− 1 using P(i),P(j),P(k) we have

κ2i‖∆∂itm‖22 ≤ C,

κ2i‖∇∂itm‖22 ≤ κ2i−1‖∇∂itm‖22 ≤ C,

κ2j‖∆∂jtm‖22 ≤ C,

κ2j‖∇∂jtm‖22 ≤ κ2j−1‖∇∂jtm‖22 ≤ C,

κ2k‖∆∂ktm‖22 ≤ C,

κ2k‖∇∂ktm‖22 ≤ κ2k−1‖∇∂ktm‖22 ≤ C,

which can be applied in (7.44) to get

G1 ≤ Cε + εκ2p‖∆∂p+1t m‖22.
This completes the proof of the lemma. ¤

Lemma 7.4 For any fixed ε the following estimate holds

κ2p|(∂pt B,∆∂ptm)| ≤ Cε + εκ2p‖∆∂ptm‖22.
Proof:
From the definition of B we have

|κ2p(∂pt B,∆∂ptm)| = κ2p
∑

Yp

|(∂itm×∆∂jtm,∆∂ptm)|. (7.45)

We use Table 7.4 in order to proceed in several steps.
Class 4a

When j = p in (7.45) we have

(m×∆∂ptm,∆∂ptm) = 0.

Class 4b
When i = p we can estimate

|(∂ptm×∆m,∆∂ptm)| ≤ ‖∂ptm‖L∞‖∆m‖2‖∆∂ptm‖2
≤ Cε‖∇∂ptm‖24 + ε‖∆∂ptm‖22.
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where we invoked the boundedness of m in W 2,2, the embedding W 1,4 ↪→ L∞, and
Young’s inequality. Using (10.12) and then Young’s inequality with exponents 4
and 4/3, we arrive at

κ2p|(∂ptm×∆m,∆∂ptm)|
≤ Cεκ

2p‖∇∂ptm‖22 + Cεκ
2p‖∇∂ptm‖

1
2
2 ‖∆∂ptm‖

3
2
2 + εκ2p‖∆∂ptm‖22

≤ Cεκ
2p‖∇∂ptm‖22 + εκ2p‖∆∂ptm‖22.

Since P(p− 1) we have

κ2p‖∇∂ptm‖22 ≤ κ2p−1‖∇∂ptm‖22 ≤ C.

Thus we find

κ2p|(∂ptm×∆m,∆∂ptm)| ≤ Cε + εκ2p‖∆∂ptm‖22.

Class 4c
When i ≤ p− 1 and j ≤ p− 1, one has

|(∂itm×∆∂jtm,∆∂ptm)| ≤ ‖∂itm‖L∞‖∆∂jtm‖2‖∆∂ptm‖2
≤ Cε‖∇∂itm‖24‖∆∂jtm‖22 + ε‖∆∂ptm‖22,

where we have used the embedding W 1,4 ↪→ L∞ and Young’s inequality. Now, we
apply the embedding W 2,2 ↪→W 1,4 to get

|(∂itm×∆∂jtm,∆∂ptm)|
≤ Cε(‖∇∂itm‖22 + ‖∆∂itm‖22)‖∆∂jtm‖22 + ε‖∆∂ptm‖22
≤ Cε‖∇∂itm‖22‖∆∂jtm‖22 + Cε‖∆∂itm‖22‖∆∂jtm‖22 + ε‖∆∂ptm‖22.

Since i ≤ p− 1 and j ≤ p− 1, we can deduce from P(i) and P(j) that

κ2i‖∇∂itm‖22 ≤ κ2i−1‖∇∂itm‖22 ≤ C,

κ2i‖∆∂itm‖22 ≤ C,

κ2j‖∆∂jtm‖22 ≤ C.

Then we find

κ2p|(∂itm×∆∂jtm,∆∂ptm)|
≤ εκ2p‖∆∂ptm‖22 + Cεκ

2i‖∇∂itm‖22κ2j‖∆∂jtm‖22
+Cεκ

2i‖∆∂itm‖22κ2j‖∆∂jtm‖22
≤ εκ2p‖∆∂ptm‖22 + Cε,
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which completes the proof of the lemma. ¤

Proof of Inequality (7.10) (Continuation):
To finish the proof of inequality (7.10) we simply apply Lemma 7.3 and Lemma 7.4
in the relation (7.40) and we take ε sufficiently small. ¤

Proof of Inequality (7.11):
Take the (p + 1)-th derivative of the LL equation (7.31). Then, we multiply the
result by −κ2p+1∆∂p+1t m and get

−κ2p+1(∂p+2t m,∆∂p+1t m) + ακ2p+1‖∆∂p+1t m‖22
= −ακ2p+1(∂p+1t A,∆∂p+1t m) + κ2p+1(∂p+1t B,∆∂p+1t m).

In the first term on the left-hand side we apply integration by parts. On account of
the analogy with (7.32) we get

1

2
∂t

(

κ2p+1‖∇∂p+1t m‖22
)

+ ακ2p+1‖∆∂p+1t m‖22
= −κ2p+1α(∂p+1t A,∆∂p+1t m) + κ2p+1(∂p+1t B,∆∂p+1t m)

+
2p+ 1

2
κ2p‖∇∂p+1t m‖22. (7.46)

We again estimate the terms containing ∂p+1t A and ∂p+1t B in separate lemmas.

Lemma 7.5 For any fixed ε the following estimate holds

∫ T0

0

|κ2p+1(∂p+1t A,∆∂p+1t m)|

≤ Cε + ε

∫ T0

0

κ2p+1‖∆∂p+1t m‖22 + Cε

∫ T0

0

κ2p+1‖∇∂p+1t m‖22.

Proof:
Starting from the definition of A we have

|κ2p+1(∂p+1t A,∆∂p+1t m)|
≤ κ2p+1

∑

Xp+1

|(〈∇∂itm,∇∂jtm〉∂ktm,∆∂p+1t m)|. (7.47)

For the overview of classes of indices i, j, k this time, see Table 7.5.
Class 5a

When k = p+ 1 in (7.47) we have the estimate

|(〈∇m,∇m〉∂p+1t m,∆∂p+1t m)| ≤ ‖∇m‖24‖∂p+1t m‖L∞‖∆∂p+1t m‖2
≤ Cε‖∇∂p+1t m‖24 + ε‖∆∂p+1t m‖22, (7.48)
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Value of
Class k i j
5a p+ 1 0 0
5b 0 p+ 1 (or 0) 0 (or p+ 1)
5c ≤ p ≤ p ≤ p

Table 7.5: Classes of indices i, j, k when 2i+ 2j − 1 + 2k = 2p+ 1.

where we have used the embedding W 1,4 ↪→ L∞. We continue, using first (10.12)
and next Young’s inequality with coefficients 4 and 3/4 to get

|(〈∇m,∇m〉∂p+1t m,∆∂p+1t m)|
≤ Cε‖∇∂p+1t m‖22 + Cε‖∇∂p+1t m‖

1
2
2 ‖∆∂p+1t m‖

3
2
2 + ε‖∆∂p+1t m‖22

≤ Cε‖∇∂p+1t m‖22 + ε‖∆∂p+1t m‖22.

Class 5b
When i = p+ 1 or j = p+ 1, using (7.8) we can estimate the corresponding terms
in (7.47) as follows

|(〈∇∂p+1t m,∇m〉m,∆∂p+1t m)| ≤ ‖∇∂p+1t m‖4‖∇m‖4‖m‖L∞‖∆∂p+1t m‖2
≤ C‖∇∂p+1t m‖4‖∆∂p+1t m‖2
≤ Cε‖∇∂p+1t m‖24 + ε‖∆∂p+1t m‖22.

We end up with the same terms as on the right-hand side of (7.48). Thus we obtain
the same estimates.

Class 5c
When i ≤ p, j ≤ p and k ≤ p, we can use the following argument on the right-hand
side of (7.34)

H1 := κ2p+1|(〈∇∂itm,∇∂itm〉∂ktm,∆∂p+1t m)|
≤ κ2p+1‖∇∂itm‖4‖∇∂jtm‖4‖∂ktm‖L∞‖∆∂p+1t m‖2
≤ Cεκ

2p+1‖∇∂itm‖24‖∇∂jtm‖24‖∇∂ktm‖24
+εκ2p+1‖∆∂p+1t m‖22,

where we have used the embedding W 1,4 ↪→ L∞ and Young’s inequality. Note that
2i+ 2j − 1 + 2k = 2p+ 1. Now from the embedding W 1,2 ↪→ L4 we get

H1 ≤ Cεκ
2i(‖∇∂itm‖22 + ‖∆∂itm‖22)κ2j−1(‖∇∂jtm‖22 + ‖∆∂jtm‖22)

κ2k(‖∇∂ktm‖22 + ‖∆∂ktm‖22)
+εκ2p+1‖∆∂p+1t m‖22. (7.49)
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Since i ≤ p, j ≤ p and k ≤ p, using P(i− 1),P(j − 1),P(k − 1), we have

κ2i‖∇∂itm‖22 ≤ κ2i−1‖∇∂itm‖22 ≤ C,

κ2k‖∇∂ktm‖22 ≤ κ2k−1‖∇∂ktm‖22 ≤ C,

κ2j−1‖∇∂jtm‖22 ≤ C.

Inequality (7.10) was already proved for P(p), too. Thus we get

κ2i‖∆∂itm‖22 ≤ C,

κ2k‖∆∂ktm‖22 ≤ C.

(7.50)

We can proceed in (7.49) to get

H1 ≤ Cε + Cεκ
2j−1‖∆∂jtm‖22 + εκ2p+1‖∆∂p+1t m‖22.

We integrate the previous inequality in time. Then using (7.11) from P(j − 1) we
estimate the term κ2j−1‖∆∂jtm‖22. This completes the proof of the lemma. ¤

Lemma 7.6 For any fixed ε the following estimate holds

∫ T0

0

|κ2p+1(∂p+1t B,∆∂p+1t m)|

≤ Cε + ε

∫ T0

0

κ2p+1‖∆∂p+1t m‖22 + Cε

∫ T0

0

κ2p+1‖∇∂p+1t m‖22.

Proof:
From the definition of B we have the following

|κ2p+1(∂p+1t B,∆∂p+1t m)| ≤ κ2p+1
∑

Yp+1

|(∂itm×∆∂jtm,∆∂p+1t m)|. (7.51)

The Classes 6a–6c are described in Table 7.6.
Class 7a

When j = p+ 1 in (7.51) we have

(m×∆∂p+1t m,∆∂p+1t m) = 0.

Class 7b
When i = p+ 1 we can estimate

|(∂p+1t m×∆m,∆∂p+1t m)| ≤ ‖∂p+1t m‖L∞‖∆m‖2‖∆∂p+1t m‖2
≤ Cε‖∇∂p+1t m‖24 + ε‖∆∂p+1t m‖22,
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Value of
Class i j
6a 0 p+ 1
6b p+ 1 0
6c ≤ p ≤ p

Table 7.6: Classes of indices i, j when 2i+ 2j − 1 = 2p+ 1.

where we have invoked the boundedness of m in the W 2,2 norm, the embedding
W 1,4 ↪→ L∞, and Young’s inequality. Using (10.12) and Young’s inequality with
exponents 4 and 4/3, we arrive at

|(∂p+1t m×∆m,∆∂p+1t m)|
≤ Cε‖∇∂p+1t m‖22 + Cε‖∇∂p+1t m‖

1
2
2 ‖∆∂p+1t m‖

3
2
2 + ε‖∆∂p+1t m‖22

≤ Cε‖∇∂p+1t m‖22 + ε‖∆∂p+1t m‖22.
Class 7c

When i ≤ p and j ≤ p we get

|(∂itm×∆∂jtm,∆∂p+1t m)| ≤ ‖∂itm‖L∞‖∆∂jtm‖2‖∆∂p+1t m‖2
≤ Cε‖∇∂itm‖24‖∆∂jtm‖22 + ε‖∆∂p+1t m‖22,

where we have invoked the embedding W 1,4 ↪→ L∞ and Young’s inequality. Now,
we apply the embedding W 2,2 ↪→W 1,4

|(∂itm×∆∂jtm,∆∂p+1t m)|
≤ Cε(‖∇∂itm‖22 + ‖∆∂itm‖22)‖∆∂jtm‖22 + ε‖∆∂p+1t m‖22
≤ Cε‖∇∂itm‖22‖∆∂jtm‖22 + Cε‖∆∂itm‖22‖∆∂jtm‖22 + ε‖∆∂p+1t m‖22.

Since i ≤ p and j ≤ p we can deduce from P(i − 1) and from (7.10) for P(i) and
P(j) that

κ2i‖∇∂itm‖22 ≤ κ2i−1‖∇∂itm‖22 ≤ C,

κ2i‖∆∂itm‖22 ≤ C,

κ2j‖∆∂jtm‖22 ≤ C.

Again notice that 2i+ 2j − 1 = 2p+ 1. Then we get

κ2p+1|(∂itm×∆∂jtm,∆∂p+1t m)|
≤ εκ2p+1‖∆∂p+1t m‖22 + Cεκ

2i‖∇∂itm‖22κ2j−1‖∆∂jtm‖22
+Cεκ

2i‖∆∂itm‖22κ2j−1‖∆∂jtm‖22
≤ εκ2p+1‖∆∂p+1t m‖22 + Cεκ

2j−1‖∆∂jtm‖22.



110 Regularity results for single LL equation

We integrate the previous inequality in time and using (7.11) from P(j − 1) we
estimate the term κ2j−1‖∆∂jtm‖22. This completes the proof of the lemma. ¤

Proof of Inequality (7.11) (Continuation):
We apply the results from Lemma 7.5 and Lemma 7.6 in (7.46) to estimate the terms
|ακ2p+1(∂p+1t A,∆∂p+1t m)| and |κ2p+1(∂p+1t B,∆∂p+1t m)|. After time integration we
find

κ2p+1‖∇∂p+1t m(T )‖22 + α

∫ T

0

κ2p+1‖∆∂p+1t m‖22

≤ 2p+ 1

2

∫ T

0

κ2p‖∇∂p+1t m‖22

+α

∫ T

0

|κ2p+1(∂p+1t A,∆∂p+1t m)|+
∫ T

0

|κ2p+1(∂p+1t B,∆∂p+1t m)|

≤ 2p+ 1

2

∫ T

0

κ2p‖∇∂p+1t m‖22

+(α+ 1)

[

T.Cε + Cε

∫ T

0

κ2p+1‖∇∂p+1t m‖22 + ε

∫ T

0

κ2p+1‖∆∂p+1t m‖22
]

.

Taking ε sufficiently small and using P(p) for the term κ2p‖∇∂p+1t m‖22, we get

κ2p+1‖∇∂p+1t m(T )‖22 +
∫ T

0

κ2p+1‖∆∂p+1t m‖22

≤ C(α, p) + C(α, p)

∫ T

0

κ2p+1‖∇∂p+1t m‖22.

After applying Gronwall’s lemma we complete the proof of inequality (7.11) for
P(p). ¤

Proof of Inequality (7.12):
Take the (p + 1)-th derivative of the LL equation. Then multiply the result by
κ2p+1∂p+2t m. Integration by parts gives

κ2p+1‖∂p+2t m‖22 + ακ2p+1(∇∂p+1t m,∇∂p+2t m)

= ακ2p+1(∂p+1t A, ∂p+2t m)− κ2p+1(∂p+1t B, ∂p+2t m).

On account of the analogy with (7.32) we get

κ2p+1‖∂p+2t m‖22 +
α

2
∂t(κ

2p+1‖∇∂p+1t m‖2)

= κ2p+1
(

α(∂p+1t A, ∂p+2t m)− (∂p+1t B, ∂p+2t m)
)

+α
2p+ 1

2
κ2p‖∇∂p+1t m‖22. (7.52)
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We will estimate the terms containing ∂p+1t A and ∂p+1t B separately in Lemmas 7.7
and 7.8.

Lemma 7.7 For any fixed ε the following estimate holds

∫ T0

0

|κ2p+1(∂p+1t A, ∂p+2t m)| ≤ Cε + ε

∫ T0

0

κ2p+1‖∂p+2t m‖22.

Proof:
From the definition of A we have the following

|κ2p+1(∂p+1t A, ∂p+2t m)| ≤ κ2p+1
∑

Xp+1

|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+2t m)|. (7.53)

For all terms in (7.53) we estimate:

|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+2t m)|
≤ ‖∇∂itm‖4‖∇∂jtm‖4‖∂ktm‖L∞‖∂p+2t m‖2
≤ Cε‖∇∂itm‖24‖∇∂jtm‖24‖∇∂ktm‖24 + ε‖∂p+2t m‖22,

where we have used the embedding W 1,4 ↪→ L∞ and Young’s inequality. Further,
we apply the embedding W 2,2 ↪→W 1,4 to find

|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+2t m)|
≤ Cε(‖∇∂itm‖22 + ‖∆∂itm‖22)(‖∇∂jtm‖22 + ‖∆∂jtm‖22)

(‖∇∂ktm‖22 + ‖∆∂ktm‖22) + ε‖∂p+2t m‖22.

