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Introduction and objectives 

In recent years there has been an increase in consumer concern about the use of chemical 

additives to ensure product safety and to extend the shelf-life of foods. In response to these 

concerns, efforts have been made to introduce alternative biological preservatives (Guinane et 

al., 2005). In view of the consumer trends towards natural and healthy food products, 

preservation by the use of micro-organisms and/or their metabolites has been proposed. In 

biopreservation the applied micro-organisms are mostly bacteria, in particular lactic acid 

bacteria, and they are designated as protective cultures (Holzapfel et al., 1995; Lücke, 2000).  

Considerable research has been done on the ability to inhibit growth of food born pathogens 

and in particular Listeria monocytogenes by means of protective cultures. The potential of 

these cultures to control growth of spoilage micro-organisms, including the endogenous lactic 

acid flora, has not been examined to the same extent (Leisner et al., 1996). The majority of 

the work in the field of biopreservation had the intention of demonstrating the effect of 

protective cultures being active through bacteriocin production. However, the sometimes 

limited effectiveness of these cultures in the meat substrate (Rodriguez et al., 2002) and the 

concern for resistance development (Ennahar et al., 2000) has driven the search for alternative 

non-bacteriocinogenic protective cultures. Furthermore, the concept of biopreservation has 

been well developed for applications in fermented products since it is common to use bacteria 

as starter cultures in these products. However, the addition of micro-organisms to non-

fermented products is a rather new concept. Recently, there is also an increased interest in the 

use of bacteriophages, viruses that infect and kill bacteria, as a means of inactivating food 

born pathogens (Hudson et al., 2005). 

 

The primary objective of this work was to investigate the possibility of preserving sliced, 

cooked meat products (CMP), which are packaged either under vacuum or under a modified 

atmosphere, by means of non-bacteriocinogenic micro-organisms and to study the mechanism 

of action behind this non-bacteriocinogenic type of biopreservation.  

The main part (Chapters 2 to 7) of this work studied biopreservation by means of non-

bacteriocinogenic lactic acid bacteria and this using an integrated approach since all different 

aspects concerning this preservation technology were investigated: effectiveness, sensory 

aspects and mechanism of inhibition. To realise the stipulated objectives, one particular 

protective LAB-culture had to be selected during the research to use this culture as a case 
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study. The results from the case-study could then be used to derive general conclusions on 

this biopreservation technology. 

In the final chapter (Chapter 8) of this PhD-work, preservation of cooked meat products by 

means of bacteriophages was introduced as an additional subject of research.  

The outline of this work is schematically presented in Figure 0.1. The following sub-

objectives of this work can be stipulated: 

 

• Sub-objective 1 

Before starting this PhD-work, it was of primary importance to study the existing 

knowledge in literature concerning antagonistic micro-organisms for biopreservation of 

food products (Chapter 1). 

 

• Sub-objective 2 

In chapter 2, collected and isolated meat born lactic acid bacteria were tested for their 

suitability to be candidate protective cultures for cooked meat products. Besides testing 

whether the cultures had a ‘protective’ activity, they also needed to be adapted to the 

product/storage conditions (psychrotrophic character, salt tolerance). Furthermore, it was 

of primary concern to evaluate, already at this early stage of the work, the effect of the 

cultures on the sensory properties of a model cooked meat product.  

 

• Sub-objective 3 

Chapter 3 aimed to better understand spoilage caused by different types of spoilage 

organisms, associated with vacuum packaged sliced CMP. The systematic study on the 

behaviour of several spoilage organisms on a model product, imitating cooked ham, was 

meant to establish the relationship between microbial growth, pH-evolution, metabolite 

formation and the occurrence of organoleptic deviations. 

 

• Sub-objective 4 

Chapter 4 had the objective to examine the interaction between the candidate protective 

cultures, that had been selected in chapter 2, and the spoilage organisms, that were shown 

to be most relevant for anaerobically packaged sliced CMP in chapter 3. Chapter 4 aimed 

to answer the question: can homofermentative non-bacteriocinogenic lactic acid bacteria 

be used to prolong the shelf-life of CMP?  
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• Sub-objective 5 

Chapter 5 aimed at testing whether it was possible to extend the application field of the 

selected protective cultures. More specific, the usefulness of the cultures to control growth 

of L. monocytogenes and to improve in this way the food safety of CMP was investigated. 

The introduction of the new regulation on microbial criteria in food (the current 

Commission Regulation (EC) No 2073/2005) (European Commission, 2005) makes this 

study even more relevant. Furthermore, one of the objectives of chapter 5 was also to test 

the influence of inoculum level, storage temperature (4°C versus 7°C) and packaging type 

(vacuum versus modified atmosphere) on the biopreservative effect. 

 

• Sub-objective 6 

The previous chapters had resulted in the selection of the promising protective culture 

Lactobacillus sakei 10A. However, up to that moment, the action of the culture was only 

tested on a model product. Therefore, it was the objective of chapter 6 to validate the 

antagonistic effect of L. sakei 10A towards the spoilage organisms Leuconostoc 

mesenteroides and Brochothrix thermosphacta on the one hand and towards the food born 

pathogen L. monocytogenes on the other hand when this culture is applied to several 

industrially prepared cooked meat products. Furthermore, large efforts were made to 

obtain a better understanding of the impact of the protective culture L. sakei 10A on the 

sensory properties of these products. In this chapter, L. sakei 10A was in fact considered 

as a particular case study from which conclusions on protective cultures in general could 

be derived. 

 

• Sub-objective 7 

The work presented in chapter 7 tried to elucidate the mechanism by which the non-

bacteriocinogenic L. sakei 10A inhibits the growth of L. monocytogenes. 

 

• Sub-objective 8 

Finally, it was the objective of chapter 8 to broaden our view on biopreservation by 

investigating biopreservation of vacuum packaged cooked meat products by means of 

bacteriophages. 
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Chapter 1: Antagonistic micro-organisms for biopreservation of food 
products 

Chapter 2:  
Isolation, screening 

and selection of 
protective cultures 

Chapter 3: 
Characterisation of 

spoilage organisms of 
cooked meat products 

Chapter 4: Interaction between protective cultures and spoilage organisms

Chapter 5: Interaction between protective cultures and L. monocytogenes

Chapter 6: Application to CMP:
Effectiveness and impact on sensory quality 

Chapter 7: Mechanism of inhibition

Chapter 8: Biopreservation by means of bacteriophages 

Figure 0.1. Outline of this PhD 
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Summary 

In chapter 1, a literature review was given, discussing three major topics: (1) an introduction 

on lactic acid bacteria (LAB) and their antimicrobial activity, (2) a brief introduction on 

anaerobically packaged sliced cooked meat products (CMP) and their microbial ecology and 

(3) an in-depth overview on biopreservation. 

 

In chapter 2, 91 bacterial isolates, originating from meat products, were subjected to a step-

by-step screening and characterisation procedure to select potential protective cultures to be 

used in CMP. Strains were first tested on their homofermentative and psychrotrophic 

character and salt tolerance. Secondly, the antibacterial capacities towards Listeria 

monocytogenes, Leuconostoc mesenteroides, Leuconostoc carnosum and Brochothrix 

thermosphacta were determined in an agar spot test. Of the tested strains, 38% was inhibitory 

towards all indicator strains and 91%, 88% and 74% of the strains could inhibit 

L. monocytogenes, B. thermosphacta and Leuc. mesenteroides, respectively.  

Further, 12 strains - those with the highest antibacterial capacities - were evaluated on their 

competitive nature by comparing their growth rate, acidifying character and lactic acid 

production at 7°C under anaerobic conditions in a liquid broth. All 12 strains, except a 

bacteriocin producing Lactobacillus plantarum strain and the lactocin S producing 

Lactobacillus sakei 148, combined a fast growth rate with a deep and rapid acidification due 

to the production of high levels of lactic acid.  

The 12 selected strains were then further investigated for their growth capacity on a model 

cooked ham (MCH) product to establish whether the presence of these cultures on the ham 

did not negatively influence the sensory properties of the ham. All strains grew in 6 days at 

7°C from a level of 105-106 cfu/g to 107-108 cfu/g and again the bacteriocin producing 

L. plantarum strain was the slowest growing strain. As the glucose level of the MCH was low 

(0.09 ± 0.03%), growth of the putative protective cultures resulted in glucose depletion and a 

limited lactic acid production and accompanying pH-decrease. Cooked ham, inoculated with 

isolates 13E, 10A, 14A (all three identified as L. sakei subsp. carnosus) and strains LS5 

(L. sakei 148) and LS8 (L. sakei subsp. carnosus SAGA 777), was not rejected by the sensory 

panel at the 34th day of the vacuum packaged storage at 7°C. Therefore these strains were 

considered to have potential as protective culture in CMP. 
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Chapter 3 presented a systematic study on the behaviour of different types of spoilage 

organisms, relevant for vacuum packaged sliced CMP to better understand the spoilage they 

cause and to establish the relationship between microbial growth, pH-evolution, metabolite 

formation and organoleptic changes.  

First, strains were characterised in a liquid growth medium to compare their growth rate, 

acidifying character and metabolite production under conditions imitating refrigerated 

vacuum packaged storage. B. thermosphacta grew faster than the lactic acid bacteria. All 

LAB-strains grew fast except Leuc. mesenteroides subsp. dextranicum and Leuc. carnosum. 

The acidification rate was related to the growth rate, while the acidification depth was more 

related to the fermentative nature of the strains (homofermentative or heterofermentative 

metabolism).  

Secondly, the growth of the organisms was studied on the MCH. Strains spoiling the model 

product most rapidly belonged to the species Leuc. mesenteroides subsp. mesenteroides 

followed by the species B. thermosphacta, while L. sakei grew more slowly on the MCH. 

Leuc. citreum, Leuc. carnosum and Weisella viridiscens demonstrated an intermediate 

spoilage capacity, whereas Leuc. mesenteroides subsp. dextranicum and Leuc. carnosum grew 

very slowly compared to the other LAB. Growth of the strains on the MCH resulted in a 

limited pH-decrease which was a function of the growth rate of the strains. Also the glucose 

consumption was a function of this growth rate. For none of the strains a significant lactic 

acid production could be observed. Some small amounts of acetic acid, propionic acid and 

ethanol were detected for some strains near the end of the storage period. The time at which 

the MCH became unacceptable from a sensory point of view was linked to the growth rate of 

the strains, except for Leuc. citreum and Leuc. mesenteroides subsp. dextranicum, which were 

causing intensive spoilage despite their slow growth. Sensory rejection was mainly based on 

the attributes odour, taste and acid taste. No clear relationship could be observed between 

metabolite production and the occurrence of sensory changes. 

 

In chapter 4, the usefulness of two LAB, a L. sakei subsp. carnosus strain (10A) and the 

lactocin S producing L. sakei 148 (LS5), to extend the shelf-life of CMP was investigated. 

The interactions between these potential protective cultures and the spoilage organisms, 

Leuc. mesenteroides (LM4) and B. thermosphacta (BT1), were examined in co-culture studies 

on a model cooked ham product (7°C, vacuum). The influence of the glucose content of the 

model cooked ham on the interaction phenomena was investigated by performing the co-

culture studies on MCH with a low glucose content of about 0.2% (w/w) glucose and MCH 
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with a high glucose content of about 1.3% (w/w) glucose. The difficulty in quantifying such 

an interaction was to individually follow the growth of the homofermentative LAB-strain on 

the one hand and the growth of the heterofermentative LAB-strain on the other hand when 

growing in co-culture on the MCH. To resolve this issue, the medium TC8-MRS-agar, 

consisting of MRS-agar supplemented with tetracycline at 8 µg/ml, was developed. This agar 

medium allowed the differentiation of LM4-colonies from 10A-colonies or LS5-colonies after 

incubation for three days at 30°C under anaerobic conditions.  

When artificially contaminating the MCH with BT1 at 102 cfu/g in combination with 10A at 

105 cfu/g, the growth of BT1 was significantly slower compared to its simultaneous mono-

culture growth. In a similar experiment with LM4, this strain reached a level of 107 cfu/g 

approximately 14 days later when LM4 grew together with L. sakei 10A compared to its 

growth in mono-culture. The lactocin S producing LS5 did not demonstrate an inhibitory 

action towards LM4 or BT1. On the MCH with low glucose content as well as on the MCH 

with high glucose content, antagonistic interactions of L. sakei 10A towards LM4 and BT1 

occurred; the antagonistic effect of L. sakei 10A was not eliminated when glucose was 

abundant in the product.  

The results of this chapter indicated that L.  sakei 10A has potential as protective culture for 

the shelf-life prolongation of CMP, while Lactobacillus sakei LS5 had not. 

 

Chapter 5 investigated the same potential protective cultures that had been studied in chapter 

4, being the Lactobacillus sakei subsp. carnosus strain (10A) and the lactocin S producing 

Lactobacillus sakei 148 (LS5). Their capacity to increase the food safety and in particular to 

control the growth of L. monocytogenes on CMP was investigated. The interaction between 

these LAB and a cocktail of three L. monocytogenes strains was examined in co-culture 

studies on a MCH. Furthermore, the influence of the inoculum level (105 cfu/g versus 

106 cfu/g), storage temperature (4°C versus 7°C) and packaging type (vacuum packaging 

versus modified atmosphere packaging) on the interaction phenomena was investigated. At 

7°C, applying L. sakei 10A at 106 cfu/g limited the growth of L. monocytogenes to a level 

<1 log10(cfu/g) during 27 days, whilst an application level of 105 cfu/g failed to prevent 

growth to unacceptable levels. L. sakei LS5 did not demonstrate an antagonistic effect 

towards L. monocytogenes and is therefore not useful as protective culture on cooked meat 

products. Lowering the temperature to 4°C or switching from vacuum packaging to modified 

atmosphere packaging did not influence the ability of strain 10A to grow on the MCH, as its 

dominance did not change. A combination of strain 10A and 4°C or a combination of strain 
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10A and an atmosphere containing 50% of CO2 completely inhibited the growth of 

L. monocytogenes. Sensory assessment and pH-measurements confirmed that L. sakei 10A, 

even when present at a high level (>7 log10(cfu/g)) for prolonged storage times (up to 42 

days), did not acidify the cooked ham to a point of sensory rejection. 

 

Biopreservation has been proven to be a promising natural preservation technique, but the 

impact of protective cultures on the sensory properties of CMP is not well documented. 

Chapter 6 presented a case study on the protective culture L. sakei 10A to obtain a clear view 

on the real consequences of using protective cultures on the sensory quality of CMP. A 

preliminary screening study on 13 different CMP and more elaborate application trials at 7°C 

on vacuum packaged pâté, cooked ham, cooked sausage and two cooked poultry products 

demonstrated that L. sakei 10A inhibits the growth of the endogenous LAB-flora and of 

artificially inoculated Leuc. mesenteroides, B. thermosphacta and L. monocytogenes cells. 

Despite these promising antagonistic effects, the application of L. sakei 10A to CMP was in 

some cases limited by a significant acidification resulting in an acid taste of the product. This 

was most obvious in pâté and cooked sausage and less obvious in cooked turkey fillet. The 

hypothesis could be derived that high buffering capacity and low glucose content are essential 

properties to avoid sensory deviations when applying protective cultures on CMP.  

 

The study presented in chapter 7 investigated possible mechanisms by which the non-

bacteriocinogenic L. sakei 10A inhibits L. monocytogenes.  

First, the antagonistic character of L. sakei 10A was confirmed by the observation of growth 

inhibition of L. monocytogenes in the presence of 10A in buffered BHI-broth (b-BHI) (7°C, 

anaerobic). When assessing the growth of L. monocytogenes in the cell free supernatants 

(CFS), obtained after centrifugation of a 10A-culture at different time points during its growth 

in b-BHI, it became clear that the older the culture was, the more inhibitory properties it had, 

meaning that either production of (an) antimicrobial compound(s) or nutrient competition 

caused the inhibition.  

The precise role of lactic acid production and nutrient competition was more obvious during 

co-culture experiments in two types of broth, differing from each other in their glucose level 

and in the presence/absence of yeast extract, Mn2+ and Mg2+. The presence of more nutrients 

did not prevent the growth inhibition of L. monocytogenes by L. sakei 10A. In the nutrient-

poor broth, inhibition coincided with the moment of glucose depletion. In the nutrient-rich 

broth, an increased lactic acid production was thought to cause the inhibition. Subsequent 



Summary xv

challenge experiments with L. monocytogenes in the CFS, obtained from 10A’s growth in the 

media with the two different nutrient levels, allowed distinction between the different 

antagonistic effects (pH-reduction, lactic acid production and nutrient competition). In the 

nutrient-poor broth, growth inhibition was exclusively caused by nutrient competition and 

competition for glucose was, at least partly, involved. In the nutrient-rich broth, growth 

inhibition was caused by a combination of several factors: the antimicrobial effect of the 

produced lactic acid/lactate, nutrient competition and pH-reduction as a consequence of lactic 

acid formation.  

In a final experiment, no effect of supplementation with vitamins and minerals on the 

inhibition phenomena could be observed. 

 

Chapter 8 reports on the use of bacteriophage P100 to prevent proliferation of post-

processing contaminating L. monocytogenes cells on vacuum packaged sliced cooked meat 

products. 

At first, broth experiments revealed that the three L. monocytogenes strains, used in chapters 5 

and 6 of this PhD-work, were each susceptible to the action of bacteriophage P100 and this at 

30°C as well as at 7°C. However, at 30°C the susceptibility towards P100 was strain-

dependent since the time, at which the OD(600 nm) of the growth medium containing 

L. monocytogenes and P100 started to increase, differed among the three strains. Therefore 

subsequent application trials on cooked meat products were making use of a cocktail of the 

three L. monocytogenes strains.  

In a preliminary application test on a sliced, cooked poultry product the presence of phage 

P100 resulted in a reduction of the L. monocytogenes count with 3.32 log10(cfu/g) compared 

to the untreated control after 21 days of storage (7°C, vacuum). A more elaborate application 

test on sliced cooked ham confirmed the antilisterial effect of P100 on CMP during storage at 

7°C under vacuum packaged conditions. In the latter experiment, treatment with P100 at a 

level of 1×107 pfu/cm2 or 5×106 pfu/cm2 reduced the population of L. monocytogenes after 10 

days of storage (7°C, vacuum) with 0.97 and 0.61 log10(cfu/g), respectively compared to the 

untreated control. However, the difference in antilisterial effect between the two different 

phage doses was shown to be not significant.  

In conclusion, this chapter provided evidence on the usefulness of bacteriophage P100 to 

control the growth of L. monocytogenes on sliced, cooked meat products during anaerobic 

storage at 7°C. 
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Samenvatting 

De literatuurstudie (Hoofdstuk 1) omvat drie belangrijke onderwerpen: (1) een inleiding tot 

melkzuurbacteriën en hun antimicrobiële activiteit, (2) een beknopte inleiding tot anaëroob 

verpakte, versneden, gekookte vleesproducten en hun microbiële ecologie en (3) een grondig 

overzicht over bioconservering. 

 

In hoofdstuk 2 worden 91 bacteriële culturen, geïsoleerd uit vleesproducten, onderworpen 

aan een stapsgewijze screening en karakterisatie om potentiële protectieve culturen te 

selecteren die gebruikt kunnen worden voor de bioconservering van gekookte vleesproducten. 

De stammen worden eerst getest op hun homofermentatief en psychrotroof karakter en ook op 

zouttolerantie. Vervolgens worden hun antibacteriële eigenschappen tegenover Listeria 

monocytogenes, Leuconostoc mesenteroides, Leuconostoc carnosum en Brochothrix 

thermosphacta bepaald in een agar spot test. Van de geteste stammen was 38% groeiremmend 

tegenover alle indicator stammen; 91%, 88% en 74% van de stammen kon de groei remmen 

van L. monocytogenes, B. thermosphacta en Leuc. mesenteroides, respectievelijk.  

Verder worden 12 stammen – deze met de meest uitgesproken antibacteriële capaciteit –

geëvalueerd op basis van hun competitief karakter door een vergelijking te maken van hun 

groeisnelheid, verzurend karakter en melkzuurproductie bij 7°C onder anaërobe 

omstandigheden in een vloeibaar groeimedium. Alle 12 stammen, met uitzondering van een 

bacteriocineproducerende Lactobacillus plantarum stam en de lactocin S producerende 

Lactobacillus sakei 148, combineerden een snelle groei met een diepe en snelle verzuring die 

veroorzaakt werd door de productie van hoge concentraties aan melkzuur.  

De 12 geselecteerde stammen worden vervolgens verder onderzocht op hun vermogen tot 

groei op een modelkookham om na te gaan of de aanwezigheid van deze culturen op de ham 

geen negatieve invloed had op de sensorische eigenschappen van het product. Alle stammen 

groeiden bij 7°C in 6 dagen van 105-106 kve/g tot 107-108 kve/g en het was opnieuw de 

bacteriocineproducerende L. plantarum die het traagst groeide. Aangezien de modelkookham 

weinig glucose bevatte (0.09 ± 0.03%), leidde de groei van de potentiële protectieve culturen 

tot uitputting van glucose en tot een beperkte melkzuurvorming en beperkte pH-daling. 

Kookham, beënt met isolaten 13E, 10A, 14A (alle drie geïdentificeerd als L. sakei subsp. 

carnosus) en stammen LS5 (L. sakei 148) en LS8 (L. sakei subsp. carnosus SAGA 777), werd 

na 34 dagen bewaring (vacuüm, 7°C) niet verworpen door het sensorisch panel. Daarom 
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werden deze stammen beschouwd als mogelijke protectieve culturen met potentieel voor de 

bioconservering van gekookte vleesproducten. 

 

Hoofdstuk 3 beschrijft een systematische studie over het gedrag van verschillende soorten 

bederforganismen, die relevant zijn voor vacuümverpakte versneden gekookte 

vleesproducten. Deze studie heeft als doel inzicht te verwerven in het bederf dat deze 

stammen veroorzaken en in de relatie tussen hun groei, pH-evolutie, metabolietvorming en 

het optreden van organoleptische wijzigingen.  

In een eerste fase worden negen bederforganismen met elkaar vergeleken wat betreft hun 

groeisnelheid, verzurend karakter en metabolietvorming in een vloeibaar groeimedium onder 

condities die gekoelde vacuümverpakte bewaaromstandigheden nabootsen. De 

B. thermosphacta stammen groeiden sneller dan de melkzuurbacteriën. Alle geteste 

melkzuurbacterie-stammen groeiden snel met uitzondering van Leuc. mesenteroides subsp. 

dextranicum en Leuc. carnosum. De snelheid van verzuring was gelinkt aan de groeisnelheid, 

terwijl de diepte van de verzuring gerelateerd was aan het fermentatief karakter van de 

stammen (homo- of heterofermentatief metabolisme). 

Vervolgens wordt de groei van dezelfde negen bederforganismen bestudeerd op een 

modelkookham. De stammen, die het snelst tot bederf van het modelproduct leidden, 

behoorden tot het species Leuc. mesenteroides subsp. mesenteroides gevolgd door het species 

B. thermosphacta, terwijl L. sakei trager groeide op de modelkookham. Leuc. citreum, Leuc. 

carnosum en Weissella viridiscens vertoonden een meer gematigd bederfpatroon, terwijl 

Leuc. mesenteroides subsp. dextranicum en Leuc. carnosum zeer traag groeiden in 

vergelijking met de andere melkzuurbacteriën. De groei van de teststammen op de 

modelkookham resulteerde in een beperkte pH-daling die gelinkt was aan de groeisnelheid 

van de stammen. Ook het glucoseverbruik was gerelateerd aan deze groeisnelheid. Voor geen 

enkele stam kon een significante melkzuurvorming geobserveerd worden. Bij enkele stammen 

werd op het einde van de bewaartijd kleine hoeveelheden azijnzuur, propionzuur en ethanol 

gedetecteerd. Het moment waarop de modelkookham sensorisch gezien onaanvaardbaar werd, 

was gelinkt aan de groeisnelheid van de stammen, behalve voor Leuc. citreum en Leuc. 

mesenteroides subsp. dextranicum, die toch bederf veroorzaakten ondanks hun trage groei. 

Het sensorisch afkeuren van de modelkookham gebeurde hoofdzakelijk op basis van geur, 

smaak en zure smaak. Tussen metabolietvorming en het optreden van sensorische wijzigingen 

kon geen duidelijk verband gevonden worden. 
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In hoofdstuk 4 wordt onderzocht in welke mate twee geselecteerde melkzuurbacteriën, 

L. sakei subsp. carnosus 10A en de lactocin S producerende L. sakei LS5, bruikbaar zijn voor 

het verlengen van de houdbaarheid van gekookte vleesproducten. De interacties tussen deze 

twee potentiële protectieve culturen enerzijds en de bederforganismen, Leuc. mesenteroides 

(LM4) en B. thermosphacta (BT1), anderzijds worden bestudeerd in co-cultuur experimenten 

op een modelkookham (vacuüm, 7°C). Bovendien wordt ook nagegaan wat de invloed is van 

het glucosegehalte van de modelkookham op de waargenomen interacties door de co-

cultuurexperimenten uit te voeren op een modelkookham met een laag (0.2%) glucosegehalte 

en op een modelkookham met een hoog (1.3%) glucosegehalte. De moeilijkheid in het 

kwantificeren van een dergelijke interactie is het afzonderlijk opvolgen van de individuele 

groei van homofermentatieve en heterofermentatieve melkzuurbacteriën wanneer ze in co-

cultuur met elkaar groeien. Daarom werd een nieuw medium, TC8-MRS-agar, ontwikkeld. 

Dit medium bestond uit MRS-agar gesupplementeerd met tetracycline (8 µg/ml) en liet toe 

om kolonies van Leuc. mesenteroides LM4 te onderscheiden van kolonies van L. sakei 10A of 

LS5 na anaërobe incubatie gedurende drie dagen bij 30°C. Wanneer de modelkookham beënt 

was met BT1 aan 102 kve/g in combinatie met 10A aan 105 kve/g, werd vastgesteld dat de 

groei van BT1 significant trager verliep in vergelijking met zijn gelijktijdige monocultuur 

groei. In een gelijkaardig experiment met LM4, bereikte deze stam in aanwezigheid van 

L. sakei 10A een celaantal van 107 kve/g ongeveer 14 dagen later dan wanneer LM4 groeide 

zonder L. sakei 10A. De lactocin S producerende stam LS5 vertoonde geen groeiremmend 

effect tegenover LM4 of BT1. Het antagonistische effect van L. sakei 10A tegenover LM4 en 

BT1 trad zowel op in de modelkookham met een laag glucosegehalte als in deze met een hoog 

glucosegehalte en werd dus niet geëlimineerd wanneer glucose in overmaat aanwezig was in 

het product.  

De resultaten van dit hoofdstuk tonen aan dat L. sakei 10A mogelijkheden biedt als 

protectieve cultuur voor de houdbaarheidsverlenging van gekookte vleesproducten, terwijl 

L. sakei LS5 dit niet biedt. 

 

In hoofdstuk 5 wordt onderzocht of dezelfde twee melkzuurbacteriën, L. sakei 10A en 

L. sakei LS5, ook bruikbaar zijn om de voedselveiligheid van gekookte vleesproducten te 

verbeteren. De interactie tussen deze potentiële protectieve culturen en een cocktail van drie 

L. monocytogenes stammen wordt onderzocht door middel van co-cultuur experimenten op 

modelkookham. Daarnaast wordt ook onderzocht of de interactiefenomenen beïnvloed 

worden door het inoculumniveau van de protectieve cultuur (105 kve/g versus 106 kve/g), de 
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bewaartemperatuur (4°C versus 7°C) en de manier van verpakken (vacuüm versus 

gemodificeerde atmosfeer). De toepassing van L. sakei 10A aan 106 kve/g bij 7°C beperkte de 

uitgroei van L. monocytogenes tot minder dan 1 log10(kve/g) gedurende 27 dagen, terwijl een 

dosis van 105 kve/g onvoldoende was om uitgroei tot onaanvaardbare niveau’s te voorkomen. 

L. sakei LS5 werkte niet antagonistisch tegenover L. monocytogenes en is daarom niet 

bruikbaar als protectieve cultuur op gekookte vleesproducten. Het verlagen van de 

temperatuur tot 4°C of overstappen van vacuümverpakking op MAP had geen invloed op het 

groeivermogen van L. sakei 10A op de modelkookham en dominantie van 10A bleef 

gegarandeerd. De groei van L. monocytogenes kon op de modelkookham volledig voorkomen 

worden door de toepassing van stam 10A te combineren met een bewaartemperatuur van 4°C 

of met een gemodificeerde atmosfeer die 50% CO2 bevatte. De sensorische evaluatie en de 

pH-metingen bevestigden dat L. sakei 10A de modelkookham niet verzuurde tot een 

sensorisch onaanvaardbaar product zelfs wanneer de melkzuurbacterie gedurende lange tijd 

aanwezig was in hoge celaantallen. 

 

Bioconservering is een veelbelovende natuurlijke vorm van conservering, maar de impact van 

protectieve culturen op de sensorische eigenschappen van gekookte vleesproducten is een 

aspect dat onvoldoende gedocumenteerd is. Hoofdstuk 6 beschrijft de gevalstudie van de 

protectieve cultuur L. sakei 10A met de bedoeling een duidelijker beeld te krijgen over de 

werkelijke consequenties van het gebruik van protectieve culturen op de sensorische kwaliteit 

van gekookte vleesproducten. Een voorafgaande studie met 13 verschillende soorten gekookte 

vleesproducten en meer uitgebreide toepassingstesten bij 7°C met vacuümverpakte paté, 

kookham, kookworst, kippewit en kalkoenwit toonden aan dat L. sakei 10A in staat is de groei 

van de natuurlijke melkzuurflora te remmen alsook die van kunstmatig geënte Leuc. 

mesenteroides, B. thermosphacta en L. monocytogenes cellen. Ondanks deze veelbelovende 

antagonistische effecten was de toepassing van L. sakei 10A op gekookte vleesproducten in 

sommige gevallen beperkt door een significante verzuring die aanleiding gaf tot een zure 

smaak van het product. Dit fenomeen was het duidelijkst in paté en kookworst en minder 

duidelijk in kalkoenwit. Op basis van de resultaten werd de hypothese geformuleerd dat een 

hoge buffercapaciteit en een laag glucosegehalte cruciale eigenschappen zijn van gekookte 

vleesproducten in het voorkomen van sensorische afwijkingen ten gevolge van het toepassen 

van protectieve culturen. 
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Hoofdstuk 7 beschrijft onderzoek naar het werkingsmechanisme van de niet-

bacteriocinogene cultuur L. sakei 10A tegenover L. monocytogenes. 

Eerst en vooral werd het antagonistisch karakter van L. sakei 10A bevestigd, aangezien in 

aanwezigheid van 10A groeiremming van L. monocytogenes optrad in een gebufferde BHI-

broth (b-BHI) (7°C, anaëroob). Bij het bepalen van de groei van L. monocytogenes in 

verschillende celvrije cultuurmedia, bekomen na centrifugatie van een 10A-cultuur op 

verschillende tijdstippen tijdens zijn groei in b-BHI, werd het duidelijk dat hoe ouder de 

cultuur was, hoe meer groeiremmende eigenschappen het celvrij medium vertoonde. Dit 

betekent dat de groeiremming ofwel veroorzaakt wordt door de productie van één of meerdere 

antimicrobiële component(en) ofwel door competitie voor nutriënten.  

De exacte rol van melkzuurvorming en nutriëntcompetitie werd duidelijker tijdens co-cultuur 

experimenten in twee soorten vloeibaar groeimedium, die van elkaar verschilden in hun 

glucosegehalte en in de aanwezigheid/afwezigheid van gistextract, Mn2+ en Mg2+. De 

aanwezigheid van meer nutriënten kon niet voorkomen dat er groeiremming optrad van 

L. monocytogenes door L. sakei 10A. In het nutriënt-arme medium viel het moment van 

groeiremming samen met het moment dat het medium geen glucose meer bevatte. In het 

nutriënt-rijke medium werd de uitgesproken melkzuurvorming ervan verdacht de 

groeiremming te veroorzaken. Daaropvolgende challenge testen met L. monocytogenes in het 

celvrij kweekmedium, afkomstig van de groei van 10A in de media met de verschillende 

gehalten aan nutriënten, liet toe om een onderscheid te maken tussen de verschillende 

antagonistische effecten (pH-daling, melkzuurvorming en nutriëntcompetitie). In het nutriënt-

arme medium werd de groeiremming uitsluitend veroorzaakt door nutriëntcompetitie en 

competitie voor glucose was, tenminste gedeeltelijk, hierbij betrokken. In het nutriënt-rijke 

medium werd de groeiremming veroorzaakt door een combinatie van verschillende factoren: 

het antimicrobiële effect van het geproduceerde melkzuur/lactaat, nutriëntcompetitie en pH-

daling als gevolg van melkzuurvorming.  

In een laatste experiment werd vastgesteld dat extra toevoeging van vitaminen en mineralen 

aan het groeimedium geen effect had op de inhibitiefenomenen wat doet vermoeden dat 

competitie voor deze vitaminen en mineralen geen bijkomende rol speelt in het 

inhibitiemechanisme van L. sakei 10A.  

 

Hoofdstuk 8 rapporteert over het gebruik van bacteriofaag P100 om te voorkomen dat 

nabesmetting met L. monocytogenes aanleiding geeft tot uitgroei van deze voedselpathogeen 

op vacuümverpakte gekookte vleesproducten. 
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In-vitro testen toonden aan dat de drie L. monocytogenes stammen, die gebruikt werden in 

hoofdstuk 5 en 6 van dit werk, elk op zich gevoelig waren voor de werking van bacteriofaag 

P100 en dit zowel bij 30°C als bij 7°C. Bij 30°C was de gevoeligheid voor P100 wel 

stamafhankelijk aangezien het tijdstip, waarop de OD(600 nm) van het groeimedium, dat 

L. monocytogenes en P100 bevatte, begon toe te nemen, verschilde tussen die drie stammen. 

Daarom werd bij de daaropvolgende toepassingstesten op gekookte vleesproducten gewerkt 

met een mengsel van deze drie L. monocytogenes stammen.  

In een voorafgaande toepassingstest op versneden, gekookt kippewit resulteerde de 

aanwezigheid van faag P100 in een reductie van het celaantal van L. monocytogenes met 3.32 

log10(kve/g) in vergelijking met een onbehandelde controle na 21 dagen bewaring (7°C, 

vacuüm).  

Een meer uitgebreide toepassingstest op versneden kookham bevestigde de antilisteriale 

werking van P100 op gekookte vleesproducten tijdens bewaring bij 7°C onder vacuüm. In dit 

laatste experiment gaf een behandeling met een P100-dosis van 1×107 pve/cm2 of 5×106 

pve/cm2 na 10 dagen bewaring (7°C, vacuüm) aanleiding tot een reductie van de 

L. monocytogenes populatie met 0.97 en 0.61 log10(kve/g), respectievelijk, in vergelijking met 

de onbehandelde controle. Het verschil in antilisteriaal effect tussen de twee P100-dosissen 

was echter statistisch niet significant.  

Dit hoofdstuk levert dus het bewijs dat bacteriofaag P100 bruikbaar is om de uitgroei van 

L. monocytogenes tot onaanvaardbare niveau’s tegen te gaan op versneden, gekookte 

vleesproducten die bewaard worden in vacuümverpakking bij 7°C. 
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Chapter 1 
Antagonistic micro-organisms for biopreservation of food 

products 

1. Lactic acid bacteria 

1.1. Introduction 

Lactic acid bacteria (LAB) constitute a diverse group of micro-organisms widely distributed 

in nature and associated with dairy, vegetable and meat products. LAB are best known for 

their use as starter cultures in the manufacture of dairy products and are also commercially 

important in the processing of meat, alcoholic beverages and vegetables. Although LAB are 

often beneficial in the food industry, they also can be a nuisance as spoilage causing 

contaminants of food products (Carr et al., 2002).  

Lactic acid bacteria are broadly defined as Gram-positive, non-spore-forming rods, cocci or 

coccobacilli with a DNA-base composition of less than 50 mol% G+C (Stiles & Holzapfel, 

1997). They are oxidase negative and generally catalase negative; motility and nitrate 

reduction are highly unusual (Kandler & Weiss, 1986; Vandamme et al., 1996; Carr et al., 

2002). Kandler & Weiss (1986) describe LAB as micro-aerophilic but other wordings for this 

feature are aerobic to facultatively anaerobic (Carr et al., 2002) or fermentative but 

aerotolerant (Liu, 2003).  

1.2. Taxonomy 

The concept of the LAB as a group of organisms developed at the beginning of the 20th 

century. LAB have a long and complex taxonomic history (Pot et al., 1994; Stiles & 

Holzapfel, 1997). The classical approach to bacterial taxonomy was based on morphological, 

physiological and biochemical features. This was expanded to chemical taxonomy including 

analysis of the cell wall composition, comparison of whole-cell protein patterns obtained by 

sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) and other 

techniques. The use of molecular characteristics, such as the mol% G+C of the DNA-content, 

and the application of genetic techniques, such as 16S rRNA sequence analysis, as taxonomic 

tools have resulted in significant changes in the taxonomy of LAB (Pot et al., 1994; Stiles & 

Holzapfel, 1997; Temmerman et al., 2004). Unfortunately, these new genetically based 

taxonomic relationships cut across the phenotypic lines that have been used for many years 
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(Stiles & Holzapfel, 1997). Another development of bacterial taxonomy, polyphasic 

taxonomy, aims at the integration of different kinds of data and information (phenotypic, 

genotypic and phylogenetic) on LAB (Vandamme et al., 1996).  

The classification of LAB remains under investigation but this group is generally restricted to 

the genera Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, 

Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus and Weissella. 

Representatives of the genera Aerococcus, Alloiococcus, Atopobium, Dolosigranulum, 

Gemella, Globicatella, Helcococcus, Melissococcus and Saccharococcus are generally not 

considered to belong to the LAB, although they might meet the broad definition of this group 

(Vandamme et al., 1996).  

Phylogenetically, LAB belong to the so-called Clostridium branch of the Gram-positive 

bacteria, a phylum consisting of bacteria with a DNA-base composition of less than 50 mol% 

G+C (Kandler & Weiss, 1986; Vandamme et al., 1996). 

1.3. Metabolism and energy generation 

Metabolically, LAB are at the threshold of anaerobic to aerobic life. They are told to have a 

fermentative metabolism and to have a need for a fermentable carbohydrate for growth 

because they possess efficient carbohydrate fermentation pathways coupled to substrate level 

phosphorylation (Kandler & Weiss, 1986; Vandamme et al., 1996). A second substrate level 

phosphorylation site is coupled to arginine fermentation, observed in most of the 

heterofermentative lactobacilli. In addition to substrate level phosphorylation, LAB may gain 

energy from the proton motive force by lactate efflux. Lactobacilli contain in general no 

isoprenoid quinines and no cytochrome systems to perform oxidative phosphorylation. 

However, they possess (per)oxidases to carry out the oxidation of NADH2 and O2 as the final 

electron acceptor. Furthermore, they are able to perform a Mn-catalysed scavenging of 

superoxide although they do not possess dismutase and catalase (Kandler & Weiss, 1986; 

Piard & Desmazeaud, 1991). 

 

Lactic acid bacteria, although consisting of a number of diverse genera, are grouped as either 

homofermentatives or heterofermentatives based on the end-product(s) of their hexose 

fermentation (Figure 1.1). The homofermentatives produce lactic acid as the major end-

product of glucose fermentation. The heterofermentatives produce a number of products 
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besides lactic acid, including carbon dioxide, acetic acid and ethanol from the fermentation of 

glucose (Carr et al., 2002). 

Homofermentative LAB possess the enzyme aldolase and are able to convert one mol hexose 

through the Embden-Meyerhof-Parnas (EMP) pathway to two mol of lactic acid (homolactic 

fermentation). The heterofermentative LAB lack aldolase but possess the enzyme 

phosphoketolase and use the alternative 6-phosphogluconate pathway, resulting in one mol 

CO2, one mol ethanol (or acetic acid) and one mol lactic acid (heterolactic fermentation) 

(Kandler & Weiss, 1986; Carr et al., 2002).  

 

Figure 1.1. Glucose metabolism in homo- and heterofermentative LAB (Caplice & 
Fitzgerald, 1999) 
 

Lactic acid bacteria are also able to metabolise a number of non-carbohydrates including 

organic acids such as citrate (Hugenholtz, 1993) and lactate (Liu, 2003), peptides, amino 

acids such as arginine (Kandler & Weiss, 1986; Urbach, 1995; Arena et al., 1999; Tavaria et 

al., 2002), etc. 

Citrate can be degraded to unusual fermentation products with very distinct aroma properties 

such as diacetyl, acetoin, butanediol and acetaldehyde (Hugenholtz, 1993).  

Lactic acid bacteria can hydrolyse peptides to free amino acids. Amino acid catabolism 

produces, in turn, a number of compounds, including ammonia, amines, aldehydes, phenols, 

Glucose

Homolactic Heterolactic

Glucose-6-P Glucose-6-P

Fructose-6-P 6-phosphogluconate

Fructose-1,6-DP Ribulose-5-P

Xylulose-5-P

Glyceraldehyde-3-P Dihydroxyacetone-P Glyceraldehyde-3-P Acetyl-P

2 Pyruvate Pyruvate Acetaldehyde

2 Lactate Lactate Ethanol
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indole and alcohols, which play an important role in the flavour development of dairy 

products (Urbach, 1995; Tavaria et al., 2002). Arginine catabolism occurs in most of the 

heterofermentative lactobacilli and results in the production of citrulline, ornithine and 

ammonia (Kandler & Weiss, 1986; Arena et al. 1999). 

1.4. Lactic acid bacteria of importance in food products 

In food, LAB contribute to the taste and texture of fermented products and inhibit growth of 

bacteria by the production of growth-inhibiting substances. However, LAB are also known to 

be involved in spoilage of e.g. beer, wine, meat and meat products and some fish products. 

The genera of most importance in the microbial ecology of food products are Lactobacillus, 

Pediococcus, Leuconostoc and Lactococcus (Stiles & Holzapfel, 1997; Carr et al., 2002).  

1.4.1. The genus Lactococcus 

The genus Lactococcus includes several species but Lactococcus lactis is the most important 

species of the commercially used LAB. Lactococcus lactis is commonly isolated from plant 

material but the most recognised habitat is dairy products. They are non-motile, coccus-

shaped, homofermentative bacteria that grow at 10°C and 40°C but not at 45°C, grow in 4% 

NaCl and produce L(+)-lactic acid from glucose (Stiles & Holzapfel, 1997; Carr et al., 2002). 

The use of lactococci, mainly in the dairy industry (production of cheese or yoghurt), is 

widespread and has the longest tradition in industrial starter culture technology. Some strains 

of Lc. lactis are also important because of nisin production (Stiles & Holzapfel, 1997). 

1.4.2. The genus Leuconostoc 

The leuconostocs are heterofermentative cocci that occur in pairs and chains and form D(-)-

lactic acid and carbon dioxide from the fermentation of glucose. The leuconostocs require a 

less acidic environment (pH ≥ 4,5) than the lactobacilli and the pediococci, which are more 

acid tolerant (Carr et al., 2002). Plants are the natural habitat of this genus and 

Leuc. mesenteroides subsp. mesenteroides is the principal isolate. In fermented foods of plant 

origin, Leuc. mesenteroides is generally the first organism to grow and it is succeeded by the 

more acid-tolerant lactobacilli. Leuconostoc mesenteroides, Leuconostoc gelidum and 

Leuconostoc carnosum have been isolated from raw and processed meat and meat products 

packaged under vacuum or in a modified atmosphere (Stiles & Holzapfel, 1997). Spoilage of 

meat products through leuconostocs may be accompanied by the production of slime.  
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1.4.3. The genus Pediococcus 

This genus is characterised by tetrad formation and a spherical shape, pseudocatalase 

production and salt tolerance. The pediococci have a homofermentative metabolism and 

produce DL- or L(+)-lactic acid from glucose according to the Embden-Meyerhof pathway. 

Pediococci occur on plant materials, in various food products and as spoilage agents in 

alcoholic beverages such as beer. Pediococcus pentosaceus and Pediococcus acidilactici are 

important starter cultures for fermented sausage production (Stiles & Holzapfel, 1997). 

1.4.4. The genus Lactobacillus 

1.4.4.1. Habitat 

The lactobacilli grow in and are associated with many different habitats, e.g. plants, soil, 

water, sewage and manure, cereal products, silage, milk and dairy products, meat, fish and 

vegetable products. They are involved in spoilage of several food products and occur in the 

respiratory, intestinal and genital tracts of humans and animals (Stiles & Holzapfel, 1997). 

1.4.4.2. Cell morphology and growth conditions 

Lactobacilli meet the general definition for LAB. Their cells vary from long and slender, 

sometimes bent rods to short, often coryneform coccobacilli and chain formation is common. 

The lactobacilli are strictly fermentative and have complex nutritional requirements for amino 

acids, peptides, nucleic acid derivatives, vitamins, salts, fatty acids or fatty acid esters and 

fermentable carbohydrates.  

Their growth temperature ranges from 2 to 53-55°C. Most lactobacilli grow best at mesophilic 

temperatures with an upper limit of around 40°C. Some grow also below 15°C and some 

psychrophilic strains even below 5°C (as low as 2°C). The so-called thermophilic lactobacilli 

may have an upper limit of 55°C.  

Lactobacilli are generally aciduric or acidophilic, they grow best in slightly acidic media with 

an initial pH of 6.4 to 4.5 and growth ceases when pH 4.0 to 3.6 is reached, depending on the 

species and strain.  

Although most strains are fairly aerotolerant, optimum growth is achieved under micro-

aerophilic or anaerobic conditions (Kandler & Weiss, 1986; Carr et al., 2002). 
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1.4.4.3. Classification 

Although earlier subdivisions exist, the classical division of the lactobacilli is based on their 

fermentation characteristics: (1) obligately homofermentative; (2) facultatively 

heterofermentative and (3) obligately heterofermentative (Kandler & Weiss, 1986; Stiles & 

Holzapfel, 1997).  

The obligately homofermentative lactobacilli (group 1) possess aldolase but no 

phophoketolase (Kandler & Weiss, 1986) and degrade hexoses almost exclusively to lactic 

acid by the Embden-Meyerhof pathway and do not ferment pentoses or gluconate 

(Vandamme et al., 1996). Some important food associated species of this group are 

Lactobacillus acidophilus, Lactobacillus delbrueckii and Lactobacillus helveticus (Stiles & 

Holzapfel, 1997).  

The facultatively heterofermentative lactobacilli (group 2) ferment hexoses almost exclusively 

to DL-lactic acid by the Embden-Meyerhof pathway or to lactic acid, acetic acid, ethanol and 

formic acid under glucose limitation. Pentoses are fermented to lactic acid and acetic acid via 

an inducible pentose phosphoketolase (Kandler & Weiss, 1986; Vandamme et al., 1996). 

They may produce gas from gluconate but not from glucose. Important food-associated 

species in this group are Lactobacillus casei, Lactobacillus plantarum, Lactobacillus sakei 

and Lactobacillus curvatus (Stiles & Holzapfel, 1997). 

The obligately heterofermentative lactobacilli (group 3) lack aldolase and ferment hexoses to 

DL-lactic acid, acetic acid, ethanol and CO2 via the 6-phosphogluconate pathway. Pentoses 

are fermented to lactic acid and acetic acid. In general, a pentose phosphoketolase is involved 

in both pathways (Kandler & Weiss, 1986; Vandamme et al., 1996). The production of gas 

from glucose is a characteristic feature of these bacteria. The most important food-associated 

species of this group are Lactobacillus sanfranciscensis involved in the production of 

sourdough bread, Lactobacillus reuteri of interest because of its antimicrobial metabolite 

reuterin and Lactobacillus brevis causing spoilage in citrus fruits, beer, wine and some meat 

products (Stiles & Holzapfel, 1997). 

 

The past two decades, a whole range of taxonomic reassignments occurred within the genus 

Lactobacillus, based almost exclusively on the results of rRNA-sequencing or DNA-DNA 

hybridisations. The large number of nomenclature revisions is a striking indication of the 

discrepancies between the results obtained by former traditional phenotypic tests (classical 
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taxonomy) and the present phylogenetic insights obtained by rRNA-sequencing (molecular 

taxonomy) (Vandamme et al., 1996). 

Based on 16S rRNA-homology, lactobacilli can be subdivided into three major groups: (1) the 

Lactobacillus delbrueckii group, (2) the Lactobacillus casei-Pediococcus group and (3) the 

Leuconostoc group (Vandamme et al., 1996). However, this redefinition of the Lactobacillus 

group of the LAB crosses the established metabolism-based classification. 

1.4.4.4. The species Lactobacillus sakei 

Lactobacillus sakei (Figure 1.2), formerly L. sake, was originally isolated from sake or rice 

wine. Its cells are rods with rounded ends, occurring singly and in short chains and frequently 

slightly curved (Kandler & Weiss, 1986).  

Together with L. curvatus, L. sakei constitutes a subgroup of the facultatively 

heterofermentative lactobacilli (Stiles 

& Holzapfel, 1997) that are mannitol 

negative and ribose positive (Carr et al., 

2002). Despite wide phenotypic 

heterogeneity, L. sakei strains are 

closely related to the genomic level 

(Champomier-Vergès et al., 2002). The 

species L. sakei was split into L. sakei 

subsp. sakei and L. sakei subsp. 

carnosus (Torriani et al., 1996). 

Lactobacillus sakei belongs to the main 

flora of fresh meat and becomes dominant flora when meat and meat products are stored 

under anaerobic conditions (Devlieghere et al., 1998; Samelis et al., 2000a). Furthermore, it is 

an important starter culture in fermented meat products (Stiles & Holzapfel, 1997; Carr et al., 

2002).  

 

Lactobacillus sakei is known to be one of the most psychrotrophic species of lactobacilli since 

some strains grow at 2-4°C (Zhang & Holley, 1999; Champomier-Vergès et al., 2002; 

Marceau et al., 2003). Although most LAB are catalase negative, L. sakei possesses a heme-

dependent catalase responsible for the efficient decomposition of H2O2 (Champomier-Vergès 

et al., 2002). Growth of this species is possible up to pH 3.9 and 8% NaCl (Carr et al., 2002). 

Marceau et al. (2003) demonstrated that L. sakei is able to adapt to conditions of low 

Figure 1.2. Scanning electron microscopy of a  
L. sakei strain (Champomier-Vergès et al., 2002)
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temperature (4°C) and high salt (9% NaCl). Although these conditions influence growth, 

survival was enhanced and differences in cell morphology were observed. In 2004, Marceau 

et al. found six proteins to be affected during growth of L. sakei at 4°C or in the presence of 

4% NaCl. Two were proteins from general carbon metabolism, four were general stress 

proteins.  

 

Lactobacillus sakei is known to have the most fastidious nutritional requirements of all 

lactobacilli (Lauret et al., 1996). Although L. sakei can generate energy by degrading 

arginine, leading to NH3 and ATP production, via the arginine deiminase pathway, this amino 

acid alone does not allow growth of L. sakei but rather survival during the stationary phase 

(Champomier-Vergès et al., 1999; 2002). Instead, this species uses other energy sources to 

grow on meat. Among the few sugars present in meat, glucose and ribose are the only sugars 

that L. sakei can utilise for its growth (Stentz et al., 2001). Glucose is fermented via the 

homofermentative EMP-pathway while ribose is fermented via the heterofermentative 

phosphoketolase pathway. During sugar fermentation, D- and L-lactic acid are produced 

although only L-lactate dehydrogenase is present. The conversion of L- to D-lactic acid is 

catalysed by a lactate racemase (Carr et al., 2002; Champomier-Vergès et al., 2002).  

 

Little is known about nucleotide and vitamin requirements. Thiamin is required for growth on 

pentoses such as ribose (Champomier-Vergès et al., 2002). In the study of Moretro et al. 

(1998), riboflavin was essential for growth, while biotin had no effect on the growth of two 

L. sakei strains. Furthermore, both strains needed purines and pyrimidines for growth. 

1.5. Antimicrobial activity of lactic acid bacteria 

Since ancient times, LAB are used in the production of a wide range of fermented foods. 

Lactic acid bacteria contribute to the stability and safety of these products mainly due to the 

acidic conditions they create during their development and this souring effect is primarily due 

to the fermentation of carbohydrates to organic acids. Although the preservative effect of 

LAB is known for a long time, only in the last twenty years it became clear that the 

antimicrobial activity of LAB is more than organic acid production alone. A whole range of 

antagonistic systems have been described for LAB (De Vuyst & Vandamme, 1994a). 
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1.5.1. Fermentation end-products 

1.5.1.1. Organic acids 

Lactic acid bacteria are characterised primarily by their ability to form organic acids from the 

fermentation of carbohydrates. Depending on their homo- or heterofermentative nature, only 

lactic acid or lactic acid and other organic acids, e.g. acetic acid and propionic acid, are 

produced. The antimicrobial activity of these acidic end-products and the concomitant low pH 

constitute the most important antimicrobial system of LAB (De Vuyst & Vandamme, 1994a).  

 

The organic acids produced by LAB are weak acids and follow the common equilibrium 

reaction and equation  

 

HA  H+ + A-     [ ] [ ]
[ ] aK=⋅ −+

HA
AH  

 

where [H+] is the concentration of protons, [A-] is the concentration of anions, [HA] is the 

concentration of undissociated acid and Ka is the dissociation constant (Eklund, 1989). Only 

in their undissociated and uncharged form, organic acids are able to penetrate the microbial 

cell to act antimicrobially (Russell, 1992; Stratford, 2000).  

From the above equation it can be derived that the inhibitory activity of organic acids is 

determined by the pH, the dissociation constant (Ka) and the acid concentration. The 

antimicrobial activity of organic acids increases with decreasing pH-value since a greater 

proportion of undissociated molecules exists as the pH decreases. Because they are weak 

acids, organic acids have high pKa values (acetic acid, pKa = 4.73 and lactic acid, pKa = 3.86) 

(Eklund, 1989; Bogaert & Naidu, 2000). At a given pH and acid concentration, the acid with 

the highest pKa will have the most undissociated acid present, resulting in the strongest 

antimicrobial activity. This explains partly why, at a given pH, acetic acid is more inhibitory 

than lactic acid (Stratford, 2000).  

 

Traditionally, the antimicrobial activity of organic acids was explained by reduction of the pH 

below the minimum pH for growth and inhibition by undissociated acid (Russell, 1992). The 

mechanism of action is complex and the uncoupling theory (Russell, 1992) or weak acid 

theory (Stratford, 2000) has been developed (Figure 1.3). This theory states that when 
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undissociated acid molecules enter a microbial cell, at the higher intracellular pH, they 

dissociate in charged anions and protons, both unable to diffuse out of the cell thus reducing 

the intracellular pH (Eklund, 1989; Russell, 1992). A low cytoplasmic pH causes structural 

changes in proteins, nucleic acids and phospholipids, influences rates of enzyme action and in 

this way interferes with essential metabolic functions and prevents active transport requiring a 

ΔH+-gradient (Eklund, 1989; Stratford, 2000). To maintain or raise internal pH, a 

compensating transport of protons out of the cell takes place by membrane-bound H+-

ATPases but consumes excessive ATP (Stratford, 2000). The remaining anion inside the cell 

can be driven to the outside of the cell by the electrochemical gradient. The anion is 

protonated again to repeat the cycle until the proton motive force is dissipated and the cell is 

inhibited by energy depletion (Eklund, 1989; Russell, 1992; Stratford, 2000). The last decade, 

however, the organic acids are regarded as having not one but several mechanisms of action 

and inhibition of active 

nutrient transport by 

neutralisation of the 

proton motive force only 

is not believed to fully 

explain their 

antimicrobial activity 

(Eklund, 1989; Russell, 

1992). Lactic acid is 

acting partly according 

to the weak acid theory, 

but other mechanisms of 

inhibition are also involved (Eklund, 1989; Bogaert & Naidu, 2000; Stratford, 2000). 

Furthermore, it has been shown that the effects of lactic acid on microbial growth at different 

pH can only be explained if both the undissociated and the dissociated form are taken into 

account (Gonçalves et al., 1997). Organic acids have a wide inhibitory spectrum including 

Gram-positive and Gram-negative bacteria, yeasts and moulds. Lactic acid mainly acts 

against bacteria and is ineffective against yeast and moulds (Eklund, 1989; Bogaert & Naidu, 

2000). Lactic acid and its salts are reported to have an inhibitory effect on LAB (Houtsma et 

al., 1993), spore-forming Clostridia and Bacillus spp. (Bogaert & Naidu, 2000), Listeria 

monocytogenes (Houtsma et al., 1993) as well as on Gram-negative pathogens such as E. coli 

0157:H7 and Salmonella spp. This property makes organic acids attractive food preservatives.  

Figure 1.3. Weak acid theory and dissipation of the proton  
motive force (modified from Russell, 1992 and Stratford, 2000)

XCOOH XCOOH

 XCOO- H+XCOO- 
      H+ 

ATP

ADP + Pi

     H+
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The ability of lactic acid to rotate under influence of polarised light results in the existence of 

two stereo-isomers being the L(+) (levorotary) and D(-) (dextrorotary) form. If there is a 

mixture of both, it is termed racemic (DL) (Bogaert & Naidu, 2000; Carr et al., 2002). The 

production of L(+) or D(-) isomers varies with the genus and species within a genus of LAB 

(Stiles & Holzapfel, 1997; Liu, 2003) and depends on the stereo-specificity of the present 

lactate dehydrogenase (Kandler & Weiss, 1986). From a nutritional point of view, D(-)-lactate 

in food is undesirable because it is not readily metabolised in humans compared with L(+)-

lactate (Liu, 2003). It has been demonstrated that the antimicrobial activity of lactic acid is 

stereo-specific and it seems that micro-organisms are least sensitive to the isomer they 

intrinsically produce. Listeria monocytogenes is a L-lactic acid producer and is therefore more 

sensitive to D-lactic acid than to L-lactic acid. However, this difference in sensitivity is less 

than the strain variation in L-lactic acid sensitivity indicating that the stereo-specific activity 

of lactic acid has no practical importance regarding L.  monocytogenes. 

1.5.1.2. Hydrogen peroxide 

In the presence of oxygen, LAB can produce hydrogen peroxide (H2O2). Its formation occurs 

through electron transport and is catalysed by the flavin enzyme NADH-oxidase. 

Furthermore, H2O2 can be synthesised from pyruvate, α-glycerophosphate and even from 

lactate. Accumulation of H2O2 can also result from dismutation of superoxide anions (O2
-) by 

the action of a superoxide dismutase that is present in most LAB or by Mn-ions that are 

present in the cytoplasm of bacteria lacking superoxide dismutase (De Vuyst & Vandamme, 

1994a). In general, LAB are catalase negative (Kandler & Weiss, 1986). Since the produced 

H2O2 cannot be hydrolysed, it accumulates in the growth medium where it can exert its 

action. However, a few species, including L. sakei, have been reported to possess a heme-

dependent catalase (Hertel et al., 1998). 

Ito et al. (2003) showed that H2O2, accumulated by LAB in a cell suspension, is very effective 

in reducing the counts of several food born pathogens. The bactericidal effect of H2O2 is 

mainly attributed to its peroxidising properties on the membrane lipids, causing increased 

membrane permeability, and on other basic molecular structures, e.g. nucleic acids and cell 

proteins (Piard & Desmazeaud, 1991). Furthermore, H2O2 may react further to produce 

additional inhibitory compounds, e.g. the generation of hypothiocyanite by the action of 

lactoperoxidase on H2O2 and thiocyanate (De Vuyst & Vandamme, 1994a). 
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1.5.1.3. Carbon dioxide 

Carbon dioxide (CO2) is mainly produced by heterofermentative LAB from hexoses (Kandler 

& Weiss, 1986). Furthermore, various LAB can produce CO2 from malate and citrate 

(Hugenholtz, 1993) and also by metabolising arginine via the arginine deiminase pathway 

(Arena et al., 1999). Finally, decarboxylation of amino acids can also be a minor source of 

CO2 (Urbach, 1995). Carbon dioxide contributes to the antagonistic activity of LAB (De 

Vuyst & Vandamme, 1994a) and its inhibitory properties are due to its role in creating an 

anaerobic environment, its extracellular and intracellular pH-decreasing effect and specific 

actions on enzymes and membranes (Devlieghere, 2000).  

