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Chapter 1

Introduction

In this first part, we shall describe the content of our research. We shall explain the motivation behind
it, how we came to investigate these particular topics and we give an overview of the obtained results.

In the second part, we have collected the publications to which we shall refer during the first part for
all the necessary details.

The third part contains a general conclusion.

In the Appendix, we present a Dutch summary of our work.

1.1 Explaining the title of this thesis.

1.1.1 Some basic notions: QCD, Yang-Mills gauge theories, gauge fixing,
path integral, BRST symmetry.

As the title suggests, we will mainly focus our attention on quantum chromodynamics, commonly
known as QCD, the gauge theory of the strong interactions. As we do not intend to give a complete
pedagogical introduction to these topics, we refer to the vast amount of literature (see e.g. [1, 2, 3])
for all the historical and mathematical details. We suffice by stating the Lagrangian

L = −1
4
F a

µνFµνa + ψ
iI

iγµDIJ
µ ψiJ , (1.1)

where the field strength F a
µν is defined by

F a
µν = ∂µAa

µ − ∂νAa
µ + gfabcAb

µAc
ν . (1.2)

Aµ = Aa
µT a is the Lie algebra valued connection for the gauge group SU(N), which is the group

of unitary matrices (U+ = U−1) with det U = +1. Its generators T a ,
[
T a, T b

]
= fabcT c , are

chosen to be anti-Hermitian and to obey the orthonormality condition Tr
(
T aT b

)
= δab, with a, b, c =

1, ..,
(
N2 − 1

)
. The adjoint covariant derivative is given by

Dab
µ ≡ ∂µδab − gfabcAc

µ . (1.3)

DIJ
µ is the fundamental covariant derivative,

DIJ
µ = ∂µδIJ − igAa

µT aIJ . (1.4)

15
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The T aIJ are the generators of the fundamental representation of SU(N). The index i labels the
number of flavours (1 6 i 6 Nf ). g is the coupling constant and serves as a measure for the strength
of the interaction.

QCD is an example of a Yang-Mills gauge theory [4]. The Lagrangian given in eq.(1.1) exhibits a local
invariance under SU(N) transformations. More precisely, let S be a special unitary matrix which may
depend on the space time coordinate x. Then, under the transformations

Aµ → S+∂µS + S+AµS (adjoint transformation) , (1.5)

ψ → Sψ (fundamental transformation) , (1.6)

the Lagrangian (1.1) is left unchanged.

The particles corresponding to the Aa
µ-fields are called gluons or gauge bosons. They are the medi-

ators of the strong (color) interaction. The matter particles, described by the ψ/ψ fields, are called
quarks/antiquarks.

In the case of QCD, there are 3 colors (thus SU(3)), known as red, green and blue, while there are six
flavours (Nf = 6): the up, down, charm, strange, top and bottom quark.

Frequently, we shall omit the quark content of QCD (this corresponds to pure Yang-Mills gauge theory
or, or as it is sometimes called, gluodynamics), and work with general SU(N) or even SU(2) instead
of SU(3).
In this thesis, we shall only rely on the path integral formulation of quantum field theory. Having found
the Langrangian, one defines the action, in four-dimensional Minkowski space, as

S =
∫

d4xL , (1.7)

and the path integral by

∫
[dΦ]eiS . (1.8)

The path integral formulation can be compared with the distribution function in a statistical way, as
the expectation value of any operator O(x) is determined by

〈O(x)〉 =
∫

[dΦ]O(x)eiS . (1.9)

The integration goes over all possible field configurations, denoted by Φ. The exponential factor eiS

can thus be seen as the weight factor of any configuration, which contributes to the expectation value
of O(x).
When Yang-Mills theories are quantized, the local gauge invariance gives rise to troubles for a proper
implementation of the quantization. This local invariance is in a sense “too big” and should be restricted.
The path integral, defined over all the possible gauge field configurations, should be reduced to one only
over gauge inequivalent fields. Analogously as for the classical Maxwell theory of electromagnetism,
this is achieved by fixing the gauge freedom, i.e. a certain condition is imposed on the gauge fields Aa

µ.
Usually, a gauge fixing can be implemented in the path integral by adding extra terms to the action.
These extra terms shall contain novel fields. Let us illustrate this when the Landau gauge is imposed,
i.e. we demand that ∂µAµ = 0. The corresponding Lagrangian turns out to be

L = −1
4
F a

µνF aµν + ba∂µAaµ + ca∂µDab
µ cb , (1.10)
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The fields ca/ca are called the ghost/antighost fields. They are not physical particles, as they are
Grassmann (anticommuting) scalars. They are needed to localize a certain functional determinant
showing up during the gauge fixing procedure, which is due to Faddeev and Popov [5]. Although
the ghosts are unphysical, they are still important. They assure that only the physical, transversal
polarizations of the massless gauge bosons are observable. The field ba is a Lagrangian multiplier,
ensuring the Landau gauge condition. For practical purposes, this auxiliary field is integrated out by
adding αbaba to (1.10). α is the gauge parameter where α = 0 corresponds to the Landau gauge.

The Langrangian (1.10) is no longer locally SU(N) invariant, but some kind of ”replacement” symmetry
has come in the place, namely the BRST (Becchi-Rouet-Stora-Tyutin [6, 7]) symmetry given by

sAA
µ = −DAB

µ cB ,

scA =
g

2
fABCcBcC ,

scA = bA ,

sbA = 0 ,

sψiI = −igcaT aIJψiJ . (1.11)

As we shall see, all gauge fixings we shall consider possess this BRST symmetry. This invariance shall
play an important role throughout this work.

As the original theory was locally gauge invariant, the observed physical quantities should not depend
on the choice of gauge. Such statements can e.g. be proven starting from the BRST invariance.

1.1.2 Some further basic notions: perturbation theory, quantum corrections,
renormalization, regularization, renormalization group, asymptotic free-
dom.

Once a classical theory is quantized, calculations are possible at the quantum level.

Starting from the path integral, a perturbation theory is typically achieved by considering an exactly
calculable integral - i.e. one quadratic in the fields- and consequently a perturbative expansion in the
coupling constant g2 is performed for the nonquadratic terms. This results in a Taylor like series in
g2. Each of these terms at a certain order (g2)n consists of a number of Feynman diagrams, namely
those having n loops. These Feynman diagrams are generated with a number of basic “graphical”
elements, which are determined by the terms present in the starting theory. These basic elements are
the propagators, describing the free propagation of the particles associated to the fields, and the vertices,
describing the interactions between the fields (particles). The Feynmanrules state the correspondence
between the loopdiagrams and the analytical expression behind them. The perturbative expansion is
also known as the loop expansion.

In a typical four-dimensional theory, one shall find that these Feynman diagrams will contain expressions
like

∫
d4q

1
q2 + m2

∝
∫ +∞

0

q3

q2 + m2
dq , (1.12)

which are divergent, due to the bad behaviour at large momentum q. Hence, these infinities are called
ultraviolet (UV) divergences . The presence of divergences in quantum field theory is a common phe-
nomenon and can sometimes be cured for by renormalization. Essentially, renormalization means that
all the divergences, appearing upon calculating Feynman diagrams, are reabsorbed in the “parameters”1

1Like masses, coupling constants, the fields themselves,... .
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of the original theory, which is called the bare theory. Assume that g2
0 is the bare coupling constant.

This g2
0 represents the coupling constant without the incorporation of the quantum (loop) effects. Thus,

g2
0 can be supposed to be infinite in such a way that the infinite loop corrections to g2

0 are canceled and
a finite, meaningful quantity g2 remains. The philosophy of renormalization is based on the fact that
what we observe are not the bare quantities of the original theory, but the fully “dressed” quantities,
i.e. with all the quantum corrections included. As long as these are finite, one can be satisfied.

The divergences can be kept track of by regularizing the considered theory. Regularizing means that
one makes the divergent integrals well defined. A straightforward method would be cutting off the
integration at a certain scale Λ. However, this cut-off regularization is incompatible with gauge invari-
ance. Besides this, the integrations are quite complicated with a cut-off. Dimensional regularization
[8] respects gauge invariance. The trick consists of defining the theory in 4 − ε dimensions, in which
case it is finite. The divergences are recovered in the physical limit ε → 0.

We have explained renormalization here in such a way that it might seem a quite trivial task to actually
renormalize a theory. However, the reality is far more complicated than this. A priori, it is absolutely
not straightforward all divergences that might appear could be reabsorbed. Indeed, if a divergence is
generated which corresponds to a certain interaction not present in the original theory, then obviously
it cannot be reabsorbed as there is nothing to reabsorb in. Problems could also occur when the
same quantities appear in different combinations. Each combination should evidently lead to the same
renormalization of those quantities. This is not necessarily true.

Theories with the aforementioned problems are called nonrenormalizable and are in principle bad quan-
tum theories. The good quantum theories are the renormalizable ones. As an illustration, think about
a theory having a coupling constant g2 with negative mass dimension. At each order order in the series
expansion, the negative dimensionality coming from powers of g2 should be neutralized each time with
novel operators having sufficiently high positive mass dimension. Clearly, this makes renormalization
impossible.

It is one of the great achievements of theoretical physics that the Yang-Mills gauge theories and thus
QCD, are indeed renormalizable, see e.g. [8, 6].

Returning to the concept of perturbation theory, it might have already been clear that, in order to be
so that perturbation theory would be a useful tool, the expansion parameter in which one is perturbing,
should be sufficiently small. As we shall see in this thesis, the explicit evaluation of Feynman diagrams
is not that easy, so often only the first few orders are accessible.

Due to renormalization effects, one must introduce a mass scale µ into the theory, while the parameters
of the theory become a function of this in principle arbitrary mass scale. The functional behaviour w.r.t.
µ is usually called the running or the anomalous dimension of the considered quantity. For example,
the running of the coupling constant g2 is governed by the β-function

µ
∂

∂µ
g2 ≡ β(g2) = −2(β0g

2 + β1g
4 + . . .) . (1.13)

Such equations are also frequently called renormalization group (RG) equations. Physical quantities
P, as well as bare quantities B0, which are inherent to the theory, should not depend on this arbitrary
scale, and the renormalization group equations become in this case

{
µ d

dµP = 0 ,

µ d
dµB0 = 0 .

(1.14)

At lowest order, the equation (1.13) can be solved by

g2(µ) =
1

β0 ln µ2

Λ2
MS

. (1.15)
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The quantity ΛMS is a reference scale, depending on the choice of renormalization scheme. We recall
that renormalization means substracting infinities, an operation which is clearly only well-defined up
to finite subtractions. The freedom in the finite part is fixed by a (arbitrary) renormalization scheme.
Expression (1.15) allows to trade the coupling constant for the ratio of the dimensionful parameters
µ and ΛMS. Such a replacement is sometimes called “dimensional transmutation”, as a dimensionless
quantity is exchanged for dimensionful quantities.

Considering eq.(1.15), we recognize different cases:

i. β0 < 0: the theory is perturbatively only well-defined for scales µ < ΛMS, as the coupling should be
positive. g2 runs to zero for µ going to zero, i.e. the theory is infrared well-defined perturbatively
(IR stable). For µ ↑ ΛMS, the coupling grows and perturbation theory will fail.

ii. β0 = 0: there is no running. We are considering a fixed point.

iii. β0 > 0: the theory is perturbatively only well-defined for scales µ > ΛMS, g2 runs to zero for
growing µ, i.e. the theory is ultraviolet well-defined perturbatively (UV stable). For µ ↓ ΛMS,
the coupling grows and perturbation theory will fail. Such theories are called asymptotically free
[9, 10].

A similar analysis can be made when higher order corrections are included. Yang-Mills gauge theories
are the most famous example of asymptotically free theories. Such theories are in some sense a bit
counterintuitive, as one might expect that at low energies, not “much” would happen, while at high
energies (small distance), the interaction could be expected to be strong.

In a typical experiment at a certain energy scale, one shall encounter the coupling at that scale. For
sufficiently high scale, the coupling will be small and one can predict via perturbation theory the outcome
of the experiment. However, at lower energies, nonperturbative effects enter the game, as the expansion
parameter grows and make a series expansion useless.

1.1.3 Nonperturbative effects.

We have already mentioned the word “nonperturbative”. Logically, it indicates effects that are not
accessible by perturbation theory. As a simple example, assume that we have an asymptotically free
field theory with massless particles. Assume that the particles obtain by some dynamical mechanism a
mass m. If this mass is supposed to be RG invariant at lowest order, then

µ
d

dµ
m =

(
µ

∂

∂µ
+ β(g2)

∂

∂g2

)
m = 0 , (1.16)

an equation that can be solved by

m ∝ µe
− 1

2β0g2 ≡ ΛMS . (1.17)

An expression like this can never be obtained in perturbation theory, as e
− 1

2β0g2 has no series expansion
as it shows an essential singularity.

Probably, the most famous problem that cannot be solved in perturbation theory in QCD is the absence
of separate gluons and quarks in the observable spectrum. The excitations that we do observe consist
of mesons, baryons,.... This is called confinement: colored states like quarks are permanently “locked”
into colorless states like baryons.

We recall that QCD2 itself does not possess a mass scale at the classical level. Nevertheless, renormali-
zation introduces a scale at the quantum level, and one might guess dimensionfull quantities might arise

2In the chiral limit of vanishing quark masses.



20 Chapter 1. Introduction

at the nonperturbative level in QCD. In practice, such a scale is generated through the condensation of
a certain operator. Consider for example the operator F 2

µν in QCD. This operator has mass dimension
four. If we would like it to condense, then it is clearly not possible in perturbation theory due to the
lack of an explicit mass scale to which it could be proportional. At the nonperturbative level, it could
however happen that

〈
F 2

µν

〉 ∝ Λ4
MS

. (1.18)

Condensates are assumed to be the same everywhere in space time, i.e.
〈
F 2

µν(x)
〉

=
〈
F 2

µν(0)
〉

=
(V T )−1

∫
d4x

〈
F 2

µν(x)
〉

where V T is the space time volume.

Condensates are thus the vacuum expectation value of certain operators. It is the expectation value in
the vacuum, as no external particles are taken into account. Condensates can thus be thought of as
characterizing the vacuum structure of a field theory. One might expect that the vacuum is an empty
“thing” without energy. Nonetheless, condensates are nonzero in the vacuum and do even influence the
energy of the vacuum. The vacuum is thus a much more exciting topic to investigate than might be
thought.

〈
F 2

µν

〉
for example can be related to the vacuum energy E, in fact for pure Yang-Mills theories

, E ∝ 〈
F 2

µν

〉
. This result can be obtained from the trace anomaly. An anomaly is another important

subject in the quantum context. A theory can possess a certain symmetry at the classical level, however
it is not always possible to retain all the symmetries of a theory when it is properly quantized. Such
symmetries are called anomalous, since they are not real symmetries as the theory cannot maintain the
classical invariance at the quantum level. The scale anomaly is due to the absence of a mass scale in
the field theory at the classical level while the presence of the renormalization scale µ does introduce a
mass scale at the quantum level.

Let us clarify the possible importance of condensates with an example. Assume that we have deter-
mined experimentally a cross section σ at a certain scale Q. A cross section σ could be calculated
approximately using a perturbative approach, but if nonperturbative condensates are existing, power
corrections can arise, since a dimensionless quantity can be constructed with these condensates and
the external momentum scale Q. Since σ is a physical and hence gauge invariant quantity, it can
only receive contributions from gauge invariant quantities, like

〈
F 2

µν

〉
, which can give rise to power

corrections proportional to
〈F 2

µν〉
Q4 . Hence, we see that the vacuum structure of the theory has influence

beyond the vacuum itself.

Having stated the importance of the nonperturbative aspects of vacuum condensates, the question
arises how one may obtain estimates for these condensates. As already outlined above, a possible way
is by matching experimentally determined quantities with theoretical predictions and extract values
for the condensates. Such an approach is made possible by using the Operator Product Expansion
(OPE) [11, 12] and QCD sum rules [13, 14]. Although very important and useful, these approaches
are phenomenological in nature as an experimental input is necessary to obtain estimates for the
condensates. It remains unclear what is the mechanism behind these condensates. A possible candidate
is the instanton contribution [15, 16, 17, 18]. Instantons are solutions of the classical equations of
motion of QCD carrying a topological winding number. Instantons describe the tunneling between

topologically distinct vacua and lower the energy by “e
− 1

g2 ” effects. As such, they can be the cause of
nonperturbative effects in QCD, for example by inducing a condensate

〈
F 2

µν

〉
. However, calculations

with instantons are not straightforward. Next to instantons, also other topological quantities might
arise in QCD, like merons, magnetic monopoles, dyons, vortices,..., each with a possible influence on
the vacuum structure.

Another powerful, nonperturbative technique is the numerical simulation of QCD on a discretized space
time, i.e. on a (finite) lattice [12]. Putting a gauge theory on a lattice allows for a nonperturbative
regularization in a gauge invariant way. Since lattice gauge theory is supposed to capture all effects as
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the complete theory is simulated from the IR to UV region, a fortiori all nonperturbative information is
also captured. In principle, one can calculate everything using lattice simulations. However, obtaining
the numerical value does not always entail knowing the mechanism giving that value. Furthermore, in
many cases the quantity is not calculated directly, but, e.g., extracted from a matching between the
numerical values employing the OPE or even a simple fitting formula. Another point of care consists
the extrapolation of the discrete lattice results to the continuum, i.e. the limit of vanishing lattice
spacing and infinite volume.