Without loss of generality we can assume that i ≤ j ≤ k. Then i ≤ p and j ≤ p.
From (7.9), (7.10) and (7.11), which is already proved for P(p) too, we have

κ2i‖∆∂itm‖22 ≤ C,

κ2i‖∇∂itm‖22 ≤ κ2i−1‖∇∂itm‖22 ≤ C,

κ2j‖∆∂jtm‖22 ≤ C,

κ2j‖∇∂jtm‖22 ≤ κ2j−1‖∇∂jtm‖22 ≤ C,

κ2k−1‖∇∂ktm‖22 ≤ C.

Then, because 2i+ 2j + 2k − 1 = 2p+ 1, we have

κ2p+1|(〈∇∂itm,∇∂jtm〉∂ktm, ∂p+2t m)|
≤ Cεκ

2i(‖∇∂itm‖22 + ‖∆∂itm‖22)κ2j(‖∇∂jtm‖22 + ‖∆∂jtm‖22)
κ2k−1(‖∇∂ktm‖22 + ‖∆∂ktm‖22) + εκ2p+1‖∂p+2t m‖22,

≤ Cε + Cεκ
2k−1‖∆∂ktm‖22 + ε‖∂p+2t m‖22.
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We integrate the previous relation in time and use (7.11) to estimate the term
κ2k−1‖∆∂ktm‖22, which is already proved for P(p), too. This completes the proof of
the lemma. ¤

Lemma 7.8 For any fixed ε the following estimate holds

∫ T0

0

|κ2p+1(∂p+1t B, ∂p+2t m)| ≤ Cε + ε

∫ T0

0

κ2p+1‖∂p+2t m‖22.

Proof:
From the definition of B we get

|κ2p+1(∂p+1t B, ∂p+2t m)| ≤ κ2p+1
∑

Yp+1

|(∂itm×∆∂jtm, ∂p+2t m)|. (7.54)

For all terms in (7.54) we have

|(∂itm×∆∂jtm, ∂p+2t m)| ≤ ‖∂itm‖L∞‖∆∂jtm‖2‖∂p+2t m‖2
≤ Cε‖∇∂itm‖24‖∆∂jtm‖22 + ε‖∂p+2t m‖22,

where we have used the embedding W 1,4 ↪→ L∞ and Young’s inequality. Now, we
apply the embedding W 2,2 ↪→W 1,4

|(∂itm×∆∂jtm, ∂p+2t m)|
≤ Cε(‖∇∂itm‖22 + ‖∆∂itm‖22)‖∆∂jtm‖22 + ε‖∂p+2t m‖22
≤ Cε(‖∇∂itm‖22 + ‖∆∂itm‖22)(‖∇∂jtm‖22 + ‖∆∂jtm‖22) + ε‖∂p+2t m‖22.

Without loss of generality we may assume that i ≤ j. Then i ≤ p and from (7.10)
for P(p) and from P(p− 1) we have

κ2i‖∇∂itm‖22 ≤ κ2i−1‖∇∂itm‖22 ≤ C,

κ2i‖∇∂itm‖22 ≤ κ2i−1‖∇∂itm‖22 ≤ C,

κ2i‖∆∂itm‖22 ≤ C.

Then, we get

κ2p+1|(∂itm×∆∂jtm, ∂p+2t m)|
≤ εκ2p+1‖∂p+2t m‖22

+Cεκ
2i(‖∇∂itm‖22 + ‖∆∂itm‖22)κ2j−1(‖∇∂jtm‖22 + ‖∆∂jtm‖22)

≤ Cε + εκ2p+1‖∂p+2t m‖22 + Cεκ
2j−1‖∆∂jtm‖22.
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After the time integration we use (7.11) from P(j − 1) to estimate the terms
κ2j−1‖∆∂jtm‖22. This completes the proof of the lemma. ¤

Proof of Inequality (7.12) (Continuation):
We apply the results from Lemma 7.7 and Lemma 7.8 into (7.52) and estimate the
terms |ακ2p+1(∂p+1t A, ∂p+2t m)| and |κ2p+1(∂p+1t B, ∂p+2t m)|. Then, after the time
integration we obtain

∫ T

0

κ2p+1‖∂p+2t m‖22 + ακ2p+1‖∇∂p+1t m(T )‖22

≤ α
2p+ 1

2

∫ T

0

κ2p‖∇∂p+1t m‖22

+α

∫ T

0

|κ2p+1(∂p+1t A, ∂p+2t m)|+
∫ T

0

|κ2p+1(∂p+1t B, ∂p+2t m)|

≤ α
2p+ 1

2

∫ T

0

κ2p‖∇∂p+1t m‖22 + (α+ 1)

[

T.Cε + ε

∫ T

0

κ2p+1‖∂p+2t m‖22
]

.

Taking ε sufficiently small and using P(p) for the term κ2p‖∇∂p+1t m‖22, we get

∫ T

0

κ2p+1‖∂p+2t m‖22 ≤ C(α, p).

This completes the proof of inequality (7.12) for P(p). Consequently, the proof of
Theorem 7.2 is now completed. ¤



8 Regularity results for the
M-LL system

(Carpe Diem, you live just once)

In this chapter we discuss the existence, uniqueness and regularity of a regular
solutions to the coupled full M-LL system. The system reads as

∂tm = −m× (∆m+H)

−αm× (m× (∆m+H)), (8.1)

∂tE+ σE−∇×H = 0, (8.2)

∂tH+∇×E = −β∂tm, (8.3)

∇ ·H+ β∇ ·m = 0, (8.4)

∇ ·E = 0, (8.5)

where α, β and σ are constants, α > 0, σ ≥ 0. In practical applications is σ a ”nice”
function of the space describing the conductivity of the medium. Nevertheless,
non-constant σ would not change the mathematical analysis and therefore we can
consider it as a constant.

We consider the following boundary conditions

∂m

∂ν

∣
∣
∣
∂Ω

= 0, (8.6)

E× ν
∣
∣
∂Ω

= 0, (8.7)

(H+ βm) · ν
∣
∣
∂Ω

= 0, (8.8)

where ν is the unit outward normal vector to ∂Ω.
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The initial conditions read as

m(x, 0) =m0(x), H(x, 0) = H0(x), E(x, 0) = E0(x) (x ∈ Ω ⊂ R
3).

A crucial observation is, that |m| = 1, for almost all t ∈ 〈0,∞) provided that the
solution to (8.1)–(8.5) is sufficiently smooth. This comes from a scalar multiplication
of (8.1) with m. Then the equation (8.1) is equivalent to:

∂tm− α∆m− α|∇m|2m+m×∆m = −m×H− αm× (m×H). (8.9)

The transformation of the equation (8.1) to the equation (8.9) is a classical approach
used for example in [18, 35, 61].

In Section 8.1 we define a weak solution to the problem (8.9), along with (8.2)–
(8.5).

In Section 8.2 we look at the appropriate function spaces, in which we seek the
solutions. We establish the theory of the approximation of this spaces by finite-
dimensional spaces. Thus, we will be able to define a finite dimensional problem,
which has an unique solution.

In the next section we derive estimates for the approximate solution in various
function spaces. These estimates are crucial when passing to the limit for n→∞.
The main results are mentioned in Lemma 8.7.

Section 8.4 is devoted to the limit process when n→∞. First, we prove the exis-
tence of functionsm,E,H, which are the limits of subsequences of {mn}, {En}, {Hn}
in various function spaces. Then we compute limits of all terms appearing in the
definition of a weak solution and finally we conclude that the functions m,E,H are
really weak solutions.

Finally, in Section 8.5 we prove the regularity results for the weak solution.

8.1 Weak solution to the M-LL system

Definition 8.1 The triple (m,E,H), where

m ∈ L∞(I,H1
∇0(Ω)) ∩H1(I,L2(Ω)),

E ∈ L∞(I,Ht0(curl,div,Ω)),

H+ βm ∈ L∞(I,Hno(curl,div,Ω)),

is called a weak solution of problem stated in (8.9), (8.2)–(8.5) if |m| = 1, almost
everywhere in I × Ω, m(x, 0) = m0 holds in the sense of traces, and for all test
functions

ϕ ∈ L∞(I,H1(Ω)),
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ψ ∈ L∞(I,Ht0(curl,Ω)) ∩H1(I,L2(Ω)), ψ(x, T ) = 0,

φ ∈ L∞(I,H(curl,Ω)) ∩H1(I,L2(Ω)), φ(x, T ) = 0,

ξ ∈ L∞(I,H1(Ω)),

ζ ∈ L∞(I,H1
0(Ω)),

the following identities hold,
∫

I

(∂tm,ϕ)ds+ α

∫

I

(∇m,∇ϕ)ds = α

∫

I

(|∇m|2m,ϕ)ds

∫

I

(m×∇m,∇ϕ)ds−
∫

I

(m×H,ϕ)ds

+α

∫

I

(m×H,m×ϕ)ds, (8.10)

∫

I

eσs(∇×H,ψ)ds+

∫

I

(Eeσs, ∂tψ)ds+ (E0,ψ(x, 0)) = 0, (8.11)

∫

I

(H+ βm, ∂tφ)ds+ (H0 + βm0,φ(x, 0))−
∫

I

(∇×E,φ)ds = 0, (8.12)

∫

I

(∇ ·H+ β∇ ·m, ξ)ds = 0, (8.13)

∫

I

(∇ ·E, ζ)ds = 0. (8.14)

8.2 Finite approximation

Looking at the problem given by (8.9), (8.2)–(8.5) and the boundary conditions
(8.6)–(8.8), we demand that the solution has to belong to the following functional
spaces:

m ∈ H1
∇0(Ω),

E ∈ Ht0(curl,div0,Ω),

H+ βm ∈ Hn0(curl,div0,Ω).

Now, we define approximation spaces for these spaces. It is a natural choice to
approximate the space H1

∇0(Ω) by finite-dimensional spaces Vn build on the first
n eigenvectors of the “weak” operator I −∆ with domain H1

∇0(Ω). We denote by
Pn orthogonal projection of L2(Ω) on Vn.

Next, we define the following eigenvalue problems.

Problem 8.1 Find (u, ω) ∈ Ht0(curl,div0,Ω)× R such that

(∇× u,∇× v) = ω2(u,v), ∀v ∈ Ht0(curl,div0,Ω).
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Problem 8.2 Find (u, ω) ∈ Hn0(curl,div0,Ω)× R such that

(∇× u,∇× v) = ω2(u,v), ∀v ∈ Hn0(curl,div0,Ω).

Both problems are equivalent to an eigenvalue problem for a self-adjoint un-
bounded operator with its compact inverse. The spectrum is a denumerable set
of real isolated eigenvalues with final multiplicities. Moreover, the direct Hilbert
sum of the eigenspaces related to Problem 8.1 actually covers Ht0(curl,div0,Ω).
Therefore, we can build finite-dimensional spaces Vt0

n from the first n eigenvectors
related to Problem 8.1. The spaces Vt0

n are a good approximation of the space
Ht0(curl,div0,Ω). We denote by Qn the orthogonal projection from L2(Ω) on Vt0

n .
Similarly we can build finite-dimensional spacesVn0

n from the first n eigenvectors
related to Problem 8.2. The spaces Vn0

n are a good approximation of the space
Hn0(curl,div0,Ω). We denote by Rn the orthogonal projection from L2(Ω) on Vn0

n .
For more details see [17, 30].
We are ready to define an approximated solution to the problem defined by (8.9),

(8.2)–(8.5) along with (8.6)–(8.8). We seek for a triple (mn,En,Hn) such that

mn ∈ Vn, En ∈ Vt0
n , and Hn + βmn ∈ Vn0

n .

satisfying the discretized M-LL system

∂tmn − α∆mn − Pn

[
α|∇mn|2mn −mn ×∆mn

]

= Pn [−mn ×Hn − αmn × (mn ×Hn)] , (8.15)

∂tEn + σEn −Qn [∇×Hn] = 0, (8.16)

∂tHn +Rn [∇×En] = −β∂tmn, (8.17)

∇ ·Hn + β∇ ·mn = 0, (8.18)

∇ ·En = 0, (8.19)

8.3 Estimates for approximating solution

Next we do some analysis using techniques such as multiplication of the equations
(8.15)–(8.19) with some vector function and then integrating over Ω to obtain es-
timates in L2(Ω) norm. The projection operators Pn, Qn and Rn seem to cause
troubles. For example, the vectors mn ×Hn and mn are orthogonal in R

3 space,
therefore after a multiplication of (8.15) by mn would the term (mn × Hn,mn)
normally disappear. Question is, if the term (Pn(mn ×Hn),mn) will be zero. The
answer on this question is simple. There is a little bit different situation depicted
in Figure 8.1. Here the bigger space is R

3 and not L2(Ω) and the smaller space is
the plane R

2 given by axes x and y. This corresponds to the space Vn.
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m n

u

Pn(u)

x

y

z

Figure 8.1: Orthogonality of the projection

The vector u =mn×Hn is orthogonal to vectormn and his projection Pn(u) lies
in the plane xy. We simply see that if (u,mn) = 0 then also (P (u),mn) = 0. This
can be written exactly in the following way. Since Pn(u) is a orthogonal projection
into space Vn we know that

(u− Pn(u),w) = 0,

for all w ∈ Vn. Taking w =mn and supposing (u,mn) = 0 we get

(Pn(u),mn) = −(u− Pn(u),mn) + (u,mn) = 0.

Moreover, we use the property

(Pn(u),v) = (u, Pn(v)).

In the following lemmas we use the previous remark and the fact that orthogonal
projections satisfy

‖Pn(u)‖ ≤ ‖u‖.

Lemma 8.1 For every real positive T the following estimates are valid for the so-
lution mn to (8.15)–(8.19):

∂t‖mn‖22 + α‖∇mn‖22 ≤ C(1 + ‖mn‖18W 2,2). (8.20)
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Proof:
Take (8.15) and multiply by mn to get

1

2
∂t‖mn‖22 + α‖∇mn‖22 ≤ α|(|∇mn|2mn,mn)| ≤ α‖∇mn‖22‖mn‖2L∞ .

We use the embedding W 2,2(Ω) ↪→ L∞(Ω) to conclude

∂t‖mn‖22 + α‖∇mn‖22 ≤ C‖mn‖4W 2,2 ≤ C(1 + ‖mn‖18W 2,2),

where we have used the Young inequality. We are able to prove better result with
lower exponent than 18. Such high value is however necessary in the next. ¤

Lemma 8.2 For every real positive T the following estimates are valid for the so-
lution mn to (8.15)–(8.19):

∂t‖∇mn‖22 + α‖∆mn‖22 ≤ C(1 + ‖mn‖18W 2,2 + ‖Hn‖42) (8.21)

Proof:
Take (8.15) and multiply by −∆mn to get

1

2
∂t‖∇mn‖22 + α‖∆mn‖22 ≤ α‖∇mn‖4‖∇mn‖4‖mn‖L∞‖∆mn‖2

+|Pn(mn ×∆mn),∆mn)|
+‖mn‖L∞‖Hn‖2‖∆mn‖2
+‖m‖2L∞‖Hn‖2‖∆mn‖2

The term Pn(mn ×∆mn),∆mn) vanishes due to the properties of the projection.
We use the embeddings W 2,2(Ω) ↪→ W 1,4(Ω) ↪→ L∞(Ω) and Young’s inequality to
proceed and get

∂t‖∇mn‖22 + α‖∆mn‖22 ≤ C(‖mn‖6W 2,2 + ‖mn‖4W 2,2 + ‖Hn‖22).

¤

Lemma 8.3 For every real positive T the following estimates are valid for the so-
lution mn to (8.15)–(8.19):

∂t‖∆mn‖22 + α‖∇∆mn‖22 ≤ C(1 + ‖mn‖18W 2,2 + ‖Hn‖4W 1,2). (8.22)

Proof:
We apply operator ∆ on (8.15) to get

∂t∆mn − α∆2mn = ∆Pnα|∇mn|2mn −∆Pnmn ×∆mn

+∆Pnmn ×Hn − α∆Pnmn × (mn ×Hn).
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Then we multiply the previous identity by ∆mn and we perform integration by
parts. Thanks to the properties of Pn mentioned in the beginning of this section we
get

(∂t∆mn,∆mn) + α‖∇∆mn‖22 ≤ α|(∇(|∇mn|2mn),∇∆mn)|
+|(∇(mn ×∆mn),∇∆mn)|
+|(∇(mn ×Hn),∇∆mn)|
+α|(∇(mn × (mn ×Hn)),∇∆mn)|.