1.5.1.4. Diacetyl 

Diacetyl, the characteristic flavour associated with butter and cheese, is synthesised from 

pyruvate aerobically as well as anaerobically by citrate fermenting LAB (Hugenholtz, 1993; 

Liu, 2003). In the presence of citrate and a metabolisable energy source (e.g. in milk), the 

production of excessive amounts of pyruvate can result in the production of diacetyl and 

acetoin. When hexoses are the only fermentable carbon source, no diacetyl and little if any 

acetoin is produced. Diacetyl has antimicrobial activities but Gram-negative bacteria, yeasts 

and moulds are more sensitive to diacetyl than Gram-positive bacteria and usually high levels 

are necessary for inhibition (De Vuyst & Vandamme, 1994a). Its mode of action is believed 

to be due to interference with the utilisation of arginine. Diacetyl is rarely produced at 

sufficient levels to make a major contribution to the antimicrobial activity of LAB (Piard & 

Desmazeaud, 1991; De Vuyst & Vandamme, 1994a).  

1.5.1.5. Acetaldehyde and ethanol 

Acetaldehyde, responsible for the typical aroma of yoghurt, is produced during the 

carbohydrate metabolism of heterofermentative LAB, principally L. delbrueckii subsp. 

bulgaricus, and further reduced to ethanol by an alcohol dehydrogenase. When the latter 

enzyme is absent or repressed, it may result in the excretion of acetaldehyde. The possible 

antagonistic effect of acetaldehyde is poorly documented and existing data suggest that this 

compound plays a minor antagonistic role (Piard & Desmazeaud, 1991; De Vuyst & 

Vandamme, 1994a). Similarly, although ethanol may be produced by LAB, the produced 

levels are so low that its contribution to the antimicrobial activity of LAB is minimal (Caplice 

& Fitzgerald, 1999). 
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1.5.2. Bacteriocins 

Bacteriocins, produced by bacteria, can be defined as antimicrobial proteinaceous (peptides, 

proteins or protein complexes) substances displaying a bactericidal mode of action usually 

towards closely related species (Klaenhammer, 1988; De Vuyst & Vandamme, 1994a; 

Cleveland et al., 2001). They form a heterogeneous group with respect to producing bacterial 

species, molecular size, molecular, physical and chemical properties, stability, antimicrobial 

spectrum, mode of action, etc. Today, numerous bacteriocins have been isolated from a 

variety of LAB and a multitude of information is available and compiled in several reviews 

(Klaenhammer, 1993; De Vuyst & Vandamme, 1994a; Abee et al., 1995; Jack et al., 1995; 

Caplice & Fitzgerald, 1999; Cleveland et al., 2001; McAuliffe et al., 2001; Ross et al., 2002). 

1.5.2.1. Classification 

Bacteriocins are commonly classified into three classes (Table 1.1): (1) lantibiotics, (2) small 

heat-stable peptides and (3) large heat-labile proteins. A fourth class of complex proteins, 

whose activity requires the association of carbohydrate or lipid moieties, has been proposed 

but there is no consensus on the existence of this group (Klaenhammer, 1993; Jack et al., 

1995; Caplice & Fitzgerald, 1999; Cleveland et al., 2001).  
 

Table 1.1. Classification of bacteriocins from Gram-positive bacteria (modified from 
Cleveland et al., 2001)  
Class Subclass Characteristics Representative 

Lantibiotics   

Ia Flexible molecules compared to Ib Nisin 

I  

Ib Globular peptides; no net charge or net negative charge Mersacidin 

Small heat-stable peptides (non-lantibiotics)  

IIa Antilisterial single peptides Pediocin PA-1; 

Sakacin A 

II  

IIb Two-peptide bacteriocins Lactacin F; 

Plantaricin JK 

III Large heat-labile proteins (non-lantibiotics) Helveticin J; 

Lactacin A 

IV Complex bacteriocins carrying lipid or carbohydrate moieties none 

Class I, termed lantibiotics, is further subdivided into subclasses Ia and Ib based on their 

structural and functional features. In general, the small peptides of class I typically have from 

19 to more than 50 amino acids and they are characterised by unusual amino acids e.g. 
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lanthionine and beta-methyllanthionine. Subclass Ia bacteriocins, which include nisin, consist 

of cationic and hydrophobic peptides that form pores in target membranes and have an 

elongated flexible structure compared to the more rigid subclass Ib. Subclass Ib bacteriocins 

are globular peptides with no net charge or a net negative charge and they interfere with 

cellular enzymatic reactions (Cleveland et al., 2001; McAuliffe et al., 2001; Ross et al., 2002).  

Class II contains small heat-stable, non-modified peptides and can be further subdivided in 

subclasses IIa and IIb (Cleveland et al., 2001). Subclass IIa includes pediocin-like Listeria-

active peptides with a conserved N-terminal sequence Tyr-Gly-Asn-Gly-Val and two 

cysteines forming a S-S bridge in the N-terminal half of the peptide (Ennahar et al., 1999). 

Bacteriocins composed of two different peptides comprise subclass IIb (Garneau et al., 2002).  

Class III is the least well characterised group and consists of large and heat-labile 

bacteriocins, e.g. helveticin (Cleveland et al., 2001). 

1.5.2.2. Mode of action 

All bacteriocins are synthesised via the common ribosomal protein biosynthesis mechanism 

involving transcription and translation. They appear to be formed initially as prepeptides, 

which are subsequently cleaved enzymatically to form the biologically active molecule. In the 

case of the lantibiotics, post-translational modifications are introduced into the precursor 

molecule before cleavage (De Vuyst & Vandamme, 1994a; Jack et al., 1995; Cleveland et al., 

2001). Once produced, most bacteriocins are translocated to the outside of the cell (Cleveland 

et al., 2001).  

The mechanism, by which bacteriocins act, is not fully understood but it is generally accepted 

that the primary mode of action of bacteriocins is attributed to pore formation in the 

phospholipid bilayer of the cytoplasmic membrane. In particular, lantibiotics of class Ia act by 

forming pores in the membrane, depleting the transmembrane potential and/or pH-gradient, 

resulting in leakage of cellular materials and dissipation of the proton motive force and as a 

main secondary effect cessation of energy-requiring reactions such as biosynthetic reactions 

(Montville & Bruno, 1994; Jack et al., 1995; Cleveland et al., 2001). Other reported modes of 

action such as inhibition of peptidoglycan biosynthesis or cell lysis are rather believed to be 

secondary effects of bacteriocins’ primary action although not fully agreed on (Montville & 

Bruno, 1994; McAuliffe et al., 2001; Ross et al., 2002). 

Electrostatic interactions of the positively charged bacteriocins with negatively charged 

phosphate groups on target cell membranes are thought to contribute to the initial binding 

with the target cell. Further, it is likely that the hydrophobic patches of the bacteriocin 
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molecule inserts into the membrane forming a pore (Cleveland et al., 2001). In the case of 

nisin, pore formation is studied in detail and two models are suggested. In the ‘barrel-stave’ 

model (Abee et al., 1995; Garneau et al., 2002), during insertion, each nisin molecule adopts a 

transmembrane orientation, forming a pore by subsequent aggregation of the different inserted 

monomers (Figure 1.4). Whether aggregation occurs prior to insertion or in the membrane 

after insertion is unknown but insertion followed by aggregation is the favoured model. In the 

‘wedge’ model, after a critical number of nisin molecules associate with the membrane, they 

insert concurrently, forming a wedge-like pore (Cleveland et al., 2001; McAuliffe et al., 

2001).  

 
Figure 1.4. Barrel-stave model for pore formation by cationic bacteriocins (Garneau et 
al., 2002) 
 

Recent studies demonstrate that bacteriocin activity is more complex and it appears that 

‘docking’ molecules on the target cell membrane facilitate the interaction between bacteriocin 

and target cell. In the case of nisin, the peptidoglycan precursor lipid II acts as a docking 

molecule; initial binding to lipid II is followed by pore formation resulting in rapid killing of 

the target cell (Cleveland et al., 2001; Wiedemann et al., 2001; Ross et al., 2002). Other 

bacteriocins, e.g. those from Class IIa, interact with specific proteins on target cell 

membranes. However, the role of these ‘receptor’ molecules remains unclear (Montville & 

Bruno, 1994; Ennahar et al., 1999; Cleveland et al., 2001). 
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1.5.2.3. Antimicrobial spectrum 

Klaenhammer (1988) distinguishes two groups of bacteriocins from LAB with respect to their 

inhibitory spectrum. One group includes bacteriocins with a narrow inhibitory spectrum, 

either only against closely related bacteria of the same genus either against other bacterial 

genera (other LAB, Clostridium, Listeria, etc.). Bacteriocins from lactobacilli belong to this 

group. A second group of bacteriocins, including nisin, has a relatively broad spectrum of 

activity but only against Gram-positive bacteria. In general, bacteriocins are not active against 

Gram-negative bacteria and this may be explained by their mode of action and the difference 

in cell wall composition between Gram-positive and Gram-negative bacteria. Gram-negatives 

become sensitive to e.g. nisin after exposure to treatments that change the permeability 

properties of their outer membrane (Abee et al., 1995). 

The ability of several bacteriocins, mainly from Class IIa, to inhibit various food born 

pathogens, including L. monocytogenes (Harris et al., 1989; Motlagh et al., 1992; Hugas et al., 

1995; Muriana, 1996; Katla et al., 2002; Aasen et al., 2003; Teixeira de Carvalho et al., 2006), 

makes them attractive as potential food preservation agents and this aspect is further 

discussed in section 3.2.1. of this literature review.  

1.5.2.4. Bacteriocins of lactobacilli 

Lactobacilli, producing bacteriocins, have been isolated from fermented dairy products but 

also from non-dairy fermentations. In general, they have a narrow range of inhibitory activity 

that affects only closely related species within the lactobacilli (Klaenhammer, 1988). The 

plantaricins (L. plantarum) and the sakacins (L. sakei) are probably the best known but other 

examples are lactocins, helveticins (L. helveticus) and lactacins (L. acidophilus) (Nettles & 

Barefoot, 1993).  

Sakacin M, produced by L. sakei 148, was isolated from a Spanish dry fermented sausage and 

exhibits a bacteriostatic mode of action towards various lactobacilli, Leuc. mesenteroides and 

several Gram-positive bacteria including also L. monocytogenes (Sobrino et al., 1991; Sobrino 

et al., 1992; Rodriguez et al., 1994). According to Nes et al. (1994), a thorough 

characterisation of the bacteriocin indicated that it is identical to lactocin S, a Class I 

bacteriocin produced by L. sakei 45 (Abee et al., 1995). 

 

Three bacteriocins, sakacin A, sakacin P and lactocin S have been isolated from L. sakei 

strains (Champomier-Vergès et al., 2002). 
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1.5.3. Other antagonistic systems  

1.5.3.1. Reuterin 

Reuterin is a low-molecular weight, non-proteinaceous, antimicrobial agent produced by 

Lactobacillus reuteri. Reuterin has been identified as an equilibrium mixture of monomeric, 

hydrated monomeric and cyclic dimeric forms of β-hydroxypropionaldehyde formed during 

anaerobic metabolism of glycerol. It is a broad-spectrum antimicrobial substance effective 

against Gram-negative (e.g. Salmonella, Shigella) and Gram-positive bacteria (e.g. 

Clostridium, Staphylococcus and Listeria), yeasts, moulds and protozoa (De Vuyst & 

Vandamme, 1994a; El-Ziney & Debevere, 1998). It acts by the inhibition of sulfhydryl 

enzymes such as ribonucleotide reductase, an enzyme involved in DNA-biosynthesis (De 

Vuyst & Vandamme, 1994a).  

1.5.3.2. Reutericyclin 

Reutericylin is an inhibitory compound produced by sourdough isolates of Lactobacillus 

reuteri. The tetramic acid reutericylin is the first low-molecular weight antibiotic from LAB 

and it is bacterostatic or bactericidal to Gram-positive bacteria only, based on its activity as a 

proton-ionophore resulting in the dissipation of the transmembrane ΔpH. A broad range of 

food-related spoilage and pathogenic organisms are inhibited by reutericylin and therefore 

this compound might be of interest for the food industry (Gänzle, 2004). 

1.5.3.3. Competition for nutrients 

Lactic acid bacteria may have a negative influence on the growth of other micro-organisms by 

competition for nutrients. Because of their high nutritional requirements, multiplying LAB 

may rapidly lead to nutrient depletion causing growth arrest of other bacteria growing in the 

same environment (De Vuyst & Vandamme, 1994a; Buchanan & Bagi, 1997; Nilsson et al., 

2005). 

1.5.3.4. Antifungal compounds  

Recently, a number of antifungal metabolites, e.g. cyclic dipeptides, proteinaceous 

compounds (‘fungicins’), special organic acids (3-phenyl-L-lactic acid and caproic acid) and 

3-hydroxylated fatty acids have been isolated from LAB (De Muynck et al., 2004; Schnürer & 

Magnusson, 2005).  
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2. The microbial ecology of anaerobically packaged sliced 
cooked cured meat products 

2.1. Production process 

Cooked cured meat products are meat products that include a curing as well as a 

pasteurisation step in their production process. Typical examples are pâté, cooked ham, 

emulsion-style sausages (e.g. frankfurters, luncheon meat) and cooked poultry products. They 

are distributed chilled and are normally not heated before consumption. 

Cooked cured meat products are made from intact muscles and cuts of meat (e.g. ham), from 

meat pieces that have been massaged and tumbled and then formed into casings or moulds 

(e.g. pressed shoulder) or from fully comminuted meats that are extruded into casings or 

moulds (e.g. emulsion-style sausage). The cure is added to the meat by injection of brine, 

soaking in brine or blending during emulsion preparation and contains sodium nitrite and salt. 

Frequently, other compounds may be added such as sugar, ascorbate, phosphate, spices, 

antioxidants, preservatives (e.g. sodium lactate), smoke compounds, etc. The product is then 

pasteurised to a temperature of 65-75°C, cooled and removed from the casing or mould prior 

to further slicing and repackaging. Vacuum packaging (VP) and modified atmosphere 

packaging (MAP) (50-70% CO2/ 30-50% N2) are the most widely used packaging techniques 

for industrial cooked meat products (CMP). When sold as whole products, pasteurisation of 

CMP can occur in the packaging in which they are marketed. For retail purposes, whole CMP 

may also be stored unpackaged under aerobic atmospheres (Korkeala & Björkroth, 1997; 

Devlieghere, 2000; Bell & Kyriakides, 2005; Roberts et al., 2005). 

2.2. Contamination  

The pasteurisation process will normally inactivate most vegetative cells. Some of the more 

heat-resistant LAB, streptococci and Weissella viridiscens (Borch et al., 1988) and also spores 

of bacilli and clostridia may survive the mild heat treatment (Roberts et al., 2005). 

Immediately after cooking, the contamination level on the surface of CMP is generally very 

low (Mäkelä & Korkeala, 1987). During further handling (removal from cooking form), 

slicing and packaging, the CMP are subjected to post-heat treatment recontamination with 

micro-organisms such as LAB, Enterobacteriaceae, Brochothrix thermosphacta and Listeria 

spp. (Korkeala & Björkroth, 1997; Samelis et al., 1998; 2000b; Roberts et al., 2005). This 
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explains why CMP, immediately after production, have an initial contamination level of 0.5-3 

log10(cfu/g) of total bacteria (Samelis et al., 1998; 2000a; b). 

2.3. Microbial spoilage 

2.3.1. Factors determining the microbial growth in CMP 

The combination of intrinsic and extrinsic factors determines the microbiology of CMP 

(McDonald & Sun, 1999). Main intrinsic parameters are pH, water activity (aw) and the 

presence of antimicrobials. The pH is affected by the type and level of carbohydrate addition 

and the use of acidulants and phosphates. The water activity depends on the presence of salt, 

sugars, phosphates, lactates and fat. Antimicrobials in CMP are mainly salt, nitrite, lactates 

and smoke flavours. Extrinsic parameters include processing parameters, mainly 

time/temperature during cooking/cooling, storage, distribution and display conditions 

(packaging type, time/temperature) and the type and level of natural microbial flora remaining 

in the product after processing or due to post-process contamination. The high water activity 

(0.96-0.99), the low salt content (3-5%, Samelis et al. (2002)), the moderate pH (5.5-6.5) and 

the presence of readily available sources of energy and nutrients makes CMP highly 

perishable products.  

2.3.2. Specific spoilage organisms  

Lowering the redoxpotential of CMP by packaging under vacuum or in atmospheres enriched 

with CO2, inhibits the respiratory Gram-negative flora, mainly consisting of Pseudomonas 

spp. The combination of the micro-aerophilic conditions under VP/MAP, the presence of 

curing salt and nitrite and a reduced aw favours the growth of a Gram-positive facultative 

anaerobic microflora, mainly consisting of psychrotrophic LAB. Brochothrix thermosphacta 

may also be a dominant part of the bacterial flora, particularly when the film permeability is 

high (Borch et al., 1996; Nychas et al., 1998; Samelis et al., 2000a; Aymerich et al., 2002). 

2.3.2.1. Lactic acid bacteria  

Lactic acid bacteria are the major group of spoilage bacteria developing on refrigerated CMP 

under VP/MAP. The main LAB-strains associated with spoilage of CMP belong to the genera 

Lactobacillus and Leuconostoc. Furthermore, species from the genera Weissella and 

Carnobacterium are also reported to cause spoilage (Borch et al., 1996; Korkeala & 
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Björkroth, 1997; Holzapfel, 1998; Samelis et al., 2000a; Aymerich et al., 2002). The 

genus/species of LAB responsible for spoilage depends on the manufacturing site, the 

processing method and the product composition (Mäkelä & Korkeala, 1987; Borch et al., 

1996; Samelis et al., 2000a). Lowering pH, lowering temperature, reducing aw, increasing salt 

and/or applying smoke results in dominance of the LAB-flora of CMP by Lactobacillus 

(L. sakei and L. curvatus), Leuconostoc, Weissella and Carnobacterium, in the order listed 

(Zhang & Holley, 1999; Samelis & Georgiadou, 2000). 

Lactobacilli 

Lactobacillus sakei and L. curvatus are the main spoilage causing lactobacilli in VP/MAP, 

sliced CMP (Korkeala & Björkroth, 1997; Devlieghere et al., 1998; Samelis & Georgiadou, 

2000; Samelis et al., 2000a; b). Generally, these homofermentative meat lactobacilli cause 

slow and mild sour spoilage, with the exception of some ropy-slime producing L. sakei 

strains. Lactobacillus sakei is found to predominate in emulsion-style sausages (Korkeala & 

Björkroth, 1997) and in smoked CMP (smoked pork loin, bacon, pariza and mortadella 

(Samelis et al., 2000a), smoked turkey breast (Samelis et al., 2000b)) immediately after 

slicing and packaging. However, at the end of the shelf-life L. sakei is present in a much 

wider range of products, including also non-smoked CMP such as cooked ham and cooked 

poultry products (Björkroth et al., 1998; Samelis et al., 2000a).  

Leuconostocs 

Several studies have reported on isolation of Leuconostoc spp., Leuc. mesenteroides subsp. 

mesenteroides, Leuc. mesenteroides subsp. dextranicum, Leuc. gelidum, Leuc. citreum and 

Leuc. carnosum from CMP (Björkroth et al., 1998; Samelis et al., 2000a; b; Samelis & 

Georgiadou, 2000; Hamasaki et al., 2003). Leuconostoc and other heterofermentative LAB 

are commonly found to predominate in non-smoked CMP such as cooked ham or cooked 

poultry, immediately after production (Björkroth et al., 1998; Samelis et al., 2000a; b). 

However, during subsequent storage up to the end of shelf-life, L. sakei can outgrow these 

leuconostocs (Samelis et al., 2000a), Leuc. mesenteroides can outgrow L. sakei (Samelis et 

al., 1998) or they compete equally (Samelis et al., 2000b) depending on their initial ratio and 

product characteristics (Zhang & Holley, 1999).  

Leuconostoc spp. causes more severe spoilage (slime, gas, off-odours) due to its 

heterofermentative metabolism (Samelis et al., 2000a; b). 
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Weissella 

Weissella viridiscens has been isolated less frequently and mainly from smoked CMP such as 

smoked pork loin (Samelis & Georgiadou, 2000; Samelis et al., 2000a). Its occurrence is often 

due to heat-surviving cells since this species has an increased thermotolerance (Borch et al., 

1988). 

2.3.2.2. Brochothrix thermosphacta 

Brochothrix thermosphacta can form a significant part of the spoilage flora of vacuum 

packaged CMP and spoil them more readily than lactobacilli (Kotzekidou & Bloukas, 1996; 

Cayré et al., 2005). The amount of growth of B. thermosphacta relative to that of LAB is 

reduced by higher nitrite concentration, lower pH and lower film permeability (Roberts et al., 

2005). Indeed, most associated growth studies involving B. thermosphacta and LAB in meat, 

stored under vacuum, found that LAB restrict the growth of B. thermosphacta, when using 

films with low oxygen transmission rate (Holzapfel et al., 1998; Samelis et al., 2000a). In 

contrast, Cayré et al. (2005) observed no inhibition of B. thermosphacta growth when the 

meat product was packaged in films with low oxygen permeability since under these 

conditions its growth paralleled LAB-growth. In films with a higher oxygen transmission rate, 

growth of B. thermosphacta was inhibited. The authors hypothesised that incoming O2 may 

have resulted in H2O2-production by the accompanying LAB, inhibiting in this way 

B. thermosphacta in the presence of O2 and not in its absence. 

The spoilage of B. thermosphacta, associated with anaerobic metabolism, is slower 

developing and less offensive than that associated with aerobic growth (Pin et al., 2002). 

B. thermosphacta is homofermentative and produces L(+)-lactic acid from glucose, but under 

glucose limitation, small amounts of other metabolites are detected (Stiles & Holzapfel, 

1997). The main metabolites resulting from glucose consumption under anaerobic conditions 

are lactic acid and ethanol, but no acetoin-diacetyl and only small or no amounts of short-

chain fatty acids which may cause off-odours (Pin et al., 2002).  

2.3.3. Spoilage phenomena  

Spoilage of anaerobically packaged CMP is quite common but varies greatly with product 

types and brands (Yang & Ray, 1994). In a German study from 2001 on the quality of pre-

packaged meat products at the stage of retail, 30% of cooked sausages and 40% of other cured 

CMP were rejected due to signs of sensory spoilage prior to the expiry date (Stolle et al., 
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2001). The predominant spoilage characteristics are accumulation of gas, ropy slime, milky 

exudate, souring and off-odours (Yang & Ray, 1994). 

2.3.3.1. Souring due to acid production 

Spoilage causing LAB produce lactic acid, acetic acid and smaller amounts of other organic 

acids, especially at the stationary growth phase (Korkeala & Björkroth, 1997; Samelis & 

Georgiadou, 2000). An appreciable increase in lactic acid occurs when LAB reach 1 to 5×107 

cfu/g on the surface of VP cooked sausages (Korkeala et al., 1990). Obligate 

heterofermentative leuconostocs only produce D-lactic acid, heterofermentative lactobacilli 

produce a racemix mixture of D- and L-lactic acid and B. thermosphacta produces only L-

lactic acid (Nychas et al., 1998). D-lactate has been suggested to be an indicator for bacterial 

contamination of anaerobically packaged CMP (Dainty, 1996). Korkeala et al. (1990) found 

most of cooked sausages to be unacceptable above a level of 0.3-0.4% (w/w) lactic acid, 

corresponding to pH-values below 5.8-5.9. 

The production of lactic acid is often accompanied by that of other (partly volatile) end-

products such as short-chain fatty acids (e.g. acetic acid and butyric acids). The increase of 

acetate in certain CMP stored under VP/MAP could be attributed to (1) the presence of 

heterefermentative leuconostocs, (2) a shift from homo- to heterofermentative metabolism of 

the facultatively heterofermentative lactobacilli under conditions of substrate limitation or (3) 

the predominance of another organism e.g. B. thermosphacta (Nychas et al., 1998; Samelis & 

Georgiadou, 2000). 

2.3.3.2. Off-odours 

Spoilage of anaerobically stored CMP due to the development of objectionable off-odours is 

mainly caused by microbial production of volatile compounds such as ethanol, diacetyl, etc. 

Ethanol and other alcohols such as propanol are fermentation products of heterofermentative 

leuconostocs or products coming from the switch of homofermentative LAB to a 

heterofermentative metabolism under influence of e.g. oxygen or glucose limitation. Ethanol 

is also one of the main metabolic end-products of B. thermosphacta at low O2-tension 

(Nychas et al., 1998). 

A sour-sweet offensive odour, mainly associated with acetoin, is the main sign of spoilage by 

B. thermosphacta in meat products packaged in films with a high oxygen permeability (Pin et 

al., 2002).  
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2.3.3.3. Discolouration 

Green discolouration, often evident as green spots, is caused when H2O2, produced by LAB in 

the presence of oxygen, oxidises nitrosohaemochrome to choleomyoglobine (Roberts et al., 

2005). Greening in the centre of CMP is caused by bacteria (e.g. W. viridiscens), surviving the 

heating process, which after exposure to air start to produce H2O2. Surface greening is caused 

by bacteria which contaminate the product after cooking such as Lactobacillus spp., 

Leuconostoc spp. and C. divergens (Borch et al., 1996).  

2.3.3.4. Gas production  

Accumulation of gas (CO2), leading to swelling of packages, is typically associated with the 

growth of heterofermentative lactobacilli and leuconostocs such as Leuc. mesenteroides, 

Leuc. carnosum and Leuc. gelidum (Yang & Ray, 1994; Borch et al., 1996; Korkeala & 

Björkroth, 1997; Samelis et al., 2000b). 

2.3.3.5. Slime formation 

The formation of ropy slime on vacuum packaged CMP (Samelis et al., 2000b) is a common 

spoilage problem. The slime is often formed before the sell-by-date and consumers find the 

appearance of slimy products very offensive. Slime formation is due to the secretion by LAB, 

mainly homofermentative Lactobacillus and Leuconostoc, of long-chain, high-molecular 

mass, viscosifying or gelling, extracellular polysaccharides (EPS), e.g. dextran, into the 

environment (Aymerich et al., 2002). L. sakei, Leuc. gelidum, Leuc. carnosum, 

Leuc. mesenteroides subsp. mesenteroides and Leuc. mesenteroides subsp. dextranicum have 

been associated with slime formation (Borch et al., 1996; Korkeala & Björkroth, 1997; Carr et 

al., 2002). It is not advisable to use sucrose in the formulation of cooked meat products since 

this is the most suitable carbon source for EPS-production by slime-producing LAB 

(Aymerich et al., 2002). 

2.3.3.6. Milky exudate 

Accumulation of a milky fluid in the packages of cooked sausages during storage under 

vacuum has been observed. Souring of the product due to prolific growth of LAB is often 

associated with excessive separation of exudate or drip. The presence of lactic acid, formed 

by the rich LAB-population, may change the appearance of drip from transparent to white or 

gray (Korkeala & Björkroth, 1997).  
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2.4. Safety 

2.4.1. Pathogens associated with cooked meat products 

Though pasteurisation destroys vegetative pathogens, they can gain access to CMP during 

slicing and packaging. However, provided storage temperatures are kept below 7°C, only 

psychrotrophic pathogens are likely to grow depending on the aw, pH, nitrite and lactate 

content, atmosphere, temperature and spoilage flora (Roberts et al., 2005). One of the most 

important psychrotrophic food born pathogens occurring in CMP is Listeria monocytogenes 

(Devlieghere, 2000). 

2.4.2. Listeria monocytogenes  

Listeria monocytogenes is a widely distributed opportunistic food born pathogen causing 

listeriosis. This is a rare disease but of great concern due to its high human case fatality risk 

(Bell & Kyriakides, 2005). Major concerns with L. monocytogenes are its high mortality rate, 

wide distribution on raw products, growth at low temperatures and its ability to establish itself 

in various food processing environments (Muriana, 1996). L. monocytogenes is well-adapted 

to survival on equipment and in production facilities and its occurrence in CMP is connected 

with (1) cross contamination after heat treatment, e.g. during slicing or packaging (Bredholt et 

al., 1999), and (2) insufficient thermal processing and heat survivors (Samelis & 

Metaxopoulos, 1999). Uyttendaele et al. (1999) found that incidence rates for CMP were 

higher after slicing (6.65%) than before slicing (1.65%).  

The incidence of L. monocytogenes on anaerobically packaged sliced CMP has been reported 

by several authors. In a survey of CMP on the Belgian retail market (Uyttendaele et al., 1999), 

the overall incidence of L. monocytogenes in 25 g was 4.90% (167/3405). However, only a 

small proportion (0.53%) of samples contained high contamination levels (>10 cfu/g). The 

incidence rate was higher for minced CMP (e.g. pâté) than for whole CMP (e.g. cooked ham, 

cooked poultry), 6.14% and 3.96%, respectively. According to De Boer (1990), luncheon 

meat, ham and cooked chicken breast are the most frequently contaminated CMP in The 

Netherlands. De Boer & van Netten (1990) found 11% (9/83) of pâté samples to be 

contaminated with L. monocytogenes. Rijpens et al. (1997) reported an incidence of 

L. monocytogenes of 2.6% in 3065 samples of pâté, which was in good agreement with the 

contamination level of 2.76% (217 samples) in the survey of Uyttendaele et al. (1999). A 

more recent study on the occurrence of Listeria on sliced cooked meat products in Spain 
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reported an incidence of L. monocytogenes in 25 g of 8.8% (35/396) (Vitas & Garcia-Jalon, 

2004). 

Further proliferation of the pathogen on CMP has been demonstrated although the extent of 

its growth depends on several factors including temperature, pH, water activity, level of 

lactate, composition of the headspace atmosphere and the presence of a competitive flora on a 

product (Beumer et al., 1996; Blom et al., 1997; Barakat & Harris, 1999; Bredholt et al., 

2001; Devlieghere et al., 2001; Uyttendaele et al., 2004). Growth of L. monocytogenes in 

CMP has resulted in outbreaks of listeriosis. Belgian pâté was the vehicle of infection in 

listeriosis in the UK between 1987-1989 with more than 350 cases and more than 90 deaths. 

In 2000, an outbreak of listeriosis in New Zealand following the consumption of cooked 

meats (ham and corned beef) and in the US following the consumption of delicatessen turkey 

meat was responsible for 60 cases in total. In 2001, precooked sliced turkey was implicated in 

10 cases of listeriosis (US) (Bell & Kyriakides, 2005). 

Public and regulatory concern related to L. monocytogenes has led to the implementation of 

microbiological standards, aiming at regulating the levels of L. monocytogenes in food 

products (Bell & Kyriakides, 2005). Since 1st of January 2006, an EU regulation on 

microbiological criteria for foodstuffs has come into force (Commission Regulation (EC) No 

2073/2005) (European Commission, 2005). This regulation sets a maximum level of 100 

cfu/g for L. monocytogenes at the end of the shelf-life of ready-to-eat foods (including CMP) 

when absence of L. monocytogenes in 25 g of the product can not be guaranteed. 
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3. Biopreservation 

Since the role of micro-organisms in spontaneous food fermentation processes became clear, 

man has tried to apply ‘controlled’ fermentations in order to preserve food products. Today, 

food safety is more than ever an important issue and the search for new preservation methods 

goes on. An increasing number of consumers prefer minimally processed food products, 

prepared with less or without chemical preservatives. The consumer wants food products to 

be ‘fresh’, ‘natural’, ‘healthy’ and ‘convenient’. Many of the new ready-to-eat and novel food 

types bring along new health hazards and new spoilage associations. Against this background 

and relying on improved understanding and knowledge of microbial interactions, milder 

preservation approaches such as biopreservation have been developed (Holzapfel et al., 1995; 

Hugas, 1998). 

3.1. Definition and principle 

Biopreservation or biological preservation can be defined as a preservation method to 

improve safety and stability of food products in a natural way by using ‘desired’ micro-

organisms (cultures) and/or their metabolites without changing the sensory quality (Holzapfel 

et al., 1995; Lücke, 2000).  

Protective cultures (PC) can be defined as antagonistic micro-organisms (cultures) that are 

added to a food product only to inhibit pathogens and/or to extend the shelf-life, while 

changing the sensory properties of the product as little as possible (Lücke, 2000). Protective 

cultures differ from starter cultures in their functional objectives. Starter cultures are, by 

definition, used in food fermentations in order to modify the raw material to give it new 

sensory properties and this relying on the metabolic activity (acid production) of the culture, 

while the preservation effect (antimicrobial action) is of secondary importance. For a 

protective culture, the functional objectives are the inverse. Although distinguished by their 

definition, in reality a starter culture and a protective culture may be the same culture applied 

for different purposes under different conditions (Holzapfel et al., 1995).  

Biopreservation can be applied in food products by two basic methods: 

• adding crude, semi-purified or purified microbial metabolites; 

• adding pure and viable micro-organisms (Hugas, 1998). 
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The use of micro-organisms or their metabolites as food preservatives is not meant as a 

primary means of preservation but as a way to contribute to the hurdle approach in food 

preservation (Muriana, 1996). 

3.2. Biopreservation by means of microbial metabolites 

Some microbial metabolites may be added directly to a food product to inhibit the growth of 

spoilage or pathogenic organisms.  

3.2.1. Bacteriocins 

The bacteriocins most studied for their biopreservative effect in food products, and more 

specific in meat and meat products, include nisin, pediocins and sakacins (De Vuyst & 

Vandamme, 1994b; Hugas, 1998; Cleveland et al., 2001).  

Nisin, produced by Lc. lactis subsp. lactis, is the only bacteriocin that has found practical 

application in food products. It is mainly applied in the prevention of late-blowing of cheese 

by inhibiting the outgrowth of Clostridium spores (O’Sullivan et al., 2002) and in selected 

pasteurised cheese spreads to inhibit Clostridium and Listeria (Holzapfel et al., 1995; Ross et 

al., 2002). Its use has been approved throughout the world in various food products 

(Cleveland et al., 2001). In Europe, it was added to the positive list of EU food additives in 

1983 as additive number E234 (Guinane et al., 2005) and some EU-countries have approved 

the use of nisin for preservation of some food products, e.g. processed and fresh cheese 

(Holzapfel et al., 1995). Typical levels that are used in food products range from 2.5 to 100 

ppm (Caplice & Fitzgerald, 1999). The effectiveness of nisin has not only been demonstrated 

in dairy products (Davies et al., 1997) but also in brined shrimps (Einarsson & Lauzon, 1995) 

and during beer, wine and vegetable fermentations to inhibit spoilage (De Vuyst & 

Vandamme, 1994b; Ross et al., 2002). In meat products, nisin has not been very successful 

because of its low solubility at the pH of meat, uneven distribution, binding to meat proteins 

and lack of stability (Chung et al., 1989). Furthermore the required dose is uneconomical and 

exceeds the acceptable daily intake (Chung et al., 1989; Holzapfel et al., 1995; McMullen & 

Stiles, 1996; Hugas, 1998). The potential applications of lactococcal bacteriocins, other than 

nisin, are reviewed by Guinane et al. (2005). 

Pediocins, in particular pediocin PA-1 (also AcH) from P. acidilactici, have been used 

successfully to control growth of L. monocytogenes in cottage cheese, half-and-half cream 

and cheese sauce (Pucci et al., 1988), raw or fresh meat (Nielsen et al., 1990; Skyttä et al., 
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1991; Motlagh et al., 1992), cooked meat products (Metaxopoulos et al., 2002; Mataragas et 

al., 2003a; Mattila et al., 2003) and fermented meat products (Lauková et al., 1999). Pediocin 

PA-1 was also found to be active towards L. curvatus in a meat product model but when 

incorporated in a commercially manufactured luncheon corned beef product, just as nisin, no 

preservative effect was observed (Coventry et al., 1995). In general, the pediocins seem to be 

more effective in meat products than nisin (Montville & Winkowski, 1997; Hugas, 1998; 

Ennahar et al., 1999) but they are not approved for use (Cleveland et al., 2001). However, the 

use of pediocin PA-1 in different food products is patented and this bacteriocin is believed to 

be the next in line if more bacteriocins are to be approved in the future (Ennahar et al., 1999). 

Also using sakacins, some successful results have been obtained. Sakacin K inhibited growth 

of Listeria innocua to different extents in anaerobically packaged raw minced pork, chicken 

breasts and cooked pork at 7°C (Hugas et al., 1998). Growth of L. monocytogenes was 

completely inhibited for at least three weeks in chicken cold cuts and cold-smoked salmon by 

addition of sakacin P (Aasen et al., 2003), while sakacin K was not able to prevent slime 

production by a L. sakei strain on a cooked ham product (Aymerich et al., 2002). The use of 

sakacins as additives is not officially approved. 

 

Existing studies show large variations in the degree of inhibition of pathogenic and spoilage 

organisms by added bacteriocins (Aasen et al., 2003), depending on the culture, the 

bacteriocin and the food system (McMullen & Stiles, 1996). The production of a certain 

bacteriocin in a laboratory medium does not imply its effectiveness in a food system (Hugas, 

1998). The effectiveness of bacteriocins in food can be limited by a range of factors such as a 

narrow activity spectrum (not active towards Gram-negatives), uneven distribution due to 

limited diffusion in solid food matrices, inactivation through proteases or binding to food 

ingredients such as lipids (Aasen et al., 2003) or proteins and finally the emergence of 

bacteriocin-resistant bacteria (Holzapfel et al., 1995; Rodriguez et al., 2002). Furthermore, 

also the processing conditions (pH, T, aw and Eh) and the product formula (salt/nitrite content, 

presence of spices) may influence the effectiveness of bacteriocins (Gänzle, 2004; Leroy & 

De Vuyst, 1999a; b; Hugas et al., 2002). Finally, the use of bacteriocins, other than nisin, as 

biopreservatives in food products is hampered by the fact that they are not legally accepted as 

food additives. 
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3.2.2. Organic acids 

In general, reviews on biopreservation do not discuss the use of organic acids although these 

compounds might be from microbial origin and thus meet the definition of biopreservation as 

given in section 3.1. A detailed description of the use of organic acids in foods is however 

beyond the scope of this study. 

Lactic acid can be produced by controlled fermentation of refined sucrose or other 

carbohydrate sources by numerous micro-organisms, mainly LAB and fungi (Rhyzopus 

Oryzae), and this has led to the commercial production of large quantities of lactic acid. This 

method of producing lactic acid is considered superior to the chemical synthesis of lactic acid 

by hydrolysis of lactonitrile (Shelef, 1994; Bogaert & Naidu, 2000). Lactic acid and its salts 

are widely used for decontamination purposes of e.g. meat carcasses and for shelf-life 

enhancement in several food products (Bogaert & Naidu, 2000). The shelf-life extending 

effect of lactic acid and its salts in meat and meat products, by their inhibitory effect on LAB 

(Houtsma et al., 1993), has been reported (Debevere, 1989; Devlieghere et al., 2000; 

Stekelenburg & Kant-Muermans, 2001; Peirson et al., 2003; Stekelenburg, 2003). 

Furthermore, several authors described the antibacterial action of lactic acid or lactate on the 

food born pathogen L. monocytogenes (Houtsma et al., 1993), also in meat and meat products 

(Greer & Dilts, 1995; Blom et al., 1997; Devlieghere et al., 2001; Stekelenburg & Kant-

Muermans, 2001; Samelis et al., 2002; Stekelenburg, 2003). In anaerobically packaged sliced 

CMP, levels of 1.8% (Samelis et al., 2002), 2% (Debevere, 1989; Qvist et al., 1994), 2.5% 

(Stekelenburg & Kant-Muermans, 2001), 3% (Peirson et al., 2003) up to 3.3% (Stekelenburg 

& Kant-Muermans, 2001) are used to prolong shelf-life and/or prevent growth of 

L. monocytogenes without sensory deviations. From 3% and more, lactate can result in 

organoleptic deviations (Qvist et al., 1994; Stekelenburg, 2003). 

Acetic acid is formed in a four-step reaction involving conversion of starch to sugar by 

amylases, anaerobic conversion of sugars to ethanol by yeast fermentation, conversion of 

ethanol to hydrated acetaldehyde, and dehydrogenation to acetic acid by aldehyde 

dehydrogenase. The last two steps are performed aerobically with the aid of acetic acid 

forming bacteria (Marshall et al., 2000). Apart from its traditional use in pickled foods, acetic 

acid can also be used as a decontaminating agent of meat products, poultry, seafood, fresh 

produce,… and as a natural food preservative. Sodium acetate at 0.5% and 0.25% was, 

however, less effective in controlling growth of L. monocytogenes on vacuum packaged 

frankfurters at 4°C compared to 3% sodium lactate (Bedie et al., 2001). 
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Combinations of lactate and acetate have also proven to be effective. Addition of 2.5% lactate 

and 0.25% acetate controlled growth of L. monocytogenes in vacuum packaged servelat 

sausage and cooked ham, stored at 4°C and this without affecting the sensory quality (Blom et 

al., 1997). 

3.2.3. Fermentates 

The MicrogardTM products marketed by Danisco are fermentates of Propionibacterium 

freundenreichii subsp. shermanii that are commonly used commercially as biopreservatives in 

cottage cheese. Their inhibitory activity is attributed to propionic acid, acetic acid and a heat-

stable peptide (Lemay et al., 2002b; Guinane et al., 2005). AltaTM and PerlacTM are fermented 

whey-based products used as shelf-life extenders but no significant inhibitory effect of these 

antimicrobials could be found in a chicken meat model (Lemay et al., 2002b).  

3.3. Biopreservation by means of micro-organisms   

Many successful biopreservation applications add the micro-organism itself rather than the 

microbial metabolite. In general, the applied micro-organisms are bacteria and in particular 

LAB, although some reports on the biopreservative properties of bacteria other than LAB, e.g. 

propionibacteria (Lind et al., 2005), do exist. The use of viruses and in particular 

bacteriophages for preservation of food products is not described in the literature of 

biopreservation although this application meets the definition of biopreservation.  

3.3.1. Protective LAB 

3.3.1.1. General characteristics of protective LAB 

Lactic acid bacteria show special promise for implementation as protective cultures because 

of their long history of use and their reputation as safe and food-grade bacteria (Holzapfel et 

al., 1995). The desired properties of a protective LAB-culture are summarised in Table 1.2. 

Psychrotrophic protective LAB are used to actively preserve refrigerated food products at 

their low storage temperature while mesophilic protective LAB are inactive at refrigeration 

temperatures but start to grow and to exert their protective effect when temperature abuse 

occurs (Lücke, 2000).  
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Furthermore, protective LAB can be divided in two groups (bacteriocinogenic and non-

bacteriocinogenic) based on the property to produce bacteriocins or not (Devlieghere et al., 

2004).  

In general, high inoculua (106-109 cfu/g) are needed to create an antagonistic effect (Skyttä et 

al., 1991; Buncic et al., 1997; Rodgers, 2001; Nilsson et al., 2005).  

 

Table 1.2. Desired properties of a protective LAB-culture (modified from Holzapfel et 
al., 1995) 
1. No health risks 

• No toxin production 

• No production of biogenic amines or other metabolites detrimental to health 

• Non pathogenic 

2. Bring about beneficial effects in product 

• Adaptation to product/storage conditions (e.g. psychrotrophic, salt tolerant) 

• Reliable/consistent protective activity 

• Predictability of metabolic activity under given conditions (e.g. lactic acid/gas production) 

• Competitiveness against endogeneous microbial flora 

3. No negative sensory effects on product 

• no slime/gas/acid formation 

• no discolouration 

• no proteolytic or lipolytic activity 

4. Function as indicator under abuse conditions 

 

3.3.1.2. Applications of protective LAB in different food products 

The effectiveness of PC has been studied in different food products but mainly in meat and 

meat products. The majority of these inoculation experiments were performed with the 

intention of demonstrating the effectiveness of bacteriocinogenic strains in controlling 

L. monocytogenes.  

Milk and dairy products 

Cheese suffers from spoilage through Clostridium spp. (late blowing) and is, furthermore, 

susceptible to contamination with L. monocytogenes. This latter problem arises mainly in 

cheeses in which the pH increases during ripening, such as the Italian cheeses Taleggio, 

Gorgonzola and Mozarella (Schillinger et al., 1996). Several studies tried to prevent in these 
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products late blowing and/or growth of L. monocytogenes through the addition of PC 

(Schillinger et al., 1996; O’Sullivan et al., 2002).  

Much of the early work to prevent late blowing concentrated on the use of nisin-producing 

lactococci. Although effective, nisin interfered with the cheese fermentation process. More 

recent work tested multiple strain starters composed of nisin-producing strains and nisin-

resistant fast-acid starters (O’Sullivan et al., 2002). The addition of this paired nisin- 

producing starter system to make cheddar cheese provided enough nisin to increase the shelf-

life of pasteurised processed cheese, made from this cheddar, from 14 to 87 days at 22°C and 

to control L. monocytogenes, Cl. sporogenes and St. aureus (Zottola et al., 1994). Antilisterial 

effects were also observed for a bacteriocinogenic Enterococcus faecium strain during 

Taleggio production (Giraffa et al., 1994) and for a Lc. lactis strain, genetically transformed 

for pediocin AcH production in Cheddar cheese (Buyong et al., 1998). An overview of studies 

on bacteriocinogenic PC in dairy products is given by O’Sullivan et al. (2002). 

Another interesting dairy application is the inhibition of Bacillus cereus in milk by acid 

production of added Lactobacillus and Lactococcus strains (106-107 cfu/ml) (Rossland et al., 

2003).  

Vegetable products 

Bacteriocinogenic LAB are reported to have potential for the biopreservation of foods of plant 

origin, especially minimally processed vegetables and fermented vegetables (Schillinger et 

al., 1996; Bennik et al., 2000; O’Sullivan et al., 2002). 

In minimally processed vegetables such as pre-packaged mixed salads and different types of 

sprouts, bacteriocinogenic LAB have been found to act on coliforms and enterococci 

(Vescovo et al., 1995) and on L. monocytogenes (Cai et al., 1997). Moreover, 

bacteriocinogenic starter cultures may be useful for the fermentation of sauerkraut (Breidt et 

al., 1995) or olives (Ruiz-Barba et al., 1994) to prevent spoilage. 

Furthermore, biological strategies have been developed to control growth and mycotoxin 

production of fungi within or on plants or plant food products, e.g. patulin production in fruit. 

Biocompetitive control or the use of biocompetitive micro-organisms to inhibit mycotoxin 

forming moulds can be obtained by (1) the use of biocompetitive non-aflatoxinogenic moulds 

or (2) the use of antagonistic yeasts or bacteria (Schillinger et al., 1996). The antifungal 

effects of LAB are well-known and their potential application in the preservation of food and 

feed is reviewed by Schnürer & Magnusson (2005).  
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Fish, fish products and seafood 

Spoilage of fresh fish is generally caused by Gram-negative bacteria (Roberts et al., 2005) and 

because of this, few attempts have focused on biopreservation of fresh fish (O’Sullivan et al., 

2002). However, when vacuum packaged the spoilage of fresh fish, smoked fish and seafood 

is dominated by mainly Gram-positive bacteria, in particular LAB, and also L. monocytogenes 

can cause problems (Roberts et al., 2005). Most biopreservation studies in these products 

focused on the addition of bacteriocins rather than bacteriocinogenic PC (O’Sullivan et al., 

2002). However, in the last number of years, different research groups have confirmed the 

potential of Carnobacterium spp. to control L. monocytogenes in cold-smoked salmon. 

Promising results were obtained with the divercin V41 producing Carnobacterium divergens 

V41 (Brillet et al., 2005), the bacteriocinogenic Carnobacterium maltaromaticum (previous 

piscicola) A9b and the non-bacteriocinogenic C. maltaromaticum A10a (Nilsson et al., 1999).  

Meat and meat products 

Since long, LAB adapted to meat have improved the safety of fermented sausages. However, 

using selected strains, the safety and stability of non-fermented, perishable meat and meat 

products can be improved (Lücke, 2000). Since the first study on biopreservation of chill-

stored vacuum-packaged raw meat (Schillinger & Lücke, 1987), many different studies have 

been performed either in raw, cooked or fermented meat products (Hugas, 1998). Most of 

these studies are directed towards control of L. monocytogenes while only a minor part 

investigated the option of shelf-life prolongation.  

Raw meat  

Raw meat, stored aerobically under chilled conditions, is spoiled by Gram-negative bacteria, 

predominantly pseudomonads, and LAB compete poorly under these conditions. Hence, very 

high inocula of LAB are required to observe an effect on the shelf-life of aerobically stored 

raw meat. Pathogens of most importance in raw meat, Salmonella, Campylobacter, 

Escherichia coli and Yersinia enterocolitica are Gram-negative and thus insensitive towards 

bacteriocinogenic LAB. Therefore, the sole benefit of a protective culture on aerobically 

stored refrigerated raw meat is in the control of L. monocytogenes (Lücke, 2000). 

The microflora of anaerobically packaged chilled raw meat is dominated by mainly LAB and 

inoculation with selected psychrotrophic LAB can be used to extend the shelf-life and to 
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protect against L. monocytogenes (Lücke, 2000). An overview of studies on the effectiveness 

of bacteriocinogenic and non-bacteriocinogenic LAB in raw meat is given in Table 1.3. 

Two very specific types of biopreservation of raw meat should be mentioned here. First of all, 

controlled lactic acid fermentation on the meat surface has been reported as an efficient 

method to stabilise fresh meat in tropical areas by Minor-Pérez et al. (2004) in vacuum 

packaged pork at 20°C and by Kalalou et al. (2004) in aerobically stored minced camel meat 

at 22°C. Inhibition is fully explained by the desired pH-reduction and acid formation.  

Secondly, Brashears et al. (1998) and Senne & Gilliland (2003) described the antagonistic 

action of Lactobacillus cells against Gram-negative spoilage and pathogenic micro-organisms 

in aerobically stored fresh meat by hydrogen peroxide production. 

Fermented meat products 

Besides the action of traditional ‘starter cultures’ in fermented sausage production, these 

products might benefit from the use of an additional protective culture to inhibit the food born 

pathogen L. monocytogenes (Työppönen et al., 2003b). Especially LAB producing antilisterial 

bacteriocins are useful as they can reduce the level of L. monocytogenes in fermented meat 

products further by about one or two log cycles compared with a non-bacteriocinogenic 

control (Table 1.4) (Hugas et al., 1995; Lücke, 2000). Other food born pathogens associated 

with fermented meat products such as Salmonella and E. coli are Gram-negative and thus 

insensitive towards bacteriocinogenic LAB. Today, several of these antilisterial cultures for 

sausage fermentation are available on the market and sometimes they function simultaneously 

as ‘starter’ and as ‘protective’ culture. 

Cured cooked meat products (CMP) 

The shelf-life of CMP is mainly limited by growth of LAB, recontaminating the product after 

heating during further handling and slicing. In anaerobically packaged CMP, recontamination 

with LAB occurs at low numbers and growth of L. monocytogenes is probable (Schmidt & 

Leistner, 1993; Lücke, 2000). Therefore, controlled growth of protective LAB in these meat 

products is a potential preservation strategy.  
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Table 1.3. Effect of (non-)bacteriocinogenic LAB on the shelf-life and/or safety of anaerobically packaged raw meat under refrigerated 
storage 
Culture (inoculation level, bacteriocin) Product Target Effect (log10 cfu/g) Reference 

Bacteriocinogenic 

Three Pediococcus strains (108 cfu/g, 

pediocin-like inhibitors) 

Minced meat  Y. enterocolitica, L. monocytogenes 

and Pseudomonas spp. (102 cfu/g) 

7a  Skyttä et al. (1991) 

L. bavaricus MN (105 cfu/g, bavaricin-

MN) 

Beef cubes  Listeria monocytogenes ± 5a Winkowski et al. 

(1993) 

Leuconostoc gelidum UAL187-22 

(104/cm2, leucocin A) 

Beef  No inoculation No negative effect on odour/appearance 

compared to a non-inoculated control 

Leisner et al. 

(1995) 

Leuconostoc gelidum UAL187  

(104/cm2, leucocin A) 

Beef  Sulphide-producing L. sakei strain 

(102/cm2) 

4a or 3.5b 

 

Leisner et al. 

(1996) 

L. sakei CTC494 (106 cfu/g, sakacin K) Chicken breast  

Minced raw meat  

L. innocua 2.5-3b 

1-2b 

Hugas et al. (1998) 

L. sakei CTC494 & E. faecium CTC 492 

(105 cfu/g, sakacin and enterocin) 

Model cooked pork  Slime producing L. sakei & 

L. carnosum 

Partial prevention of ropiness Aymerich et al. 

(2002) 

Lactobacillus casei CRL705 (106 cfu/ml 

spraying solution, 2 lactocins) 

Beef  L. monocytogenes & 

B. thermosphacta 

1.25a for B. thermosphacta and complete 

prevention of growth of 

L. monocytogenes 

Castellano & 

Vignolo (2004) 

L. sakei CETCa 4808 (107 cfu/g, BLISc)  Sliced beef  Enterobacteriaceae, Pseudomonas 

spp., B. thermosphacta 

1-2a  Katikou et al. 

(2005)  

Non-bacteriocinogenic 

L. sakei BJ-33 (106/cm2) Beef Endogenous LAB-flora Inhibition of heterofermentative LAB  Jelle (1987) 

L. sakei BJ-33 (106-7/g) Ground beef L. monocytogenes 3a Juven et al. (1998) 
a, difference in cell count at the final storage day between the product containing the PC and a non-inoculated control product; b, difference in cell count at the final storage 
day between the product containing the bacteriocinogenic LAB-strain and a control product containing a non-bacteriocinogenic LAB-strain; c, BLIS = bacteriocin-like 
inhibitory substances 



Chapter 1 - Antagonistic micro-organisms for biopreservation of food products 36 

Table 1.4. Effect of various bacteriocinogenic LAB on L. monocytogenes in fermented 
sausages (modified from Lücke, 2000) 
Culture Bacteriocin Effect   

(log10(cfu/g)) 

Reference 

Pediococcus JD1-23 Pediocin PA-1/AcH 1.4a  Berry et al. (1990) 

L. sakei Lb706 Sakacin A ±1a or 0-0.5b Schillinger et al. (1991) 

P. acidilactici PAC 1.0 Pediocin PA-1/AcH 0-1.5a Foegeding et al. (1992) 

P. acidilactici  Pediocin PA-1/AcH ± 2.5a Luchansky et al. (1992) 

L. plantarum MCS Not specified 0-0.5b or 0.5-1c Campanini et al. (1993) 

L. sakei CTC 494 Sakacin K 1.25b Hugas et al. (1995) 

L. sakei CTC 494 

L. sakei Lb706 

L. curvatus LHT 1174 

Sakacin K 

Sakacin A 

Curvacin A  

± 1.5b 

0-0.5b 

± 2b 

Hugas et al. (1996) 

Hugas et al. (1996) 

Hugas et al. (1996) 

E. faecium CCM 4231 & 

RZS C13 

L. sakei CTC 494 

Not specified 

 

Sakacin K 

3.3e 

 

1.5e 

Callewaert et al. (2000) 

 

Callewaert et al. (2000) 

L. plantarum ALC01 Pediocin AcH NDd  Työppönen et al. (2003a) 

Lc. lactis M Class IIa bacteriocin 1.5a Benkerrroum et al. (2003) 

L. curvatus LBPE 

Lc. lactis LMG 21206 

Class IIa bacteriocin 

Class IIa bacteriocin 

2a  

< 0.5a 

Benkerrroum et al. (2005) 

Benkerrroum et al. (2005) 
a, Reduction of Listeria count in the presence of the bacteriocinogenic strain (Bac+) compared to in the 
presence of a bacteriocin negative mutant (Bac-) at the end of the fermentation process; b, Reduction of 
Listeria count in the presence of the Bac+-strain compared to in the presence of the Bac-- mutant at the 
end of the maturation process; c, Difference in Listeria count between the product containing the Bac+-
strain and a product not containing inoculated LAB at the end of the maturation period; d, no 
quantitative determination of L. monocytogenes but a Listeria-negative product was obtained 1 week 
earlier (after 21 days) during ripening compared to a non-bacteriocinogenic control (after 28 days); e, 
Reduction of Listeria innocua count after 28 days of ripening compared to its initial level. 
 
According to Lücke (2000) there are three approaches to develop protective cultures for CMP, 

involving the selection of  

• psychrotrophic bacteriocinogenic LAB 

• psychrotrophic non-bacteriocinogenic LAB 

• mesophilic LAB rapidly becoming active if the product is temperature abused. 

 

Nisin-producing Lc. lactis strains would be prime candidates for in-situ bacteriocin 

production in cooked meat products because of the broad antimicrobial spectrum of nisin. 

However, Lc. lactis is mesophilic (Stiles & Holzapfel, 1997) and does not grow in chill-stored 

meat products (McMullen & Stiles, 1996). Furthermore, nisin itself has also a poor 
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performance as a biopreservative in meat products (Chung et al., 1989; Holzapfel et al., 1995; 

McMullen & Stiles, 1996). This has resulted in the search for psychrotrophic 

bacteriocinogenic LAB that are suited to grow in the chilled meat environment. An overview 

of studies on the effectiveness of bacteriocinogenic LAB in CMP is given in Table 1.5. 

Recently, Budde et al. (2003) demonstrated that Leuc. carnosum 4010, producing leucocin A-

4010 and leucocin B-4010, is suitable as a PC for anaerobically CMP. This strain immediately 

reduced the number of L. monocytogenes cells to a level below the detection limit, when 

applied at 107 cfu/g in a vacuum packaged meat sausage, and this without causing adverse 

effects on the sensory quality. Meanwhile, this bioprotective culture has been commercialised 

by Chr. Hansen under the name B-SF-43 SafeProTM.  

 

Despite the successful results of some studies, the effectiveness of bacteriocinogenic cultures 

in food products and more specific in meat products can be limited by a range of factors. First 

of all, some factors affect the efficacy of the bacteriocin itself, as mentioned before in section 

3.2.1., such as a narrow activity spectrum, poor solubility, limited diffusion and uneven 

distribution in solid matrices, inactivation through proteolytic enzymes, binding to food 

ingredients such as lipids or proteins, the emergence of the bacteriocin-resistant bacteria, pH 

effects on bacteriocin stability and activity. A second series of factors are related to the 

bacteriocin-producing LAB and include spontaneous loss of bacteriocin-producing property 

through genetic instability, poor adaptation of the culture to the food environment (pH, 

temperature, nutrients), a low production level (Buncic et al., 1997) and phage infection 

(Holzapfel et al., 1995; Schillinger et al., 1996; Rodriguez et al., 2002). An alternative to 

overcome these disadvantages is the use of psychrotrophic non-bacteriocinogenic but 

nevertheless very competitive cultures, e.g. L.  sakei BJ-33 (Andersen, 1995a), L. sakei TH1 

(Bredholt et al., 2001), etc. (Devlieghere et al., 2004). An overview of studies on the 

effectiveness of non-bacteriocinogenic LAB in CMP is given in Table 1.6. Lactobacillus 

sakei BJ-33 (earlier L. alimentarius) is probably the first and most studied PC of this type. 