1.1.4 Aim of our research.

This brings us to the main topic in this thesis: constructing analytical tools to calculate some nonper-
turbative effects in Yang-Mills gauge theories. Evidently, we are not the first ones using analytical tools
to probe quantum field theories beyond the perturbative level. We already mentioned the instanton
calculus [18]. Renowned examples are the CJT formalism [19], the Schwinger-Dyson equations [20],
the 1

N expansion [21], the exact renormalization group approach,...

The CJT formalism relies on resumming certain types of diagrams, which leads to gap equations for
consistency. However, these gap equations can become nonlocal and hence difficult to solve. The
Schwinger-Dyson equations are the quantum equation of motion for the Greens functions of the theory,
which are solved approximately by using certain anzatzes. In a 1

N expansion, one only retains those
subclasses of diagrams that contribute at a certain order in 1

N , where N , being the number of colors
or flavours, is supposed to be large.

We shall focus our attention on techniques which are in essence perturbative, but still does allow to
obtain some information on nonperturbative effects. Although this might sound as a contradictio in
terminis, it is not, as it will become clear in the following sections.

1.2 Investigating a condensation by constructing the effective
potential.

The first question coming to mind after having read the introduction, is how one can calculate the
value of a certain condensate.

To get an idea, we return to classical mechanics. There one knows the concept of a potential, describing
the energy of the model. The most stable state is the one which has minimal energy. This potential V
is written in terms of some quantities (fields φ) and the extrema of V are found through solving

dV

dφ
= 0 . (1.19)

This can be generalized to quantum field theory. The configuration φvac at which V obtains it absolute
minimum describes the vacuum. Excitations φ̃ above the vacuum are obtained from φ ≡ φvac + φ̃. One
should determine the quantum effective potential, which is nothing else than the classical potential
supplemented with all quantum corrections. Evidently, things are slightly more complicated at the
quantum level. It should be proven that any technique for constructing an effective potential maintains
renormalizability. Since we will be working in a perturbative expansion3, reliability can only be obtained
when the relevant expansion parameter is sufficiently small. Another pertinent question is which operator
might be the one that condenses.

3We shall only calculate the potential in a perturbative series expansion, in principle there can be nonperturbative
corrections to the potential itself, e.g. induced by instantons.
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In the following section, we shall consider some of these questions in more detail using a toy model
possessing interesting properties.

1.3 The Gross-Neveu model.

The Gross-Neveu model is a two-dimensional pure fermionic field theory, described by [21]

L = ψ∂/ψ − 1
2
g2

(
ψψ

)2
. (1.20)

This Lagrangian has a global U(N) invariance and a discrete chiral symmetry ψ → γ5ψ which imposes〈
ψψ

〉
= 0 perturbatively4. The model is asymptotically free and has a dynamical chiral symmetry

breaking. This breaking cannot be realized perturbatively as an order parameter for this symmetry is
provided by

〈
ψψ

〉
. The fermions acquire a nonperturbative dynamical mass mF ∝ 〈

ψψ
〉
.

One should thus construct an effective potential for the operator ψψ and find out whether a nonvanishing
value for

〈
ψψ

〉
is favoured if it lowers the vacuum energy. Here, we encounter another importance of

condensates: they can sometimes break symmetries of the model at the nonperturbative level. This is
another way of breaking symmetries, next to an anomalous breaking.

Gross and Neveu managed to construct the effective potential by decomposing the quartic interaction
in the Lagrangian (1.21) by the introduction of an auxiliary field

L = ψ∂/ψ +
1
2
σ2 − gψψσ , (1.21)

whereby 〈σ〉 = g
〈
ψψ

〉
. Hence, one can obtain the effective potential for σ in a loop expansion by

integrating out the fermionic fields, and one shall find, using the rules and techniques of perturbation
theory,

V (σ) = a1σ
2 + g2(µ)

(
b1 ln

gσ

µ
+ b2

)
+ g4(µ)

(
c1 ln2 gσ

µ
+ c2 ln

gσ

µ
+ c3

)
+ . . . (1.22)

This potential will obey a RG equation µ d
dµV = 0, allowing to choose freely at any order the scale5

µ. Usually, one chooses the scale µ so that the logarithms vanish in the gap equation derived from
dV
dσ = 0, and one obtains an effective potential in a g2

∣∣
µ2=gσ

series. The gap equation will give rise to

g2(µ)N
4π

∣∣∣∣
µ2=gσ

= c , (1.23)

with c some constant determinable from the gap equation. Using the one-loop result (1.15), one
consequently finds a value for the condensate 〈gσ〉. Here, the concept of “dimensional transmutation”
comes clearly into the picture. If the condensate is large enough, the expansion parameter (1.23) will be
sufficiently small6 and we can speak about reliable results. We see thus that, in principle, it is possible
to find nonperturbative results using essentially nothing more than perturbation theory.

4Since there is no mass scale in the model, evidently
D
ψψ
E

= 0 in perturbation theory.
5The error will be one order higher compared to the considered order.
6In fact, the value of the coupling constant, found via eq.(1.23), is obtained first. It should be sufficiently small

to find a reliable estimate of the condensate.



1.3. The Gross-Neveu model. 23

1.3.1 The local composite operator formalism.

A few things deserves attention considering the Gross-Neveu model. First of all, apart from being
interesting in its own right, it can serve as a powerful testing model because the exact results for
the mass gap and vacuum energy are known, due to some special techniques sometimes available in
two-dimensional field theories [25, 26, 27]. Henceforth, the (numerical) reliability of analytical tools to
investigate the dynamical generation of the fermion mass can be tested.

We notice that ψψ is a local, but composite operator. In general, local composite operators (LCO) bring
along extra troubles at the quantum level. The operator should be renormalizable, and one should be
able to construct a renormalizable effective potential. As we have already mentioned, renormalizability
is not a trivial property. At one-loop or in the 1

N expansion, a decomposition of a quartic interaction
like in eq.(1.21) is sensible. However, problems will appear concerning the renormalizability and/or
the renormalization group at higher orders. Ad hoc counterterms have to be added. We refer to
[22, 23, 24] for more details. The conclusion was that one must construct a method to effectively
obtain an effective potential for local composite operators, whereby certain requirements have to be
fulfilled. Such a method was found in [23], allowing one to calculate an effective potential exhibiting
all the desired properties of renormalizibility and renormalization group behaviour, and this for any N
at any order of perturbation theory. Also some other old objections concerning the use of composite
operators were neatly solved in [23]. The calculated values of the fermion mass were only differing a
few percent from the exact results.

We shall not explain here in full detail the by now called LCO method, as it will sufficiently be discussed
in the articles in part II of the thesis. We shall only outline the main idea. Given a certain LCO O
of say dimension two in a four-dimensional field theory, the standard way of coupling this operator O
to the theory is by using a source J , i.e. a term JO is added to the Lagrangian. This gives rise to a
functional W (J), whose Legendre transform is nothing else than the effective potential V (σ), where σ
is an auxiliary field describing the (composite) operator O. However, novel infinities ∝ J2 shall arise
due to the divergences in the correlator 〈O(x)O(y)〉 for x ≈ y. These correspond to vacuum energy
divergences. As a consequence, a counterterm ∝ J2 is needed in the Lagrangian, thus there should be
a term ζJ2 present in the starting Lagrangian, where the new LCO parameter ζ has to be introduced
in order to make the reabsorbation of the counterterm δζJ2 possible. The value of ζ can be fixed by
employing the RG in an intelligent fashion [23].

Concerning the choice of the operator, we already mentioned that
〈
ψψ

〉
is an order parameter for the

chiral γ5-symmetry, so it was quite clear that ψψ was an ideal candidate as LCO. However, in a more
complex theory, the choice of a suitable operator might be less transparent, e.g. when the condensate is
not directly linked to an order parameter of a (discrete) symmetry. However, a more general argument is
available why the formation of

〈
ψψ

〉
can be expected at a nonperturbative level. It is perhaps most easy

visible employing the high N -expansion, although the argument also stands beyond that approximation.
Considering the quartic interaction (the ψψ-ψψ channel) of the Gross-Neveu model, one shall find that
all diagrams of leading order in N , can be summed in an explicit way. In this expression, poles at

momenta that are negative and ∝ e
− 1

g2 shall occur. Said otherwise, one encounters the problem of
a tachyon pole in this channel. This kind of nonperturbative effects are called (infrared) renormalons.
Tachyons are in general an indication of instabilities. We can interpret them as that the Gross-Neveu
model is being considered around an instable vacuum. This is signalled by the problems in the ψψ-ψψ
channel, which might trigger a condensation of ψψ at a nonperturbative level. If a mass would be
generated, an infrared cutoff emerges “moving” away the IR instabilities.
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1.4 The gluon condensate
〈
A2

µ

〉
.

The interesting the Gross-Neveu model might be as a testing ground, one should also try to probe
physically more interesting theories like Yang-Mills gauge theories with the developed tools.

The question jumping to the readers mind should be: is there something analogous to the Gross-
Neveu mass generating condensate

〈
ψψ

〉
in the case of pure Yang-Mills theories? Here we are already

confronted with the fact that there is no discrete symmetry shedding some light on a possible candidate.
Furthermore, one is also faced with the fact of gauge invariance. A local gauge invariant operator of
mass dimension two does not exist.

In [28, 29, 30, 31, 32], it was discussed that there does exist an instability in Yang-Mills theories in
the IR. We could have guessed from our Gross-Neveu knowledge that similar problems with infrared
renormalons and tachyonic instabilities might exist in gauge theories too: the Yang-Mills action contains
also a quartic interaction ∼“A4” term. These instabilities might invoke the condensation of a dimension
two operator like A2

µ.

Despite some early attempts, not much attention was paid to such a condensate
〈
A2

µ

〉
and certainly

no effective potential was available for it. A few years ago, interest in it was renewed due to the work
of Zakharov et al [33, 34]. They attracted the attention to this condensate in the case of compact
three-dimensional QED3, where by numerical simulations,

〈
A2

µ

〉
was shown to be an order parameter

for the condensation of monopoles. It was already proven some time ago that monopoles are condensing
in QED3, giving rise to confinement [35, 36].

The speculation was that
〈
A2

µ

〉
might also be relevant for four-dimensional QCD. It was argued in [34]

that the condensate
〈
A2

µ

〉
might receive “soft” nonperturbative contributions from the IR region as

well as “hard” nonperturbative contributions from the UV. It was speculated that the “hard” part can
contribute to 1

Q2 corrections to gauge invariant (physical) quantities.

The soft part should be accessible by an OPE analysis, a study explicitly performed in [37, 38, 39],
resulting in a nonvanishing condensate

〈
A2

µ

〉
OPE

. This lattice study was based on the observed discrep-
ancy existing between the calculated perturbative behaviour and the obtained lattice behaviour of the
gluon two- and three-point function up to an energy region of 10 GeV. Results could be quite well fitted
using the OPE condensate

〈
A2

µ

〉
OPE

giving rise to 1
Q2 power corrections. The 1

Q4 power correction

coming from
〈
F 2

µν

〉
is too weak at such energies to be the cause of the discrepancy. Quadratic power

corrections were already predicted in [40]. In [41], there was found lattice evidence for a linear part in
the static quark-antiquark potential at short distances. This can be understood intuitively as follows.
In one gluon exchange approximation, the static (Coulombic) potential V (r) is determined by

V (r) ∼
∫

d3kαs
ei~k·~r

k2
∼ 1

r
. (1.24)

Slightly generalizing this to αs → αs + c
k2 , an extra contribution to V (r) is found, namely

V (r)linear ∼
∫

d3k
c

k2

ei~k·~r

k2
∼ cr . (1.25)

This linear piece should not be confused with the confinement scenario of gauge theories. A linear rising
potential between color charges is a very strong indication that they cannot be separated due to the
enormous energies this would demand. Hence, the particles are confined to stay together. However,
the foregoing (rude) approximations with the power corrections etc. are not applicable at low energies,
exactly where confinement should be proven.

In a consequent work [38], it was argued, once more with lattice simulations, that instantons might
give the main contribution to

〈
A2

µ

〉
OPE

.
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All available estimates for
〈
A2

µ

〉
were thus obtained in a indirect way via lattice simulations and an OPE

analysis. A first independent calculation, using the LCO method, was presented in [42]. There, the
two-loop effective potential was constructed and it was found that the operator A2

µ is renormalizable
up to three-loop order by explicit calculation. We mention here a somewhat unfortunate feature of
the LCO method, being that in order to be able to construct the n-loop potential, (n + 1)-loop
knowledge of the anomalous dimension of the operator as well as other RG functions is needed. Hence,
the mentioned three-loop calculations are quite burdensome and were performed with (self-developed)
computer packages.

The LCO method provided a nonvanishing value for the mass dimension two gluon condensate as it
lowers in a nonperturbative way the vacuum energy. A consequence of the condensate is the appearance
of a nonvanishing mass parameter in the lowest order gluon propagator. The occurrence of massive
parameters in the gluon propagator has received many confirmations from the lattice community, see
e.g. [43, 44, 45, 46, 47, 48, 49, 50]. Also some recent work using the Schwinger-Dyson equations
revealed that massive parameters can occur [51, 52]. Even from the phenomenological side, evidence
has been presented that massive gluons give better predictions for some processes, see e.g. [53, 54].
Dynamically massive gluons were also used in other contexts, see e.g. [55, 56, 57, 58].

One should not confuse
〈
A2

µ

〉
LCO

with
〈
A2

µ

〉
OPE

. The LCO value is obtained with perturbative tech-
niques that are a fortiori valid in a region where perturbation theory applies. It might be said that〈
A2

µ

〉
LCO

contains (part of) the “hard” content of
〈
A2

µ

〉
. The OPE value should find its existence

in the IR, from topological quantities like instantons,.... Thus, there is no direct connection between
estimates obtained from the OPE or LCO method. One might state that both are complementary in
the sense that they are giving strong evidence for the existence of a gluon condensate of mass dimension
two. In the case of the Gross-Neveu model, the success in comparing the LCO estimate with the exact
mass gap is partially due to the absence of any topological content in that model.

The attention of the mentioned works was mainly focused on the Landau gauge. It is worth explaining
the preferred role of this gauge. Consider the quantity

〈
A2

µ

〉
min

≡ (V T )−1 min
U∈SU(N)

〈∫
d4x(AU

µ )2
〉

. (1.26)

This quantity is gauge invariant albeit highly nonlocal. Although, in the Landau gauge it reduces to
the vacuum expectation value of the square of the gauge potential, i.e.

〈
A2

µ

〉
. As a matter of fact, the

Landau gauge can be defined as the gauge minimizing the functional

RLandau[A] =
∫

d4x(AU
µ )2 , U ∈ SU(N) . (1.27)

The minimization of this particular functional is something that, in principle, can be arranged for in an
algorithmic form, i.e. the Landau gauge is very well suited for lattice simulations.

1.5 Algebraic renormalization and the role of symmetries in es-
tablishing renormalizability.

Before turning to an overview of our own accomplishments, we shall spend a few more words on the
issue of renormalization. More precisely, we shall say something more on the algebraic renormalization
formalism, as this has turned out to be a tool of major importance during our research. Evidently,
this thesis is not the place to give a complete introduction to this formalism. We kindly refer to the
literature [59, 60] for a thorough introduction. We intend only to give a simplified idea of the concept.
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Consider a quantum field theory with a certain symmetry of the action Σ, expressed in a functional way
by F(Σ) = 0. Such a constraint is usually called a Ward identity. A Ward identity controls more than
just the action, it also put constraints on the Greens functions of the theory, but this will be of lesser
importance in this thesis.

As the quantum theory enjoys a symmetry, the quantum corrections to it, giving the renormalization,
should be invariant under this symmetry7. As such, the symmetry is putting a constraint on the form
of the most general quantum correction, Σ′. If we can solve for the most general quantum correction
which obeys F(Σ′) = 0, it is a straightforward exercise to determine whether Σ′ can be reabsorbed
in the original action by a suitable renormalization of the available parameters. The advantage of
such an approach is that renormalizability might be obtained to all orders of perturbation theory with-
out the necessity of performing complicated Feynman diagram calculations, only allowing to establish
renormalizability order by order.

Of course, the difficulty remains in finding the most general solution of F(Σ′) = 0. For simple
models, this might be not much of a problem. Although, for e.g. Yang-Mills gauge theories with
many interactions, this task could become quite complicated. However, there is a beautiful way of
reducing the work. We remind the reader here of the existence of the BRST symmetry in gauge
theories, describing the “relics” of the gauge invariance at the level of the gauge fixed theory. This
symmetry enjoys the property of being nilpotent, i.e. the charge QBRST, corresponding to it vanishes
upon squaring, Q2

BRST = 0. The Ward identity arisen from the BRST invariance is known as the
Slavnov-Taylor identity, S(Σ) = 0. The most general counterterm is thus restricted by BΣ(Σ′) = 0,
where BΣ is the nilpotent linearized version of S. Due to the nilpotency of BΣ, one surely has

BΣBΣ(anything) = 0 . (1.28)

If

something = BΣ(something else) , (1.29)

then “something” is called (BΣ)-exact. If

BΣ(something) = 0 , (1.30)

then “something” is called (BΣ)-closed. For a nilpotent transformation BΣ, exactness clearly in-
duces closedness. The set of quantities that are closed but not exact are said to belong to the
(BΣ-)cohomology.