Next we derive the terms on the right-hand side. Then we use appropriate integral
inequalities:

∂t‖∆mn‖22 + α‖∇∆mn‖22
≤ 2‖∇mn‖W 1,4‖∇mn‖4‖mn‖L∞‖∇∆mn‖2

+‖∇mn‖24‖∇mn‖L∞‖∇∆mn‖2 + ‖∇mn‖4‖∆mn‖4‖∇∆mn‖2
+|(mn ×∇∆mn,∇∆mn)|+ ‖∇mn‖4‖Hn‖4‖∇∆mn‖2
+‖mn‖L∞‖∇Hn‖2‖∇∆mn‖2
+2‖∇mn‖4‖mn‖L∞‖Hn‖4‖∇∆mn‖2 + ‖mn‖2L∞‖∇Hn‖2‖∇∆mn‖2.

Notice that the term (mn × ∇∆mn,∇∆mn) = 0. To proceed we use embeddings
W 2,2(Ω) ↪→ L∞(Ω) and W 1,4(Ω) ↪→ L∞(Ω) :

∂t‖∆mn‖22 + α‖∇∆mn‖22
≤ 2‖∇mn‖W 1,4‖∇mn‖4‖mn‖W 2,2‖∇∆mn‖2

+‖∇mn‖24‖∇mn‖W 1,4‖∇∆mn‖2 + ‖∇mn‖4‖∆mn‖4‖∇∆mn‖2
+‖∇mn‖4‖Hn‖4‖∇∆mn‖2 + ‖mn‖W 2,2‖∇Hn‖2‖∇∆mn‖2
+2‖∇mn‖4‖mn‖W 2,2‖Hn‖4‖∇∆mn‖2
+‖mn‖2W 2,2‖∇Hn‖2‖∇∆mn‖2

and then we get rid of the term ‖∇∆mn‖2 using the weighted Young inequality:

∂t‖∆mn‖22 + α‖∇∆mn‖22
≤ ε‖∇∆mn‖22 + Cε‖∇mn‖2W 1,4‖∇mn‖24‖mn‖2W 2,2

+Cε‖∇mn‖44‖∇mn‖2W 1,4 + Cε‖∇mn‖24‖∆mn‖24
+Cε‖∇mn‖24‖Hn‖24 + Cε‖∇Hn‖22‖mn‖2W 2,2

+Cε‖∇mn‖24‖Hn‖24‖mn‖2W 2,2 + Cε‖∇Hn‖22‖mn‖4W 2,2 . (8.23)

We make use of (10.16) (10.12) and (10.13) to continue in (8.23)

∂t‖∆mn‖22 + α‖∇∆mn‖22
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≤ ε‖∇∆mn‖22 + Cε‖∆mn‖
1
2
2 ‖∇∆mn‖

3
2
2 ‖∇mn‖

1
2
2 ‖∆mn‖

3
2
2 ‖mn‖2W 2,2

+Cε‖∇mn‖2‖∆mn‖32‖∆mn‖
1
2
2 ‖∇∆mn‖

3
2
2

+Cε‖∇mn‖
1
2
2 ‖∆mn‖

3
2
2 ‖∆mn‖

1
2
2 ‖∇∆mn‖

3
2
2

+Cε‖∇mn‖
1
2
2 ‖∆mn‖

3
2
2 ‖Hn‖

1
2
2 ‖∇Hn‖

3
2
2 + Cε‖∇Hn‖42 + ‖mn‖4W 2,2

+Cε‖∇mn‖
1
2
2 ‖∆mn‖

3
2
2 ‖Hn‖

1
2
2 ‖∇Hn‖

3
2
2 ‖mn‖2W 2,2

+Cε‖∇Hn‖42 + ‖mn‖8W 2,2 . (8.24)

In the previous expression we skipped some terms. We considered only terms in-
cluding the highest space derivation as the “worst” case. The terms with lowest
space derivative would not cause any problems.

After using the weighted Young inequality and setting ε small enough we get

∂t‖∆mn‖22 + ‖∇∆mn‖22 ≤ Cε(1 + ‖Hn‖42 + ‖∇Hn‖42 + ‖mn‖18W 2,2),

which verifies the result of the lemma. ¤

Lemma 8.4 For every real positive T the following estimates are valid for the so-
lution mn to (8.15)–(8.19):

∂t‖En‖22 + ∂t‖Hn‖22 ≤ C(1 + ‖mn‖18W 2,2 + ‖Hn‖42). (8.25)

Proof:
Take (8.16) and (8.17) and multiply by En, Hn respectively, to get

(∂tEn,En) + σ‖En‖22 − (∇×Hn,En) = 0, (8.26)

(∂tHn,Hn) + (∇×En,Hn) = (∂tmn,Hn). (8.27)

Because of the boundary conditions (8.7)–(8.8) we have

(∇×Hn,En)− (∇×En,Hn) = 0.

Then after summing up the equations (8.26)–(8.27) we get

∂t‖En‖22 + ∂t‖Hn‖22 ≤ |(∂tmn,Hn)|. (8.28)

Using (8.15) we estimate the term |(∂mn,Hn)| as follows

|(∂tmn,Hn)| ≤ α|(∆mn,Hn)|+ α|(|∇mn|2mn,Hn)|+ |(mn ×∆mn,Hn)|
+|(mn ×Hn,Hn)|+ α|(mn × (mn ×Hn),Hn)|.
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We use appropriate integral inequalities to get

|(∂tmn,Hn)| ≤ α‖∆mn‖2‖Hn‖2 + α‖∇mn‖24‖mn‖L∞‖Hn‖2
+‖mn‖L∞‖∆mn‖2‖Hn‖2 + α‖mn‖2L∞‖Hn‖22.

We use the embeddings W 2,2(Ω) ↪→ W 1,4(Ω) ↪→ L∞(Ω) and Young’s inequality to
proceed and get

|(∂tmn,Hn)| ≤ C
[

‖mn‖2W 2,2 + ‖Hn‖22 + ‖mn‖6W 2,2 + ‖mn‖4W 2,2 + ‖Hn‖42
]

.

Then we again apply the Young inequality to verify that

|(∂tmn,Hn)| ≤ C(‖mn‖18W 2,2 + ‖Hn‖42).

The previous result together with (8.28) concludes the proof. ¤

Lemma 8.5 For every real positive T and ε the following estimates are valid for
the solution mn to (8.15)–(8.19):

∂t‖∇En‖22 + ∂t‖∇Hn‖22 ≤ Cε(1 + ‖mn‖18W 2,2 + ‖∇Hn‖42) + ε‖∇∆mn‖22. (8.29)

Proof:
We multiply (8.16) and (8.17) with −∆En and −∆Hn, respectively. Because of the
boundary conditions (8.7)–(8.8) we get

∂t‖∇En‖22 + ∂t‖∇Hn‖22 ≤ |(∂t∇mn,∇Hn)|. (8.30)

We multiply (8.15) with −∆Hn to estimate the term |(∂t∇mn,∇Hn)|. Thus we get

|(∂t∇mn,∇Hn)|
≤ α|(∇∆mn,∇Hn)|+ α|(∇(|∇mn|2mn),∇Hn)|

+|(∇(mn ×Hn),∇Hn)|+ |(∇(mn ×∆mn),∇Hn)|
+α|(∇(mn × (mn ×Hn)),∇Hn)|

≤ ε‖∇∆mn‖22 + Cε‖∇Hn‖22
+2‖∇mn‖W 1,4‖∇mn‖4‖mn‖L∞‖∇Hn‖2
+‖∇mn‖24‖∇mn‖L∞‖∇Hn‖2 + ‖∇mn‖4‖∆mn‖4‖∇Hn‖2
+‖mn‖L∞‖∇∆mn‖2‖∇Hn‖2 + ‖∇mn‖4‖Hn‖4‖∇Hn‖2
+‖mn‖L∞‖∇Hn‖22 + 2‖∇mn‖4‖mn‖L∞‖Hn‖4‖∇Hn‖2
+‖mn‖2L∞‖∇Hn‖22.
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Next we use (10.16), the embeddings W 2,2(Ω) ↪→ W 1,4(Ω) ↪→ L∞(Ω), and the
Young inequality for several times to arrive at

|(∂t∇mn,∇Hn)| ≤ ε‖∇∆mn‖22 + Cε

[
‖∇Hn‖22 + ‖∆mn‖24

+‖mn‖4W 2,2‖∇Hn‖22 + ‖mn‖2W 2,2‖∇Hn‖22
+‖mn‖2W 2,2 + ‖Hn‖4W 1,2 + ‖∇Hn‖42 + ‖mn‖4W 2,2

]
.

Using (10.13) and again the Young inequality gives us

|(∂t∇mn,∇Hn)| ≤ ε‖∇∆mn‖22 + Cε

[
1 + ‖mn‖8W 2,2 + ‖Hn‖4W 1,2

]
,

which confirms the result of the lemma. ¤

If we summarize the results from Lemmas 8.1–8.5, we get

∂t‖mn‖22 + ∂t‖∆mn‖22 + α‖∇∆mn‖22
+∂t‖En‖22 + ∂t‖Hn‖22 + ∂t‖∇En‖22 + ∂t‖∇Hn‖22
≤ Cε(1 + ‖mn‖18W 2,2 + ‖En‖42 + ‖Hn‖42 + ‖∇En‖42 + ‖∇Hn‖42)

+ε‖∇∆mn‖22.
(8.31)

As ε was arbitrary positive real number suppose ε = α/2. Then, we easily get rid
of the term ε‖∇∆mn‖22.

As Ω is a bounded regular open set we have the equivalence of the norms ‖u‖W 2,2

and
(
‖u‖22 + ‖∆u‖22

) 1
2 , see Appendix, remark after Lemma 10.4. The proof of this

equivalence is based on the regularity result for the operator I −∆ with domain
{

u ∈W 2,2(Ω),
∂u

∂ν

∣
∣
∣
∂Ω

= 0.

}

We refer to [18, 32]. Then we use this result in (8.31) to replace ‖mn‖W 2,2 with
‖m‖22 + ‖∆m‖22. to get

∂t‖mn‖22 + ∂t‖∆mn‖22 + α
2 ‖∇∆mn‖22

+∂t‖En‖22 + ∂t‖Hn‖22 + ∂t‖∇En‖22 + ∂t‖∇Hn‖22
≤ C(1 + ‖mn‖182 + ‖∆mn‖182 + ‖En‖42 + ‖Hn‖42

+‖∇En‖42 + ‖∇Hn‖42).
(8.32)

Let us define the following functions

f(t) = ∂t‖mn‖22 + ∂t‖∆mn‖22,
g(t) = ∂t‖En‖22 + ∂t‖Hn‖22 + ∂t‖∇En‖22 + ∂t‖∇Hn‖22.

From (8.32) we can then conclude that

f ′(t) + g′(t) ≤ C(1 + f9(t) + g2(t)). (8.33)

In the next lemma we mention a Bihary-type inequality, see for example [3].
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Lemma 8.6 Let u, a, b and k be nonnegative continuous functions in J = [α1, β1],
and let p > 1 be a constant. Suppose a/b is nondecreasing in J and

u(t) ≤ a(t) + b(t)

∫ β1

α1

k(s)up(s)ds, t ∈ J.

Then

u(t) ≤ a(t)

{

1− (p− 1)

∫ β1

α1

k(s)b(s)ap−1(s)ds

} 1
1−p

, α ≤ t ≤ βp,

where βp = sup{t ∈ J : (p− 1)
∫ t

α1
k(s)b(s)ap−1(s)ds < 1}.

The following lemma summarize the in-time local regularity results for the solution
(mn,En,Hn) to the system (8.15)–(8.19).

Lemma 8.7 There exist a positive T0 and a constant C both depending only on the
domain Ω, α, and on the size of initial data in W 2,2(Ω) such that for every positive
T < T0

sup
0<t<T

[
‖mn‖2W 2,2 + ‖En‖2W 1,2 + ‖Hn‖2W 1,2

]

≤ C, (8.34)

sup
0<t<T

‖mn‖2L∞ ≤ C, (8.35)

∫ T

0

‖mn‖2W 3,2dτ ≤ C. (8.36)

Proof:
The first result comes directly using Lemma 8.6 for the functions f and g. The
second results is a simple consequence of the first one and the embedding L∞(Ω) ↪→
W 2,2(Ω). The third result can be verified by integrating of (8.32) in time and using
(8.34). ¤

Lemma 8.8 There exist a positive T0 and a constant C both depending only on the
domain Ω, α and on the size of initial data in W 2,2(Ω) such that for every positive
T < T0 ∫ T

0

‖∂tmn‖2W 1,2 ≤ C. (8.37)

Proof:
Multiply (8.15) first with ∂tmn and then with −∂t∆mn to verify the result of
lemma. ¤
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H1
∇0(Ω)

Ht0(curl,div0,Ω)
Hn0(curl,div0,Ω)

approximated by Vn,V
t0
n ,V

n0
n

↓
↓ (solution of discretized

M-LL system)

↓
(weak solution

of M-LL system)
mn,En,Hn

↓
↓ (convergence in various

function spaces)

? ↓
m,E,H = m,E,H

Figure 8.2: Convergence diagram

8.4 The convergence of finite approximation

Now we would like to prove that the sequences {mn}, {En}, and {Hn} converge
in some sense and that the limits are weak solutions to (8.1)–(8.5). By this we
complete the convergence diagram in Figure 8.2.

Lemma 8.9 For T0 from Lemma 8.7 there exists a triple (m,E,H), where

m ∈ L2(I,W 3,2(Ω)) ∩ L∞(I,W 1,2(Ω)),

E,H ∈ L2(I,W 1,2(Ω)) ∩ L∞(I, L2(Ω)),

∂tm, ∂tE, ∂tH ∈ L2(I, L2(Ω)),

for I = 〈0, T0〉 and subsequences still denoted {mn}n, {En}n, {Hn}n such that for
any 1 < p <∞

mn ⇀m in L2(I,W 3,2(Ω)), (8.38)

∂tmn ⇀ ∂tm in L2(I,W 1,2(Ω)), (8.39)
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mn →m in L2(I,W 2,2(Ω)), (8.40)

mn →m in Lp(I,W 1,2(Ω)), (8.41)

Hn ⇀ H in L2(I,W 1,2(Ω)), (8.42)

En ⇀ E in L2(I,W 1,2(Ω)), (8.43)

∂tHn ⇀ ∂tH in L2(I, L2(Ω)), (8.44)

∂tEn ⇀ ∂tE in L2(I, L2(Ω)), (8.45)

Hn → H in Lp(I, L2(Ω)), (8.46)

En → E in Lp(I, L2(Ω)). (8.47)

Proof:
From (8.36) we have boundedness of {mn} in L2(I,W 3,2(Ω)). Since the space
L2(I,W 3,2(Ω)) is a reflexive Banach space we can conclude that there exists a
subsequence of {mn} still denoted by {mn} such that (8.38) is valid.

Similarly we get weak convergence of {∂tmn} in L2(I,W 1,2(Ω)), because of
(8.37). We denote the convergent subsequence of {∂tmn} again by {∂tmn}:

∂tmn ⇀ w in L2(I,W 1,2(Ω)).

We use Theorem 10.8. This theorem says if un ⇀ u and ∂tun ⇀ v in Lp(I, V ),
where V is a reflexive Banach space then ∂tu = v in sense of Lp(I, V ). So, we
confirm (8.39).

Now, we show that {mn} is relatively compact in L2(I,W 2,2(Ω)). Set X =
W 3,2(Ω), B = W 2,2(Ω) and Y = L2(Ω). Then the embedding schema X ↪→↪→
B ↪→ Y is valid. We have also the estimates

‖mn‖L2(I,X) ≤ C and ‖∂tmn‖L2(I,Y ) ≤ C.

Then according to Theorem 10.9 we deduce that {mn} is relatively compact in
L2(I,W 2,2(Ω)).

Since {mn} is relatively compact in L2(I,W 2,2(Ω)) we can choose a subsequence
still denoted by {mn} such that (8.40) is valid.

Similarly we show that {mn} is relatively compact in Lp(I,W 1,2(Ω)). Set X =
W 2,2(Ω), B = W 1,2(Ω) and Y = L2(Ω). Then X ↪→↪→ B ↪→ Y. Using the estimates
‖mn‖Lp(I,X) ≤ C‖mn‖L∞(I,X) ≤ C and ‖∂tmn‖L2(I,Y ) ≤ C according to Theo-
rem 5.1 from [51] we deduce that {mn} is relatively compact in Lp(I,W 1,2(Ω)).
Therefore

mn →m in Lp(I,W 1,2(Ω)).

Using the same argumentation as for {mn} while deriving (8.38)–(8.39) we can
prove also the results (8.42)–(8.45).
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For sequences {Hn} and {En} we can prove that they are relatively compact in
Lp(I, L2(Ω)). Set X = W 1,2(Ω) and B = Y = L2(Ω). Then X ↪→↪→ B ↪→ Y. We
have also

‖Hn‖Lp(I,X) ≤ C‖Hn‖L∞(I,X) ≤ C and ‖∂tHn‖L2(I,Y ) ≤ C.

Therefore, according to Theorem 5.1 from [51] we deduce that {Hn} is relatively
compact in Lp(I, L2(Ω)). The same can be done also for {En}. Thus

Hn → H in Lp(I, L2(Ω)),

En → E in Lp(I, L2(Ω)).