This psychrotrophic, homofermentative and non-bacteriocinogenic strain has been 

commercialised by Chr. Hansen (Denmark) as B-2 SafeProTM (earlier FloraCarn and 

Bactoferm) for bioprotection of anaerobically packaged meat products. The culture has been 

shown to inhibit spoilage causing LAB (Jelle, 1987; Andersen, 1995b) and B. thermosphacta 

(BactofermTM technical information, 2003) and its application has resulted in the extension of 

the sensory shelf-life of cooked ham (Kotzekidou & Bloukas, 1996) and frankfurters 

(Kotzekidou & Bloukas, 1998). Furthermore, L. sakei BJ-33 could control the growth of 
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Table 1.5. Studies on the effect of psychrotrophic bacteriocinogenic protective LAB on anaerobically packaged cooked meat products 
stored under refrigeration 
Protective culture Bacteriocin Inoculum 

(cfu/g) 

Target organism Meat product Effect 

(log10(cfu/g)) 

Reference 

Pediococcus acidilactici JD1-23 Pediocin AcH 107 L. monocytogenes Frankfurters 0-0.5a Berry et al. (1991) 

Carnobacterium 

maltaromaticum LK5 

NDc 106-7 L. monocytogenes Frankfurters 2b Buchanan & Klawitter (1992) 

L. sakei Lb706  Sakacin A 103 L. monocytogenes Emulsion-type sausage No effecta Buncic et al. (1997) 

L. sakei CTC494 Sakacin K 106 L. innocua Cooked pork product 0.5-2a Hugas et al. (1998) 

L. sakei Lb790 Sakacin P 104 L. monocytogenes Chicken cold cuts  0-0.5a, ± 2b Katla et al. (2002) 

Leuc. mesenteroides L124 or L. 

curvatus L442 

ND 104 B. thermosphacta 

& enterococci 

Frankfurter-type sausages 

and sliced cooked cured  

pork shoulder 

1b (B. thermosphacta) and 

3b (enterococci) 

Metaxopoulos et al. (2002) 

Leuc. mesenteroides L124 or L. 

curvatus L442  

ND 105-106 L. innocua Sliced cooked cured  

pork shoulder 

± 1.5a/± 4.5b Mataragas et al. (2003b) 

Leuc. carnosum 4010 Leucocins 1×105  

 

6×106 

L. monocytogenes Cooked pork meat 

sausage 

2.5b after 2 weeks / 7b after 

4 weeks 

5b after 2 weeks / 7b after 4 

weeks 

Budde et al. (2003) 

Leuc. carnosum 4010 Leucocins 107 L. monocytogenes Pork saveloys 4b Jacobsen et al. (2003) 
a, difference in cell count at the final storage day between a product containing the bacteriocinogenic LAB-strain and a control product containing a non-bacteriocinogenic 
LAB-strain; b, difference in cell count between a product containing the bacteriocinogenic LAB-strain and a non-inoculated control product; c, ND= the nature of the 
bacteriocin-like substance was not determined 
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Table 1.6. Studies on the effect of psychrotrophic non-bacteriocinogenic protective LAB on anaerobically packaged cooked meat 
products stored under refrigeration 
Protective culture Inoculum Target organism Food product Effect  Reference 

L. sakei BJ-33 107 cfu/cm2 L. monocytogenes Frankfurters 2a Andersen (1995a) 

L. sakei BJ-33 1010 cfu/g b Spoilage flora Cooked ham Shelf-life extension (7 days)c  Kotzekidou & Bloukas (1996) 

L. sakei BJ-33 107 cfu/cm2  Ropy slime producing 

Lactobacillus sakei  

Frankfurters No inhibition  Björkroth & Korkeala (1997) 

L. sakei BJ-33 107 cfu/gd Spoilage flora Frankfurters Shelf-life extension (7 days)c  Bloukas et al. (1997) 

L. sakei BJ-33 105 cfu/cm2  Pseudomonas spp. & 

B. thermosphacta 

Frankfurter-type sausage Shelf-life extension (19 days) 

3a (B. thermosphacta) 

1.5-2a (Pseudomonas spp.) 

Kotzekidou & Bloukas (1998) 

L. sakei BJ-33 105 cfu/cm2  Salmonella enteritidis  Frankfurter-type sausage 0-0.5a Kotzekidou & Bloukas (1998) 

L. sakei BJ-33 107 cfu/g L. monocytogenes Cooked ham 

Emulsion sausages 

Rolled cooked pork belly 

5a 

3a 

5a 

Andersen (2000) 

L. sakei TH1 104/106 cfu/g L. monocytogenes 

E. coli O157:H7 

Y. enterocolitica O:3 

Cooked ham 5a 

2-3a 

0a 

Bredholt et al. (1999) 

L. sakei TH1  105-106 cfu/g L. monocytogenes  Servelat sausage 1a (4°C) and 2.5a (8°C) Bredholt et al. (2001) 

P. acidilactici D3, L. casei 

D6 & L. paracasei I5  

107 cfu/ml 

rinsate 

L. monocytogenes  Frankfurters 

Cooked ham 

4.2-4.7a 

2-2.6a 

Amezquita & Brashears (2002) 

a, reduction (log10(cfu/g)) compared to non-inoculated control product; b, added via the curing solution before pasteurisation; c, shelf-life is based on a sensory evaluation; d, 
added in the batter before heating 
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L. monocytogenes in frankfurters (Andersen, 1995a), in cooked ham, in an emulsion sausage 

and in rolled cooked pork belly (Andersen, 2000). This commercial biopreservative failed, 

however, to inhibit Salmonella enteritidis (Kotzekidou & Bloukas, 1998) and four ropy-slime 

producing L. sakei strains (Björkroth & Korkeala, 1997) on frankfurters. Another interesting 

PC is L. sakei TH1; application of this strain allowed control of L. monocytogenes on cooked 

ham and frankfurters (Bredholt et al., 1999; 2001). 

 

Mesophilic LAB acting as a biopreservative only under conditions of temperature abuse have 

been less studied. Degnan et al. (1992) observed a 2.7 log reduction of L. monocytogenes 

(compared to a bacteriocin-negative mutant) by the pediocin AcH producing Pediococcus 

acidilactici JBL1095 when applied at 105 cfu/g on vacuum packaged wieners at abuse 

temperature (25°C), while no inhibition occurred at refrigeration temperature (4°C). Elsser 

(1998) worked with Lc. lactis subsp. lactis L201 at levels of 105-107 cfu/cm2 and this strain 

was able to inhibit growth of Salmonella, St. aureus, B. cereus and Cl. perfringens in vacuum 

packaged cooked sausages when temperature abused at 22°C.  

 

Existing studies indicate that certain LAB may be used as protective cultures for CMP, 

provided that they inhibit L. monocytogenes and spoiling LAB, while they cause only a 

minimal change in the sensory properties of the treated product. However, according to Lücke 

(2000) addition of lactate/(di)acetate or glucono-δ-lactone (GDL) to the formulation of CMP 

is more effective than applying protective cultures. 

Raw cured meat products 

Few authors have investigated the use of PC on raw cured meat products since too high salt 

contents can limit the growth of the PC. The use of starter cultures and carbohydrates to 

produce a product which will safely spoil is, however, the basis of the Wisconsin Process for 

bacon production (Moore & Madden, 1997). Andersen (1995a) demonstrated that L. sakei BJ-

33, when applied at 107 cfu/g, was able to control the endogenous LAB-flora and 

L. monocytogenes in MAP-packaged bacon cubes (3.5% salt) at 15°C.  

Other food products 

Rodgers (2001; 2003; 2004) reviewed the applications of bacteriocin-producing and acid-

producing LAB in refrigerated ready-to-eat food products, e.g. soups, meals and salads, to 
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prevent them from growth of food born pathogens, in particular Cl. botulinum and/or 

L. monocytogenes. The effectiveness of a mixture of a nisin-producing Lc. lactis and a 

pediocin A-producing P. pentosaceus to prevent growth of Cl. botulinum and botulinal toxin 

formation after 10 days at 10°C varied with the type of cook-chill food product examined. 

Positive effects were noticed in seafood chowder, chicken casserole, vegetable curry, beef 

stroganoff, lamb hot pot, veal casserole and chicken satay (Rodgers, 2004). 

3.3.2. Bacteriophages 

Recently, there is an increased interest in the use of bacteriophages, viruses that infect - and 

usually kill - bacteria, as a means of inactivating food born pathogens and spoilage organisms 

in food products (Hudson et al., 2005). Endolysins or bacteriophage-encoded peptidoglycan 

hydrolases also have the potential to affect bacteria but their antibacterial efficacy in food 

products has not been reported (Greer, 2005; Loessner, 2005). 

3.3.2.1. Life cycle  

Phages are submicroscopic particles that typically consist of nucleic acid (DNA or RNA) 

surrounded by a protein coat (Hudson et al., 2005). They are abundant in the environment, in 

the human gastro-intestinal tract, in water and in food products, inclusive meat and meat 

products (Greer, 1983; Atterbury et al., 2003a). 

Bacteriophages have been classified as lytic phages (virulent), those that employ only the lytic 

pathway, or lysogenic phages (temperate). Both types are only able to replicate after infecting 

a bacterial cell (obligate parasites). In the case of the lytic pathway, infection results in death 

of the bacterial cell by lysis to release new phage particles. In the case of lysogeny, infection 

does not result in cell death/cell lysis but results in integration of the phage genome into the 

bacterial chromosome. Being part of it, the phage genome is replicated during bacterial 

growth but no phage particles are formed. Some phages are strictly lytic while others can 

switch between the lytic cycle and a lysogenic status and vice versa following certain stimuli 

(Thiel, 2004; Hudson et al., 2005). Host lysis in the absence of phage replication is known as 

‘lysis from without’. This non-proliferative lytic mechanism can occur when a high number of 

phage particles adhere to the cell and lyse it through the activity of cell wall degrading 

enzymes (Hudson et al., 2005).  

For preservation purposes, lytic phages are preferred. In this lytic pathway (Figure 1.5), (1) 

phages attach to cell surface receptor molecules of a specific host bacterium, (2) the phage 
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genome is injected into 

the cell, (3) the bacterial 

genome is disrupted and 

the bacterium is killed as 

some of the 

bacteriophage genes are 

encoding for enzymes 

that turn off or even 

destroy the host’s DNA, 

(4) replication of viral 

genome and 

transcription of genes 

that are translated to 

form the proteins of the 

phages’ capsid, (5), assembly of new phages, up to several hundred per cell, and (6) their 

endolysins degrade the peptidoglycan of the bacterial cell wall which results in the release of 

the phages and death of the host by lysis. In this process, the bacterial cell is destroyed while 

the number of phages increases, amplifying the overall antibacterial effect. This cycle may 

last only 30-60 minutes (Thiel, 2004).  

3.3.2.2. Effectiveness as food preservatives 

Bacteriophages are attractive candidates for biopreservation of food products because they are 

self-perpetuating organisms designed to kill living bacterial cells. A valuable quality is their 

remarkable stability in refrigerated foods and their property to not impart any undesirable 

sensory changes. In what follows, the focus will be on the application of phages in meat and 

meat products.  

Bacteriophages to control pathogens 

The potential of phages for controlling food born pathogens is reflected in several recent 

studies on Campylobacter (Atterbury et al., 2003b; Goode et al., 2003), Salmonella (Goode et 

al., 2003; Whichard et al., 2003), E. coli O157:H7 (O’Flynn et al., 2004) and 

L. monocytogenes (Dykes & Moorhead, 2002; Carlton et al., 2005). 

Figure 1.5. The lytic pathway of bacteriophages (Thiel, 2004) 
 



Chapter 1 - Antagonistic micro-organisms for biopreservation of food products 43 

The application of the host-specific bacteriophage φ2 at approximately 5×106/cm2 to the 

surface of chicken skin resulted in a significant 1 log10 reduction in the number of inoculated 

Campylobacter jejuni cells (5×105/cm2), when stored at 4°C (Atterbury et al., 2003b). 

O’Flynn et al. (2004) demonstrated the efficacy of a three-phage cocktail (multiplicity of 

infection (MOI) - the ratio of phages to host cells - was 106 pfu/cfu) in reducing E. coli 

O157:H7 on inoculated steak meat at 37°C but simultaneously reported that no lysis occurred 

in the absence of growth of the host at 12°C. Two phages, phage Felix O1 and a variant, were 

applied (MOI of 1.9 ×104 pfu/cfu) to frankfurters inoculated with Salmonella typhimurium 

and could reduce growth of the pathogen with ± 2 log10 after 24h at 22°C (Whichard et al., 

2003). Goode et al. (2003) was able to inactivate partly or completely, depending on the MOI, 

Salmonella enterica and C. jejuni on chicken skin stored at 4°C for 48h. 

Application of phage LH7 to two L. monocytogenes isolates inoculated onto vacuum 

packaged beef, which was stored at 4°C, had no effect compared to a control because of the 

MOI that had not been optimised (Dykes & Moorhead, 2002). When using phage P100, an 

antilisterial effect (3.5 log10 reduction) was obtained in surface-ripened red-smear soft cheese 

(Carlton et al., 2005). At present, the option of using phages to prevent proliferation of post-

processing contaminating L. monocytogenes on anaerobically packaged CMP has not been 

reported. 

Bacteriophages to prevent spoilage 

Shelf-life extension through the action of phages on spoilage organisms has been considered 

(Hudson et al., 2005). Attempts have been made to increase the shelf-life of aerobically stored 

meat by using phages active against Pseudomonas spp. (Greer & Dilts, 1990) and 

B. thermosphacta (Greer & Dilts, 2002). In the study of Greer & Dilts (1990), a pool of seven 

bacteriophages was unable to control beef spoilage by Pseudomonas growth. The efficacy of 

the phage pool was limited by a narrow range of host specificity. Subsequent host range 

studies showed that only 57.2% of the 1023 tested Pseudomonas spp. were susceptible to 

phage lysis. Greer & Dilts (2002) tested phages to control spoilage by B. thermosphacta on 

pork adipose tissue. In the presence of the phages, counts were reduced over the first 2 days at 

both 2 and 6°C but then increased, presumably through the growth of a subpopulation of 

resistant cells. Phage treatment extended the shelf-life with four days compared to the control. 

In their study, the problem of insufficient host range was not addressed since the pork tissue 

was sterile and only one single B. thermosphacta isolate was used (Hudson et al., 2005). 
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3.3.2.3. Issues to consider in biopreservation with bacteriophages  

Factors determining the efficacy of the phage application are the stability of the phage(s) 

under the physicochemical conditions of the food (pH, aw) and under its storage conditions 

(temperature) and the ratio of phages to host cells (MOI) (Hudson et al., 2005). Furthermore, 

emergence of phage resistance and phage host range are two important issues to consider in 

the design of phage interventions (Whichard et al., 2003).  

Phage stability 

The phage stability depends on the pH with lower pH-values resulting in less phage stability. 

At low temperatures, phages are assumed to be stable at pH values between 4 and 10 (Hudson 

et al., 2005). Leverentz et al. (2003) found the phage LMP-102 to be active between pH-

values of 5.5 and 8 and the greatest reduction of L. monocytogenes in broth by 107 pfu/ml of 

the LMP-102 phage was achieved within a pH range from 7 to 8. Experiments to control 

L. monocytogenes on fruit revealed that the titer of a phage mixture remained stable for 7 days 

on melon (pH 5.5-6.5) but declined to non-detectable levels within 30 min on apple slices (pH 

3.8-4.2) (Leverentz et al., 2003).  

It has been stated that phage replication does not occur at temperatures too low to permit 

growth of the host. Phage replication, however, is not necessary for inactivation through ‘lysis 

from without’ (Hudson et al., 2005). Activity of bacteriophages at refrigeration temperatures 

of 7 and 4°C has been demonstrated by Dykes & Moorhead (2002) and Atterbury et al. 

(2003b), respectively.  

The effect of thermal stress on phages is variable, depending on the phage type, the matrix 

and the time/temperature combination. For two psychrophilic Pseudomonas phages, greater 

than 99% inactivation occurred after 1 min at 60°C for one of them and only 39% inactivation 

occurred after 30 min at 60°C for the other phage. In contrast, phage particles isolated from a 

hot spring (>80°C) had a wide thermal tolerance range with 18 to 30% surviving boiling 

(Hudson et al., 2005). In general, phages are more heat resistant than most vegetative bacteria 

and they may survive heat treatments routinely applied in the food industry. Campylobacter 

bacteriophages could survive commercial poultry processing procedures (Atterbury et al., 

2003a), a necessary characteristic if phages are to retain their ability to control bacteria during 

the post processing storage of foods (Hudson et al., 2005). 
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Multiplicity of infection (MOI) 

Phage adsorption to receptors on the bacterial cell wall requires an appropriate chance of 

collision of the phage with the bacterial cell. This implicates that the higher the MOI, the 

higher the phage’s effectiveness. However, the MOI may also not be too high since phage 

replication has been reported to only proceed if also a minimum number of actively growing 

bacterial cells are present. A separate case is ‘lysis from without’, not requiring phage 

replication and thus occurring at very high MOI (Hudson et al., 2005, Greer, 2005).  

Host specificity 

The inherent host specificity of bacteriophages is based on the specific binding between 

elements of their capsid and specific molecules on the surface of their target bacteria and this 

ensures that they do not infect eukaryotic cells and even non-target bacterial cells. This means 

that pathogens can be removed and beneficial organisms (starter cultures, gastro-intestinal 

flora of the consumer or the background flora of the treated food product) stay. However, this 

narrow host range might also be a drawback, in particular when phage application is directed 

towards control of spoilage organisms (Greer, 2005). Even the use of mixtures of effective 

phages did not ensure adequate coverage of all target organisms and could therefore not 

prolong the shelf-life of aerobically stored beef (Greer & Dilts, 1990). Another disadvantage, 

however, of this specificity might be that resistance might develop when the specific cell 

surface receptors are lost (Carlton et al., 2005; Hudson et al., 2005; Greer, 2005). 

Phage resistance 

Host cells are not entirely defenceless against phage attack since phage resistance 

mechanisms have been identified and most of them are plasmid encoded (Emond et al., 1997; 

Hudson et al., 2005). The most common form of resistance is loss of a cell surface receptor 

resulting in the prevention of phage attachment (adsorption inhibition), but other forms are 

prevention of phage DNA-injection (Garcia & Molineux, 1995), restriction and modification 

of incoming phage DNA and abortive infection (Emond et al., 1997). In the latter case, the 

phage lytic cycle is terminated only after phage attachment, DNA-injection and early phage 

expression; further phage proliferation is prevented and lysis of the host fails to occur (Emond 

et al., 1997).  

Some researchers have not been able to recover phage-resistant bacterial mutants during 

laboratory trials of phage biocontrol in foods (Atterbury et al., 2003b; Carlton et al., 2005), 
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while others did notice the emergence of phage-insensitive mutants (O’Flynn et al., 2004). In 

the latter study, the frequency of formation of bacteriophage-insensitive mutants of E. coli 

O157:H7 varied from 10-4 cfu for one particular phage to 10-6 cfu for two other phages and for 

the tested phage cocktails. Resistant mutants could revert to phage sensitivity. This led to the 

conclusion that phage-insensitive mutants should not hinder the use of phages as biocontrol 

agents. Moreover, most pathogens are typically encountered in the environment in low levels 

reducing therefore the chance of resistance development following phage applications in 

foods (O’Flynn et al., 2004). Furthermore, antagonistic co-evolution might occur: bacteria 

might evolve to resist phages but phages evolve too e.g. by altering their host-range (O’Flynn 

et al., 2004; Thiel, 2004). Despite the disparity in the published literature, phage-resistant 

mutants do emerge and are a concern. An option to resolve issues with resistance is the use of 

phage cocktails (Whichard et al., 2003; Carlton et al., 2005; Greer, 2005). 

3.4. Effect of protective LAB on the sensory quality of anaerobically 
packaged cooked meat products 

If LAB are used as biopreservatives for controlling growth of pathogens and extending 

storage life in CMP, careful consideration of their impact on the sensory properties is 

necessary. In CMP, the production of large amounts of organic acids and carbon dioxide by 

the applied LAB is highly undesirable (McMullen & Stiles, 1996).  

A careful selection of the appropriate LAB is the first step to avoid these sensory effects. 

From a sensory point of view, especially homofermentative LAB are good candidates because 

they do not produce carbon dioxide and organic acids other than lactic acid. More recently, 

several Leuconostoc spp. were found to be candidate for the biopreservation of CMP (Table 

1.5). Budde et al. (2003) found that the spoilage potential of several heterofermentative 

Leuc. carnosum strains differed depending on the strain and they selected Leuc. carnosum 

4010 as a potential biopreservative because it did not produce any specific compounds that 

might affect the sensory quality of meat products. Furthermore, in CMP, which often contain 

added sucrose, the use of LAB-strains producing dextran from sucrose is not possible because 

this results in slime formation (McMullen & Stiles, 1996).  

Secondly, a careful consideration of the formulation of a CMP might also overcome negative 

sensory effects. Cooked meat products with high levels of carbohydrates support sensory 

changes, while in CMP without added carbohydrate, little effect on the sensory quality of the 

product is to be expected (McMullen & Stiles, 1996). Jacobsen et al. (2003) suggested not 
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using Leuc. carnosum 4010 in frankfurter sausages or other products with high dextrose 

concentration (± 5%) since these products will be spoiled because of gas production. 

 

Despite numerous reports investigating the effectiveness of PC, only few authors have 

included in their research their influence of the PC on the sensory characteristics of the treated 

products. Ignoring the effects on sensory quality of the food product may lead to a successful 

but misleading result.  

The commercialised PC L. sakei BJ-33 (Table 1.6) is reported to be a weak acidifier with only 

limited proteolytic and lipolytic activities and no production of H2O2. These properties may, 

according to Jelle (1987) and Andersen (1995a), explain the cultures’ low impact on the 

sensory quality of a meat product (BactofermTM technical information, 2003). However, Jelle 

(1987) reported that vacuum packaged beef inoculated with several lactobacilli, including 

L. sakei BJ-33, had lower sensory scores than non-inoculated beef and that assessors preferred 

non-inoculated beef. However, inoculation with L. sakei BJ-33 did not turn the beef into an 

unacceptable product. The sensory effect of the lactobacilli was probably due to acid 

production since inoculation of the beef with lactobacilli resulted in a fast pH-drop (Jelle, 

1987). Little information is available on the influence of L. sakei BJ-33 on the sensory quality 

of CMP. Andersen (2000) did not include pH-measurements and sensory evaluation in his 

publication. In the study on pariza of Kotzekidou & Bloukas (1998), the control treatment had 

an unacceptable sour taste after 4 weeks, whereas products treated with L. sakei BJ-33 had an 

acceptable odour and taste until 7-8 weeks of storage at 6-8°C. Despite the sour taste, the pH 

of the control treatment was the highest of all treatments and decreased only from 6.7 to 6.1 

after 4 weeks. The authors assigned the negative sensory quality of the control to 

heterofermentative LAB producing organic acids of which particular acetic acid is unwanted. 

This hypothesis still does not agree with the pH-evolution of the product; it might be that 

other types of metabolites were causing the spoilage. 

With regard to commercialised bacteriocinogenic Leuc. carnosum 4010 (Table 1.5), sensory 

evaluation of 38 commercial products biopreserved with the strain confirmed that the strain is 

suitable for almost all kinds of sliced meat products, only giving the products a slightly more 

acidic flavour and taste (Budde et al., 2003; Jacobsen et al., 2003). Similar results were found 

by Bredholt et al. (1999; 2001) (Table 1.7). They observed no statistically significant 

differences in consumer preferences between treated and untreated products and showed that 

addition of L. sakei TH1 to cooked ham or saveloy did not affect the acceptability of the meat 

products after 28 days of storage at 4°C although the flavour and taste was slightly more 



Chapter 1 - Antagonistic micro-organisms for biopreservation of food products 48 

acidic than the controls. Indeed, the pH of cervelat treated with L. sakei TH1 reached values 

of approximately 5.2-5.3, while CMP are most often considered as unacceptable from a 

sensory point of view when the pH is lowered below 5.3 (Korkeala et al., 1990).  

Amezquita & Brashears (2002) (Table 1.6) did not observe any deviating sensory quality 

when applying the bacteriocin-producing P. acidilactici on frankfurters after 56 days at 5°C 

but did not evaluate the effect of the more acidifying non-bacteriocinogenic L. casei and 

L. paracasei.  

3.5. Mechanism of inhibition of protective LAB in anaerobically 
packaged cooked meat products 

Microbial interference is the antagonistic inhibition (antagonism) displayed by one micro-

organism towards another micro-organism (Hugas, 1998). This type of microbial interaction 

is depicted in Figure 1.6.  

 
Figure 1.6. Simulation of the growth of pure cultures A (___) and B (__ __) compared with 
mixed cultures of A (__ _ __) and B (---); interaction between A and B in the mixed culture 
decreases the growth of B (Malakar et al., 1999) 
 

LAB-growth in meat and meat products can cause microbial interference to spoilage and 

pathogenic bacteria through one or a combination of several mechanisms like production of 

inhibitory substances, nutrient competition and competition for space (attachment/adhesion 

sites) (Holzapfel et al., 1995; Hugas, 1998). Whereas section 1.5 described the antimicrobial 
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activity of LAB in general, this section deals with only those mechanisms of inhibition that 

are of importance in the biopreservation of pre-packaged CMP with protective LAB.  

3.5.1. Production of inhibitory substances 

3.5.1.1. Lactic acid production and related pH-decrease 

The in-situ production of organic acids, mainly lactic acid, in food products by LAB is an 

important mechanism of biopreservation and has been indicated as the cause of e.g. inhibition 

of L. monocytogenes by L. sakei BJ-33 in vacuum packaged ground beef (Juven et al., 1998). 

In the latter study, L. sakei BJ-33 produced ± 50 mM of lactic acid in the product, resulting in 

a final pH of 4.7. However, many factors determine the effectiveness of in-situ acidification: 

product’s initial pH, its buffering capacity, the type and level of target organism, the nature 

and concentration of fermentable carbohydrate, viability and growth rate of LAB and target 

organism in the food matrix and the applied storage temperature (Montville & Winkowski, 

1997). In anaerobically packaged CMP, LAB sometimes exert antilisterial effects that can not 

be explained in terms of lactic acid production and decrease of pH alone (Vermeulen et al., 

2006) because of two main reasons: 

(1) the produced amount of lactic acid, at the moment of inhibition, is negligible 

compared with that already present in CMP (Metaxopolous et al., 2002) due to the low 

carbohydrate content of most CMP; 

(2) the high buffering capacity of most CMP limits the pH-reduction, following lactic 

acid production. 

This means that another mechanism must be responsible for the biopreservative effect of 

protective LAB in anaerobically stored CMP.  

3.5.1.2. Hydrogen peroxide production 

Hydrogen peroxide production by LAB does not occur under anaerobic conditions (Kandler 

& Weiss, 1986). When using a high barrier packaging material for vacuum packaging or 

modified atmosphere packaging of CMP, low residual O2-levels are obtained and H2O2 is 

playing a minor role in the antagonism of protective LAB. 
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3.5.1.3. Bacteriocin production 

When using a bacteriocinogenic PC for biopreservation of CMP, production of the bacteriocin 

is automatically indicated as the main cause for observed inhibitions. To prevent that 

inhibition is wrongfully attributed to bacteriocin production but is rather caused by acid 

production, studies must include an isogenic bacteriocin-negative mutant as a control 

(Buchanan & Bagi, 1997). Such studies support the fact that bacteriocinogenic LAB inhibit 

Listeria spp. regardless of acid production (Skyttä et al., 1991; Buchanan & Klawitter, 1992; 

Mataragas et al., 2003a). However, acid production may have a potentiating effect by 

lowering the pH to a value closer to the optimal pH for bacteriocin production (Skyttä et al., 

1991; Mataragas et al., 2003b). 

3.5.1.4. Production of other antimicrobials 

New antimicrobials are still being discovered, e.g. a mixture of low-molecular-mass 

molecules that act synergistically with lactic acid (Niku-Paavola et al., 1999), 3-hydroxy fatty 

acids (Sjögren et al., 2003), antifungal cyclic dipeptides (Ström et al., 2002), phenyllactic acid 

and 4-hydroxyphenyllactic acid (Ström et al., 2002; Valerio et al., 2004). Although most of 

these compounds are mainly having antifungal activity (Schnürer & Magnusson, 2005), some 

of them are also active towards Gram-positive bacteria such as Listeria (Leroy et al., 2006). 

Whether these compounds could play a role in the activity of protective LAB on anaerobically 

packaged CMP has not been studied yet. 

3.5.2. Nutrient competition  

Competition for nutrients between two micro-organisms occurs when a nutrient essential for 

growth of both micro-organisms, is limited. The limited availability of certain essential 

molecules needed for cell metabolism, including energetic compounds and building blocks for 

cell synthesis, like amino acids, vitamins, minerals and nucleotides, may slow down the 

growth. The micro-organism that can metabolise the nutrient most quickly is most 

competitive and will dominate the other micro-organism (Geisen et al., 1992). 

 

It has been shown that the population of an endogenous microbial flora suppresses growth of 

pathogens in food products (Kleinlein & Untermann, 1990; Vold et al., 2000) and this 

probably due to a competitive advantage for nutrient uptake (Nilsson et al., 2004). This 

suppression of a particular organism by an overgrowing microflora is called the Jameson 



Chapter 1 - Antagonistic micro-organisms for biopreservation of food products 51 

effect (Gram et al., 2002). Several authors have proposed nutrient competition as an 

explanation for the inhibition of L. monocytogenes by non-bacteriocinogenic LAB in 

anaerobically packaged CMP (Buchanan & Bagi, 1997; Bredholt et al., 1999; Devlieghere et 

al., 2004) or in other food products (Nilsson et al., 1999; 2004). Up to now, it is not clear for 

which nutrient(s) competition occur(s). According to Chr. Hansen, the inhibitory effect of 

non-bacteriocinogenic L. sakei BJ-33 is due to competition for easy fermentable nutrients and 

rest oxygen (Juven et al., 1998; Andersen, 2000; BactofermTM technical information, 2003). 

The data of Buchanan & Bagi (1997) suggest that the suppression of the maximum population 

density of L. monocytogenes, when growing in co-culture with a non-bacteriocinogenic 

C. piscicola, is, at least in part, related to nutrient depletion since the extent of the suppression 

decreased when the two species were cultured in 3× or 6× brain heart infusion broth. Indeed, 

lactobacilli are extremely fastidious organisms, well adapted to complex organic substrates. 

They require not only carbohydrates as energy and carbon source, but also amino acids, 

vitamins and minerals (Kandler & Weiss, 1986).  

3.5.2.1. Competition for carbohydrates 

The carbohydrate content of meat products is relatively poor, except when carbohydrates are 

directly or indirectly added, and among the few sugars found in meat, glucose and ribose are 

the only sugars that L. sakei can utilise for its growth (Stentz et al., 2001). Glucose originates 

from glycogen and ribose from ATP hydrolysis (Champomier-Vergès et al., 2001). 

L. monocytogenes can utilise only a limited number of carbon sources for energy, glucose the 

preferred source (Premaratne et al., 1991). For this reason, glucose has often been proposed as 

the substrate for which competition could occur. In the study of Nilsson et al. (2005), the cell 

free supernatant of the non-bacteriocinogenic C. piscicola A9b caused a decrease in 

L. monocytogenes cell density, which was abolished by glucose addition suggesting that 

competition for glucose causes the inhibitory interactions. The results from Vermeulen et al. 

(2006) do not confirm this hypothesis since (1) in the presence of a higher glucose content 

compared to a lower glucose content, inhibition of L. monocytogenes by L. sakei was 

enhanced (Vermeulen et al., 2006) and (2) at the moment of inhibition glucose limitation 

could not be observed. Concerning ribose, its utilisation is not repressed by glucose and co-

metabolism of glucose and ribose instead of sequential utilisation during growth of L. sakei on 

meat is suggested. Whether this metabolism would lead to an advantage of L. sakei towards 

other microbial flora on meat is not yet demonstrated. Other microbial flora might use only 

glucose whereas L. sakei might take an advantage in using both sugars (Stentz et al., 2001).  
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3.5.2.2. Competition for amino acids  

The pattern of amino acid requirements of lactobacilli differs among species and even strains 

(Kandler & Weiss, 1986). According to Lauret et al. (1996) and Moretro et al. (1998), 

essential amino acids for growth of L. sakei are glycine, phenylalanine, histidine, isoleucine, 

leucine, lysine, methionine, valine, proline, threonine, tyrosine, asparagine and arginine. 

Leucine, isoleucine, arginine, methionine, valine and cysteine are essential growth factors for 

L. monocytogenes (Premaratne et al., 1991), while tryptophan, phenylalanine and histidine 

improve the growth of L. monocytogenes (Phan-Thanh & Gormon, 1997). 

Vermeulen et al. (2006) investigated the possibility of competition for 18 different amino 

acids to explain antilisterial effects of a L. sakei strain in a chemically defined broth 

simulating CMP. They excluded competition for one of the amino acids as the cause of 

inhibition since only one amino acid, arginine, was exhausted during co-culture growth of 

L. monocytogenes and L. sakei and the decrease in concentration of arginine started later than 

the moment at which the inhibitory interaction occurred. Nilsson et al. (2005) found similar 

results since supplementation with amino acids did not eliminate the antilisterial activity of 

the cell free supernatant of non-bacteriocinogenic C. piscicola A9b. 

3.5.2.3. Competition for vitamins 

While pantothenic acid and nicotinic acid are required by almost all lactobacilli, thiamine is 

only necessary for the growth of heterofermentative lactobacilli. The requirement for folic 

acid, riboflavin, pyridoxal phosphate and p-aminobenzoic acid is scattered among the various 

species of lactobacilli, riboflavin being the most frequently required compound. Biotin and 

vitamin B12 are required by only a few strains. The pattern of vitamin heterotrophy is 

considered to be characteristic for a particular species (Kandler & Weiss, 1986; Moretro et al., 

1998). In the study of Lauret et al. (1996), six vitamins were essential for growth of L. sakei 

being p-aminobenzoic acid, pyridoxal, nicotinic acid, folic acid, calcium panthotenate and 

riboflavin, while only riboflavin, nicotinic acid and calcium panthotenate were found to be 

essential in the study of Moretro et al. (1998). Vitamins essential for growth of 

L. monocytogenes are riboflavin, biotin, thiamine and thioctic acid according to Premaratne et 

al. (1991) and additionally nicotinamide, pyridoxal, p-aminobenzoic acid and calcium 

pantothenate (Phan-Thanh & Gormon, 1997). 

CMP contain B-vitamins in concentrations ranging from 0 to 1 mg/100 g for thiamine, 

riboflavin and pyridoxal (Esteve et al., 2002). Therefore, it is not unthinkable that competition 
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for one or more of these vitamins occurs when LAB are growing together with 

L. monocytogenes. However, supplementation studies with yeast extract (as a source of 

vitamins and minerals) (Nilsson et al., 1999) or with eight different vitamins (Nilsson et al., 

2005) did not eliminate the antilisterial effect of non-bacteriocinogenic C. piscicola A9b 

(Nilsson et al., 1999) and A10a (Nilsson et al., 2005). 

3.5.2.4. Competition for minerals  

Iron is an essential element for most micro-organisms, except for lactobacilli (Lauret et al., 

1996; Imbert & Blondeau, 1998), and siderophores provide the cell with this element (Gram 

et al., 2002). Micro-organisms that produce siderophores and have a higher affinity for iron, 

have thus a competitive advantage compared to others lacking siderophores (Helander et al., 

1997; Gram et al., 2002). Competition for iron as mediated by siderophore production 

explains the inhibition of Shewanella putrefaciens by Pseudomonas spp. in fish under iron-

limited conditions (Gram et al., 2002). LAB have been recorded as capable of surviving 

without iron (Imbert & Blondeau, 1998) but Lactobacillus spp., particularly L. johnsonii, 

requires iron under particular environmental conditions with limited or specific nucleotide 

sources (Elli et al., 2000). L. monocytogenes requires iron and in particular when growing at 

refrigeration temperatures (Dykes & Dworaczek, 2002). Therefore, limiting iron at these 

temperatures might be an effective way to control this pathogen (Dykes & Dworaczek, 2002). 

Whether growth of LAB might lead to limitation of iron in CMP is yet to be determined.  

Against this background, manganese and magnesium are also important minerals since these 

are known to stimulate LAB-growth (Raccach, 1985; Imbert & Blondeau, 1998; Moretro et 

al., 1998; Hugas et al., 2002), whereas potassium and magnesium are essential for growth of 

L. sakei (Moretro et al., 1998). 

However, supplementation studies with yeast extract (as a source of vitamins and minerals) 

(Nilsson et al., 1999) or with individual minerals (Fe, Mg, K and Na) (Nilsson et al., 2005) 

did not eliminate the antilisterial effect of non-bacteriocinogenic C. piscicola A9b (Nilsson et 

al., 1999) and A10a (Nilsson et al., 2005). 

3.5.3. Competition for space (attachment/adhesion sites) 

An interaction between Saccharomyces cerevisiae and non-Saccharomyces yeasts could not 

be explained by nutrient depletion or production of inhibitory compounds but rather seemed 

to be mediated by a cell-to-cell contact mechanism at high cell densities and to a lesser ability 
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of the non-Saccharomyces yeasts to compete for space (Nissen & Arneborg, 2003). If this 

mechanism also occurs between LAB and target organisms such as L. monocytogenes is not 

yet clear. Nilsson et al. (2005) proved that cell-to-cell contact was not required for a non-

bacteriocinogenic C. piscicola strain to cause inhibition of L. monocytogenes.  

3.5.4. Quorum sensing 

Another interesting theory to explain suppression of L. monocytogenes by LAB in CMP is the 

production and accumulation of ‘signal molecules’ at high population densities (by LAB) 

triggering the stationary phase (of L. monocytogenes) as a stress-adaptive response (Farkas et 

al., 2002). In fact, the idea of Farkas et al. (2002) can be seen as some type of quorum 

sensing. Quorum sensing is the regulation of gene expression as a function of cell-population 

density, providing a way of cell-to-cell communication. Quorum-sensing micro-organisms 

communicate through the production of chemical signals and in many Gram-positive bacteria, 

these signals are peptides (Kuipers et al., 1998; Gram et al., 2002). Quorum-sensing occurs 

widely in LAB. At present, all LAB-related cases of quorum sensing involve the biosynthesis 

of antimicrobial peptides, either lantibiotics such as nisin or linear peptides (Kuipers et al., 

1998) and studies confirming the theory of Farkas et al. (2002) do not exist.   

3.6. Practical implementation of protective cultures 

3.6.1. Safety aspects 

3.6.1.1. Lactic acid bacteria 

Lactic acid bacteria are ubiquitous, they are natural components of the human microflora, 

occur in substantial numbers on food products and have been used in the production of a wide 

range of fermented foods since ancient times without adverse effects in humans. It is usually 

accepted that, with the exception of some streptococci, pathogenicity of LAB is rare (Kandler 

& Weiss, 1986; Aguirre & Collins, 1993; Pot et al., 1994; Adams & Marteau, 1995). 

However, there are reports and reviews on the involvement of LAB in human clinical 

infections (Aguirre & Collins, 1993; Adams & Marteau, 1995; Foulquié Moreno et al., 2005). 

These reports cite an increasing number of cases in which LAB have been implicated in 

human diseases, particularly bacterial endocarditis and bacteraemia. Attention is focused 

mainly on enterococci but some cases are also related to lactobacilli, pediococci and 

leuconostocs (Kandler & Weiss, 1986; Aguirre & Collins, 1993). In the vast majority of these 
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clinical cases, patients were immunocompromised and this lead to the conclusion that LAB 

fall into the category of opportunistic pathogens (Aguirre & Collins, 1993).  

 

Of the various LAB, associated with clinical infection, enterococci probably represent the 

major cause of concern for the future because of (1) the increasing number of antibiotic-

resistant strains, especially vancomycin-resistant strains, and (2) the description of several 

virulence factors (Aguirre & Collins, 1993; Adams & Marteau, 1995; Foulquié Moreno et al., 

2005).  

Lactobacilli, on the other hand, are sensitive towards most antibiotics active against Gram-

positive bacteria (Kandler & Weiss, 1986), although antibiotic resistant Lactobacillus strains 

have been isolated from food products (Gevers et al., 2000; Mathur & Singh, 2005). Some 

potential virulence factors for some Lactobacillus strains are described, but these are present 

in the majority of oral strains (Oakey et al., 1995). The observed frequency of bacteraemias 

where lactobacilli are involved is only 0.1-0.24% (Wessels et al., 2004).  

 

It is of importance to be cognisant of the association of LAB with clinical infections but there 

seems to be no evidence that fermented foods are a concern in the diet and, with the exception 

of enterococci, the overall risk of LAB infection is very low (Adams & Marteau, 1995; Stiles 

& Holzapfel, 1997). In the case of enterococci, Foulquié Moreno et al. (2005) suggested that 

the selection of new strains of interest for the food industry should be based on the absence of 

possible pathogenic properties or transferable antibiotic resistance genes. 

3.6.1.2. Bacteriophages 

Bacteriophages are the most numerous life forms on earth, occurring almost everywhere in 

our environment, in water, in foods of various origin, in the gastro-intestinal tract, etc. 

(Dabrowska et al., 2005). On fresh and processed meat and meat products, more than 108 

viable phages per gram are often present (Carlton et al., 2005). This means that phages are 

routinely consumed in quite significant numbers and that mammalian organisms, including 

humans, are very frequently exposed to interactions with bacteriophages (Dabrowska et al., 

2005). It is commonly believed that bacteriophages cannot infect cells of organisms more 

complex than bacteria, because of major differences in cell-surface molecules and in key 

intracellular machinery that is essential for phage replication. Therefore, bacteriophages are 

generally believed to have no intrinsic tropism towards eukaryotic cells. Nevertheless, there 

are some reports that show the ability of bacteriophages to interact with (but not infect) 



Chapter 1 - Antagonistic micro-organisms for biopreservation of food products 56 

mammalian cells. When exposed to bacteriophages, these virions penetrate to the blood and 

other tissues and they can multiply at sites of bacterial infections and anti-phage antibodies 

are produced (Dabrowska et al., 2005). However, other authors could not detect phage-

specific antibodies in the serum of human volunteers consuming phage T4 (Carlton et al., 

2005).   

Some phages (temperate) are able to transfer virulence properties among bacteria. These 

phages integrate their genome into the host genome, forming a lysogen. This lysogenic status 

can potentially result in the expression of genes encoding properties which increase virulence 

of the host bacteria. This is never the case for lytic (virulent) phages as they lack the genetic 

factors required for integration of their phage DNA into the host genome and always enter the 

lytic cycle and eventually kill and lyse the infected cells. Since all infected cells are killed, 

this precludes the opportunity for increased virulence to occur (Whichard et al., 2003; Carlton 

et al., 2005). Therefore, phages intended for food applications should be strictly lytic and 

screened for virulence genes or genes that could increases virulence (Whichard et al., 2003). 

 

In conclusion, there is little reason to assume that intake of phages with food may have 

negative effects on humans.  

3.6.2. Regulatory aspects 

3.6.2.1. Lactic acid bacteria 

In the United States (US), a company can use a new LAB-strain for use in food without ever 

notifying the Food and Drug Administration (FDA). However, in practice, LAB for food are 

either classified as an additive or as a GRAS substance. Most food-associated LAB have 

acquired the ‘generally regarded as safe’ (GRAS) status (Wessels et al., 2004). 

In the European Union (EU), there is no harmonised legislation that regulates the use of LAB 

in food products, whether as starter culture, protective culture or probiotic culture. Currently, 

seven EU laws are of importance when introducing a new LAB-strain for food applications. 

The most important one is the Novel Food Regulation (European Parliament and Council, 

1997). If a given LAB has never been used before May 15, 1997, then it should theoretically 

be subject of this Novel Food Regulation. However, the regulation does not specify the level 

of novelty intended, whether it be genus, species or strain. In 2003, the approval process of 

this regulation had not yet been applied to any strain of LAB (Wessels, 2004). As there is no 

regulation at the moment, different EU member states regulate protective LAB to very 
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different degrees and classify them into different regulatory categories (additive, ingredient or 

processing aid). The latter categories are important for the labelling of food products 

containing these living bacteria. 

 

The recent biosafety concerns about LAB in food, mainly related to the issue of transferable 

resistance genes, have resulted in the idea to propose criteria, standards, guidelines and 

regulations (Mathur & Singh, 2005). Also, the EU Commission and the European Food Safety 

Authority (EFSA) have perceived the need of a risk assessment of micro-organisms in food. 

This idea has also grown under influence of the severe legislation on LAB as feed additives 

since 1996 (Wessels et al., 2004). Up to now, there is no official announcement of an EU 

legislation covering LAB added to food products. In 2003, a working paper for public 

consultation, proposed the introduction of the ‘qualified presumption of safety’ or QPS 

system (European Commission, 2003). The QPS approach is similar in concept and purpose 

to the GRAS approach but takes into account the different regulatory practices in Europe 

(EFSA, 2005). It is a decision-tree approach leading to the QPS-status or not for certain 

groups of micro-organisms (Figure 1.7).  
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Figure 1.7. QPS-decision tree (modified from European Commission, 2003) 

 

A micro-organism with the QPS-status would be freed from full safety assessment other than 

any specific requirements introduced as a qualification (European Commission, 2003). In 
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2005, the scientific committee of EFSA concluded that QPS could provide a system to be 

applied to all requests received by EFSA for the safety assessment of micro-organisms 

deliberately introduced into the food chain (Anon, 2005). This means that up to now, QPS is 

only suggested as an operating tool within EFSA for risk assessment (EFSA, 2005) and no 

steps have been taken to make the QPS concept part of an EU regulatory framework.  

3.6.2.2. Bacteriophages 

There is considerable commercial interest in phages but very few information is available on 

the regulatory status of bacteriophages to be used in food. Some phage companies are making 

large efforts to get an approval of the FDA for the use of specific phages in foods. What the 

FDA requires to approve a product is not clear, but discussions with regulators are going on 

(Thiel, 2004; Greer, 2005). In the European Union (EU), there is no harmonised legislation 

that regulates the use of bacteriophages in food products.  

3.6.3. Technical aspects 

In what follows, the focus is on the application of protective LAB-cultures but to a large 

extent the content also applies to the application of bacteriophages.  

In general, high inocula (106-109 cfu/g) of a PC are needed. Besides the correct inoculum, the 

even distribution of the culture on the treated product surface is critical to prevent niches were 

the product is left unprotected (Rodgers, 2001; Jacobsen et al., 2003). The application of a PC 

does not require special equipment (Rodgers, 2003). The product can be added directly to the 

meat together with spices, e.g. in the case of minced meat. If the treated product is cured, e.g. 

in the case of cured raw meat, the PC can easily be added to the meat via the curing brine. 

If the treated product is intended for cooking, as it is the case for CMP, the heat sensitivity of 

the culture should be taken into account. Because most LAB are heat sensitive, protective 

LAB-cultures are best applied after the pasteurisation step of the CMP in order to guarantee 

their viability and activity (Rodgers, 2001). The CMP can be immersed or dipped into a 

solution of the PC or the PC can be sprayed or dripped on the product during or after slicing 

or in the package immediately before sealing (Andersen, 1995b). In the case of spraying, an 

ordinary atomiser or, even better, an automatic dispensing and spraying device could be used 

to ensure the correct concentrations of the PC and its even distribution (Rodgers, 2003). 

Bredholt et al. (2001) applied L. sakei TH1 to cooked ham and cervelat sausages after 

cooking, immediately before slicing using a hand-operated spraying bottle and obtained in 
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this way an equal distribution over the whole surface. Jacobsen et al. (2003) evaluated 

different application techniques for the biopreservative Leuc. carnosum 4010 on pork 

saveloys. The technique giving the highest reduction in L. monocytogenes used a Disinfector 

200® system equipped with two nozzles, one facing the slicing direction and the other 

perpendicular to the slicing direction, and mounted on the slicer for sprinkling the PC on all 

surfaces of each slice of the meat product. When spraying, dripping or dipping, the 

microbiological status of the PC and aseptic/hygienic handling is critical in order to prevent 

contamination of the final product (Rodgers, 2003). From this point of view, spraying or 

immersion may not be the most ideal application technique.  

An alternative application technique, which excludes this problem of contamination, might be 

the addition of micro-encapsulated PC prior to pasteurisation of CMP (Rodgers, 2004). 

Micro-encapsulation is defined as the technology of packaging solid, liquid or gaseous 

materials in miniature sealed capsules that release their contents at controlled rates under the 

influence of certain stimuli (Pothakamuryn & Barbosa-Cánovas, 2004). The encapsulation 

material should be designed in such a way that it protects the PC from inactivation during 

heating but simultaneously the material needs to degrade during heating at a certain rate in 

order to release the PC into the product when the thermal processing step is completed.  

Appropriate encapsulation materials could be fats and hydrogenated oils, gelatine, 

carbohydrates, gums, hydrocolloids, sugars, proteins, starch and even polymers such as 

hydroxy propyl methyl cellulose (HPMC) (Domingues, 2000). Little information is available 

on the encapsulation of PC. Lemay et al. (2002a) tested encapsulation in lyophilised alginated 

beads supplemented with glycerol as a means to protect L. sakei BJ-33 (B-2 SafeProTM) 

against heat treatment. Significantly enhanced cell protection was observed in broth but not in 

a meat model.  
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Chapter 2 
Evaluation of meat born lactic acid bacteria as protective 

cultures for biopreservation of cooked meat products 

Summary 

In this study, 91 bacterial isolates, originating from meat products, were subjected to a step-

by-step screening and characterisation procedure to select potential protective cultures for 

biopreservation of cured cooked meat products. Strains were first tested on their 

homofermentative and psychrotrophic character and salt tolerance. Secondly, the antibacterial 

capacities towards Listeria monocytogenes, Leuconostoc mesenteroides, Leuconostoc 

carnosum and Brochothrix thermosphacta were determined in an agar spot test. Of the tested 

strains, 38% was inhibitory towards all indicator strains and 91%, 88% and 74% of the strains 

could inhibit L. monocytogenes, B. thermosphacta and Leuc. mesenteroides, respectively. 

Finally, 12 strains - those with the highest antibacterial capacities - were evaluated on their 

competitive nature by comparing their growth rate, acidifying character and lactic acid 

production at 7°C under anaerobic conditions in a liquid broth. All 12 strains, except a 

bacteriocin producing Lactobacillus plantarum strain and the lactocin S producing 

Lactobacillus sakei 148, combined a fast growth rate with a deep and rapid acidification due 

to the production of high levels of lactic acid. The 12 selected strains were then further 

investigated for their growth capacity on a model cooked ham product to establish whether 

the presence of these cultures on the ham did not negatively influence the sensory properties 

of the ham. All strains grew in 6 days at 7°C from a level of 105-106 to 107-108 cfu/g and 

again the bacteriocin producing L. plantarum strain was the slowest growing strain. As the 

glucose level of the model cooked ham product was low (0.09 ± 0.03%), growth of the 

putative protective cultures, resulted in glucose depletion and a limited lactic acid production 

and accompanying pH-decrease. Cooked ham inoculated with isolates 13E, 10A, 14A (all 3 

identified as L. sakei subsp. carnosus), strain LS5 (L. sakei 148) and LS8 (L. sakei subsp. 

carnosus SAGA 777) was not rejected by the sensory panel at the 34th day of vacuum 

packaged storage at 7°C. Therefore these strains could have potential for the use as protective 

culture in cooked meat products. 
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1. Introduction 

Cured cooked meat products (CMP) are economically important refrigerated products with a 

high consumption in European countries. The spoilage flora of vacuum packaged (VP) or 

modified atmosphere packaged (MAP) CMP consists mainly of Lactobacillus spp., 

predominantly L. sakei and L. curvatus, followed by Leuconostoc spp., Weisella spp. and 

Carnobacterium spp. Brochothrix thermosphacta may also dominate the bacterial flora 

dependent on the film permeability and the residual oxygen obtained through the vacuum 

process (Borch et al., 1996; Samelis et al., 2000a). Also the psychrotrophic pathogen Listeria 

monocytogenes can be found as a result of post-contamination in CMP (Uyttendaele et al., 

1999).  

Biopreservation has gained increasing attention as a means of naturally controlling the shelf-

life and safety of CMP. Studies on biopreservation in CMP have, until now, mainly focused 

on inhibition of food born pathogens such as L. monocytogenes (Andersen, 1995a; Hugas et 

al., 1998; Bredholt et al., 1999; Bredholt et al., 2001; Amezquita & Brashears, 2002; Budde et 

al., 2003; Mataragas et al., 2003a). Only a limited number of authors report on the activity of 

protective cultures against specific spoilage organisms of meat products (Kotzekidou & 

Bloukas, 1996; Björkroth & Korkeala, 1997; Kotzekidou & Bloukas, 1998; Metaxopoulos et 

al., 2002). To our knowledge, no study has ever investigated the effect of homofermentative 

lactic acid bacteria (LAB) on heterofermentative LAB on CMP. Furthermore, most studies 

investigate bacteriocin production, while other types of antagonism are less frequently 

studied. Despite the stream of promising information and laboratory studies (Budde et al., 

2003; Mataragas et al., 2003a), bacteriocinogenic strains often suffer from a limited 

effectiveness in foods (Holzapfel et al., 1995; Rodriguez et al., 2002). An alternative to 

overcome these disadvantages is the use of non-bacteriocinogenic but nevertheless very 

competitive cultures e.g. L. sakei BJ-33 (Andersen, 1995a) and L. sakei TH1 (Bredholt et al., 

2001).  

In this chapter, a step-by-step isolation, screening and characterisation was performed to 

select potential protective cultures to be used in CMP. Especially LAB that are 

homofermentative, salt tolerant, psychrotrophic and adapted to meat substrates are good 

candidates for bioprotection of meat products. The screening was focused on cultures, 

showing inhibitory activity towards L. monocytogenes and spoilage organisms, typically 

associated with CMP. After studying their growth and acidifying character at low 
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temperatures, the characterisation of the potential cultures was continued by inoculating them 

onto a model cooked ham product to find out if they were not negatively influencing the 

sensory properties of the cooked ham, a prerequisite to use them as protective cultures. 

2. Materials and methods 

2.1. Collection of relevant strains  

Based on a literature study, contacts with commercial suppliers of food starter cultures and 

earlier research experiments in our laboratory, 15 LAB were collected for this study. Seven of 

these 15 strains are known to produce bacteriocins and the other eight strains were considered 

to be bacteriocin negative and are known for their very competitive character. In this chapter, 

these cultures are further described as ‘collected’ strains.  

2.2. Isolation and identification of isolates from meat products 

Twenty-seven different types of commercial, cooked and/or fermented, vacuum packaged or 

MA-packaged, sliced meat products were obtained from different Belgian supermarkets and 

stored at 7°C up to the use by date. On the use by date, a 30 g sample of the product was taken 

aseptically and a decimal dilution serial in Peptone Physiologic Solution (PPS; 8.5 g/l NaCl 

(VWR, VWR International, Leuven, Belgium) and 1 g/l Peptone (Oxoid, Oxoid Limited, 

Basingstoke, Hampshire, UK)) was prepared to spreadplate the sample on de Man Rogosa 

Sharpe agar (MRS, Oxoid), supplemented with 1.4 g/l of sorbic acid (Sigma, Sigma-Aldrich 

Corporation, St. Louis, Missouri, USA) (pH 5.4) to inhibit yeast growth, and on modified 

CHALMERS medium (Vanos & Cox, 1986) to allow isolation of LAB. The modified 

CHALMERS medium gives easily distinguishable colonies for LAB due to the characteristic 

colony type (small pink-red colonies with a light halo) and allows to distinguish the high acid 

producing colonies among a large population of LAB as the halo around the colony, due to 

CaCO3 dissolution by lactic acid, is larger for strongly acidifying LAB (Vanos and Cox, 

1986). Composition of the modified CHALMERS medium according to Vanos and Cox 

(1986): 20 g/l lactose (VWR), 20 g/l D-(+)-glucose (Sigma), 3 g/l soy peptone (VWR), 3 g/l 

meat extract (VWR), 3 g/l yeast extract (Oxoid), 20 g/l CaCO3 (Sigma), 15 g/l agar (Oxoid), 

0.5 ml of 1% (w/v) neutral red (Sigma) solution, final pH of 6.0 before sterilisation and after 

sterilisation 3 vials/l (32.000 IU/vial) of the antibiotic polymyxin-B (International Medical 

Products - LabM, Brussels, Belgium) were added to reach a concentration of polymyxin-B-
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sulphate of 100 IU/ml of medium. After micro-aerophilic incubation for 72h at 30°C of both 

media types, five colonies were picked from each of the two media. Attention was given to 

choose colonies with different macroscopic morphology and different halo-size on the 

modified CHALMERS medium. Isolates were reinoculated in MRS-broth, incubated at 30°C 

and checked for purity by streaking on MRS-agar. Plates with pure cultures were used to test 

for cell morphology by phase contrast microscopy, Gram reaction by the KOH method and 

catalase formation by dropping a 3% H2O2 (VWR) solution directly onto each plate. Gram-

positive and catalase negative strains were further investigated for gas production from 

glucose and slimy appearance on MRS-agar and finally the carbohydrate fermentation profile 

was determined using the API50CH system (BioMERIEUX, Brussels, Belgium) to select for 

LAB not producing gas, not demonstrating a slimy or ropy appearance on MRS-agar and not 

identical to each other, as indicated by the fermentation profile. 

2.3. Psychrotrophic character and salt tolerance  

The collected and isolated strains were tested on their potential to grow in buffered modified 

BHI-broth at low temperatures (4°C and 7°C) combined with salt concentrations occurring in 

the water phase of CMP (3% and 6% of NaCl). The buffered modified BHI-broth consisted of 

Brain Heart Infusion broth (BHI, Oxoid) (37 g/l) supplemented with 18 g/l D-(+)-glucose 

(Sigma), 3 g/l yeast extract (Oxoid), 4.6 g/l Na2HPO4 (Sigma), 20 mg/l NaNO2 (UCB, 

Leuven, Belgium) and the pH was adjusted to 6.2 before sterilisation. Devlieghere et al. 

(1998) demonstrated this medium to be suitable as simulation medium for cooked ham. 

Additional NaCl (VWR) was added to obtain a level of 3% or 6% of NaCl, being 

representative NaCl-concentrations for the broad spectrum of CMP. All strains were 

inoculated at a level of 106-107 cfu/ml in 5 ml of this broth containing either 3% or 6% of 

NaCl and stored at either 4°C or 7°C. During 5 and 8 weeks at 7°C and 4°C, respectively, 

growth was followed daily by visually examining the turbidity of the broth.  

2.4. Antibacterial activity towards L. monocytogenes, 
Leuc. mesenteroides, Leuc. carnosum and B. thermosphacta 

The strains, selected in the previous experiments, were investigated for their antibacterial 

properties towards L. monocytogenes and towards spoilage organisms, typically associated 

with CMP. Indicator organisms were L. monocytogenes LFMFP 235, isolated from cooked 

ham, L. monocytogenes LMG 10470, L. monocytogenes Scott A, Leuc. mesenteroides subsp. 
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dextranicum LMG 6908T, Leuc. carnosum LMG 11498 and B. thermosphacta LFMFP 230, 

isolated from cooked ham. Antibacterial activity was assessed by an agar spot test (Juven et 

al., 1998). The putative protective culture was applied as a single spot of 10 µl on MRS-agar 

and incubated at 30°C for 24h in micro-aerophilic conditions. After incubation, plates were 

covered with 7 ml of semi-soft (0.7% agar) BHI-agar or MRS-agar inoculated with the 

indicator strain at a level of 1% (1 ml of an overnight culture in 100 ml of medium). Separate 

plates containing the test culture were overlaid with each of the six indicator strains and each 

test was performed in triplicate. After incubation for 24h at the optimal growth temperature of 

the indicator strain, lawns were examined for evidence of inhibition. Based on the results of 

this study and the tests on the potential of the strains to grow at refrigeration temperatures 

(4°C and 7°C) and at high salt concentrations (3%  and 6% of NaCl), a selection was made of 

LAB for further study.  

The selected LAB were further subjected to a bacteriocin assay according to Buncic et al. 

(1997) to find out if the antibacterial properties were the result of bacteriocin production. The 

putative producer strains were grown in MRS-broth for 24h at 30°C. Two 10 µl aliquots were 

spotted on MRS-agar containing 0.2% glucose to avoid acid production and these plates were 

incubated at 30°C anaerobically to avoid H2O2 production. After incubation, 10 µl spots of 

chymotrypsin (Sigma) and proteinase K (Sigma) (0.05g/100ml) were brought next to one of 

the lactobacilli spots to inactivate any bacteriocin produced. After adding the enzyme spots, 

plates were held for 2h at room temperature to allow diffusion of the enzyme before plates 

were overlaid with 7 ml semi-soft (0.7 % agar) BHI-agar, inoculated at a level of 1% with 

indicator strain L. monocytogenes LFMFP 235. Plates were incubated for 24h at 37°C. 

Bacteriocin production was indicated by a clear inhibition zone around the untreated spot and 

a half inhibition zone around the spot treated with enzymes. 