From the general results on Yang-Mills cohomology [60, 59], it can be derived that the most general
solution can be written as the sum of a gauge invariant part (∼ F 2

µν), which belongs to the cohomology,
and an exact part. This provides one with a powerful tool for discussing the renormalizability of Yang-
Mills gauge theories in certain classes of gauges. In particular, it is the Slavnov-Taylor identity which
assures that the coupling constant g2 can be renormalized, despite the fact that the same coupling
appears in several interaction vertices.

Let us also mention that there can exist several more Ward identities next to the Slavnov-Taylor identity.
Consequently, these put further restrictions on the most general quantum correction.

The essence of the algebraic renormalization is incorporated in the quantum action principle, stating
precisely what constraints can be put on a quantum theory. Although we have invoked the algebraic
renormalization in the present work for the purpose of proving renormalizability to all orders of pertur-
bation theory for the LCO method when a certain composite operator is coupled to the theory, much
more information can be drawn from it: nonrenormalization theorems, finding out whether symmetries

7As far as the symmetry is not anomalous.
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can a priori be maintained at the quantum level, discussing the (gauge) anomalies, the general form
of these anomalies, proving the finiteness of some theories, ... Sometimes we shall also be able in our
work to draw more information than just the renormalizability of e.g. a composite operator from the
algebraic renormalization formalism.

Before turning to an overview of the publications bundled in part II, let us mention that the concept
of (BRST)-cohomology plays an important role in Yang-Mills gauge theories. Kugo and Ojima have
proven the unitarity8 of gauge theories defining the physical states as BRST closed but not exact states.
Then it can be proven that, due to some mechanism, all unphysical degrees of freedom (longitudinal
and scalar gluon polarizations together with the ghosts and auxiliary fields) decouple from the physical
spectrum, only retaining the transversal gluon modes, thereby having unitarity of the scattering matrix.
Said in other language, the physical states belong to the gauge cohomology. This is also the main
reason why physical amplitudes should not depend on the gauge parameter. In the context of BRST
gauge fixing, the terms that are added to the Lagrangian are BRST exact, and as such are trivial in the
cohomology, thus variations in the gauge parameter should not change gauge invariant quantities. For
example, the Landau gauge fixing in (1.10) can be rewritten as

L = −1
4
F a

µνF aµν + s (ca∂µAµa) . (1.31)

1.6 Summary of own research.

1.6.1 The 2PPI expansion.

As we have already mentioned, a first calculation of the condensate
〈
A2

µ

〉
was performed using the

LCO method.

Another approach that can reveal some information on the vacuum expectation value of local composite
operators was developed in [61, 62, 63, 64] in the case of the λϕ4 theory. The 2PPI expansion contains
all Feynman diagrams which remain connected when two lines meeting at the same point are cut and
therefore sums systematically the bubble graphs. Diagrams falling apart after such a cutting operation
are called 2-point-particle-reducible (2PPR). One only keeps the 2-point-particle-irreducible (2PPI)
diagrams, hence the name 2PPI expansion. In Chapter 2, we give an alternative derivation of the
2PPI expansion using the Gross-Neveu model. The essence of the 2PPI resummation lies in the fact
that one can remove the 2PPR diagrams from the sum of Feynman diagram building up the vacuum
energy E by replacing them with an effective mass scale m. In the case of the Gross-Neveu model,
m ∝ 〈

ψψ
〉
. The selfconsistency of the 2PPI resummation is guaranteed by an algebraic gap equation

for E, namely dE
dm = 0. We have also paid attention to the renormalizability of the 2PPI expansion.

The explicit evaluation of the gap equation was worked out at two-loop order, as well as the diagrams
leading to the pole mass in the fermion propagator, in order to give an estimate of the Gross-Neveu mass
gap. The final numerical results for the mass gap and vacuum energy were in a relatively fine agreement
with the exact results: we found a disagreement of a few percent for the mass gap. The results for the
energy were a bit worse, although this can be understood as the error on the vacuum energy is already
“doubled” when compared with the error on the mass gap, as the energy is proportional to the square
of the mass gap.

Having tested the 2PPI expansion on the Gross-Neveu model, we consequently applied the method
to Yang-Mills gauge theory, when the Landau is imposed, in Chapter 3. In this case, the 2PPI mass
parameter m2 is proportional to the gauge condensate

〈
A2

µ

〉
. As such, we presented some further

analytical evidence for the mass dimension two condensate
〈
A2

µ

〉
in the Landau gauge. The results

8At the perturbative level where gluons and quarks are the elementary excitations.
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were compatible with the ones obtained earlier with the LCO method in [42]: a lower vacuum energy
and a dynamical gluon mass parameter of a few hundred MeV.

Although the 2PPI expansion has its attractiveness as it allows to resum a certain class of diagrams
without the need of perturbing the action with anything, its usefulness might also be a bit limited. We
believe that for e.g. other gauges than the Landau gauge, the renormalizability might be more difficult
to prove. Moreover, for other dimension two condensates, we do not immediately see how to use the
2PPI expansion. It might be possible, but for the rest of the thesis, we shall rely on the LCO formalism.
Before turning to this, let us first explain another concept that initiated some of our research.

1.6.2 The dual superconductor and the maximal Abelian gauge.

As already mentioned, an unresolved problem of SU(N) Yang-Mills theory is color confinement. A
physical picture that might explain confinement is based on the mechanism of the dual superconductivity
[65, 66, 67, 68], according to which the low energy regime of QCD should be described by an effective
Abelian theory in the presence of magnetic monopoles.

Let us provide a very short overview of the concept of Abelian gauges, which are useful in the search
for magnetic monopoles, a crucial ingredient in the dual superconductivity picture.

Abelian gauges.

We recall that SU(N) has a U(1)N−1 Abelian subgroup, consisting of the diagonal generators. In
[68], ’t Hooft proposed the idea of the Abelian gauges. Consider a quantity X(x), transforming in the
adjoint representation of SU(N),

X(x) → U(x)X(x)U+(x) with U(x) ∈ SU(N) . (1.32)

The transformation U(x) which diagonalizes X(x) is the one that defines the gauge. If X(x) is already
diagonal, then clearly X(x) remains diagonal under the action of the U(1)N−1 subgroup. Hence, the
gauge is only partially fixed because there is a residual Abelian gauge freedom.

In certain space time points xi, the eigenvalues of X(x) can coincide, so that U(xi) becomes singular.
These possible singularities give rise to the concept of (Abelian) magnetic monopoles. They have a
topological meaning since π2

(
SU(N)/U(1)N−1

) 6= 0. We kindly refer to [69, 70] for all the necessary
details.

The dual superconductor as a possible mechanism behind confinement.

We give a simplified picture of the dual superconductor to explain the importance of the idea. If the
QCD vacuum contains monopoles and if these monopoles condense, there will be a dual Meissner effect
which squeezes the chromoelectric field into a thin flux tube. This results in a linearly rising potential,
V (r) = σr, between static charges, as can be guessed from Gauss’ law,

∫
EdS = cte or, since the

main contribution is coming from the flux tube, one finds E∆S ≈ cte, hence V = − ∫
Edr ∝ r. In

fact, it is not difficult to imagine the longer the flux tube (string) gets, the more energy it will carry.

An example of an Abelian gauge: the maximal Abelian gauge (MAG).

Let Aµ be the Lie algebra valued connection for the gauge group SU(N). We decompose the gauge
field into its off-diagonal and diagonal parts, namely

Aµ = AA
µ TA = Aa

µT a + Ai
µT i, (1.33)
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Figure 1.1: A chromoelectric flux tube between a static quark-antiquark pair.

where the indices i, j, . . . label the N−1 generators of the Cartan subalgebra. The remaining N(N−1)
off-diagonal generators will be labeled by the indices a, b, . . .. The field strength decomposes as

Fµν = FA
µνTA = F a

µνT a + F i
µνT i , (1.34)

with the off-diagonal and diagonal parts given respectively by

F a
µν = Dab

µ Ab
ν −Dab

ν Ab
µ + g fabcAb

µAc
ν , (1.35)

F i
µν = ∂µAi

ν − ∂νAi
µ + gfabiAa

µAb
ν ,

where the covariant derivative Dab
µ is defined with respect to the diagonal components Ai

µ

Dab
µ ≡ ∂µδab − gfabiAi

µ . (1.36)

For the Yang-Mills action one obtains

SYM = −1
4

∫
d4x

(
F a

µνFµνa + F i
µνFµνi

)
. (1.37)

The maximal Abelian gauge (MAG), introduced in [68, 69, 70], corresponds to minimizing the functional

R[A] =
∫

d4x
[
Aa

µAµa
]

. (1.38)

One checks that R[A] does exhibit a residual U(1)N−1 invariance. As the norm of the off-diagonal
gluons is minimized, the remaining theory is a sense maximally Abelian, hence the name.

The MAG can be recast into a differential form

Dab
µ Aµb = 0 . (1.39)

Although we have introduced the MAG here in a functional way, it is worth mentioning that the MAG
does correspond to the diagonalization of a certain adjoint operator, see e.g. [49]. The renormalizability
in the continuum of the MAG was proven in [71, 72], at the cost of introducing a quartic ghost
interaction.

In order to have a complete quantization of the theory, one has to fix the residual Abelian gauge freedom
by means of a suitable further gauge condition on the diagonal components Ai

µ of the gauge field. A
common choice for the Abelian gauge fixing, also adopted in the lattice papers [49, 50], is the Landau
gauge, ∂µAµi = 0.
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Abelian dominance.

According to the concept of Abelian dominance, the low energy regime of QCD can be expressed
solely in terms of Abelian degrees of freedom [73]. Lattice confirmations of the Abelian dominance
can be found in [74, 75, 76]. To our knowledge, there is no analytic proof of the Abelian dominance.
Nevertheless, an argument that can be interpreted in favour of it, is the fact that the off-diagonal gluons
would attain a large, dynamical mass. At energies below the scale set by this mass, the off-diagonal
gluons should decouple, and in this way one should end up with an Abelian theory at low energies.

A lattice study of the MAG reported an off-diagonal gluon mass of approximately 1.2GeV [49], while
the diagonal gluons behaved massless. Another, more recent, study reported a similar result [50].

Analytical evidence for the off-diagonal mass.

There have been efforts to give an analytical description of a mechanism responsible for the dynamical
generation of the off-diagonal gluon mass. In [77, 78, 79, 80], a certain ghost condensate, namely〈
fabccacb

〉
, was used to construct an effective, off-diagonal mass. A key ingredient in this construction

was the presence of the quartic ghost interaction. Analogously as for the Gross-Neveu model, the
interaction was decomposed using an auxiliary field, and an one-loop effective potential for the ghost
condensate was calculated, showing that a condensation lowers the vacuum energy. Due to the one-loop
effects of the ghost condensation, the off-diagonal gluons required a dynamical mass, while the diagonal
ones remained massless.

1.6.3 Ghost condensation and SL(2,R) symmetry.

However, in Chapter 3, we show that the mass obtained from the ghost condensate is a tachyonic one,
a fact confirmed later in [82]. We also raise some questions concerning the renormalizability of this
approach, making the comparison with the Gross-Neveu model. We propose the LCO method as more
suitable for investigating the possible condensation of the ghosts.

In [81], a different decomposition of the quartic interaction gave rise to different ghost condensates,
namely the Faddeev-Popov charged ones

〈
fabccacb

〉
and

〈
fabccacb

〉
. This should not be a big surprise,

as the ghost condensation is an order parameter for a continuous SL(2,R) symmetry present in the
MAG. The SL(2,R) rotations interchange the different channels in which the ghost condensation could
occur. It should be investigated if a certain channel might be preferred. By a simple decomposition, this
does not seem to be possible, as all the relevant ghost operators should be considered simultaneously.

Another operator, namely the mixed gluon-ghost operator9 1
2Aa

µAµa + αcaca, of which the conden-
sation could be responsible for the off-diagonal mass, was proposed by Kondo in [83]. That this
operator should condense can be expected on the basis of a close analogy existing between the MAG
and the renormalizable nonlinear Curci-Ferrari gauge [84, 85], which is the massless limit of a renor-
malizable massive SU(N) gauge model. The mass term of the Curci-Ferrari model is exactly given by
m2

(
1
2Aa

µAµa + αcaca
)
. The Landau gauge is a special case of the Curci-Ferrari gauge.

In Chapter 5, we discuss in some more detail the SL(2,R) symmetry. We recover the already known
results that the Landau and the Curci-Ferrari gauge exhibit this symmetry, and we show that it is possible
to extend the full symmetry to the MAG in a renormalizable way by choosing a suitable diagonal gauge
fixing10. The algebra built out of the SL(2,R) and (anti)-BRST transformation is known as the
Nakanishi-Ojima (NO) algebra [86]. The ghost condensation signals a (partial) breakdown of this NO
symmetry.

9The index a runs only over the N(N − 1) off-diagonal generators in case of the MAG.
10If the diagonal Landau gauge is imposed, the “diagonal” part of the SL(2,R) symmetry is lost from the

beginning.
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1.6.4 The anomalous dimension of the composite operator A2
µ in the Landau

gauge.

Despite the fact that the composite operator A2
µ was already studied using the LCO method in the Lan-

dau gauge, it was only by explicit calculations that it became clear that the operator is renormalizable,
at least up to the considered three-loop order. In Chapter 6, we employed the algebraic renormalization
to prove that A2

µ is renormalizable to all orders of perturbation theory. We were also able to provide
the all order proof of a conjectured relation existing between the anomalous dimension of A2

µ and other,
more elementary RG functions. From the explicit evaluation in [87], Gracey found that the anomalous
dimension of A2

µ is a linear combination of the anomalous dimension of the gluon field Aµ and of the
β-function, values of which were already known some time to three-loop order [88]. Our proof relied
on a restrictive Ward identity present in the Landau gauge, the ghost Ward identity [89].

1.6.5 The anomalous dimension of the gluon-ghost mass operator in Yang-
Mills theory and gluon-ghost condensate of mass dimension two in the
Curci-Ferrari gauge.

In Chapter 7, we set a first step towards extending the LCO formalism to other gauges. Until then,
A2

µ was restricted to the Landau gauge. The question arises if a renormalizable mass dimension two
operator may exist in other gauges. We already mentioned the Landau gauge is a limiting case of the
Curci-Ferrari gauge, namely α = 0. We have shown that the operator O = 1

2Aa
µAµa + αcaca is indeed

renormalizable to all orders of perturbation theory in the Curci-Ferrari gauge. We also briefly discussed
the generalization of this operator to the MAG supplemented with the Abelian Landau gauge fixing.

We made use of a set of external sources for the relevant operators so that the BRST transformation s
was no longer nilpotent, s2 being related to the SL(2,R) symmetry. However, the fact that s2 6= 0 does
not prevent to prove the renormalizability. In Chapter 12, we employed an alternative set of sources,
capable of maintaining a nilpotent BRST transformation.

We also found relations between the anomalous dimension of O in case of the Curci-Ferrari gauge and
MAG. In case of the Curci-Ferrari gauge, the relation is however not that useful as the relation involves
the anomalous dimension of another composite operator, being gfabccacb. We have numerically verified
the obtained relation up to three-loop order. In the case of the MAG, the relation is of more practical
use as it expresses the anomalous dimension of the operator in terms of that of the diagonal ghost and
the β-function. This further simplification is due to an additional Ward identity present in the MAG,
the diagonal ghost Ward identity [72]. The details of the MAG can be found in Chapter 12.

Perhaps, it is worth drawing the attention to the fact that the operator O is no longer identifiable
with a gauge invariant quantity as it was the case for

〈
A2

µ

〉
and

〈
A2

µ

〉
min

in the Landau gauge. So,

although we are able to generalize the operator A2
µ, we cannot establish a direct link with a gauge

invariant operator. Nevertheless, it is a truly remarkable property that such a nontrivial operator is
renormalizable to any order of perturbation theory.

Let us also mention a property the operator O in the Curci-Ferrari gauge and MAG does share with A2
µ

in the Landau gauge, namely the on-shell BRST invariance11. This on-shell invariance can be translated
into a functional way, giving rise to a Ward identity, see Chapter 12. We repeat here the importance of
having a sufficient number of Ward identities to constrain the most general form of the counterterms.

Chapter 8 is devoted to the extension of the LCO formalism itself to the Curci-Ferrari gauge to investi-
gate the condensation of the operator O. We did not push the calculations to an effective determination

11On-shell means that the equations of motion of the auxiliary b-field may be used.
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of the potential, as the Curci-Ferrari gauge was mainly studied preparative for the MAG. The conden-
sation of the dimension two operator in the MAG would give a dynamical off-diagonal gluon mass,
thereby serving as an indication of Abelian dominance. However, the Curci-Ferrari gauge did learn us
some things. In the Landau gauge, there is obviously no gauge parameter present. As the considered
LCO is not gauge invariant, one might wonder what will happen with physical, thus gauge invariant
quantities. For our research, the physical quantity we are immediately faced with is the minimum of the
effective potential, i.e. the vacuum energy E. We have provided a argument that the vacuum energy
should not change formally if the gauge parameter α is varied amongst the Curci-Ferrari gauge.