¤

From (8.38)–(8.47) we can compute the following limits:

lim
n→∞

∫ t

0

(∇∆mn −∇∆m, φ) = 0, (8.48)

lim
n→∞

∫ t

0

(∂tmn − ∂tm, φ) = 0, (8.49)

lim
n→∞

∫ t

0

(∇∂tmn −∇∂tm, φ) = 0, (8.50)

lim
n→∞

∫ t

0

‖mn −m‖2W 2,2(Ω) = 0, (8.51)

lim
n→∞

∫ t

0

‖mn −m‖pW 1,2(Ω) = 0, (8.52)

for 1 < p <∞ and for all admissible φ.
For functions Hn and En we have

lim
n→∞

∫ t

0

(∇Hn −∇H, φ) = 0, (8.53)

lim
n→∞

∫ t

0

(∇En −∇E, φ) = 0, (8.54)

lim
n→∞

∫ t

0

(∂tHn − ∂tH, φ) = 0, (8.55)

lim
n→∞

∫ t

0

(∂tEn − ∂tE, φ) = 0, (8.56)

lim
n→∞

∫ t

0

‖Hn −H‖pL2(Ω) = 0, (8.57)

lim
n→∞

∫ t

0

‖En −E‖pL2(Ω) = 0, (8.58)
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for 1 < p <∞ and for all admissible function φ.
We would like to pass n→∞ in the weak formulation of the equations (8.16)–

(8.17), (8.15). To do so, the following lemma will be useful.

Lemma 8.10 For triples (mn,En,Hn) and (m,E,H) from Lemma 8.9 the follow-
ing equalities hold:

L1 := lim
n→∞

∫ t

0

(Pn(mn ×∇mn),∇φ)−
∫ t

0

(m×∇m,∇φ) = 0,

L2 := lim
n→∞

∫ t

0

(Pn(|∇mn|2mn), φ)−
∫ t

0

(|∇m|2m, φ) = 0,

L3 := lim
n→∞

∫ t

0

(Pn(mn ×Hn), φ)−
∫ t

0

(m×H, φ) = 0,

L4 := lim
n→∞

∫ t

0

(Pn((mn ×Hn)×mn), φ)−
∫ t

0

(m×H,m× φ) = 0,

L5 := lim
n→∞

∫ t

0

eσs(Qn(∇×Hn), φ)−
∫ t

0

eσs(∇×H, φ) = 0,

L6 := lim
n→∞

∫ t

0

(Rn(∇×En), φ)−
∫ t

0

(∇×E, φ) = 0.

Proof:
Let us compute the first limit:

L1 := lim
n→∞

∫ t

0

(Pn(mn ×∇mn),∇φ)−
∫ t

0

(m×∇m,∇φ),

≤ lim
n→∞

∫ t

0

(mn ×∇mn, Pn(∇φ))−
∫ t

0

(m×∇m,∇φ),

≤ lim
n→∞

∫ t

0

(mn ×∇mn,∇φ) +
∫ t

0

(mn ×∇mn, Pn(∇φ)−∇φ)

−
∫ t

0

(m×∇m,∇φ),

The projection operator Pn converges strongly to identity so one of the terms vanish
and we get

L1 ≤ lim
n→∞

∫ t

0

(mn ×∇mn,∇φ)−
∫ t

0

(m×∇m,∇φ)

≤ lim
n→∞

∣
∣
∣
∣

∫ t

0

((mn −m)×∇mn,∇φ)
∣
∣
∣
∣
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+ lim
n→∞

∣
∣
∣
∣

∫ t

0

(m× (∇mn −∇m),∇φ)
∣
∣
∣
∣

≤ lim
n→∞

∫ t

0

‖mn −m‖4‖∇mn‖4‖∇φ‖2

+ lim
n→∞

∫ t

0

‖m‖4‖∇mn −∇m‖4‖∇φ‖2,

Next we use embedding W 1,2(Ω) ↪→ L4(Ω) and since the admissible function φ
belong to W 1,2(Ω) we get

L1 ≤ lim
n→∞

∫ t

0

‖mn −m‖W 1,2(Ω)‖mn‖W 2,2

+ lim
n→∞

∫ t

0

‖m‖W 1,2(Ω)‖mn −m‖W 2,2 ,

As a simple consequence of the Cauchy inequality and (8.51) we get

L1 ≤ C lim
n→∞

(∫ t

0

‖mn −m‖2W 1,2(Ω)

) 1
2

+ lim
n→∞

(∫ t

0

‖m‖2W 1,2(Ω)

) 1
2
(∫ t

0

‖mn −m‖2W 2,2

) 1
2

.

According to (8.51) the term between the second brackets is bounded. Thus, from
(8.51) we get

L1 ≤ C lim
n→∞

(∫ t

0

‖mn −m‖2W 2,2(Ω)

) 1
2

= 0.

To compute L2, L3, . . . , L6 we can always perform the same computations as
when computing L1 and get rid of projection operators Pn, Qn and Rn. Then we
get

L2 ≤ lim
n→∞

∣
∣
∣
∣

∫ t

0

(〈∇mn −∇m,∇mn〉mn, φ)

∣
∣
∣
∣

+ lim
n→∞

∣
∣
∣
∣

∫ t

0

(〈∇m,∇mn −∇m〉mn, φ)

∣
∣
∣
∣

+ lim
n→∞

∣
∣
∣
∣

∫ t

0

(|∇m|2(mn −m), φ)

∣
∣
∣
∣

≤ lim
n→∞

∫ t

0

‖∇mn −∇m‖2‖∇mn‖4‖mn‖L∞‖φ‖4
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+ lim
n→∞

∫ t

0

‖∇m‖2‖∇mn −∇m‖4‖mn‖L∞‖φ‖4

+ lim
n→∞

∫ t

0

‖∇m‖2‖∇m‖4‖mn −m‖L∞‖φ‖4.

Since φ ∈W 1,2(Ω) ↪→ L4(Ω) we have ‖φ‖4 ≤ C. We use (8.34) and (8.35) to obtain

L2 ≤ lim
n→∞

∫ t

0

‖∇mn −∇m‖2

+ lim
n→∞

∫ t

0

‖∇m‖2‖∇mn −∇m‖4

+ lim
n→∞

∫ t

0

‖∇m‖2‖∇m‖4‖mn −m‖L∞(Ω).

We make use of embedding W 1,2(Ω) ↪→ L4(Ω), W 2,2(Ω) ↪→ L∞(Ω), the Cauchy
inequality, (10.12), and (10.14) to get

L2 ≤ C lim
n→∞

(∫ t

0

‖∇mn −∇m‖22
) 1

2

+ lim
n→∞

(∫ t

0

‖∇m‖22
) 1

2
(∫ t

0

‖∇mn −∇m‖2W 1,2(Ω)

) 1
2

+ lim
n→∞

(∫ t

0

(

‖∇m‖2‖∇m‖
1
4
2 ‖∆m‖

3
4
2

)2
) 1

2
(∫ t

0

‖mn −m‖2W 2,2(Ω)

) 1
2

.

According to (8.51) we have boundedness of
∫ t

0
‖∇m‖22. Thus after using the Cauchy

inequality with exponents 4/3 and 4 we get

L2 ≤ C lim
n→∞

(∫ t

0

‖mn −m‖2W 2,2(Ω)

) 1
2

+ lim
n→∞

(∫ t

0

‖∇m‖102
) 1

4
(∫ t

0

‖∆m‖22
) 1

4
(∫ t

0

‖mn −m‖2W 2,2(Ω)

) 1
2

.

Now according to (8.51) and (8.52) we can successfully bound another two terms:

L2 ≤ C lim
n→∞

(∫ t

0

‖mn −m‖2W 2,2(Ω)

) 1
2

= 0,

where we have used (8.51).
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Next we compute L3 using embedding W 1,2(Ω) ↪→ L4(Ω) and the Cauchy in-
equality

L3 ≤ lim
n→∞

∣
∣
∣
∣

∫ t

0

((mn −m)×Hn, φ)

∣
∣
∣
∣
+ lim

n→∞

∣
∣
∣
∣

∫ t

0

(m× (Hn −H), φ)

∣
∣
∣
∣

≤ lim
n→∞

∫ t

0

‖mn −m‖2‖Hn‖4‖φ‖4 + lim
n→∞

∫ t

0

‖m‖4‖Hn −H‖2‖φ‖4

≤ lim
n→∞

∫ t

0

‖mn −m‖2‖Hn‖W 1,2(Ω)‖φ‖4

+ lim
n→∞

∫ t

0

‖m‖W 1,2(Ω)‖Hn −H‖2‖φ‖4

≤ lim
n→∞

(∫ t

0

‖mn −m‖22
) 1

2
(∫ t

0

‖Hn‖2W 1,2(Ω)

) 1
2

+ lim
n→∞

(∫ t

0

‖m‖2W 1,2(Ω)

) 1
2
(∫ t

0

‖Hn −H‖22
) 1

2

,

where we have already used that ‖φ‖4 ≤ C. Using the Young inequality, (8.34), and
(8.51) we have

L3 ≤ lim
n→∞

(∫ t

0

‖mn −m‖22
) 1

2

+ lim
n→∞

(∫ t

0

‖Hn −H‖22
) 1

2

= 0,

which comes from (8.51) and (8.57).
Next we compute L4 using embeddings W 1,2(Ω) ↪→ L4(Ω) and W 1,4(Ω) ↪→

L∞(Ω) :

L4 ≤ lim
n→∞

∣
∣
∣
∣

∫ t

0

((mn −m)×Hn,mn × φ)

∣
∣
∣
∣

+ lim
n→∞

∣
∣
∣
∣

∫ t

0

(m×Hn, (mn −m)× φ)

∣
∣
∣
∣

+ lim
n→∞

∣
∣
∣
∣

∫ t

0

(m× (Hn −H),m× φ)

∣
∣
∣
∣

≤ lim
n→∞

∫ t

0

‖mn −m‖4‖Hn‖4‖mn‖4‖φ‖4

+ lim
n→∞

∫ t

0

‖m‖4‖Hn‖4‖mn −m‖4‖φ‖4

+ lim
n→∞

∫ t

0

‖m‖4‖Hn −H‖2‖m‖L∞‖φ‖4
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≤ lim
n→∞

∫ t

0

‖mn −m‖W 1,2‖Hn‖W 1,2‖mn‖W 1,2

+ lim
n→∞

∫ t

0

‖m‖W 1,2‖Hn‖W 1,2‖mn −m‖W 1,2

+ lim
n→∞

∫ t

0

‖m‖W 1,2‖Hn −H‖2‖m‖W 1,4 ,

where we have used ‖φ‖4 ≤ C. The boundedness of mn in W 2,2 and boundedness
of Hn in W 1,2 together with (10.12) and the Cauchy inequality give us

L4 ≤ lim
n→∞

(∫ t

0

‖mn −m‖2W 1,2

) 1
2

+ lim
n→∞

(∫ t

0

‖m‖2W 1,2

) 1
2
(∫ t

0

‖mn −m‖2W 1,2

) 1
2

+ lim
n→∞

(∫ t

0

(

‖m‖
5
4

W 1,2‖m‖
3
4

W 2,2

)2
) 1

2
(∫ t

0

‖Hn −H‖22
) 1

2

≤ lim
n→∞

(∫ t

0

‖mn −m‖2W 1,2

) 1
2

+ lim
n→∞

(∫ t

0

‖m‖2W 1,2

) 1
2
(∫ t

0

‖mn −m‖2W 1,2

) 1
2

+ lim
n→∞

(∫ t

0

‖m‖10W 1,2

) 1
4
(∫ t

0

‖m‖2W 2,2

) 1
4
(∫ t

0

‖Hn −H‖22
) 1

2

Using (8.51) and (8.52) we get

L4 ≤ C lim
n→∞

(∫ t

0

‖mn −m‖2W 1,2

) 1
2

+ lim
n→∞

(∫ t

0

‖Hn −H‖22
) 1

2

= 0,

where we have used (8.51) and (8.57).
To compute L5 we use (8.53) and ‖φ‖W 1,2 ≤ C to conclude

L5 ≤
∣
∣
∣
∣
lim
n→∞

∫ t

0

eσs(∇×Hn −∇×H, φ)

∣
∣
∣
∣
≤ C lim

n→∞

∫ t

0

‖∇Hn −∇H‖2‖φ‖2

≤ C lim
n→∞

∫ t

0

‖∇Hn −∇H‖22 = 0.

Similarly we can also prove that
L6 = 0.
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¤

Remark 8.1 From Lemma 8.9 and 8.10 it follows, that the limit triple (m,E,H)
defined in Lemma 8.9 satisfies the equations (8.10)–(8.12). The fact that ‖m‖2 < C
and ‖H‖2 < C together with the following lemma ensures that equations (8.13) and
(8.14) are also satisfied.

Lemma 8.11 If the initial value vector functions E0(x),H0(x),m0(x) satisfy for
all ϑ1 and ϑ2 the condition

(ϑ1,∇ ·E0) = 0, (ϑ2,∇ · (H0 + βm0)) = 0, (8.59)

where ϑ1(x) ∈ H1
0(Ω) and ϑ2(x) ∈ H1(Ω) and if ‖H+βm‖2 and ‖E‖2 are bounded,

then from (8.11), (8.12) it follows that
∫

I

(∇ ·E, ζ)ds = 0,

∫

I

(∇ ·H+ β∇ ·m, ξ)ds = 0,

where ξ and ζ are from the definition of weak solution.

Proof:
Let us take arbitrary θ ∈ C∞(I, C∞(Ω)). Then we can set φ = ∇θ in (8.12) to get

∫

I

(∇×E,∇θ) =

∫

I

(H+ βm,∇∂tθ) + (H0 + βm0,∇θ(0))

and consequently
∫

I

(E,∇×∇θ)−
∫

I

(E× ν,∇θ)∂Ω = −
∫

I

(∇ · (H+ βm), ∂tθ)

+

∫

I

((H+ βm) · ν, θt)∂Ω
−(∇ · (H0 + βm0), θ(0))

+((H0 + βm0) · ν, θ(0))∂Ω.

Left-hand side is zero since ∇ × ∇θ = 0 and the values of E · ν are zero on the
boundary. The boundary terms on the right-hand side vanish because (H+βm) ·ν
is zero on the boundary. Since we suppose (8.59) we get

0 =

∫

I

((∇ ·H+ β∇ ·m), ∂tθ).

Finally we get
∫

I

(∇ · (H+ βm), θ) = 0, ∀θ ∈ C∞(I, C∞(Ω)). (8.60)
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From the density of C∞(I, C∞(Ω)) functions in L∞(I,H1(Ω)) we have

∀ξ ∈ L∞(I,H1(Ω)) ∀ε > 0 ∃θ ∈ C∞(I, C∞(Ω)) : max
t∈I

‖ξ − θ‖H1 < ε. (8.61)

Then we have
∫

I

(∇ · (H+ βm), ξ) =

∫

I

(∇ · (H+ βm), θ)

+

∫

I

(∇ · (H+ βm), ξ − θ)

= −
∫

I

(H+ βm,∇(ξ − θ))

+

∫

I

((H+ βm) · ν, ξ − θ)∂Ω.

The boundary term on the right-hand side vanish. We obtain
∫

I

(∇ · (H+ βm), ξ) ≤
∫

I

‖H+ βm‖2‖∇(ξ − θ)‖2 ≤ Cε.

Since ε was arbitrary small we can conclude (8.13).
Similar procedure we can apply to (8.11). Take arbitrary θ ∈ C∞0 (I, C∞(Ω)).

Then we can set ψ = ∇θ in (8.11) to get
∫

I

eσs(∇×H,∇θ) +
∫

I

(Eeσs,∇∂tθ) + (E0,∇θ(0)) = 0,

∫

I

eσs(H,∇×∇θ)−
∫

I

eσs(H× ν,∇θ)∂Ω −
∫

I

(∇ · (Eeσs), ∂tθ)

+

∫

I

(eσsE · ν, ∂tθ)∂Ω − (∇ ·E0, θ(0)) + (E0 · ν, θ(0))∂Ω = 0.

Realizing that θ vanish on the boundary and using (8.59) we get

0 =

∫

I

(∇ · (Eeσs), ∂tθ).

Note that the function eσt > 1 is constant in space. Then we get
∫

I

(∇ ·E, θ) = 0, ∀θ ∈ C∞(I, C∞0 (Ω)). (8.62)

From the density of C∞(I, C∞0 (Ω)) functions in L∞(I,H1
0(Ω)) we have

∀ζ ∈ L∞(I,H1
0(Ω)) ∀ε > 0 ∃θ ∈ C∞(I, C∞0 (Ω)) : max

t∈I
‖ξ − θ‖H1 < ε. (8.63)
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Then we have
∫

I

(∇ ·E, ζ) =

∫

I

(∇ ·E, θ) +
∫

I

(∇ ·E, ζ − θ)

= −
∫

I

(E,∇(ζ − θ)) +

∫

I

(E · ν, ζ − θ)∂Ω.