2.5. Growth, acidification profile and lactic acid production of 12 
selected putative protective cultures 

Twelve meat born homofermentative, salt tolerant, psychrotrophic LAB with proven in-vitro 

antibacterial characteristics, as demonstrated in previous experiments, were selected for this 

experiment. The objective was to compare these putative protective cultures with regard to 

their growth characteristics and acidifying character at 7°C, under anaerobic conditions and at 

a pH and salt concentration representative for CMP. The strains were inoculated at 105 cfu/ml 

in an adapted BHI-broth (pH 6.2 and 3% NaCl). Growth of the cultures was followed during 
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storage under an atmosphere of 100% N2 at 7°C to simulate refrigerated vacuum packaged 

conditions. Experiments were performed in jars provided with a Teflon valve and a central 

opening, which was closed with a silicone septum (Devlieghere et al., 1998). Methods for 

preparation, inoculation and flushing with 100% N2 of these jars are described by Devlieghere 

et al. (1998). The adapted BHI-broth consisted of BHI (37 g/l) supplemented with 4 g/l yeast 

extract (Oxoid), 18 g/l D-(+)-glucose (Sigma), 1 ml/l Tween 80 (Sigma), 0.2 g/l MgSO4.7H2O 

(Sigma) and 0.04 g/l MnSO4.H2O (Sigma). Additional NaCl was added to obtain a level of 

3% of NaCl. At several time intervals during storage, samples of 5 ml were taken by using a 

sterile needle to determine cell number and pH. Cell numbers were determined by 

spreadplating on MRS-agar by using a Spiral Plater (Spiral Systems, Model D, Led Techno, 

Eksel, Belgium) and pH-measurements were done by using a pH-electrode (Knick, type 763, 

Berlin, Germany). At the end of each growth experiment, when the pH was changing not 

more than 0.01 pH-units in 24h, a sample was taken for the determination of the concentration 

of lactic acid by using a high-performance liquid chromatograph. The analyses were 

performed isocratically with the cation exchange column Aminex HPX-87H (Bio-Rad 

Laboratories, Hercules, CA, USA) at a flow rate of 0.6 ml/min of 5 mM H2SO4 (VWR) at 

35°C and a run time of 25 min. The HPLC-equipment consisted of a pump (Gilson, type 307, 

Villiers Le Bel, France), an injector (Rheodyne 9096, Bensheim, Germany) with a 20 µl-loop 

and a refractive index detector (Gilson, type 132). Growth curves were modelled by the model 

of Baranyi & Roberts (1994) and pH-curves by a modified Gompertz equation used by Linton 

et al. (1995) for modelling survival curves of L. monocytogenes and adjusted for this purpose 

into: 
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(A= tail of the sigmoid curve or final pH; t= time (h); S= shoulder of the sigmoid curve (h), 

AR= acidification rate (h-1) or slope of the linear part of the sigmoid curve). 

 

In this way estimations for generation time (h), lagphase (h), acidification rate (AR) (h-1), time 

to acidification starting from 106 cfu/ml (= tac-6) (h) and depth of acidification could be made. 



Chapter 2 – Evaluation of meat born lactic acid bacteria as protective cultures 66  

2.6. Behaviour of 12 selected putative protective cultures on a 
model cooked ham  

The major objective of this experiment was to establish if the 12 selected putative protective 

cultures were not negatively influencing the sensory properties when inoculated onto a 

cooked meat product. Furthermore, this experiment allows comparisons of the 12 LAB with 

regard to their growth and acidifying capacity on a cooked ham product. 

To achieve this goal, a model cooked meat product was designed: model cooked ham (MCH). 

This model product was an imitation of cooked ham as it had a similar recipe. However, the 

production process was slightly modified. In contrast to industrially prepared cooked ham, the 

pork meat was cuttered and, after addition of nitrited salt and other ingredients, filled in a 

casing prior to pasteurisation. This modified production process was necessary to obtain a 

very homogeneous composition. On the surface of a slice of the MCH, the original muscle 

structure was not visible anymore. This was necessary to avoid differences in pH or 

differences in nutrient levels between different positions on the surface of a MCH-slice. 

Furthermore, the MCH was produced under very hygienic semi-industrial conditions in such a 

way that the contamination level after slicing was very low. This was an additional advantage 

as it allowed studying the inoculated protective culture without having to take into account the 

background flora. The MCH was manufactured at Dera Food Technology N.V. (Bornem, 

Belgium) with following recipe: 80% of pork meat, 20% of water, 18 g/kg nitrited salt (NaCl 

containing 0.6% of sodium nitrite), 5 g/kg Deraphos C107 (potassium and sodium- di-, tri- 

and polyphosphates) and 0.5 g/kg Na-ascorbate. After boning and defatting, hams were cut in 

pieces of ± 10 to 10 to 10 cm. These pieces were homogenised and further minced to 20 mm 

and finally cuttered in a vacuum bowl cutter (Kilia, Neumünster, Germany) together with the 

nitrited salt and other ingredients. The cutter mixture was filled in a cook-in-casing to a final 

diameter of 100 mm and tempered for minimum 2 hours at 4°C before pasteurisation occurred 

at 75°C to a core temperature of 70°C in a cooking chamber (Kerres, Sulzbach, Germany) 

during 2 hours and 45 min. After cooling at 4°C, the cooked ham sausages were sliced with a 

non-automatic slicer (Omas, S.Vittoria di Gualtieri, Italy) in slices of 2 mm thickness (± 20 

g/slice). The product was quick-frozen in a blast freezer (Friginox-Le Froid Professionnel, 

Frispeed SR-range, Villevallier, France) at -40°C to a core temperature of -10°C to avoid 

formation of large ice crystals and finally further stored in a freezing room at -18°C. When an 

experiment started, the necessary amount of product was transferred from the freezer to a 

cooler at -3°C for 48h and later at 4°C for 24h.  
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The MCH was inoculated with the 12 strains at 105-106 cfu/g in three separate experiments, 

spread in time. Each experiment consisted of five series: one blank series of non-inoculated 

ham and four series of ham inoculated with one of the 12 strains. Each series was performed 

in triplicate. The inoculum was subcultured twice (24h, 30°C) in 5 ml MRS-broth before use. 

To reach an inoculation level of 105-106 cfu/g, 200 µl of the inoculum was divided over and 

spread on the surface of 10 slices (125 g/10 slices) of MCH. After inoculation, slices were 

vacuum packaged (10 slices/package) and stored at 7 ± 1°C in a ventilated refrigerator. 

Packaging was performed using a Multivac A300/42 (Hagenmüller, Wolfertschwenden, 

Germany) gas packaging machine in a high barrier film (NX90, Euralpak, Wommelgem, 

Belgium) of 90 µm thickness with an oxygen transmission rate of 5.2 ml/m2.24h.atm at 23°C 

and 85% of relative humidity. At day 0, 2, 6, 9, 13, 20, 27 and 34 of the storage period, 

cooked ham samples were analysed on growth of the inoculated strain, pH and concentration 

of metabolites. Furthermore, the sensory characteristics were evaluated.  

For the microbial analyses, a 15 g sample of ham was taken aseptically and a decimal dilution 

series in PPS was prepared to plate the appropriate dilutions on MRS-agar (aerobic incubation 

at 22°C for 3-5 days) and M5-agar (anaerobic incubation at 30°C for 2 days) to determine the 

level of LAB. M5-agar differentiates between homo- and heterofermentative LAB (Zuniga et 

al., 1993). The blank samples were also plated on Plate Count Agar (PCA, Oxoid) (aerobic 

incubation at 22°C for 3-5 days), Reinforced Clostridial Agar (RCA, Oxoid) (anaerobic 

incubation at 37°C for 3-5 days) and Yeast Glucose Chloramphenicol Agar (YGC, Bio-Rad) 

(aerobic incubation at 22°C for 3-5 days) to determine total aerobic psychrotrophic count, 

total anaerobic count and number of yeasts and moulds, respectively.  

The pH-measurements and HPLC-analyses were performed as described in section 2.5. 

Before HPLC-analysis, meat samples were subjected to an extraction procedure: a 10 g 

sample was homogenised with 50 ml of distilled water, 5 ml of Carrez I (0.407 M 

K4FeII(CN)6, Sigma) and 5 ml of Carrez II (0.814 M ZnSO4, VWR) and finally filled up to 

100 ml with distilled water. The deproteinised mixture was filtered (∅ 125 mm, Schleicher & 

Schuell Microscience, Dassel, Germany) and filtered once more (∅ 0.2 µm, Alltech 

Associates, Lokeren, Belgium) immediately before injection. 

Cooked ham samples were evaluated by a nine-member trained sensory panel using a scoring 

method. Attributes were odour, acid odour, rot odour, taste, acid taste, general appearance, 

slimy appearance and colour. Attribute scales varied from one to nine with one being very 

weak, five being moderate and nine very strong. Samples with a score above five were 
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considered as unacceptable. Finally, the panel was asked to evaluate the fitness for human 

consumption. If five or more of nine persons indicated a sample as unfit, the sensorial quality 

was considered to be rejected. Samples for sensory analyses were offered to the panellists in 

plastic recipients that were closed and stored at 4°C up to the moment of sensory evaluation. 

Time between sampling and sensory evaluation was not longer than 1 hour. Sensory 

evaluation was performed under IR-light (except for the attributes general appearance, slimy 

appearance and colour) in a special room with individual booths.  

Triplicate results of pH, glucose and lactic acid concentration were analysed for significant 

(P<0.05) differences between the 15 different series of the three experiments (three non-

inoculated samples and 12 inoculated samples) on each day of analysis using analysis of 

variance (One-way ANOVA) and Post Hoc Multiple Comparison Tukey tests.  

Data for pH, glucose and lactic acid concentration of each strain were further analysed for 

significant (P<0.05) differences between the different days of analysis using analysis of 

variance (One-way ANOVA) and Post Hoc Multiple Comparison Tukey tests. 

For each of the three experiments, the score data from the sensory evaluation were analysed 

for significant differences (P<0.05) between the five different series (one non-inoculated 

sample and five inoculated samples) within one experiment by subjecting scores, obtained for 

each attribute and for each day of analysis, to analysis of variance (One-way ANOVA) and 

Post Hoc Multiple Comparison Tukey tests. 

All statistical analyses were performed using the software SPSS 11.0 (SPSS, Chicago, IL, 

USA).  

3. Results and discussion 

3.1. Collection of relevant strains  

The ‘collected’ LAB (Table 2.1) consisted of seven strains, known to produce bacteriocins, 

and eight strains, considered to be bacteriocin negative but known for their competitive 

nature.  

3.2. Isolation and identification of isolates from meat products 

From the 27 different meat products, 76 isolates were pure strains growing well in MRS-

broth. All of these 76 isolates, except two, were Gram-positive and catalase negative 

confirming the selectivity of MRS supplemented with sorbic acid and the Chalmers medium. 
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Table 2.1. Overview of ‘collected’ lactic acid bacteria implicated in this chapter 
Strain Code Origin (Reference) Bacteriocin production Obtained from 

Lactobacillus plantarum ALC LP1 Not reported Pediocin AcH Danisco 

Pediococcus acidilactici PA-2 PA1 Not reported Pediocin Chr. Hansen 

Lactococcus lactis BB24 LL3 Fermented sausage (Rodriguez et al., 1995) Nisin Dr. J.M. Rodrigueza

Lactococcus lactis G18 LL4 Fermented sausage (Rodriguez et al., 1995) Nisin Dr. J.M. Rodriguez 

Lactobacillus sakei 148  LS5 Spanish dry sausage (Sobrino et al., 1991) Lactocin S Dr. J.M. Rodriguez 

Lactobacillus sakei Lb 706 LS6 Vacuum packaged meat  

(Schillinger & Lücke, 1989) 

Sakacin A FRCb 195 

Lactococcus lactis UW1 LL2 Frankfurter sausage Nisin LMGc 7930 

Lactobacillus sakei BJ-33  LS1 MA-packaged fresh meat (Andersen, 1995a)  Not reported Chr. Hansen 

Lactococcus lactis subsp. lactis L201 LL1 Vacuum packaged cooked sausage (Elsser, 1998) Not reported Danisco 

Lactobacillus plantarum LP5 Fermented sausage Not reported LFMFPd 143 

Pediococcus pentosaceus PP1 Fermented sausage Not reported LFMFP 155 

Lactobacillus curvatus LC4 Fermented sausage Not reported LFMFP 540 

Lactobacillus sakei subsp. carnosus LS7 Cooked ham (Devlieghere et al., 1998) Not reported LFMFP 216  

Lactobacillus sakei SAGA 777 LS8 Not reported Not reported Quest International 

Lactobacillus plantarum LP3 Not reported Not reported LMG 8155 
a, Departamento de Nutricion y Bromatologia III, Universidad Complutense de Madrid (Madrid, Spain) 
b, FRC, Federal Research Centre for Nutrition, Institute for Hygiene and Toxicology (Karlsruhe, Germany) 
c, LMG, Laboratory Microbiology Gent (Gent, Belgium) 
d, LFMFP, Laboratory of Food Microbiology and Food Preservation (Gent, Belgium) 
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From the 74 remaining strains, only three (4.0%) were heterofermentative and further 

identified as Leuc. mesenteroides subsp. mesenteroides using the API50CH system. Four 

(5.0%) strains demonstrated a slimy and/or ropy appearance on MRS-agar and were not 

further used. Based on their API50CH fermentation profile, 37 strains were selected for 

further study. These were Gram-positive, catalase negative and homofermentative, did not 

show a slimy appearance on MRS-agar and moreover were completely different from each 

other which means that either they were isolated from a different meat product or they were 

isolated from the same meat product but showed a different fermentation profile. This severe 

selection criterion explains why only 37 strains were further investigated. The 37 remaining 

strains are further described as ‘isolated’ strains.  

The percentage of strains isolated from cooked or fermented meat products per species is 

presented in Table 2.2. Since L. sakei is not included in the database of the API50CH system 

and pure L. sakei strains are identified by the API50CH system as Lactobacillus fermentum, it 

was not surprising that the majority of the isolates (32.4% of total isolates and 47.6% of 

cooked meat isolates) was identified as L. fermentum, an organism that is not described as a 

typical spoilage organism of CMP.  

 
Table 2.2. Distribution of homofermentative LAB isolated from cooked or fermented 
meat products per species as identified by the API50CH system 
Species Total Cooked meat 

products 

Fermented meat 

products 

Number of isolates 37 (100%) 21 (100%) 16 (100%) 

Lactobacillus fermentuma 12 (32.4%) 10 (47.6%) 2 (12.5%) 

Lactococcus lactis subsp. lactis 9 (24.3%) 5 (23.8%) 4 (25.0%) 

Lactobacillus curvatus 5 (13.5%) 2 (9.5%) 3 (18.8%) 

Lactobacillus plantarum 2 (5.4%) 0 (0.0%) 2 (12.5%) 

Carnobacterium divergens 3 (8.1%) 3 (14.3%) 0 (0.0%) 

Pediococcus pentosaceus 1 (2.7%) 0 (0.0%) 1 (6.3%) 

Leuconostoc lactis 1 (2.7%) 0 (0.0%) 1 (6.3%) 

Lactobacillus acidophilus 1 (2.7%) 1 (4.8%) 0 (0.0%) 

Lactobacillus brevis 1 (2.7%) 0 (0.0%) 1 (6.3%) 

Leuconostoc mesenteroides subsp. 

mesenteroides / dextranicum 

1 (2.7%) 0 (0.0%) 1 (6.3%) 

a, Since L. sakei is not included in the database of the API50CH system and pure L. sakei strains are 
identified by the API50CH system as L. fermentum, these isolates were presumably belonging to the 
L. sakei/curvatus group 
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Earlier results (not shown) indicate that such L. fermentum strains, in most cases, are 

identified through gelelectroforese (SDS-PAGE) and cluster analysis as members of the 

L. sakei/curvatus group (Devlieghere et al., 1998). Difficulties in correctly identifying strains 

of the L. sakei/curvatus group have been reported before (Champomier-Vergès et al., 2002).  

Further, also Lactococcus lactis subsp. lactis (32.4%) and L. curvatus (13.5%) were 

frequently isolated from the meat products. Dominance of the L. sakei/curvatus group in the 

spoilage microbial association of CMP has been demonstrated by many authors (Devlieghere 

et al., 1998; Samelis et al., 2000a). Lactococcus lactis subsp. lactis is not typically associated 

with CMP but has already been isolated from CMP by Barakat et al. (2000) and Hamasaki et 

al. (2003) and from fermented products by Rodriguez et al. (1995). Other species such as 

Carnobacterium divergens are less frequently isolated but nevertheless typical for CMP 

(Samelis et al., 1998). Lactobacillus sakei, L. curvatus, L. plantarum and Pediococcus 

pentosaceus, commonly used as starter cultures (Montel, 1999), were isolated from the 

fermented meat products. 

3.3. Psychrotrophic character and salt tolerance  

This test was performed for the 15 collected strains (7 bacteriocinogenic and 8 non-

bacteriocinogenic) and 37 isolated strains.  

Within the group of the bacteriocinogenic strains only lactocin S producing L. sakei 148 

(LS5) and sakacin A producing L. sakei Lb 706 (LS6) were able to grow at both, 4°C and 7°C 

combined with 3% and 6% of NaCl. It has been described before that only a limited number 

of bacteriocinogenic strains are able to grow at low temperatures (Hugas, 1998). None of the 

Lc. lactis strains could grow at 4°C or 7°C, while strains LP1 and PA1 could not grow 

anymore when the low temperature was combined with 6% of salt. From Lc. lactis it is known 

that they can grow at temperatures not lower then 10°C (Batt, 1999; Hamasaki et al., 2003). 

However, according to Sobrino et al. (1991), strains LL3 and LL4 are able to grow at 4°C but 

this was not confirmed in our study. Only LS5 was used for further study as not so much is 

known about the potential of this lactocin S producing strain in real meat applications.  

Five out of eight strains within the group of the collected non-bacteriocinogenic strains were 

psychrotrophic and salt tolerant. All these 5 strains, L. sakei BJ33 (LS1), a L. sakei subsp. 

carnosus isolate from cooked ham (LS7), L. sakei SAGA777 (LS8), L. plantarum (LP5) and 

L. curvatus (LC4), were used for the next steps of the screening. Again, the Lc. lactis strain 

(LL1) could not grow at the low temperatures and LP3 and PP1 were sensitive for 6% of salt.  
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Among the isolates, 76% (28/37) was able to grow at low temperatures combined with higher 

salt concentrations, even though all of these cultures were isolated from refrigerated meat 

products. The group of seven isolates, that was not able to grow at 4°C or 7°C combined with 

3% or 6% NaCl, consisted of three C. divergens isolates, one L. plantarum isolate, one 

L. curvatus isolate, the sole P. pentosaceus and the sole Leuc. lactis isolate. Most strains 

belonging to the L. sakei/curvatus group could grow at the low temperatures and high salt 

concentrations. L. sakei is known to be one of the most psychrotrophic species of lactobacilli 

since some strains grow at 2-4°C (Champomier-Vergès et al., 2002). In total, 34 strains were 

useful for further tests, consisting of 6 collected strains and 28 isolated strains.  

3.4. Antibacterial activity towards L. monocytogenes, Leuc. 

mesenteroides, Leuc. carnosum and B. thermosphacta 

The aim of this experiment was to examine the 34 selected LAB for their antibacterial activity 

towards L. monocytogenes and towards representative spoilage organisms. It should be noted 

that a positive result, this is the detection of an inhibition zone, may result from lactic acid, 

bacteriocin or hydrogen peroxide production. However, this test was meant to select for 

strains with the highest antibacterial activity, as it was not possible to continue working with 

all 34 strains. This test was not yet meant to reveal the mechanism of inhibition. All strains, 

except two, showed antibacterial activity towards at least one of the indicator strains. Only 

13/34 (38.2%) strains were active towards all six indicator strains. Towards L. monocytogenes 

LFMFP 235, L. monocytogenes LMG 10470 and L. monocytogenes Scott A, 27/34 (79.4%), 

31/34 (91.2%) and 26/34 (76.5%) LAB-strains, respectively, were demonstrating antibacterial 

activity. Towards Leuc. mesenteroides, Leuc. carnosum and B. thermosphacta, 25/34 

(73.5%), 17/34 (50%) and 30/34 (88.2%) LAB-strains, respectively, were demonstrating 

antibacterial activity. The largest inhibition zones were observed towards L. monocytogenes 

LMG 10470 and B. thermosphacta LFMFP 230 while the Leuc. carnosum strain was only 

slightly inhibited. Within the group of collected LAB, LP5 showed the highest and LC4 the 

lowest antibacterial activity towards the six indicator strains, while the antibacterial activity of 

LS1, LS5, LS7 and LS8 was intermediate. LS5 did not show a larger inhibition zone in 

comparison to the other strains although this strain is known to produce lactocin S (Sobrino et 

al., 1991). Inhibition zones can be the result of different antimicrobial compounds e.g. for 

LS1, lactic acid production has been indicated as the causative agent for the antagonistic 

character (Juven et al., 1998).  
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Figure 2.1. Antibacterial properties of 12 selected lactic acid bacteria towards (A) 
L. monocytogenes (black bars, L. monocytogenes LFMFP 235; white bars, 
L. monocytogenes LMG 10470; grey bars, L. monocytogenes Scott A) and (B) spoilage 
organisms (black bars, Leuc. mesenteroides; white bars, Leuc. carnosum; grey bars, 
B. thermosphacta); zone (mm) = radius of inhibition zone minus radius of the spot (error 
bars represent 95% confidence intervals, n=3) 
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Within the group of isolated strains, isolates 9A (vleeskoek, a typical Belgian cooked meat 

product), 20C (rolled pork), 10A (cooked turkey fillet), 13E (boulogne), 14A (fermented 

sausage) and 16G (chorizo) showed the highest antibacterial activities towards the indicator 

strains and were selected for further study. Especially strain 16G showed large inhibition 

zones. In Figure 2.1 the antibacterial activity of the six selected ‘collected’ LAB and six 

selected ‘isolated’ LAB towards the three L. monocytogenes indicator strains and the three 

spoilage indicator strains, respectively, is shown.  

The 12 selected strains were subjected to a bacteriocin assay, confirming that LS5 produced a 

bacteriocin and revealing that LP5, previously thought to be bacteriocin negative, is also 

producing a bacteriocin. All other strains did not show inhibitory zones towards 

L. monocytogenes LFMFP 235 in repeated bacteriocin assays. To absolutely prove that they 

do not produce bacteriocins, specialised genetic techniques need to be used but this was 

beyond the scope of this study. Therefore, the ten other strains are further assumed to be non-

bacteriocinogenic. Sobrino et al. (1991) investigated the inhibitory spectrum of lactocin S 

produced by L. sakei 148 (LS5). Activity was mainly observed towards indicator strains 

L. curvatus, Leuc. mesenteroides and L. monocytogenes. 

The six selected isolates were further identified through SDS-PAGE of total soluble cell 

protein. Based on the API50CH system strains 9A, 20C and 10A were identified as 

L. fermentum, strains 13E and 14A as Leuc. mesenteroides subsp. mesenteroides/dextranicum 

and 16G as L. curvatus. However, through SDS-PAGE, isolates 9A, 20C, 10A, 13E and 14A 

were identified as L. sakei subsp. carnosus and 16G was confirmed to be a L. curvatus strain. 

3.5. Growth, acidification profile and lactic acid production of 12 
selected putative protective cultures 

For the six collected strains (LS5, LS1, LS7, LS8, LP5 and LC4) and six isolated strains (9A, 

20C, 10A, 13E, 14A and 16G), growth curves and pH-curves were determined. Using the 

model of Baranyi & Roberts (1994), an estimation of the growth rate (h-1) and lagphase (h) 

was obtained. The pH-model resulted in a shoulder S (h), an acidification rate AR (h-1) and a 

tail A or final pH, used to calculate the acidification depth, being the difference between the 

initial pH (6.2) and the estimated final pH. To obtain a parameter that indicates the time 

before acidification in the medium starts and that is independent on the initial experimental 

cell number (varying from 105 to 106 cfu/ml), the shoulder obtained from the pH-model was 

corrected for the time necessary to reach 106 cfu/ml starting from the initial count. In this 
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way, the time to acidification starting from 106 cfu/ml (= tac-6) was calculated. The most 

important model parameters and the amount of lactic acid produced during growth are 

summarised in Table 2.3. The majority of the strains (LS8, LS7, LS1, 10A, 13E, 9A, 20C and 

14A) showed at 7°C a comparable growth and pH-evolution with short lagphases and short 

generation times. Within this group, all strains were L. sakei strains. Acidification depth for 

this dominant group ranged from 1.92 to 2.19 pH-units. The lactocin S producing LS5 

demonstrated a different pattern: a longer generation time and accompanying longer tac-6 was 

observed together with a limited acidification of 1.58 pH-units, which is less than for all other 

strains. Strains LC4 and 16G, both L. curvatus, had a comparable evolution with longer 

generation times and longer acidification rates than the L. sakei group. 

 

Table 2.3. Model parameters of the growth and acidification experiment for the 12 
selected lactic acid bacteria in adapted BHI-broth at 7°C under anaerobic conditions 
(mean ± standard deviation, n=3) 
Strain  Lagphase (h) Generation 

time (h) 

Time to 

acidification 

tac-6 (h)a 

Acidification 

rate (h-1) 

Depth of 

acidificationb 

Produced 

level of lactic 

acid (mM) 

LS8 46.19 ± 4.40 3.88 ± 0.56 14.37 ± 2.00 0.047 ± 0.001 2.19 ± 0.01 131.98 ± 0.26 

LS7 39.13 ± 2.20 3.00 ± 0.25 13.32 ± 3.31 0.030 ± 0.001 2.24 ± 0.01 149.86 ± 0.54 

LS1 45.93 ± 5.29 3.78 ± 0.52 29.48 ± 8.50 0.039 ± 0.000 2.21 ± 0.01 139.76 ± 0.25 

LS5 56.63 ± 6.08 7.07 ± 0.60 74.47 ± 6.72 0.018 ± 0.000 1.58 ± 0.01 82.28 ± 1.34 

LP5 178.15 ± 1.96 10.39 ± 0.86 118.48 ± 4.13 0.015 ± 0.000 2.39 ± 0.01 121.91 ± 1.09 

LC4 60.88 ± 4.66 4.50 ± 0.48 33.18 ± 0.72 0.040 ± 0.002 2.22 ± 0.00 128.25 ± 0.29 

9A 91.17 ± 4.76 5.33 ± 0.42 23.70 ± 1.91 0.032 ± 0.001 2.17 ± 0.01 128.31 ± 0.31 

10A 25.09 ± 0.74 3.67 ± 0.14 14.48 ± 1.24 0.023 ± 0.001 1.92 ± 0.01 128.37 ± 1.50 

13E 54.17 ± 3.37 4.13 ± 0.40 27.17 ± 0.41 0.037 ± 0.001 2.13 ± 0.02 129.52 ± 0.65 

14A 26.96 ± 7.31 4.37 ± 0.97 14.92 ± 1.34 0.033 ± 0.001 2.21 ± 0.01 153.59 ± 1.44 

16G 17.61 ± 5.15 7.67 ± 0.54 32.32 ± 0.79 0.017 ± 0.000 1.86 ± 0.00 130.05 ± 2.09 

20C 33.93 ± 2.97 3.10 ± 0.25 15.81 ± 1.62 0.045 ± 0.000 2.15 ± 0.01 128.49 ± 0.82 
a, starting from 106 cfu/ml; b, difference between initial pH (6.2) and estimated final pH  

 

The sole L. plantarum strain (LP5) grew and acidified the medium very slowly, but resulted in 

a deep acidification. Most strains produced levels of lactic acid of about 130 mM, whereas 

LS7 and 14A produced a higher level of approximately 150 mM. Lactocin S producing strain 

LS5 produced less (82 mM) lactic acid in comparison to the other strains. Especially strains 
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with fast growth rates at low temperatures have potential as protective cultures since fast 

growth rates are an indication for greater competitiveness for nutrients and give the LAB a 

selective advantage over slower growing competitors (Bredholt et al., 1999). However, a fast 

growth rate is for most LAB accompanied by a large acidification rate and acidification depth. 

On real CMP, this could result in a rapid and large pH-decrease, creating undesired sensory 

deviations. Therefore, strains were further investigated to determine to what extent they 

influenced the organoleptic properties of a cooked meat product. 

3.6. Behaviour of 12 selected putative protective cultures on a 
model cooked ham  

The chemical composition of the MCH was: 24.60 ± 0.63 % of dry matter, 2.68 ± 0.02 % of 

NaCl (on aqueous phase), pH of 6.09 ± 0.05 and a water activity of 0.983 ± 0.001. 

The non-inoculated MCH had an initial contamination with LAB, enumerated on MRS-agar, 

of 1.3 log10(cfu/g). Aerobic count and LAB-count were of the same magnitude and no yeasts 

or moulds were detected. Near the end of the storage period (day 34), the level of endogenous 

LAB increased up to 104-106 cfu/g. The initial microbial load was very low compared to the 

obtained inoculation level of 5×105-5×106 cfu/g. Furthermore, dominance of inoculated 

strains over background flora was confirmed by identical API-profiles of inoculum and 

isolates (results not shown).  

Figures 2.2 and 2.3 show the growth of the tested strains on the MCH, as enumerated on M5-

agar. At day six, the majority of the strains reached a cell concentration of ± 108 cfu/g. Similar 

to the growth experiment in the adapted BHI-broth, strain LP5 grew slower than the other 

strains and reached a lower maximal population level, although the inoculation level was 

slightly higher than the mean inoculation level of the other LAB.  

The initial level of glucose and lactic acid of the MCH was 0.09 ± 0.03% and 0.70 ± 0.12%, 

respectively. The latter level corresponds to the level of 0.76% lactate, reported to be a level 

naturally present in meat by Stekelenburg & Kant-Muermans (2001).  

The pH of the MCH was about 6.09 ± 0.05 at the start of the experiment. Near the end of the 

storage period, the pH of the inoculated ham decreased significantly while the pH of the non-

inoculated ham did not decrease (Figures 2.4 and 2.5). The pH-decrease at day 27 varied 

between 0.2-0.3 pH-units, dependent on the type of strain. In the cooked ham samples that 

were still sensory acceptable at day 34 (strains 13E, 10A, 14A, LS8 and LS5), the pH 
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Figure 2.2. Growth of the six selected ‘collected’ LAB (●, LS7;○, LS1; □, LC4; ■, LP5; 
×, LS5; , LS8) on the vacuum packaged model cooked ham at 7°C (mean data of three 
replicates, error bars are not presented to avoid complexity of the figure) 
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Figure 2.3. Growth of the six selected ‘isolated’ LAB (●, 20C;○, 13E; □, 9A; ■, 16G; ×, 
10A; , 14A) on the vacuum packaged model cooked ham at 7°C (mean data of three 
replicates, error bars are not presented to avoid complexity of the figure) 
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Figure 2.4. pH-evolution of the vacuum packaged model cooked ham, non-inoculated 
(▲) and inoculated with the six selected ‘collected’ LAB (●, LS7;○, LS1; □, LC4; ■, 
LP5; ×, LS5; , LS8) at 7°C (mean data of three replicates, error bars are not presented 
to avoid complexity of the figure) 
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Figure 2.5. pH-evolution of the vacuum packaged model cooked ham, non-inoculated 
(▲) and inoculated with the six selected ‘isolated LAB (●, 20C;○, 13E; □, 9A; ■, 16G; ×, 
10A; , 14A) at 7°C (mean data of three replicates, error bars are not presented to 
avoid complexity of the figure) 
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decreased to a value of about 5.80-5.75 on day 34. Significant differences in pH-values 

between inoculated and related non-inoculated samples were observed from day 9 on for LS7, 

16G, LC4, 10A and 14A, from day 13 on for LP5, LS1 and LS8 and from day 20 on for 9A 

and LS5. This indicates that strains 10A, 14A, LC4, LS7 and 16G are more rapidly acidifying 

the MCH, while strains 9A and LS5 are less rapidly acidifying the MCH. LS5 had also a low 

acidification rate in the previous experiment when growing in the adapted BHI-broth.  

However, the limited acidification by LS5 as it was occurring in the broth was not occurring 

in the cooked ham. The pH of the cooked ham, inoculated with LS5, decreased to 5.80 ± 0.05 

only. In general, the pH-decrease in the MCH was very limited but this can easily be 

understood taking into account the small level of glucose (0.09 ± 0.03%), initially present in 

the MCH. Since LAB can form maximum 2 moles of lactic acid by conversion of 1 mole of 

glucose, the maximum expected amount of lactic acid produced out of ± 0.1% glucose is ± 

0.1% of lactic acid, depending on the fermentative character of the strain. This level is very 

low compared to the initial lactic acid level of 0.70 ± 0.12% and explains why no significant 

lactic acid production was found in the MCH inoculated with the cultures (Table 2.5). 

Korkeala et al. (1990) concluded that a level of lactic acid above 0.4% is an indication of 

spoilage, while here levels of lactic acid varied between 0.4 and 1.2% during storage and high 

levels were not correlated with rejection of samples by our sensory panel. However, the study 

of Korkeala et al. (1990) was performed on cooked ring sausages, while this study was done 

on cooked ham. Juven et al. (1998) found a significant lactic acid production of 50 mM or 

0.45% (from 90 mM or 0.81% lactic acid initially to 142 mM or 1.28% lactic acid after 9 

weeks at 4°C) on ground beef, inoculated with L. sakei BJ-33 (LS1 in this study). 

Presumably, the glucose content of the ground beef was higher than the glucose content of the 

MCH used here. However, Juven et al. (1998) did not evaluate the sensory properties of this 

product after these 9 weeks. Near the end of storage, the glucose level of the MCH decreased 

significantly and finally no glucose was detected anymore from day 13 on for LS1, 16G, LC4, 

LS8 and 14A, from day 20 on for LS7, 13E and 10A and from day 27 on for LP5, 9A, LS5 

and 20C. The glucose concentration at the last day of the storage period of the non-inoculated 

product did not differ significantly from the initial glucose level.  

Table 2.4 gives the day of sensory rejection and the mean score of the sensory panel for the 

different sensory attributes at the day of sensory rejection or, in the case of no sensory 

rejection, at day 34. Results from the sensory analysis indicate that cooked ham inoculated 

with strains 13E, 10A, 14A, LS5 and LS8 was not rejected by the sensory panel even on the 
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34th day of the storage period, although the pH, at that moment, had already decreased to 

5.75-5.80. Statistical analysis (analysis of variance, P<0.05) confirmed that there were no 

significant differences in all sensory attributes on day 34 between blank 1 and 13E and 

between blank 3 and 14A, LS5, 10A and LS8. Bredholt et al. (1999) also compared vacuum 

packaged reference cooked ham and cooked ham, inoculated with several homofermentative 

LAB, and found all of the inoculated packages after 21 days of storage at 8°C to be 

acceptable, although some strains resulted in a slightly more sour taste and smell. However, in 

the study of Bredholt et al. (1999) sensory properties were not followed as a function of time. 

Table 2.4 reveals that cooked ham inoculated with strains 20C, LP5 and LS7 was rejected due 

to a deviating taste, while cooked ham inoculated with strains 16G, 9A, LS1 and LC4 was 

unacceptable because of a deviating taste and a deviating odour. Furthermore, it is important 

to notice that scores for taste and odour on the day of rejection, in case of the rejected series, 

were never higher than 6.14 indicating that the deviating odour and taste were not very 

pronounced.  

 

Table 2.4. Scores for the different sensory attributes at the day of rejection or in case of 
no rejection at the last day of the storage experiment 
Strain Day of 

rejection 

Odour Acid 

odour 

Rot 

odour 

Taste Acid 

taste 

Slime Colour General 

appearance 

% 

yesa 

Blank l >34 3.38 2.50 2.50 3.13 3.13 1.50 2.00 2.00 100.0

20C 13 3.00 4.00 3.50 5.00 4.38 1.75 2.63 2.63 37.5 

13E >34 3.25 2.63 2.25 3.50 3.38 1.86 2.00 1.88 75.0 

LP5 13 3.63 4.50 3.38 5.25 4.38 2.50 2.13 2.13 25.0 

LS7 13 3.63 4.73 3.63 5.63 4.50 2.00 2.25 2.63 12.5 

Blank 2 >27 3.71 2.50 2.50 3.13 2.29 1.00 1.71 1.57 85.7 

16G 9 5.29 4.00 3.50 5.00 5.29 2.00 3.57 3.71 28.6 

9A 20 5.25 4.25 4.38 5.50 5.13 1.25 2.00 2.00 42.9 

LS1 9 5.14 4.50 3.38 5.25 4.29 2.14 3.43 3.57 28.6 

LC4 6 6.14 4.14 3.14 5.57 4.00 1.43 1.86 2.57 28.6 

Blank 3 >34 2.80 2.40 2.00 2.00 1.80 1.00 1.20 1.40 100.0

10A >34 4.00 3.80 3.20 3.20 3.20 1.60 1.40 1.60 100.0

14A >34 2.40 2.40 2.20 2.20 2.00 1.40 1.20 1.60 100.0

LS5 >34 3.60 2.40 3.00 3.00 2.80 1.00 1.40 1.40 100.0

LS8 >34 3.20 3.00 3.40 3.40 3.00 1.40 1.20 1.20 80.0 
a; % of the panel members indicating the product as acceptable for consumption 
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Scores for general appearance, colour and slime production never reached a score higher than 

3.5-4 and 2.5, respectively, indicating that inoculation with the LAB did not influence the 

colour and general appearance of the MCH in a negative way and that the strains did not 

produce slime on the surface of the product.  

Table 2.5 summarises the number of LAB, pH and concentration of glucose and metabolites 

of the cooked ham at the day of sensory rejection or, in the case of no sensory rejection, at the 

last day of storage (day 34). The panellists considered the rejected samples unfit for human 

consumption after LAB reaching levels of 7.4 to 8.3 log10(cfu/g). This corresponds to the 

findings of Korkeala et al. (1987) on cooked ring sausages. However, samples still acceptable 

at day 34 did also reach these levels of LAB without causing sensory deviations in agreement 

with the findings of Bredholt et al. (1999). At the moment of sensory rejection, pH-values 

ranged from 5.79 to 5.96. This corresponds to the results of Korkeala et al. (1990), finding 

cooked ring sausages unfit when the pH decreases below 5.8-5.9. However, cooked ham 

samples, still sensory acceptable at day 34, demonstrated a similar pH-decrease without being 

judged unfit for consumption. Differences between our study and the study of Korkeala et al. 

(1990) might be explained by our primary selection towards homofermentative LAB while 

Korkeala et al. (1990) studied the behaviour of the natural spoilage flora. 

Although the strains were previously selected on their homofermentative character, small 

levels of acetic acid (varying from 0.002 to 0.290%), ethanol (varying from 0.005 to 0.750%) 

or propionic acid (varying from 0.003 to 0.142%) were detected in all inoculated series and 

even in the non-inoculated series near the end of storage. This is in agreement with the results 

from Borch et al. (1991), demonstrating a metabolic switch from homolactic to heterolactic 

fermentation during anaerobic continuous growth of a homofermentative Lactobacillus due to 

glucose depletion. Production of acetate may be induced when the supply of glucose to each 

individual bacterial cell is insufficient to support a homofermentative metabolism, e.g. on a 

meat surface during storage (Borch & Agerhem, 1992). The study of Borch & Agerhem 

(1992) demonstrated that in the presence of the homofermentative Lactobacillus spp. on beef 

packaged in 5% CO2 and 95% N2, acetate reached a level of about 6 mmol/kg or 0.036% after 

4 weeks at 4°C. Comparable concentrations were found in this study, but on a cooked ham 

product. However, for none of the inoculated series a persistent production of one of these 

metabolites from a certain moment on could be observed and 95% confidence intervals on the 

concentration values of these metabolites were considerably large. There was also no relation 

between formation of one of these metabolites and rejection by the sensory panel. Even in the 

cooked ham samples inoculated with 13E, 10A, 14A, LS5 and LS8 and not rejected at day 34 
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Table 2.5. Summary of the LAB-count on M5-agar, pH and concentration of glucose and metabolites of the cooked ham  
at the day of sensory rejection or in the case of no rejection at the last day of the storage experiment 
(mean ± standard deviation, n=3) 

Strain Day of sensory 

rejection 

LAB-count 

(log10(cfu/g))

pH Glucose 

(g/kg) 

Lactic acid 

(g/kg) 

Acetic acid 

(g/kg) 

Propionic acid 

(g/kg) 

Ethanol 

(g/kg) 

Blank l >34 4.2 ± 0.7 6.04 ± 0.00 0.96 ± 0.38 6.98 ± 0.70 0.08 ± 0.21  0.00 ± 0.00 0.00 ± 0.00 

20C 13 7.8 ± 0.2 5.93 ± 0.02 0.72 ± 0.09 6.76 ± 0.78 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

13E >34 7.9 ± 0.1 5.79 ± 0.01 0.00 ± 0.00 10.13 ± 0.98 0.27 ± 0.17 0.00 ± 0.00 0.96 ± 0.83 

LP5 13 7.4 ± 0.3 5.88 ± 0.02 0.65 ± 0.23 9.91 ± 1.81 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

LS7 13 7.6 ± 0.1 5.88 ± 0.02 0.15 ± 0.26 9.68 ± 1.90 0.08 ± 0.14 0.00 ± 0.00 0.00 ± 0.00 

Blank 2 >27 5.2 ± 0.8 6.09 ± 0.07 1.15 ± 0.22 8.18 ± 0.37 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

16G 9 8.2 ± 0.4 5.95 ± 0.03 0.13 ± 0.23 5.88 ± 0.96 0.02 ± 0.04 0.04 ± 0.07 0.00 ± 0.00 

9A 20 8.2 ± 0.2 5.95 ± 0.02 0.26 ± 0.17 4.87 ± 0.98 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

LS1 9 7.7 ± 0.3 6.04 ± 0.02 0.05 ± 0.04 3.89 ± 0.39 0.05 ± 0.08 0.00 ± 0.00 0.00 ± 0.00 

LC4 6 8.1 ± 0.2 5.96 ± 0.03 0.38 ± 0.18 6.28 ± 0.55 0.03 ± 0.05 0.00 ± 0.00 0.00 ± 0.00 

Blank 3 >34 6.3 ± 0.5 6.02 ± 0.04 0.90 ± 0.52 6.38 ± 3.72 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

10A >34 8.2 ± 0.0 5.76 ± 0.01 0.00 ± 0.00 12.05 ± 5.24 0.00 ± 0.00 0.13 ± 0.00 0.10 ± 0.14 

14A >34 8.1 ± 0.0 5.76 ± 0.00 0.00 ± 0.00 7.84 ± 0.97 0.19 ± 0.02 0.97 ± 1.38 1.75 ± 2.47 

LS5 >34 8.0 ± 0.0 5.77 ± 0.01 0.00 ± 0.00 11.81 ± 3.17 0.17± 0.24 0.00 ± 0.00 0.00 ± 0.00 

LS8 >34 8.3 ± 0.1 5.76 ± 0.01 0.00 ± 0.00 6.35 ± 4.38 0.10 ± 0.15 0.26 ± 0.37 0.39 ± 0.55 



Chapter 2 - Evaluation of meat born lactic acid bacteria as protective cultures 83 

of the storage experiment, on some days, a small amount of ethanol and/or acetic acid was 

detected, indicating that these metabolites could not be the reason for sensory rejection. In the 

experiment of Borch et al. (1991), anaerobic continuous growth of a homofermentative 

Lactobacillus during glucose depletion was accompanied by extensive utilisation of amino 

acids and also sulphide was produced. During our experiment, no typical sulphide odours 

were detected in the rejected products, although absence or presence of sulphide was not 

confirmed by chemical analysis. Amino acid catabolism produces a number of compounds 

including ammonia, amines, aldehydes, phenols, indole and alcohols, all being volatile 

flavours. Dainty (1996) confirmed that when glucose becomes depleted, other substrates 

begin to be metabolised. These include lactate, amino acids and creatine under aerobic storage 

and lactate and arginine during storage in vacuum or MAP. 

4. Conclusion 

Especially lactic acid bacteria that are homofermentative, salt tolerant, psychrotrophic and 

adapted to meat substrates have a good potential to be used for the biopreservation of cooked 

meat products. Screening of 91 meat born LAB resulted in the selection of 12 putative 

protective cultures, known for their psychrotrophic character, salt tolerance and antibacterial 

properties towards L. monocytogenes and towards spoilage organisms, associated with CMP. 

From these 12 strains, only LC4 could be excluded for further research because this strain had 

a very limited antibacterial activity and when inoculated on cooked ham, the product was 

sensory rejected on day 6 of vacuum packaged storage at 7°C. Strain LP5 was also less 

suitable for further investigations as this strain grew slowly on the MCH in comparison to the 

other LAB. Further, all strains resulting in sensory rejection of the cooked ham were 

considered to be not useful as protective culture. The remaining four non-bacteriocinogenic 

(13E, 10A, 14A and LS8, all four identified as L. sakei subsp. carnosus) and one 

bacteriocinogenic (LS5 or lactocin S producing L. sakei 148) LAB were found suitable for 

further research. Some selected strains from this chapter will be used in chapters 4, 5 and 6 to 

investigate the biopreservative effect in CMP due to an inhibitory effect towards 

heterofermentative LAB, B. thermosphacta and L. monocytogenes. 
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Chapter 3 
In-vitro and in-situ growth characteristics and behaviour 

of spoilage organisms associated with anaerobically 
stored cooked meat products 

Summary 

This chapter presents a systematic study on the behaviour of different types of spoilage 

organisms, relevant for vacuum packaged cooked meat products (CMP), to better understand 

the spoilage they cause and to establish the relationship between microbial growth, pH, 

metabolite formation and organoleptic deviations.  

First, strains were characterised in a broth to compare their growth rate, acidifying character 

and metabolite production under conditions simulating refrigerated vacuum packaged 

conditions. Brochothrix thermosphacta grew faster than the lactic acid bacteria (LAB). All 

LAB-strains grew fast except Leuconostoc mesenteroides subsp. dextranicum and 

Leuconostoc carnosum. The acidification rate was related to the growth rate, while the 

acidification depth was more related to the acid end-products of fermenation. 

Secondly, the growth of the organisms was studied on a model cooked ham (MCH). Strains 

spoiling the model product most rapidly belonged to the species Leuc. mesenteroides subsp. 

mesenteroides followed by the species B. thermosphacta, while Lactobacillus sakei grew 

more slowly on the MCH. Leuconostoc citreum, Leuc. carnosum and Weissella viridiscens 

demonstrated an intermediate spoilage capacity, whereas Leuc. mesenteroides subsp. 

dextranicum and Leuc. carnosum grew very slowly compared to the other LAB. Growth of 

the strains on the MCH resulted in a limited pH-decrease which was a function of the growth 

rate of the strains. Also the glucose consumption was a function of this growth rate. For none 

of the strains, a significant lactic acid production could be observed. Some small amounts of 

acetic acid, propionic acid and ethanol were detected for some strains near the end of the 

storage period. The time at which the MCH became unacceptable from a sensory point of 

view was linked to the growth rate of the strains, except for Leuc. citreum and 

Leuc. mesenteroides subsp. dextranicum, which were causing intensive spoilage despite their 

slow growth. Sensory rejection was mainly based on the attributes odour, taste and acid taste. 

No clear relation could be observed between metabolite production and the appearance of 

sensory changes. 
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1. Introduction 

A considerable part of the cured cooked meat products (CMP), such as pâté, cooked ham, 

emulsion-style sausages and cooked poultry products, are sliced and pre-packaged (vacuum or 

modified atmosphere) commodities to be sold with sell-by-dates at 7°C varying from three to 

four weeks for e.g. cooked ham (Stekelenburg & Kant-Muermans, 2001) to six weeks for e.g. 

pâté. Since these products are heated to a temperature of 65-75°C, most vegetative cells are 

inactivated and post-heat treatment recontamination determines the shelf-life (Borch et al., 

1996). Product handling after cooking plus slicing prior to packaging recontaminates the 

products with about 0.5 to 3 log10(cfu/g) of total bacteria (Samelis et al., 2000a). When stored 

anaerobically and under refrigeration, psychrotrophic LAB will dominate the spoilage flora 

because of their tolerance to micro-aerophilic or anaerobic atmospheres (Korkeala & Mäkelä, 

1989; von Holy et al., 1991). The lactic acid flora of vacuum or MA-packaged CMP consists 

mainly of homofermentative Lactobacillus spp., predominantly L. sakei and L. curvatus 

(Korkeala & Mäkelä, 1989; von Holy et al., 1991; Devlieghere et al., 1998; Samelis et al., 

2000a). In addition to these, obligate heterofermentative lactobacilli, e.g. L. brevis and 

Leuconostoc spp. (von Holy et al., 1991; Björkroth et al., 1998; Samelis et al., 1998), 

followed by other species such as Weissella spp. (Samelis et al., 2000a) and Carnobacterium 

spp. (Borch & Molin, 1989) have been found to cause spoilage. Homofermentative LAB 

ferment glucose exclusively to lactic acid, while heterofermentative LAB ferment hexoses to 

lactic acid, acetic acid and/or ethanol and carbon dioxide (Stiles & Holzapfel, 1997). 

However, glucose limitation, e.g. during anaerobic growth of homofermentative Lactobacillus 

spp. on a meat surface, can induce a metabolic switch from homo- to heterolactic 

fermentation (Borch et al., 1991). Brochothrix thermosphacta may also form a dominant part 

of the spoilage flora depending on the amount of residual oxygen present in the headspace of 

the package (Borch et al., 1996; Samelis et al., 2000a). B. thermosphacta is reported not to be 

competitive under anaerobic conditions and to be rapidly outgrown by lactobacilli (especially 

L. sakei and L. curvatus) in refrigerated vacuum packaged meat products (Stiles & Holzapfel, 

1997). 

This chapter summarises the results of an in-depth study on the growth characteristics of and 

product formation by mainly heterofermentative LAB and B. thermosphacta, associated with 

spoilage of CMP. First, the strains were characterised in a liquid growth medium at 7°C under 

an atmosphere of 100% N2 to compare the spoilage organisms with regard to their growth 
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rate, acidifying character and metabolite production under conditions simulating refrigerated 

vacuum packaged conditions and not causing glucose depletion. Further, the spoilage 

organisms were inoculated on a model cooked ham (MCH) product to (1) establish whether 

the MCH supported growth of the spoiling strains, (2) characterise the spoilage phenomena 

and (3) establish the relationship between microbial growth, pH, metabolite production and 

sensory changes. 

2. Materials and methods 

2.1. Bacterial strains and preparation of inoculum 

Nine spoilage organisms, typically associated with vacuum packaged CMP, were chosen for 

this study and are presented in Table 3.1.  

 

Table 3.1. Overview of strains used in this study 
Strain Code Origin (Reference) Obtained from

Leuconostoc mesenteroides subsp. 

mesenteroides 

LM2 Fermented olives LMGa 6893 

Leuconostoc mesenteroides subsp. 

dextranicum 

LM3 Not reported LMG 6908 

Leuconostoc mesenteroides subsp. 

mesenteroides 

LM4 Vacuum packaged smoked turkey 

fillet 

LFMFPb 666 

Lactobacillus sakei subsp. 

carnosus  

LS2 Cooked ham (Devlieghere et al., 1998) LFMFP 217 

Leuconostoc citreum LC1 Not reported LMG 9824 

Leuconostoc carnosum LC2 Vacuum packaged beef LMG 11498 

Weissella viridiscens WV1 Frankfurters LMG 13093 

Brochothrix thermosphacta BT1 Cooked ham LFMFP 230 

Brochothrix thermosphacta BT2 Vacuum packaged turkey fillet LFMFP 227 
a, LMG, Laboratory Microbiology Gent (Gent, Belgium); b, LFMFP, Laboratory of Food 
Microbiology and Food Preservation (Gent, Belgium) 
 

Stock cultures of the strains were maintained in de Man Rogosa Sharpe (MRS, Oxoid, Oxoid 

Limited, Basingstoke, Hampshire, UK) broth or Brain Heart Infusion (BHI, Oxoid) broth 

supplemented with 15% glycerol at -75°C. Working cultures of the strains were maintained 

on de Man Rogosa Sharpe (MRS, Oxoid) agar or Tryptone Soya Agar (TSA, Oxoid) slants at 
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7°C and revived by transferring a loop of inoculum into MRS-broth or BHI-broth followed by 

incubation at 30°C (22°C for BT1 and BT2) for 24h. 

2.2. Growth, acidification profile and metabolite production in a 
liquid broth under anaerobic refrigerated conditions 

The aim of this experiment was to characterise the nine spoilage organisms and to compare 

their growth characteristics, acidifying character and metabolite production profile in a broth 

at 7°C under anaerobic conditions at a pH and salt concentration relevant for CMP. Therefore, 

the strains were inoculated at 105 cfu/ml in an adapted BHI-broth (pH 6.2 and 3% NaCl). 

Growth of the cultures was followed during storage under an atmosphere of 100% N2 at 7°C 

to simulate refrigerated vacuum packaged conditions. The composition of the adapted BHI-

broth was described before in chapter 2. Additional NaCl was added to obtain a level of 3% of 

NaCl. The broth was not formulated to simulate cooked ham as the broth did not contain 

nitrite, contained a higher amount of glucose and had a different buffering capacity to that of 

cooked ham. This experiment should be seen as a pre-screening of the strains for the further 

ham model experiments. Twice a day (10 hours of difference), samples of 5 ml were taken to 

determine cell number and pH. Cell numbers were determined by plating on MRS-agar by 

using a Spiral Plater (Spiral Systems Inc., Model D, Led Techno, Eksel, Belgium) and pH-

measurements were done by using a pH-electrode (Knick, type 763, Berlin, Germany). At the 

end of each growth experiment, when the pH was changing not more than 0.01 pH-units in 

24h, a sample was taken for the determination of the concentration of glucose and metabolites 

(lactic acid, acetic acid, propionic acid and ethanol) by HPLC-analysis (Chapter 2). Growth 

curves were modelled by the model of Baranyi & Roberts (1994) and pH-curves by a 

modified Gompertz equation (Linton et al., 1995; Chapter 2). 

2.3. Behaviour on a model cooked ham product 

A model cooked ham (MCH) product was manufactured on a semi-industrial scale at Dera 

Food Technology N.V. (Bornem, Belgium) with the following recipe: 80% of pork meat, 20% 

of water, 18 g/kg nitrited salt (containing 0.6% of nitrite), 5 g/kg Deraphos C107 (potassium 

and sodium- di-, tri- and polyphosphates) and 0.5 g/kg Na-ascorbate. The production process 

of the MCH was similar to the process described before in chapter 2. In packages of 25 

slices/package the product was quick-frozen in a blast freezer (Friginox-Le Froid 

Professionnel, Frispeed SR-range, France) at -40°C to a core temperature of -10°C to avoid 
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formation of large ice crystals and finally further stored in a freezing room at -18°C. When an 

experiment started, the necessary amount of product was transferred from the freezer to a 

cooler at -3°C for 48h and later at 4°C for 24h.  

The MCH was inoculated with the nine spoilage organisms at a level of 104-105 cfu/g in three 

consecutive experiments. Each experiment consisted of four series: one blank series of non-

inoculated ham and three series of ham inoculated with one of the nine strains. All series were 

tested in triplicate. The inoculum was subcultured twice (24h, 30°C) in 5 ml MRS-broth (for 

LAB) or BHI-broth (for B. thermosphacta). To reach an inoculation level of 104-105 cfu/g, 

200 µl of the appropriate dilution of the 24h-culture was divided over and spread on the 

surface of 8 slices (110 g/8 slices) of MCH. After inoculation, slices were vacuum packaged 

(8 slices/package) and stored at 7 ± 1°C in a ventilated refrigerator. Packaging was performed 

using a Multivac A300/42 (Hagenmüller, Wolfertschwenden, Germany) gas packaging 

machine in a high barrier film (NX90, Euralpak, Wommelgem, Belgium) of 90 µm thickness 

with an oxygen transmission rate of 5.2 ml/m2.24h.atm at 23°C and 85% of relative humidity. 

At day 0, 2, 6, 9, 13, 20, 27, 34 and 41 of the storage period, cooked ham samples were 

analysed for growth of the inoculated strain, pH and concentration of metabolites. 

Furthermore, the sensory characteristics were evaluated. 

For the microbial analyses, a 15g sample of ham was taken aseptically and a decimal dilution 

series in Peptone Physiologic Solution (PPS; 8.5 g/l NaCl (VWR, VWR International, 

Leuven, Belgium) and 1 g/l Peptone (Oxoid)) was prepared to plate the appropriate dilutions 

on MRS-agar (aerobic incubation at 22°C for 3-5 days) and M5-agar (anaerobic incubation at 

30°C for 2 days) to determine the level of LAB. The M5-agar differentiates between homo- 

and heterofermentative LAB (Zuniga et al., 1993). The blank samples were also plated on 

Plate Count Agar (PCA, Oxoid) (aerobic incubation at 22°C for 3-5 days), Reinforced 

Clostridial Agar (RCA, Oxoid) (anaerobic incubation at 37°C for 3-5 d) and Yeast Glucose 

Chloramphenicol Agar (YGC, Bio-Rad, Bio-Rad Laboratories, Hercules, CA, USA) (aerobic 

incubation at 22°C for 3-5 d) to determine total aerobic psychrotrophic count, total anaerobic 

count and number of yeasts and moulds, respectively. In the case of inoculation with 

B. thermosphacta, STAA-agar (Oxoid) (aerobic incubation at 22°C for 2-3 days) 

supplemented with STAA (Streptomycin sulphate, Thallous acetate, Actidione, Agar) 

selective supplement (Oxoid) was used. 

The pH-measurements and the determinations of the concentration of metabolites by 

extraction and subsequent HPLC-analysis were performed according to the methods described 

before in chapter 2.  
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The sensory quality of cooked ham samples was evaluated by a trained sensory panel (nine 

persons) using a scoring method, similar to the method described in chapter 2. 

Statistical analysis of the results of pH, glucose and lactic acid concentration was done in a 

similar way as described before in chapter 2. All statistical analyses were performed using the 

software SPSS 11.0 (SPSS, Chicago, IL, USA).  

3. Results and discussion 

3.1. Growth, acidification profile and metabolite production in a 
liquid broth under anaerobic refrigerated conditions 

For the nine spoilage organisms, growth curves and pH-curves at 7°C were obtained. By 

using the model of Baranyi & Roberts (1994) an estimation for the growth rate (h-1) and 

lagphase (h) was calculated. The pH-model resulted in a shoulder S (h), an acidification rate 

AR (h-1) and a tail A or final pH, used to calculate the acidification depth. The acidification 

depth was defined as the difference between the initial pH (6.2) and the estimated final pH. 

Furthermore, the time to acidification starting from 106 cfu/ml (= tac-6) was calculated in the 

same way as described in chapter 2. The most important model parameters are summarised in 

Table 3.2.  

 

Table 3.2. Model parameters of the growth and acidification experiment for the nine 
spoilage organisms in adapted BHI broth at 7°C under anaerobic conditions (mean ± 
standard deviation, n=3) 
Strain  Lagphase (h) Generation 

time (h) 

Time to acidification 

tac-6 (h) a 

Acidification rate 

(h-1) 

Depth of 

acidification b 

LS2 40.88 ± 4.11 3.70 ± 0.28 21.10 ± 2.87 0.033 ± 0.001 2.16 ± 0.02 

LM2 33.21 ± 3.77 3.77 ± 0.37 46.39 ± 3.56 0.021 ± 0.000 1.77 ± 0.01 

LM3 354.19 ± 32.55 10.90 ± 6.08 48.46 ± 4.29 0.011 ± 0.000 1.91 ± 0.04 

LM4 40.44 ± 2.41 4.53 ± 0.33 49.52 ± 8.08 0.029 ± 0.001 2.10 ± 0.01 

LC1 32.62 ± 4.75 5.82 ± 0.48 43.24 ± 1.61 0.024 ± 0.001 2.00 ± 0.01 

LC2 52.29 ± 12.22 10.78 ± 1.05 76.93 ± 2.99 0.014 ± 0.000 1.90 ± 0.07 

WV1 46.67 ± 1.09 5.61 ± 0.30 67.96 ± 1.35 0.022 ± 0.001 1.94 ± 0.01 

BT1 11.98 ± 0.03 2.00 ± 0.16 25.53 ± 1.25 0.034 ± 0.001 1.63 ± 0.04 

BT2 9.19 ± 1.15 2.39 ± 0.28 29.08 ± 0.52 0.037 ± 0.001 1.66 ± 0.01 
a, starting from 106 cfu/ml; b, difference between initial pH (6.2) and estimated final pH 
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Figure 3.1 shows the levels of lactic acid, acetic acid, propionic acid and ethanol and the level 

of glucose that were produced and consumed, respectively, at the end of the growth 

experiment. The pattern of metabolite production reflects the homo- or heterofermentative 

character of the tested strains.  
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Figure 3.1. Production of metabolites and consumption of glucose at the end of the 
growth of the nine spoilage organisms in adapted BHI-broth at 7°C under anaerobic 
conditions (black bars, glucose; grey bars, lactic acid; white bars, acetic acid; dotted 
bars, propionic acid; striped bars, ethanol) (error bars represent 95% confidence 
intervals, n=3) 
 
Each of the nine spoilage organisms was able to grow in the adapted BHI-broth at 7°C under 

anaerobic conditions, but large differences in growth characteristics could be observed. The 

most rapidly growing strains were the two B. thermosphacta strains followed by the two 

Leuc. mesenteroides subsp. mesenteroides strains. The Leuc. carnosum and 

Leuc. mesenteroides subsp. dextranicum strains grew slowly. The acidification rate was 

related to the growth rate since the fastest growing strains were acidifying the medium most 

rapidly. The acidification depth, on the other hand, was rather related to the pattern of 

metabolite production as the homofermentative LS2 acidified the medium to a greater extent 

than the heterofermentative LAB. The two B. thermosphacta strains acidified the medium to a 
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lesser extent compared to the LAB since these strains also produced lower levels of lactic acid 

than the LAB did. All strains converted glucose to lactic acid as major end-product, while the 

heterofermentative LAB and the B. thermosphacta strains also produced other metabolites, 

e.g. ethanol and acetic acid. 