The following issue is related to the presence of the gauge parameter. Considering the Landau gauge, the
equation determining the LCO parameter ζ is a differential equation with g2 as variable, which can be
simply solved using the Frobenius method and an unique ζ guaranteeing multiplicative renormalizability
is found. Though, when a gauge parameter α is present, the equation for ζ reduces to differential
equations in α for all the coefficients ζi of the powers of g2 in the series expansion of ζ, as such
arbitrary integration constants can enter ζ, which in turn shall influence the effective potential. In
Chapter 8, we have set these integration constants equal to zero simply on the ground that the α-
dependence should not influence the eventual vacuum energy. A more profound explanation why this
setting to zero is justified, can be found in Chapter 12.

1.6.6 Return of the ghost condensation.

In Chapter 8, we elaborate more on the ghost condensation. In the MAG, the presence of a quartic
ghost interaction hinted at the possible condensation of ghosts, inducing the breakdown of a continuous
SL(2,R) symmetry. As the quartic interaction and the SL(2,R) symmetry are also present in the Curci-
Ferrari gauge, the ghost condensation could also be expected [90].

As there is no quartic ghost interaction in the Landau gauge, there is absolutely no reason to believe
in a ghost condensation in this gauge too, despite the SL(2,R) symmetry. Surprisingly, in [91] it was
shown that the LCO method allows to study the ghost condensation even in the Landau gauge.

We took a closer look at the Landau gauge in Chapter 8. This study was performed using the LCO
method, which allows to deal simultaneously with the different channels in which the condensation
could take place. These channels are linked by the SL(2,R) rotations. The condensation

〈
fabccacb

〉

corresponds to the Overhauser channel, while
〈
fabccacb

〉
and

〈
fabccacb

〉
are corresponding to the BCS

channel. We choose this names because of the analogy existing with the Overhauser and BCS effect in
the theory of ordinary superconductivity [92, 93, 94, 95].

It becomes apparent that the simultaneous analysis of the ghost operators demands the introduction of
two LCO parameters, which however turned out to be proportional to each other, due to the symmetries
of the theory. We also provided a diagrammatic explanation of the relation between these two LCO
parameters.

We constructed the one-loop effective potential, which is written in terms of two SL(2,R) invariants.
As the explicit calculation turned out to be rather cumbersome, we managed to reduce the effort by
showing that one of these two invariants necessarily equals zero in the vacuum, at least at one-loop.
Consequently, we found a lower vacuum energy due to a non-vanishing ghost condensate.

Choosing a vacuum along a certain SL(2,R)-direction dynamically breaks this symmetry, but any
SL(2,R) rotated configuration of the vacuum has the same energy, thus there is no distinction made
between e.g. the BCS or Overhauser effect.

As the BRST and ghost number symmetry are a key ingredient in perturbative gauge field theory [177],
we paid a little more attention to vacua other than the Overhauser one. To situate the problem, in the
BCS vacuum one has, for the ghost charged operator fabccacb, 〈QBRST(. . .)〉 ∝ 〈

fabccacb
〉 6= 0, thus

the BRST, as well as the ghost number symmetry is broken, while in the Overhauser vacuum these
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are preserved. We motivated that even in such vacua the concept of a ghost number symmetry and
nilpotent BRST charge exist, being the “rotated” version of the common ghost number and BRST
charge.

We then concentrated on the Overhauser vacuum. As the continuous SL(2,R) symmetry is broken,
the Goldstone theorem predicts the presence of massless bosons. It can however be argued that these
will belong to the unphysical sector of the theory, using a BRST argument due to Kugo and Ojima
[177].

A consequence of the ghost condensation is the different behaviour of the ghosts in function of the
color, due to the absence of the global SU(N) symmetry, which is indeed broken due to a condensate
like

〈
fabccacb

〉
. However, if we consider the expression for the global color charge Qc in the unbroken

case, it reduces, under certain conditions12, to a BRST exact form, i.e. QBRST(. . .). Thus, although
Qc no longer generates a global symmetry of the action, the action of Qc on physical states13 will
vanish. Said otherwise, the breaking of SU(N) is located in an unphysical sector.

1.6.7 Mass dimension two gluon condensate in linear covariant gauges.

Until now, we investigated the condensation of A2
µ in the Landau gauge and its generalization in the

Curci-Ferrari gauge, while we proved already the renormalizability in the MAG. The operator turned out
to be on-shell BRST invariant every time. One could imagine that this invariance would be a conditio
sine qua non.

There is however another, perhaps the most familiar one, class of covariant gauge fixings: the linear
covariant gauges, including the Landau and Feynman gauge. Would a mass dimension two condensation
occur in these gauges too? The answer is yes. We proposed the operator A2

µ, which is then not even
on-shell BRST invariant. Nevertheless, we are still able to prove the renormalizability to all orders of
perturbation theory, we calculated the two-loop anomalous dimension14 of A2

µ and the one-loop effective

potential, once more finding that
〈
A2

µ

〉 6= 0.

Although we are able to repeat our proof of gauge parameter independence of the vacuum energy
for the linear covariant gauges, the explicit results for various choices of the gauge parameter do not
stroke with it. To our understanding, this mismatch between theory and practice is due to a mixing of
different orders of perturbation theory at finite order, and should not appear at infinite order precision.
We propose a way to reduce the problem at finite order approximation, and solve for the tree level mass
and vacuum energy.

The aforementioned issues can be found in Chapters 10 and 11.

1.6.8 Off-diagonal mass generation for Yang-Mills theories in the MAG.

With our knowledge gained from the investigation of relatively simple gauges, we are finally equipped
to tackle the MAG, supplemented with a Landau gauge fixing for the Abelian degrees of freedom. The
results are presented in Chapter 12.

We examined the renormalizability, we determined the one-loop effective potential and did find a non-
trivial value for the off-diagonal gluon mass, while the diagonal gluons remains massless. These results
are in qualitative agreement with the lattice simulations of the MAG [49, 50]. Let us also point out that
some authors invoked the off-diagonal mass to construct effective low energy actions for Yang-Mills
theories in the MAG, see e.g. [96, 97, 98, 99, 100, 101, 102, 103].

12Conditions that are in fact the same in the absence of any ghost condensate.
13We remember the reader that these are defined as BRST closed.
14For general gauge parameter, there is no relation between this anomalous dimension and other, more elementary

RG functions.
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Another issue we were faced with is the following: all the previously investigated gauges, possess the
Landau gauge as a limiting case. Therefore, the vacuum energy due to dimension two condensate is
related in any of these gauges. Unfortunately, the MAG clearly does not possess the Landau gauge as a
special case and as such, there does not seem to be a connection between the respective dimension two
condensates in these two gauges. We managed to construct a gauge that does not only interpolates
between the MAG and Landau, but does allow to introduce an interpolating local composite operator
as well. This construction involved the introduction of an extra gauge parameter. We showed the
renormalizability to all orders of perturbation theory of this interpolating gauge, and it turned out that
the extra gauge parameter does not renormalize independently from the other fields/parameters of the
model. Henceforth, we made a connection between the MAG, Landau and as such also between the
linear covariant and Curci-Ferrari gauges.

1.6.9 Small intermezzo on renormalization schemes.

Let us pause here a little while by spending some words on the issue of the choice of renormalization
scheme. During most of our work, we relied on the MS -the modified minimal substraction- scheme.
This is a popular scheme as it is also a very efficient scheme for performing actual computations.

Most of the time, we have found that the relevant expansion parameter, being g2N
16π2 for gluodynamics,

is sufficiently small15 to speak about qualitatively reliable results, by which we mean we do not expect
spectacularly different results at higher order or in other renormalization schemes.

When studying the Gross-Neveu model, as a nonperturbative technique like the LCO or 2PPI method
can capture all the relevant nonperturbative information regarding the mass gap formation, it is worth
reducing the dependence on the renormalization scheme in order to get better numerics. There are
several techniques at hand to do such an optimization, see [104, 105, 24, 106] for additional details.
In essence, these are based on replacing the relevant quantities by their scheme and scale invariant
counterparts16. We shall not explain such an approach here, we refer to part II.

In the case of gauge theories, performing such an optimization is time consuming and perhaps not
very productive, as there are many other sources of nonperturbative effects. Our efforts were meant to
get an idea of the order of magnitude of some effects, and this by using an inconclusive perturbative
approach. For example, in all the investigated gauges, for the MS estimate of the tree level gluon mass
stemming from the condensation of the mass dimension two operator, we found values in the range
of a few hundred MeV, with the MS expansion parameter smaller than one half. In the case that the
MS expansion parameter would turn out to be too large, it might be worthwhile to go beyond the MS
scheme.

1.6.10 The Gribov problem: gauge copies.

We recall that, in order to quantize a gauge theory using the path integral approach, a gauge fixing
condition has to imposed, in order to ensure that only one representative of each gauge equivalence class
would contribute to the path integral. So far, it was always tacitly assumed that the gauge condition
did select an unique representant.

Gribov illustrated that the Landau gauge does not entirely fix the gauge freedom [107]: there exist
several equivalent gauge field configurations and each fulfills the Landau gauge condition ∂µAµ = 0.
The Gribov ambiguity is not restricted to the Landau gauge, but a common feature of non-Abelian
gauge theories [108]. As a consequence of the existence of these copies, the domain of integration of

15In general, the expansion parameter should certainly be (much) smaller than 1.
16This is achieved order by order.
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the path integral should be restricted further. The problem is whether this could be translated into a
practical framework. It turned out that this is more or less possible in the Landau gauge, and to some
extent in the noncovariant Coulomb gauge [107], but beyond these gauges, not much is known about
solving the Gribov ambiguity.

At the infinitesimal level, Gribov showed that the existence of gauge copies is equivalent with the
existence of zero modes of the Faddeev-Popov operator, −∂µ

(
∂µδab + gfacbAc

µ

)
. Hence, he proposed

in [107] to restrict the integration to the so-called Gribov region, where the eigenvalues of the Faddeev-
Popov operator are positive17. On the border of this region, the (first) Gribov horizon, the first vanishing
eigenvalue appears.

Evidently, each gauge configuration should have a representant inside the Gribov region. This was
shown in [107] by Gribov for configurations near to the outer border of the Gribov region, while in
general, the statement was proven in [109].

Furthermore, nothing guarantees the absence of gauge copies inside the Gribov region, and in fact it
turns out copies are existing in this region [110, 111, 112]. The smaller region free of copies is called
the fundamental modular region (FMR). It has been argued in [113] that expectation values evaluated
within the FMR do coincide with those within the Gribov region.

Returning to problem of the restriction, Gribov performed a heuristic first order approximation in [107],
nevertheless all the essential features of this restriction were already present: a massive parameter is
introduced into the theory, the value of which is determined by a gap equation. The main consequence
is an infrared enhancement of the ghost propagator and a suppression of the gluon propagator. Such
a behaviour is in qualitative agreement with the findings on the lattice [45, 48, 114, 115, 116, 117,
118, 119, 120] or with solutions of the Schwinger-Dyson equations [121, 122, 123, 20, 124, 125, 126].
Let us also mention here that a sufficient condition in the Landau gauge for a certain confinement
criterion, due to Kugo and Ojima [177], to be fulfilled, is a stronger than quadratic divergence of the
ghost propagator. This feeds the belief that the Gribov ambiguity, and more particularly a solution to
it, might be important for the IR dynamics of gauge theories.

The possibility of improving the definition of the path integral in the Landau gauge using the Gribov
approach initiated another part of our research. We became interested in what the influence might be
on the condensation of the operator A2

µ.

In Chapter 13, we followed closely Gribov’s approach in case the possible existence of a condensate〈
A2

µ

〉
is taken into consideration. We came to the same conclusion: in the infrared one observes a

suppression of the gluon propagator and an enhancement of the ghost propagator.

In [127, 128], Zwanziger constructed a local Langrangian allowing to implement the restriction to the
Gribov region order by order in a renormalizable fashion. This provides an answer to the yet unsolved
issue of renormalizability of the Gribov approach. The restriction is explicitly imposed through the
horizon condition, which is a gap equation for the massive Gribov parameter. This gap equation is
derived from the effective action, calculable with the Zwanziger Lagrangian.

Chapter 13 briefly discusses the algebraic setup to prove to all orders of perturbation theory of the, à
la Zwanziger, localized version of Gribov’s original approximation.

In Chapter 14, we have proven the Zwanziger Lagrangian maintains its renormalizability when the
operator A2

µ is coupled to the action following the LCO method. An interesting property of the action
is that no new renormalization factors are needed due to the rich symmetry structure of the model. In
particular, what could be called the LCO parameter for the massive Gribov parameter is exactly “1”, a
property that shows to be important in order to find the enhancement of the ghost propagator in the
infrared sector. We have also given a few examples of the possible importance of the presence of the
Gribov parameter.

17The Faddeev-Popov operator is Hermitian in the Landau gauge, thus the eigenvalues are real.
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Using the effective action, one consequently obtains two gap equations, for the Gribov parameter as
well as for the mass parameter associated to

〈
A2

µ

〉
. This allows to study the effects of the condensation

of A2
µ on the Gribov parameter and vice versa. We obtained explicit values in the MS scheme for the

Gribov parameter and for the mass parameter due to
〈
A2

µ

〉
, but the expansion parameter turned out to

be larger than one. We performed an optimization of the perturbative expansion in order to reduce the
dependence on the renormalization scheme. The properties of the vacuum energy, with or without the
inclusion of the condensate

〈
A2

µ

〉
, are investigated. In particular, it is shown that in the original Gribov-

Zwanziger formulation, i.e. without the inclusion of the operator A2
µ, the resulting vacuum energy is

always positive at one-loop order, independently from the choice of the renormalization scheme and
scale. We prove that in the MS scheme, and at one-loop order, the solution of the gap equations is
necessarily one with

〈
A2

µ

〉
> 0. Without the restriction to the Gribov region, the value found for

〈
A2

µ

〉
using the LCO formalism is negative, see e.g. [42] or Chapter 11.

It is an unfortunate finding that the vacuum energy is positive, as, through the trace anomaly18, the
vacuum energy can be traced back to the value of the gluon condensate

〈
F 2

µν

〉
. In fact, a positive

vacuum energy implies a negative value for the condensate
〈

g2

4π2 F 2
µν

〉
. This is in contradiction with

what is found. In “real life” QCD, with quarks present, one can extract phenomenological values for〈
g2

4π2 F 2
µν

〉
via the sum rules [13], obtaining positive values for this condensate. For gluodynamics,

estimates were obtained using lattice techniques, also leading to a positive value [129]. From this
viewpoint, it seems to us that it would be an asset that the vacuum energy obtained from any kind
of calculation is at least negative. Adding the operator A2

µ, opens the possibility to have a negative
vacuum energy, although we are unable to come to a definite conclusion at the order considered, as the
dependence on the renormalization scheme is pathologically strong.

1.6.11 Three-dimensional gauge theories.

In Chapter 16, we have considered three-dimensional gauge theories. These are physically relevant as
the high temperature limit of their four-dimensional counterpart [130]. Also for lattice computations
these are interesting due to the reduced simulation time [131, 115]. We have taken a first look at
three-dimensional Yang-Mills theories in order to find out whether (some of) our results could also be
generalized to three dimensions, e.g. the condensation of A2

µ.

Unfortunately, the situation is asking for more than a simple adaptation of our existing research. In
three dimensions, Yang-Mills theories are superrenormalizable as the coupling constant g2 itself has a
mass dimension. Superrenormalizable theories are more than renormalizable in the sense that only a few
“basic” UV divergent diagrams emerge. However, massless superrenormalizable theories are plagued
by severe infrared problems [132], which can be easily understood. Imagine that one calculates a cross

section at a certain external scale Q. As g2 is massive, the series will necessarily be one in g2

Q , and clearly
the IR limit Q → 0 causes difficulties. If a dynamical mass would be generated in some way, the IR
limit could be protected, hence the interest in finding such a mechanism, see e.g. [133, 134, 135, 136].

We have set a first step towards extending the LCO formalism to three dimensions by showing that,
using the Landau gauge, the insertion of the operator A2

µ via a mass term 1
2m2A2

µ gives a renormalizable
theory to all orders of perturbation theory, while we, surprisingly, recovered that the relation for the
anomalous dimension in four dimensions remains valid in three dimensions. This relation was explicitly
verified using the large Nf approach, where Nf represents the number of quarks. We also briefly

18The Gribov-Zwanziger approach introduces the massive Gribov parameter γ in the Yang-Mills action, but the
trace anomaly remains valid. This was discussed with great rigor in [128], but is not difficult to imagine that the
extra contributions are something like ∂Γ

∂γ
, which equals zero as this is precisely the horizon condition. A similar

thing can be said about the contributions from the condensation of A2
µ.
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touched the three-dimensional Curci-Ferrari gauge. Let us end by mentioning that the theory turns out
to be finite at one-loop order in dimensional regularization. We do not have yet any information beyond
this order, or on a possible extension of the LCO formalism.

1.7 Conclusion of the introduction.

We hope the reader is now more or less prepared to jump to the detailed articles in part II, completing
the sketchy account given above of our efforts. Needless to say, our investigations are incomplete. We
postpone this discussion to the final conclusion of the thesis.
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Chapter 2

The mass gap and vacuum energy of
the Gross-Neveu model via the 2PPI
expansion

D. Dudal and H. Verschelde (UGent),
published in Physical Review D 67 (2003) 025011.

We introduce the 2PPI (2-point-particle-irreducible) expansion, which sums bubble graphs to all
orders. We prove the renormalizibility of this summation. We use it on the Gross-Neveu model to
calculate the mass gap and vacuum energy. After an optimization of the expansion, the final results
are qualitatively good.