The boundary term on the right-hand side vanish. We obtain

∫

I

(∇ ·E, ζ) ≤
∫

I

‖E‖2‖∇(ζ − θ)‖2 ≤ Cε.

Since ε was arbitrary small we can conclude (8.14). ¤

8.5 Regularity results for weak solution

The final aim of this chapter is to derive regularity results for the weak solution and
prove its uniqueness. Estimates are summarized in the following theorem.

Theorem 8.1 Suppose that the initial conditions satisfy (8.59), and moreover

m0 ∈W 2,2(Ω) and H0,E0 ∈W 1,2(Ω).

Then there exists a positive T ∗ > 0 such that on the interval (0, T ∗) there exists
a unique weak solution of the system (8.9), (8.2)–(8.5) defined by Definition 8.1
satisfying

sup
t∈I

{
‖m‖W 2,2(Ω) + ‖E‖W 1,2(Ω) + ‖H‖W 1,2(Ω)

}
≤ C, (8.64)

∫ T∗

0

‖m‖2W 3,2 ≤ C. (8.65)

Proof:
The existence of a weak solution was already mentioned in Remark 8.1.

Coming from (8.34) and embedding L∞ ↪→ Lp, 1 < p <∞, we know that there
exists one constant C such that

‖mn‖Lp(I,W 2,2(Ω)) ≤ ‖mn‖L∞(I,W 2,2(Ω)) ≤ C.

Notice, that C does not depend on p. Since Lp(I,W 2,2(Ω)) is a reflexive Banach
space we conclude from Theorem 10.6 that for all p

mn ⇀m in Lp(I,W 2,2(Ω)).
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From Theorem 10.5 we get uniform bound for all p

‖m‖Lp(I,W 2,2(Ω)) ≤ lim inf
n→∞

‖mn‖Lp(I,W 2,2(Ω)) ≤ C. (8.66)

Realizing that

m ∈
⋂

p∈N

Lp(I,W 2,2(Ω))

we verify together with (8.66) the assumptions of Theorem 10.7 and thusm belongs
to L∞(I,W 2,2(Ω)).

Similarly we can prove that the functions E and H belong to L∞(I,W 1,2(Ω))
which completes the proof of (8.64).

The proof of (8.65) is a consequence of (8.38) and Theorem 10.5.
Now we prove uniqueness of the weak solution on the interval 〈0, T0〉. Suppose

that (m1,E1,H1) and (m2,E2,H2) are two solutions of the system (8.9), (8.2)–(8.5)
with the same initial conditions. Denote

m̄ =m1 −m2, Ē = E1 −E2, H̄ = H1 −H2.

The solutions m1,m2,H1,H2 satisfy equation (8.9). The differences m̄, H̄ then
satisfy

∂tm̄− α∆m̄ = α|∇m1|2m̄+ (|∇m1|2 − |∇m2|2)m2 − m̄×∆m1

−m2 ×∆m̄− m̄×H1 −m2 × H̄

+m̄× (m1 ×H1) +m2 × (m̄×H1)

+m2 × (m2 × H̄) (8.67)

in a weak sense. Taking the previous equation, multiplying by m̄ and integrating
over Ω we directly get rid of the terms m̄ ×H1, m̄ × ∆m1 and m̄ × (m1 ×H1).
Remaining equation reads as

1

2
∂t‖m̄‖22 + α‖∇m̄‖22 = α

∫

Ω

|∇m1|2〈m̄, m̄〉+
∫

Ω

(〈∇m̄,∇m1 +∇m2〉〈m2, m̄〉

−
∫

Ω

〈m2 ×∆m̄, m̄〉 −
∫

Ω

〈m2 × H̄, m̄〉

+

∫

Ω

〈m2 × (m̄×H1), m̄〉+
∫

Ω

〈m2 × (m2 × H̄, m̄)〉.

Next we perform integration by parts in the term including m2 ×∆m̄ and then we
use integral inequalities to estimate

1

2
∂t‖m̄‖22 + α‖∇m̄‖22 ≤ α‖∇m1‖24‖m̄‖24



8.5. Regularity results for weak solution 137

+‖∇m̄‖2(‖∇m1‖4 + ‖∇m2‖4)‖m2‖L∞‖m̄‖4
+‖∇m2‖4‖∇m̄‖2‖m̄‖4 + ‖m2‖4‖H̄‖2‖m̄‖4
+‖m2‖L∞‖m̄‖24‖H1‖2 + ‖m2‖2L∞‖H̄‖2‖m̄‖2.

From the embeddings W 2,2(Ω) ↪→ L∞(Ω) and W 2,2(Ω) ↪→ W 1,4(Ω) we see for
i = 1, 2 that

‖∇mi‖4 ≤ C‖mi‖W 2,2

‖mi‖L∞ ≤ C‖mi‖W 2,2

Further, using (8.64), (10.11), (10.12) and the Young inequality we arrive at

∂t‖m̄‖22 + ‖∇m̄‖22 ≤ ε‖∇m̄‖22 + Cε‖m̄‖22 + Cε‖H̄‖22.

Setting ε small enough and integrating the equation in time we get

‖m̄(t)‖22 − ‖m̄(0)‖22 +
∫ t

0

‖∇m̄(s)‖22ds ≤ C

∫ t

0

‖m̄(s)‖22ds+ C

∫ t

0

‖H̄(s)‖22ds.

Since the initial conditions for m1 and m2 are the same we have ‖m̄(0)‖2 = 0. Note
that the time variable t is not bigger that T0. Next we use Gronwall’s lemma, see
Appendix, and change the constant C if necessary to obtain

‖m̄(t)‖22 ≤ C

∫ t

0

‖H̄(s)‖22ds

+

∫ t

0

(

C

∫ s

0

‖H̄(τ)‖22dτ
)

Ce(t−s)Cds

≤ C

∫ t

0

‖H̄(s)‖22ds

+

∫ t

0

(

C

∫ t

0

‖H̄(τ)‖22dτ
)

CeT0Cds

≤ C

∫ t

0

‖H̄(s)‖22ds+ T0C

∫ t

0

‖H̄(τ)‖22dτ

≤ C

∫ t

0

‖H̄(s)‖22ds. (8.68)

Direct use of Maxwell’s equations to obtain estimate on the term ‖H̄‖2 would not
be successful at this stage, because on the right-hand side of Maxwell’s equations
the term ‖∂tm̄‖2 arises and up to now we do not have any estimate on it. Therefore
we need to obtain first estimate on ‖∆m̄‖2, which will be used to estimate ‖∂tm̄.‖2
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Multiplying (8.67) by −∆m̄ and integrating over Ω gives

1

2
∂t‖∇m̄‖22 + α‖∆m̄‖22
≤ α‖∇m1‖24‖m̄‖L∞‖∆m̄‖2

+‖∇m̄‖4(‖∇m1‖4 + ‖∇m2‖4)‖m2‖L∞‖∆m̄‖2
+‖m̄‖L∞‖∆m1‖2‖∆m̄‖2 + ‖m̄‖L∞‖H1‖2‖∆m̄‖2
+‖m2‖L∞‖H̄‖2‖∆m̄‖2 + ‖m̄‖L∞‖m1‖L∞‖H1‖2‖∆m̄‖2
+‖m2‖L∞‖m̄‖L∞‖H1‖2‖∆m̄‖2 + ‖m2‖2L∞‖H̄‖2‖∆m̄‖2.

From the embedding W 2,2(Ω) ↪→ L∞(Ω) and (8.64) we get rid of terms

‖mi‖L∞ , ‖∆mi‖2, ‖∇mi‖4, ‖Hi‖2.
In what remains we use the embedding W 1,4(Ω) ↪→ L∞(Ω), and the Young inequal-
ity to obtain

∂t‖∇m̄‖22 + ‖∆m̄‖22 ≤ C‖∇m̄‖4‖∆m̄‖2 + Cε‖H̄‖22 + ε‖∆m̄‖22.
Next we apply (10.12) and the Young inequality with exponents 8/7 and 8 to obtain

∂t‖∇m̄‖22 + ‖∆m̄‖22 ≤ C‖∇m̄‖
1
4
2 ‖∆m̄‖

7
8
2 + Cε‖H̄‖22 + ε‖∆m̄‖22

≤ Cε‖∇m̄‖22 + Cε‖H̄‖22 + ε‖∆m̄‖22.
Integrating over time interval 〈0, t〉, realizing that ‖∇m̄(0)‖2 = 0, setting ε small
enough, and using Gronwall’s lemma we conclude

‖∇m̄(t)‖22 +
∫ t

0

‖∆m̄(s)‖22ds ≤ C

∫ t

0

‖H̄(s)‖22ds. (8.69)

Further we continue with estimating ‖∂tm̄‖2. Take (8.67), multiply it by ∂tm̄ and
integrate over Ω to get

‖∂tm̄‖22 +
1

2
∂t‖∇m̄‖22

≤ ‖∇m1‖24‖m̄‖L∞‖∂tm̄‖2 + ‖∇m̄‖4(‖∇m1‖4 + ‖∇m2‖4)‖m2‖L∞‖∂tm̄‖2
+‖m̄‖L∞‖∆m1‖2‖∂tm̄‖2 + ‖m2‖L∞‖∆m̄‖2‖∂tm̄‖2
+‖m̄‖L∞‖H1‖2‖∂tm̄‖2 + ‖m2‖L∞‖H̄‖2‖∂tm̄‖2
+‖m̄‖L∞‖m1‖L∞‖H1‖2‖∂tm̄‖2 + ‖m2‖2L∞‖H̄‖2‖∂tm̄‖2.

We can again get rid of terms containing mi and Hi. Then we use the embedding
W 1,4(Ω) ↪→ L∞(Ω), and thus

‖∂tm̄‖22 +
1

2
∂t‖∇m̄‖22 ≤ Cε‖∇m̄‖24 + Cε‖∆m̄‖22 + Cε‖H̄‖22 + ε‖∂tm̄‖22.
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The embedding W 2,2(Ω) ↪→W 1,4(Ω) and setting ε small enough give

‖∂tm̄‖22 + ∂t‖∇m̄‖22 ≤ Cε‖∇m̄‖22 + Cε‖∆m̄‖22 + Cε‖H̄‖22.

Integrating over time interval, realizing that ‖∇m̄(t)‖2 = 0, and using (8.69) leads
to ∫ t

0

‖∂tm̄(s)‖22ds+ ‖∇m̄(t)‖22 ≤ Cε

∫ t

0

‖∇m̄(s)‖22ds+ Cε

∫ t

0

‖H̄‖22.

The use of Gronwall’s lemma gives us finally

∫ t

0

‖∂tm̄(s)‖22ds+ ‖∇m̄(t)‖22 ≤ Cε

∫ t

0

‖H̄‖22. (8.70)

At this stage we are ready to incorporate Maxwell’s equations. Since (8.2) and
(8.3) are linear we can directly consider both equations valid also for the triple
(m̄, Ē, H̄)

∂tĒ+ σĒ−∇× H̄ = 0

∂tH̄+∇× Ē = −β∂t.m̄

Next we multiply the equations by Ē, H̄, integrate it over Ω and after summation
we get using the Young inequality

1

2
∂t‖Ē‖22 +

1

2
∂t‖H̄‖22 + σ‖Ē‖22 ≤ C‖∂tm̄‖22 + C‖H̄‖22.

After integration in time, realizing that ‖H̄(0)‖2 = ‖Ē(0)‖2 = 0 and using (8.70)
we get

‖Ē(t)‖22 + ‖H̄(t)‖22 ≤ Cε

∫ t

0

‖H̄‖22,

which after using Gronwall’s lemma gives

‖Ē‖22 ≤ 0, ‖H̄‖22 ≤ 0.

Going back to the relations (8.68),(8.69) and (8.70) we conclude

sup
0<t<T0

‖m̄(t)‖W 1,2 +

∫ T0

0

(
‖∆m̄(s)‖22 + ‖∂tm̄(s)‖22ds

)
= 0,

which concludes the proof of the uniqueness. ¤



9 Numerical schemes for the
single LL equation

(In the fall of 1972 President Nixon announced that the rate of increase of inflation was

decreasing. This was the first time a sitting president used the third derivative to

advance his case for reelection. Hugo Rossi)

In Chapter 7 we stated the results concerning the regularity of an exact solution to
the LL equation in 3D. We study the system (7.2)–(7.4).

These results will be used in this chapter to prove the convergence results of
the numerical scheme introduced later in the chapter. In Section 9.1 we introduce a
numerical scheme and we state Theorems 9.1 and 9.2 concerning the error estimates
in time for the numerical scheme. We prove these theorems in Sections 9.2 and 9.3.

Finally, we confirm the theoretical results with a numerical example in Section
9.4.

9.1 Numerical scheme and error estimates

In the following, any number placed to the upper right of a function represents an
index, not a power. We use the symbol δfi for the backward Euler approximation
of the time derivation, so δf i = 1

τ (f
i+1 − f i).

We provide a standard equidistant discretization of the time interval (0, T0)
with J time steps of a size τ = T0/J and we denote tj = jτ for j = 0, . . . , J.
The author in [61, Section 4.2.1] considers the following semi-implicit scheme and
proves the error estimates, all in 2D.

140
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δmj+1 − α∆mj+1 = α|∇mj |2mj+1 −mj+1 ×∆mj+1, m0 =m0. (9.1)

Note that the previous scheme is nonlinear. The term mj+1 ×∆mj+1 makes the
scheme quadratic on each time level.

We change the scheme so that it becomes linear on each time level and we
consider the case of 3D

δmj+1 − α∆mj+1 = α|∇mj |2mj+1 −mj ×∆mj+1, m0 =m0. (9.2)

The difference is in the curl term. We consider m in this term taken from the
previous time level.

The existence and uniqueness of mj+1 on every time step is guaranteed by the
Lax-Milgram theorem, see Appendix, as soon as we verify the V-ellipticity of the
bilinear form

a(u,v) := (u,v) + ατ(∇u,∇v)− ατ(|∇mj |2u,v)
−τ(∇v×mj ,∇u)− τ(v×∇mj ,∇u).

Let us compute:

a(u,u) ≥ ‖u‖22 + ατ‖∇u‖22 − ατ |(|∇mj |2u,u)| − τ |(u×∇mj ,∇u)|
≥ ‖u‖22 + ατ‖∇u‖22 − ατ‖∇mj‖24‖u‖24 − τ‖u‖4‖∇mj‖4‖∇u‖2
≥ ‖u‖22 + ατ‖∇u‖22 − Cατ‖u‖24 − Cτ‖u‖4‖∇u‖2,

where we have already used Remark 9.1 below. Now, we use inequality (10.11) and
the Young inequality to finish verifying the V-ellipticity of a(u,v)

a(u,u) ≥ ‖u‖22 + ατ‖∇u‖22 − Cεατ‖u‖24 − ετ‖∇u‖22
≥ ‖u‖22 + ατ‖∇u‖22 − Cεατ‖u‖22 − Cεατ‖u‖

1
2
2 ‖∇u‖

3
2
2 − ετ‖∇u‖22

≥ ‖u‖22(1− Cεατ) + ‖∇u‖22(ατ − 2εατ) ≥ ατ

2
‖u‖2W 1,2 ,

setting ε = 1/4 and considering τ ≤ (2Cεα)
−1.

To verify the boundedness of a(u,v) in W 1,2(Ω) norm we simply write

a(u,v) ≤ ‖u‖2‖v‖2 + ατ‖∇u‖2‖∇v‖2 + ατ‖∇mj‖24‖u‖4‖v‖4
+τ‖∇v‖2‖mj‖L∞‖∇u‖2 + τ‖v‖4‖∇mj‖4‖∇u‖2.

Now, we use the embedding W 2,2 ↪→W 1,4 ↪→ L∞ and Remark 9.1 below to get

a(u,v) ≤ C‖u‖W 1,2‖v‖W 1,2 .

We demonstrate the usefulness of the scheme (9.2) by the following theorem
which guarantees the convergence of the scheme in time. This theorem is the main
result of this chapter.
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Theorem 9.1 (Convergence theorem) Let 0 < tJ < T0(m). Let {mj}Jj=0 be
the solution to (9.2) and m solves (7.2)–(7.4) for m0 ∈ W 2,2(Ω), |m0| = 1 on
Ω. Let τ ≤ τ0 for τ0 being sufficiently small. Then we have

max
0≤j≤J

‖m(tj)−mj‖2 +



τ

J∑

j=0

‖∇{m(tj)−mj}‖22





1
2

≤ Cτ, (9.3)

max
0≤j≤J

‖∇m(tj)−∇mj‖2 +



τ
J∑

j=0

‖∆{m(tj)−mj}‖22





1
2

≤ C
√
τ . (9.4)

Remark 9.1 As a simple consequence of Theorem 7.3 and Theorem 9.1 we have
that the solution {mj}Jj=0 to (9.2) enjoys

max
0≤j≤J

∥
∥mj

∥
∥
W 2,2 ≤ C.