Few studies have investigated the behaviour of several spoilage causing LAB and 

B. thermosphacta, as has been done in this experiment. Blickstad & Molin (1984) investigated 

the growth and end-product formation in fermenter cultures of B. thermosphacta, 

W. viridiscens and a homofermentative Lactobacillus spp. in different gaseous atmospheres, 

including 100% N2 and 5% CO2 + 95% N2. However, it is difficult to compare with their 

results since those experiments were performed at 25°C. In agreement with our results, all test 

strains produced under anaerobic conditions mainly lactic acid and W. viridiscens also 

produced ethanol while B. thermosphacta produced small amounts of ethanol. In 1983, 

Blickstad investigated the same three organisms as in the study of Blickstad & Molin (1984) 

but under anaerobic conditions at pH 6.3 and 8°C in a complex medium with 2% of glucose 

and no nitrite, thus very similar to the conditions of this experiment. The results for 

W. viridiscens correspond very well. Blickstad (1983) reported for W. viridiscens a growth 

rate of 0.06 h-1, while in our study a very similar growth rate of 0.054 ± 0.003 h-1 was found 

and main metabolites were lactic acid and ethanol in both studies. Growth rates for 

B. thermosphacta did not correspond that well, since both B. thermosphacta strains grew very 

fast in our study, while Blickstad (1983) found a growth rate comparable to that of 

W. viridiscens. This might be attributed to inter-strain variations within the Brochothrix 

species. 

3.2. Behaviour on a model cooked ham product 

The chemical characteristics of the MCH were as follows: 24.60 ± 0.63 % of dry matter, 2.68 

± 0.02 % of NaCl (on aqueous phase), pH of 6.05 ± 0.02 and a water activity of 0.983 ± 

0.001. 

The non-inoculated cooked ham had an initial microbial contamination with LAB, 

enumerated on M5-agar, of 1×102 cfu/g to 4.2×102 cfu/g. Aerobic count and LAB-count were 

of the same magnitude and no yeasts or moulds were detected. Near the end of the storage 

period, the level of endogenous LAB increased up to 104-105 cfu/g. The initial microbial load 

was very low compared to the inoculation level of the LAB (104-105 cfu/g). Furthermore, 
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dominance of the inoculated strains over the background flora was confirmed by identical 

API-profiles of the inoculum and isolates (results not shown).  

Figure 3.2 shows the growth of the tested strains on the MCH, as enumerated on M5-agar for 

LAB or STAA-agar for B. thermosphacta.  
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Figure 3.2. Growth of the nine spoilage organisms on the vacuum packaged model 
cooked ham during storage at 7°C. Strains: (□) LS2, (▲) LC1, (∆) WV1, (●) LM2, (◊) 
LM4, (○) LC2, (+) LM3, (■) BT1 and (×) BT2 (mean data of three replicates, error bars 
are not presented to avoid complexity of the figure) 
 
Most strains reached a maximal population of about 107-108 cfu/g on the cooked ham. The 

most rapidly growing organisms were Leuc. mesenteroides strains LM2 and LM4, followed 

by B. thermosphacta strains BT1 and BT2. Strains LS2 and WV1 had a comparable but 

slower growth than LM2, LM4, BT1 and BT2. Strains LC1, LC2 and LM3 grew very slowly 

on the cooked ham and reached a level of about 107 cfu/g only after 27 days for LC1 and after 

41 days for LM3 and LC2. Strain LM3 was identified as Leuc. mesenteroides subsp. 

dextranicum whereas LM2 and LM4 were identified as Leuc. mesenteroides subsp. 

mesenteroides.  

The pH of the cooked ham was about 6.05 ± 0.02 and decreased near the end of the storage 

period (Figure 3.3). Whereas the pH of the non-inoculated ham and ham inoculated with LC1, 
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LC2 and LM3 not significantly decreased compared to the initial pH-value, significant 

differences compared to the initial pH-value were observed for LS2 on day 41, for LM2 from 

day 13 on, for LM4 from day 20 on and for BT1 and BT2 on day 27. The overall pH-decrease 

was, however, very limited and varied between 0.1-0.2 pH-units. This can easily be 

understood taking into account the low level of glucose (0.10 ± 0.02%) initially present in the 

cooked ham.  
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Figure 3.3. pH-evolution of the vacuum packaged model cooked ham inoculated with the 
nine spoilage organisms during storage at 7°C. Strains: (■) LS2, (▲) LC1, (∆) WV1, (●) 
LM2, (○) LM4, (×) LC2, (◊) BT1, (□) BT2, (♦) blank and (+) LM3 (mean data of three 
replicates, error bars are not presented to avoid complexity of the figure) 
 
Near the end of the storage period, the glucose level of the MCH decreased and this decrease 

occurred most rapidly for the fast growing strains. In the case of LM2 and LM4, no glucose 

was found anymore in the ham from the 20th day on. The non-inoculated ham and the ham 

with the slow growing strains LM3 and LC2 showed no significant decrease in glucose level 

compared to the initial glucose level. A significant decrease in glucose compared to the initial 

glucose concentration was observed for LM2, LM4 and BT1 from day 20 on and for LS2 

from day 41 on.  
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For none of the strains, a significant lactic acid production could be observed. Some small 

amounts of acetic acid, propionic acid and ethanol were detected for some strains near the end 

of the storage period. However, these levels were accompanied by large 95% confidence 

intervals and consequently the production was not always found to be statistically significant 

(P<0.05). A slightly increasing but nevertheless not statistically significant trend in acetic acid 

concentration as a function of time was noticed for LM2 from day 13 on and for LM4 from 

day 9 on. Concerning ethanol production, a similar trend was observed for LM2, LM4 and 

BT2 from day 13 on and with regard to propionic acid production, for LS2 and LC1 from day 

41 on and for LM4 and LC2 from day 13 on. Especially the growth of strains LM2 and LM4 

resulted in the production of these heterofermentative end-products. 

Table 3.3 gives the day of rejection and the mean score of the sensory panel for different 

sensory attributes at the day of rejection or, in the case of no rejection, on the last day of the 

storage period.  

 

Table 3.3. Scores for the different sensory attributes at the day of rejection or in the case 
of no rejection at the 41th day of the storage experiment (mean, n=6) 
Strain Day of 

rejection 

Odour Acid 

odour 

Rot 

odour 

Taste Acid 

taste 

Slime Colour General 

appearance 

% yesa

Blank l 34 6.00 5.11 4.51 6.11 5.11 2.78 2.78 3.22 22.2 

LS2 34 5.11 3.67 3.29 6.00 5.11 1.67 2.67 2.89 22.2 

LC1 34 7.22 5.33 4.71 7.67 6.22 2.33 2.78 3.44 0.0 

WV1 34 5.89 4.78 4.37 5.67 5.11 2.78 4.22 4.78 22.2 

Blank 2 41 2.38 1.75 1.63 3.50 3.00 1.75 2.38 2.38 62.5 

LC2 >41 4.13 2.25 2.13 4.50 3.38 2.00 2.25 2.63 50.0 

LM2 20 6.33 5.56 4.56 5.67 5.22 2.22 2.56 2.89 11.1 

LM4 20 5.22 5.22 3.78 4.67 4.56 2.67 2.56 3.11 44.4 

Blank 3 41 6.43 3.57 4.86 7.14 5.86 1.86 2.29 2.57 14.3 

LM3 41 7.57 4.43 6.29 8.14 5.86 2.00 2.14 2.43 0.0 

BT1 13 5.75 4.75 4.75 6.50 6.13 2.50 2.75 3.38 37.5 

BT2 13 6.25 4.75 4.63 5.63 5.13 2.13 2.63 3.50 25.0 
a, % of the panel members indicating the product as acceptable for consumption 

 

The day of rejection was linked to the growth rate of the strains. Ham with the fast growing 

strains BT1, BT2, LM2 and LM4 was rejected early in the storage period, while ham 

containing the slow growing strains was acceptable almost until the end of the storage period. 
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Sensory rejection was mainly based on the attributes odour, taste and acid taste. Sensory 

deviations could not always be described as acid but for some strains (LM3) a more fermented 

and rotten taste/odour was observed. Highest scores were given for LC1 and LM3 indicating 

that these organisms caused the most intensive spoilage, although they were growing rather 

slow. For all LAB, scores for general appearance, slime production and colour never reached 

a value higher than 3.50, 2.78 and 2.78, respectively, indicating that inoculation with the 

strains did not influence the colour and general appearance of the cooked ham in a negative 

way and that the strains did not produce slime on the surface of the product.  

 

In this chapter, growth experiments on a MCH showed the most rapidly growing spoilage 

organisms to be Leuc. mesenteroides subsp. mesenteroides strains followed by 

B. thermosphacta. This result was in contradiction with the broth experiment, in which 

B. thermosphacta grew more rapidly than Leuc. mesenteroides. Since inoculum levels were 

similar, it might be that the MCH substrate is better supporting the growth of 

Leuc. mesenteroides than of B. thermosphacta. Another possible explanation might be the 

presence of residual nitrite in the cooked ham product, while this compound was not present 

in the adapted BHI-broth. It is known for some time that B. thermosphacta is more sensitive 

towards nitrite than LAB are (Gardner, 1981). Other differences between the broth and the 

MCH are the different level of glucose and the difference in buffering capacity. Furthermore, 

surface growth is difficult to compare with growth in a liquid broth. L. sakei has been 

identified as the specific spoilage organism of CMP but on this MCH it did not grow the 

fastest in comparison with other spoilage causing LAB. It has to be mentioned that this study 

was a pure culture study and is not showing which strain would grow the fastest when 

inoculating e.g. L. sakei and Leuc. mesenteroides together on the cooked ham. Similar as in 

the broth, Leuc. carnosum and Leuc. mesenteroides subsp. dextranicum grew slowly on the 

cooked ham.  

Growth of the spoilage organisms on the MCH resulted in a limited pH-decrease and no 

significant lactic acid production could be observed throughout the storage period. This fact 

can be understood taking into account the initial levels of glucose (0.10 ± 0.02%) and lactic 

acid (0.89 ± 0.15%). The latter level corresponds to the level of 0.76% lactate, reported by 

Stekelenburg & Kant-Muermans (2001) to be a possible level naturally present in meat. Since 

LAB can form maximum two moles of lactic acid by conversion of one mole of glucose, the 

maximum expected amount of lactic acid produced out of ± 0.1% glucose is ± 0.1% of lactic 
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acid, depending on the heterofermentative character of the strain. This level is very low 

compared to the initial level of lactic acid of 0.89% and taking into account a mean 95% 

confidence interval of ± 0.2% on the lactic acid concentrations, no significant lactic acid 

production could be found. The small amount of lactic acid, which could be produced, is 

responsible for the limited decrease in pH. About 0.1% lactic acid is, from our experience, 

needed to create a pH-drop of about 0.1 pH-units in cooked ham. 

Table 3.4 summarises the number of LAB or Brochothrix spp., as enumerated on M5-agar or 

STAA-agar, the pH and the concentration of some typical metabolites of the cooked ham at 

the day of rejection or in case of no rejection at the last day of the storage experiment. 

 

Table 3.4. Summary of the cell number (log10(cfu/g)), pH and concentration (g/kg of 
ham) of glucose and metabolites of the cooked ham at the day of rejection or in case of 
no rejection at the last day of the storage experiment (mean ± standard deviation, n = 3) 
Strain Rejected 

on day 

Cell 

number 

pH Glucose Lactic 

acid 

Acetic acid Propionic 

acid 

Ethanol 

BLl a 34 5.0 ± 1.0 6.07 ± 0.08 0.22 ± 0.38 12.3 ± 3.8 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

LS2 34 7.1 ± 0.1 6.04 ± 0.01 0.91 ± 0.11 9.5 ± 0.9 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

LC1 34 6.9 ± 0.2 6.07 ± 0.02 0.90 ± 0.07 8.7 ± 2.3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

WV1 34 7.2 ± 0.1 6.04 ± 0.02 0.55 ± 0.32 9.0 ± 2.5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

BL2 a 41 3.2 ± 1.2 6.00 ± 0.01 0.82 ± 0.11 8.2 ± 1.7 1.76 ± 3.05 0.00 ± 0.00 0.00 ± 0.00 

LC2 >41 6.9 ± 1.0 6.04 ± 0.06 0.67 ± 0.58 14.7 ± 6.2 0.00 ± 0.00 0.92 ± 1.59 0.00 ± 0.00 

LM2 20 7.9 ± 0.4 5.90 ± 0.01 0.00 ± 0.00 9.9 ± 0.7 0.97 ± 0.90 0.00 ± 0.00 1.16 ± 1.09 

LM4 20 8.2 ± 0.1 5.90 ± 0.03 0.00 ± 0.00 10.3 ± 0.6 0.42 ± 0.73 0.50 ± 0.86 1.63 ± 1.43 

BL3 a 41 5.4 ± 0.7 6.01 ± 0.04 0.71 ± 0.23 8.3 ± 1.7 0.44 ± 0.76 0.00 ± 0.00 1.30 ± 2.25 

LM3 41 7.5 ± 0.2 5.92 ± 0.09 0.00 ± 0.00 9.4 ± 7.5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

BT1 13 6.9 ± 0.3 6.08 ± 0.01 1.14 ± 0.11 8.6 ± 0.8 0.05 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 

BT2 13 6.6 ± 0.3 6.06 ± 0.02 1.10 ± 0.21 12.4 ± 3.9 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.87 
a, BL1 = blank 1; BL2 = blank 2; BL3 = blank 3 

 

Samples were considered unfit for human consumption when the LAB-count reached levels 

of 6.9 to 8.2 log10(cfu/g), corresponding to the findings of Korkeala et al. (1987) on cooked 

ring sausages. The highest maximum cell concentration was reached by LM2 and LM4. The 

samples inoculated with the Brochothrix strains were rejected when the cell number was 

lower, about 6.6 to 6.9 log10(cfu/g). The non-inoculated samples were rejected at very low cell 

numbers, varying from 3.2 to 5.4 log10(cfu/g). Also cooked ham samples inoculated with 

strains LS2, LC1 and WV1 were rejected at rather low cell numbers of 7.1, 6.9 and 7.2 



Chapter 3 – Spoilage characterisation of cooked meat products 97 

log10(cfu/g), respectively. It might have been the case that other types of spoilage, e.g. 

chemical spoilage, were occurring after this prolonged storage explaining why these samples 

were rejected at a rather low level of LAB. At the moment of rejection, pH-values were for all 

strains, except for the three Leuc. mesenteroides strains, not significantly lower than the initial 

pH-value since glucose concentrations at that moment were also not significantly lowered. 

For the three Leuc  mesenteroides strains, pH-values at the day of rejection were lowered to a 

value of about 5.90 and at that moment no glucose was present anymore in the ham. The main 

conclusion which can be drawn from the pattern of metabolite production at the day of 

rejection is that mainly Leuc. mesenteroides subsp. mesenteroides strains produced the typical 

heterofermentative end-products. Cooked ham containing B. thermosphacta was rejected on 

day 13 and from that day on, ethanol was produced for BT2 but not for BT1. It is possible that 

the sensory deviations caused by B. thermosphacta were caused by other metabolites or 

volatiles that were not analysed in this study. 

Egan et al. (1980) performed a comparable study on vacuum packaged sliced cooked 

luncheon meat at 5°C. The tested LAB were a mix of four homofermentative and a mix of 

four heterofermentative LAB, but the identity was not further specified. Furthermore, the 

study of Egan et al. (1980) was less extensive than our study since pH and metabolite 

production were not examined. Egan et al. (1980) concluded that B. thermosphacta caused 

rapid spoilage, that homofermentative LAB caused spoilage much more slowly and that 

heterofermentative LAB were intermediate in their effect. Another study to compare with is 

the study of Borch & Agerhem (1992), investigating the chemical, microbial and sensory 

changes during anaerobic cold (4°C) storage of raw beef inoculated with a homofermentative 

Lactobacillus spp. or a Leuconostoc spp. However, care must be taken when comparing since 

the food products under study differ strongly. In their study, both species reached a maximal 

population of 107 cfu/cm2 at the same moment i.e. after two weeks whereas in our study, two 

Leuconostoc strains grew faster and a third one grew slower than the tested Lactobacillus 

strain. Borch & Agerhem (1992) also observed a drastic decrease in glucose concentration on 

beef slices inoculated with Leuconostoc, while the change in glucose concentration was less 

drastic for Lactobacillus. Table 3.4 reveals that our results correspond to these findings.  

Because of the low initial level of glucose in our test product and as a consequence limited 

pH-decrease and lactic acid production, a poor correlation between pH, lactic acid 

concentration and cell number was observed. CMP can contain higher concentrations of 

glucose and then the correlation between these parameters is more obvious as it was the case 

in the studies of Korkeala (Korkeala et al., 1987; 1989; 1990). In our study, rejection of 
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cooked ham samples inoculated with Leuc. mesenteroides subsp. mesenteroides was related to 

the production of heterofermentative end-products, mainly acetic acid and ethanol. However, 

for all other samples it was not possible to observe a relation between formation of one of the 

metabolites and rejection by the sensory panel. In the case of Leuc. mesenteroides subsp. 

mesenteroides, glucose was depleted. Dainty (1996) noticed that when glucose becomes 

depleted other substrates start to be metabolised. These include lactate, amino acids and 

creatine under aerobic storage and lactate and arginine during anaerobic storage. Amino acid 

catabolism produces a number of compounds including ammonia, aldehydes, phenols, indol 

and alcohols, all being volatile flavours (Borch et al., 1991).  

4. Conclusion 

The results of this pure culture study show that within a group of nine spoilage organisms, 

typically associated with anaerobically packaged sliced cooked meat products, Brochothrix 

thermosphacta and Leuconostoc mesenteroides subsp. mesenteroides seem to have the highest 

potential to cause rapid spoilage. This was demonstrated in broth experiments and in an 

inoculation study on a model cooked ham product. Lactobacillus sakei, identified as the 

specific spoilage organism of anaerobically packaged cooked meat products, was not the most 

rapidly growing organism on the model cooked ham. It has to be stressed that this study was a 

pure culture study and does not show which strain would grow the fastest in a real life 

situation when different types of spoiling LAB are present together on a cooked meat product. 

The next chapter (chapter 4) will investigate the interactions between two LAB, that were 

shown to be potential protective cultures in chapter 2, and the two spoilage organisms 

Brochothrix thermosphacta and Leuconostoc mesenteroides subsp. mesenteroides, that were 

found to be relevant spoilage organisms for CMP in this chapter. 
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Chapter 4 
Co-culture experiments demonstrate the usefulness of 
Lactobacillus sakei 10A to prolong the shelf-life of a 

model cooked ham 

Summary 

In this chapter, the usefulness of two lactic acid bacteria, a Lactobacillus sakei subsp. 

carnosus strain (10A) and the lactocin S producing Lactobacillus sakei 148 (LS5), to extend 

the shelf-life of cooked meat products (CMP) was investigated. The interactions between 

these potential protective cultures and the spoilage organisms, Leuconostoc mesenteroides 

(LM4) and Brochothrix thermosphacta (BT1), were examined in co-culture studies on a 

model cooked ham (MCH) product at 7°C under vacuum packaged conditions. The influence 

of the glucose content of the model cooked ham on the interaction phenomena was 

investigated by performing the co-culture studies on MCH with a low glucose content of 

about 0.2% (w/w) glucose and MCH with a high glucose content of about 1.3% (w/w) 

glucose. The difficulty in quantifying such an interaction was to individually follow the 

growth of the homofermentative LAB-strain on the one hand and the growth of the 

heterofermentative LAB-strain on the other hand when growing in co-culture on the MCH. To 

resolve this issue a new medium, TC8-MRS-agar, consisting of MRS-agar supplemented with 

tetracycline at 8 µg/ml, was developed. This agar medium allowed differentiation of LM4-

colonies from 10A-colonies or LS5-colonies after incubation for three days at 30°C under 

anaerobic conditions.  

When artificially contaminating the model cooked ham with BT1 at 102 cfu/g in combination 

with 10A at 105 cfu/g, the growth of BT1 was significantly slower compared to its 

simultaneous growth in mono-culture. In a similar experiment with LM4, this strain reached a 

level of 107 cfu/g approximately 14 days later if LM4 grew together with 10A compared to its 

growth in mono-culture. The lactocin S producing LS5 did not demonstrate an antagonistic 

action towards LM4 or BT1. On the MCH with low glucose content as well as on the MCH 

with high glucose content, antagonistic interactions of 10A towards LM4 and BT1 occurred; 

the antagonistic effect of 10A was not eliminated when glucose was abundant in the product.  

The results of this chapter indicate that Lactobacillus sakei 10A has potential as protective 

culture for the shelf-life prolongation of CMP, while Lactobacillus sakei LS5 has not. 
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1. Introduction 

Interest in the role of biopreservation in assuring food stability and food safety has increased 

as a variety of bacteria, mainly lactic acid bacteria (LAB), occurring commonly in foods have 

been evaluated for their potential to control spoilage organisms and food born pathogens 

while changing the sensory properties as little as possible (Lücke, 2000; Chapter 2). This 

natural way of preservation has gained increasing attention for controlling the shelf-life and 

safety of the new generation of minimally processed ready-to-eat food products of extended 

durability under refrigerated conditions (Rodgers, 2001). This product group includes the 

refrigerated, pre-packaged, cured, cooked meat products (CMP), which are either vacuum 

packaged (VP) or packaged in a modified atmosphere (MAP). Post-contamination after 

cooking determines the shelf-life of these meat products resulting in a spoilage flora mainly 

consisting of Lactobacillus spp., Leuconostoc spp. and in some cases Brochothrix 

thermosphacta (Borch et al., 1996; Samelis et al., 2000a, Chapter 3).  

In CMP, protective cultures (PC) have mainly been evaluated for their potential to inhibit 

food born pathogens such as Listeria monocytogenes (Andersen, 1995a; Hugas et al., 1998; 

Bredholt et al., 1999; Bredholt et al., 2001, Amezquita & Brashears, 2002; Budde et al., 2003; 

Mataragas et al., 2003a). Less is known about the possibility to use PC for shelf-life 

prolongation of these products. Kotzekidou & Bloukas (1996) reported a one-week extension 

of the shelf-life of vacuum packaged, sliced, cooked ham at 4°C when inoculated with the 

bioprotective culture Lactobacillus sakei BJ-33 before cooking via the curing solution at a 

level of 1010 cfu/g. In 1998, Kotzekidou & Bloukas reported a shelf-life extension of 19 and 

28 days at 6-8°C of vacuum packaged pariza, a frankfurter-type sausage, when inoculated 

with the same culture L.  sakei BJ-33 at a level of 103 cfu/g and 105 cfu/g, respectively. In that 

study, the control sample was thought to be spoiled by heterofermentative LAB. However, the 

same culture failed to prevent growth of ropy slime producing L. sakei strains leading to 

spoilage on frankfurters (Björkroth & Korkeala, 1997). Metaxopoulos et al. (2002) inoculated 

sliced cooked cured pork shoulder with the bacteriocin producing Leuc. mesenteroides L124 

and L. curvatus L422. Results under vacuum packaging showed that in the non-inoculated 

samples the spoilage microflora grew but in the inoculated ones the numbers of 

B. thermosphacta and enterococci reduced during storage. To our knowledge, no study has 

ever investigated the effect of homofermentative, protective LAB on heterofermentative, 

spoilage causing LAB in CMP.  
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Protective cultures can be divided in bacteriocinogenic cultures and non-bacteriocinogenic 

cultures. In most vacuum packaged CMP, the antagonistic character of non-bacteriocinogenic 

PC can not be explained by pH-reduction through an increasing lactic acid concentration. 

Probably, a more complex combined effect of production of antimicrobial compounds and 

competition for or depletion of specific nutrients might explain the protective effect of these 

cultures (Devlieghere et al., 2004; Chapter 1 & 2).  

In chapter 2, four non-bacteriocinogenic LAB-strains (13E, 10A, 14A and LS8, all four 

identified as L. sakei subsp. carnosus) and one bacteriocinogenic LAB-strain (LS5 or lactocin 

S producing L. sakei 148) were found to have suitable properties to be candidate protective 

cultures for CMP. The results from chapter 3 showed that B. thermosphacta and 

Leuc. mesenteroides may cause rapid spoilage when growing as pure cultures on 

anaerobically packaged CMP. The objective of this chapter was to evaluate two of the 

selected LAB, the bacteriocinogenic strain LS5 and the non-bacteriocinogenic strain 10A, for 

their usefulness in prolonging the shelf-life of CMP. Therefore, co-culture experiments at 7°C 

with the two selected LAB (potential protective cultures), 10A and LS5, on the one hand and 

the spoilage organisms (target strains), B. thermosphacta BT1 and Leuc. mesenteroides LM4, 

on the other hand were set up. These experiments were performed on two types of model 

cooked ham (MCH) product: MCH with a low glucose content (0.2% (w/w) glucose) and 

MCH with a high glucose content (1.3% (w/w) glucose). The co-culture studies of this 

chapter aimed to (1) examine whether an inhibitory interaction between the potential 

protective cultures and the target strains occurred, (2) quantify this interaction and (3) 

investigate the role of the glucose content of the MCH in the interaction phenomena. 

2. Materials and methods 

2.1. Bacterial strains 

Two lactic acid bacteria were investigated for their usefulness as protective culture. The first 

strain was the non-bacteriocin producing Lactobacillus sakei subsp. carnosus (coded as 10A), 

isolated from vacuum packaged, sliced, cooked and smoked turkey fillet in chapter 2. The 

second strain was the lactocin S producing Lactobacillus sakei 148 (coded as LS5) isolated 

from a Spanish dry sausage by Sobrino et al. (1991). Both strains were selected in chapter 2 

out of a group of 91 meat born bacterial isolates based on a profound screening of their 
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growth characteristics, antibacterial properties and influence on the organoleptic properties of 

a MCH. In this chapter, these cultures are further described as ‘potential protective cultures’. 

The antagonistic effect of these two potential protective cultures was evaluated towards two 

spoilage organisms, representative for CMP and in this chapter further described as ‘target 

strains’. The first target strain, a Leuconostoc mesenteroides subsp. mesenteroides strain 

(coded as LM4) had been isolated in chapter 2 from vacuum packaged, cooked turkey fillet. 

The second target strain was a Brochothrix thermosphacta strain (coded as BT1), isolated 

from cooked ham and present in the culture collection of the Laboratory of Food 

Microbiology and Food Preservation (LFMFP, Gent University, Belgium). 

2.2. Model cooked ham (MCH) 

Two types of model cooked ham (MCH) were manufactured on a semi-industrial scale at 

Dera Food Technology N.V. (Bornem, Belgium): a model cooked ham with a low glucose 

content (LG-product) and a model cooked ham with a high glucose content (HG-product). 

The recipe and production process of the LG-product were identical to what has been 

described before in chapters 2 and 3. The LG-product was expected to contain approximately 

0.1% (w/w) glucose. The HG-product was prepared following the same recipe and procedure 

as for the LG-product but an additional amount of glucose (as dextrose monohydrate) was 

added to reach a final concentration of approximately 1% (w/w) glucose. 

2.3. Co-culture experiments 

In total, four co-culture experiments were conducted: two on the LG-product and two 

identical experiments on the HG-product (Table 4.1). Studies 1 and 3 aimed to test the effect 

of 10A or LS5 on Leuc. mesenteroides LM4 while studies 2 and 4 aimed to test the effect of 

10A or LS5 on B. thermosphacta BT1. Each co-culture study consisted of four test series: (1) 

non-inoculated cooked ham (blank) used as a reference or control, (2) cooked ham inoculated 

with the target strain alone (BT1 or LM4), (3) cooked ham inoculated with the target strain 

and L. sakei 10A and (4) cooked ham inoculated with the target strain and L. sakei LS5. Each 

test series was performed in triplicate.  

The inoculum was subcultured twice (24h, 30°C) in 5 ml de Man Rogosa Sharpe (MRS, 

Oxoid, Oxoid Limited, Basingstoke, Hampshire, UK) broth. To obtain an inoculation level of 

105 cfu/g for the PC and an inoculation level of 102 cfu/g for the target strain, 100 µl of a 

proper dilution of each was divided over and spread on the surface of 6 slices (± 90 g/ 6 
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slices) of cooked ham. After inoculation, slices were vacuum packaged (6 slices/package) and 

stored at 7 ± 1°C in a ventilated refrigerator for 42 days. Vacuum packaging was performed 

as described before in chapter 2.  

At regular time intervals of the storage period, cooked ham samples were analysed for 

microbial growth, pH and concentrations of lactic acid and glucose.  

 

Table 4.1. Overview of the different co-culture experiments on the model cooked ham  
 Study 1 Study 2 Study 3 Study 4 

Model product Low glucose Low glucose High glucose High glucose 

Target strain Leuc. mesenteroides B. thermosphacta  Leuc. mesenteroides  B. thermosphacta  

     

Different series 

within a co-

culture study 

Blanka 

LM4b 

LM4+10Ac 

LM4+LS5d 

Blank 

BT1e 

BT1+10Af 

BT1+LS5g 

Blank 

LM4 

LM4+10A 

LM4+LS5 

Blank 

BT1 

BT1+10A 

BT1+LS5 
 a, Blank = non-inoculated MCH; b, LM4 = MCH inoculated with Leuc. mesenteroides LM4; c, 
LM4+10A = MCH inoculated with Leuc. mesenteroides LM4 and L. sakei 10A; d, LM4+LS5 = MCH 
inoculated with Leuc. mesenteroides LM4 and L. sakei LS5; e, BT1 = MCH inoculated with 
B. thermosphacta BT1; f, BT1+10A = MCH inoculated with B. thermosphacta BT1 and L. sakei 10A; 
g, BT1+LS5 = MCH inoculated with B. thermosphacta BT1 and L. sakei LS5 

2.4. Chemical analyses 

The pH of the cooked ham was measured in a mixed sample using a pH-electrode (Ingold, 

MGDX K57, Urdorf, Switzerland) connected to a pH-meter (Knick, type 763, Berlin, 

Germany). The concentrations of lactic acid and glucose were determined by using high-

performance liquid chromatography (HPLC). Details of this HPLC-analysis have been 

described in chapter 2. Prior to HPLC-analysis, meat samples were subjected to a modified 

extraction procedure: a 25 g sample was homogenised with 75 ml of distilled water, filtered 

(∅ 125 mm, Schleicher & Schuell, Microscience, Dassel, Germany), heated for 15 min at 

80°C in a hot water bath, centrifuged at 8000g for 10 min and filtered again (∅ 0.2 µm, 

Alltech Associates, Lokeren, Belgium) prior to injection. 

2.5. Microbiological analyses  

A 15 g sample of ham was taken aseptically and a decimal dilution series in Peptone 

Physiologic Solution (PPS; 8.5 g/l NaCl (VWR, VWR International, Leuven, Belgium) and 
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1 g/l Peptone (Oxoid)) was prepared to plate the appropriate dilutions on the appropriate agar 

media. The reference samples were plated on Plate Count Agar (PCA, Oxoid) (aerobic 

incubation at 22°C for 3-5 days), Reinforced Clostridial Agar (RCA, Oxoid) (anaerobic 

incubation at 37°C for 3-5 days), de Man Rogosa Sharpe (MRS, Oxoid) agar (aerobic 

incubation at 22°C for 3-5 days) and Yeast Glucose Chloramphenicol Agar (YGC, Bio-Rad 

Laboratories, Hercules, CA, USA) (aerobic incubation at 22°C for 3-5 days) to determine 

total aerobic psychrotrophic count, total anaerobic count, total lactic acid bacteria and number 

of yeasts and moulds, respectively. 

To follow the growth of the PC, 10A and LS5, M5-agar (anaerobic incubation at 30°C for 2 

days) was used. M5-agar differentiates between homo- and heterofermentative LAB (Zuniga 

et al., 1993) and gives very well recognisable colonies for 10A and LS5. In the case of co-

inoculation with B. thermosphacta, STAA (Streptomycin sulphate, Thallous acetate, 

Actidione, Agar) (Oxoid) agar (aerobic incubation for 2-3 days at 22°C) supplemented with 

STAA selective supplement (Oxoid) was used to enumerate B. thermosphacta. In the case of 

co-inoculation with Leuc. mesenteroides, TC8-MRS-agar (anaerobic incubation at 30°C for 3 

days) was used to enumerate Leuc. mesenteroides. TC8-MRS-agar consisted of MRS-agar 

supplemented with tetracycline (Sigma, Sigma-Aldrich Corporation, St. Louis, Missouri, 

USA) at a concentration of 8 µg/ml. 

2.6. Development and optimisation of TC8-MRS-agar 

In the co-culture experiments investigating the interaction between 10A or LS5 and LM4, the 

challenge was to follow the growth of a homofermentative LAB and a heterofermentative 

LAB on the same product. Although M5-agar differentiates between homofermentative (blue 

colonies) and heterofermentative LAB (white colonies) (Zuniga et al., 1993), this agar 

medium could not be used here. In the co-culture experiments of this chapter, the inoculum 

ratio of 10A/LM4 or LS5/LM4 was 105/102 and this meant that, if M5-agar would be used, 

the few white colonies of the LM4-strain would be overgrown by the large number of blue 

colonies of 10A or LS5. For that reason, a new medium had to be developed. 

The objective was to develop an agar medium that was supporting the growth of LM4 while 

inhibiting the growth of 10A and LS5 and this by supplementing MRS with an antibiotic; the 

idea was based on the work of Foegeding et al. (1992).  

The first step in the development of the medium was testing the sensitivity of 10A, LS5 and 

LM4 towards 11 common antibiotics. Susceptibility testing was done according to a modified 
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disc diffusion method (Gevers et al., 2000) on MRS-agar by using Oxoid susceptibility test 

discs of bacitracin (10 µg), novobiocin (30 µg), clindamycin (10 µg), erythromycin (15 µg), 

kanamycin (30 µg), tetracycline (30 µg), chloramphenicol (30 µg), rifampicin (30 µg), 

gentamicin (10 µg), streptomycin (25 µg) and ampicillin (25 µg). Antibiotics that were 

inhibiting the growth of L. sakei 10A and L. sakei LS5 were selected for further tests.  

In the second step, the breakpoint concentration of the selected antibiotics was determined 

(Gevers et al., 2000). The breakpoint concentration was defined as the minimal concentration 

of antibiotic that had to be supplemented to MRS-agar in order to inhibit microbial growth 

completely during three days of anaerobic incubation at 30°C. From overnight cultures of 

10A, LS5 and LM4, a first decimal dilution in PPS was prepared and 0.1 ml of this dilution 

was spread on MRS-agar supplemented with the antibiotic in doubling concentrations ranging 

between 0 and 256 µg/ml. After incubation for three days at 30°C under anaerobic conditions, 

plates were investigated for growth/no growth and from these results the breakpoint 

concentration was deduced.  

In a third step, the differentiating character of MRS-agar supplemented with the antibiotic(s), 

selected in step two, was tested. This was done by plating appropriate dilutions in PPS of 

mono-cultures of 10A, LM4 and LS5 and co-cultures of 10A/LM4 and LS5/LM4, with 

inoculum ratios of 1 and 100, on the supplemented MRS-agars. After anaerobic incubation at 

30°C for three days, counts were performed and colonies were picked from the plates to 

determine the carbohydrate fermentation profile using the API50CH system (BioMerieux, 

Brussels, Belgium) to confirm whether the observed colonies were LM4 and not 10A or LS5. 

2.7. Statistical analyses 

Cell numbers, pH-values, glucose and lactic acid concentrations were analysed for significant 

(P<0.05) differences between mono-culture growth and co-culture growth or between growth 

on the LG-product and growth on the HG-product using independent samples t-tests in SPSS 

11.0 (SPPS, Chicago, IL, USA). 

3. Results and discussion 

3.1. Development of TC8-MRS-agar 

In general, no large differences in the antibiotic resistance/sensitivity patterns of 10A, LS5 

and LM4 could be observed. LM4 was sensitive to all tested antibiotics. Strains 10A and LS5 
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were sensitive to 8/11 tested antibiotics. Strain 10A was resistant to kanamycin, gentamycin 

and streptomycin whereas LS5 was only resistant to streptomycin.  

The antibiotics rifampicin, chloramphenicol, tetracycline and erythromycin were selected for 

the determination of their breakpoint concentrations for strain 10A, LS5 and LM4. Only in the 

case of tetracycline, the breakpoint concentration of Leuc. mesenteroides LM4 (256 µg/ml) 

was higher than the breakpoint concentration of the two L. sakei strains 10A (64 µg/ml) and 

LS5 (64 µg/ml). At a concentration between 4 and 64 µg/ml the growth of 10A and LS5 was 

strongly inhibited but only at concentrations >64 µg/ml their growth was completely 

inhibited. In the case of LM4, no growth inhibition occurred at concentrations ≤8 µg/ml; 

between 16 and 64 µg/ml, a very limited growth inhibition occurred; at 128 µg/ml growth was 

strongly inhibited and at 256 µg/ml no growth was observed anymore.  

In a final experiment, the differentiating character of MRS, supplemented with tetracycline in 

doubling concentrations ranging between 4 and 64 µg/ml, was verified. Best results were 

obtained with MRS supplemented with tetracycline at a concentration of 8 µg/ml. This 

medium allowed differentiation between Leuc. mesenteroides LM4 and L. sakei 10A or LS5. 

During the three days incubation period, LM4 was able to grow on the medium to large 

colonies, while 10A and LS5 where not growing. When incubating the TC8-MRS-plates 

longer up to five days, very small colonies of 10A or LS5 became visible. The identity of all 

colony types was confirmed through determination of the carbohydrate fermentation profile. 

3.2. Co-culture experiments 

The mean chemical composition of the two types of model cooked ham was: 26.06 ± 0.95 % 

of dry matter, 37 ppm of residual nitrite, 2.56 ± 0.09 % of NaCl (on aqueous phase), pH of 

6.16 ± 0.06 and a water activity of 0.982 ± 0.001. The mean glucose concentration of the LG-

product and HG-product was 0.21 ± 0.06% (w/w) and 1.31 ± 0.24% (w/w), respectively.  

The non-inoculated cooked ham had an initial total aerobic count and an initial LAB-count of 

<1.0 log10(cfu/g) and no yeasts or moulds were detected. In all experiments, the level of 

endogenous LAB exceeded the detection limit of 1.0 log10(cfu/g) between day 14 and day 21 

of the experiment and at the end of the storage period (day 42) their level had increased up to 

5-6 log10(cfu/g). The obtained inoculation level varied in the different inoculation studies 

from 5.13 to 5.35 log10(cfu/g) for 10A and from 5.08 to 5.52 log10(cfu/g) for LS5. This means 

that the initial level of lactic acid flora was very low compared to the inoculation level of the 

PC and could therefore not have been influencing the action of the PC. 
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Both potential PC grew well on the cooked ham. However, LS5 demonstrated a slower 

growth in the co-culture studies with LM4, where the strain did not reach a cell number of 

7 log10(cfu/g) within the 42 days period of the experiments. In general, 10A reached a level of 

7 log10(cfu/g) within 7-14 days. Independent of the tested target organism, 10A grew more 

rapidly than LS5, in all co-culture experiments but this effect was most obvious in the co-

culture experiments with LM4. Significant (t-test, P<0.05) differences in growth between 10A 

and LS5, in co-culture with BT1, were found on day 3, 7 and 14 in the LG-product and on day 

14 in the HG-product. Significant differences in growth between 10A and LS5, in co-culture 

with LM4, were found from day 3 on, in the LG-product and on day 14 and 21 in the HG-

product. Therefore, it might be stated that LS5 grows slower than 10A, rather in the LG-

product than in the HG-product. However, no significant differences were found for the 

growth of both strains, 10A and LS5, between the LG-product and the HG-product. This 

indicates that the glucose content of the cooked ham did not significantly influence the growth 

of the cultures 10A and LS5. A similar conclusion could be made for the mono-culture 

growth of the strains LM4 and BT1 since no significant (P<0.05) differences were observed 

for the growth of both strains between the LG-product and the HG-product. 

3.2.1. Co-culture studies between the potential protective cultures and 
Brochothrix thermosphacta 

In Figures 4.1 and 4.2 the interactions between 10A or LS5, respectively, and BT1 on both 

types of cooked ham are presented. Significant (P<0.05) differences were found in the LG-

product and in the HG-product between the growth of BT1 in mono-culture and its growth in 

co-culture with L. sakei 10A. The slower growth of the B. thermosphacta strain in co-culture 

with L. sakei 10A was most obvious in the LG-product. A significantly slower growth was 

found in the LG-product on day 14, 21 and 28 and in the HG-product the inhibiting trend was 

clear but only statistically significant on day 42. In the LG-product, BT1-growth in co-culture 

with 10A, that was first inhibited, seemed to restart slightly from day 35 on with the result 

that growth differences between the mono-culture and the co-culture situation were not 

significant anymore on day 35 and 42. Each time, the inhibition of the BT1-growth by 10A 

started when L. sakei 10A reached a cell number of approximately 107 cfu/g and entered its 

stationary phase. Summarising, it may be stated that L. sakei 10A, when applied at a level of 

105 cfu/g, can prolong the shelf-life of the MCH if this ham would be post-contaminated with 

B. thermosphacta at a level of 102 cfu/g or lower.  
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Figure 4.1. Interaction at 7°C between L. sakei 10A and B. thermosphacta BT1 on 
vacuum packaged model cooked ham with low (A) and high (B) glucose content. (▲, 
growth of 10A in co-culture with BT1; ■, growth of BT1 in co-culture with 10A; •, 
growth of BT1 in mono-culture) (error bars represent 95% confidence intervals, n=3) 
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Figure 4.2. Interaction at 7°C between L. sakei LS5 and B. thermosphacta BT1 on 
vacuum packaged model cooked ham with low (A) and high (B) glucose content (▲, 
growth of LS5 in co-culture with BT1; ■, growth of BT1 in co-culture with LS5; •, 
growth of BT1 in mono-culture) (error bars represent 95% confidence intervals, n=3) 
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On the other hand, no significant (P<0.05) differences were found in the growth of BT1 

between its growth in mono-culture and its growth in co-culture with L. sakei LS5 and this in 

both types of MCH. Whereas strain LS5 clearly showed an in-vitro antibacterial activity 

towards B. thermosphacta in chapter 2 and was proven to produce a bacteriocin (Sobrino et 

al., 1991; Chapter 2), the strain was not able, at an inoculation level of 105 cfu/g, to prolong 

the shelf-life of a MCH that is contaminated with B. thermosphacta at 102 cfu/g.  

 

The evolution of the pH during the co-culture studies is presented in Table 4.2. A 

significantly faster pH-decrease was found in the case of co-inoculation with L. sakei 10A in 

comparison to in the mono-culture experiment from day 35 in the LG-product and from day 

21 in the HG-product. However, the differences in pH between day 0 and the end of the 

storage period were minimal; a decrease of 0.18 pH-units in the LG-product and a decrease of 

0.20 in the HG-product. No significant different pH-patterns between mono-culture and co-

culture growth of BT1 were obtained in the case of the co-culture experiments with LS5. 

These findings might be related to the slower growth of LS5 on the cooked ham compared to 

the growth of 10A. 

 

The initial glucose content of the model cooked ham was 0.21 ± 0.06% (w/w) for the LG-

product and 1.31 ± 0.24% (w/w) for the HG-product. The initial lactic acid concentration had 

a mean value of 1.10 ± 0.23% (w/w). The evolution of the glucose and lactic acid 

concentration as a function of time is presented in Tables 4.3 and 4.4. Findings correspond 

very well to the previous conclusions on microbial growth and pH.  

In the interaction experiments between 10A and BT1, a significant lower glucose 

concentration was found in the co-culture situation compared to in the mono-culture situation 

from day 28 in the LG-product and on day 42 in the HG-product. In the case of the LG-

product, growth of BT1 in co-culture with 10A resulted in a significantly lower pH and 

glucose level compared to the initial pH and the initial glucose content from day 14 on; the 

glucose was even completely depleted from day 35 on. In the case of the HG-product, a 

significant lower glucose level compared to the initial glucose level was observed on day 42 

only. This result is rather logic as the lower the initial glucose concentration is, the sooner the 

glucose in the ham might be depleted.  
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Table 4.2. Evolution of the pH in the model cooked ham (MCH) with low and high glucose content for the four different co-culture studies 
(mean ± standard deviation, n= 3) 

MCH with low glucose content MCH with high glucose content MCH with low glucose content MCH with high glucose content Time 

(days) BT1 BT1+10A BT1+LS5 BT1 BT1+10A BT1+LS5 LM4 LM4+10A LM4+LS5 LM4 LM4+10A LM4+LS5 

0 6.18 ± 0.01 6.16 ± 0.02 6.15 ± 0.00 6.18 ± 0.03 6.15 ± 0.01 6.16 ± 0.00 6.15 ± 0.02 6.16 ± 0.03 6.14 ± 0.04 6.16 ± 0.00 6.19 ± 0.01 6.19 ± 0.01 

3 6.17 ± 0.02 6.18 ± 0.02 6.17 ± 0.01 6.16 ± 0.01 6.15 ± 0.02 6.15 ± 0.00 ND ND ND ND ND ND 

7 6.19 ± 0.01 6.15 ± 0.00 6.17 ± 0.01 6.18 ± 0.02 6.18 ± 0.01 6.18 ± 0.01 6.17 ± 0.01 6.16 ± 0.03 6.14 ± 0.01 6.19 ± 0.01 6.13 ± 0.00 6.16 ± 0.02 

14 6.12 ± 0.02 6.10 ± 0.00 6.13 ± 0.01 6.17 ± 0.03 6.15 ± 0.02 6.14 ± 0.01 6.12 ± 0.00 6.14 ± 0.06 6.11 ± 0.00 6.05 ± 0.00 6.11 ± 0.02 6.06 ± 0.01 

21 6.11± 0.03 6.12 ± 0.02 6.10 ± 0.06 6.18 ± 0.01 6.10 ± 0.02 6.12 ± 0.02 6.12 ± 0.01 6.06 ± 0.05 6.12 ± 0.01 6.10 ± 0.01 6.10 ± 0.03 6.06 ± 0.00 

28 6.14 ± 0.06 6.07 ± 0.01 6.03 ± 0.02 6.16 ± 0.01 6.03 ± 0.03 6.11 ± 0.02 6.04 ± 0.04 6.05 ± 0.02 6.11 ± 0.02 6.14 ± 0.01 6.15 ± 0.03 5.99 ± 0.03 

35 6.12 ± 0.02 6.02 ± 0.04 6.07 ± 0.07 6.13 ± 0.01 6.01 ± 0.02 6.13 ± 0.04 6.08 ± 0.04 6.02 ± 0.01 6.06 ± 0.04 6.18 ± 0.02 6.09 ± 0.05 5.99 ± 0.08 

42 6.11 ± 0.06 5.98 ± 0.01 6.11 ± 0.03 6.19 ± 0.02 5.95 ± 0.02 6.06 ± 0.02 6.02 ± 0.02 5.98 ± 0.02 5.99 ± 0.01 6.03 ± 0.01 6.06 ± 0.01 5.83 ± 0.06 

ND = no data available 
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Table 4.3. Evolution of the glucose concentration (%, w/w) in the model cooked ham (MCH) with low and high glucose content for the four 
different co-culture studies (ND = no data available; mean ± standard deviation, n=3) 

MCH with low glucose content MCH with high glucose content MCH with low glucose content MCH with high glucose content Time 

(days) BT1 BT1+10A BT1+LS5 BT1 BT1+10A BT1+LS5 LM4 LM4+10A LM4+LS5 LM4 LM4+10A LM4+LS5 

0 0.17 ± 0.04 0.20 ± 0.01 0.22 ± 0.02 1.27 ± 0.24 1.14 ± 0.15 1.30 ± 0.25 0.25 ± 0.03 0.18 ± 0.03 0.30 ± 0.09 1.45 ± 0.38 1.15 ± 0.17 1.47 ± 0.18 

3 0.19 ± 0.02 0.22 ± 0.02 0.24 ± 0.05 1.28 ± 0.33 1.15 ± 0.22 1.01 ± 0.01 ND ND ND ND ND ND 

7 0.17 ± 0.04 0.17 ± 0.03 0.22 ± 0.08 1.07 ± 0.04 1.17 ± 0.23 1.35 ± 0.55 0.22 ± 0.03 0.16 ± 0.03 0.15 ± 0.01 0.97 ± 0.05 1.10 ± 0.03 1.00 ± 0.02 

14 0.17 ± 0.02 0.12 ± 0.04 0.16 ± 0.03 1.33 ± 0.35 1.21 ± 0.26 1.13 ± 0.27 0.29 ± 0.14 0.22 ± 0.05 0.23 ± 0.01 1.14 ± 0.36 1.13 ± 0.03 1.26 ± 0.36 

21 0.17 ± 0.05 0.10 ± 0.03 0.17 ± 0.03 0.96 ± 0.03 0.91 ± 0.09 0.99 ± 0.02 0.29 ± 0.07 0.07 ± 0.13 0.21 ± 0.03 1.28 ± 0.06 1.29 ± 0.27 1.17 ± 0.23 

28 0.13 ± 0.01 0.10 ± 0.01 0.04 ± 0.07 1.35 ± 0.44 1.02 ± 0.07 1.28 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.24 ± 0.14 1.18 ± 0.07 1.25 ± 0.14 

35 0.17 ± 0.01 0.00 ± 0.00 0.09 ± 0.08 1.15 ± 0.15 1.05 ± 0.39 1.18 ± 0.22 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.11 ± 0.06 1.02 ± 0.07 0.93 ± 0.29 

42 0.19 ± 0.06 0.00 ± 0.00 0.19 ± 0.04 1.11 ± 0.07 0.82 ± 0.06 0.94 ± 0.12 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.06 ± 0.11 0.95 ± 0.13 0.66 ± 0.05 

 
Table 4.4. Evolution of the lactic acid concentration (%, w/w) in the model cooked ham (MCH) with low and high glucose content for the 
four different co-culture studies (ND = no data available; mean ± standard deviation, n=3) 

MCH with low glucose content MCH with high glucose content MCH with low glucose content MCH with high glucose content Time 

(days) BT1 BT1+10A BT1+LS5 BT1 BT1+10A BT1+LS5 LM4 LM4+10A LM4+LS5 LM4 LM4+10A LM4+LS5 

0 0.83 ± 0.02 0.95 ± 0.04 0.93 ± 0.02 1.21 ± 0.23 1.10 ± 0.13 1.24 ± 0.26 1.11 ± 0.17 0.90 ± 0.10 1.25 ± 0.23 1.29 ± 0.33 1.04 ± 0.15 1.33 ± 0.16 

3 0.97 ± 0.05 0.99 ± 0.03 0.93 ± 0.10 1.21 ± 0.38 1.06 ± 0.25 0.96 ± 0.01 ND ND ND ND ND ND 

7 1.14 ± 0.26 1.16 ± 0.18 0.97 ± 0.07 1.05 ± 0.15 1.08 ± 0.14 1.28 ± 0.50 1.10 ± 0.10 1.02 ± 0.19 0.98 ± 0.05 0.87 ± 0.05 1.01 ± 0.03 0.92 ± 0.01 

14 1.13 ± 0.16 0.94 ± 0.14 0.97 ± 0.02 1.18 ± 0.25 1.10 ± 0.19 1.10 ± 0.33 1.33 ± 0.43 1.01 ± 0.02 1.05 ± 0.08 1.06 ± 0.34 1.00 ± 0.02 1.10 ± 0.33 

21 1.07 ± 0.08 0.95 ± 0.22 1.13 ± 0.12 0.93 ± 0.02 0.91 ± 0.04 0.96 ± 0.01 1.29 ± 0.28 1.05 ± 0.16 1.11 ± 0.06 1.11 ± 0.14 1.29 ± 0.34 1.37 ± 0.29 

28 0.98 ± 0.14 1.12 ± 0.01 1.07 ± 0.08 1.27 ± 0.42 1.19 ± 0.22 1.37 ± 0.41 1.15 ± 0.40 0.95 ± 0.09 0.98 ± 0.04 1.23 ± 0.33 1.20 ± 0.05 1.24 ± 0.02 

35 0.99 ± 0.01 1.11 ± 0.07 1.12 ± 0.05 1.09 ± 0.15 1.25 ± 0.49 1.19 ± 0.25 0.89 ± 0.21 1.05 ± 0.02 1.20 ± 0.41 1.05 ± 0.25 1.13 ± 0.17 1.18 ± 0.04 

42 1.00 ± 0.09 1.16 ± 0.02 1.11 ± 0.07 1.00 ± 0.08 1.11 ± 0.01 1.06 ± 0.06 0.99 ± 0.14 0.90 ± 0.24 1.28 ± 0.20 1.19 ± 0.17 0.99 ± 0.18 1.25 ± 0.19 
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In the interaction studies between 10A and BT1, co-culture growth resulted in a glucose 

consumption of 0.20 ± 0.01% in the LG-product, and of 0.32 ± 0.13% in the HG-product. In 

the interaction studies between LS5 and BT1, no significant differences could be observed in 

the glucose concentration between mono-culture and co-culture experiments. During growth 

of BT1 in co-culture with LS5, the glucose content of the cooked ham did not decrease 

significantly compared to the initial glucose level and this in both types of MCH.  

In the case of the LG-product, a limited but significantly higher lactic acid concentration was 

found on day 35 and 42 when the cooked ham was inoculated with 10A and BT1 compared to 

the cooked ham inoculated with BT1 alone. In the case of the HG-product, no significant 

difference was observed in lactic acid concentration during the whole storage period between 

mono- and co-culture experiment. Furthermore, t-tests were performed for all mono- en co-

culture experiments to test if a significant (P<0.05) lactic acid production occurred as a 

function of time. Only in the LG-product, when BT1 was grown in mono-culture or in co-

culture with 10A and LS5, a significant but limited production of lactic acid was occurring. 

At day 42, 0.17 ± 0.07% of lactic acid was produced in the mono-culture situation; 0.20 ± 

0.02% of lactic acid was produced for the interaction experiments between 10A and BT1, 

while 0.18 ± 0.09% of lactic acid was produced for the experiments between LS5 and BT1.  

3.2.2. Co-culture studies between the potential protective cultures and 
Leuconostoc mesenteroides  

Figures 4.3 and 4.4 present the interactions between 10A or LS5, respectively, and LM4. In 

the two types of cooked ham, LM4 demonstrated a significantly slower growth when growing 

in co-culture with 10A compared to its growth in mono-culture and this from day 21 on. This 

result confirms that L. sakei 10A, when added at 105 cfu/g, can prolong the shelf-life of the 

MCH and in particular if this ham would be contaminated with Leuc. mesenteroides at a level 

of 102 cfu/g or lower. Through the presence of 10A, the moment at which 107 cfu/g of 

Leuc. mesenteroides is reached, was postponed with approximately 14 days compared to the 

experiment in which LM4 grew in absence of 10A and this result was independent of the 

glucose level of the model product. Inhibition of LM4 was occurring from the moment that 

L. sakei 10A reached a cell number of 107 cfu/g. 

The interaction studies between LS5 and LM4 resulted in some unexpected findings. 

Significant differences between the growth of LM4 in mono-culture and its growth in co-

culture with LS5 were observed on day 21 and 28 in the LG-product and between day 3 and  
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Figure 4.3. Interaction at 7°C between L. sakei 10A and Leuc. mesenteroides LM4 on 
vacuum packaged model cooked ham with low (A) and high (B) glucose content. (▲, 
growth of 10A in co-culture with LM4; ■, growth of LM4 in co-culture with 10A; •, 
growth of LM4 in mono-culture) (error bars represent 95% confidence intervals, n=3) 
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Figure 4.4. Interaction at 7°C between L. sakei LS5 and Leuc. mesenteroides LM4 on 
vacuum packaged model cooked ham with low (A) and high (B) glucose content. (▲, 
growth of LS5 in co-culture with LM4; ■, growth of LM4 in co-culture with LS5; •, 
growth of LM4 in mono-culture) (error bars represent 95% confidence intervals, n=3) 
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day 28 in the HG-product. However, the interaction was not negative but positive as the 

growth of LM4 was faster in the presence of LS5. An explanation for this kind of reversed 

interaction phenomenon might be (1) competition for an essential compound that can be taken 

up by LM4 faster than by LS5 or (2) breakdown of meat compounds by LS5 to nutrients that 

are easier to metabolise by LM4 compared to in absence of LS5. However, these are only 

hypotheses. Nevertheless, this result indicates that LS5, at the tested application level of 105 

cfu/g, is not able to inhibit the growth of Leuc. mesenteroides when contaminating the MCH 

at levels of 102 cfu/g or lower. 

 

The evolution of the pH, glucose and lactic acid concentration of the model cooked ham in 

the different co-culture studies with LM4 is presented in Tables 4.2 to 4.4.  

In the LG-product, no significant different evolution in pH, glucose and lactic acid 

concentration could be found between the growth of LM4 alone and the growth of LM4 in the 

presence of 10A or LS5. Nevertheless, a significant decrease in the glucose level of the LG-

ham occurred from day 28 on in all performed experiments. At day 28 the glucose of the LG-

product was completely depleted since the initial 0.2% (w/w) of glucose was completely 

consumed. This was, however, not reflected in the lactic acid profile since no significant 

lactic acid production was noticed. Only for the growth of LM4 in mono-culture and its 

growth in co-culture with 10A, a significant but limited pH-decrease compared to the initial 

pH was occurring.  

In the HG-product, a significantly faster pH-decrease occurred when LM4 grew in the 

presence of LS5, as the pH decreased from a level of 6.20 to 5.83 at day 42. This finding is 

related to the fast outgrowth of LM4 in the presence of LS5 resulting in a significantly lower 

glucose concentration on day 42. However, it was not reflected in the lactic acid profile since 

no significant differences were found in the lactic acid content of the ham between the growth 

of LM4 alone and the growth of LM4 in the presence of 10A or LS5. Furthermore, t-tests 

demonstrated that no significant (P<0.05) glucose consumption and lactic acid production as a 

function of time (compared to day 0) occurred in all three cases (LM4 alone, LM4 with 10A 

and LM4 with LS5) with the exception of the LM4-LS5 experiment on day 35 and 42. 

3.2.3. Discussion 

In this chapter, L. sakei 10A was able to retard the growth of two spoilage organisms typically 

associated with CMP, being the heterofermentative Leuc. mesenteroides LM4 and strain 
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B. thermosphacta BT1. When artificially contaminating the LG-product and HG-product with 

BT1 at a level of 102 cfu/g in combination with 10A at a level of 105 cfu/g, the growth of BT1 

was significantly slower compared to a simultaneous mono-culture experiment with BT1 

alone. Although BT1, in the mono-culture experiment, did not reach a cell number that is 

linked to sensory unacceptability of the product (6.6-6.9 ± 0.03 log10(cfu/g), Chapter 3), it is 

clear from the results that such cell numbers will be reached later or even never in the 

presence of strain 10A. When repeating this experiment with the target organism LM4, a 

shelf-life prolongation of ± 14 days was observed if a LAB-count of 7 log10(cfu/g) was used 

as an end-point for the microbial shelf-life.  

On both types of MCH, the timing of growth retardation coincided with L. sakei 10A entering 

its stationary phase. This suggests that either depletion of a critical nutrient or the production 

of an inhibitory extracellular agent, associated with L. sakei 10A reaching a specific 

population density, may be responsible for the observed inhibition (Buchanan & Bagi, 1997). 