2.1 Introduction.

The Gross-Neveu (GN) model [21] is plagued by infrared renormalons. The origin of this problem
lies in the fact that we perturb around an instable (zero) vacuum. A remedy would be the mass
generation of the particles, connected to a non-perturbative, lower value of the vacuum energy. Such
a dynamical mass must be of a non-perturbative nature, since the GN Lagrangian possesses a discrete
chiral symmetry. A dynamical mass is closely related to a nonzero vacuum expectation value (VEV)
for a local composite operator

(
i.e. ψψ

)
. This condensate introduces a mass scale into the model. We

consider GN because the exact mass gap [25] and vacuum energy [26] are known. This allows a test
for the reliability of approximative frameworks before attention is paid to dynamical mass generation
in more complex theories like SU(N) Yang-Mills [42]. The last few years, several methods have been
proposed to solve this problem and get non-perturbative information out of the model [27, 24, 106].

In this paper, we address another approach, the so-called 2PPI expansion. Its first appearance and use
for analytical finite temperature research can be found in [61, 62, 63, 64, 137]. In section 2.2, we give a
new derivation of the expansion. Section 2.3 is devoted to the renormalization of the 2PPI technique.
Preliminary numerical results, using the MS scheme, are presented in section 2.4. We recover the
N → ∞ approximation, but we encounter the problem that the coupling is infinite. In section 2.5 we
optimize the 2PPI technique. We rewrite the expansion in terms of a scheme and scale independent
mass parameter M . The freedom in coupling constant renormalization is reduced to a single parameter
b0 by a reorganization of the series. We discuss how to fix b0. Numerical results can be found in section

41
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2.6. We also give some evidence to motivate why results are acceptable. We end with conclusions in
section 2.7.

2.2 The 2PPI expansion.

We start from the (unrenormalized) GN Lagrangian in two-dimensional Euclidean space time.

L = ψ∂/ψ − 1
2
g2

(
ψψ

)2
(2.1)

This Lagrangian has a global U(N) invariance and a discrete chiral symmetry ψ → γ5ψ which imposes〈
ψψ

〉
= 0 perturbatively. This model is asymptotically free and has spontaneous chiral symmetry

breaking. As such, it is a toy model which mimics QCD in some ways.

First of all, we focus on the topology of vacuum diagrams. We can divide them in 2 disjoint classes:

• Those diagrams falling apart in 2 separate pieces when 2 lines meeting at the same point x are
cut. We call those 2-point-particle-reducible or 2PPR. x is named the 2PPR insertion point.
Figure 2.1 depicts the most simple 2PPR vacuum bubble.

x

Figure 2.1: A 2PPR vacuum bubble. x is the 2PPR insertion point.

• The other type is the complement of the 2PPR class, we baptize such diagrams 2-point-particle-
irreducible (2PPI) diagrams. Figure 2.2 shows a 2PPI bubble.

Figure 2.2: A 2PPI vacuum bubble.

We could now remove all 2PPR bubbles from the diagrammatic sum building up the vacuum energy
by summing them in an effective mass. To proceed, we must use a little trick. Let us define

∆ = 〈ψψ〉 =
〈
ψiψi

〉
(2.2)

where the index i = 1 . . . 2N goes over space as well as internal values. Obviously, we have

∆ij ≡
〈
ψiψj

〉
= δij

∆
2N

(2.3)
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Figure 2.3: Generic vacuum bubble.

a b

Figure 2.4: Diagrammatic depiction of d
dg2 (fat dot) applied on the bubble of Figure 2.4.

We now calculate dE
dg2 where E is the vacuum energy. The g2 derivative can hit a 2PPR vertex or

a 2PPI vertex. (see Figure 2.3 and Figure 2.4) In the first case, we have diagrammatically the
contribution

−1
2
∆ij (δijδkl − δilδjk)∆kl = −1

2

(
1− 1

2

)
∆2 (2.4)

In the second case, we can unambiguously subdivide the vacuum diagram in one maximal 2PPI part,
which contains the vertex hit by d

dg2 , and one or several 2PPR parts which can be deleted and replaced
by an effective mass m. A simple diagrammatical argument gives

mδij = −g2 (δijδkl − δilδjk)∆kl (2.5)

or

m = −g2∆
(

1− 1
2N

)
(2.6)

Summarizing, we have

dE

dg2
= −1

2
∆2

(
1− 1

2N

)
+

∂E2PPI

∂g2

(
m, g2

)
(2.7)

The g2 dependence in E2PPI comes from the 2PPI vertices. To integrate (2.7), we use the Anzatz

E
(
g2

)
= E2PPI

(
m, g2

)
+ cg2∆2 (2.8)

with c a constant to be determined. Using (2.6), we find from (2.8)

dE

dg2
=

∂E2PPI

∂g2

(
m, g2

)
+

∂E2PPI

∂m

(
−∆

(
1− 1

2N

)
− g2 d∆

dg2

(
1− 1

2N

))
+ c∆2 + 2cg2∆

d∆
dg2

(2.9)
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i k k

m

= ( )
mjinmnijg dddd -2

j l n l

Figure 2.5: A diagrammatical identity.

A simple diagrammatical argument gives

∂E2PPI

∂m

(
m, g2

)
= ∆ (2.10)

This is a (local) gap equation, summing the bubble graphs into m. Using (2.10) and comparing (2.9)
with (2.7), we find c = 1

2

(
1− 1

2N

)
, so that we finally have that

E
(
g2

)
=

1
2
g2

(
1− 1

2N

)
∆2 + E2PPI

(
m, g2

)
(2.11)

It is easy to show that the following equivalence hold.

∂E2PPI

∂m
= ∆ ⇔ ∂E

∂m
= 0 (2.12)

One should not confuse (2.12) with the usual procedure of minimizing an effective potential V (ϕ) with
respect to the field variable ϕ. First of all, m is not a field variable. Secondly, the expression for E in
terms of the 2PPI expansion is only correct if the gap equation is fulfilled.

2.3 Renormalization of the 2PPI expansion.

Up to now, we have not paid any attention to divergences. We will now show that an equation such
as (2.11) is valid for the vacuum energy E with fully renormalized and finite quantities. Since in the
original Lagrangian there is no mass counterterm, one could naively expect problems with the non-
perturbative mass m, which generates mass renormalization in E2PPI . Another possible problem is
vacuum energy renormalization. Perturbatively, the vacuum energy is zero and hence no vacuum energy
renormalization is needed. Non-perturbatively, we expect logarithmic divergences proportional to m2

for E2PPI . As we will show, both these problems are solved with coupling constant renormalization.

The trick is to separate the contribution of the coupling constant renormalization counterterm

− 1
2δZ4

(
ψψ

)2
into 2PPR and 2PPI parts, corresponding with the topology of the original divergent

subgraphs. Let i and j be the indices carried by the lines meeting at the 2PPR vertex, then we have

δZ4 (δijδkl − δilδkj) = δZ2PPI
4;ij,kl + δZ2PPR

4;ij,kl (2.13)

Note that crossing will change a 2PPR part into a 2PPI part.
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x

i j

Figure 2.6: Divergent subgraph containing the 2PPR vertex x. Fat lines denote full propagators.

Because of the diagrammatical identity shown in Figure 2.5, with m—x—n a ψmψn insertion, we
have a relation between the 2PPR part of coupling constant and mass renormalization.

δZ2PPR
4;ij,kl = (δijδmn − δinδmj) δZ2;mn,kl (2.14)

This identity can be used to show that the divergent effective mass m, given by (2.6), gets replaced by a
finite renormalized mass mR = Z2m = −g2

(
1− 1

2N

)
∆R, where ∆R = Z2∆ is the finite, renormalized

expectation value of the composite operator ψψ. Indeed, let us consider a generic 2PPR subgraph
or bubble graph with a 2PPR vertex x. The divergent subgraphs of this bubble graph, which do
not contain x, can be made finite by the usual counterterms for wavefunction and coupling constant
renormalization. The resulting effective mass will be given by (2.6), but now with ∆ =

〈
ψψ

〉
evaluated

with the full Lagrangian, i.e. including counterterms. We still have to consider the subgraphs of the
bubble graph which do contain the 2PPR vertex x. They can be made finite by coupling constant
renormalization, but because the subgraph is 2PPR at x, only the 2PPR part of the counterterm has
to be inserted and we get the contribution (see Figure 2.6)

−g2δZ2PPR
4;ij,kl ∆kl = −g2 (δijδZ2;mm,kk − δZ2;ij,kk)

∆
2N

(2.15)

where use was made of (2.3) and (2.14). Since for a diagonal mass matrix, we can define δZ2 by

δZ2δkl = δZ2;mm,kl (2.16)

we have

2NδZ2 = δZ2;mm,kk (2.17)

and

δZ2;ij,kk = δZ2δij (2.18)

After substition of (2.17) and (2.18) into (2.15), we find that the contribution of the 2PPR counterterm
insertion gives

−δijg
2

(
1− 1

2N

)
δZ2∆ (2.19)
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x x

a b

x

c

Figure 2.7: Divergent subgraphs of dE
dg2 containing the 2PPR vertex x.

and hence a mass renormalization

δm = −g2

(
1− 1

2N

)
δZ2∆ (2.20)

so that we obtain a finite, effective renormalized mass

mR = Z2m = −g2

(
1− 1

2N

)
∆R (2.21)

with ∆R = Z2∆ = Z2

〈
ψψ

〉
the finite, renormalized VEV of the composite operator ψψ.

To obtain a finite, renormalized expression for the vacuum energy as a function of ∆R or mR, we have
to use the same trick as in the unrenormalized case and consider the renormalization of dE

dg2 . Let us first

consider the case when the vertex x hit by d
dg2 is a 2PPR vertex and restrict ourselves to divergent

subgraphs which contain x (the ones not containing x pose no problem and simply replace the original
∆ evaluated without counterterms by ∆ with counterterms included). The divergent subgraph can just
end at x from the left or the right (Figure 2.7a and 2.7b) or the 2PPR vertex x can be embedded in
it (Figure 2.7c). Graphs 2.7a en 2.7b can be made finite by the 2PPR part of the coupling constant
counterterm and making use of (2.14), their renormalization contributes

(7a) + (7b) = 2
(
−1

2

)
∆klδZ2;ij,kl (δijδpq − δiqδpj) ∆pq = −

(
1− 1

2N

)
δZ2∆2 (2.22)

where we have used (2.3), (2.14) and (2.17). Graph 2.7c can be made finite with that part of coupling
constant renormalization that factorizes at the 2PPR vertex x. Its renormalization therefore contributes

(7c) = −1
2
∆kl (δZ2;ii,klδZ2;jj,pq − δZ2;ij,klδZ2;ij,pq)∆pq = −1

2

(
1− 1

2N

)
δZ2

2∆2 (2.23)

where we made use of (2.17) and (2.18). Adding the counterterm contributions (2.22) and (2.23) to the

original unrenormalized expression (2.4), we obtain − 1
2

(
1− 1

2N

)
(Z2∆)2 = − 1

2

(
1− 1

2N

)
∆2

R, which

is finite. When d
dg2 hits a 2PPI vertex, we can unambiguously subdivide the vacuum diagrams in a
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i j i j

a b

Figure 2.8: Selfenergy subgraphs needing mass renormalization.

maximal 2PPI part, which contains the vertex hit by d
dg2 , and one or more 2PPR bubble insertions

which, after renormalization, can be replaced by the effective renormalized mass mR. We therefore
have

dE

dg2
= −1

2

(
1− 1

2N

)
∆2

R +
∂E2PPI

∂g2

(
mR, g2

)
(2.24)

We still have to show that the usual counterterms make ∂E2P P I

∂g2

(
mR, g2

)
finite. The non-perturbative

mass mR, running in the propagatorlines, will now generate selfenergies which require mass renorma-
lization, which is not present in the original Lagrangian. Again coupling constant renormalization will
solve the problem. Let us consider a generic selfenergy subgraph which needs mass renormalization.
Since the divergence is linear in mR, we can restrict ourselves to 2PPI diagrams with only one 2PPR
bubble insertion (Figure 2.8). The divergent part of this subgraph, that one wants to renormalize, can
end at the 2PPR vertex (Figure 2.8a) or can continue throughout the 2PPR bubble (Figure 2.8b). In
the first case, one needs the 2PPR part of coupling constant renormalization which contains only one
2PPR vertex (because the divergent part considered belongs to the 2PPI part of the diagram). We
obviously have

δZ2PPR,1
4;ij,kl = (δijδmn − δinδmj) δZ2PPI

2;mn,kl (2.25)

so that the counterterm contribution is

(8a) = −g2∆klδZ
2PPR,1
4;kl,ij = −g2∆

(
1− 1

2N

)
δZ2PPI

2 δij (2.26)

where use was made of (2.16) and (2.25).

In the second case, the divergence factorizes into a 2PPR coupling constant renormalization part (the
bubble graph part) and a 2PPI mass renormalization part, so that the counterterm contribution is

(8b) = −g2∆klδZ
2PPR
4;mn,klδZ

2PPI
2;mn,ij = −g2∆

(
1− 1

2N

)
δZ2δZ

2PPI
2 δij (2.27)

Adding both contributions, the relevant parts of the coupling constant counterterms give

(8a) + (8b) = −g2Z2∆
(

1− 1
2N

)
δZ2PPI

2 δij = mRδZ2PPI
2 δij (2.28)
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Figure 2.9: Coupling constant renormalization graph with 2 2PPR vertices.

which is exactly what we need for mass renormalization in E2PPI .

In an analoguous way, we can consider the logarithmic overall divergences of the vacuum diagrams
which are quadratic in mR. We now consider 2PPI vacuum diagrams with two bubble insertions.
One type of coupling constant renormalization subgraphs end at both 2PPR vertices (Figure 2.9).
They can be renormalized by the corresponding 2PPR part of the coupling constant renormalization
counterterm.

δZ2PPR,2
4;ij,kl = g2 (δijδmn − δinδmj) δζ2PPI

mn,rs (δrsδkl − δrlδks) (2.29)

where δζmn,rs is the overal divergent part of
〈
ψmψnψrψs

〉
. Adding the contributions from coupling

constant renormalization graphs which also go through the bubble parts, we find

δE2PPI =
1
2
δZ2PPR,2

4;ij,kl ∆R
ij∆

R
kl =

1
2
m2

Rδζ2PPI (2.30)

with

δζ2PPI = δζ2PPI
mm,nn (2.31)

and use was made of (2.29). Again coupling constant renormalization provides us with the necessary
additive renormalization of the 2PPI vacuum energy. Furthermore, completely analogous arguments
can be used to show that the unrenormalized gap equation (2.10) gets renormalized to

∂E2PPI

∂mR
(mR, g) = ∆R (2.32)

It is clear that the 2PPI coupling constant and wave function renormalization subgraphs can be
renormalized with the original counterterms. We therefore conclude that ∂E2P P I

∂g2 (mR, g) is finite and

hence (2.24) is finite and can be integrated. Making use of the gap equation (2.32), we find

E
(
g2

)
=

1
2
g2

(
1− 1

2N

)
∆2

R + E2PPI

(
mR, g2

)
(2.33)

Of course, we also have the equivalence (2.12) in the renormalized case.

For the rest of the paper, it is implicitly understood we are working with renormalized quantities, so
that we can drop the R-subscripts.

2.4 Preliminary results for the mass gap and vacuum energy.

Figure 2.10 shows the first terms in the loop expansion for E2PPI . Restricting ourselves to the one-loop
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+ + …

Figure 2.10: E2PPI .

vacuum bubble, we have in dimensional regularization with d = 2− ε,

E2PPI = −2Nm2 1
2− ε

µε

∫
ddp

(2π)d

1
p2 + m2 (2.34)

Using the MS scheme, we arrive at

E =
1
2
g2

(
1− 1

2N

)
∆2 +

N

4π
m2

(
ln

m2

µ2 − 1
)

(2.35)

The gap equation (2.32) gives

Nm

2π
ln

m2

µ2 = ∆ (2.36)

Consequently, the vacuum energy is expressed by

E = −N

4π
m2 (2.37)

At one-loop order, we have

g2(µ) =
1

β0 ln µ2

Λ2
MS

(2.38)

where β0 is the leading order coefficient of the β-function

µ
∂g2

∂µ
= β(g2) = −2

(
β0g

4 + β1g
6 + β2g

8 + · · · ) (2.39)

The values of the coefficients can be found in [138, 139, 140, 22]

β0 =
N − 1

2π
, β1 = −N − 1

4π2
, β2 = − (N − 1)

(
N − 7

2

)

16π3
(2.40)

To get a numerical value for the mass gap1, we have to choose the subtraction scale µ. The choice
immediately coming to mind is setting µ = m, which eliminates the potentially large logarithm present
in (2.35). Doing so, we find, next to the perturbative solution m = 0,

m = m = ΛMS (2.41)

1At one-loop 2PPI order, there is no mass renormalization, hence m is the physical mass.
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N P Q P1/N Q1/N

2 -46.3% - -21.9% -
3 -32.5% -6.7% -12.2% 5.8%
4 -24.2% -8.0% -7.0% 1.3%
5 -19.1% -7.2% -4.5% 0.4%
6 -15.8% -6.2% -3.1% 0.1%
7 -13.5% -5.5% -2.3% 0.007%
8 -11.7% -4.8% -1.8% -0.03%
9 -10.4% -4.3% -1.4% -0.04%
10 -9.3% -3.9% -1.1% -0.04%
20 -4.6% -2.0% -0.3% -0.02%

Table 2.1: one-loop results for mass gap and vacuum energy.

while

E = −N

4π
Λ2

MS
(2.42)

The exact mass gap is given by [25]

mexact = (4e)
1

2N−2
1

Γ
(
1− 1

2N−2

)ΛMS (2.43)

while the exact vacuum energy is [26]

Eexact = −1
8
m2

exact cot
(

π

2(N − 1)

)
(2.44)

We expect that the error on E consists of the error on the mass squared and the error on the function
multiplying that mass squared. Therefore we will consider the quantity

√−E to test the reliability of
our results. We define the deviations in terms of percentage P and Q, i.e.