Notice that we do not enforce |mj | = 1 and moreover the scheme (9.2) does
not guarantee this feature. However, we are able to prove some kind of convergence
of the modulus |mj | to 1 as indicated by the next theorem.

Theorem 9.2 (Modulus theorem) Let the time discretization step τ be the
same as in the previous theorem. Then the solution {mj}Jj=0 satisfies the following
condition

max
0≤j≤J

‖1− |mj |2‖2 ≤ Cτ.

9.2 Proof of the convergence theorem

Let us denote by ej+1 :=m(tj+1)−mj+1 the error of the approximation. Consider
(9.2) and (7.2) in a weak form. Then for all φ ∈W 1,2(Ω) we have

(δej+1,φ) + α(∇ej+1,∇φ) = (F j+1(m),φ) (9.5)

+α

[

(|∇m(tj+1)|2m(tj+1),φ)− (|∇mj |2mj+1,φ)

]

−
[

(m(tj+1)×∆m(tj+1),φ)− (mj ×∆mj+1,φ)

]

,

where

F j+1(m) := −1

τ

∫ tj+1

tj

(s− tj)∂
2
tm(s)ds.
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Let us compute

τ

J∑

j=0

‖F j+1(m)‖22

= τ

J∑

j=0

τ−2
∫

Ω

(
∫ tj+1

tj

(s− tj)∂
2
tm(s)ds

)2

= τ−1
J∑

j=0

∫

Ω






∫ tj+1

tj

(s− tj)
1
2

︸ ︷︷ ︸

f

(s− tj)
1
2 ∂2tm(s)

︸ ︷︷ ︸

g

ds






2

We use Cauchy inequality for functions f and g to get

τ

J∑

j=0

‖F j+1(m)‖22

≤ τ−1
J∑

j=0

∫

Ω

(
∫ tj+1

tj

(s− tj)ds

)(
∫ tj+1

tj

(s− tj)|∂2tm(s)|2ds
)

≤ τ−1
J∑

j=0

τ2

2

(
∫ tj+1

tj

s‖∂2tm(s)‖22ds
)

≤ Cτ

where we have used (7.14) at the end.
Summarizing previous we get

τ

J∑

j=0

‖F j+1(m)‖22 ≤ Cτ, (9.6)

Let us estimate F j+1(m) in the norm of W−1,2

‖F j+1(m)‖W−1,2 = sup
u∈W 1,2

|
∫

Ω
F j+1(m).u dx|
‖u‖W 1,2

= sup
u∈W 1,2

∣
∣
∣

∫

Ω

[
1
τ

∫ tj+1

tj
(s− tj)∂

2
tm(s)ds

]

.u dx
∣
∣
∣

‖u‖W 1,2

=
1

τ
sup

u∈W 1,2

∣
∣
∣

∫

Ω

∫ tj+1

tj
(s− tj)∂

2
tm(s).u dsdx

∣
∣
∣

‖u‖W 1,2
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=
1

τ
sup

u∈W 1,2

∣
∣
∣

∫ tj+1

tj
(s− tj)

∫

Ω
∂2tm(s).u dxds

∣
∣
∣

‖u‖W 1,2

=
1

τ

∫ tj+1

tj

(s− tj) sup
u∈W 1,2

∣
∣
∫

Ω
∂2tm(s).u dx

∣
∣

‖u‖W 1,2

ds

=
1

τ

∫ tj+1

tj

(s− tj)‖∂2tm(s)‖W−1,2ds.

Further we get

‖F j+1(m)‖2W−1,2 =
1

τ2






∫ tj+1

tj

(s− tj)
︸ ︷︷ ︸

f

‖∂2tm(s)‖W−1,2

︸ ︷︷ ︸

g

ds






2

.

We use again Cauchy inequality for functions f and g to obtain

‖F j+1(m)‖2W−1,2 =
1

τ2

(
∫ tj+1

tj

(s− tj)
2ds

)(
∫ tj+1

tj

‖∂2tm(s)‖2W−1,2ds

)

=
1

τ2
τ3

3

∫ tj+1

tj

‖∂2tm(s)‖2W−1,2ds

=
τ

3

∫ tj+1

tj

‖∂2tm(s)‖2W−1,2ds.

Finally, using (7.15) we derive an estimate, which we use in the proof of State-
ment 1 (see below)

τ

J∑

j=0

‖F j+1(m)‖2W−1,2 ≤ τ
τ

3

∫ T

0

‖∂2tm(s)‖2W−1,2ds ≤ Cτ2. (9.7)

Let us do some technical steps in (9.5). We add and subtract some terms to
obtain

(|∇m(tj+1)|2m(tj+1),φ)− (|∇mj |2mj+1,φ)

= (〈∇m(tj+1)−∇m(tj),∇m(tj+1) +∇m(tj)〉R9m(tj+1),φ)

+2(〈∇m(tj),∇ej〉R9m(tj+1),φ)− (|∇ej |2m(tj+1),φ)

+(|∇m(tj)|2ej+1,φ)− 2(〈∇m(tj),∇ej〉R9ej+1,φ)

+(|∇ej |2ej+1,φ).
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The last term in (9.5) is

(m(tj+1)×∆m(tj+1),φ)− (mj ×∆mj+1,φ)

= ([m(tj+1)−m(tj)]×∆m(tj+1),φ) + (m(tj)×∆ej+1,φ)

+(ej ×∆m(tj+1),φ)− (ej ×∆ej+1,φ)
]
.

Thus, we have

(δej+1,φ)) + α(∇ej+1,∇φ) (9.8)

= (F j+1(m),φ)

+(〈∇m(tj+1)−∇m(tj),∇m(tj+1) +∇m(tj)〉R9m(tj+1),φ)

+2(〈∇m(tj),∇ej〉R9m(tj+1),φ)− (|∇ej |2m(tj+1),φ)

+(|∇m(tj)|2ej+1,φ)− 2(〈∇m(tj),∇ej〉R9ej+1,φ) + (|∇ej |2ej+1,φ)
−([m(tj+1)−m(tj)]×∆m(tj+1),φ)

−(m(tj)×∆ej+1,φ)− (ej ×∆m(tj+1),φ) + (ej ×∆ej+1,φ) =: Y,
where we have denoted the right-hand side of (9.8) by Y.

Now, we derive two statements, one by testing (9.8) by φ = ej+1 and the
second one by φ = −∆ej+1.
Statement 1

Take φ = ei+1 in (9.8). We denote by Y1, . . . ,Y11, the terms arising in Y
when φ = ei+1. Our goal in the following part will be to arrive at the inequality

(δej+1, ej+1) + α‖∇ej+1‖22 (9.9)

≤ |(F j+1(m), ej+1)|+ ε‖∇ej‖22 + C‖∇ej‖24‖∇ej‖22
+Cε‖ej+1‖24 + C‖ej+1‖24‖∇ej‖24
+C‖∇ej+1‖2‖ej+1‖4[‖∇ej‖4 + 1] + C‖∇ej+1‖2‖ej‖4
+‖m(tj+1)−m(tj)‖22 + ‖∇m(tj+1)−∇m(tj)‖22,

estimating each term in (9.8) separately for φ = ei+1. We leave the term Y1
without any change. The term Y2 will be estimated using the inequalities (7.8),
(10.7), ‖m‖L∞ = 1 and the Young inequality:

Y2 = (〈∇m(tj+1)−∇m(tj),∇m(tj+1) +∇m(tj)〉R9m(tj+1), e
j+1)

≤ ‖∇m(tj+1)−∇m(tj)‖2‖∇m(tj+1) +∇m(tj)‖4‖m(tj+1)‖L∞‖ej+1‖4
≤ C‖∇m(tj+1)−∇m(tj)‖22 + C‖ej+1‖24.

In a similar way, also the terms Y3 to Y7 can be bounded:

Y3 = (〈∇ej ,∇m(tj)〉R9m(tj+1), e
j+1)

≤ ‖∇ej‖2‖∇m(tj)‖4‖m‖L∞‖ej+1‖4
≤ ε‖∇ej‖22 + Cε‖ej+1‖24,
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Y4 = (|∇ej |2m(tj+1), e
j+1)

≤ ‖∇ej‖4‖∇ej‖2‖m‖L∞‖ej+1‖4
≤ C‖∇ej‖24‖∇ej‖22 + C‖ej+1‖24,

Y5 = (|∇m(tj)|2ej+1, ej+1)
≤ ‖∇m‖24‖ej+1‖24 ≤ C‖ej+1‖24,

Y6 = (〈∇ej ,∇m(tj)〉R9 , |ej+1|2)
≤ ‖∇ej‖4‖∇m(tj+1)‖4‖ej+1‖24
≤ C‖∇ej‖4‖ej+1‖24 ≤ C(1 + ‖∇ej‖24)‖ej+1‖24,

Y7 = (|∇ej |2, |ej+1|2) ≤ ‖∇ej‖24‖ej+1‖24.

We estimate the term Y8 using the embedding W 1,2 ↪→ L4 and the Young
inequality:

Y8 = ([m(tj+1)−m(tj)]×∆m(tj+1), e
j+1)

≤ ‖∆m(tj+1)‖2‖ej+1‖4‖m(tj+1)−m(tj)‖4
≤ C‖ej+1‖4‖m(tj+1)−m(tj)‖2

+C‖ej+1‖4‖∇m(tj+1)−∇m(tj)‖2
≤ C‖ej+1‖24 + C‖m(tj+1)−m(tj)‖22

+C‖∇m(tj+1)−∇m(tj)‖22.

Next, we use integration by parts to get

Y9 = |(m(tj)×∆ej+1, ej+1)|
= |(∇(ej+1 ×m(tj)),∇ej+1)|
≤ ‖ej+1‖4‖∇m‖4‖∇ej+1‖2 ≤ C‖ej+1‖4‖∇ej+1‖2.

We estimate also the terms Y10 and Y11 in a similar way:

Y10 = (ej ×∆m(tj+1), e
j+1)

≤ |(∇(ej+1 × ej),∇m(tj+1))|
≤ ‖∇ej+1‖2‖ej‖4‖∇m‖4 + ‖ej+1‖4‖∇ej‖2‖∇m‖4
≤ C‖∇ej+1‖2‖ej‖4 + Cε‖ej+1‖24 + ε‖∇ej‖22,

Y11 = (ej ×∆ej+1, ej+1)

≤ |∇(ej+1 × ej),∇ej+1)| = ‖ej+1‖4‖∇ej+1‖2‖∇ej‖4.
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We can now proceed with estimating the right-hand side of (9.9). The letters
X1 and X2 denote positive real numbers. We first do some calculations, using
(10.11) and then the Young inequality with exponents 4/3 and 4:

‖ej+1‖24X1 ≤ C(‖ej+1‖22X1 + ‖ej+1‖
1
2
2 ‖∇ej+1‖

3
2
2 X1)

≤ CεX1‖ej+1‖22 + CεX 4
1 ‖ej+1‖22 + ε‖∇ej+1‖22.

Analogously, using first the Young inequality with exponents 2 and then the Young
inequality with exponents 8/7 and 8:

‖∇ej+1‖2‖ej+1‖4X2 ≤ CX2‖∇ej+1‖2(‖ej+1‖2 + ‖ej+1‖
1
4
2 ‖∇ej+1‖

3
4
2 )

≤ CεX 2
2 ‖ej+1‖22 + CεX 8

2 ‖ej+1‖22 + ε‖∇ej+1‖22.
We apply the previous two inequalities to (9.9). First we set X1 = Cε then
X1 = C‖∇ej‖24. Then we set X2 = ‖∇ej‖4 and X2 = C. Thus supposing
α > ε/2 we can write

(δej+1, ej+1) + (α− ε)‖∇ej+1‖22 (9.10)

≤ |(F j+1(m), ej+1)|+ C‖∇ej‖22‖∇ej‖24 + Cε‖∇ej‖24 + ε‖∇ej‖22
+Cε‖ej+1‖22 + Cε‖ej+1‖22

(
‖∇ej‖24 + ‖∇ej‖44 + ‖∇ej‖84

)

+‖m(tj+1)−m(tj)‖22 + ‖∇m(tj+1)−∇m(tj)‖22.
The next step is to sum up all equations (9.10) for j = 0, . . . , l. To get rid of the
last two terms in (9.10), we introduce the following lemma.

Lemma 9.1 Keeping all notations from the above discussion the following inequal-
ity is valid

l∑

j=0

‖m(tj+1)−m(tj)‖22 +
l∑

j=0

‖∇m(tj+1)−∇m(tj)‖22 ≤ Cτ.

Proof:
From the definition of L2 norm and using the integral Young inequality with
respect to time we get

l∑

j=0

‖∇m(tj+1)−∇m(tj)‖22 =
j
∑

j=0

∫

Ω

(
∫ tj+1

tj

〈1,∇∂tm(s)〉R9ds

)2

dx

≤ C

j
∑

j=0

∫

Ω

τ

∫ tj+1

tj

|∇∂tm(s)|2 dsdx ≤ C

j
∑

j=0

τ

∫ tj+1

tj

‖∇∂tm(s)‖22ds

≤ Cτ

∫ tl+1

0

‖∇∂tm(s)‖22ds ≤ Cτ,
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where we have used (7.13) at the end. The rest of Lemma 9.1 can be proved in the
same way. ¤

To get rid of the first term on the right-hand side of (9.10) we have

|(F j+1(m), ej+1)| =
∣
∣
∣
∣

∫

Ω

F j+1(m).ei+1
∣
∣
∣
∣
≤ ‖F j+1(m)‖W−1,2‖ej+1‖W 1,2 .

According to (9.7), after performing the Young inequality we get for the term
(F j+1(m), ej+1) the estimate

τ
J∑

j=0

|(F j+1(m), ej+1)| (9.11)

≤ τ
J∑

j=0

‖F j+1(m)‖W−1,2(‖ej+1‖22 + ‖∇ej+1‖22)
1
2 (9.12)

≤ Cετ
J∑

j=0

‖F j+1(m)‖2W−1,2 + τε
J∑

j=0

(
‖∇ej+1‖22 + ‖ej+1‖22

)

≤ Cετ
2 + τε

J∑

j=0

(
‖∇ej+1‖22 + ‖ej+1‖22

)
.

We can now continue in (9.10). On the left-hand side we use the inequality

τ
l∑

j=0

(δej+1, ej+1) ≥ 1

2
‖el+1‖22

to find that

‖el+1‖22 + τ

l∑

j=0

‖∇ej+1‖22

≤ Cετ
2 + Cετ

l∑

j=0

‖∇ej‖24
l∑

j=0

‖∇ej‖22 + ετ

l∑

j=0

(‖∇ej‖22 + ‖∇ej+1‖22)

+Cτ
l∑

j=0

‖ej+1‖22 + Cτ
l∑

j=0

(‖∇ej‖24 + ‖∇ej‖44 + ‖∇ej‖84)
l∑

j=0

‖ej+1‖22,

where for some terms we have already used the inequality

l∑

j=0

ajbj ≤
l∑

j=0

aj

l∑

j=0

bj , (9.13)



9.2. Proof of the convergence theorem 149

which holds for any nonnegative aj , bj . Setting ε < 1/4 we can now absorb the

term ετ
∑l

j=0 ‖∇ej‖22 on the right-hand side into the similar term on the left to
get the desired Statement 1:

‖el+1‖2 + τ

l∑

j=0

‖∇ej+1‖22 (9.14)

≤ Cτ2 + Cτ
l∑

j=0

‖∇ej‖24
l∑

j=0

‖∇ej‖22 + Cτ
l∑

j=0

‖ej+1‖22

+Cτ

l∑

j=0

(‖∇ej‖24 + ‖∇ej‖44 + ‖∇ej‖84)
l∑

j=0

‖ej+1‖22.

End of Statement 1

Statement 2
In this statement we do mostly the same as in Statement 1. We choose φ =

−∆ei+1 in (9.8) and denote by Y ′1,Y ′2, . . . ,Y ′11 the terms arising on the right-hand
side of (9.8), respectively. Our goal will be to arrive at the inequality

(δ∇ej+1,∇ej+1) + α‖∆ej+1‖22 (9.15)

≤ Cε‖F j+1(m)‖22 + ε‖∆ej+1‖22 + Cε

(
‖∇ej‖24 + C‖ej‖24 + ‖∇ej‖44

)

+Cε‖∇ej+1‖24 + Cε‖∇ej+1‖24
(
‖∇ej‖24 + ‖∇ej‖44

)

+Cε‖ej+1‖24 + Cε‖ej+1‖24
(
‖∇ej‖24 + ‖∇ej‖44

)

+Cε‖m(tj+1)−m(tj)‖24 + Cε‖∇m(tj+1)−∇m(tj)‖24.

The term Y ′1 causes no troubles. The term Y ′2 can be estimated using inequalities
(7.8) and (10.7), the equality ‖m‖L∞ = 1 and the Young inequality:

Y ′2 = |(〈∇m(tj+1)−∇m(tj),∇m(tj+1) +∇m(tj)〉R9m(tj+1),∆e
j+1)|

≤ 2‖∇m(tj+1)−∇m(tj)‖4‖∇m(tj+1)‖4‖m(tj+1)‖L∞‖∆ej+1‖2
≤ Cε‖∇m(tj+1)−∇m(tj)‖24 + ε‖∆ej+1‖22.