Inhibition may be due to the effect of one or a synergism between several mechanisms: 

competition for nutrients, production of organic acids or other antimicrobial substances such 

as bacteriocins (Bredholt et al., 1999; Devlieghere et al., 2004; Chapter 1). In a bacteriocin 

assay, L. sakei 10A did not show inhibitory zones (Chapter 2) and was therefore assumed to 

be non-bacteriocinogenic. Further, a very limited pH-decrease was observed in the MCH in 

all experiments of this chapter. This finding might indicate that the interaction is not the result 

of a pH-drop through lactic acid production from glucose. With the exception of the co-

culture experiment between BT1 and 10A on the LG-product, no significant lactic acid 

production was seen in the presence of 10A; this means that production of lactic acid/lactate 

is not a very probable mechanism to explain the observed antagonistic effects. Furthermore, 

no significant differences could be observed between the interaction phenomena on the LG-

product and those on the HG-product. On the two products antagonistic interactions occurred 

indicating that the antagonistic effect of 10A was not eliminated when glucose was abundant 

in the product. Although the latter fact does not support the hypothesis of antagonism based 

on competition for glucose, this theory cannot be excluded based on the results of these 

experiments. Indeed, in the co-culture experiments between 10A and LM4 on the LG-product, 

growth retardation of LM4 started at the moment that glucose of the MCH was almost 

depleted (0.07%). In the experiments between BT1 and 10A, glucose depletion at the moment 

of inhibition could not be observed. Therefore, it might be possible that on the LG-product, 

glucose competition was, at least partly, responsible for the observed antagonism of 10A 

towards LM4. The inhibition might also be the effect of competition for nutrients other than 
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glucose. Buchanan & Bagi (1997) also suggested a mechanism involving nutrient depletion to 

explain the ability of C. piscicola to suppress L. monocytogenes in a broth experiment. It was 

thought to be possible that the depletion of nutrients like vitamins, minerals, trace elements, 

peptides causes the antagonistic interaction phenomena. In the HG-product, glucose depletion 

did not occur but still antagonism was observed. Besides, no significant lactic acid production 

occurred. Therefore, the mechanism behind the inhibition observed on the HG-products 

remains to be resolved. The experiments of chapter 7 aim to better understand this inhibition 

mechanism. 

In contradiction to L. sakei 10A, the lactocin S producing L. sakei LS5 was not able to retard 

the growth of Leuc. mesenteroides LM4 or B. thermosphacta BT1. Although strain LS5 

clearly demonstrated an in-vitro antibacterial activity towards B. thermosphacta and 

Leuc. mesenteroides in the agar spot tests of chapter 2 and was proven to produce the 

bacteriocin lactocin S (Sobrino et al., 1992; Chapter 2), the strain was not able, at an 

inoculation level of 105 cfu/g, to prolong the shelf-life of the MCH when artificially 

contaminated with 102 cfu/g of B. thermosphacta BT1 or Leuc. mesenteroides LM4. It is 

possible that the bacteriocin was not produced or produced at an insufficient level. The 

effectiveness of bacteriocin-producing strains in foods can be limited by a range of factors 

such as a limited diffusion in solid matrices, inactivation through proteolytic enzymes or 

binding to food ingredients such as lipids, a low production level, etc. (Holzapfel et al., 1995; 

Rodriguez et al., 2002).  

4. Conclusion 

Few authors have investigated the effect of protective cultures on the shelf-life of CMP. To 

our knowledge, the interaction between a single homofermentative LAB and a single 

heterofermentative LAB on a cooked meat product has not been studied before. The difficulty 

in quantifying such an interaction is to individually follow the growth of a homofermentative 

and a heterofermentative LAB-strain when growing together on a meat product. To resolve 

this issue, the medium TC8-MRS-agar, consisting of MRS-agar supplemented with 

tetracycline at 8 µg/ml, was developed. This agar medium allowed the differentiation of LM4-

colonies from 10A-colonies or LS5-colonies after incubation for three days at 30°C under 

anaerobic conditions.  

In this chapter, Lactobacillus sakei 10A, a lactic acid bacterium that had been isolated from 

cooked turkey fillet in chapter 2, showed to offer opportunities as protective culture for the 
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shelf-life prolongation of cooked meat products. Antagonistic interactions towards two main 

representatives of the spoilage flora of anaerobically packaged cooked meat products, 

Leuconostoc mesenteroides and Brochothrix thermosphacta, were demonstrated on a model 

cooked ham product at 7°C under vacuum packaging. The inhibitory effect of the 

biopreservative L. sakei 10A occurred when the strain entered its stationary phase and was 

independent of the glucose content of the model cooked ham.  

In the next chapter (Chapter 5), similar co-culture experiments will be conducted but towards 

the pathogen L. monocytogenes. The objective of chapter 5 is to examine whether the shelf-

life extending capacity of L. sakei 10A can be enlarged with the capacity to control the 

growth of L. monocytogenes. In chapter 5, all experiments are still performed on a model 

cooked ham product. Further validation studies are necessary to investigate whether the 

biopreservative effect of L. sakei 10A can be extended towards real and different types of 

cooked meat products and these studies will be the subject of chapter 6. 
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Chapter 5 
The interaction of the non-bacteriocinogenic 

Lactobacillus sakei 10A and lactocin S producing 
Lactobacillus sakei 148 towards Listeria monocytogenes 

on a model cooked ham 

Summary  

This chapter investigates the same potential protective cultures that have been studied in 

chapter 4, being the Lactobacillus sakei subsp. carnosus strain (10A) and the lactocin S 

producing Lactobacillus sakei 148 (LS5). Their capacity to increase the food safety and in 

particular to control the growth of L. monocytogenes on cooked meat products was 

investigated. The interaction between the potential protective cultures and a cocktail of three 

Listeria monocytogenes strains was examined in co-culture studies on a model cooked ham 

(MCH). Furthermore, the influence of the inoculum level (105 cfu/g versus 106 cfu/g), storage 

temperature (4°C versus 7°C) and packaging type (vacuum packaging versus modified 

atmosphere packaging) on the interaction phenomena was investigated. At 7°C, applying 

L. sakei 10A at 106 cfu/g limited the growth of L. monocytogenes to a level <1 log10(cfu/g) 

during 27 days, whilst an application level of 105 cfu/g failed to prevent growth to 

unacceptable levels. L. sakei LS5 did not demonstrate an antagonistic effect towards 

L. monocytogenes. Lowering the temperature to 4°C or switching from vacuum packaging to 

modified atmosphere packaging did not influence the ability of L. sakei 10A to grow on the 

MCH, as its dominance did not change. A combination of L. sakei 10A and 4°C or a 

combination of strain 10A and an atmosphere containing 50% of CO2 completely inhibited 

the growth of L. monocytogenes. Sensory assessment and pH-measurements confirmed that 

L. sakei 10A, even when present at a high level (>7 log10(cfu/g)) for prolonged storage times 

(up to 42 days), did not acidify the cooked ham to a point of sensory rejection. 
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1. Introduction 

Several authors have reported the occurrence of the psychrotrophic food born pathogen 

L. monocytogenes on anaerobically packaged sliced cooked meat products (CMP). Incidence 

rates vary from 2.6% in pâté samples (Rijpens et al., 1997) over 4.9% in a variety of CMP 

(Uyttendaele et al., 1999) to 8.8% in several cooked meats (Vitas & Garcia-Jalon, 2004). In 

general, the incidence rate is higher for minced CMP (e.g. pâté) than for whole CMP (e.g. 

cooked ham, cooked poultry), 6.14% and 3.96%, respectively in the study of Uyttendaele et 

al. (1999). Contamination of CMP with L. monocytogenes is often the result of cross 

contamination during slicing. Uyttendaele et al. (1999) found that incidence rates for CMP 

were higher after slicing (6.65%) than before slicing (1.65%). However, insufficient thermal 

processing and the presence of heat survivors might also be the cause of post-process 

contamination (Samelis & Metaxopoulos, 1999).  

Further proliferation of the pathogen on CMP depends on several factors including pH, water 

activity, level of lactate and composition of the headspace atmosphere (Beumer et al., 1996; 

Blom et al., 1997; Barakat & Harris, 1999; Devlieghere et al., 2001; Uyttendaele et al., 2004). 

The competitive flora of a product also influences the growth of L. monocytogenes. Some 

studies have been published about successful use of bacteriocin producing LAB to control 

L. monocytogenes on CMP (Budde et al., 2003; Jacobsen et al., 2003; Mataragas et al., 

2003a). However, antagonistic interactions between non-bacteriocin producing LAB and 

L. monocytogenes have also been observed (Andersen, 1995a; Buchanan & Bagi, 1997; Juven 

et al, 1998; Nilsson et al., 1999; Bredholt et al., 2001). In the study of Bredholt et al. (2001), a 

L. sakei strain was able to inhibit the growth of 103 cfu/g of L. monocytogenes at 8 and 4°C on 

cooked ham and cervelat sausage. Amezquita & Brashears (2002) found L. casei and 

L. paracasei to have antilisterial activities on cooked ham and frankfurters.  

LAB that are homofermentative, salt tolerant, psychrotrophic and adapted to meat-based 

substrates have shown the greatest potential for use as protective cultures (PC) for the 

biopreservation of CMP. Furthermore, PC may not influence the sensory properties of the 

meat products on which they are applied. Based on these criteria, promising LAB were 

selected in chapter 2 for further study as protective culture. In chapter 4, two of the candidate 

PC, L. sakei 10A and LS5, were found to have an antagonistic effect on the spoilage 

organisms Brochothrix thermosphacta and Leuconostoc mesenteroides on a model CMP. In 

this chapter, their potential antagonistic activity towards L. monocytogenes was investigated 
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on the same model cooked ham (MCH) as well as how this antagonism might be influenced 

by inoculum level, storage temperature and atmosphere in the headspace of the packaging. 

Moreover, the effect of the PC on the sensory quality of the MCH was evaluated. 

2. Materials and methods 

2.1. Bacterial strains 

The two lactic acid bacteria under study in this chapter were the non-bacteriocin producing 

Lactobacillus sakei subsp. carnosus (coded as 10A) and the lactocin S producing 

Lactobacillus sakei 148 (coded as LS5). Details on these strains are given in chapters 2 and 4.  

In the co-culture studies, a cocktail of three Listeria monocytogenes strains (coded as LIS) 

was used. L. monocytogenes Scott A and a L. monocytogenes strain (LFMFP 45), isolated 

from cooked pita meat, were obtained from the culture collection of the Laboratory of Food 

Microbiology and Food Preservation (LFMFP, Gent University, Belgium), while the third 

strain (L. monocytogenes LMG 13305), isolated from soft cheese, was obtained from the 

culture collection of the Laboratory Microbiology Gent (LMG, Gent University, Belgium). 

Working cultures of the LAB-strains and L. monocytogenes strains were maintained at 7°C on 

de Man Rogosa Sharpe (MRS, Oxoid, Oxoid Limited, Basingstoke, Hampshire, UK) slants or 

on Tryptone Soya Agar (TSA, Oxoid) slants, respectively, and revived by transferring a loop 

of inoculum into 5 ml MRS-broth (Oxoid) or Brain Heart Infusion (BHI, Oxoid) broth, 

respectively, followed by incubation at 30°C for 24h. 

2.2. Model cooked ham 

A model cooked ham (MCH) product was manufactured on a semi-industrial scale at Dera 

Food Technology N.V. (Bornem, Belgium). The recipe and production process are described 

before in chapter 2.  

2.3. Co-culture experiments 

In total, three different co-inoculation studies (Table 5.1) were performed on the MCH: (1) an 

interaction study at 7°C between 10A or LS5 and L. monocytogenes at an inoculum ratio of 

105/102 under vacuum packaging, (2) an interaction study at 7°C and 4°C between 10A or 

LS5 and L. monocytogenes at an inoculum ratio of 106/102 under vacuum packaging (VP) and 
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(3) an interaction study at 7°C between 10A and L. monocytogenes at an inoculum ratio of 

106/102 under vacuum packaging and under modified atmosphere packaging (MAP). Each 

study was performed in triplicate. 

 

Table 5.1. Overview of the different co-inoculation studies of this chapter 
 Study 1 Study 2 Study 3 

Target inoculation level of 

10A or LS5 
 

105  106 106 

Temperature 
 

7°C 4°C or 7°C 7°C 

Packaging type 
 

Vacuum  Vacuum  Vacuum or modified atmosphere  

Different series within a 

co-inoculation study 

Blanka 

LISb 

10A+LISc 

LS5+LISd 

Blank 

LIS (7°C) 

LIS (4°C) 

10A+LIS (7°C) 

10A+LIS (4°C) 

LS5+LIS (7°C) 

10Ae (7°C) 

10A (4°C) 

Blank 

LIS (VPf) 

LIS (MAPg) 

10A+LIS (VP) 

10A+LIS (MAP) 

10A (VP) 

10A (MAP) 

 

a, Blank = non-inoculated MCH; b, LIS = MCH inoculated with the cocktail of L. monocytogenes; c, 
10A+LIS = MCH inoculated with the cocktail of L. monocytogenes and L. sakei 10A; d, LS5+LIS = 
MCH inoculated with the cocktail of L. monocytogenes and L. sakei LS5; e, 10A = MCH inoculated 
with L. sakei 10A; f, VP = vacuum packaging; g, MAP = modified atmosphere packaging 
 

The first co-inoculation study aimed to investigate whether both LAB, 10A and LS5, are 

useful to protect the MCH against growth of L. monocytogenes. The second co-inoculation 

study aimed to observe the effect of the application of a higher initial level of the protective 

cultures. Furthermore, also the influence of the storage temperature was studied here to assure 

that dominance of the protective culture remains when lowering the temperature from 7°C to 

4°C. The third co-inoculation study was performed to find out whether a switch from VP to 

MAP influences the antagonistic activity of L. sakei 10A towards L. monocytogenes.  

The inocula of 10A or LS5 and the L. monocytogenes strains were subcultured twice (24h, 

30°C) in 5 ml MRS-broth or 5 ml BHI-broth, respectively. To reach the desired inoculation 

levels, appropriate dilutions in Peptone Physiologic Solution (PPS; 8.5 g/l NaCl (VWR, VWR 

International, Leuven, Belgium) and 1 g/l Peptone (Oxoid)) were prepared and 0.1 ml of each 

was divided over and spread on the surface of 5 slices (± 75 g/ 5 slices) of cooked ham. After 
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inoculation, slices were vacuum packaged or packaged in a modified atmosphere of 50% 

CO2/ 50% N2 with a gas/product ratio of 2/1 (5 slices/package) and stored at the appropriate 

temperature in a ventilated refrigerator for 35 or 42 days. Packaging was performed as 

described in chapter 2. 

2.4. Microbiological analyses  

At regular time intervals during storage, cooked ham samples were analysed for growth of the 

inoculated strains. Sampling and plating procedures were similar as in chapter 4. For the 

blank series, total aerobic psychrotrophic count, total anaerobic count, total lactic acid 

bacteria and number of yeasts and moulds were determined. To follow the protective cultures 

10A and LS5 MRS-agar supplemented with sorbic acid (1.4 g/l) (Sigma, Sigma-Aldrich 

Corporation, St. Louis, Missouri, USA) (aerobic incubation for 48h at 30°C) was used. To 

determine the number of L. monocytogenes on the MCH, ALOA (Agar Listeria Ottaviani and 

Agosti) (Biolife, Biolife Italiana S.r.l, Milan, Italy) was used (aerobic incubation for 2 days at 

37°C). 

2.5. pH-measurements 

For the MCH inoculated with L. sakei 10A alone, the pH was measured as a function of time 

in the same way as described in chapter 4.  

2.6. Sensory analysis  

On each day of analysis a sensory evaluation of the MCH, inoculated with L. sakei 10A, was 

performed by four panellists. The panel was asked to indicate if the samples had an acceptable 

or unacceptable (deviating) odour and taste. The sensory test was done under red lighting in a 

taste room with isolated booths.  

2.7. Statistical analyses 

Cell numbers were analysed for significant (P<0.05) differences between mono-culture 

growth and co-culture growth using independent samples t-tests in SPSS 11.0 (SPPS, 

Chicago, IL, USA).  
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3. Results and discussion 

The chemical composition of the MCH was: 21.99 ± 0.25% of dry matter, 25.5 ± 0.7 ppm of 

residual nitrite, 2.48 ± 0.02 %of NaCl (on aqueous phase), a pH of 6.13 and a water activity of 

0.984 ± 0.001.  

The non-inoculated MCH had an initial total aerobic count and an initial LAB-count of 

<1.0 log10(cfu/g); no yeasts or moulds were detected. In all experiments, the number of 

endogenous LAB remained very low during storage and did not exceed 3.5 log10(cfu/g) after 

42 days at 7°C. Consequently the initial LAB-count was much lower than the inoculation 

level of the protective cultures examined; this implies that the action of the protective cultures 

was not influenced by the native LAB-flora. 

3.1. Influence of inoculum ratio 

A comparison was made between the use of the potential protective cultures 10A and LS5 at 

levels of 105 or 106 cfu/g in the MCH and the influence this might have on the interaction 

phenomena between 10A or LS5 and L. monocytogenes and this at 7°C and under vacuum 

packaging. Figures 5.1 and 5.2 present the evolution of the counts of L. monocytogenes and 

LAB on the MCH during the experiments with the cultures 10A and LS5, respectively. 

When 10A was applied to the MCH at a level of ± 105 cfu/g, the strain reached a level of 

107 cfu/g between day 21 and day 28. From that moment on, a slightly but statistically 

significant (P<0.05) slower growth of the L. monocytogenes cocktail occurred when growing 

in co-culture with 10A compared to growth in absence of 10A. However, by this time the 

cocktail of L. monocytogenes had already increased with > 3 log10(cfu/g). Applying 10A at a 

higher level of ± 106 cfu/g limited the increase in counts of L. monocytogenes to 

<1 log10(cfu/g) over a 28 day period compared to an increase of >3 log10(cfu/g) when the 

cocktail was grown alone. After 27 days, the number of L. monocytogenes in co-culture with 

10A seemed to increase slightly. However, after 42 days of storage a 2.5 log10(cfu/g) 

difference in growth was observed between the L. monocytogenes cocktail grown in co-

culture with 10A and the L. monocytogenes cocktail grown alone.  

When inoculated at approximately 106 cfu/g, 10A grew more rapidly on the MCH since the 

strain reached a cell number of about 108 cfu/g after 7 days. For a protective culture, a rapid 

growth to the number of cells that has an antagonistic action is very important. 
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Figure 5.1. Interaction at 7°C between L. sakei 10A and L. monocytogenes on vacuum 
packaged MCH at an inoculum ratio of 105/102 (full lines) or 106/102 (broken lines) (•, 
growth of the L. monocytogenes cocktail; ■, growth of the L. monocytogenes cocktail in 
co-culture with 10A; ▲, growth of 10A in co-culture with the L. monocytogenes cocktail) 
(error bars represent 95% confidence intervals, n=3) 
 

From this experiment and also from the interaction experiments of chapter 4 between L. sakei 

10A and the spoilage organisms Leuc. mesenteroides and B. thermosphacta, it could be 

derived that inhibition by L. sakei 10A occurs when the strain reaches a level of ± 107 cfu/g. 

Whereas the strain has been selected for its fast growth at 7°C on the MCH (Chapter 2), 

growth up to the inhibitory level occurred more rapidly when starting at a level of 106 cfu/g. 

Bredholt et al. (1999) found, however, no difference in the inhibitory effect of a non-

bacteriocinogenic strain of L. sakei on the growth of L. monocytogenes when two different 

inoculum levels, 104 and 106 cfu/g, were evaluated. In the study of Amezquita & Brashears 

(2002), the competitive inhibition of L. monocytogenes by a mix of three LAB was obtained 

when applying the cultures at a level of 107 cfu/g. In general, protective cultures are applied at 

levels varying between 105-107 cfu/g (Andersen, 1995a).  
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Figure 5.2. Interaction at 7°C between L. sakei LS5 and L. monocytogenes on vacuum 
packaged MCH at an inoculum ratio of 105/102 (full lines) or 106/102 (broken lines) (•, 
growth of the L. monocytogenes cocktail; ■, growth of the L. monocytogenes cocktail in 
co-culture with 10A; ▲, growth of 10A in co-culture with the L. monocytogenes cocktail) 
(error bars represent 95% confidence intervals, n=3) 
 
In the case of co-inoculation with L. sakei LS5 a slightly lower (5×104 cfu/g) than the desired 

lower inoculation level (105 cfu/g) was reached. The desired higher inoculation level of 106 

cfu/g was obtained. At each of the two investigated inoculation levels, the growth of 

L. monocytogenes was not inhibited by L. sakei LS5. At the lower inoculum ratio of 

5×104/102 (LS5/L. monocytogenes) no significant differences in growth of L. monocytogenes 

between growth as a cocktail alone and growth as a co-culture of the cocktail with LS5 were 

observed. This was probably related to the application of a lower than desired inoculum 

which resulted in slow growth of LS5 on the MCH. During the 42 days storage period, LS5-

levels did not exceed 106 cfu/g and the strain was consequently out grown by 

L. monocytogenes. At the higher inoculum ratio of 106/102, growth of L. monocytogenes was 

significantly (P<0.05) slower when grown as a cocktail alone than when grown as a co-

culture with LS5 from day 20 onwards. However, the difference in growth was very small and 

in both cases, L. monocytogenes grew to unacceptable counts. When starting from 106 cfu/g, 

growth of LS5 was, however, very rapid since LS5 reached a cell number of 5×107 cfu/g after 
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7 days and remained at that cell number during the subsequent storage period. These results 

confirm that L. sakei LS5 is not useful as a protective culture since the strain is not able to 

inhibit the growth of L. monocytogenes, even when applied at a higher level of 106 cfu/g. In 

the co-culture experiments of chapter 4, between LS5 and the spoilage organisms 

Leuc. mesenteroides and B. thermosphacta, similar results were obtained.  

3.2. Influence of storage temperature 

Rapid growth at refrigeration temperatures is an essential requirement for a protective culture 

that is meant for the biopreservation of refrigerated CMP. L. sakei 10A was selected because 

it is capable of growing at 4°C and 7°C in broth and for its ability to grow rapidly at 7°C on 

the MCH (Chapter 2). To examine whether strain 10A is still dominant on the MCH at 4°C, 

the interaction between 10A and L. monocytogenes was investigated at this lower 

temperature. A comparison of the interaction effects at 7°C and 4°C is presented in Figure 

5.3.  
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Figure 5.3. Interaction at 7°C (full lines) or 4°C (broken lines) between L. sakei 10A and 
L. monocytogenes on vacuum packaged MCH at an inoculum ratio of 106/102 (•, growth 
of the L. monocytogenes cocktail; ■, growth of the L. monocytogenes cocktail in co-
culture with 10A; ▲, growth of 10A in co-culture with the L. monocytogenes cocktail) 
(error bars represent 95% confidence intervals, n=3) 
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Clearly, the growth of L. sakei 10A was not influenced by lowering the temperature from 7°C 

to 4°C. At both temperatures, 10A grew rapidly (in 7 days) from the initial level of 6 

log10(cfu/g) to a level of 7.5-8 log10(cfu/g), after which it remained at this level up to the end 

of storage. Most strains belonging to the L. sakei/L. curvatus group can grow at low 

temperatures and L. sakei is known to be one of the most psychrotrophic species of the 

lactobacilli since some of its strains can grow at 2-4°C (Champomier-Vergès et al., 2002). In 

contrast to the behaviour of L. sakei 10A, growth of the L. monocytogenes cocktail was 

strongly influenced by the storage temperature. At 4°C, its cell number increased with 

2 log10(cfu/g) after 42 days. At 7°C, a level of 106 cfu/g was exceeded after approximately 30 

days. L. monocytogenes is considered as a psychrotrophic pathogen and the minimum growth 

temperature varies from 0-5°C (Abee & Wouters, 1999). When L. monocytogenes was 

growing in co-culture with 10A, growth was strongly reduced at both temperatures. Whereas 

at 7°C limited growth of L. monocytogenes on the MCH still occurred, a complete inhibition 

of its growth by L. sakei 10A was observed at 4°C.  

3.3. Influence of atmosphere in the headspace of the packaging 

Although sliced CMP are often vacuum packaged, modified atmosphere packaging is 

nowadays in Europe a common packaging technique for this type of products. L. sakei 10A 

was selected on the basis of its growth characteristics on vacuum packaged MCH. To 

determine whether strain’s dominance is maintained under MAP, the influence of CO2 on the 

growth of L. sakei 10A was examined. For this experiment, a CO2 level of 50% was chosen 

since CO2 levels commonly used for CMP vary from 30-50%. The comparison between the 

interaction phenomena under VP and these under MAP is presented in Figure 5.4. The 

headspace CO2 concentration of 50% did not influence the growth of L. sakei 10A. Under 

both packaging conditions (VP and MAP), 10A grew rapidly (in 7 days) from the initial level 

of 106 cfu/g to a level of nearly 108 cfu/g and this level was remained during the entire storage 

period. However, the growth of L. monocytogenes was strongly influenced by the packaging 

type. Under vacuum, its cell number increased with 4 log10(cfu/g) after 42 days, whilst under 

MAP no considerable growth was observed. It is known that L. sakei is less sensitive to 

modified atmospheres containing CO2 than L. monocytogenes (Devlieghere, 2000). Under 

vacuum packaging, the antagonistic interaction of L. sakei 10A towards L. monocytogenes 

was once more confirmed. However, by analogy with the first co-inoculation study, a slight 

increase in the number of L. monocytogenes was observed after 30 days of storage resulting in 
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an increase in cell number of 2 log10(cfu/g) during the storage period. Combining the 

protective culture L. sakei 10A, applied at an initial level of 106 cfu/g, with MAP fully 

prevented the growth of L. monocytogenes on the MCH. 
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Figure 5.4. Interaction at 7°C between L. sakei 10A and L. monocytogenes on MCH 
under VP (full lines) or MAP (broken lines) at an inoculum ratio of 106/102 (•, growth of 
the L. monocytogenes cocktail; ■, growth of the L. monocytogenes cocktail in co-culture 
with 10A; ▲, growth of 10A in co-culture with the L. monocytogenes cocktail) (error 
bars represent 95% confidence intervals, n=3) 

3.4. Influence of 10A on the acidity of the MCH  

pH-measurements and sensory evaluation of the MCH, inoculated with L. sakei 10A alone, 

were periodically done during the storage period. Table 5.2 shows the evolution of the pH of 

the MCH as a function of time during the growth of 10A in mono-culture at 4°C and 7°C (co-

inoculation study 2) and under MAP and VP (co-inoculation study 3). The pH of the non-

inoculated cooked ham (blank) did not change significantly (mean pH of 6.04 at day 35) 

compared to its initial pH-value. In all cases evaluated, the pH-change of the MCH containing 

L. sakei 10A was minimal, with a mean decrease of 0.35 pH-units over the entire storage 

period and this despite the fact that L. sakei 10A reached counts of 108 cfu/g after only seven 

days and remained at this level throughout the storage period. 
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Table 5.2. Evolution of the pH of the MCH during growth of L. sakei 10A in mono-
culture at 4°C, 7°C, under VP and under MAP (mean ± standard deviation, n=3) 

Study 2 Study 3 

Time 

(days) 

10A (7°C-VP) 10A (4°C-VP) Time 

(days) 

10A (7°C-VP) 10A (7°C-MAP) 

0 6.13 ± 0.00 6.13 ± 0.00 0 6.09 ± 0.01 6.09 ± 0.01 
20 5.91 ± 0.05 5.91 ± 0.02 7 5.96 ± 0.01 5.94 ± 0.03 
27 5.89 ± 0.04 5.85 ± 0.01 14 5.90 ± 0.02 5.84 ± 0.01 
34 5.88 ± 0.01 5.83 ± 0.02 21 5.90 ± 0.01 5.88 ± 0.02 
41 5.81 ± 0.02 5.82 ± 0.04 28 5.82 ± 0.03 5.83 ± 0.04 
   35 5.77 ± 0.06 5.76 ± 0.03 
   42 5.76 ± 0.01 5.72 ± 0.02 

 

The small pH-drop was probably the result of the MCH having low glucose content (0.21 ± 

0.06%) and large buffering capacity. The pH-measurements were reflected in the findings of 

the sensory analysis. Despite the extended storage period of 42 days, the panellists could not 

detect an unacceptable taste or odour in the MCH-samples containing L. sakei 10A. These 

findings confirm earlier results on the organoleptic evaluation of MCH containing high 

numbers of 10A (Chapter 2).  

Since the presence of L. sakei 10A on the MCH, even at high numbers and for prolonged 

periods of time, did not result in significant acidification and sensory rejection of the MCH, 

the observed antagonistic activity towards L. monocytogenes cannot be caused by lactic acid 

production and the associated pH-decrease. According to the results of chapter 2, L. sakei 

10A does not produce a bacteriocin. However, regrowth of the food born pathogen might 

suggest the diminution of an inhibitory substance (Amezquita & Brashears, 2002). The 

mechanism of the inhibition is therefore yet to be revealed. Probably, a more complex 

combined effect of production of antimicrobials and competition for or depletion of specific 

nutrients might explain the protective effect of this culture. In agreement with the results of 

this chapter, Buchanan & Klawitter (1992) demonstrated that the inhibition of 

L. monocytogenes Scott A was not a function of acid production by Carnobacterium piscicola 

LK5 in co-cultures of the two isolates grown in tryptose soya broth with and without glucose. 

It is possible that depletion of other nutrients like vitamins, minerals, trace elements or 

peptides caused the antagonistic interaction (Buchanan & Bagi, 1997). Recently, Nilsson et al. 

(2005) demonstrated that a non-bacteriocinogenic C. piscicola reduced growth of 

L. monocytogenes, at least partly, by depletion of glucose since they observed that the 
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inhibitory effect of glucose was abolished by the addition of glucose but not by the addition of 

amino acids, vitamins or minerals.  

4. Conclusion 

Lactobacillus sakei 10A offers opportunities as biopreservative since this protective culture 

can improve the safety of cooked meat products by inhibiting the growth of contaminating 

Listeria monocytogenes cells. The antagonistic interaction of L. sakei 10A towards 

L. monocytogenes was proven to occur on a model cooked ham product at 4°C, at 7°C, under 

vacuum packaging and under modified atmosphere packaging. The combination of the 

biopreservative L. sakei 10A and a storage temperature of 4°C or 10A and a modified 

atmosphere containing 50% of CO2 fully prevented growth of L. monocytogenes. In addition, 

L. sakei 10A had no impact on the sensory quality of the model cooked ham, increasing its 

potential application for the control of L. monocytogenes growth in ready-to-eat meat 

products. Further validation studies, needed to explore the usefulness of L. sakei 10A in 

several types of real cooked meat products, will be the subject of chapter 6. 
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Chapter 6 
The sensory acceptability of cooked meat products 

treated with a protective culture depends on glucose 
content and buffering capacity: a case study with 

Lactobacillus sakei 10A 

Summary 

Biopreservation has been proven to be a promising natural preservation technique, but the 

impact of protective cultures on the sensory properties of cooked meat products (CMP) is not 

well documented. This chapter presents a case study on the protective culture Lactobacillus 

sakei 10A to obtain a clear view on the real consequences of using protective cultures on the 

sensory quality of CMP. A preliminary screening study on 13 different CMP and more 

elaborate application trials at 7°C on vacuum packaged pâté, cooked ham, cooked sausage 

and two cooked poultry products demonstrated that L. sakei 10A inhibits the growth of 

endogenous lactic acid bacteria (LAB) and of artificially inoculated Leuconostoc 

mesenteroides, Brochothrix thermosphacta and Listeria monocytogenes cells. Despite these 

promising antagonistic effects, the application of L. sakei 10A to CMP was in some cases 

limited by a significant acidification resulting in an acid taste of the product. This was most 

obvious in pâté and cooked sausage and less obvious in cooked turkey fillet. From the results 

a hypothesis could be derived that high buffering capacity and low glucose content are key 

elements to avoid sensory deviations when applying protective cultures on CMP.  
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1. Introduction 

During the last decades, research on preservation strategies of (micro)biological origin has 

flourished. In particular, the use of lactic acid bacteria (LAB) and/or their metabolites (e.g. 

lactic acid, bacteriocins, etc.) for use in biopreservation of foods has gained increasing 

attention (Lücke, 2000; Rodgers, 2001; Devlieghere et al., 2004). Although some successful 

studies were published (Aymerich et al., 2002; Jacobsen et al., 2003), the effectiveness of 

bacteriocin-producing strains in foods can be limited by a range of factors (Holzapfel et al., 

1995; Rodriguez et al., 2002). Furthermore, concerns have been raised with respect to 

possible resistance development (Ennahar et al., 2000) as a consequence of widespread use of 

these peptides as food preservatives, although this is not generally accepted in literature 

(Cleveland et al., 2001). Recently, some studies have demonstrated that LAB, that do not 

produce bacteriocins, are capable of controlling microbial growth in food products (Nilsson et 

al., 1999) and more specifically in refrigerated, anaerobically packaged, sliced and cooked 

meat products (CMP) (Kotzekidou & Bloukas, 1996; Kotzekidou & Bloukas, 1998; Bredholt 

et al., 1999; Bredholt et al., 2001; Amezquita & Brashears, 2002; Chapters 4 and 5). In CMP, 

protective cultures have mainly been evaluated for their potential to inhibit food born 

pathogens such as Listeria monocytogenes and less is known about the possible use of 

protective cultures for controlling spoilage. It is important in the development of a protective 

culture that the assessment of its influence on the sensory characteristics of the treated 

products is reviewed; few authors have dealt with this subject. Bredholt et al. (2001) observed 

no statistically significant differences in consumer preferences after 11 days at 4°C between 

cooked ham and cervelat with and without Lactobacillus sakei TH1 and little sensory 

differences between treated and untreated products after 28 days at 4°C. Amezquita & 

Brashears (2002) found positive results for the bacteriocin-producing Pediococcus acidilactici 

on frankfurters after 56 days at 5°C but did not investigate the effect of the more acidifying 

non-bacteriocinogenic Lactobacillus casei and Lactobacillus paracasei. In the study on pariza 

of Kotzekidou & Bloukas (1998), the control treatment had an unacceptable sour taste after 4 

weeks, whereas the treatments with L. sakei BJ-33 had an acceptable odour and taste until 7-8 

weeks of storage at 6-8°C. Despite the sour taste, the pH of the control treatment was the 

highest of all treatments and decreased only from 6.7 to 6.1 after 4 weeks. The authors 

assigned the negative sensory quality of the control to heterofermentative LAB producing 

organic acids of which in particular acetic acid is unwanted (Kotzekidou & Bloukas, 1998). 
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This hypothesis still does not agree with the pH-evolution of the product; it might be that 

other types of metabolism were causing the spoilage.  

The existing studies do not clearly demonstrate whether protective cultures have a positive or 

negative impact on the sensory properties of the treated product and how a negative impact 

can be explained and avoided. Therefore the objective of this chapter was to validate the 

biopreservative capacity of protective cultures on several industrially manufactured cooked 

meat products and to investigate the effect of protective cultures on the sensory quality of 

these CMP. The non-bacteriocinogenic L. sakei 10A, that has been found capable of 

controlling spoilage in chapter 4 and inhibiting growth of L. monocytogenes in chapter 5 on a 

vacuum packaged model cooked ham without altering the sensory properties of this product, 

was chosen as a case study. The first part of this work was a preliminary screening study of 

13 different CMP for their suitability to be treated with culture 10A. Of most importance was 

the determination of the glucose content, the buffering capacity and the effect of 10A on the 

pH and the related acid taste of the product. In the second part of this work, more elaborate 

storage experiments at 7°C on vacuum packaged pâté, cooked ham, cooked sausage and two 

cooked poultry products were conducted. The effect of L. sakei 10A (applied at 106 cfu/g) on 

the growth of (1) the natural spoilage flora, (2) inoculated (100 cfu/g) Leuc. mesenteroides, 

(3) inoculated (100 cfu/g) B. thermosphacta and (4) inoculated (100 cfu/g) L. monocytogenes 

was investigated and the relationship between microbial growth, acidification, glucose 

consumption, lactic acid production and sensorial appreciation was assessed.  

2. Materials and methods 

2.1. Bacterial strains 

The protective culture Lactobacillus sakei subsp. carnosus (coded here as 10A) was isolated 

from vacuum packaged, sliced, cooked and smoked turkey fillet in chapter 2. In the 

inoculation experiments with Listeria monocytogenes, a mix of three L. monocytogenes 

strains was used. Strains L. monocytogenes Scott A (coded here as LIS 1) and 

L. monocytogenes LFMFP 45 (coded here as LIS 3), isolated from cooked pita meat, were 

from the Laboratory of Food Microbiology and Food Preservation (LFMFP, Gent University, 

Belgium). Strain L. monocytogenes LMG 13305 (coded here as LIS 2), isolated from soft 

cheese, was obtained from the culture collection of the Laboratory Microbiology Gent (LMG, 

Gent University, Belgium). In the inoculation experiments with Leuconostoc mesenteroides, a 
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mixture of Leuc. mesenteroides LM2 (LMG 6893) and LM4 (LFMFP 666) was used. In the 

inoculation experiments with Brochothrix thermosphacta, a mixture of B. thermosphacta BT1 

(LFMFP 230) and BT2 (LFMFP 227) was used. The latter four strains were previously 

described in chapter 4. Working cultures of the strains were maintained on de Man Rogosa 

Sharpe (MRS, Oxoid, Oxoid Limited, Basingstoke, Hampshire, UK) agar or Tryptone Soya 

Agar (TSA, Oxoid) slants at 7°C and revived by transferring a loop of inoculum into 5 ml 

MRS-broth (Oxoid) or into 10 ml Brain Heart Infusion broth (BHI, Oxoid) followed by 

incubation at 30°C (all strains except BT1 and BT2) or 22°C (BT1 and BT2) for 24h. 

2.2. Chemical analyses 

The pH was measured using a pH-electrode (Ingold, MGDX K57, Urdorf, Switzerland) 

connected to a pH-meter (Knick, type 763, Berlin, Germany). Salt content was determined 

according to the method of Mohr, a titrimetric determination of chloride ions (Skoog et al., 

1996). Water activity was measured using an aw-cryometer (Nagy AWK-20, Gäufelden, 

Germany). Fat, protein and phosphate levels were determined according to respectively ISO 

1444, ISO 937 and ISO 1871, and ISO 13730. Moisture and ash were determined according to 

standard AOAC (1990) procedures. 

Glucose was determined by a spectrophotometric method with an enzymatic reagent (glucose 

oxidase-peroxidase (GOP) reagent). This reagent contains two enzymes (glucose oxidase 

(Sigma, Sigma-Aldrich Corporation, St. Louis, Missouri, USA) and peroxidase reagent 

(Sigma)) (Karkalas, 1985). Glucose is first oxidized to gluconic acid and hydrogen peroxide. 

This peroxide reacts immediately with phenol (Acros Organics, Geel, Belgium) and 4-

aminoantipyrine (Acros Organics) in the presence of peroxidase, so that quinoneimine is 

formed. This complex has an intense pink colour. Finally, the absorbance was measured at 

505 nm against a reference (1 ml distilled water plus GOP-reagent) (Cary 50 UV-Vis, Varian, 

Sint-Katelijne-Waver, Belgium).  

Lactic acid and sugars other than glucose were determined using a high-performance liquid 

chromatograph (HPLC). Details of this HPLC-analysis have been described in chapter 2. 

Prior to HPLC-analysis, meat samples were subjected to a ¼ extraction: a 25 g sample was 

homogenised with 75 ml of distilled water and filtered (∅ 125 mm, Schleicher & Schuell, 

Microscience, Dassel, Germany). In the case of sugar analysis, further dilutions in distilled 

water were prepared if necessary to ensure that the concentration was within the linear range 

(up to 160 mg/l). In the case of lactic acid analysis, the filtrate was heated for 15 min at 80°C 
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in a water bath, centrifuged at 8000g for 10 min and filtered (∅ 0.2 µm, Alltech Associates, 

Lokeren, Belgium) before injection. 

Buffering capacity was determined by adding 8.5 % (w/w) of lactic acid (Sigma) in steps of 

500 µl to a 90 g mixed and homogenised sample. After each addition, the meat sample was 

very well homogenised and the pH was measured on three positions in the sample. The 

procedure was continued until a pH value of 5 was obtained and repeated twice. 

2.3. Microbiological analyses 

A 15 g sample was taken aseptically and a decimal dilution series in Peptone Physiologic 

Solution (PPS; 8.5 g/l NaCl (VWR, VWR International, Leuven, Belgium) and 1 g/l Peptone 

(Oxoid)) was prepared to plate the appropriate dilutions on the appropriate agar media. Total 

aerobic psychrotrophic count, total anaerobic count and lactic acid bacteria were determined, 

according to the pour plate technique, on Plate Count Agar (PCA, Oxoid) (aerobic incubation 

at 22°C for 3-5 days), Reinforced Clostridial Agar (RCA, Oxoid) (anaerobic incubation at 

37°C for 3-5 days) and de Man Rogosa Sharpe (MRS, Oxoid) agar (aerobic incubation at 

22°C for 3-5 days), respectively. Yeasts and moulds were determined on Yeast Glucose 

Chloramphenicol Agar (YGC, Bio-Rad, Bio-Rad Laboratories Inc., Hercules, CA, USA) 

(aerobic incubation at 22°C for 3-5 days) according to the spread plate technique. The number 

of L. monocytogenes was determined on ALOA (Agar Listeria Ottaviani and Agosti) (Biolife, 

Biolife Italiana S.r.L., Milan, Italy) (aerobic incubation for 2 days at 37°C) supplemented with 

ALOA Enrichment selective supplement (Biolife). For the determination of the number of 

B. thermosphacta STAA-agar (Oxoid) (aerobic incubation for 2-3 days at 22°C) 

supplemented with STAA (Streptomycin sulphate, Thallous acetate, Actidione, Agar) 

selective supplement (Oxoid) was used. 

2.4. Sensory analyses 

Samples for sensory analyses were transferred in plastic recipients that were closed and stored 

at 4°C until sensory evaluation. Time between sampling and sensory evaluation was not 

longer than 1 hour. All sensory evaluations were performed under IR-light in a special room 

with individual booths. 

Two types of sensory tests were used in this work. A paired comparison test (preference test) 

was used to investigate whether the CMP with the protective culture 10A tasted better or 

worse than the CMP without protective culture. The two samples were offered simultaneously 
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to a sensory panel of 18 non-trained persons. The order of the samples was changed 

systematically: orders A-B and B-A were occurring equally.  

In the more elaborate shelf-life studies, this preference test was combined with a scoring test. 

Samples were evaluated by a 6-member sensory panel on the attributes odour and taste. The 

panel members were trained on the sensory characteristics of fresh and spoiled products and 

were experienced in tasting CMP (Chapters 2 and 3). Panel members were asked to first open 

the recipient and evaluate the odour. Thereafter, samples were taken out of the recipient and 

evaluated for taste. Attribute scales for odour and taste varied from 1-9 with 1 being fresh, 5 

the limit of acceptability and 9 spoiled. A score above 5 indicated the sample being 

unacceptable. Finally, the 6-member panel was asked to evaluate the fitness for human 

consumption. If four of six persons considered a sample unfit, the sensory quality was 

considered to be rejected. 

2.5. Screening of cooked meat products 

Thirteen anaerobically packaged CMP (Table 6.1) were obtained from three different Belgian 

meat processing companies (B, G and S).  

 

Table 6.1. Overview of the chemical parameters characterising the cooked meat 
products used in the screening study 
Product pH Dry 

matter 

(%) 

NaCl 

(% on water 

phase) 

Water 

activity 

Protein 

(%) 

Phosphate 

(%) 

Fat 

(%) 

Cooked ham B1 6.36 27.49 2.95 0.9722 16.0 0.63 2.8 

Cooked ham G1 6.29 26.82 2.67 0.9783 21.6 0.48 2.6 

Cooked ham G2 6.27 25.74 2.37 0.9787 20.3 0.58 2.8 

Meat Loaf S 6.30 40.31 4.07 0.9638 13.4 0.44 14.6 

Saucisson de Strasbourg S 6.30 37.90 3.33 0.9787 11.8 0.39 21.0 

Cooked chicken fillet B 6.56 27.18 2.55 0.9720 18.6 0.60 2.4 

Cooked turkey fillet B 6.01 27.00 2.29 0.9772 20.2 0.60 1.8 

Cervelat sausage S 6.03 40.95 4.31 0.9656 14.5 0.59 20.4 

Veal sausage S 6.15 51.27 4.22 0.9753 7.7 0.16 36.6 

Cooked sausage S1 (Parijzerworst)  6.29 33.62 3.57 0.9771 13.1 0.36 14.7 

Cooked sausage S2 (Lunchworst) 6.06 48.19 3.69 0.9742 10.7 0.22 29.6 

Cooked sausage S3 (Hespeworst S) 6.19 38.23 3.33 0.9803 10.4 0.22 19.0 

Cooked sausage G1 (Hespeworst G) 6.07 39.91 3.97 0.9754 12.1 0.41 18.3 
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Immediately after production, products were transferred to the laboratory in cooled conditions 

and stored between 0-2°C up to the start of the screening experiment. Some of the products 

were whole products, whereas others were sliced. In a first step, products were analysed for 

glucose content, presence of other sugars than glucose and buffering capacity. Secondly, the 

products were inoculated with L. sakei 10A at 106 cfu/g and the influence of the strain on pH-

evolution and off-flavour development was determined after storing them under vacuum for 

11 days at 7°C. As a reference, a product without protective culture was used. On day 0 and 

on day 11, the pH and the microbial contamination (total aerobic psychrotrophic count and 

total number of LAB) of the products with and without protective culture were determined. 

Furthermore, on day 11, a taste panel was asked whether they preferred the reference product 

or the product containing L. sakei 10A according to the preference test described in section 

2.4.  

2.6. Storage experiments  

Five CMP were selected for a more elaborate storage experiment: pâté, cooked ham, cooked 

sausage, cooked chicken fillet and cooked turkey fillet. Each storage experiment consisted of 

eight test series: (1) non-inoculated product or reference product (control), (2) product 

inoculated with L. sakei 10A (106 cfu/g) (10A), (3) product inoculated with 100 cfu/g of 

Leuc. mesenteroides LM2 and LM4 , (4) product inoculated with L. sakei 10A (106 cfu/g) and 

100 cfu/g of Leuc. mesenteroides LM2 and LM4, (5) product inoculated with 100 cfu/g of 

B. thermosphacta BT1 and BT2, (6) product inoculated with L. sakei 10A (106 cfu/g) and 100 

cfu/g of B. thermosphacta BT1 and BT2, (7) product inoculated with 100 cfu/g of the 

L. monocytogenes cocktail LIS1, LIS2 and LIS3 and (8) product inoculated with L. sakei 10A 

(106 cfu/g) and 100 cfu/g of the L. monocytogenes cocktail LIS1, LIS2 and LIS3. In this way 

the effect of 10A on the natural spoilage flora, on the artificially inoculated spoilage 

organisms Leuc. mesenteroides and B. thermosphacta and on the food born pathogen 

L. monocytogenes could be determined. Each test series was performed in duplicate. 

The different inocula were subcultured twice (24h) in MRS-broth for the LAB (30°C) or BHI-

broth for L. monocytogenes (30°C) and B. thermosphacta (22°C). Cells of 10A were 

harvested by centrifugation at 8000g for 10 min at 10°C, washed with a 0.85% salt solution 

and resuspended in fresh MRS-broth before further diluting to prepare the inoculum of 10A. 

The other strains were not washed before inoculation. The inoculum was divided over and 

spread on the surface of 200 g of product to reach the desired inoculation level. After 
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inoculation, 200 g portions of product were vacuum packaged and stored at 7 ± 1°C in a 

ventilated refrigerator. Packaging was performed using a Multivac A300/42 (Hagenmüller, 

Wolfertschwenden, Germany) gas packaging machine in a high barrier film (NX90, Euralpak, 

Wommelgem, Belgium) of 90 µm thickness with an oxygen transmission rate of 5.2 

ml/m2.24h.atm at 23°C and 85% relative humidity. 

At regular time intervals, products were analysed for growth of the endogenous flora and/or 

the inoculated strains. All series were analysed for total aerobic psychrotrophic count, total 

anaerobic count, total LAB and number of yeasts and moulds. The series inoculated with 

L. monocytogenes or B. thermosphacta were additionally analysed for the number of 

L. monocytogenes or B. thermosphacta. At several points in time colonies were picked from 

MRS-plates to determine the carbohydrate fermentation profile using the API-system with 

API50CHL-medium for LAB (BioMERIEUX, Brussels, Belgium). 

Simultaneously with the microbial analyses pH-measurements were performed. On the first 

and the final storage day, an additional sample was taken for determination of lactic acid and 

glucose. Furthermore, on each day of analysis, both types of sensory tests were performed on 

all test series except those inoculated with L. monocytogenes. For each product, analyses 

continued up to the moment that samples became unacceptable from a sensory point of view 

as described in section 2.4.  

2.7. Statistical analyses  

All statistical analyses were performed using the software SPSS 12.0 (SPSS, Chicago, IL, 

USA).  

Data of the screening experiment were analysed for relationships between the parameters for 

the 13 different CMP. The existence of a linear relationship was investigated using the 

Pearson correlation between (1) buffering capacity and phosphate content and protein content 

and (2) pH-decrease in products containing 10A and glucose and buffering capacity. The 

relationship between the binomially distributed preference data of the sensory analysis and the 

normally distributed parameters glucose content, buffering capacity and pH-decrease in 10A-

products was investigated using a logistic regression method (model expressing the dependent 

variable ‘preference for product with 10A’ as a function of the co-variates glucose, buffering 

capacity and pH-decrease on products with 10A).  

In the storage experiment, duplicate data on microbial cell numbers, pH, glucose and lactic 

acid concentrations were analysed for significant (P<0.05) differences (1) between 
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biopreserved samples and control samples on each day of analysis using an independent 

samples t-test (P<0.05) and (2) between day 0 and the final storage day for both, biopreserved 

and control samples, using a paired-samples t-test (P<0.05). The results from the paired 

comparison test were analysed according to a two-sided binomial test. In the case of 18 

assessors, the critical number of answers to obtain a statistically significant (level of 

significance = 0.95) preference for one of both samples is 14 (Brinkman, 2002). The results 

from the scoring test of each of the five meat products were analysed for significant 

differences (P<0.05) between biopreserved samples and control samples by subjecting scores 

obtained for each attribute at each day of analysis to a paired-samples t-test.  

3. Results and discussion 

3.1. Screening of cooked meat products 

Evaluation of buffering capacity through acidification with lactic acid resulted in a titration 

curve for the 13 CMP. Van Slyke (1922) defined a ratio β to calculate buffering capacity in a 

defined pH-range. This ratio expresses the relationship between the increment of acid and the 

change in pH: 

 

 

 

where dB is the number of moles of acid added and dpH is the pH-change (Salaün et al., 

2005). This ratio can be calculated for each pH-value of the titration curve. Within the pH-

interval 5 to 6, the titration curves were approximately linear (data not shown) and the ratio at 

each pH-value was more or less the same. The mean value of the different ratios within the 

range pH 5 to 6 was calculated and used as a measure to compare the buffering capacity of the 

different CMP. Figure 6.1 summarises the buffering capacity and glucose content of the 13 

CMP and of the model cooked ham product used in chapters 2 to 5. This model product can 

be used as a reference product to compare with in the discussion of these two parameters. 

The buffering capacity of all products was lower than that of the model cooked ham. Cooked 

turkey fillet, cooked chicken fillet, cooked ham G1 and cervelat sausage constituted a group 

with a relative high buffering capacity varying between 6 and 7 mmol lactic acid per pH-unit. 
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Figure 6.1. Buffering capacity (total bars) and glucose concentration (black part of the 
bars) of the cooked meat products implicated in the screening study 
 

An intermediate group comprising meat loaf, saucisson de Strasbourg, cooked ham G2 and 

B1, cooked sausage S1 and G1 had buffering capacities of 4 to 5 mmol lactic acid per pH-

unit. A last group consisting of veal sausage, cooked sausage S2 and cooked sausage G2 was 

characterised by a low buffering capacity varying between 2 and 3 mmol lactic acid per pH-

unit. The buffering capacity of a product corresponds to the ability of a product to be acidified 

or alkalinised. Food products contain several constituents that are responsible for buffering 

capacity. These constituents are the small compounds and proteins containing one or several 

acid-base groups (Salaün et al., 2005). Positive significant Pearson correlations at the 0.01 

level were found between buffering capacity (BC) and protein and phosphate contents (BC-

protein: 0.794; BC-phosphate: 0.843); the higher the protein content or the phosphate content, 

the higher the buffering capacity of the meat product.  

All products, except the cooked turkey fillet, contained more glucose than the model cooked 

ham product. Cooked ham B1 had a high glucose content of 2.44% while the cooked turkey 

fillet had a low glucose content of 0.02%. For the other products, glucose content ranged from 

0.25 to 1.14%. Most products had glucose contents between 0.40 and 0.60%. Glucose that is 
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present in CMP can originate from either the raw meat ingredient(s) or the non-meat 

ingredients. In some recipes of CMP, glucose is added directly as dextrose or as dextrose 

syrup or indirectly as a carrier material for flavours, etc. 

None of the 13 products contained detectable levels of sugars other than glucose. This was 

confirmed by the HPLC-chromatogram of the meat extracts (results not shown).  

In the second part of the screening study, CMP were inoculated with L. sakei 10A and the 

influence of its presence on the pH and possible off-flavour development was investigated. 

The overall objective of this experiment was to find out if any relationship exists between 

potential sensory deviations caused by L. sakei 10A and the buffering capacity and glucose 

content determined in the first part of the study. The CMP had an initial count of LAB 

varying between 1.0 and 4.5 log10(cfu/g) with a mean contamination level of 2.5 ± 1.0 

log10(cfu/g). In all cases, the total aerobic psychrotrophic count and LAB-count were of 

similar magnitude. All CMP were inoculated with L. sakei 10A to obtain the desired 

inoculated level of 106 cfu/g; LAB-counts of the inoculated products varied from 5.82 to 6.62 

log10(cfu/g). On all types of CMP, L. sakei 10A grew very well. After 11 days of storage at 

7°C, the products inoculated with 10A had LAB-counts varying between 7.88 and 8.90 

log10(cfu/g) while LAB-counts of the reference products, not inoculated with 10A, had levels 

varying between 5.52 to 8.86 log10(cfu/g) (results not shown).  

The pH of the reference and inoculated products decreased as a function of time. In all 

products, the pH-decrease from day 0 to day 11 was larger for the products inoculated with 

L. sakei 10A (Figure 6.2). 

After 11 days of storage, 18 people were asked to indicate their sensory preference (taste): 

product with L. sakei 10A or reference product. For most CMP, except two, less then 14 out 

of 18 persons had a preference for one of the products indicating that there was no significant 

difference in taste on day 11 between the reference product and that containing L. sakei 10A. 

However, for two CMP, a significant preference for the reference product was observed. For 

veal sausage and cooked sausage S3, 17 and 14 panellists, respectively, preferred the 

reference product. For these two CMP, the product containing 10A had very low pH’s of 4.79 

and 5.05, respectively, after 11 days at 7°C. This low pH explains why most preferred the 

reference sample of these products. It should be noted that the results of this sensory 

evaluation represented a picture at a given moment (day 11). On day 11, cooked ham B1 and 

cervelat sausage had LAB-counts lower than 7 log10(cfu/g), 5.52 and 6.97 log10(cfu/g) 

respectively, indicating that for these two CMP the reference samples were not at the stage 
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where LAB-growth results in sensory changes. This might have influenced the results of the 

preference test for these two products. 
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Figure 6.2. The pH-decrease from day 0 to day 11 of the cooked meat products in the 
screening study without (black bars) and with the protective culture L. sakei 10A (white 
bars)  
 

The existence of a linear relationship between glucose content, buffering capacity and pH-

drop on products with 10A after 11 days was investigated. A significant negative Pearson 

correlation at the 0.01 level (-0.739) was found between the pH-decrease from day 0 to day 11 

in case of inoculation with 10A and the buffering capacity. The lower the buffering capacity 

of a product, the more the pH of the product decreases when the protective culture L. sakei 

10A is applied. No clear linear relationship (Pearson correlation of –0.447) could be observed 

between glucose content and pH-decrease of the product inoculated with L. sakei 10A since 

this was dependent on the buffering capacity. In some products, e.g. cooked ham B1 and 

cervelat sausage, the glucose content was high, 2.44 % and 1.01% respectively, while the pH-

decrease in 11 days through the presence of 10A was limited, 0.22 and 0.23 pH-units 

respectively. These two products were, incidentally, products having a high buffering 

capacity. In other products, e.g. cooked sausage G1 and S1, the glucose content was low, 

0.28% and 0.25% respectively, while the pH-decrease through the presence of 10A was high, 
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0.82 and 0.84 pH-units respectively. These two products were products with a low buffering 

capacity.  

Additional analysis, attempting to link preference data to the parameters glucose, buffering 

capacity and pH-drop on 10A-products, revealed that only ‘pH-decrease on products with 

10A’ significantly influenced the preference for products containing 10A. This means that the 

preference for meat products treated with 10A is a function of the decrease in pH, caused by 

the presence of 10A, and there is no relationship between preference and glucose content or 

buffering capacity of the product. 

From this study we could suggest that high buffering capacity and low glucose content are 

crucial to avoid sensory changes when applying protective cultures on CMP. To confirm our 

hypothesis and to further understand the role of these two parameters in the acidification of 

products treated with a protective culture more extended storage experiments were performed.  

3.2. Storage experiments 

For the more elaborate storage experiments, five products were chosen with different 

buffering capacities and glucose contents. An overview of the characteristics of these products 

is listed in Table 6.2. The effect of L. sakei 10A on the growth of the natural spoilage flora 

and on the growth of inoculated Leuc. mesenteroides, B. thermosphacta and 

L. monocytogenes strains was investigated and the relationship between microbial growth, 

acidification, glucose consumption, lactic acid production and sensorial appreciation was 

assessed. 

 

Table 6.2. Chemical parameters characterising the cooked meat products investigated in 
the shelf-life studies 
Product pH aw DMa 

(%) 

NaClb

(%) 

Fat 

(%) 

Total 

phosphate 

(%, as P205) 

Lactic 

acid (%) 

Glucose 

(%) 

BC c  

(mmol lactic 

acid/pH-unit) 

Pâté 6.43 0.9644 48.11 3.77 31.3 0.49 1.24 1.46 2.87 

Cooked ham 6.30 0.9831 27.03 2.49 2.4 0.51 0.93 0.69 5.71 

Cooked 

sausage 

6.05 0.9778 39.91 3.97 19.6 0.36 0.59 0.31 4.12 

Cooked 

chicken fillet 

6.25 0.9797 27.41 3.11 4.8 0.70 1.01  0.40 6.65 

Cooked 

turkey fillet 

6.24 0.9701 24.89 2.81 1.1 0.61 2.87 0.09 7.09 

a, DM = dry matter; b, in water phase; c, BC = buffering capacity 
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3.2.1. Antagonistic activity of L. sakei 10A  

Figure 6.3 presents for four out of five tested products (1) the growth of LAB on the reference 

samples and on the samples containing L. sakei 10A and (2) the growth of the 

L. monocytogenes cocktail on the samples inoculated with the L. monocytogenes cocktail 

alone and on the samples inoculated with the L. monocytogenes cocktail and L. sakei 10A . 

In the reference samples of all five products, total aerobic psychrotrophic count and LAB-

count were similar. In the reference samples, the rate of LAB-growth differed among the 

products depending on the initial contamination level and the intrinsic parameters of the 

products (Table 6.2). In the cooked turkey fillet, growth of endogenous LAB was retarded, 

probably due to the high concentration of lactic acid (2.87 ± 0.29%). High lactic acid contents 

may indicate that lactate is added during the preparation of the product. The inhibitory effect 

of salts of lactic acid on microbial growth has been reported and Na-lactate addition results in 

the shelf-life extension of anaerobically packaged CMP (Houtsma et al., 1993; Devlieghere et 

al., 2000; Stekelenburg & Kant-Muermans, 2001). The cooked ham was spoiled most rapidly 

as this product had the highest water activity and lowest salt content. Moreover, by 

identifying the endogenous LAB-flora on the final day of storage, it was seen that the LAB-

flora of this cooked ham was dominated by a Leuc. mesenteroides strain and the results of 

chapter 3 demonstrate that this species has a high potential to cause rapid spoilage on CMP. 

On the final storage day, the LAB-flora of the other four products consisted of strains 

belonging to the L. sakei/L. curvatus group.  