P = 100
meff −mexact

mexact
(2.45)

Q = 100
√−E −√−Eexact√−Eexact

(2.46)

Looking at Table 2.1, we notice that our results2 are quite acceptable. We notice there is convergence
(P → 0 and Q → 0) to the exact result in case of N → ∞. In fact, we recovered the N → ∞
approximation. For comparison, we also displayed the next to leading results3, given by expanding
(2.43) and (2.44) in powers of 1/N .

m1/N =
(

1 +
1− γE + ln 4

2N
+O

(
1

N2

))
ΛMS (2.47)

E1/N =
(
−N

4π
+

γE − ln 4
4π

+O
(

1
N

))
Λ2

MS
(2.48)

2Q(2) is not defined since Eexact(2) = 0. We have E(2) = −0.16Λ2
MS

.
3E1/N (2) = −0.22Λ2

MS
.
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where γE ≈ 0.577216 is the Euler-Mascheroni constant.

However, the choice µ = m = ΛMS cannot satisfy us, since we are expanding in g2(m) = ∞. We may
have qualitatively good results, but for a field theory where the exact results are unknown, g2 = ∞
gives by no means an indication about how trustworthy our approximations are. It is clear we must find
a better method to achieve results with the 2PPI expansion.

2.5 Optimization and two-loop corrections.

2.5.1 Renormalization group equation for E.

A standard approach to get better results is the usage of the renormalization group equation (RGE).
We already mentioned that E cannot be treated on equal footing with an effective potential due to the
demand that ∂E

∂m = 0 must hold.

Since E is the vacuum energy, it is a physical quantity and therefore, it should not depend on the
subtraction scale µ. This is expressed in a formal way by means of the RGE

µ
dE

dµ
= 0 (2.49)

In a perturbative series expansion, this means the differential equation (2.49) must be fulfilled order
by order, when all quantities obey their running w.r.t. µ. Out of (2.16), we extract the running of m,
namely

µ
∂m

∂µ
=

(
β(g2)

g2 + γ(g2)
)

m ≡ κ(g2)m (2.50)

where γ(g2) governs the scaling behaviour of ∆

µ
∂∆
∂µ

= γ(g2)∆ (2.51)

with

γ(g2) = γ0g
2 + γ1g

4 + γ2g
6 + · · · (2.52)

The coefficients are given by [138, 139, 140, 22]

γ0 =
N − 1

2

π
, γ1 = −N − 1

2

4π2
, γ2 = −

(
N − 1

2

) (
N − 3

4

)

4π3
(2.53)

After some calculation, we find

µ
dE

dµ
=

(
µ

∂

∂µ
+ β(g2)

∂

∂g2 + κ(g2)m
∂

∂m

)
E

=
1
4π

m2

1− 1
2N

+O(g2) (2.54)

It seems that E does not obey its RGE. Perturbatively, it of course fullfills the RGE up to O (
g2

)
since

m = 0 to all orders in perturbation theory. We must not be tempted to interpret this failure as the need
to introduce some non-perturbative running coupling constant, as can be found in literature sometimes.
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The nature of the apparent problem lies in the fact that we forgot about the gap equation ∂E
∂m = 0,

because only then our 2PPI expression for E is meaningful. (2.36) gives that

ln
m2

µ2 ∝ 1
g2 (2.55)

It is easy to check that (2.55) means that all leading log terms in the expansion of E are of the order
unity. Consequently, we cannot simply show order by order that µdE

dµ = 0. The problem extends to
higher orders: when we would calculate E up to a certain order n, we would need knowledge of all
leading, subleading,..., nth leading log terms.

The above discussion reveals a possible strategy : we could do a (leading) log expansion for E2PPI ,
with a source J coupled to ψψ. Then we could use the RGE for E to sum all (leading) logs in E2PPI .
We leave this idea, because the RGE for E itself is non-linear when4 J 6= 0. This is accompanied with
its own problems. A thorough discussion of this subject can be consulted in [24].

2.5.2 Optimization.

We have seen that the MS scheme is not optimal for the 2PPI expansion used on GN. We could have
renormalized the coupling constant in another way and hope that this gives better results. It is easily
verified that going to a scheme with coupling g2, determined at lowest order by g2 = g2

(
1 + b0g

2
)
,

gives the same results as in (2.41) and (2.42), but now with g2 = b−1
0 . This means results are as good

as before, but for a sufficiently large b0, g2 is small. Again, we put µ = m to cancel logarithms.

Till now, we kept m as the mass parameter, however we should go to another scheme for this quan-
tity too. The results are then no longer independent of the renormalization prescriptions, i.e. if
m = m

(
1 + a0g

2
)

at lowest order, then a0 enters the final results, and a0 is completely free to choose.
We tackle the problem of freedom of renormalization of the coupling constant and mass parameter in
4 consecutive steps.

Step 1
First of all, we remove the freedom how the mass parameter is renormalized. We can replace m by an
unique5 M such that M is renormalization scale and scheme independent (RSSI) [106]. Out of (2.50),
we immediately deduce that

M = f(g2)m (2.56)

where f(g2) is the solution of

µ
∂f

∂µ
= −κ(g2)f (2.57)

When we change our MRS, we have relations of the form

g2 = g2
(
1 + b0g

2 + b1g
4 + · · · ) (2.58)

m = m
(
1 + m0g

2 + m1g
4 + · · · ) (2.59)

f(g2) = f(g2)
(
1 + f0g

2 + f1g
4 + · · · ) (2.60)

4We must add a source term, otherwise E cannot be treated as an effective potential in the usual sense.
5Up to an irrelevant (integration) constant that can be dropped.
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Whenever a quantity is barred, it is understood we are considering MS, otherwise we are considering
an arbitrary MRS6. Using the foregoing relations, it is easy to show the scheme independence of M .

The explicit solution, up to the order we will need it, is given by

f(g2) = (g2)−1+
γ0
2β0



1 +

g2

2

(
−β1γ0

β2
0

+
γ1

β0

)

+
g4

4


1

2

(
−β1γ0

β2
0

+
γ1

β0

)2

+
γ0

(
β2
1

β2
0
− β2

β0

)

β0
− β1γ1

β2
0

+
γ2

β0






 (2.61)

Next, we rewrite m in terms of M by inverting (2.56)

m = M(g2)1−
γ0
2β0

(
1 + c1g

2 + c2g
4
)

(2.62)

where

c1 =
1
2

(
β1γ0

β2
0

− γ1

β0

)
(2.63)

c2 =
1
8

(
−β1γ0

β2
0

+
γ1

β0

)2

− 1
4


γ0

(
β2
1

β2
0
− β2

β0

)

β0


 +

1
4

(
β1γ1

β2
0

− γ2

β0

)
(2.64)

Step 2
Transformation (2.62) allows to rewrite E in terms of M . Since the next contribution to (2.35) is
proportional to g4m2 (see Figure 2.10), we can rewrite E up to order g2 when (2.62) is applied.
Explicitly,

E = M2(g2)2−
γ0
β0

[
N

4π

(
1 + 2c1g

2
)(

ln
M2

µ2 +
(

2− γ0

β0

)
ln g2

)
− N

4π

+
1

2
(
1− 1

2N

)
(

1
g2 + 2c1 +

(
2c2 + c2

1

)
g2

)]
(2.65)

It is important to notice that the demand ∂E
∂m = 0 is translated into ∂E

∂M = 0, because M and m differ

only by an overall factor f which depends solely on g2(µ).

Step 3

(2.65) is still written in terms of g2. Using (2.58), we exchange g2 for g2, where the bi parametrize the
coupling constant renormalization. We find

E = M2(g2)2−
γ0
β0

(
e−1

g2
+ e0 + e1g

2

)
(2.66)

with

e−1 =
1

2
(
1− 1

2N

) (2.67)

e0 = −N

4π
+
−b0 + 2c1

2
(
1− 1

2N

) +
b0U

2
(
1− 1

2N

) +
N

4π
V (2.68)

6We notice that β0, β1 and γ0 are the same for each MRS.
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e1 =
b2
0 − b1 + c2

1 + 2c2

2
(
1− 1

2N

) +
1

2
(
1− 1

2N

)
(

b1U +
b2
0

2
U(U − 1)

)

+ b0U

(
−N

4π
+
−b0 + 2c1

2
(
1− 1

2N

) +
N

4π
V

)
+

N

4π
(b0U + 2c1V ) (2.69)

U = 2− γ0

β0
(2.70)

V = ln
M2

µ2 +
(

2− γ0

β0

)
ln g2 (2.71)

Step 4
Consider (2.66). We notice that the degrees of freedom, concerning the scheme, are settled in the bi.
When we rewrite the expansion in terms of g2

one−loop instead of g2, all scheme dependence is reduced
to one parameter, namely b0. This was also recognized in [106]. It is in a way more “natural” to rewrite
a perturbative series in terms of g2

one−loop, because g2 itself is changed whenever we include the next

loop order, while g2
one−loop of course remains the same.

The necessary formulas are given by

g2(µ) =
1
x
− β1

β0

ln x
β0

x2
+

(
β1
β0

)2
((

ln x
β0

)2

− ln x
β0

)
+

(
β2
β0
−

(
β1
β0

)2
)

x3
+O

(
1
x4

)
(2.72)

where

x =
1

g2
one−loop

= β0 ln
µ2

Λ2
(2.73)

Λ is the scale parameter of the corresponding MRS. In [141], it was shown that

Λ = ΛMSe
− b0

2β0 (2.74)

For β2, we have [105]

β2 = (b2
0 − b1)β0 + β1b0 + β2 (2.75)

Since (2.66) is correct up to order g2M2, we can expand up to order x−1M2. Using (2.72), (2.74) and
(2.75), the vacuum energy becomes

E = M2

(
1
x

)2− γ0
β0

(
E−1x + E0 +

E1

x

)
(2.76)

with

E−1 =
1

2
(
1− 1

2N

) (2.77)

E0 = −N

4π
+
−b0 + 2c1

2
(
1− 1

2N

) +
b0U

2
(
1− 1

2N

) − β1(U − 1)L
2β0

(
1− 1

2N

) +
N

4π
W (2.78)
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= + + …

Figure 2.11: Diagrams needed to calculate meff in function of m.

E1 =
c2
1 + 2c2

2
(
1− 1

2N

) +
β2
1

β2
0
(1 + L)− b0β1+β2

β0

2
(
1− 1

2N

) − N

4π

β1

β0
UL +

b2
0U(U − 1)
4

(
1− 1

2N

)

+
1

2
(
1− 1

2N

)
[(
−β2

1

β2
0

(
1 + L− L2

)
+

b2
0β0 + b0β1 + β2

β0

)
U +

β2
1L2U(U − 1)

2β2
0

]

+ b0U

[
N

4π
(W − 1) +

2c1 − b0

2
(
1− 1

2N

)
]
− β1

β0
LU

[
N

4π
(W − 1)

+
2c1 − b0

2
(
1− 1

2N

) +
β1L

2β0

(
1− 1

2N

) +
b0U

2
(
1− 1

2N

)
]

+
N

4π
(b0U + 2c1W ) (2.79)

L = ln
x

β0
(2.80)

U = 2− γ0

β0
(2.81)

W = ln
M2

µ2 +
(

2− γ0

β0

)
ln

1
x

(2.82)

2.5.3 Two-loop corrections.

The next order corrections are two-loop for the mass (the setting sun diagram of Figure 2.11) and
three-loop for the vacuum energy (the basket ball diagram of Figure 2.2). We will restrict ourselves to
two-loop corrections. The diagram displayed in Figure 2.11 gives a mass renormalization. The double
line is the full propagator Sfull(p). We first employ the MS scheme again for the calculation.
Let P be the value of the (amputated) setting sun diagram. Since

S(p) =
1

ip/ + m
(2.83)

we have

Stwo−loop(p) =
1

ip/ + m− P (2.84)

The effective mass meff is the pole of Stwo−loop(p). From [24], we obtain

P =
(

N − 1
2

)
g4

(
−mI2 + ip/

ε

2− ε
I2 +

1
16π2

(mF1 + ip/F2)
)

(2.85)
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where

I =
1
4π

[
2
ε
− ln

m2

µ2 +
ε

4

(
π2

6
+ ln2 m2

µ2

)
+O(ε2)

]
(2.86)

F1 = −2π2

9
+ 12q1 − 24q2 (2.87)

F2 = 2− 2π2

3
(2.88)

q1 =
∫ 1

0

dt
ln t

t2 − t + 1
≈ −1.17195 (2.89)

q2 =
∫ 1

0

dt
ln t

t3 + 1
≈ −0.951518 (2.90)

Working up to order g4, we find for the inverse propagator

S−1
two−loop = ip/

[
1−

(
N − 1

2

)
g4

16π2

(
1− 2 ln

m2

µ2 + F2

)]

+ m

[
1 +

(
N − 1

2

)
g4

16π2

(
2 ln2 m2

µ2 +
π2

6
− F1

)]
(2.91)

Solving for the pole gives

meff = m

[
1 +

(
N − 1

2

)
g4

16π2

(
2 ln2 m2

µ2 +
π2

6
− F1 + 1− 2 ln

m2

µ2 + F2

)]
(2.92)

With µ = m = ΛMS, the above equation has no sense.

Next, we follow the same steps as executed for E to reexpress meff in terms of M and x. A little
algebra results in

meff = M

(
1
x

)1− γ0
2β0

{
1 +

1
x

[
c1 +

b0U

2
− β1UL

2β0

]
+

1
x2

[
b0c1

(
1 +

U

2

)
+ c2 +

U

2
×

(
β2

1

β2
0

(
L2 − L− 1

)
+

b2
0β0 + b0β1 + β2

β0

)
− b2

0γ0U

8β0
− L2β2

1γ0U

8β3
0

− Lβ1

(
1 + U

2

) (
c1 + b0

U
2

)

β0

+
N − 1

2

16π2

(
π2

6
+ 1− F1 + F2 − 2W + 2W 2

)]}

(2.93)

The quantities c1, c2, U , W and L are the same as defined before. Again, only b0 is left over as scheme
parameter.

2.6 Second numerical results for the mass gap and vacuum
energy.

We first discuss how we can fix the parameter b0 in a reasonable, self-consistent way. A frequently used
method is the principle of minimal sensitivity(PMS)[104]. This is based on the concept that physical
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N P Q N
4πx

2 ? ? ?
3 -22.5% 43.9% 0.60
4 -19.4% 25.9% 0.56
5 -16.8% 17.9% 0.55
6 -14.6% 13.8% 0.54
7 -12.7% 11.3% 0.53
8 -11.2% 9.5% 0.53
9 -10.1% 8.2% 0.53
10 -9.1% 7.2% 0.52
20 -4.5% 3.4% 0.50

Table 2.2: Optimized first order results for mass gap and vacuum energy (Choice I)

quantities should not depend on the renormalization prescriptions. In our case, the vacuum energy E
as well as the mass gap meff are physical, so we could apply PMS. However, PMS does not always work
out. Sometimes there is no minimum, then an alternative is picking that b0 for which the derivative
of the considered quantity is minimal (→ as near as possible to a minimum). Also fastest apparent
convergence criteria (FACC) can be practiced.

But maybe the biggest barrier to a fruitful use of PMS (or FACC) arises from the same origin why E
did not seem to obey its RGE. Just as the scale dependence of E is not canceled order by order, the
scheme dependence of E will not cancel order by order, so we may find no optimal b0, and even if we
would have such b0, it would not be certain that the corresponding E really is a good approximation
to Eexact. The same obstacle will arise for the mass gap meff .

Apparently, we are not any further. We may have a way out through. M , as defined in (2.56), is RSSI,
independent of the fact that it satisfies its gap equation or not. The 2PPI formalism provides us with
an equation to calculate M approximately. This equation, ∂E

∂M = 0, is correct up to a certain order
and M is RSSI up to that order by construction. Hence, we can ask that the (non-zero) solution M
has minimal dependence on b0. This also gives a value for b0 to calculate the vacuum energy, because
the b0 for E and M must be equal, again because E is only correct when the gap equation is fulfilled.
Also the mass gap meff can be calculated with this b0.

2.6.1 First order results.

We start from the expression (2.76), but we first restrict ourselves to the lowest order correction.