We handle the terms Y ′3 and Y ′4 in a similar way:

Y ′3 = |(〈∇ej ,∇m(tj)〉R9m(tj+1),∆e
j+1)|

≤ ‖∇ej‖4‖∇m(tj)‖4‖m(tj+1)‖L∞‖∆ej+1‖2
≤ Cε‖∇ej‖24 + ε‖∆ej+1‖22,

Y ′4 = |(|∇ej |2m(tj+1),∆e
j+1)|
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≤ ‖∇ej‖24‖m(tj+1)‖L∞‖∆ej+1‖2
≤ Cε‖∇ej‖44 + ε‖∆ej+1‖22.

We estimate the terms Y ′5, Y ′6 and Y ′7 using (10.14) and the Young inequality:

Y ′5 = |(|∇m(tj)|2ej+1,∆ej+1)|
≤ ‖∇m(tj)‖24‖ej+1‖L∞‖∆ej+1‖2
≤ Cε‖ej+1‖2L∞ + ε‖∆ej+1‖22
≤ Cε(‖ej+1‖24 + ‖∇ej+1‖24) + ε‖∆ej+1‖22,

Y ′6 = |(〈∇ej ,∇m(tj)〉R9ej+1,∆ej+1)|
≤ ‖∇ej‖4‖∇m(tj)‖4‖ej+1‖L∞‖∆ej+1‖2
≤ C‖∇ej‖4(‖ej+1‖4 + ‖∇ej+1‖4)‖∆ej+1‖2
≤ Cε‖∇ej‖24‖ej+1‖24 + Cε‖∇ej‖24‖∇ej+1‖24 + ε‖∆ej+1‖22,

Y ′7 = |(〈∇ej ,∇ej〉R9ej+1,∆ej+1)|
≤ ‖∇ej‖24‖ej+1‖L∞‖∆ej+1‖2
≤ ‖∇ej‖24(‖ej+1‖4 + ‖∇ej+1‖4)‖∆ej+1‖2
≤ Cε‖∇ej‖44‖ej+1‖24

+Cε‖∇ej‖44‖∇ej+1‖24 + ε‖∆ej+1‖22.

The term Y ′8 satisfies

Y ′8 = |([m(tj+1)−m(tj)]×∆m(tj+1),∆e
j+1)|

≤ ‖m(tj+1)−m(tj)‖L∞‖∆m‖2‖∆ej+1‖2
≤ (‖m(tj+1)−m(tj)‖4 + ‖∇m(tj+1)−∇m(tj)‖4)‖∆ej+1‖2
≤ Cε‖m(tj+1)−m(tj)‖24 + Cε‖∇m(tj+1)−∇m(tj)‖24 + ε‖∆ej+1‖22.

The terms Y ′9 and Y ′11 are equal to 0 and the last term Y ′10 can be bounded as
follows:

Y ′10 = |(ej ×∆m(tj+1),∆e
j+1)| ≤ C‖ej‖L∞‖∆m‖2‖∆ej+1‖2

≤ C(‖∇ej‖4 + ‖ej‖4)‖∆ej+1‖2
≤ Cε‖∇ej‖24 + Cε‖ej‖24 + ε‖∆ej+1‖22.
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We can now proceed with estimating the right-hand side of (9.15). We again
denote by X1,X2 arbitrary positive real numbers. We first do some calculations
using the embedding W 1,2 ↪→ L4 with the Young inequality. We get

‖ej+1‖24X1 ≤ C(‖ej+1‖22X1 + ‖∇ej+1‖22X1).
Similarly, using (10.12) and the Young inequality with exponents 4/3 and 4 we
arrive at

‖∇ej+1‖24X2 ≤ CX2(‖∇ej+1‖22 + ‖∇ej+1‖
1
2
2 ‖∆ej+1‖

3
2
2 )

≤ CεX2‖∇ej+1‖22 + CεX 4
2 ‖∇ej+1‖22 + ε‖∆ej+1‖22.

We continue in estimating the right-hand side of (9.15). We use the previous two
inequalities for several values of X1 and X2. First take X2 = Cε, second take
X2 = ‖∇ej‖24 and finally put X2 = ‖∇ej‖44. Consider that X1 has the same
values as X2. Then supposing α > ε/2, we get

(δ∇ej+1,∇ej+1) + (α− ε)‖∆ej+1‖22 (9.16)

≤ Cε‖F j+1(m)‖22 + Cε

(
‖∇ej‖24 + ‖ej‖24 + ‖∇ej‖44

)

+Cε‖ej+1‖22 + Cε‖ej+1‖22
(
‖∇ej‖24 + ‖∇ej‖44

)
+ Cε‖∇ej+1‖22

+Cε‖∇ej+1‖22
(
‖∇ej‖24 + ‖∇ej‖44 + ‖∇ej‖84 + ‖∇ej‖164

)

+Cε‖m(tj+1)−m(tj)‖24 + Cε‖∇m(tj+1)−∇m(tj)‖24.
We would like to follow the strategy of summing up the equations (9.16) for

j = 1, . . . , l. First, we introduce a weakened version of Lemma 9.1.

Lemma 9.2 Keeping all notations from the above discussion the following inequal-
ity holds:

l∑

j=1

‖m(tj+1)−m(tj)‖24 +
l∑

j=1

‖∇m(tj+1)−∇m(tj)‖24 ≤ C.

Proof:
From the embedding W 1,2 ↪→ L4, we have

‖∇m(tj+1)−∇m(tj)‖24 ≤ C‖∇m(tj+1)−∇m(tj)‖22 + C‖∆m(tj+1)−∆m(tj)‖22.
From the definition of L2 norm and using the integral Young inequality with
respect to time we get

l∑

j=1

‖∆m(tj+1)−∆m(tj)‖22 =
l∑

j=1

∫

Ω

(
∫ tj+1

tj

〈1,∆∂tm(s)〉R3ds

)2

dx

≤ C

l∑

j=1

∫

Ω

τ

∫ tj+1

tj

|∆∂tm(s)|2 dsdx.
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Since we sum up from the index j = 1, we have τ ≤ κ(s) on the interval (tj , tj+1).
Thus

l∑

j=1

‖∆m(tj+1)−∆m(tj)‖22 ≤ C

l∑

j=1

∫

Ω

∫ ti+1

ti

κ(s) |∆∂tm(s)|2 dsdx

≤ C

l∑

j=1

∫ tj+1

tj

κ(s)‖∆∂tm(s)‖22ds

≤ C

∫ tl+1

0

κ(s)‖∆∂tm(s)‖22ds ≤ C,

where we have used (7.14) at the end. The rest of the lemma follows directly from
Lemma 9.1.

This completes the proof of Lemma 9.2. ¤

Now, we can write the Statement 2 summing up the equations (9.16) for
j = 1, . . . , l and applying Lemma 9.2 and (9.6). Directly after the summation we
use the inequality (9.13) for some terms

‖∇el+1‖22 + τ

l∑

j=1

‖∆ej+1‖22 (9.17)

≤ Cτ + Cετ

l∑

j=1

(‖ej‖24 + ‖∇ej‖24 + ‖∇ej‖44)

+Cετ
l∑

j=1

‖ej+1‖22

+Cετ

l∑

j=1

(‖∇ej‖24 + ‖∇ej‖44)
l∑

j=1

‖ej+1‖22 + Cετ

l∑

j=1

‖∇ej+1‖22

+Cετ

l∑

j=1

(‖∇ej‖24 + ‖∇ej‖44 + ‖∇ej‖84 + ‖∇ej‖164 )

l∑

j=1

‖∇ej+1‖22.

End of Statement 2

We proceed with the proof of Theorem 9.1. To prove it, we employ an inductive
argument. There exists a constant A depending only on ω, α,m such that for a
sufficiently small τ0 we have for every τ ≤ τ0

‖el+1‖22 + τ

l∑

j=0

‖∇ej+1‖22 ≤ Aτ2, (9.18)
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‖∇el+1‖22 + τ

l∑

j=0

‖∆ej+1‖22 ≤ Aτ. (9.19)

First, these statements are valid for l = 0. To see this, we employ (9.5) for j = 0.
Let us prove the statements for l = r assuming that they are valid for l = r−1.

Note that A is independent of l. At this stage of mathematical induction, the
following lemma will be useful.

Lemma 9.3 Assuming (9.18) and (9.19) hold true for l = r − 1, the following
estimate holds for sufficiently small τ :

B :=
r∑

j=0

‖∇ej‖24 + ‖∇ej‖44 + ‖∇ej‖84 + ‖∇ej‖164 ≤ 1. (9.20)

Proof:
For a = 2, 4, 8, 16, it is valid that

(x+ y)a ≤ a(xa + ya) ≤ 16(xa + ya).

Thus we can use the inequality (10.12) in the form

‖∇u‖a4 ≤ C‖∇u‖a2 + C‖∇u‖
a
4
2 ‖∆u‖

3a
4
2 .

We apply the previous inequality for a = 2, 4, 8, 16 and sum it up for j = 0, . . . , r
to get

r∑

j=0

‖∇ej‖a4 ≤
r∑

j=0

‖∇ej‖a2 +
r∑

j=0

‖∇ej‖
a
4
2 ‖∆ej‖

3a
4
2

≤
r∑

j=0

‖∇ej‖a2 +





r∑

j=0

‖∇ej‖a2





1
4




r∑

j=0

‖∆ej‖a2





3
4

.

At the end we have used the discrete Hölder inequality with exponents 4 and 4/3.
Now we apply Lemma 10.2 on the following terms. Note that 2 ≤ a. We have





r∑

j=0

‖∇ej‖a2





2

≤





r∑

j=0

‖∇ej‖22





a

,





r∑

j=0

‖∆ej‖a2





2

≤





r∑

j=0

‖∆ej‖22





a

.



154 Numerical schemes for the single LL equation

This gives us

r∑

j=0

‖∇ej‖a4 ≤





r∑

j=0

‖∇ej‖22





a
2

+





r∑

j=0

‖∇ej‖22





a
8




r∑

j=0

‖∆ej‖22





3a
8

.

Notice that in the expression of B we have summed up to the index j = r but the
indices of the terms are shifted by one when compared with those that appeared in
(9.18) and (9.19). Thus we are able to apply (9.18) and (9.19) for l = r − 1. We
combine it with the previous inequality to obtain

B ≤
∑

a=2,4,8,16

(Aτ) a2 + (Aτ) a8A 3a
8 .

Since τ appears in every term with exponent at least 1/4, we can guarantee that
B remains less than 1 by setting τ sufficiently small.

This completes the proof of Lemma 9.3. ¤

If we look at the Statement 1, we are able to get rid of some problematic terms
by applying the previous lemma. Thus

‖el+1‖2 + τ

l∑

j=0

‖∇ej+1‖22

≤ Cτ2 + Cτ

l∑

j=0

‖∇ej‖24
l∑

j=0

‖∇ej‖22 + 2Cτ

l∑

j=0

‖ej+1‖22.

In Lemma 9.3 we can easily gain also the estimate B ≤ A−1. Then, if we apply
the relations (9.18) and (9.19) with l = r − 1 to the term

∑l
j=0 ‖∇ej‖22 and we

apply the estimate B ≤ A−1 to the term
∑l

j=0 ‖∇ej‖24, we gain

‖el+1‖2 + τ

l∑

j=0

‖∇ej+1‖22 ≤ Cτ2 + CτA−1Aτ + 2Cτ

l∑

j=0

‖ej+1‖22

≤ 2Cτ2 + 2Cτ
l∑

j=0

‖ej+1‖22.

Notice that the previous inequality was obtained independently of the index l. Now
we apply Gronwall’s argument to verify (9.18) for l = r.

If we look at the Statement 2, we can eliminate some terms by applying Lemma
9.3. Then we get

‖∇el+1‖22 + τ

l∑

j=1

‖∆ej+1‖22 ≤ Cτ + Cετ

l∑

j=1

‖ej‖24
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+2Cετ

l∑

j=1

‖ej+1‖22 + 2Cετ

l∑

j=1

‖∇ej+1‖22.

For the term
∑l

j=1 ‖ej‖24, we use the embedding W 1,2 ↪→ L4 and (9.18), (9.19)

for l = r − 1. For the term
∑l

j=1 ‖ej+1‖22, we use (9.18) for l = r, which has
already been proved. Thus

‖∇el+1‖22 + τ

l∑

j=1

‖∆ej+1‖22 ≤ Cτ + 2CετAτ + 2Cετ

l∑

j=1

‖∇ej+1‖22

≤ 2Cτ + 2Cετ

l∑

j=1

‖∇ej+1‖22.

Here we have the sum over the index j starting from 1 and ending with j = r.
To make the sum start with j = 0, we should know that ‖∆e1‖22 ≤ C. This is
given by the following lemma.

Lemma 9.4 Keeping the notations from the above discussion we have

‖∆e1‖22 ≤ C.

Proof:
We take (9.8) for j = 0 and set φ = −∆e1. After considering e0 = 0 and
∇e0 = 0 we get

(
e1

τ
,−∆e1

)

+ α(∆e1,∆e1) ≤ |(F1(m),∆e1)|

+ |(〈∇m(t1)−∇m(t0),∇m(t1) +∇m(t0)〉R9m(t1),∆e
1)|

+ |(|∇m(t0)|2e1,∆e1)|+ |([m(t1)−m(t0)]×∆m(t1),∆e
1)|.

Now we apply some inequalities from Lemma 10.3, the estimates (7.7) and (7.8)
and the Young inequality:

1

τ
‖∇e1‖22 + α‖∆e1‖22 ≤ C‖F1(m)‖22 + ε‖∆e1‖22 (9.21)

+ ‖∇m(t1)−∇m(t0)‖4‖∇m(t1) +∇m(t0)‖4‖m(t1)‖L∞‖∆e1‖2
+ ‖∇m(t0)‖24‖e1‖L∞‖∆e1‖2
+‖m(t1)−m(t0)‖L∞‖∆m(t1)‖2‖∆e1‖2

≤ C‖F1(m)‖22 + ε‖∆e1‖22 + ‖e1‖2L∞ .
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To estimate the term ‖e1‖2L∞ we use the same techniques as we have already done
several times using (10.14) and (10.12) and the Young inequality with exponents 4
and 4/3:

‖e1‖L∞ ≤ ‖e1‖24 + ‖∇e1‖24 ≤ Cε‖e1‖22 + Cε‖∇e1‖22 + ‖∇e1‖
1
2
2 ‖∆e1‖

3
2
2

≤ Cε‖e1‖22 + Cε‖∇e1‖22 + ε‖∆e1‖22.

We suppose that α > ε and 1 − Cετ > 0. Then, together with (9.21), since
‖e1‖22 ≤ C we have

1− τCε

τ
‖∇e1‖22 + (α− ε)‖∆e1‖22 ≤ C‖F1(m)‖22 ≤ C,

which completes the proof of Lemma 9.4. ¤

Thus we have arrived at

‖∇el+1‖22 + τ

l∑

j=0

‖∆ej+1‖22 ≤ Cτ + 2CτAτ + 2Cτ

l∑

j=0

‖∇ej+1‖22

≤ 2Cτ + 2Cτ
l∑

j=0

‖∇ej+1‖22.

Notice that this inequality was also obtained independently of the index l. We
now apply Gronwall’s argument to verify (9.19) for l = r.

This completes the proof of Theorem 9.1. ¤

9.3 Proof of the modulus theorem

The result follows directly from inequality (10.12) and Theorem 9.1:

‖|m(tj)|2 − |mj |2‖2 = ‖〈ej , ej + 2m(tj)〉R3‖2
≤ 2(‖ej‖24 + ‖ej‖2‖m(tj)‖L∞)

≤ C(‖ej‖22 + ‖ej‖
1
2
2 ‖∇ej‖

3
2
2 + ‖ej‖2)

≤ C(τ2 + τ
1
2 τ

3
4 + τ) ≤ Cτ.

¤
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9.4 Numerical tests

In order to verify the theoretical results, we solve the problem (7.2)–(7.4) with an
artificial right-hand side and with a prescribed solution. Up to now there is no
example of such a problem with a known analytical solution in the literature. We
set

mex(t, x) =







mex
0 =

(

1−
(
x0t
2

)2 −
(
(x1+x2)t

4

)) 1
2

,

mex
1 = (x1+x2)t

4 ,
mex
2 = x0t

2 ,

in order to ensure that the modulus of mex remains constant equal to 1. Then we
solve the following problem on a cube Ω = (0, 1)3

∂tm =m×∆m− αm× (m×∆m) + f in R
+ × Ω,

∇m · ν = ∇f · ν on R
+ × ∂Ω,

m(0, .) =mex(0, .) in Ω,

where f = ∂tm
ex − mex × ∆mex − αmex × (mex × ∆mex). Note that the sign

of the term m × ∆m is negative, however, it has no impact on the results. The
sign defines the direction of the rotation of m around ∆m. If the sign changes,
the movement of m is in fact only mirrored. For the spatial discretization, we use
the standard W 1,2(Ω)-conforming finite element formulation. We establish a finite
dimensional approximation space Vh consisting of piece-wise linear functions. The
symbol h denotes the size of the space discretization step. The projection operator
Ph associated with the space Vh has the necessary properties needed for further
analysis of the full discretization in time and space.