The LAB-count of the 10A-samples consisted of the endogenous LAB and the inoculated 

L. sakei 10A. The antagonistic effect of 10A on the endogenous LAB could not be assessed 

using traditional culture techniques. As long as the endogenous LAB were present in a lower 

number than the inoculated L. sakei 10A, dominance of 10A was expected and was shown by 

determination of API-profiles of isolated colonies. When the LAB-count of the reference 

samples reached the same level as the LAB-count of the 10A-samples, differentiation with 

L. sakei 10A using API-profiles was not always possible as the endogenous LAB consisted 

mainly of strains belonging to the L. sakei/L. curvatus group. Only in the study with cooked 

ham, the endogenous LAB mainly consisted of a Leuc. mesenteroides strain. On the final 

storage day on the cooked ham samples inoculated with 10A, the LAB-flora consisted 

completely of the protective culture 10A and any colony was identified as 

Leuc. mesenteroides.  
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Figure 6.3. Growth of LAB (■,□) and L. monocytogenes (●,○) on different vacuum packaged meat products treated with the protective 
culture L. sakei 10A (full symbols) or untreated (empty symbols) and stored at 7°C: (A) pâté, (B) cooked ham, (C) cooked sausage and (D) 
cooked chicken fillet (mean data of two replicates; error bars represent standard deviations) 
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In all five products, L. sakei 10A exhibited rapid growth and became dominant in a very short 

time; starting from 106 cfu/g the culture reached >108 cfu/g on day 3 with the exception of its 

growth in the cooked sausage where 10A reached levels of >108 cfu/g on day 7. Even in the 

cooked turkey fillet containing a high level of lactic acid, dominance of 10A was still 

observed. 

In all products that supported growth of the L. monocytogenes cocktail in the reference 

samples (pâté, cooked ham and cooked chicken fillet) there was significant inhibition of the 

growth of the L. monocytogenes cocktail when strain L. sakei 10A was present. In the 

reference samples of pâté, cooked ham and cooked chicken fillet where no L. sakei 10A was 

added, the pathogen exhibited a gradual growth of approximately 2.6, 2.8 and 5.3 log10(cfu/g) 

respectively after 14 days at 7°C. Applying L. sakei 10A prevented the growth of the 

L. monocytogenes cocktail on pâté and cooked chicken fillet and limited the growth to 1.3 

log10(cfu/g) after 14 days on cooked ham. No growth of L. monocytogenes was observed on 

the reference and 10A-samples of cooked sausage and cooked turkey fillet. In cooked turkey 

fillet, this can be explained by the presence of lactate. In the case of the cooked sausage, the 

reason is not known. 

In all of the tested products, except in the cooked turkey fillet, a significant inhibition of the 

B. thermosphacta cocktail was observed when the protective culture L. sakei 10A was added. 

On the reference samples of pâté, cooked ham, cooked sausage and cooked chicken fillet, the 

number of B. thermosphacta increased approximately 1.45, 2.55, 2.84 and 3.13 log10(cfu/g), 

respectively, during 14 days of storage. On the 10A-samples of pâté, cooked sausage and 

cooked chicken fillet, numbers of B. thermosphacta showed no significant changes during 14 

days of storage. In the case of cooked ham, the number of B. thermosphacta increased 

approximately 2.1 log10(cfu/g) over 14 days in spite of the presence of L. sakei 10A. In the 

cooked turkey fillet, no growth of the B. thermosphacta cocktail was observed even in the 

reference samples, probably due to the presence of lactate.  

The inhibitory effect of L. sakei 10A on the inoculated spoilage organism 

Leuc. mesenteroides was more difficult to assess due to the lack of an appropriate culture 

medium differentiating between endogenous lactic acid flora, protective culture L. sakei 10A 

and spoilage organism Leuc. mesenteroides. However, by identification (five colonies per 

plate) according to the API-system, dominance of L. sakei 10A towards the inoculated 

Leuc. mesenteroides was confirmed in all five CMP.  
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3.2.2. Glucose consumption and lactic acid production 

In almost all products, an important part of the glucose was consumed near the end of the 

storage period and this was reflected in an increasing level of lactic acid (Table 6.3).  

 

Table 6.3. Glucose consumption and lactic acid production (%, ± SDa) in different 
cooked meat products inoculated with L. sakei 10A (10A) in comparison to a non-
inoculated product (control) during anaerobic storage at 7°C 
  Glucose (%) Lactic acid (%) 

Product Time control 10A control 10A 

day 0 1.46±0.04a 1.46±0.04 1.25±0.01 0.95±0.10 

day 17 1.39±0.01 1.19±0.01 1.68±0.35 1.67±0.30 

Pâté 

consumption / production 0.07±0.05 0.27±0.05 0.44±0.36 0.72±0.21 

day 0 0.68±0.04 0.48±0.02 1.02±0.05 1.12±0.20 

day 14 0.12±0.04 0.02±0.00 1.56±0.34 1.50±0.18 

Cooked ham 

consumption / production 0.56±0.08 0.46±0.01 0.54±0.29 0.38±0.02 

day 0 0.34±0.06 0.27±0.10 0.54±0.12 0.62±0.12 

day 17 0.21±0.00 0.00±0.00 0.65±0.13 1.19±0.21 

Cooked sausage 

consumption / production 0.13±0.07 0.27±0.10 0.11±0.02 0.56±0.08 

day 0 0.47±0.01 0.50±0.00 0.98±0.07 1.04±0.00 

day 14 0.38±0.06 0.00±0.01 1.00±0.03 1.68±0.34 

Cooked chicken fillet 

consumption / production 0.09±0.06 0.50±0.00 0.02±0.10 0.64±0.34 

Cooked turkey fillet day 0 0.10±0.01 0.08±0.01 2.73±0.21 3.01±0.36 

 day 25 0.04±0.00 0.00±0.00 2.68±0.00 3.38±0.47 

 consumption / production 0.06±0.03 0.08±0.01 0.00±0.00 0.37±0.83 
a, SD = standard deviation (n=2) 

 

Glucose consumption at the end of the storage period was more significant in the 10A-

samples than in the reference samples; differences in glucose concentration between the first 

and final day of storage were not significant (t-test, P<0.05) in the reference samples of all 

products and in the 10A-samples of cooked sausage and pâté. With glucose, there was a trend 

towards more lactic acid production at the end of the storage period in the 10A-samples than 

in the reference samples. However, a t-test revealed that differences in lactic acid levels 

between the first and final day of storage were not significant (P<0.05). 

In general, higher glucose consumption and higher lactic acid production occurred in products 

inoculated with L. sakei 10A. This trend was clear in all products apart from cooked ham, but 
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the glucose consumption in 10A-samples was only significantly (P<0.05) larger in the case of 

pâté and cooked chicken fillet and the lactic acid production was only significantly (P<0.05) 

larger in the case of cooked sausage and cooked chicken fillet. In the case of cooked ham, 

presence of 10A did not result in a higher glucose consumption or lactic acid production. This 

can be explained by the fast rate of spoilage by endogenous LAB in the reference sample of 

the cooked ham. As a result of that a high glucose consumption and lactic acid production 

occurred in the reference samples and no significant differences in glucose and lactic acid 

evolution could be observed compared to the 10A-samples.  

In most products, the lactic acid production was of the same magnitude as the glucose 

consumption. In pâté, however, more lactic acid was produced than is possible from the 

amount of glucose that is present, indicating the presence of other fermentable substrates 

within the product formulation. By analysing the HPLC-chromatogram of an aqueous extract 

of the pâté, it became clear that the pâté contained also other carbohydrates, including 

sucrose. Moore & Madden (1997) also found additional fermentable substrates besides 

glucose in a pork liver pâté. 

3.2.3. Influence of 10A on pH and sensory properties 

Changes in pH over the storage period are summarised in Table 6.4. The pH was significantly 

higher in the control samples compared to the 10A-samples starting from day 10, day 3, day 3 

and day 11 for pâté, cooked sausage, cooked chicken fillet and cooked turkey fillet 

respectively. In cooked ham, the pH-difference between the reference samples and the 10A-

samples was not significantly different over the storage period. This can be explained by the 

fact that LAB were proliferating most rapidly on the reference cooked ham compared to the 

other products. The pH of the reference samples of cooked sausage, cooked chicken fillet and 

cooked turkey fillet did not decrease significantly between the beginning and the end of 

storage. 

Conversely, in the case of pâté and cooked ham, the pH of the reference sample decreased 

significantly to values of 6.09 and 5.30, respectively. The rate of pH-decrease was related to 

and explained by the rate of LAB-growth. The pH of the samples inoculated with L. sakei 

10A decreased significantly compared to their initial pH-values. On the time at which 10A-

samples were unacceptable or on the final storage day, in the case of no sensory rejection, the 

pâté, cooked ham, cooked sausage, cooked chicken fillet and cooked turkey fillet reached low 

pH-values of 5.73, 5.55, 5.27, 5.61 and 5.83 respectively. 
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Table 6.4. Evolution of the pH ± SDa of different cooked meat products inoculated with L. sakei 10A (10A) in comparison to a non-inoculated 
product (control) during anaerobic storage at 7°C 
Pâté Cooked ham Cooked sausage Cooked chicken fillet Cooked turkey fillet 

T(d)b control 10A T(d) control 10A T(d) control 10A T(d) control 10A T(d) control 10A 

0 6.43±0.00a 6.33±0.02 0 6.26±0.00 6.19±0.01 0 6.05±0.00 6.05±0.00 0 6.25±0.00 6.25±0.00 0 6.24±0.03 6.24±0.01 

7 6.29±0.04 6.22±0.04 3 6.18±0.08 6.08±0.08 3 6.11±0.01 5.85±0.03 3 6.23±0.01 6.07±0.01 7 6.26±0.05 6.13±0.01 

10 6.23±0.00 6.13±0.02 5 5.98±0.08 5.77±0.01 7 6.16±0.04 5.55±0.07 7 6.23±0.01 5.69±0.01 11 6.33±0.04 6.00±0.06 

14 6.22±0.04 5.87±0.05 7 5.80±0.09 5.64±0.02 10 6.08±0.01 5.27±0.08 10 6.28±0.01 5.61±0.01 14 6.27±0.01 5.93±0.01 

17 6.21±0.02 5.73±0.01 10 5.57±0.03 5.53±0.01 14 6.06±0.09 5.18±0.03 14 6.20±0.01 5.46±0.09 18 6.30±0.02 5.95±0.06 

24 6.09±0.01 5.40±0.16 14 5.30±0.05 5.45±0.03       25 6.20±0.00 5.80±0.02 
a, SD = standard deviation (n=2); b, T(d)= time in days 
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In general, CMP with such low pH-values are unacceptable from a sensory point of view 

(Korkeala et al., 1990; Chapter 3) and the effect of these low pH-values in the 10A-samples 

was reflected in the results of the sensory analyses. Figure 6.4 shows the mean scores for taste 

of the reference samples and the 10A-samples for all products except for the cooked chicken 

fillet.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4. Evolution of the mean scores for taste (n=6) of different vacuum packaged 
meat products treated with the protective culture L. sakei 10A (▲) or untreated (■) and 
stored at 7°C: (A) pâté, (B) cooked ham, (C) cooked sausage and (D) cooked turkey fillet 
 

The scores for odour are not shown but were all very similar. The results for the cooked 

chicken fillet are not shown since the results were very similar to those of the cooked sausage. 

In all products, taste scores were lower for the reference samples than for the 10A-samples 

but only in the case of pâté this difference was significant from day 10 on (P<0.05). Only the 

cooked turkey fillet scores for the 10A-samples remained under or near 5, the limit of 

acceptability, during the complete storage period, indicating that L. sakei 10A has no 

pronounced negative impact on the sensory quality of the cooked turkey fillet. Variations in 

the scores of the six different panellists were high and for this reason a second sensory test 

(preference test) was used. By combining the two sensory tests it was possible to determine 
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the time at which the products were not acceptable anymore from a sensory point of view 

(Table 6.5).  

 

Table 6.5. Time at which the meat products were not acceptable for consumption from a 
sensory point of view based on two types of sensory tests 

Time (days) at which >3/6 persons 

consider the sample as unfit for 

human consumption  

Product 

Control 10A 

Time (days) at which there was a 

significant preference for the 

reference sample based on its taste  

Pâté >17 17 10 

Cooked ham >14 >14 >14 

Cooked sausage >14 10 10 

Cooked chicken fillet >10 10 10 

Cooked turkey fillet >21 >21 18 

 

In all products, except in the cooked ham, a significant preference for the reference product 

was seen after a certain time. This could be explained by the rapid growth of L. sakei 10A on 

the 10A-samples resulting in more rapid acidification of the products. When the pH decreases 

below a certain value (5.3-5.7), the acidic conditions are noticed when eaten. In the case of 

cooked ham, there was no time at which the panellists had a significant preference for the 

reference product above the 10A-product. What’s more, on day 14 a significant preference for 

the cooked ham with 10A was observed. As mentioned before, the specific spoilage organism 

on the reference cooked ham was a Leuc.  mesenteroides strain while on the cooked ham 

treated with L. sakei 10A, the L. sakei 10A was dominant. At the beginning, more panellists 

preferred the reference cooked ham although the preference was not significant, in agreement 

with the results of the other products. However, near the end of storage, panellists preferred 

the 10A-sample above the reference sample spoiled by the Leuc. mesenteroides strain 

indicating that spoilage due to growth of L. sakei 10A is considered as less undesirable than 

spoilage due to growth of Leuc. mesenteroides. This result is not surprising since 

Leuc. mesenteroides is heterofermentative while L. sakei is homofermentative. 
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3.3. Discussion  

3.3.1. Antagonistic activity of L. sakei 10A 

To be useful as a protective culture in sliced CMP, a pronounced antilisterial activity at low 

temperature is highly desirable. The antilisterial action of L. sakei 10A was already described 

in chapter 5 in a model product. In the present chapter, L. sakei 10A showed inhibitory 

activity against a L. monocytogenes cocktail in different vacuum packaged CMP that 

supported growth of this pathogen during refrigerated storage. Antilisterial effects of non-

bacteriocinogenic LAB in CMP have been reported before. In the study of Bredholt et al. 

(2001), L. sakei TH1 could prevent the growth of 103 cfu/g of L. monocytogenes at 8 and 4°C 

on cooked ham and cervelat sausage. Amezquita & Brashears (2002) observed effective but 

product-dependent antilisterial activities using a L. casei and a L. paracasei strain on cooked 

ham and frankfurters. Andersen (2000) demonstrated that L. sakei BJ-33 was able to inhibit 

the development of L. monocytogenes in cooked ham, an emulsion sausage and rolled cooked 

pork belly.  

The results of this chapter also confirm that L. sakei 10A can suppress B. thermosphacta in 

several commercial CMP as shown before in chapter 4 by co-culture experiments on a model 

product. The antagonistic activity of non-bacteriocinogenic LAB against B. thermosphacta 

was also described by Kotzekidou & Bloukas (1996; 1998) in cooked ham and frankfurters, 

respectively. Also L. sakei BJ-33 has been reported to control the growth of B. thermosphacta 

(BactofermTM technical information, 2003).  

Few authors have investigated the effect of protective LAB on other LAB in CMP. In 1998, 

Kotzekidou & Bloukas reported a shelf-life extension of 19 and 28 days at 6-8°C on vacuum 

packaged pariza when inoculated with L. sakei BJ-33 at 103 and 105 cfu/g, respectively. In 

their study, the control sample was thought to be spoiled by heterofermentative LAB. 

However, the same culture failed to prevent growth of ropy slime producing L. sakei strains 

leading to spoilage on frankfurters (Björkroth & Korkeala, 1997). To our knowledge, only 

Vermeiren et al. (2006a) (Chapter 4) have studied the interaction between a single 

homofermentative, protective LAB and a single heterofermentative, spoilage causing LAB 

and clearly showed the inhibitory effect of L. sakei 10A on a Leuc. mesenteroides strain in a 

model product during vacuum packaged storage at 7°C. The present chapter confirms that 

L. sakei 10A, when applied at 106 cfu/g, is dominant towards Leuc. mesenteroides, initially 

present at 100 cfu/g in several industrially manufactured CMP. 
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3.3.2. Role of glucose and buffering capacity in sensory acceptability of 
protective cultures 

Since LAB are acid producing bacteria, the development of protective LAB-cultures should 

include the assessment of their effect on the sensory quality of the treated products. In this 

chapter, the impact of protective cultures on the sensory properties of CMP was investigated 

using L. sakei 10A. In general, the application of the protective culture L. sakei 10A to CMP 

was promising unless limited by significant acidification resulting in an acid taste. This was 

most obvious for pâté and cooked sausage and less obvious for cooked turkey fillet. From the 

screening study the hypothesis was derived that both high buffering capacity and low glucose 

content are important to avoid sensory changes when applying L. sakei 10A. This hypothesis 

was confirmed in the storage experiments. The negative sensorial aspects on pâté and cooked 

sausage, when containing L. sakei 10A, were related to the low buffering capacity of these 

products. Furthermore, the pâté had a high glucose content and contained some other sugars 

and this acted in a synergistic way with the low buffering capacity in causing sensory 

changes. The buffering capacity and the glucose content of the cooked ham were 

intermediate; the buffering capacity of the cooked chicken fillet was high and the glucose 

content intermediate but still sensory changes occurred. Due to the high buffering capacity 

and the very low glucose content of turkey fillet, the presence of L. sakei 10A did not affect 

the sensory properties of this product up to day 17 (scores < 5). Nevertheless, the taste of the 

reference cooked turkey fillet was considered as better than the taste of the 10A-product. This 

was, however, not due to the acidifying effect of 10A as the pH on day 21 was only 5.80 but 

was due to the retarded spoilage in the reference sample through the presence of lactate. If no 

lactate had been present in the reference cooked turkey fillet, the sensory results might have 

been even more positive. Few authors have studied the effect of protective cultures on the 

sensory properties of the treated products. Andersen (2000) did not include pH-measurements 

and sensory evaluation. Bredholt et al. (2001) observed in a consumer preference trial after 11 

days at 4°C no statistically significant differences in consumer preferences between cooked 

ham and cervelat with and without L. sakei TH1. However, after 11 days the L. sakei TH1 

strain was only in the late exponential phase and sensory changes at that time are not 

expected. The same authors also observed little or no sensory differences between treated and 

untreated products since the investigated attributes were still satisfactory after 28 days at 4°C. 

This positive result was obtained despite the fact that after 28 days at 4°C, the pH of the 

cervelat treated with L. sakei TH1 was 5.2-5.3. In our study, CMP were unacceptable from a 

sensory point of view when pH-values reached levels of 5.3-5.7. Korkeala et al. (1990) found 
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that cooked ring sausages were deemed unfit for consumption when the pH was below 5.8-5.9 

and similar results were also obtained in chapter 3. Amezquita & Brashears (2002) found 

positive sensory results for the bacteriocin-producing P. acidilactici on frankfurters after 56 

days at 5°C but did not investigate the effect of the more acidifying non-bacteriocinogenic 

L. casei and L. paracasei. However, their co-inoculation studies also resulted in significant 

acidification of frankfurters and cooked ham.  

In a study on pariza Kotzekidou & Bloukas (1998) found the control samples to have an 

unacceptable sour taste after 4 weeks, whereas those treated with L. sakei BJ-33 had an 

acceptable odour and taste up to 7-8 weeks of storage at 6-8°C. Despite the sour taste, the pH 

of the controls was the highest of all treatments and decreased only from 6.7 to 6.1 after 4 

weeks. The authors assigned the negative sensory quality of the control to heterofermentative 

LAB producing organic acids, in particular acetic acid. This hypothesis does not agree with 

the pH-changes in the product; it might be that other types of metabolites caused spoilage.  

The shelf-life studies of this chapter demonstrate that protective cultures might be a valuable 

natural preservation strategy to prolong the shelf-life and protect against the growth of 

L. monocytogenes for CMP. However, application of the culture without sensory loss is only 

possible in CMP with high buffering capacity and low glucose content.  

A high buffering capacity is obtained when products contain a minimum level of phosphate 

but mainly when they are rich in meat-protein. Usually, phosphate levels of less than 0.5% 

phosphate are added and from this study it could be deduced that 0.5% of phosphate might be 

the minimal level necessary to have sufficient buffering. A high level of total meat-protein in 

a CMP is obtained when products are produced from lean meat pieces. Thus the protective 

culture is not useful in products with low protein levels, usually those with a high fat content 

such as pâté and cooked sausages. However, in lean products such as cooked ham of high 

quality and cooked poultry products, the culture can have potential as long as the glucose 

content is sufficiently low. 

In theory, glucose that is present in cooked meat products can originate from either the raw 

meat ingredient(s) or the non-meat ingredients. However, in post-mortem meat muscle 

glucose content ranges from 0.05% or lower (Nubel, 1999) to 0.15% (Nychas et al., 1998) or 

even 0.2% (Borch et al., 1996). In this work, the glucose concentration of the raw poultry 

meat, used for the preparation of the cooked chicken fillet was 0.03%. This confirms that the 

glucose in CMP with glucose levels of approximately 0.5% originates from non-meat 

ingredients. In some recipes of CMP, glucose is added directly as dextrose or dextrose syrup 

or indirectly e.g as a carrier for flavours or as a dispersion agent for gums in the brine. 
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However, from a technological point of view it is possible to make CMP with glucose levels 

of 0.1% or lower. Low glucose contents can be obtained by avoiding direct addition of 

glucose or other sugars and by selecting ingredients for cooked meat manufacturing that do 

not contain glucose; the latter may require the development of e.g. flavours that use carrier 

material other than glucose.  

4. Conclusion 

The use of the protective culture Lactobacillus sakei 10A on anaerobically packaged cooked 

meat products maintains or, in some cases, prolong the shelf-life while protecting against 

growth of Listeria monocytogenes. The effect of protective cultures in general and of 

Lactobacillus sakei 10A in particular on the organoleptic characteristics of cooked meat 

products depends on the glucose content and the buffering capacity of these products. We 

developed the hypothesis that only protein rich cooked meat products containing low amounts 

of glucose benefit from the use of a protective culture. The next chapter (Chapter 7) studies 

the mechanism of action by which the protective culture L. sakei 10A inhibits the growth of 

L. monocytogenes. 
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Chapter 7 
The contribution of lactic acid production versus nutrient 

competition to the growth inhibition of Listeria 
monocytogenes by the non-bacteriocinogenic 

Lactobacillus sakei 10A 

Summary 

The study presented in this chapter investigates possible mechanisms by which the non-

bacteriocinogenic Lactobacillus sakei 10A inhibits Listeria monocytogenes.  

First, the antagonistic character of L. sakei 10A was confirmed by the observation of growth 

inhibition of L. monocytogenes in the presence of L. sakei 10A in buffered BHI-broth (b-BHI) 

(7°C, anaerobic). When assessing the growth of L. monocytogenes in the cell free 

supernatants (CFS), prepared after centrifugation of a 10A-culture at different time points 

during its growth in b-BHI, it became clear that the older the culture was, the more inhibitory 

properties it had, meaning that either production of (an) antimicrobial compound(s) or 

nutrient competition caused the inhibition.  

The precise role of lactic acid production and nutrient competition was more obvious during 

co-culture experiments in two types of broths, differing from each other in their glucose level 

and in the presence/absence of yeast extract, Mn2+ and Mg2+. The presence of more nutrients 

did not prevent the growth inhibition of L. monocytogenes by L. sakei 10A. In the nutrient-

poor broth, inhibition coincided with the moment of glucose depletion. In the nutrient-rich 

broth, an increased lactic acid production was thought to cause the inhibition. Subsequent 

challenge experiments with L. monocytogenes in the CFS, obtained from 10A’s growth in the 

media with the two different nutrient levels, allowed distinction between the different 

antagonistic effects (pH-reduction, lactic acid production and nutrient competition). In the 

nutrient-poor broth, growth inhibition was exclusively caused by nutrient competition and 

competition for glucose was, at least partly, involved. In the nutrient-rich broth, growth 

inhibition was caused by a combination of several factors: the antimicrobial effect of the 

produced lactic acid/lactate, nutrient competition and pH-reduction as a consequence of lactic 

acid formation.  

In a final experiment, no effect of supplementation with vitamins and minerals on the 

inhibition phenomena could be observed. 
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1. Introduction 

The last two decades, biopreservation became an important field of research. The technology 

to control the food born pathogen Listeria monocytogenes in cooked meat products (CMP) by 

the use of protective lactic acid bacteria (LAB) has been demonstrated in several studies 

(Andersen, 1995a; Hugas et al., 1998; Bredholt et al., 1999; Bredholt et al., 2001; Amezquita 

& Brashears, 2002; Budde et al., 2003; Mataragas et al., 2003a) and also in the previous two 

chapters (Chapters 5 and 6). The search for protective cultures (PC) to be used in sliced CMP 

has mainly been directed towards LAB capable of producing bacteriocins. However, the 

sometimes limited effectiveness of these cultures in the meat substrate (Rodriguez et al., 

2002) and the concern for resistance development (Ennahar et al., 2000) has driven the search 

to alternative non-bacteriocinogenic PC. Although the effectiveness of such PC to protect 

CMP against the proliferation of post-contaminating L. monocytogenes cells has been proven 

(Bredholt et al., 1999; 2001; Chapter 6), the mechanism behind the inhibitory activity is not 

well understood. Therefore, it was the objective of this chapter to study more in detail the 

mechanism behind the growth inhibition phenomena, mediated by Lactobacillus sakei 10A. 

Hydrogen peroxide production by LAB does not occur under anaerobic conditions (Kandler 

& Weiss, 1986) and is therefore playing a minor role in the antagonism of protective LAB in 

CMP packaged under vacuum or under a modified atmosphere. 

The in-situ production of organic acids, mainly lactic acid, and the subsequent in-situ 

acidification is another important mechanism of biopreservation (Juven et al., 1998). In 

anaerobically packaged CMP, LAB sometimes exert antilisterial effects that can not be 

explained by lactic acid production and pH-decrease alone (Chapters 5 and 6) and this 

because of mainly two reasons. First of all, the amount of lactic acid produced at the moment 

of inhibition by the PC is most often negligible compared with the amount already present in 

CMP (Metaxopolous et al., 2002; Chapter 2) due to the low carbohydrate content of most 

CMP. The high buffering capacity of most CMP further limits the pH-reduction, following 

lactic acid production as observed in chapter 6. This means that another mechanism must also 

be responsible for the biopreservative effect. 

Several authors have proposed nutrient competition as an explanation for the inhibition of 

L. monocytogenes by non-bacteriocinogenic LAB in anaerobically packaged CMP (Buchanan 

& Bagi, 1997; Bredholt et al., 1999; Devlieghere et al., 2004; Vermeulen et al., 2006) or other 
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food products (Nilsson et al., 1999; 2004). Up to now it is, however, not clear for which 

nutrient(s) competition occurs.  

In this chapter, to examine the mechanism(s) by which L. sakei 10A exerts its biopreservative 

effect, L. monocytogenes was chosen as target organism. Experiments were performed in 

liquid growth media with a pH of 6.2 at 7°C and under anaerobic conditions to simulate, at 

least partly, the conditions in vacuum packaged or modified atmosphere packaged sliced 

CMP. Interaction experiments between L. sakei 10A and L. monocytogenes were followed in 

time by challenge experiments with L. monocytogenes in the cell free supernatant obtained 

from the growth of L. sakei 10A. Furthermore, the effect of supplementing the growth 

medium with extra nutrients, glucose, vitamins and minerals on the inhibitory interaction was 

investigated. The work of this chapter aimed to determine the role of pH, lactic acid and 

nutrient competition in the inhibition of L. monocytogenes by L. sakei 10A.  

2. Materials and methods 

2.1. Bacterial strains 

Lactobacillus sakei subsp. carnosus 10A and Listeria monocytogenes LMG 13305 were used 

throughout this study. The non-bacteriocinogenic L. sakei 10A was isolated from vacuum 

packaged, sliced, cooked turkey fillet in chapter 2. L. monocytogenes LMG 13305, isolated 

from soft cheese, was obtained from the culture collection of the Laboratory Microbiology 

Gent (LMG, Gent University, Belgium). Stock cultures of the strains were maintained in de 

Man Rogosa Sharpe (MRS, Oxoid, Oxoid Limited, Basingstoke, Hampshire, UK) broth or 

Brain Heart Infusion (BHI, Oxoid) broth supplemented with 15% glycerol at -75°C. Working 

cultures of the strains were maintained on MRS-slants or Tryptone Soya Agar (TSA, Oxoid) 

slants at 7°C and revived by transferring a loop of inoculum into MRS-broth or BHI-broth 

followed by incubation at 30°C for 24h.  

2.2. Growth media  

The different liquid growth media used in this study are summarised in Table 7.1. All media 

were adapted to pH 6.2 with 4N HCl before sterilisation (Fluka, Sigma-Aldrich Chemie 

GmbH, Bucks, Switzerland). 
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Table 7.1. Composition of the different growth media used in this chapter 
Concentration (g/l)  

 

 

 

Component 

Buffered 

BHI-broth  

 

(b-BHI) 

Buffered 

modified  

BHI-broth  

(b-mBHI) 

Buffered 

adapted  

BHI-broth  

(b-aBHI) 

Buffered modified 

glucose-supplemented 

BHI-broth  

(b-mgBHI) 

Buffered modified  

BHI-broth supplemented 

with vitamins/minerals 

(s-b-mBHI) 

Buffered modified glucose-

supplemented BHI-broth supplemented 

with vitamins/minerals  

(s-b-mgBHI) 

BHIa  37.0 37.0 37.0 37.0 37.0 37.0 

KH2PO4
b  15.9 15.9 15.9 15.9 15.9 15.9 

K2HPO4
b 21.6 21.6 21.6 21.6 21.6 21.6 

Yeast extracta - - 4.0 - - - 

D-(+)-glucosec - - 18.0 18.0 - 18.0 

MgSO4.7H2Oc - - 0.2 - 0.41 0.41 

MnSO4.H2Oc  - - 0.04 - 0.02 0.02 

NaClb  - 25.0 25.0 25.0 25.0 25.0 

Tween 80c - 1 (ml/l) 1 (ml/l) 1 (ml/l) 1 (ml/l) 1 (ml/l) 

Fe-citratec - - - - 0.088 0.088 

Biotind - - - - 0.5 0.5 

Riboflavinc - - - - 5 5 

Thiamind - - - - 1 1 
a, Oxoid; b, Fluka; c, Sigma (Sigma-Aldrich Corporation, St. Louis, Missouri, USA); d, Acros Organics (Acros Organics, Geel, Belgium) 
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2.3. Experimental set-up  

The outline of this chapter is schematically presented in Table 7.2.  

 

Table 7.2. Overview of the different experiments of this chapter 
First experiment: 
Interaction experiment in b-BHI and subsequent challenge experiment in CFSd of L. sakei 10A 

Part 1: co-culture experiment Part 2: challenge experiment in CFS 
Medium Test series Medium Test series 

10Aa   CFSd (d0) 
CFS (d3) 
CFS (d7) 
CFS (d10)  
CFS (d14) 

 
LIS 

LISb    

b-BHI 

10A+LISc   
Second experiment: 
Role of lactic acid production versus nutrient competition: co-culture experiment and challenge 
experiment in CFS 
Part 1: co-culture experiment Part 2: challenge experiment in CFS 
Medium Test series Medium Test series 

10A 
 
 

CFS 
CFS-Pe 
BHI-Pf 

BHI-P-LAg 

 
LIS 

LIS    

b-mBHI 

10A+LIS   
10A CFS 

CFS-P 
BHI-P 
BHI-P-LA 

 
LIS 

LIS    

b-aBHI 

10A+LIS   
Third experiment: 
Interaction experiments – supplementation with vitamins and minerals  

co-culture experiment 
Medium Test series 
b-mBHI 10A 
 LIS 
 10A+LIS 
s-b-mBHI 10A 
 LIS 
 10A+LIS 
b-mgBHI 10A 
 LIS 
 10A+LIS 
s-b-mgBHI 10A 
 LIS 
 10A+LIS 
a, 10A = broth inoculated with L. sakei 10A; b, LIS = broth inoculated with L. monocytogenes; c, 10A+LIS = 
broth inoculated with L. sakei 10A and L. monocytogenes; d, CFS = cell free supernatant; e, CFS-P = pH-adjusted 
CFS; f, BHI-P = pH-adjusted BHI-broth; g, BHI-P-LA = pH-adjusted and lactic acid supplemented BHI-broth 
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In all three experiments, growth of the cultures was followed in liquid broths in gastight jars 

(Chapters 2 and 3) filled with 100% N2 during storage at 7°C to simulate the refrigerated 

vacuum packaged storage conditions of CMP. Inoculation levels were the same for all 

experiments throughout this study: 106 cfu/ml for L. sakei 10A (10A) and 102 cfu/ml for 

L. monocytogenes (LIS). At several time intervals during storage, samples were taken to 

determine cell number(s), pH and in some cases glucose and lactic acid content. Each growth 

experiment was performed in triplicate. Methods for preparation, flushing with 100% N2, 

inoculation and sampling of the jars were similar to the ones applied in chapter 2 and 3 and 

are described in detail by Devlieghere et al. (1998).  

During growth in mono-culture, cell numbers of L. sakei 10A and L. monocytogenes were 

determined on TSA-agar (aerobic incubation for 48h at 30°C). During growth in co-culture 

(10A+LIS), cell numbers of L. sakei 10A were determined on MRS-agar supplemented with 

sorbic acid (1.4 g/l) (pH=4.7) (aerobic incubation for 48h at 30°C) and cell numbers of 

L. monocytogenes were determined on ALOA (Agar Listeria Ottaviani and Agosti) (Biolife, 

Biolife Italiana S.r.l., Milan, Italy) (aerobic incubation for 2 days at 37°C) supplemented with 

ALOA Enrichment selective supplement (Biolife). 

The pH was measured by using a pH-electrode (Ingold, MGDX K57, Urdorf, Switzerland) 

connected to a pH-meter (Knick, type 763, Berlin, Germany). 

Glucose and lactic acid were determined by a spectrophotometric method with an enzymatic 

reagent (glucose-oxidase-peroxidase (GOP) reagent) and a HPLC-method, respectively, as 

previously described in chapters 6 and 2, respectively. 

2.4. Co-culture experiment in b-BHI and subsequent challenge 
experiment in CFS of 10A 

For this first experiment, buffered BHI-broth (b-BHI), containing 0.2% of glucose, was used 

(Table 7.1). The goal was (1) to determine whether L. sakei 10A can inhibit L. monocytogenes 

when growing in co-culture in b-BHI, (2) to determine whether L. monocytogenes is inhibited 

in its growth when cultured in the cell free supernatant (CFS) obtained from the growth of 

L. sakei 10A in b-BHI and (3) to determine whether the extent of the latter inhibition differs 

according to the time during 10A’s growth at which the CFS is obtained. 

In the first part of this experiment (Table 7.2), the growth of L. monocytogenes in mono-

culture and in co-culture with L. sakei 10A was determined. Simultaneously, the growth of 

L. sakei 10A in mono-culture was determined and at day 0, 3, 7, 10 and 14 of 10A’s growth, 
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three jars were opened to prepare from the growth medium the cell free supernatant (CFS) by 

centrifugation at 8000g for 10 min followed by filter sterilisation through a bottle top filter (φ 

0.2 µm, Nalgene, Rochester, US) and finally freezing at -75°C until further use. The CFS 

taken at time x was designated as CFS(dx). 

In the second part of this experiment (Table 7.2), the growth of L. monocytogenes was studied 

in the different cell free supernatants.  

2.5. Role of lactic acid production versus nutrient competition 

The objective of this experiment was to further elucidate the mechanism behind the growth 

inhibition of L. monocytogenes by L. sakei 10A and this by investigating two potential 

antagonistic systems: either lactic acid/lactate production or nutrient competition. To 

investigate which role each of these two mechanisms might play, the inhibition of 

L. monocytogenes by L. sakei 10A was studied in two growth media with a different nutrient 

level. It was the aim to find out if supplementation of the growth medium with a mixture of 

different nutrients (carbohydrate, amino-nitrogen, vitamins and minerals) could result in 

elimination of the growth inhibition of L. monocytogenes by L. sakei 10A. Therefore, two 

different growth media, b-mBHI and b-aBHI (Table 7.1), were used. The two growth media 

differed in their nutrient level and more specifically in the glucose level and in the 

presence/absence of yeast extract, Mn2+ and Mg2+. Therefore, b-mBHI can be seen as a 

nutrient-poor broth, while b-aBHI can be considered as a nutrient-rich broth. 

Similar as in section 2.4., co-culture experiments between L. sakei 10A and L. monocytogenes 

were followed by challenge experiments with L. monocytogenes in the cell free supernatant 

obtained from the growth of L. sakei 10A.  

2.5.1. Co-culture experiment 

In the first part of this experiment (Table 7.2), the growth of L. monocytogenes in mono-

culture and in co-culture with L. sakei 10A was determined in the two types of broths. The 

main question was whether the inhibition of Listeria by 10A would be abolished in the broth 

with the higher nutrient level or not. During the growth experiment, also the evolution in pH, 

glucose and lactic acid concentration of the media was determined. 



Chapter 7 - Mechanism of inhibition  165  

2.5.2. Challenge experiment in CFS 

To distinguish the different antagonistic effects (pH-reduction, lactic acid production and 

nutrient depletion) that occured simultaneously in the co-culture experiments (2.5.1), the 

growth of L. monocytogenes was further studied in the CFS obtained from the mono-culture 

growth of L. sakei 10A after 12 days at 7°C under anaerobic conditions. From chapter 2 it was 

known that strain 10A reaches its stationary phase after 12 days. This was done for both types 

of growth media (b-mBHI and b-aBHI) and always in triplicate. The cell free supernatant 

(CFS) was prepared by centrifugation at 8000g for 10 min followed by filter sterilisation 

through a bottle top filter (φ 0.2 µm, Nalgene). To investigate the role of the pH-decrease, the 

CFSs of both media were split in two different parts (Table 7.3). One part was pH-adjusted to 

pH 6.2 (designated as CFS-P) and the other was not pH-adjusted (designated as CFS). 

Adaptations of the pH were done using 4M HCl or 8M NaOH (Fluka). The role of lactic acid 

was investigated by including a medium (designated as BHI-P-LA), that was either b-mBHI 

or b-aBHI that was adjusted to pH 6.2 and supplemented with lactic acid to contain finally the 

same amount of lactic acid as produced by L. sakei 10A after 12 days of growth.  

 

Table 7.3. Overview of the different media used in the challenge experiment meant to 
separately investigate the role of pH-decrease, lactic acid production and nutrient 
competition 
Designation of 

the medium 

Description Potential antagonistic 

properties 

CFS CFS obtained after 12 days of 10A-growth in 

either b-mBHI or b-aBHI 

Lowered pH, lowered nutrient 

level and produced lactate/lactic 

CFS-P CFS obtained after 12 days of 10A-growth in 

either b-mBHI or b-aBHI and adjusted to pH 6.2  

Lowered nutrient level and 

produced lactate/lactic acid 

BHI-P Either b-mBHI or b-aBHI, adjusted to pH 6.2 None 

BHI-P-LA  Either b-mBHI or b-aBHI, adjusted to pH 6.2 and 

supplemented with lactic acid to have the same 

concentration of lactic acid as in CFS or CFS-P 

Added lactate/lactic acid 

 

To obtain the same lactic acid content as in CFS(d12), small volumes of 0.85% (w/w) lactic 

acid (Sigma-Aldrich) were added in repeating steps, each time followed by a verifying 

measurement of the lactic acid concentration through HPLC-analysis until the desired 

concentration was reached. Finally, a fourth medium serving as a positive control was 

included in the test: b-mBHI or b-aBHI, adjusted to pH 6.2 (BHI-P). Media BHI-P-LA and 
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BHI-P differed from CFS-P and CFS in the absence of nutrient depletion through 10A’s 

growth, allowing the evaluation of the role of nutrient depletion. The media BHI-P-LA and 

BHI-P were also centrifuged and filter sterilised in the same way as was done for the 

preparation of the CFS and this to prevent differences in nutrient composition compared to 

CFS and CFS-P due to these treatments.  

2.6. Co-culture experiments – supplementation with vitamins and 
minerals 

The objective of this experiment was to investigate whether supplementation of the growth 

medium with some specific vitamins and minerals results in elimination of the antagonistic 

effect of L. monocytogenes LMG 13305 by L. sakei 10A. The minerals under study were Fe3+, 

Mn2+ and Mg2 while the vitamins under study were biotin (vitamin B8), riboflavin (vitamin 

B2) and thiamine (vitamin B1). These vitamins and minerals were chosen because it is 

reported that they are essential for the growth of L. monocytogenes as well as for L. sakei 

(Premaratne et al., 1991; Phan-Thanh & Gormon, 1997; Moretro et al., 1998). The growth of 

L. sakei 10A in mono-culture and the growth of L. monocytogenes in mono-culture and in co-

culture with L. sakei 10A was determined in four different media (Tables 7.1 and 7.2): (1) b-

mBHI, (2) s-b-mBHI or b-mBHI supplemented with the vitamins and minerals, (3) b-mgBHI 

and (4) s-b-mgBHI or b-mgBHI supplemented with the vitamins and minerals. To supplement 

the media with these six micro-nutrients, stock solutions in distilled water were prepared of 

Iron(III)-citrate (Sigma), MgSO4.7H2O (Sigma), MnSO4.H2O (Sigma), biotin (Acros 

Organics), riboflavin (Sigma) and thiamine (Acros Organics) at concentrations of 3.77, 

175.48, 8.56, 0.04, 0.09 and 0.43 g/l, respectively. These stock solutions were filter sterilised 

through a bottle top filter (φ 0.2 µm, Nalgene) and an appropriate volume of each of the sterile 

stock solutions was added to the sterile b-mBHI or b-mgBHI medium in order to reach final 

concentrations of 0.088 g/l Fe-citrate, 0.41 g/l MgSO4.7H2O, 0.02 g/l MnSO4.H2O, 0.5 mg/l 

biotin, 5 mg/l riboflavin and 1 mg/l thiamine. These concentrations were reported to be 

minimal concentrations for growth of L. monocytogenes in several chemically defined 

minimal media (Premaratne et al., 1991; Phan-Thanh & Gormon, 1997; Moretro et al., 1998). 

During the experiment not only the evolution of the cell numbers but also the evolutions of 

the pH and the glucose concentration were determined.  
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3. Results and discussion 

3.1. Co-culture experiment in b-BHI and subsequent challenge 
experiment in CFS of 10A 

The growth of L. monocytogenes in mono-culture and in co-culture with L. sakei 10A in b-

BHI at 7°C under anaerobic conditions is presented in Figure 7.1.  

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time(d)

Lo
g 1

0(c
fu

/m
l)

 
Figure 7.1. Interaction at 7°C between L. sakei 10A and L. monocytogenes LMG 13305 in 
b-BHI under anaerobic conditions (■, growth of L. monocytogenes in co-culture with 
10A; ×, growth of L. sakei 10A in co-culture with L. monocytogenes; ●, growth of 
L. monocytogenes in mono-culture) (error bars represent 95% confidence intervals, n=3)  
 
The results confirm once more the antilisterial activity of L. sakei 10A, which was already 

observed before on CMP in chapters 5 and 6. The presence of L. sakei 10A resulted in a lower 

growth rate and a difference in the maximal population density of ± 2 log10(cfu/ml) compared 

to the growth of L. monocytogenes in mono-culture. However, in the presence of L. sakei 

10A, L. monocytogenes still reached very high levels of ± 7 log10(cfu/ml). The growth 

inhibition of L. monocytogenes in b-BHI was less pronounced than these observed in chapters 

5 and 6 on CMP. This might be linked to the fact that L. sakei 10A grew slower in b-BHI-
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broth than on CMP. Furthermore, the growth of L. sakei 10A in b-BHI was characterised by 

an intermediate lagphase phenomenon (Figure 7.1), as described before by Vereecken (2002). 

The reason for the occurrence of this intermediate lagphase is not clear but Vereecken (2002) 

considered two main hypotheses: (1) diauxic growth due to exhaustion of a substrate or (2) 

absence of agitation of the medium during incubation. Different to what was observed in 

CMP, the growth inhibition started not when 10A entered the stationary phase but earlier 

when 10A was still in the exponential growth phase. This corresponds, however, to the 

findings of Vermeulen et al. (2006) in a chemically defined medium, simulating CMP. In 

general, surface growth on solid media is difficult to compare with growth in liquid broths. 

Furthermore, CMP have a more complex composition than liquid broths. 

In the second part of this trial, the growth of L. monocytogenes was studied in several cell free 

supernatants, obtained at different points in time during 10A’s growth in b-BHI (7°C, 

anaerobic). Results are presented in Figure 7.2. Error bars, indicating the 95% confidence 

interval (n=3), are not presented to avoid complexity of the figure.  
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Figure 7.2. Growth of L. monocytogenes LMG 13305 in cell free supernatant obtained 
from the growth of L. sakei 10A at 7°C under anaerobic conditions at different points in 
time (■, CFS(d0); ▲, CFS(d3); ×, CFS(d7); ✳, CFS(d10); ●, CFS(d14)) (mean data of 
three replicates, error bars are not presented to avoid complexity of the figure) 
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However, cell numbers were analysed for significant (P<0.05) differences between the 

different CFS’s by analysis of variance (P<0.05). In general, L. monocytogenes grew slower 

as the culture, from which the CFS was prepared, became older. This effect was most obvious 

when comparing the growth of L. monocytogenes in CFS(d0) and in CFS(d14).  

The result could indicate that the later the CFS was obtained during 10A’s growth, either the 

more extracellular, antimicrobial metabolite(s) were present or the less nutrients were present. 

Since the experiment was performed in a buffered growth medium, the pH-reduction due to 

lactic acid production was very limited (0.25 pH-units) and could be excluded as the cause of 

the antagonism. With regard to the production of antimicrobial(s), hydrogen peroxide was 

excluded because it can only be produced in the presence of oxygen and not in the anaerobic 

conditions that were used here to mimic vacuum packaging or modified atmosphere 

packaging. Furthermore, bacteriocin production was excluded since strain 10A did not 

produce bacteriocin(s) in repeating agar assays (Chapter 2). Therefore, lactic acid/lactate was 

thought to be the most probable antimicrobial that had interfered in the growth inhibition of 

L. monocytogenes by L. sakei 10A in b-BHI. The pH of the medium in this experiment was 

6.2 to 6.3 and this implies the action of lactic acid in its dissociated form. It has been shown 

that the effects of lactic acid on microbial growth at different pH can only be explained if both 

the dissociated and undissociated form is taken into account (Gonçalves et al., 1997). 

In conclusion, two main hypotheses to explain the antagonism were left: (1) inhibition 

through the antimicrobial action of lactic acid/lactate and (2) inhibition through nutrient 

competition. The latter hypothesis was thought to be of prime importance in this b-BHI-

medium since (1) glucose measurements indicated that CFS(d14) contained no glucose 

anymore (0.008 ± 0.001 %) after the 14-days period of 10A-growth and (2) the low initial 

glucose level of BHI (0.2 % before sterilisation) probably had limited the amount of lactic 

acid that was produced. However, in this first experiment, no lactic acid measurements were 

done to confirm our hypotheses. Therefore, it was the objective of the next experiment to 

further investigate these two hypotheses and to find out the role of either lactic acid/lactate 

production or nutrient competition in the observed growth inhibition of L. monocytogenes by 

L. sakei 10A. 
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3.2. Role of lactic acid production versus nutrient competition 

3.2.1. Co-culture experiment 

The objective of this experiment was to evaluate the influence of the nutrient level of the 

growth medium on the growth inhibition of L. monocytogenes by L. sakei 10A and to find out 

whether the presence of a mix of different nutrients (carbohydrate, peptides, amino acids, 

vitamins and minerals) can abolish the growth inhibition. Therefore, the growth of L. sakei 

10A and L. monocytogenes in mono-culture and in co-culture was determined in b-mBHI, a 

nutrient-poor broth and in b-aBHI, a nutrient-rich broth. b-mBHI-broth was not supplemented 

with extra glucose and contained only the 0.2% of glucose that is present in the recipe of BHI 

(Oxoid). b-aBHI-broth was supplemented with 1.8% of glucose in order to reach a final 

glucose content of 2%. The media further differed in the presence/absence of yeast extract (as 

a source of amino-nitrogen, vitamins and minerals), Mn2+ and Mg2+. During sterilisation of 

the media, glucose concentrations decreased due to the Maillard reaction and other 

degradation reactions of glucose. The glucose concentrations that were measured immediately 

after sterilisation were more or less halved compared to the initial glucose concentrations 

before sterilisation: b-mBHI-broth had a mean glucose content of 0.09 ± 0.01 % while b-

aBHI-broth had a mean glucose content of 0.89 ± 0.07%.  

The growth of L. sakei 10A in mono-culture and the corresponding pH-decrease, evolution in 

glucose and lactic acid concentration in b-mBHI and in b-aBHI are presented in Figures 7.3a 

and 7.3b, respectively.  

In b-mBHI, strain 10A grew well and reached ± 7 log10(cfu/ml) after 5 days and its level 

further increased up to 8 log10(cfu/ml) after 12 days. During this time, the glucose of the broth 

was completely consumed. The glucose consumption was 0.076 ± 0.002% and the glucose 

depletion occurred already after 7 days. The glucose consumption resulted in the production 

of lactic acid. After 12 days, lactic acid production amounted to 0.24 ± 0.06%. This level 

exceeded the level of lactic acid that could have been produced from the present glucose. This 

indicates that, after the glucose was depleted, other nutrients were probably also converted to 

lactic acid. The produced lactic acid resulted in a slight pH-drop of the buffered broth from 

6.62 ± 0.01 to 6.38 ± 0.02.  

In b-aBHI, strain 10A grew remarkably faster and to a higher maximal cell number due to the 

higher nutrient level of this broth. Glucose depletion still occurred but now later in time (day 

12). The total glucose consumption after 12 days was 0.80 ± 0.04% and the resulting lactic 
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Figure 7.3. The mono-culture growth (♦) of L. sakei 10A at 7°C in b-mBHI-broth (A) 
and in b-aBHI-broth (B) under anaerobic conditions and the corresponding changes in 
pH (×), glucose (■) and lactic acid (▲) concentration (error bars represent 95% 
confidence intervals, n=3)  
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acid production amounted to 1.62 ± 0.10 %. This level again exceeded the level of lactic acid 

that could have been produced from the consumed glucose, indicating that other nutrients 

might have been converted to lactic acid. Although the medium was buffered, the strong 

production of lactic acid resulted in an important pH-drop from 6.40 ± 0.01 to 4.99 ± 0.03.  

 

The growth of L. monocytogenes in mono-culture and in co-culture with L. sakei 10A and the 

corresponding changes in glucose and lactic acid concentration in b-mBHI and in b-aBHI are 

presented in Figures 7.4a and 7.4b, respectively. 

When comparing the mono-culture growth of L. monocytogenes in the two types of broth, it 

can be seen that L. monocytogenes grew faster in b-mBHI, the broth with less nutrients, than 

in b-aBHI, the nutrient-rich broth. This was unexpected and in contradiction to what was 

observed for the mono-culture growth of L. sakei 10A. This difference was probably 

attributed to the difference in water activity between both media (aw(b-mBHI) = 0.975 and 

aw(b-aBHI) = 0.972). Furthermore, there was a small pH-difference of 0.2 pH-units between 

both media after sterilisation ((pH(b-mBHI) = 6.6 and pH(b-aBHI) = 6.4). Using the 

predictive model ‘pathogen modeling program’ (PMP version 7.0, Eastern Regional Research 

Centrum, Wyndmoor, Pennsylvania, US) it was confirmed that these pH-differences and aw-

differences could explain the slower growth of L. monocytogenes in the nutrient-rich broth. 

 

After having discussed the mono-culture growth of L. sakei 10A and L. monocytogenes in the 

two different broths, the interaction between the two bacteria in the two broths will now be 

discussed. 

In b-mBHI, L. sakei 10A resulted in growth inhibition of L. monocytogenes since between 

day 5 and day 7, the growth rate of L. monocytogenes in co-culture with 10A started to 

decrease compared to the growth rate of L. monocytogenes in mono-culture. After a period of 

14 days this resulted in a difference of the maximal population density with ± 2 log10(cfu/ml). 

The moment, at which the inhibition occurred (between day 5 and day 7), corresponded to the 

moment at which the glucose of the broth was depleted. At day 7, also a higher amount of 

lactic acid (0.36 ± 0.02%) was present compared to the amount of lactic acid (0.13 ± 0.01%) 

produced during mono-culture growth of L. monocytogenes. However, this level was too low 

to result in an antilisterial effect. 

In b-aBHI, L. sakei 10A resulted again in growth inhibition of L. monocytogenes but 

inhibition started between day 7 and day 9, being slightly later than in b-mBHI.  
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Figure 7.4. The growth (full lines; ■,□) of L. monocytogenes in mono-culture (closed 
symbols) and in co-culture (open symbols) with L. sakei 10A and the corresponding 
changes in glucose (▲, ∆) and lactic acid (●, ○) concentrations (broken lines) in b-mBHI 
(A) and in b-aBHI (B) (error bars represent 95% confidence intervals, n=3)  
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This time, growth inhibition was not characterised by a lower growth rate, as it was in b-

mBHI, but from day 7 on an early stationary phase was induced and this resulted in a 

difference in cell number of ± 2 log10(cfu/ml) after the 14-days period. Between day 7 and 

day 9, the moment at which the Listeria number started to stagnate, still sufficient glucose 

was present but the lactic acid content of the medium had already increased up to a level of 

0.79 ± 0.14% (day 7) and 1.16 ± 0.06% (day 9).  

In conclusion, the higher nutrient level of the nutrient-rich broth did not counteract the 

antagonism of L. sakei 10A towards L. monocytogenes. On the one hand, the higher glucose 

level of the nutrient-rich broth delayed the glucose depletion phenomenon that was observed 

in b-mBHI but on the other hand the higher glucose level resulted in a larger lactic acid 

production, causing another type of inhibition. However, conclusions about the real 

contribution of competition for glucose and/or other nutrients and lactic acid production were 

still difficult to make since the concentrations of the nutrients, including glucose, as well as of 

lactic acid changed simultaneously in the media. To examine the individual contribution of 

(1) nutrient competition, (2) lactic acid production and (3) pH-reduction to the observed 

inhibition phenomena, this co-culture experiment was followed by a challenge experiment 

with L. monocytogenes in the CFS from 10A’s growth in both, the nutrient-poor and the 

nutrient-rich broth. 

3.2.2. Challenge experiment in CFS 

To distinguish the different antagonistic effects (pH-reduction, lactic acid production and 

nutrient competition) that occurred simultaneously in the co-culture experiments of section 

3.2.1, the growth of L. monocytogenes was further studied in the CFS from 10A’s growth in 

the nutrient-poor and the nutrient-rich broth. As explained in section 2.5.2. and schematically 

presented in Tables 7.2 and 7.3, the growth of L. monocytogenes was followed in pH-adjusted 

(CFS-P) and non pH-adjusted CFS (CFS) compared to pH-adjusted b-BHI-broth (either b-

mBHI or b-aBHI) (BHI-P) and pH-adjusted b-BHI-broth (BHI-P-LA) that was supplemented 

with lactic acid to have the same lactic acid concentration as produced by L. sakei 10A. The 

results from these growth experiments are presented in Figure 7.5. 

 

L. monocytogenes grew the best in BHI-P since this medium had no lowered pH, did not 

contain lactic acid, either supplemented or produced by L. sakei 10A and still contained all its 

nutrients compared to CFS-P or CFS (Table 7.3).  
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Figure 7.5. Growth of L. monocytogenes in CFS obtained from the growth of L. sakei 
10A (7°C, 100% N2) in b-mBHI-broth (A) and in b-aBHI-broth (B) (×, pH-adjusted 
broth (BHI-P); ●, pH-adjusted and lactic acid supplemented broth (BHI-P-LA); ■, CFS; 
▲, pH-adjusted CFS (CFS-P)) (error bars represent 95% confidence intervals, n=3)  
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By comparing the growth of Listeria in BHI-P with its growth in BHI-P-LA, the contribution 

of the produced amount of lactic acid/lactate to the inhibition, which was observed in the first 

part of the experiment (section 3.2.1), could be revealed. In the nutrient-poor broth (Figure 

7.5a) lactic acid/lactate did not contribute to the inhibition since there was no significantly 

different growth of L. monocytogenes between BHI-P and BHI-P-LA. This indicates that the 

limited lactic acid production (0.24 ± 0.06%) by L. sakei 10A after 12 days of growth in b-

mBHI is not sufficient to have an antilisterial effect. However, in the nutrient-rich broth 

(Figure 7.5b), L. monocytogenes grew much slower in BHI-P-LA than in BHI-P indicating 

that the amount of lactic acid produced (1.62 ± 0.10 %) by L. sakei 10A after 12 days of 

growth in b-aBHI ìs sufficient to result in growth inhibition of L. monocytogenes. 

 

By comparing the growth of the L. monocytogenes strain in BHI-P-LA and CFS-P, the role of 

nutrient competition could be elucidated, since the only difference between these two media 

was that CFS-P was depleted in glucose and maybe in other nutrients because of the prior 

growth of L. sakei 10A (Table 7.3). Further, these two media had the same pH and the same 

lactic acid content. In both, the nutrient-poor and the nutrient-rich broth (Figure 7.5), nutrient 

competition seemed to play a role since L. monocytogenes grew significantly slower in the 

nutrient-depleted CFS-P compared to in BHI-P-LA. It is highly probable that the absence of 

glucose in the CFS-P of both media (b-mBHI and b-aBHI) (see Figure 7.4) caused this 

difference in growth rate. However, the CFS-P contained possibly also lower concentrations 

of other nutrients or might even have been depleted in other nutrients. 

 

By comparing the growth of L. monocytogenes in CFS-P and in CFS, the additional effect of 

the pH-reduction, occurring during L. sakei 10A’s growth, could be determined since these 

media only differed in their pH.  

The difference in pH between CFS and CFS-P, both obtained from the growth of L. sakei 10A 

in the nutrient-poor b-mBHI, was limited (CFS; pH = 6.38 ± 0.02 and CFS-P; pH = 6.20 ± 

0.01). Still, there was a small but significant difference in growth of Listeria between CFS 

and CFS-P. Because the b-mBHI had initially (after sterilisation) a pH of 6.6 and we had 

chosen to adapt the pH of the CFS to pH 6.2 (pH relevant for CMP) and the total pH-decrease 

in b-mBHI was limited to 0.2 pH-units, the pH of the CFS (6.4) was still higher  than the one 

of CFS-P (6.2). It had been better if the initial pH of the two broths, b-mBHI and b-aBHI, 

before the start of the co-culture experiment (after sterilisation), had been adapted to 6.2. In 
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that case the pH of the CFS would have been lower than the one of the CFS-P and the role of 

pH-reduction under these nutrient-limited conditions would have been easier to evaluate.  

The difference in pH between CFS and CFS-P, both obtained from the growth of L. sakei 10A 

in the nutrient-rich b-aBHI, was much larger (CFS; pH = 4.99 ± 0.03 and CFS-P; pH = 6.20 ± 

0.01) and consequently there was a significant slower growth of L. monocytogenes in CFS 

compared to in CFS-P.  

 

Further, the challenge study confirmed the earlier observations of the co-culture experiments 

of section 3.2.1. In the nutrient-poor broth, the growth inhibition of L. monocytogenes by 

L. sakei 10A was almost exclusively caused by nutrient competition. There is a high chance 

that glucose competition was at least partly involved in this nutrient competition phenomenon 

since the CFS from both media were depleted in glucose due to 10A’s growth. However, also 

other nutrients might have been depleted during 10A’s growth. Further, in the nutrient-rich 

broth, the growth inhibition of L. monocytogenes by L. sakei 10A was caused by a 

combination of several factors. Part of the observed inhibition could be attributed to the 

antimicrobial effect of the produced lactic acid/lactate, while the other part of the inhibition 

was attributed to nutrient depletion and pH-reduction as a consequence of lactic acid 

formation.  

The results indicate that the inhibition of L. monocytogenes in CMP by the protective culture 

L. sakei 10A is not based on one mechanism only. However, the inhibition mechanism 

probably differs according to the type of CMP in which the culture is used and is based on the 

combination of nutrient competition on the one hand and lactic acid/lactate production 

together with pH-reduction on the other hand. The results strongly indicate that glucose plays 

a major role in this nutrient competition phenomenon. The contribution of either nutrient 

competition or lactic acid production/pH-reduction probably depends on the nutrient content 

of the product. In CMP with a low glucose content, the observed inhibition will be caused by 

glucose depletion and almost no lactic acid will be produced, while in CMP with a high 

glucose content, the contribution of lactic acid’s antimicrobial effect will become dominant. 

The results from this section indicated that competition for glucose plays a role in the 

observed nutrient competition phenomenon. However, they did not exclude that also other 

nutrients are involved. Therefore, the next experiment tried to find out if competition for 

minerals/vitamins could play a further role. 
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3.3. Co-culture experiments - supplementation with vitamins and 
minerals 

This experiment aimed to examine the effect of supplementation of the growth medium with 

vitamins and minerals on the inhibitory interaction of L. monocytogenes by L. sakei 10A. The 

growth of L. sakei 10A in mono-culture and the growth of L. monocytogenes in mono-culture 

and in co-culture with L. sakei 10A was determined in four different media: b-mBHI, s-b-

mBHI, b-mgBHI and s-b-mgBHI (see section 2.6), differing either in the presence/absence of 

supplemented vitamins and minerals or in their glucose level.  