E = M2

(
1
x

)2− γ0
β0

(E−1x + E0) (2.94)

Until now, we have not said anything about the freedom in scale µ. Analogously as we fixed b0, we can
ask ∂M

∂µ = 0 due to the scale independence of M . For the sake of simplicity, we will however make a
reasonable choice for µ. In order to cancel logarithms, we could set µ = M . We refer to this as Choice

I. We observe that ln M2

µ2 always appears in the form W ≡ ln M2

µ2 +
(
2− γ0

β0

)
ln 1

x ; we could determine

µ such that W = 0, then the danger of exploding logarithms is also averted. We refer to this as Choice
II.

Tables 2.2 and 2.3 summarize the corresponding results.

Some remarks must be made.
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N P Q N
4πx

2 ? ? ?
3 19.9% 120.7% 0.30
4 4.5% 57.2% 0.31
5 0.3% 36.8% 0.32
6 -1.2% 27.0% 0.33
7 -1.9% 21.3% 0.33
8 -2.1% 17.5% 0.34
9 -2.2% 14.9% 0.34
10 -2.2% 12.9% 0.34
20 -1.6% 5.5% 0.35

Table 2.3: Optimized first order results for mass gap and vacuum energy (Choice II).

• We have determined the parameter b0 by requiring that
∣∣∣∂M

∂b0

∣∣∣ is minimal7. In Figure 2.12, M(b0)

is plotted for the case N = 5 and Choice I. Figure 2.13 shows ∂M
∂b0

, again for N = 5 and Choice

I. The plots for Choice II are completely similar. Notice that
∣∣∣∂M

∂b0

∣∣∣ is relatively small. For both

choices, it tended to zero for growing N , f.i.
∣∣∣∂M

∂b0

∣∣∣ ≈ 0.045 for N = 10, Choice I.

Results for the mass gap agree very well with the exact values for Choice II, this is quite re-
markable since we used a lowest order approximation. Choice I gives almost the same results as
the N →∞ approximation.

For the vacuum energy, the results are somewhat less good than those obtained with a straight-
forward MS calculation. Nevertheless, the mass gap as well as the vacuum energy are converging,
and we retrieve the correct N → ∞ limit. Moreover, the relevant expansion parameter N

4πx is
relatively small, and behaves more or less as a constant.

• For N = 2 we did not find an optimal b0. In the light of the exact results (2.43) and (2.44), it is
not unexpected that N = 2 causes trouble. N = 2 is a maximum of mexact, and close to N = 3

2 ,
which is a root of mexact. There is a sharp drop between 2 and 3

2 , and somewhat lower than 3
2 ,

oscillating behaviour begins. What is more, N = 2 and N = 3
2 are both roots of Eexact, while

Eexact > 0 between them. Again there is a sharp drop at 3
2 with oscillation somewhat before 3

2 .
Problems with N = 2 persist at second order too, as will be seen shortly.

2.6.2 Second order results.

In Table 2.4, we present second order results for Choice I, while Table 2.5 displays those for Choice II.

Just as for the first order approximation, we plotted M(b0) in Figure 2.14, and
∣∣∣∂M

∂b0

∣∣∣ in Figure 2.15 for

the case N = 5, Choice I. Notice that
∣∣∣∂M

∂b0

∣∣∣ is smaller at second order. For N = 10,
∣∣∣∂M

∂b0

∣∣∣ ≈ 0.022 .

Again it reaches zero for infinite N . Again, we were unable to extract a value for meff or E for N = 2.

7No b0 satisfying ∂M
∂b0

= 0 was found.
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Figure 2.12: M(b0) in units of ΛMS for N = 5 (Choice I, 1st order).
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Figure 2.13: ∂M
∂b0

in units of ΛMS for N = 5 (Choice I, 1st order).

2.6.3 Interpretation of the results.

When we compare the second with the first order results, a strange feature immediately catches our
eyes. For Choice I, the mass gap results are better at second order, while the energy results are worse.
For Choice II, the energy results are better, while the mass gap performs worse (except for N = 3). To
make the comparison more transparent, we plotted the different mass gap results in Figure 2.16 and
energy results in Figure 2.17. One should not be alarmed that second order results are “worse”. We
see that the difference between the Choice I and II results at first order are relatively large, for meff as
well as for E. But at second order, the results are almost the same for both choices, whereas N

4πx is the
same. This pleases us, because these results indicate that the choice of µ is getting less relevant in the
final results at second order. The fact that both (reasonable) choices for the scale µ give results that
are close to each other and are converging to the same N →∞ limit, convinces us that our method is
consistent and should give trustable results.

Yet, there is another way to check reliability. We already said FACC could be used as an alterna-
tive to PMS to fix b0. More precisely, we could use a FACC on both the energy E as the mass gap
equation ∂E

∂M = 0. Explicitly, define

δE =
∣∣∣∣
E1x

−1 − E0

E0

∣∣∣∣ (2.95)

measuring the relative correction of the second order on the first order contribution. The closer δE is
to 1, the better it is, as an indication that the series expansion is under control. The quantity δM is
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N P Q N
4πx

2 ? ? ?
3 -0.2% 54.8% 0.16
4 -2.6% 33.5% 0.16
5 -3.3% 23.8% 0.16
6 -3.7% 18.1% 0.16
7 -3.8% 14.5% 0.17
8 -3.9% 11.9% 0.17
9 -3.9% 10.0% 0.17
10 -4.0% 8.5% 0.17
20 -3.7% 2.8% 0.19

Table 2.4: Optimized second order results for mass gap and vacuum energy (Choice I).

N P Q N
4πx

2 ? ? ?
3 -4.5% 47.7% 0.17
4 -6.5% 27.9% 0.17
5 -6.1% 19.9% 0.17
6 -5.4% 15.6% 0.17
7 -4.8% 12.8% 0.17
8 -4.3% 10.9% 0.17
9 -3.9% 9.5% 0.17
10 -3.5% 8.4% 0.17
20 -1.8% 3.9% 0.17

Table 2.5: Optimized second order results for mass gap and vacuum energy (Choice II)

defined in a similar fashion. Unfortunately, no b0 exists such that
∣∣∣∂δE

∂b0

∣∣∣ or
∣∣∣∂δM

∂b0

∣∣∣ are zero or minimal.

However, we can substitute our PMS results in δE and δM and find out what these give.

Consulting Figure 2.18 and Figure 2.19, we are able to understand why we should have ended up with
qualitatively good results, since δE as well as δM are close to 1, even for small N . We also see that
both choices for µ should give comparable results, since δE and δM fit with each other.

We also fixed b0 by demanding that
∣∣∣ ∂E
∂b0

∣∣∣ was minimal8, and we found that results were less good than

those obtained by fixing b0 by means of M , except for small N values9. However, the convergence to the
exact results for growing N was very slow. For example with Choice I, Q(5) = 19.4%, Q(10) = 19.1%,
Q(20) = 14.1%. An analogous story held true for meff , where b0 was determined by demanding

that
∣∣∣∂meff

∂b0

∣∣∣ was minimal. There, the deviation from the exact results was always bigger10, and the

convergence was again rather slow. For example, with Choice I, P (5) = 30.1%, P (10) = 25.7%,
P (20) = 18.5%. All this corroborates our conjecture that M is indeed the best quantity to fix b0.

8Again, no solution for ∂E
∂b0

= 0.
9To be more precise, Q(3) = 2.1% and Q(4) = 14.4%. The fact that the error grows fast between N = 3 and

N = 4, and goes slowly to 0 for N > 5, makes us believe it is a rather lucky shot that the energy values are better
for small N .

10Also for meff , the error grows between N = 3 and N = 5 (P (3) = 16.8%, P (4) = 27.8%), and drops slowly to 0
for N > 5.
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Figure 2.14: M(b0) in units of ΛMS for N = 5 (Choice I, 2nd order).
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Figure 2.15: ∂M
∂b0

in units of ΛMS for N = 5 (Choice I, 2nd order).

Before we formulate our conclusions, we just like to mention that also in case of N = 2 there exist a mass
gap and a non-perturbative vacuum energy. We already pointed out why we probably did not find an
optimal b0 with our method. The best we can do with this special N value, is just choosing a (physical)
renormalization scheme, but we must realize we can easily obtain highly over- or underestimated values
in this case and that this is not a self-consistent way to obtain results.

2.7 Conclusion.

This paper, which had the purpose to investigate the dynamical mass generation and non-perturbative
vacuum energy of the two-dimensional Gross-Neveu field theory, consisted of two main parts. In the
first part, we proved how all bubble Feynman diagrams can be consistently resummed up to all orders
in an effective mass m. We showed that this m can be calculated from the gap equation ∂E

∂m = 0,
whereby E is the vacuum energy. E is given by the sum of the 2PPI vacuum bubbles, calculated with
the 2PPI massive propagator (i.e. with mass m), plus an extra term, accounting for a double counting
ambiguity.

We showed that the 2PPI expansion can be renormalized with the original counterterms of the model.

A very important fact is that the 2PPI expansion for E is only correct if the gap equation ∂E
∂m = 0

is fulfilled. In this context, we discussed the renormalization group equation for E, and showed why
E does not obey its RGE order by order, because the requirement of the gap equation turns terms of
different orders into the same order. We stress that this does not mean E does not obey its RGE, or
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ask for the introduction of a “non-perturbative” β-function.

To get actual values for meff and E, we employed the MS scheme, and after the classical choice µ = m
to cancel logarithms, we recovered the N →∞ results. However, the corresponding coupling constant
was infinite, so we could not say anything about validity of the results, without the foreknowledge of
exact values. This compelled us to search for a more sophisticated way to improve the 2PPI technique.

In the second part, we first eliminated the freedom in the renormalization of the 2PPI mass parameter,
by transforming m to a renormalization scheme and scale independent M . The consistency relation
∂E
∂m = 0 was completely equivalent to ∂E

∂M = 0. Secondly, we parametrized the coupling constant
renormalization. After a reorganization of the series, all scheme dependence was reduced to a single
parameter b0, equivalent to the choice of a certain scale parameter Λ. We fixed this b0 by means of
the principe of minimal sensitivity (PMS). Originally, PMS was founded on the logical requirement that
observable physics cannot depend on how one chooses to renormalize. Translated to our case, E and
meff should not depend on the arbitrary parameter b0. But we showed on theoretical grounds why
applying PMS on neither meff nor E would be valid, because analogously as E (meff) does not lose its
scale dependence order by order, it does not lose its scheme dependence order by order.

Nevertheless, we gave an outcome to the problem of PMS. By construction, M is scheme and scale
independent, so we can apply PMS on this mass parameter. This provides us with an optimal b0 to
calculate M , and consequently E and meff . For the scale µ, we made 2 reasonable choices. These 2
choices gave acceptable results at first order, yet there was quite a big difference between them. The
second order results were comparable and qualitatively good, converging to the exact values for growing
N .

The relevant expansion parameter was relatively small. We gave extra evidence why results were good,
by using a fastest apparent convergence argument.

We explicitly checked that using PMS on E and meff to fix b0 gave worse results, and the convergence
was very slow.

Summarizing, we have constructed a self consistent method to calculate the mass gap and non-
perturbative vacuum energy.
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Figure 2.16: Different results for meff .
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Figure 2.18: δE as a function of N .

4 5 6 7 8 9 10
N

1.05

1.15

1.2

1.25

Choice II

Choice I

Figure 2.19: δM as a function of N .
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We discuss the 2-point-particle-irreducible (2PPI) expansion, which sums bubble graphs to all orders,
in the context of SU(N) Yang-Mills theory in the Landau gauge. Using the method we investigate
the possible existence of a gluon condensate of mass dimension two,

〈
Aa

µAa
µ

〉
, and the corresponding

non-zero vacuum energy. This condensate gives rise to a dynamically generated mass for the gluon.

3.1 Introduction.

Recently there has been growing evidence for the existence of a condensate of mass dimension two in
SU(N) Yang-Mills theory with N colours. An obvious candidate for such a condensate is

〈
Aa

µAa
µ

〉
.

The phenomenological background of this type of condensate can be found in [142, 33, 34]. However,
if one first considers simpler models such as massless λφ4 theory or the Gross-Neveu model [21] and
the role played by their quartic interaction in the formation of a (local) composite quadratic condensate
and the consequent dynamical mass generation for the originally massless fields [21, 62, 64], it is clear
that the possibility exists that the quartic gluon interaction gives rise to a quadratic composite operator
condensate in Yang Mills theory and hence a dynamical mass parameter for the gluons. The formation of
such a dynamical mass is strongly correlated to a lower value of the vacuum energy. In other words the
casual perturbative Yang-Mills vacuum is unstable. From this viewpoint, mass generation in connection
with gluon pairing has already been discussed a long time ago in, for example, [28, 29, 30, 31]. There
the analogy with the BCS superconductor and its gap equation was examined. It was shown that the
zero vacuum is tachyonic in nature and the gluons achieve a mass due to a non-trivial solution of the gap
equation. Moreover, recent work using lattice regularized Yang Mills theory has indicated the existence
of a non-zero condensate,

〈
Aa

µAa
µ

〉
, [37]. There the authors invoked the operator product expansion,

(OPE), on the gluon propagator as well as on the effective coupling αs in the Landau gauge. Their work

65
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was based on the perception that, even in the relatively high energy region (∼ 10GeV), a discrepancy
existed between the expected perturbative behaviour and the lattice results. It was shown that, within
the momentum range accessible to the OPE, that this discrepancy could be solved with a 1/q2 power
correction1. They concluded that a non-vanishing dimension two condensate must exist. Further, the
results of [38] give some evidence that instantons might be the mechanism behind the low-momentum
contribution to condensate. As has been argued in [34], only the low-momentum content of the squared
vector potential is accessible with the OPE. Moreover, they argue that there are also short-distance
non-perturbative contributions to

〈
A2

µ

〉
.

It is no coincidence the Landau gauge is used for the search for a dimension two condensate. Naively,
the operator A2

µ is not gauge invariant. Although this does not prevent the condensate
〈
A2

µ

〉
showing

up in gauge variant quantities like the gluon propagator, we should instead consider the gauge-invariant

operator (V T )−1 minU

∫
d4x

(
AU

µ

)2
, where V T is the space-time volume and U is an arbitrary gauge

transformation in order to assign some physical meaning to the operator. Clearly from its structure this
operator is non-local and thus is difficult to handle. However, when we impose the Landau gauge, it
reduces2 to the local operator A2

µ. Moreover, it has been shown that
〈
A2

µ

〉
is (on-shell) BRST invariant

[84, 85, 83, 144]. Another motivation for this study is that the gluon propagator seems to exhibit
an infrared suppression, as has been reported in many lattice simulations, [44, 45, 46] and using the
Schwinger-Dyson approach, [146, 20, 126]. A dynamical gluon mass might serve as an indication for
such a suppression. An attempt has already been made to explain confinement by a dual Ginzburg-
Landau model or an effective string theory, in the Landau gauge, with the help of

〈
A2

µ

〉
[147]. The fact

that
〈
A2

µ

〉
might be central to confinement, is supported by the observation that it undergoes a phase

transition due to the monopole condensation in three-dimensional compact QED [33, 34].

From these various analyses the importance of
〈
A2

µ

〉
must have become clear. Therefore, the aim of

this article is to provide some analytical evidence that gluons do condense. To our knowledge, [42]
is the only paper which effectively calculates

〈
A2

µ

〉
, without referring to lattice regularization. In [42]

the standard way of calculating the effective potential for a particular quantity was followed, and all
the problems concerning the fact that the considered quantity was a composite operator were elegantly
solved.

In a previous paper [148], we have discussed the 2PPI expansion for the Gross-Neveu model and found
results close to the exact values for the Gross-Neveu mass gap and the vacuum energy. The 2PPI
expansion does not rely on the effective action formalism of [42]. Instead it is directly based on the
path integral and the topology of its Feynman diagrammatical expansion. In this paper we will discuss
how to apply it to SU(N) Yang-Mills theories in the Landau gauge. Of course, it is not our aim to
provide a complete picture of

〈
A2

µ

〉
but rather give further evidence for its existence as it lowers the

vacuum energy also in the 2PPI approach.

3.2 The 2PPI expansion.

The SU(N) Yang Mills Lagrangian in d-dimensional Euclidean space time is given by

L(Aµ, c, c) =
1
4
F a

µνF a
µν + LG.F.+F.P. (3.1)

1The 1
q4 power correction due to the 〈F 2

µν〉 condensate is too weak at such energies to be the cause of the

discrepancy.
2Although this equality is somewhat disturbed by Gribov ambiguities [143]. In this paper Gribov copies are

neglected since we will work in the perturbative Landau gauge and sum a certain class of bubble diagrams in this
particular gauge. It is a pleasant feature of the Landau gauge that



A2

µ

�
can be given some gauge invariant meaning.

In another gauge, the bubbles will no longer correspond to


A2

µ

�
and the correspondence with



A2

µ

�
min

is more of
academic interest.
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Figure 3.1: A 2PPI vacuum bubble.