τ−1 ‖ej‖2 ‖∇ej‖2 ‖ej‖L∞ ‖1− |mj |2‖2
10 0.001669 0.013666 0.003988 0.003270
20 0.000863 0.009331 0.002053 0.001793
40 0.000444 0.007153 0.001100 0.000980
80 0.000221 0.006031 0.000603 0.000485
160 0.000139 0.005431 0.000403 0.000318

Table 9.1: Errors of the approximation

In order to confirm the theoretical results, we test the rate of convergence of the
numerical scheme (9.2). We divide one edge of the cubic domain into 24 elements
which gives us 82 944 tetrahedra and 15 625 vertices. The number of vertices
determines also the number of degrees of freedom.

Due to the linearity of scheme (9.2), we have to solve only a linear elliptic
problem on each time level. Compared with (9.1), our scheme is computationally
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Figure 9.1: The graphs plotted with the logarithmic scale

cheaper. To compute the solution on a new time level in (9.1), it is necessary to
solve a nonlinear elliptic problem whose solution involves the use of a nonlinear
solver.

Table 9.1 shows the results for a time step running from 10−1 to 160−1. The
graphs in Figure 9.1 are plotted with a logarithmic scale so that we can easily see
that the numerical results confirm the theoretical ones.



10 Penalization strategies

(An expert is someone who knows some of the worst mistakes that can be made in his

subject, and how to avoid them. Werner Heisenberg)

10.1 Single LL equation

In Chapter 9 we have proposed a numerical scheme derived from 2D version intro-
duced in [61]. The author analyses also another schemes.

We have already mentioned that the scheme (9.2) does not preserve the length
of the magnetization. But Theorem 9.2 says that in some sense the modulus of
approximating solutions mj goes to 1 when time step τ goes to 0. There is also
another approach to keep the modulus of the magnetization under control. This
approach uses penalization strategies.

The idea of a penalization term artificially introduced to the equation which
is solved is not new. Let us take a function Φ(mi,mi+1) in such a way that its
value is small when |mi| is very close to |mi+1|. We will not write down particular
expression for Φ yet. Then add a term Φ(mi,mi+1) with the weight 1/ε to the LL
equation

δmj+1 − α∆mj+1 +
1

ε
Φ(mi,mi+1) = α|∇mj |2mj+1 +mj+1 ×∆mj+1. (10.1)

We see that if we go with ε to 0 then the weight of function Φ becomes larger. Then
reciprocally the value of Φ(mi,mi+1) tends to be small and therefore the modulus
of mi is close to the modulus of mi+1.

We introduce three possibilities for the function Φ = Φi for i = 1, 2, 3

Φ1(m
i,mi+1) = |mi+1|2 − 1,

159



160 Penalization strategies

Φ2(m
i,mi+1) = 1− 1

|mi|2 ,

Φ3(m
i,mi+1) = 1− 1

|mi| .

Prohl in [61] has proved the following convergence results for the numerical
schemes (10.1) for all three choices of Φ

max
0≤j≤J

‖m(tj)−mj‖2 +



τ

J∑

j=0

‖∇{m(tj)−mj}‖22





1
2

+
1√
ε



τ

J∑

j=0

{
‖m(tj)−mj‖44 + ‖〈m(tj)−mj〉‖22

}





1
2

≤ Cτ.

The differences between different choices of Φ were only in the dependence of ε on
τ. For Φ1 it is necessary that ε−1 = o(τ−1), for Φ2 was the estimate sharpened to
ε > 1.9τ and finally for Φ3 it is ε ≥ τ.

The reason why we have introduced the penalization term was to get better
control over the modulus of the magnetization. The estimates

max
0≤j≤J

‖1− |mj |2‖2 ≤
√
τε

are also proved and demonstrate the usefulness of the term Φ(mi,mi+1) in (10.1).
What we have mentioned in this chapter was done in 2D. The use of techniques

similar to those used in Chapter 9 opens the way to make the same analysis of the
penalization techniques in 3D. We will not do this here since the proofs would be
similar to the proofs in Chapter 9.

10.2 Full M-LL system

For more general case we would like to study numerical schemes dealing with the
full Maxwell-Landau-Lifshitz system. In [61] the author has suggested a couple of
such schemes and has derived also error estimates for these schemes. However, he
considered all schemes only in two dimensional case. The key estimate enabling
the use of these schemes was the upper bound of m in the space W 2,2(Ω). Prohl
has this estimate only in 2D. In Chapter 8, Theorem 8.1, we have proved missing
estimate also in 3D. This result suggests the extension of Prohl’s results also in the
case of three dimensions. However, the detailed analysis of these schemes exceeds
the range of this work and we omit the proofs.
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For the full M-LL system we provide one example of the scheme together with
error estimates. Let us consider the implicit penalized Euler scheme

δmj+1 − α∆mj+1 − lε(m
j+1)mj+1 = α|∇mj |2mj+1

+mj × (∆mj+1 +Hj+1) + α(Hj+1 − 〈mj ,Hj〉mj+1),

∇×Hj+1 = δEj+1 + σEj+1,

∇×Ej+1 = −δHj+1 − β(δmj+1 − lε(m
j+1)mj+1),

∇ ·Ej+1 = 0,

where lε(φ) = ε−1(|φ|2 − 1).
Considering ε−1 = o(τ−1), the error estimates for this scheme are

max
0≤j≤J

{
‖m(tj)−mj‖2 + ‖H(tj)−Hj‖W−1,2 + ‖E(tj)−Ej‖W−1,2

}

+
(

τ

J∑

j=0

{
‖m(tj)−mj‖2

W1,2 +
β

ε

[
‖〈m(tj)−mj ,m(tj)〉‖22

+‖m(tj)−mj‖44
]})1/2

≤ Cτ

max
0≤j≤J

{

‖H(tj)−Hj‖2 + ‖E(tj)−Ej‖2
}

≤ C
√
τ ,

(

τ

J∑

j=1

‖1− |mj |2‖22
)1/2

≤ C
√
ετ2,

max
0≤j≤J

{

‖∇ · (Hj + βmj)‖W−1,2 +

√
τ

ε
‖∇ · (Hj + βmj)‖2

}

≤ C

√

τ2

ε
,

where m,E,H are exact solutions of the full M-LL system on the interval (0, T0).
The constant T0 comes from Lemma 8.7.

We can see that original constraint H + βm from Maxwell’s equations is not
satisfied for its discrete version. But still, the last estimate gives control over the
term Hj + βmj .



Appendix

Vector identities

We recall the following vector identities

(a× b)× c = (c · a) b− (c · b) a, (10.2)

(a× b) · (c× d) = (a · c) (b · d)− (a · d) (b · c), (10.3)

(a× b) · c = a · (b× c) = b · (c× a), (10.4)

which can be verified by simple calculations.

Simple mathematical analysis

Lemma 10.1 For a, b ≥ 0 and 1 ≤ s ≤ t we have

(at + bt)s ≤ (as + bs)t.

Proof:
We follow the idea of Slodička. For any real x such that 0 ≤ x ≤ 1, it is clear
that xt ≤ xs. Then we have

(1 + xt)s ≤ (1 + xs)s.

Since 1 + xs ≥ 1, we get (1 + xs)s ≤ (1 + xs)t. Therefore, we arrive at

(1 + xt)s ≤ (1 + xs)t. (10.5)

Suppose that b ≤ a. By substituting x = b/a into (10.5) we obtain
[

1 +

(
b

a

)t
]s

≤
[

1 +

(
b

a

)s]t

,
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which gives the desired result when multiplied by ats. ¤

Lemma 10.2 For ai > 0, i = 2, . . . , n ∈ N and 1 ≤ s ≤ t it holds that
(

n∑

i=1

ati

)s

≤
(

n∑

i=1

asi

)t

.

Proof:
We prove this lemma by mathematical induction. The lemma is valid for n = 2,
as it is the case of Lemma 10.1. Suppose this lemma is valid for n = j. We would
like to prove that

(
j+1
∑

i=1

ati

)s

≤
(

j+1
∑

i=1

asi

)t

.

Let A := (
∑j

i=1 a
t
i)

1
t and B :=

∑j
i=1 a

s
i . Then using Lemma 10.1 with a = A

and b = aj+1 we compute
(

j+1
∑

i=1

ati

)s

=
(
At + atj+1

)s ≤
(
As + asj+1

)t
. (10.6)

Using the inductive hypothesis we get

As =

(
j
∑

i=1

ati

) s
t

≤
(

j
∑

i=1

asi

)

= B.

Since the function f(x) = xt is monotonically increasing, we can put B instead
of As in the last expression of (10.6) keeping the desired inequality, thus

(
j+1
∑

i=1

ati

)s

≤
(
As + asj+1

)t ≤
(
B + asj+1

)t ≤
(

j+1
∑

i=1

asi

)t

,

which completes the proof of Lemma 10.2. ¤

Theorem 10.1 (Gronwall’s lemma) Let r(t), h(t), y(t) are continuous real func-
tions defined on the interval [a, b] such that r(t), h(t) ≥ 0. Suppose that

y(t) ≤ h(t) +

∫ t

a

r(s)y(s)ds for a ≤ t ≤ b.

Then

y(t) ≤ h(t) +

∫ t

a

h(s)r(s)e
∫
t

s
r(τ)dτds

is valid for all t ∈ [a, b].
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Theorem 10.2 (Gronwall’s lemma - discrete version) Let {Ai}, {ai} be the
sequences of nonnegative real numbers and let q ≥ 0. Suppose

ai ≤ Ai +

i−1∑

j=1

ajq

holds for i ∈ N. Then

ai ≤ Ai + eqi
i−1∑

j=1

Ajq.

Function spaces

Lemma 10.3 Let u, v and m, n be vector valued functions from L2 (or L4,
L∞ if necessary). Then

(〈u,v〉R3m,n)Ω =

∫

Ω

〈u,v〉R3〈m,n〉R3

≤ t‖u‖L4‖v‖L4‖m‖L∞‖n‖L2 , (10.7)

(u× v,m)Ω =

∫

Ω

〈u× v,m〉R3 ≤ ‖u‖L4‖v‖L4‖m‖L2 , (10.8)

(u× v,m)Ω =

∫

Ω

〈u× v,m〉R3 ≤ ‖u‖L∞‖v‖L2‖m‖L2 . (10.9)

Proof of this lemma is a straightforward computation using the integral Hölder
inequality.

Theorem 10.3 (Extended Sobolev inequalities) ([33],Theorem 10.1) Let Ω be
a bounded domain with ∂Ω in Cm, and let u be any function in Wm,r(Ω) ∩ Lq(Ω),
1 ≤ r, q ≤ ∞. For any integer j, 0 ≤ j < m, and for any number a in the interval
j/m ≤ a ≤ 1, set

1

p
=

j

n
+ a

(
1

r
− m

n

)

+ (1− a)
1

q
.

If m− j − n/r is not a nonnegative integer, then

||Dju||Lp ≤ C (||u||Wm,r )
a
(||u||Lq )

1−a
. (10.10)

If m − j − n/r is a nonnegative integer, then (10.10) holds for a = j/m. The
constant C depends only on Ω, r, q, m, j, a.

Special cases of the previous theorem are summed up in the following theorem.
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Lemma 10.4 (Special cases of Sobolev inequalities) Let Ω be a bounded do-
main with ∂Ω in C2, and let u be any function in W 2,2(Ω) ∩ L2(Ω). Consider the
case of spatial dimension n = 3. Then the following hold

‖u‖L4 ≤ C‖u‖3/4W 1,2‖u‖1/4L2 ≤ C‖u‖L2 + C‖∇u‖3/4L2 ‖u‖1/4L2 , (10.11)

‖∇u‖L4 ≤ C‖∇u‖3/4W 1,2‖∇u‖1/4L2

≤ C‖∇u‖L2 + C‖∆u‖3/4L2 ‖∇u‖1/4L2 , (10.12)

‖∆u‖L4 ≤ C‖∆u‖3/4W 1,2‖∆u‖1/4L2

≤ C‖∆u‖L2 + C‖∇∆u‖3/4L2 ‖∆u‖1/4L2 , (10.13)

‖u‖L∞ ≤ C‖u‖W 1,4 ≤ C‖u‖L4 + C‖∇u‖L4 , (10.14)

‖∇u‖L∞ ≤ C‖∇u‖W 1,4 ≤ C‖u‖
1
4

W 2,2‖u‖
3
4

W 3,2 , (10.15)

‖∇u‖W 1,4

≤ C
[

‖∇u‖2 + ‖∆u‖2 + (‖∇u‖
1
4
2 + ‖∆u‖

1
4
2 )‖∇∆u‖

3
4
2

]

. (10.16)

In the previous lemma it is possible to replace scalar functions u with vector func-
tions u. So that’s why we can use all these inequalities for vector fields m,H and
E.

Remark 10.1 Equivalence of the norms ‖u‖W 2,2 and ‖∆u‖2 + ‖u‖2.

To derive (10.12) we simply put ∇u instead of u in (10.11). With this approach,
however, we would gain inequality

‖∇u‖L4 ≤ C‖u‖3/4W 2,2‖∇u‖1/4L2

instead of (10.12). To verify (10.12) we have to show the equivalence of the norms
‖u‖W 2,2 and ‖∆u‖2+ ‖u‖2. In general it is not so, but in the case of zero Neumann
boundary conditions we can use Theorem 2.50 from [32]. Similar remark can be
applied for derivation of (10.16).

General functional analysis

Theorem 10.4 (Lax-Milgram lemma) Let a be a bounded coercive bilinear func-
tional on a Hilbert space H. Then for every bounded linear functional f on H, there
exists a unique u such that

a(u, v) = f(v)

for all v ∈ H.
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Theorem 10.5 (From [86, p.120]) Let X be a Banach space and let {xn} be weakly
convergent to x∞. Then {‖xn‖} is bounded and

‖x∞‖ ≤ lim inf
n→∞

‖xn‖.

Theorem 10.6 (From [86, p.126]) Let X be a reflexive Banach space and let {xn}
be any sequence, which is in norm bounded. Then we choose a subsequence {xni},
which converges weakly to an element of X.

Theorem 10.7 (From [47, Theorem 2.11.5]) Let µ(Ω) <∞. Let 1 ≤ p1 ≤ p2 ≤ . . .
and suppose limk→∞ pk =∞. Let

f ∈
∞⋂

k=1

Lpk(Ω)

and suppose a = supk∈N ‖f‖pk <∞. Then f ∈ L∞(Ω).

By D′(I, V ) we denote the space of distributions on I with values in V.

Theorem 10.8 (From [44])

(i) Let t0 ∈ I and let u : I → V be integrable. Then v(t) =
∫ t

t0
u(s)ds (t, t0) is in

C(I, V ) ⊂ D′(I, V ) and ∂v
∂t = u in the sense of D′(I, V ).

(ii) If u ∈ D′(I, V ) and ∂v
∂t = 0, then u : I → V is constant. i.e., u ≡ u(t) : I → V

and u(t) = x ∈ V for a.e. t ∈ I :

(iii) If un → u in D′(I, V ), then ∂un
∂t → ∂u

∂t in D′(I, V ). In particular, if un ⇀ u

in Lp(I, V ) and ∂un
∂t ⇀ x in Lp(I, V ) then ∂un

∂t = x ∈ Lp(I, V ).

Theorem 10.9 (From [51]) Let {un}∞n=1 is a sequence of functions belonging to
Lp0

(I,B) where B is a Banach space and 1 < pi <∞ for i = 0, 2. Let X and Y are
Banach spaces such that X ↪→↪→ B ↪→ Y. If un are uniformly bounded in Lp0

(I,X)
and ∂un

∂t are uniformly bounded in Lp1
(I, Y ) then the sequence {un}∞n=1 is relatively

compact in Lp2
(I,B).

More results on compactness in spaces Lp(I,B) can be found in [69].
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[47] A. Kufner, O. John, and S. Fuč́ık. Function spaces. Monographs and Textbooks
on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International
Publishing, Leyden; Academia, Prague, 1997.

[48] L.D. Landau and E.M. Lifshitz. On the theory of the dispersion of magnetic perme-
ability in ferromagnetic bodies. Phys. Z. Sowjetunion, 8:153–169, 1935.



Bibliography 177

[49] L.D. Landau and E.M. Lifshitz. Electrodynamics of continuous media. Oxford-
London-New York-Paris: Pergamon Press. X, 417 p., 1960. Translated from the
Russian by J.B. Sykes and J.S. Bell.

[50] B. Lax and K. Button. Microwave Ferrites and Ferrimagnetics. McGraw-Hill, New
York, 1962.
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