The mono-culture growth of L. sakei 10A was strongly influenced by the presence/absence of 

the vitamins and minerals. In the media supplemented with these vitamins/minerals, 10A 

immediately started to grow at a higher growth rate compared to its growth in the non-

supplemented media and this was independent on the glucose level. In both media, 

supplemented and non-supplemented with vitamins/minerals, the growth of L. sakei 10A was 

at first not significantly different as the glucose level was different. However, from a certain 

moment during growth (day 7 in the absence of supplementation and day 4 in the case of 

supplementation), the growth of L. sakei 10A started to slow down or even stagnate in the 

media that contained the lower glucose level. Glucose measurements confirmed that the 

moment, at which this stagnation in growth occurred, corresponded to the moment at which 

the glucose of the medium was depleted. This is illustrated in Figure 7.6.  

Similar results and conclusions were obtained for the co-culture growth of L. sakei 10A with 

L. monocytogenes since no significant differences were observed in the growth of L. sakei 

10A between mono-culture and co-culture (data not shown). 

Supplementation with vitamins/minerals, however, did not influence the mono-culture growth 

of L. monocytogenes, neither in the medium with little glucose nor in the medium with a lot of 

glucose. The influence of the glucose level on the growth of L. monocytogenes was similar as 

observed in the experiment of section 3.2.: a faster growth at a lower glucose level 

independent on the presence of vitamins/minerals. Again, small pH- and aw-differences 

between both media were thought to be responsible for these differences in growth. 

By analogy with the mono-culture growth, the presence of extra vitamins/minerals did not 

influence the growth of L. monocytogenes in co-culture with L. sakei 10A. No statistically 

significant differences were obtained in the co-culture growth of L. monocytogenes between 

s-BHI or BHI (either b-mBHI or b-mgBHI). This means that the presence of the investigated 

vitamins and minerals did not eliminate the inhibitory effect of 10A on L. monocytogenes.  
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Figure 7.6. Interaction (7°, vacuum) between L. sakei 10A and L. monocytogenes in b-
mBHI (A) and in s-b-mBHI (B) (full lines; ●, growth of L. sakei 10A in co-culture with 
L. monocytogenes; ▲, mono-culture growth of L. monocytogenes; ■, growth of 
L. monocytogenes in co-culture with L. sakei 10A) and the evolution of the glucose 
concentration during co-culture growth of L. monocytogenes and L. sakei 10A (broken 
lines, ×) (error bars represent 95% confidence intervals, n=3)  
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This result might indicate that the inhibition phenomena that were observed in the BHI-broths 

are not caused by competition for biotin, riboflavin, thiamine, Fe3+, Mn2+ or Mg2+. However, 

this hypothesis is not fully proven by our results since in both media, with and without 

additional glucose, inhibition occurred also due to other reasons than potential competition for 

vitamins and minerals. In b-mBHI (Figure 7.6a) and in s-b-mBHI-broth (Figure 7.6b), the 

moment of inhibition corresponded again exactly to the moment at which the glucose supply 

of the medium was depleted. This indicates that glucose depletion, at least partly, contributed 

to the inhibition phenomenon in this low-glucose broth. In b-mgBHI and in s-b-mgBHI-broth, 

the inhibition was probably, by analogy with section 3.2., mainly caused by the production of 

inhibitory levels of lactic acid/lactate from the higher level of glucose. The mean lactic acid 

production at day 18 in b-mgBHI and in s-b-mgBHI was 1.29 ± 0.17% and 1.83 ± 0.17%, 

respectively. The higher lactic acid production in s-b-mgBHI compared to in b-mgBHI is 

caused by the faster growth of L. sakei 10A in the presence of the supplemented 

vitamins/minerals. In addition, it can not be excluded that the concentrations of the 

supplemented vitamins/minerals were maybe not high enough to avoid nutrient depletion. 

However, we strongly think this was not the case since the chosen concentrations of the 

supplemented nutrients are quite high concentrations that are used in chemically defined 

minimal media for the optimal growth of L. monocytogenes (Phan-Thanh & Gormon, 1997; 

Moretro et al., 1998). 

3.4. Discussion 

The results of this chapter prove that the mechanism behind the inhibition of 

L. monocytogenes by L. sakei 10A is based on a combination of nutrient competition and 

lactic acid production/pH-reduction. The higher the glucose content, the more lactic acid is 

produced which leads to a more extended inhibition. With regard to that part of the inhibition 

that is caused by nutrient competition, it was found that, at least in the BHI-broths used here, 

inhibition starts when glucose is depleted. Also in co-culture experiments on a model cooked 

ham (Chapter 4) growth inhibition of Leuc. mesenteroides LM4 by L. sakei 10A occurred 

approximately at the moment that glucose was almost depleted. However, the same 

conclusion could not be derived from co-culture experiments between B. thermosphacta BT1 

and 10A (Chapter 4) and also not from co-culture studies between L. monocytogenes and 

L. sakei 10A in several real CMP (Chapter 6). In the latter application tests, L. monocytogenes 

did not start to grow in the presence of 10A; the moment of inhibition was in fact the start of 
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these experiments when there was still sufficient glucose present. So, the translation of the 

results of the broth experiments of this chapter towards what really occurs in a CMP is a 

difficult issue. The complexity of the substrate and the presence of the background flora 

makes it more difficult to analyse the inhibition mechanism in meat products compared to in 

artificial growth media. 

Nutrient competition as an explanation for the inhibition of L. monocytogenes by non-

bacteriocinogenic LAB has been proposed by several other authors (Buchanan & Bagi, 1997; 

Bredholt et al., 1999; Nilsson et al., 1999; 2004; Vermeulen et al., 2006). The data of 

Buchanan & Bagi (1997) suggest that the suppression of the maximum population density of 

L. monocytogenes, when growing in co-culture with a non-bacteriocinogenic C. piscicola, is 

related to nutrient depletion since the extent of the suppression decreased when the two 

species were cultured in 3× or 6× BHI-broth. In the study of Nilsson et al. (2005), the cell free 

supernatant of the non-bacteriocinogenic C. piscicola A9b caused a decrease in 

L. monocytogenes cell density, which was abolished by glucose addition, suggesting that 

competition for glucose, at least partly, causes the inhibitory interaction. The results of this 

work are somewhat different since in the presence of a higher glucose content compared to in 

the presence of a lower glucose content, inhibition by L. sakei 10A was still occurring. 

However, the fact that at the moment of inhibition, glucose limitation could be observed, 

confirms the results of Nilsson et al. (2004) and supports the hypothesis that glucose 

depletion, at least partly, causes the inhibition.  

Up to now, there are no studies demonstrating that competition for other nutrients than 

glucose occurs. Vermeulen et al. (2006) could exclude competition for one of 18 different 

amino acids as the cause of inhibition of L. monocytogenes by a L. sakei strain in a chemically 

defined broth simulating CMP. Nilsson et al. (1999; 2005) found comparable results since 

supplementation with amino acids and also with individual vitamins and minerals did not 

eliminate the antilisterial activity of the cell free supernatant of a non-bacteriocinogenic 

C. piscicola A9b. Also this study could not identify any role of vitamins and minerals in the 

inhibition phenomenon.  

4. Conclusion 

In this chapter, the non-bacteriocinogenic protective culture Lactobacillus sakei 10A was 

observed to inhibit the food born pathogen Listeria monocytogenes in different types of liquid 

broths and depending on the composition of the broth, either nutrient competition or lactic 
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acid production/pH-reduction was indicated as the most probable mechanism behind the 

inhibition. The results strongly indicate that glucose is the main component for which 

competition occurs.  

This chapter was the last chapter dealing with biopreservation by means of lactic acid 

bacteria. In the next chapter (Chapter 8), another type of biopreservation will be investigated: 

bacteriophages to prevent growth of L. monocytogenes on vacuum packaged sliced CMP. 





 

Chapter 8 
 
 

 
 
 
 
 
 
 
 
 
 

Treatment with bacteriophage P100 as an effective 
biopreservation method to control Listeria monocytogenes on 

sliced and vacuum packaged cooked meat products 
 
 

Redrafted from 

L. Vermeiren, F. Devlieghere, D. De Meester, M. Schellekens and J. Debevere 

International Journal of Food Microbiology 
In preparation for submission 

 



 



Chapter 8 – Bacteriophages to control L. monocytogenes on cooked meat products 183 

Chapter 8 
Treatment with bacteriophage P100 as an effective 

biopreservation method to control Listeria 
monocytogenes on sliced and vacuum packaged cooked 

meat products 

Summary 

This chapter reports on the use of bacteriophage P100 to prevent proliferation of post-

processing contaminating L. monocytogenes cells on vacuum packaged, sliced, cooked meat 

products. 

First, broth experiments revealed that the three L. monocytogenes strains, used in chapters 5 

and 6 of this PhD-work, were each susceptible to the action of bacteriophage P100 and this at 

30°C as well as at 7°C. However, at 30°C the susceptibility towards P100 was strain-

dependent since the time, at which the OD(600nm) of the growth medium containing 

L. monocytogenes and P100 started to increase, differed among the three strains. Therefore 

subsequent application trials on cooked meat products were making use of a cocktail of the 

three L. monocytogenes strains.  

In a preliminary application test on a cooked poultry product the presence of phage P100 

resulted in a reduction of the L. monocytogenes count with 3.32 log10(cfu/g) compared to the 

untreated control after 21 days of storage (7°C, vacuum). A more elaborate application test on 

cooked ham confirmed the antilisterial effect of P100 on CMP during storage at 7°C under 

vacuum packaged conditions. In the latter experiment, treatment with P100 at a level of 1×107 

pfu/cm2 or 5×106 pfu/cm2 reduced the population of L. monocytogenes after 10 days of 

storage (7°C, vacuum) with 0.97 and 0.61 log10(cfu/g), respectively, compared to the 

untreated control. However, the difference in antilisterial effect between the two different 

phage doses was shown to be not significant.  

In conclusion, this chapter provides evidence on the usefulness of bacteriophage P100 to 

control the growth of L. monocytogenes on sliced, cooked meat products during anaerobic 

storage at 7°C. 
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1. Introduction 

Listeria monocytogenes is a widely distributed opportunistic food born pathogen and 

ingestion of food contaminated with this pathogen may cause listeriosis (Bell & Kyriakides, 

2005). L. monocytogenes is of great concern due to its high mortality rate, wide distribution 

on raw products, psychrotrophic character and its ability to establish itself in various food 

processing environments (Muriana, 1996). Several food items have been associated with 

major outbreaks of listeriosis including vegetables, dairy products (pasteurised milk and 

cheese), fish and fish products (smoked and marinated fish) and also meat products such as 

cured cooked meat products (CMP) (pâté, frankfurters, etc.) (Jemmi et al., 2002; Vitas & 

Garcia-Jalon, 2004; Roberts et al., 2005). Details on prevalence of L. monocytogenes in CMP 

have been described before in chapters 1 and 5.  

Cooked meat products are not only prone to contamination with L. monocytogenes but the 

substrate properties and storage conditions are adequate for the development of this pathogen 

(Bredholt et al., 2001; Devlieghere et al., 2001; Uyttendaele et al., 2004; Chapter 6). 

Outbreaks of listeriosis due to consumption of CMP show the possible risks associated with 

the presence of this pathogen in CMP (Vitas & Garcia-Jalon, 2004; Bell & Kyriakides, 2005). 

The search for innovative strategies to control L. monocytogenes is a major research topic 

within the field of food microbiology. In view of the consumer trends towards natural and 

healthy food products, preservation by means of micro-organisms has been proposed. In 

general, the applied micro-organisms are bacteria and in particular lactic acid bacteria (LAB) 

(Holzapfel et al., 1995; Lücke, 2000). Recently, there is an increased interest in the use of 

bacteriophages as a means of inactivating food born pathogens (Hudson et al., 2005). Several 

recent studies investigated the potential of phages for controlling Campylobacter (Atterbury 

et al., 2003b; Goode et al., 2003), Salmonella (Goode et al., 2003; Whichard et al., 2003), 

E. coli (O’Flynn et al., 2004) and L. monocytogenes (Dykes & Moorhead, 2002; Carlton et al., 

2005). 

Dykes & Moorhead (2002) are, to our knowledge, the sole authors that report on phage 

control of L. monocytogenes in meat. They investigated the effect of listeriophage LH7 on the 

growth and survival of two strains of L. monocytogenes on vacuum packaged beef, which was 

stored at 4°C. The listeriophage had little effect on either of the L. monocytogenes strains 

probably because of the less than optimal bacteria-phage ratio. Carlton et al. (2005) selected 
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for its work the strictly lytic phage P100 and demonstrated its successful application on 

artificially contamined soft cheese to control L. monocytogenes. 

At present, the option of using phages to prevent proliferation of post-contaminating 

L. monocytogenes cells on anaerobically packaged CMP has not been reported. Therefore, the 

objective of this chapter was to investigate the feasibility of bacteriophage P100 to control 

L. monocytogenes in CMP. A first experiment aimed at testing the sensitivity of the three 

L. monocytogenes strains, used in chapters 5 and 6 of this PhD-work, towards P100 at 30°C 

and at 7°C in broth. Further, application trials on cooked chicken fillet and on cooked ham 

were performed to prove the antilisterial effect of P100 during storage at 7°C under vacuum 

packaged conditions.  

2. Materials and methods 

2.1. Bacterial strains and bacteriophage P100 

Three L. monocytogenes strains were used in this study. Strain L. monocytogenes Scott A and 

strain L. monocytogenes LFMFP 45, isolated from cooked pita meat, were present at the 

Laboratory of Food Microbiology and Food Preservation (LFMFP, Gent University, 

Belgium). Strain L. monocytogenes LMG 13305, isolated from soft cheese, was obtained from 

the culture collection of the Laboratory Microbiology Gent (LMG, Gent University, 

Belgium). The indicator strain used for the phage titer determination was Listeria innocua 

B1488, obtained from EBI Food Safety (Den Haag, The Netherlands). Stock cultures of the 

strains were maintained in Brain Heart Infusion (BHI, Oxoid, Oxoid Limited, Basingstoke, 

Hampshire, UK) broth supplemented with 15% glycerol at -75°C. Working cultures of the 

strains were maintained on Tryptone Soya Agar (TSA, Oxoid) slants at 7°C and revived by 

transferring a loop of inoculum into 10 ml BHI-broth followed by incubation at 30°C for 24h.  

Bacteriophage P100, isolated from a sewage effluent sample from a dairy plant in southern 

Germany, was provided by EBI Food Safety (Den Haag, The Netherlands) (Carlton et al., 

2005). The ListexTM P100 solution contained a high concentration (varying from 2.3×1010 to 

5.3×1010 pfu/ml) of P100-phages and was stored at 4°C. 

2.2. Effect of P100 on L. monocytogenes in broth 

The effect of listeriophage P100 on the growth of three L. monocytogenes strains (Scott A, 

LFMFP 45 and LMG 13305) was determined in broth at two different growth temperatures 
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(7°C and 30°C). Experiments were performed in microtiter plates and in triplicate for each 

L. monocytogenes strain and for each incubation temperature. Part of the microtiter plate 

wells contained BHI with L. monocytogenes alone (5×105 cfu/ml) while another part 

contained BHI with L. monocytogenes (5×105 cfu/ml) and P100 (1×108 pfu/ml). Wells 

containing L. monocytogenes alone were prepared by filling them with 100 µl of BHI-broth 

and 100 µl of the appropriate dilution (in BHI-broth) of a 24h culture of the respective 

L. monocytogenes strain. Wells containing L. monocytogenes and P100 were prepared by 

filling them with 100 µl of the appropriate dilution (in BHI-broth) of a 24h culture of the 

respective L. monocytogenes strain and 100 µl of the appropriate dilution (in BHI-broth) of 

the ListexTM P100 solution. Microtiter plates were incubated at 30°C for 72h or at 7°C for 7 

days. Growth was followed by measuring the optical density at 600 nm using a Versamax 

microplate reader (Molecular devices, Sunnyvale, CA, USA). OD-measurements of the broth 

inoculated with L. monocytogenes alone were corrected by the OD of a control consisting of 

only pure BHI, while measurements of the broth inoculated with L. monocytogenes and P100 

were corrected by the OD of a control consisting of BHI and P100. 

2.3. Effect of P100 on L. monocytogenes in cooked chicken fillet 

This experiment on cooked chicken fillet was a preliminary experiment to test the feasibility 

of bacteriophage P100 to control the growth of L. monocytogenes on cooked meat products. 

Further, this experiment allowed evaluation of the practical procedure for studying the 

interaction between phages and bacteria on CMP.  

The test product was industrially prepared, sliced, vacuum packaged, cooked chicken fillet. 

The product was obtained from a Belgian meat company and immediately after production 

transferred to the laboratory under cooled conditions. An ‘industrially prepared’ product was 

chosen to test the antilisterial effect of P100 in the presence of a realistic initial level of 

background flora.  

The product was treated in three different ways: (1) non-inoculated product (control), (2) 

product inoculated with a cocktail of three L. monocytogenes strains (Scott A, LFMFP 45 and 

LMG 13305) at 10 cfu/g, (3) product inoculated with the same three-strain cocktail of 

L. monocytogenes and subsequently treated with P100 (treatment level of 1x107 pfu/cm2) 

(MOI of 4x106). In the case of inoculation with L. monocytogenes, a 24h culture (BHI-broth, 

30°C) of each L. monocytogenes strain was diluted in Peptone Physiologic Solution (PPS; 8.5 

g/l NaCl (VWR, VWR International, Leuven, Belgium) and 1 g/l peptone (Oxoid)) to prepare 
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the inoculum of the three-strain L. monocytogenes cocktail. From the appropriate dilution of 

the L. monocytogenes cocktail, 500 µl was divided over and spread on the surface of ± 150 g 

of meat product with a spatula to reach the desired inoculation level of L. monocytogenes (± 

10 cfu/g). In the case of treatment with P100, the product was inoculated with the ListexTM 

P100 solution more or less 60 seconds after inoculation with L. monocytogenes. From the 

appropriate dilution of the phage solution containing 2×1010 pfu/ml, 500 µl was divided over 

and spread on the surface of ± 150 g of product with a spatula to reach the desired inoculation 

level of 1x107 pfu/cm2. 

After inoculation, the 150 g portions of product were vacuum packaged and stored at 7 ± 1°C 

in a ventilated refrigerator. Vacuum packaging was performed as described before in Chapter 

2.  At regular time intervals during storage, samples were analysed to determine the number 

of LAB, the presence of L. monocytogenes in 25 g of sample and/or the number of 

L. monocytogenes.  

2.4. Effect of P100 on L. monocytogenes in cooked ham 

An application trial on cooked ham was performed in order to investigate the efficiency of 

bacteriophage P100 to control the growth of L. monocytogenes in sliced and vacuum 

packaged cooked ham during refrigerated storage.  

The test product was an industrially prepared, sliced, vacuum packaged, cured cooked ham 

with the Belgian quality label ‘Meesterlyck’. The product was obtained from a Belgian meat 

company and immediately after production transferred to the laboratory under cooled 

conditions. The company estimated the product’s shelf-life at 7°C for ± 2 weeks under 

vacuum packaging.  

The cooked ham was treated in four different ways: (1) non-inoculated product (control), (2) 

product inoculated with a cocktail of three L. monocytogenes strains at 10 cfu/g (Scott A, 

LFMFP 45 and LMG 13305), (3) product inoculated with the same three-strain cocktail of 

L. monocytogenes and subsequently treated with P100 at 1x107 pfu/cm2 (MOI of 5x106) and 

(4) product inoculated with the three-strain cocktail of L. monocytogenes and treated with 

P100 at 5x106 pfu/cm2 (MOI of 2.6x106). Two treatment levels were tested to optimise the 

treatment level and allow selection of the most economical phage dose. Each treatment was 

tested in triplicate. 

Inoculation with L. monocytogenes and treatment with P100 was done in the same way as 

described before in section 2.3 of this chapter. From the appropriate dilution of the 
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L. monocytogenes cocktail, 100 µl was spread on the surface of ± 150 g product to obtain 

approximately 10 cfu/g of L. monocytogenes. From the appropriate dilution of the phage 

solution (5.3×1010 pfu/ml), 150 µl was spread on the surface of ± 150 g of product to obtain 

1x107 pfu/cm2 or 5x106 pfu/cm2 of P100. 

After inoculation, the 150 g portions of product were vacuum packaged and stored at 7 ± 1°C 

in a ventilated refrigerator. Vacuum packaging was performed as described in section 2.3. At 

regular time intervals during storage, cooked ham samples were analysed to determine the 

total aerobic psychrotrophic count, the number of LAB, the presence of L. monocytogenes in 

25 g of sample and/or the number of L. monocytogenes. Samples treated with P100 were also 

subjected to phage number enumeration. 

2.5. Chemical analyses 

The cooked meat products were characterised by determining the pH, water activity, NaCl 

level, dry matter, lactate level and nitrite level. The pH was measured by using a pH-electrode 

(Ingold, MGDX K57, Urdorf, Switzerland) connected to a pH-meter (Knick, type 763, Berlin, 

Germany). NaCl-content was determined according to the method of Mohr, a titrimetric 

determination of chloride ions (Skoog et al., 1996). The water activity was measured by using 

an aw cryometer (Nagy AWK-20, Gäufelden, Germany). Lactate was determined following an 

enzymatic method (method Boehringer). The level of nitrite was determined according to ISO 

2918. Moisture and ash were determined according to standard AOAC (1990) procedures. 

2.6. Microbiological analyses 

A 15 g sample was taken aseptically and a decimal dilution series in PPS was prepared to 

plate the appropriate dilutions on the appropriate agar media. Total aerobic psychrotrophic 

count and number of LAB were determined according to the pour plate technique on Plate 

Count Agar (PCA, Oxoid) (aerobic incubation at 22°C for 3-5 days) and de Man Rogosa 

Sharpe (MRS, Oxoid) agar (aerobic incubation at 30°C for 3-5 days), respectively.  

Quantitative enumeration of L. monocytogenes was done by spreadplating onto ALOA (Agar 

Listeria Ottaviani and Agosti) (Biolife, Biolife Italiana S.r.L., Milan, Italy) (aerobic 

incubation for 2 days at 37°C) supplemented with ALOA Enrichment selective supplement 

(Biolife). The presence of L. monocytogenes in 25 g was determined in three steps: (1) a 

primary enrichment (24h, 30°C) of a 10-fold diluted homogenised 25 g sample in demi-Fraser 

broth (Biomérieux, Brussels, Belgium), (2) subsequently, 0.1 ml of incubated demi-Fraser 
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broth was transferred to 10 ml Fraser broth (Biomérieux) for secondary enrichment (24h, 

30°C) and (3) identification using MiniVidasLMOII (Biomérieux). 

2.7. Phage titer determination 

For phage number enumeration of phage-treated products, a soft agar overlay technique was 

used based on the method described by Carlton et al. (2005). As a positive control, the 

ListexTM P100 stock solution was included in the test.  

Samples (10 g) from phage-treated products were first diluted tenfold in sterile 0.1 M 

phosphate buffer of pH 7.4 (Sigma, Sigma-Aldrich Corporation, St. Louis, Missouri, USA) 

and then filter sterilised through a membrane filter (∅ 0.45 µm, Schleicher & Schuell 

Microscience, Dassel, Germany) to avoid bacterial contamination of the soft agar double layer 

plates in the subsequent plaque assay.  

The phage titers of the filtrates of the phage-treated products and of the ListexTM P100 stock 

solution were determined by counting plaques from their serial 10-fold dilutions. Volumes of 

20 µl of each phage dilution were mixed with 200 µl (106 cfu) of cells of the indicator strain 

L. innocua. After incubation for 30 min at 30°C, the cell-phage mixture was mixed with 3 ml 

of preheated 4YT (yeast trypton) semi-soft agar (32 g/l trypton (Oxoid), 20 g/l yeast extract 

(Oxoid), 5 g/l NaCl (VWR) and 7.5 g/l agar (Oxoid)) and this final mixture was quickly 

poured onto pre-heated 4YT-agar plates (32 g/l trypton, 20 g/l yeast extract, 5 g/l NaCl and 15 

g/l agar). Following incubation for 24h at 30°C, plaques were counted.  

2.8. Statistical analyses 

The application test on cooked ham was conducted in triplicate. All statistical analyses were 

performed by using the software SPSS 12.0 (SPSS, Chicago, IL, USA). t-tests were applied to 

determine the significance (P<0.05) of differences in phage titers between the two different 

treatment levels and between the beginning and the end of storage. Analysis of variance (One-

way ANOVA) was applied to determine the significance (P<0.05) of differences in bacterial 

counts between the three different treatments. 
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3. Results and discussion 

3.1. Effect of P100 on L. monocytogenes in broth 

The effect of phage P100 on L. monocytogenes Scott A, LFMFP 45 and LMG 13305 in BHI-

broth at 30°C and 7°C is presented in Figures 8.1 and 8.2, respectively.  

At 30°C, in absence of phage P100, the three L. monocytogenes strains displayed a very 

similar pattern since all reached a maximal OD-value of approximately 0.6 already after about 

8h and the three strains grew with a comparable growth rate as indicated by the slope of the 

OD-curves.  
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Figure 8.1. The growth of L. monocytogenes in BHI-broth at 30°C without (full symbols) 
and with (hollow symbols) listeriophage P100 (◊,♦LFMFP 45; ■,□ Scott A;▲,∆ LMG 
13305) (symbols represent mean OD-value of three replicates)  
 
In the presence of phage P100, the growth of the L. monocytogenes strains was inhibited. The 

extent of inhibition varied among the strains (Figure 8.1). In the case of strain LFMFP 45, no 

increase in OD was observed during 72h. The detection limit or the time at which the 

OD(600nm) starts to increase was known to be ± 1×107 cfu/ml for L. monocytogenes 

(Francois et al., 2005). Therefore, no increase in OD can mean that the strain either has not 
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grown due to the action of P100 or that the strain had grown to a level lower than 7 

log10(cfu/ml) due to the action of P100. In the case of strain Scott A and LMG 13305, the OD 

increased but only after a prolonged time: at ± 15 hours for strain Scott A and at ± 58 hours 

for strain LMG 13305 compared to ± 1 hour in the absence of P100. The extension of the 

detection time (the time at which the OD(600nm) starts to increase) in the presence of P100 

means that the phage is active. However, a part of the cells was probably still intact and these 

cells were doubling in time since the OD finally started to increase. When finally growing, 

L. monocytogenes Scott A and LMG 13305 grew at a lower growth rate compared to in the 

absence of P100. Furthermore, the maximal OD-value of the strains was reduced by the 

presence of P100 and after having reached a maximal OD-value, the OD started to decrease 

slightly proving the lytic action of the phage. According to Carlton et al. (2005) P100 is 

strictly lytic. The action of lytic phages results in the disruption of the microbial cell wall 

(Hudson et al., 2005) and in clearing of the growth medium (Whichard et al., 2003).  

The results indicate that the ListexTM P100 solution has an antilisterial effect at 30°C in broth 

towards all three L. monocytogenes strains. Similar experiments at 30°C were performed by 

Dykes & Moorhead (2002) in Tryptone Soya Broth. However, these authors observed a more 

limited effect of the investigated listeriophage LH7. They reported only a slight extension of ± 

2 hours in the moment of OD-increase for two different L. monocytogenes strains by adding 

listeriophage LH7 at the start of the incubation period.  

Since the final goal of this experiment was to find out if P100 could control the growth of 

L. monocytogenes under refrigerated conditions, broth experiments were repeated at 7°C. The 

latter experiment lasted 7 days and during this period no increase in OD occurred when P100 

was added while in absence of P100, the strains reached approximately their maximal OD-

value after this 7-days period (Figure 8.2).  

Dykes & Moorhead (2002) observed at 7°C only for one of two investigated 

L. monocytogenes strains an extension (of 9 days) of the time at which the OD started to 

increase. Although we cannot exclude that growth of the L. monocytogenes strains could have 

started later than the 7th day, our results clearly demonstrate the in-vitro effectiveness at 7°C 

of the P100 solution towards L. monocytogenes.  

 

In broth, ListexTM P100 was effective towards all three investigated L. monocytogenes strains 

but at 30°C the efficiency of the activity of P100 was strain dependent and the highest 

effectiveness was observed towards L. monocytogenes LFMFP 45. Strain variability in the 
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susceptibility of the genus Listeria towards phages is known (Loessner & Busse, 1990) and 

may be due to strain variation in the cell wall composition and more specifically in the 

number and type of receptor molecules (Deutsch et al., 2004; O’Flynn et al., 2004), 

differences in restriction/modification systems in the host (O’Flynn et al., 2004) or differences 

in burst rate and burst size or the rate at which phages escape and the number of phages that 

escape from the bacterial host. According to Carlton et al. (2005) almost all of the phages 

infecting organisms of the genus Listeria feature a very narrow host range, while P100 

features an unusually broad host range within the genus Listeria, similar to phage A511 

(Loessner & Busse, 1990). The lytic reaction of P100 is not related to one species or serovar 

within the genus Listeria (Carlton et al., 2005).  
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Figure 8.2. The growth of L. monocytogenes in BHI-broth at 7°C without (full symbols) 
and with (hollow symbols) listeriophage P100 (◊,♦LFMFP45; ■,□ Scott A;▲,∆ LMG 
13305) (symbols represent mean OD-value of three replicates) 

3.2. Effect of P100 on L. monocytogenes in cooked chicken fillet 

The chemical composition of the cooked chicken fillet was: 27.41% of dry matter, 3.11% 

NaCl (in water phase), pH of 6.25, water activity of 0.9797, residual nitrite level <5 mg/kg (as 

NaNO2) and (D+L)-lactic acid level of 1.01%.  
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Table 8.1 shows the effect of phage P100 on the growth of L. monocytogenes on the surface 

of cooked chicken fillet during vacuum packaged storage at 7°C.  

 

Table 8.1. The growth (log10(cfu/g)) of the artificially inoculated three-strain 
L. monocytogenes cocktail on vacuum packaged cooked chicken fillet at 7°C without 
listeriophage P100 (LIS) and with listeriophage P100 (LIS+P100) at a dose of 1x107 

pfu/cm2  
Time (days) LIS LIS + P100 

0 1.00 1.00 

7 2.46 2.04 

14 4.62 1.85 

21 4.32 1.00 

 

This experiment was performed only once and not in triplicate since it was only a preliminary 

experiment. Therefore, statistical analysis of the data was not possible. However, the effect of 

P100 could be undoubtedly determined. In the non-inoculated cooked poultry product (= 

blank), L. monocytogenes was absent (in 25 g of sample) during the whole storage period, 

indicating that the test product was not contaminated with this pathogen. In the product 

inoculated with the cocktail of the three L. monocytogenes strains, L. monocytogenes grew 

approximately 3.5 log10(cfu/g) within two weeks. After these two weeks, the level of 

L. monocytogenes stagnated probably due to a growth-inhibiting effect of the endogenous 

lactic acid flora. Indeed, the number of lactic acid bacteria reached a mean value of 7.7 

log10(cfu/g) at day 14. It is known that LAB can affect the growth of L. monocytogenes when 

they reach levels of 107 cfu/g or more (Chapters 5 & 6). 

In the product inoculated with L. monocytogenes and phage P100, L. monocytogenes could 

only grow ± 1 log10(cfu/g) after 7 days but during further storage its level decreased and after 

three weeks no L. monocytogenes cells could be detected anymore. Although the endogenous 

lactic acid flora might have contributed partly to the observed antilisterial effect from day 14 

on, it is clear that the presence of the phage solution retards the growth of L. monocytogenes. 

In this experiment, no effect of the phage solution on the endogenous LAB-flora could be 

observed. Initially, 2.2 log10(cfu/g) of LAB were present. This corresponds to the levels that 

normally are present on CMP: 0.5-3 log10(cfu/g) (Samelis et al., 2000a; Chapter 6). After one 

and two weeks of storage, the LAB-count of the control sample was increased to a level of 5.5 

and 7.4 log10(cfu/g), respectively. A cell number of 7 log10(cfu/g) is often considered as the 
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end-point for the microbial shelf-life of cooked meat products (Korkeala et al., 1987; Chapter 

3).  

3.3. Effect of P100 on L. monocytogenes in cooked ham 

The chemical composition of the cooked ham was: 28.45 ± 2.05 % of dry matter, 2.38 ± 0.00 

% of NaCl (in water phase), pH of 6.11 ± 0.02, water activity of 0.9827 ± 0.0001, residual 

nitrite level of 5.50 ± 0.71 mg/kg (as NaNO2) and (D+L)-lactic acid level of 0.67 ± 0.06 %.  

The control cooked ham did not contain L. monocytogenes (in 25 g) and was also not 

artificially contaminated with the pathogen. Figure 8.3 shows the effect of P100 on the 

proliferation of L. monocytogenes on the surface of cooked ham that was stored under 

vacuum packaging at 7°C.  
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Figure 8.3. The growth of the three-strain L. monocytogenes cocktail in vacuum 
packaged cooked ham at 7°C without (full symbols, ■) and with (hollow symbols) 
listeriophage P100 (∆, higher treatment level of 1x107 pfu/cm2; ○, lower treatment level 
of 5x106 pfu/cm2)(symbols represent mean of three replicates, error bars represent 95% 
confidence intervals) 
 
Analysis of variance (P<0.05) showed that there was a significantly lower L. monocytogenes 

number on the P100-treated samples compared to on the untreated samples and this 

throughout the storage period and independent of the phage treatment level. This means that a 
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treatment of cooked ham with P100 significantly retarded the growth of L. monocytogenes. 

On the product inoculated with the cocktail of L. monocytogenes and not treated with P100, 

the number of L. monocytogenes increased with 1.37 ± 0.34 log10(cfu/g) after 10 days. On the 

cooked ham inoculated with the cocktail of L. monocytogenes but treated with P100 at a level 

of 1x107 pfu/cm2 or 5x106 pfu/cm2 the number of L. monocytogenes increased only with 0.40 

± 0.36 and 0.76 ± 0.32 log10(cfu/g), respectively (after 10 days). The limited growth of 

L. monocytogenes on the cooked ham product in absence of P100 was related to the high 

LAB-count of the product. After 7 days the product reached already a LAB-number of 7 

log10(cfu/g) resulting in growth inhibition of L. monocytogenes. 

 

Already at the start of the experiment (day 0), the L. monocytogenes number was significantly 

lower in the P100-containing samples compared to in the untreated sample (Figure 8.3). This 

could mean that the lower and the higher phage treatment level resulted in an immediate 

reduction with 0.52 and 0.68 log10(cfu/g), respectively, of the number of L. monocytogenes. 

Additional experiments were performed to explain this initial difference in cell number of 

L. monocytogenes. These experiments revealed that the initial difference in Listeria-number 

was not due to phage activity on the surface of the ALOA-agar plates during incubation since 

no significantly different L. monocytogenes counts could be observed when enumerating 

L. monocytogenes in BHI-broths inoculated with either L. monocytogenes alone or with 

L. monocytogenes and P100 (plating was done immediately after inoculation). A small part of 

the initial difference might, however, be attributed to the action of the phages in PPS in the 

period between diluting the sample and plating onto ALOA. A small (0.1 log) but statistically 

significant (t-test, P<0.05) decrease in Listeria-number was observed when L. monocytogenes 

cells were subjected to a phage treatment (same multiplicity of infection (MOI) as on cooked 

ham trial) in PPS and then stored for 3 hours at room temperature compared to untreated 

L. monocytogenes cells. Although these observations not fully explain the initial lower cell 

number in the presence of P100, it is possible that the phages, when inoculated onto the 

product, immediately start to act on the Listeria cells that are present on the surface of the 

cooked ham and that in the time during inoculation, sampling and plating (estimated at ± 2 

hours) the phage’s activity leads to a slightly reduced number of L. monocytogenes cells. 

Using analysis of variance (P<0.05), it could be demonstrated that there was no significant 

difference in antilisterial effect between the two investigated phage treatment levels. 

Treatment of cooked ham with the lower, more economical P100-dose (5×106 pfu/cm2) might, 
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therefore, be sufficient to control L. monocytogenes. It might be interesting to examine in 

future experiments the influence of even lower P100-doses. 

The evolution of the phage titers on the phage-treated cooked ham samples during storage 

under vacuum at 7°C is presented in Figure 8.4.  
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Figure 8.4. The evolution of the phage titer on the vacuum packaged cooked ham during 
storage at 7°C (black bars, phage treatment level of 1x107 pfu/cm2; white bars, phage 
treatment level of 5x106 pfu/cm2) (error bars represent 95% confidence intervals, n=3) 
 

On day 0, the obtained phage titers were about 0.5 log-cycle lower than the desired phage 

titers and this was the case for the two treatment levels. Furthermore, the lower treatment 

level was about 0.5 log-cycle lower than the higher treatment level but this difference could 

not be observed anymore on the other days of analysis. On day 3, 6 and 10, there was no 

significant (t-test; P<0.05) difference anymore in phage titer between the two different 

treatment levels.  

Phage titers did not change significantly (t-test; P<0.05) between day 0 and day 10 of the 

experiment, demonstrating the stability of phage P100 on the cooked ham product. Initially, 

2.3 log10(cfu/g) of LAB were present. The total aerobic psychrotrophic count and the LAB-

count of the non-inoculated cooked ham were of the same magnitude. After 1 week of 

storage, the LAB-count of the control sample had evolved already to a level of 7.4 

log10(cfu/g), thereby exceeding the limit of 7 log10(cfu/g) that is often used for the microbial 
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shelf-life of cooked meat products (Korkeala et al., 1987; Chapter 3). Treatment of the cooked 

ham with P100 did not influence the presence of bacteria other than L. monocytogenes. The 

evolution of the total aerobic psychrotrophic count and of the LAB-count as a function of 

time did not differ significantly between cooked ham samples treated with P100 and untreated 

cooked ham samples.  

 

To our knowledge, Dykes & Moorhead (2002) are the only authors that have reported before 

on the effect of a bacteriophage on L. monocytogenes on meat. In their study, the exposure of 

beef to listeriophage LH7, by immersion in a bath containing 3×103 pfu/ml, had no significant 

effect on numbers of L. monocytogenes (106 cfu/cm2) compared to the control during 

refrigerated storage under vacuum. No phage titer determinations were performed but the 

authors appointed the less than optimal bacteria-phages ratio for this difference. Our results 

compare well to the reports of Leverentz et al. (2003) and Carlton et al. (2005). Leverentz et 

al. (2003) examined the effect of a mixture of lytic listeriophages on L. monocytogenes in 

artificially contaminated fresh-cut melons (pH 5.5 to 6.5). The phage mixture reduced 

L. monocytogenes populations by 2.0 to 4.6 log-units over the control. Carlton et al. (2005) 

have also studied the application of bacteriophage P100 but on cheese. When applying P100 

to surface-ripened red-smear soft cheese through the washing/smearing solution a dose-

dependent inhibitory effect of P100 was recorded. A lower concentration of 1.5×108 pfu per 

ml of smearing solution resulted in an approximately 2-3 log decrease of Listeria viable 

counts. When a higher concentration of 3×109 pfu per ml of smearing solution was used, 

complete eradication of viable L. monocytogenes was observed. In contrast, the untreated 

control cheeses supported growth of L. monocytogenes to titers of generally more than 

7 log10(cfu/g). 

Phage resistance and host specificity are two important issues to consider when using 

bacteriophages as biopreservatives. The frequency of formation of bacteriophage-insensitive 

mutants of E. coli O157:H7 has been reported to vary from 10-4 to 10-6 (O’Flynn et al., 2004). 

To our knowledge, frequency of resistance formation has not been reported for P100. Carlton 

et al. (2005) found no evidence for phage resistance in the Listeria isolates recovered from 

P100-treated cheese samples and concluded that the development of insensitivity of Listeria 

cells against strictly virulent phages such as P100, if occurring at all, is a rare event. Indeed, 

the fact that on the surface of cooked meat products ‘lysis from without’ occurs in stead of the 

classic lytic pathway and that L. monocytogenes typically occurs in low levels on 
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contaminated cooked meat products, reduces the risk for resistance development following 

phage applications in food products. 

With regard to host specificity, P100 has been reported to be one of the few known virulent 

phages for this genus, which are strictly lytic and which have an unusually broad host range 

within the genus Listeria (Carlton et al., 2005). 

4 Conclusion 

Public and regulatory concern related to L. monocytogenes has led to the implementation of 

microbiological standards, aiming at regulating the levels of L. monocytogenes in food 

products. Since 1st of January 2006, a new EU regulation on microbiological criteria for 

foodstuffs has come into force (Commission Regulation (EC) No 2073/2005) (European 

Commission, 2005). This regulation sets a maximum level of 100 cfu/g for L. monocytogenes 

at the end of the shelf-life of ready-to-eat foods (including cooked meat products) when 

absence of L. monocytogenes in 25 g of the product can not be guaranteed. Driven by this new 

EU-regulation, research on treatment of food products with bacteriophages to prevent growth 

of L. monocytogenes has gained interest. This chapter provides evidence on the usefulness of 

the lytic Listeria-specific phage P100 to control the growth of L. monocytogenes on sliced 

cooked meat products. Activity of phage P100 was observed at a MOI of 106 pfu/cfu, at 7°C 

and under anaerobic storage conditions. The applied phages did not replicate during storage 

but their titer remained stable, suggesting that P100 is active through ‘lysis from without’, a 

mechanism that occurs at very high MOI’s. Important issues to consider in the design of 

phage interventions for food products are the emergence of phage resistance and the host 

specificity of the phage. These topics could be the subject of future research.  
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General discussion, conclusions and perspectives 

1. General Discussion 
When studying literature on biopreservation of meat and meat products, it became clear that 

most studies of the past have mainly focused on the use of bacteriocinogenic protective 

cultures to control food born pathogens such as Listeria monocytogenes and this in particular 

on fermented meat products. Recently, the use of protective cultures for preservation of non-

fermented meat products such as cured cooked meat products gained more interest. However, 

little information was available on the influence of non-bacteriocinogenic micro-organisms on 

the spoilage organisms relevant for these cooked meat products. Therefore, the primary 

objective of this work was to investigate the possibility of preserving sliced cooked meat 

products (CMP), which are packaged either under vacuum or under a modified atmosphere, 

by means of non-bacteriocinogenic micro-organisms and to elucidate possible mechanisms of 

their biopreservation activity. Besides improvement of food stability, also food safety and in 

particular control of the growth of L. monocytogenes on these CMP was an important research 

topic of this PhD-work. Two types of non-bacteriocinogenic micro-organisms were 

investigated: lactic acid bacteria (LAB) on the one hand and bacteriophages on the other hand. 

The main part of this research dealt with the application of non-bacteriocinogenic LAB. Only 

in the final chapter, preservation of vacuum packaged CMP by means of bacteriophages was 

investigated.  

1.1. Relevant spoilage organisms for anaerobically packaged 
cooked meat products 

Prior to development of a biopreservation technology for CMP it was necessary to collect 

more information on the food product under study: sliced, cured, cooked meat products 

packaged under vacuum or under a modified atmosphere. To study these CMP, a model 

cooked ham (MCH) product was designed. From literature it was known that spoilage of 

anaerobically packaged CMP is mainly caused by LAB, in particular Lactobacillus spp. and 

Leuconostoc spp., and in some cases also by Brochothrix thermosphacta. It was the objective 

of chapter 3 to study the behaviour of several relevant spoilage organisms on the MCH-

product that would be used throughout this work. The results of broth experiments and of an 

inoculation study on MCH showed that within a group of nine spoilage organisms, typically 
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associated with anaerobically packaged sliced CMP, B. thermosphacta and 

Leuc. mesenteroides subsp. mesenteroides seemed to have the highest potential to cause rapid 

spoilage. MCH-samples were considered unfit for consumption when the LAB-count reached 

values of 6.9 to 8.2 log10(cfu/g). Sensory rejection of MCH-samples containing high levels of 

Leuc. mesenteroides subsp. mesenteroides was related to the production of heterofermentative 

end-products, mainly acetic acid and ethanol. Sensory spoilage of MCH containing 

B. thermosphacta occurred at a lower cell number of 6.6 to 6.9 log10(cfu/g). Lactobacillus 

sakei, a strain that is often reported in literature to be the specific spoilage organism of CMP, 

was not the most rapidly growing organism on the MCH. It has to be stressed that this study 

was a pure culture study excluding in this way interactions between the different spoilage 

organisms that normally occur on an industrially manufactured cooked meat product. 

1.2. Shelf-life extending capacity of protective LAB-cultures 

Is it possible to find lactic acid bacteria that can extend the shelf-life of anaerobically 

packaged, sliced CMP? To answer this question, the PhD-study started with the selection of 

appropriate lactic acid bacteria (LAB) that could serve as potential protective culture(s) 

throughout this work (Chapter 2). Starting from 91 meat born strains, either collected or 

isolated in this work, 12 putative protective cultures were selected. These cultures were 

homofermentative, salt tolerant and psychrotrophic LAB with interesting antibacterial 

properties towards L. monocytogenes, Leuc. mesenteroides, Leuc. carnosum and 

B. thermosphacta. From these 12 strains, only one non-bacteriocinogenic (Lactobacillus sakei 

subsp. carnosus 10A) and one bacteriocinogenic (LS5 or lactocin S producing L. sakei 148) 

strain were the subject of further research in chapters 4 and 5.  

Chapter 4 investigated whether L. sakei 10A and L. sakei LS5 were able to inhibit growth of 

the spoilage organisms Leuc. mesenteroides and B. thermosphacta on the MCH. To resolve 

the difficulty of individually following the growth of a homofermentative LAB-strain and a 

heterofermentative LAB-strain when growing in co-culture on the MCH, TC8-MRS-agar was 

developed. This medium allowed differentiation between the colonies of strain 10A or strain 

LS5 and the colonies of the Leuc. mesenteroides strain.  

The lactocin S producing strain L. sakei LS5 was found to be not effective since its presence 

did not affect the growth of both spoilage organisms. However, LS5 clearly showed an in-

vitro antibacterial activity towards the same bacteria in the agar spot tests of chapter 2 and 

was proven to produce the bacteriocin lactocin S (Sobrino et al., 1991; Chapter 2). It is 
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possible that the bacteriocin was not produced or produced at an insufficient level on the 

MCH or the effectiveness of the strain may have been limited by a range of factors (Chapter 

1) such as a limited diffusion in solid matrices, inactivation through binding to food 

ingredients such as lipids, etc. 

In contradiction to strain LS5, L. sakei 10A demonstrated to offer opportunities for the 

prolongation of the shelf-life of cooked meat products since antagonistic effects towards 

Leuc. mesenteroides and B. thermosphacta were observed on the MCH at 7°C under vacuum 

packaging. The inhibitory effect of the biopreservative 10A occurred when the strain entered 

its stationary phase. When inoculated with Leuc. mesenteroides, the time necessary to reach 

7 log10(cfu/g) – a value that is often considered as the end-point of the microbial shelf-life – 

was prolonged with approximately 14 days. To our knowledge, this is the first time that an 

antagonistic interaction between a non-bacteriocinogenic, homofermentative LAB-strain and 

a heterofermentative, spoilage causing LAB-strain is reported on a cooked meat product.  

Up to that moment, the action of the culture was only tested on the MCH. However, elaborate 

application trials (Chapter 6) at 7°C under vacuum packaged conditions demonstrated that 

L. sakei 10A also acts on the endogenous LAB-flora and on artificially inoculated 

Leuc. mesenteroides and B. thermosphacta cells on pâté, cooked ham, cooked sausage and 

two cooked poultry products.  

In conclusion, the application of L. sakei 10A on anaerobically packaged CMP can at least 

maintain and in some cases prolong the shelf-life. This conclusion will be further refined 

when taking into account the sensory aspects (section 1.4). 

1.3. Capacity of protective LAB-cultures to prevent proliferation of 
L. monocytogenes 

The ability of a protective LAB-culture to prevent spoilage in the case of post-contamination 

with Leuc. mesenteroides and B. thermosphacta is interesting, but the capacity of the culture 

to improve the food safety of CMP by hindering the growth of L. monocytogenes would be 

considered as an important added value. Since CMP are susceptible for post-contamination 

with this food born pathogen and in view of the new regulation on microbial criteria in food 

(the current Commission Regulation (EC) No 2073/2005) (European Commission, 2005) this 

was certainly a relevant research purpose.  

In chapter 2 the in-vitro antilisterial activity of 12 selected LAB was investigated. The two 

LAB that were selected in that chapter for further research in chapters 4 and 5, the 
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bacteriocinogenic L. sakei 10A and non-bacteriocinogenic L. sakei LS5, were shown to 

produce growth inhibition zones in agar spot assays and this for all three tested 

L. monocytogenes strains. Co-culture experiments (Chapter 5) showed that L. sakei LS5 could 

not prevent that L. monocytogenes grew to unacceptable levels on the MCH (7°C, vacuum). 

Possible explanations have already been discussed in part 1.2. of this discussion. However, 

co-culture experiments with L. sakei 10A clearly proved the antilisterial action of this strain 

on the MCH and this at 4°C and at 7°C, under vacuum packaging and under modified 

atmosphere packaging. The combination of the biopreservative L. sakei 10A and a storage 

temperature of 4°C or strain 10A and a modified atmosphere containing 50% of CO2 fully 

prevented growth of L. monocytogenes on the MCH during 42 days. Another important 

conclusion of chapter 5 was that the application level of L. sakei 10A had to be at least 6 

log10(cfu/g) in order to protect against proliferation of L. monocytogenes to unacceptable 

levels.  

The antilisterial activity was further verified by challenge tests on five different industrially 

manufactured cooked meat products: pâté, cooked ham, cooked sausage and two cooked 

poultry products. In all products that supported growth of L. monocytogenes in the reference 

samples (pâté, cooked ham and cooked chicken fillet), there was a significant inhibition of the 

growth of L. monocytogenes when strain L. sakei 10A was added. Applying L. sakei 10A 

prevented growth of the L. monocytogenes cocktail on pâté and on cooked chicken fillet and 

limited its growth to 1.3 log10(cfu/g) after 14 days on cooked ham.  

1.4. Sensory acceptability of CMP treated with L. sakei 10A 

Since LAB are acid producing bacteria, the development of protective LAB-cultures for 

biopreservation purposes should include the assessment of their effect on the sensory quality 

of the treated products. Already at the first stage of this work (Chapter 2) this aspect was part 

of the investigations and seen as a prerequisite for a suitable protective culture. In chapter 2, 

L. sakei 10A was already selected as one of the LAB strains that did not significantly 

influence the sensory properties of the MCH even when present for a long time at high cell 

numbers. In chapter 5 this was once more confirmed since panellists were unable to detect an 

unacceptable taste or odour in MCH-samples inoculated with L. sakei 10A. These positive 

sensory results were all obtained on the MCH-product, a product that contained a low level of 

glucose, limiting in this way the amount of lactic acid that could be produced by L. sakei 10A. 

When evaluating the biopreservative capacity of L. sakei 10A on five industrially 
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manufactured cooked meat products (pâté, cooked ham, cooked sausage and two cooked 

poultry products), it became clear that despite the promising antagonistic effects, the 

application of L. sakei 10A to CMP was in some cases limited by a significant acidification 

resulting in an acid taste of the product. The effect of protective cultures in general and of 

L. sakei 10A in particular on the organoleptic characteristics of cooked meat products depends 

on the glucose content and the buffering capacity of these products. From the results of 

chapter 6, a hypothesis could be derived that high buffering capacity and low glucose content 

are key elements to avoid sensory deviations when applying protective cultures on CMP. A 

high buffering capacity is obtained when products contain a minimum level of phosphate but 

mainly when they are rich in meat-protein. A high level of total meat-protein in a CMP is 

obtained when products are produced from lean meat pieces. Thus protective cultures are not 

useful in products with low protein levels, usually those with a high fat content such as pâté 

and cooked sausages. In lean products such as cooked ham of high quality and cooked poultry 

products, the culture can have potential as long as the glucose content is sufficiently low. 

Most CMP contain approximately 0.5% glucose originating from non-meat ingredients. In 

some recipes of CMP, glucose is added directly as dextrose or as dextrose syrup or indirectly 

e.g. as a carrier for flavours or as a dispersion agent for gums in the brine. However, from a 

technological point of view it is possible to make CMP with glucose levels of 0.1% and 

lower. Low glucose contents can be obtained by avoiding direct addition of glucose or other 

sugars and by selecting ingredients for cooked meat manufacturing that do not contain 

glucose; the latter may require the development of e.g. flavours that use carrier materials other 

than glucose.  

1.5. Inhibition mechanism of L. sakei 10A 

To complete the work on the biopreservative culture L. sakei 10A, its mode of action was 

studied in chapter 7. The mechanism by which the non-bacteriocinogenic L. sakei 10A 

inhibits L. monocytogenes was an issue that had remained unsolved up to that stage of the 

PhD-work. Also in the existing literature, no clear answer for this question could be found. 

The results indicated that growth inhibition of L. monocytogenes by the non-bacteriocinogenic 

L. sakei 10A is not based on one mechanism only. The strain was observed to retard the 

growth of L. monocytogenes in different types of liquid broths and depending on the 

composition of the broth either nutrient competition or lactic acid production/pH-reduction 

was indicated as the most probable mechanism behind the inhibition. The results strongly 
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indicate that glucose is the main component for which competition occurs. Also in the co-

culture experiments on the MCH (Chapter 4) growth inhibition of Leuc. mesenteroides LM4 

by 10A occurred approximately at the moment that glucose was almost depleted. The same 

conclusion could not be derived from the co-culture experiments between B. thermosphacta 

BT1 and 10A (Chapter 4) and also not from the co-culture studies between L. monocytogenes 

and 10A in several real CMP (Chapter 6). In the latter application tests, L. monocytogenes did 

not start to grow in the presence of 10A; the moment of inhibition was in fact the start of 

these experiments when there was still sufficient glucose present. So, the translation of the 

results of the broth experiments of this chapter towards what really occurs in a CMP is a 

difficult issue. The complexity of the substrate and the presence of the background flora 

makes it more difficult to analyse the inhibition mechanism in meat products compared to in 

artificial growth media. 

1.6. Bacteriophage P100 to control growth of L. monocytogenes 

In chapter 8, an innovative type of biopreservation using bacteriophage P100 was examined. 

Challenge testing with L. monocytogenes on vacuum packaged cooked chicken fillet and 

cooked ham in the presence and absence of the lytic Listeria-specific phage P100 provided 

evidence for its effectiveness in controlling growth of L. monocytogenes. Activity of phage 

P100 was observed at a multiplicity of infection (MOI) of 106 pfu/cfu, at 7°C and under 

anaerobic storage conditions. The applied phages did not replicate during storage but their 

titer remained stable, suggesting that P100 is active through ‘lysis from without’, a 

mechanism that occurs at very high MOI’s.  

2. Conclusions 
The main realisations from this work with regard to biopreservation using protective LAB-

cultures are summarised below. 

• A new and promising non-bacteriocinogenic protective culture L. sakei 10A has been 

isolated and characterised. 

• This culture was found to offer a solution for both spoilage and safety problems 

associated with anaerobically packaged cooked meat products. 

• An important drawback of the biopreservative culture was its influence on the sensory 

quality of some CMP; its presence sometimes resulted in acidification of the treated 

product. This work revealed, however, the conditions at which these sensory 



General discussion, conclusions and perspectives 205 

deviations can be prevented and led to the conclusion that application of L. sakei 10A 

without sensory loss is only possible in CMP with high buffering capacity and low 

glucose content. Implementation of non-bacteriocinogenic protective cultures in 

general and of L. sakei 10A in particular may therefore require adaptations of the 

recipe of the CMP. 

• A better insight was gained into the mechanism by which the non-bacteriocinogenic 

culture L. sakei 10A inhibits L. monocytogenes. 

Opposed to other published studies, this work evaluated biopreservation by means of LAB for 

applications on CMP using an integrated approach. Not only the effectiveness of the culture 

was investigated but the mechanism of inhibition was studied in detail and the culture was 

critically evaluated with regard to its effect on the sensory quality of CMP. In particular the 

latter aspect is crucial for the development of a protective culture and was not always 

sufficiently investigated and/or discussed in existing studies. 

 

With regard to biopreservation using bacteriophages, it can be concluded that treatment with 

bacteriophage P100 as a non-bacterial type of biopreservation was demonstrated to be 

promising for the control of L. monocytogenes in vacuum packaged CMP. 

 

From this work, it is evident that there might be a role for non-bacteriocinogenic micro-

organisms such as L. sakei 10A or bacteriophage P100 in the preservation of anaerobically 

packaged cooked meat products. Biopreservation may offer a valuable alternative for 

chemical preservatives such as lactate or CO2, especially for the control of L. monocytogenes. 

In terms of shelf-life prolongation, effects of chemical preservatives will be more difficult to 

rival by protective cultures.  

Provided that the recipe of the cooked meat products is adjusted towards low glucose content 

and high buffering capacity, protective cultures are a biological alternative way of preserving 

cooked meat products. The choice for a protective culture instead of a chemical preservative 

can be made in view of the consumer concerns about chemicals in foods. In particular, meat 

companies producing bio-products might consider using protective cultures. Whether meat 

producing companies will make this choice depends on the technical, regulatory and 

economical aspects related to the use of these cultures. Technically seen, there are no 

limitations for treating food products with protective LAB-cultures or bacteriophages. The 

question is whether this technology is sufficiently cost-effective for the producer compared to 

the classical chemical preservatives and whether the cost is in proportion to the added value. 
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From a scientific point of view, lactic acid bacteria and bacteriophages can be considered safe 

for consumption but in the European Union there is no harmonised legislation that regulates 

(neither forbids nor approves) the use of either LAB or bacteriophages in food products. 

Further, implementation of these technologies will require careful communication and 

marketing in order to get it accepted by the general public. 

3. Perspectives 
Subjects for further research are: 

• The uniqueness or generality of the antagonistic character of L. sakei 10A: do other 

non-bacteriocinogenic L. sakei strains have similar biopreservative properties 

indicating that this capacity is typical for the species L. sakei or even typical for the 

genus Lactobacillus. 

• Is there a difference in inhibition mechanism when L. sakei 10A inhibits 

L. monocytogenes or when it acts towards B. thermosphacta or Leuc. mesenteroides? 

• Development of an industrial application method for L. sakei 10A and/or 

bacteriophage P100. Options to investigate are spraying, immersion and encapsulation 

techniques. Heat sensitivity is an important drawback for biopreservative cultures and 

research directed towards a solution of this problem might be very useful in order to 

simplify the application method. 

• The technology of using bacteriophages for combating pathogenic organisms in food 

products requires more fundamental research. Host range, resistance development, 

mode of action are important issues that need to be addressed.  
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AR   Acidification rate  

aw   Water activity 

ALOA   Agar Listeria Ottaviani and Agosti 

BC   Buffering capacity 

BHI   Brain Heart Infusion  

cfu   Colony forming unit 

CMP   Cooked meat products 

DNA   Deoxyribonucleic acid 

EFSA   European Food Safety Authority 

EMP   Embden-Meyerhof-Parnas  

EPS    Extracellular polysaccharides  

EU   European Union 

FDA   Food and Drug Administration 

FRC   Federal Research Center  

GRAS    Generally recognised as safe 

HG-product  MCH-product with high glucose content 

HPLC    High performance liquid chromatography 

HPMC   Hydroxy propyl methyl cellulose 

LAB   Lactic acid bacteria 

LG-product  MCH-product with low glucose content 

LFMFP  Laboratory of Food Microbiology and Food Preservation  

LMG    Laboratory of Microbiology Gent 

MA   Modified atmosphere 

MAP   Modified atmosphere packaging 

MCH   Model cooked ham 

MOI   Multiplicity of infection 

MRS   de Man Rogosa Sharpe  

ND   Not determined 

OD   Optical density 

PC   Protective culture(s) 

PCA   Plate Count Agar  
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pfu   plaque forming unit 

PPS   Pepton Physiologic Solution  

QPS   Qualified presumption of safety 

rRNA   Ribosomal ribonucleic acid 

RCA   Reinforced Clostridial Agar  

SD   Standard deviation 

SDS-PAGE   Sodium dodecylsulphate polyacrylamide gel electrophoresis 

STAA   Streptomycin sulphate, Thallous acetate, Actidione Agar 

TSA   Trypton Soya Broth 

VP   Vacuum packaging 

YGC   Yeast Glucose Chloramphenicol  

YT   Yeast Trypton 
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