Figure 3.2: A 2PPR vacuum bubble. x is the 2PPR insertion point.

where F a
µν is the gluon field strength, 1 6 a 6 N2 − 1, LG.F.+F.P. implements the Landau gauge and

its corresponding Faddeev-Popov part and ξ and ξ denote the ghosts and anti-ghost fields respectively.
Issues concerning the counterterm part of (3.1) will be discussed later. First, we consider the diagram-
matical expansion for the vacuum energy which we denote by E. As is well known, this is a series
consisting of one particle irreducible, (1PI), diagrams. These 1PI diagrams can be divided into two
disjoint classes:

• those diagrams not falling apart into two separate pieces when two lines meeting at the same
point x are cut, which we call 2-point-particle-irreducible, (2PPI); (an example is given in Figure
3.1)

• those diagrams falling apart into two separate pieces when two lines meeting at the same point
x are cut which we call 2-point-particle-reducible, (2PPR), while x is called the 2PPR insertion
point; (an example is given in Figure 3.2).

We may now resum this series of 2PPR and 2PPI graphs, where the propagators are the usual massless
ones, by retaining only the 2PPI graphs, whereby the 2PPR insertions, or bubbles, are resummed into
an effective (mass)2 m2

2PPI ≡ m2. The bubble graph gluon polarization is then given by

Πab
µν = − g2

2
[
feabfecd

(〈
Ac

µAd
ν

〉− 〈
Ad

µAc
ν

〉)
+ feacfedb

(〈
Ad

µAc
ν

〉− 〈
Ac

ρA
d
ρ

〉
δµν

)

+ feadfebc

(
δµν

〈
Ac

ρA
d
ρ

〉− 〈
Ac

µAd
ν

〉)]
(3.2)

where fabc are the SU(N) structure constants. We define the vacuum expectation value of A2
µ as

∆ =
〈
Aa

µAa
µ

〉
. (3.3)

The global SU(N) symmetry can then be used to show that

〈
Aa

µAb
ν

〉
=

δabδµν

d (N2 − 1)
∆ (3.4)
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Substitution of (3.4) in (3.2) yields

Πab
µν = − g2 N

N2 − 1
d− 1

d
δabδµν∆ (3.5)

which results in an effective mass, m, running in the 2PPI propagators, given by

m2 = g2 N

N2 − 1
d− 1

d
∆ . (3.6)

If we let E2PPI be the sum of the 2PPI vacuum bubbles, calculated with the effective 2PPI pro-
pagator, then this E2PPI is not equal to the vacuum energy E, because simply removing all 2PPR
insertions is too naive. For instance, there is a double counting problem which is already visible in the
2PPR diagram of Figure 3.2 where each bubble can be seen as a 2PPR insertion on the other one.
However, we can resolve this ambiguity. A dimensional argument results in

E = E2PPI + cg2∆2 (3.7)

where c 6= 0 will accomodate the double counting. To determine the appropriate value of c, we use the
path integral which gives

∂E

∂g2
= − 1

4g
fabc

〈(
∂µAa

ν − ∂νAa
µ

)
Ab

µAc
ν

〉 − 1
2g

fabc

〈
∂µξ

a
ξcAb

µ

〉

+
1
4
fabcfade

〈
Ab

µAc
νAd

µAe
ν

〉
. (3.8)

The first two terms contribute unambiguously to the 2PPI part. For the last term, we rewrite

〈
Ab

µAc
νAd

µAe
ν

〉
=

〈
Ab

µAc
ν

〉 〈
Ad

µAe
ν

〉
+

〈
Ab

µAd
µ

〉 〈Ac
νAe

ν〉+
〈
Ab

µAe
ν

〉 〈
Ac

νAd
µ

〉

+
〈
Ab

µAc
νAd

µAe
ν

〉
2PPI

. (3.9)

Using (3.4) and the properties of the structure constants fabc, we obtain

∂E

∂g2
= − 1

4g
fabc

〈(
∂µAa

ν − ∂νAa
µ

)
Ab

µAc
ν

〉
2PPI

− 1
2g

fabc

〈
∂µcaccAb

µ

〉
2PPI

+
1
4
fabcfade

〈
Ab

µAc
νAd

µAe
ν

〉
2PPI

+
1
4

N

N2 − 1
d− 1

d
∆2

=
∂E2PPI

∂g2
+

1
4

N

N2 − 1
d− 1

d
∆2 . (3.10)

From (3.7), we derive

∂E

∂g2
=

∂E2PPI

∂g2
+

∂E2PPI

∂m2

∂m2

∂g2
+ c∆2 + 2cg2∆

∂∆
∂g2

. (3.11)

Combining (3.6), (3.10) and (3.11) gives

∂E2PPI

∂m2

(
N

N2 − 1
d− 1

d
∆ + g2 N

N2 − 1
d− 1

d

∂∆
∂g2

)
=

1
4

N

N2 − 1
d− 1

d
∆2 . (3.12)

Then a simple diagrammatical argument gives

∂E2PPI

∂m2 =
∆
2

. (3.13)
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which is a local gap equation, summing the bubble graphs into m2. Using this together with (3.12)
finally gives

c = − 1
4

N

N2 − 1
d− 1

d
. (3.14)

It is easy to show that the following equivalence holds

∂E2PPI

∂m2 =
∆
2
⇔ ∂E

∂m2 = 0 . (3.15)

To summarize, we have summed the bubble insertions into an effective (mass)2, m2. The vacuum
energy is expressed by

E = E2PPI − g2

4
N

N2 − 1
d− 1

d
∆2 . (3.16)

We stress the fact that (3.16) is only meaningful if the gap equation (3.15) is satisfied. This means
we cannot consider m or ∆ as a real variable on which E depends. It is a quantity which has to
obey its gap equation, otherwise the 2PPI expansion loses its validity. This also means that E(m), or
equivalently E(∆), is not a function depending on m (∆), in contrast3 with the usual concept of an
effective potential V (ϕ) which is a function of the field ϕ.

In order to ensure the usefulness of the 2PPI formalism for actual calculations, we should prove it
can be fully renormalized with the counterterms available from the original (bare) Lagrangian, (3.1).
However, it is sufficient to say that all our derived formulae remain valid and are finite when the
counterterms are included. This also implies the 2PPI mass m is renormalized. Furthermore, no
new counterterms are needed to remove the vacuum energy divergences. The renormalizability of the
2PPI expansion has been discussed in detail in [148] in the case of the Gross-Neveu model. Since
the arguments for Yang Mills theory are completely analogous, we refer to [148] for technical details
concerning the renormalization.

Another point worth emphasizing here, is the renormalization group equation, (RGE), for E. The first
diagram of E2PPI is given by the O-bubble. Using the MS renormalization scheme in dimensional
regularization in d dimensions, we find

E =
3
4

N2 − 1
16π2

m4

(
ln

m2

µ2 −
5
6

)
− 1

4g2

d

d− 1
N2 − 1

N
m4 . (3.17)

Since E is a physical quantity, it should not depend on the subtraction scale µ. This is expressed by
the RGE

µ
dE

dµ
=

(
µ

∂

∂µ
+ β(g2)

∂

∂g2 + κ(g2)m2 ∂

∂m2

)
E = 0 (3.18)

where β(g2) governs the scaling behaviour of the coupling constant

β(g2) = µ
∂g2

∂µ
= − 2

(
β0g

4 + β1g
6 + β2g

8 + · · · ) (3.19)

and κ(g2) is the anomalous dimension of m2

µ
∂m2

∂µ
=

(
β(g2)

g2 + γA2
µ
(g2)

)
m2 ≡ κ(g2)m2 (3.20)

γA2
µ
(g2) =

µ

∆
∂∆
∂µ

= γ0g
2 + γ1g

4 + γ2g
6 + · · · . (3.21)

3V (ϕ) also makes sense if dV
dϕ

6= 0.



70 Chapter 3. A determination of
〈
A2

µ

〉
...

Figure 3.3: The first diagrams contributing to E2PPI

The coefficients can be found in [9, 10, 149, 150, 151, 152, 88, 87] for β and in [42, 87, 153] for γA2
µ
,

β0 =
11
3

(
N

16π2

)
β1 =

34
3

(
N

16π2

)2

β2 =
2857
54

(
N

16π2

)3

(3.22)

γ0 =
35
6

(
N

16π2

)
γ1 =

449
24

(
N

16π2

)2

γ2 =
[
75607
864

− 9ζ(3)
16

](
N

16π2

)3

.

(3.23)

When we combine all this information and determine µdE
dµ up to lowest order in g2, we find

µ
dE

dµ
6= 0 . (3.24)

Apparently, it seems that E does not obey its RGE. However, this is not a contradiction because of

the demand that the gap equation (3.15) must be satisfied. The gap equation implies that ln m2

µ2 ∝
1
g2 +constants. The consequence is that all leading logarithms contain terms of order unity. Hence, we
cannot show that the RGE for E is obeyed order by order. The same phenomenon extends to higher
orders. In other words, knowledge of µdE

dµ up to a certain order n, would require knowledge of all

leading and subleading log terms to order n, to show explicitly that µdE
dµ = 0. We must therefore be

careful not to interpret the non-vanishing of the RGE as a reason to introduce a “non-perturbative”
β-function, as is sometimes done, [154].

3.3 Results.

Up to two-loop order in the 2PPI expansion (see Figure 3.3), we find in the MS scheme

E(∆) = − 3
16

g2N

N2 − 1
∆

2
+

27
64

g4N2

16π2

∆
2

N2 − 1

(
ln

3
4

g2N
N2−1∆

µ2 − 5
6

)
+

9
16

g6N3

(16π2)2
∆

2

N2 − 1

×

−31

2

(
ln

3
4

g2N
N2−1∆

µ2

)2

+
259
8

ln
3
4

g2N
N2−1∆

µ2 − 1043
32

+
891
16

s2 − 63
8

ζ(2)




(3.25)
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where ζ(n) is the Riemann zeta function,

s2 =
4

9
√

3
C`2

(π

3

)
≈ 0.2604341 (3.26)

and C`2(x) is the Clausen function. We have computed the relevant two-loop vacuum bubble diagrams
to the finite part using the massive gluon and massless ghost propagators which are respectively

− 1
p2 + m2

[
δµν − pµpν

p2

]
and

1
p2

(3.27)

in the Landau gauge. The expressions for the general massive and massless two-loop bubble integrals
were derived from the results of [155] and implemented in the symbolic manipulation language Form,

[156]. It is easy to check that solving the gap equation ∂E
∂∆

= 0, with µ2 set equal to 3
4

g2N
N2−1∆ to kill

potentially large logarithms, gives no solution at one-loop or two-loops, apart from the trivial one ∆ = 0.
This does not imply

〈
A2

µ

〉
does not exist but that the MS scheme might not be the best choice for the

2PPI expansion. To address this we first remove the freedom existing in how the mass parameter ∆
is renormalized by replacing ∆ by a renormalization scheme and scale independent quantity ∆̃. This
can be accommodated by4

∆̃ = f
(
g2

)
∆ (3.28)

with

µ
∂f

∂µ
= − γA2

µ

(
g2

)
f . (3.29)

A change in massless renormalization scheme corresponds to relations of the form

g2 = g2
(
1 + b0g

2 + b1g
4 + · · · ) (3.30)

∆ = ∆
(
1 + d0g

2 + d1g
4 + · · · ) (3.31)

f(g2) = f(g2)
(
1 + f0g

2 + f1g
4 + · · · ) . (3.32)

With these, it is easily checked that (3.28) is renormalization scheme and scale independent. The
explicit solution of (3.29) reads

f
(
g2

)
=

(
g2

) γ0
2β0



1 +

g2

2

(
−β1γ0

β2
0

+
γ1

β0

)
+

g4

4


1

2

(
−β1γ0

β2
0

+
γ1

β0

)2

+
γ0

(
β2
1

β2
0
− β2

β0

)

β0
− β1γ1

β2
0

+
γ2

β0


 +O (

g6
)


 . (3.33)

Since the gap equation is still a series expansion in g2N
16π2 and we hope to find (at least qualitatively)

acceptable results, g2N
16π2 should be small. We will therefore choose to renormalize the coupling constant

in such a scheme so that E is of the form

E =
3
16

(
g2

)1− γ0
β0

N

N2 − 1
∆̃2

(
−1 +

g2N

16π2
E1

1L +
(

g2N

16π2

)2 (
E1

2L + E2
2L2

)
+ . . .

)
(3.34)

4Barred quantities refer to the MS scheme, otherwise any other massless renormalization scheme is meant.
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where

L = ln
3
4

(
g2

)1− γ0
2β0 N

N2−1∆̃

µ2 . (3.35)

Otherwise, we remove all the terms of the form
(

g2N
16π2

)n

× constant, and only keep the terms that

contain a power of the logarithm L. This is always possible by calculating the MS value of E as in
(3.25) and using (3.30) to change the coupling constant renormalization by a suitable choice for the
coefficients bi. In other words the one-loop MS contribution to E allows one to determine b0. Once
b0 is fixed, the two-loop MS contribution to E can be used to fix b1, and so on for the higher order
contributions. We note that the gap equation (3.15) is translated into ∂E

∂ e∆ = 0 since m2 ∝ ∆ ∝ ∆̃. In

this gap equation, we will set µ2 = 3
4

(
g2

)1− γ0
2β0 N

N2−1∆̃ so that all logarithms vanish. In other words

L = 0. Once a solution ∆̃∗ of the gap equation is found, then we will always have

Evac = − 3
16

(
g2

)1− γ0
β0

N

N2 − 1
∆̃2
∗ . (3.36)

If the constructed value for g2N
16π2 is small enough, then we can trust, at least qualitatively, the results

we will obtain. Now we are ready to rewrite (3.25) in terms of ∆̃. After a little algebra, one finds

E =
3
16

(
g2

)1− γ0
β0

N

N2 − 1
∆̃2

{
−1 +

[
9N

64π2

(
−5

6
+ L

)
− 2c1 − c4

]
g2

+
[

3N2

256π4

(
c3 +

259
8

L− 31
2

L2

)
− 2b0c1 − c2

1 − 2c2 +
(

9N

64π2

(
−5

6
+ L

)
− 2c1

)
c4

− c5 +
9N

64π2

((
−5

6
+ L

)
b0 + c1 + 2

(
−5

6
+ L

)
c1 + b0

(
1− γ0

2β0

))]
g4 +O (

g6
)}

(3.37)

with

c1 =
1
2

(
β1γ0

β2
0

− γ1

β0

)
(3.38)

c2 =
1
8

(
−β1γ0

β2
0

+
γ1

β0

)2

− 1
4


γ0

(
β2
1

β2
0
− β2

β0

)

β0


 +

1
4

(
β1γ1

β2
0

− γ2

β0

)
(3.39)

c3 = − 1043
32

− 63
8

ζ(2) +
891
16

s2 (3.40)

c4 = b0

(
1− γ0

β0

)
(3.41)

c5 = b1

(
1− γ0

β0

)
− b2

0

γ0

2β0

(
1− γ0

β0

)
. (3.42)

Next, we determine b0 and b1 so that (3.37) reduces to

E =
3
16

(
g2

)1− γ0
β0 ∆̃2 N

N2 − 1

{
−1 + g2 9N

64π2
L + g4

[
3N2

256π4

(
259
8

L− 31
2

L2

)

+
9N

64π2
(b0 + c4 + 2c1)L

]
+O (

g6
)}

. (3.43)
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We find that b0 is

b0 =
409
2288

N

π2
. (3.44)

We do not list the value for b1 since it is no longer required. From the β-function we find the two-loop
expression for the coupling constant is

g2(µ) =
1

β0 ln µ2

Λ2

− β1

β0

ln ln µ2

Λ2

β2
0 ln2 µ2

Λ2

(3.45)

where Λ is the scale parameter of the corresponding massless renormalization scheme. We will express
everything in terms of the MS scale parameter ΛMS. In [141], it was shown that

Λ = ΛMSe
− b0

2β0 . (3.46)

We will also derive a value for the
〈

αs

π F 2
µν

〉
condensate from the trace anomaly

Θµµ =
β(g)
2g

(
F a

ρσ

)2
. (3.47)

This anomaly allows us to deduce for N = 3 the following relation between the vacuum energy and the
gluon condensate

〈αs

π
F 2

µν

〉
= − 32

11
Evac . (3.48)

At one-loop order, the results for N = 3 are

g2N

16π2

∣∣∣∣
one-loop

=
8
9

(3.49)

√
∆̃

∣∣∣
one-loop

≈ 1.004ΛMS ≈ 233MeV (3.50)

Evac|one-loop ≈ −0.0074Λ4
MS

≈ − 0.00002GeV4 (3.51)
〈αs

π
F 2

µν

〉∣∣∣
one-loop

≈ 0.02Λ4
MS

≈ 0.00007GeV4 (3.52)

while the scale parameter µ2 ≈ (184MeV)2. We have used ΛMS ≈ 233MeV which was the value
reported in [37]. We see that the one-loop expansion parameter is quite large and we conclude that we
should go to the next order where the situation is improved. We find

g2N

16π2

∣∣∣∣
two-loop

≈ 0.131 (3.53)

√
∆̃

∣∣∣
two-loop

≈ 2.3ΛMS ≈ 536MeV (3.54)

Evac|two-loop ≈ −0.63Λ4
MS

≈ − 0.002GeV4 (3.55)
〈αs

π
F 2

µν

〉∣∣∣
two-loop

≈ 1.84Λ4
MS

≈ 0.005GeV4 . (3.56)

with µ2 ≈ (347MeV)2. Although there is a sizeable difference between one-loop and two-loop results,
the relative smallness of the two-loop expansion parameter, indicates that the two-loop values are
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qualitatively trustworthy. It is well known that in order to find reliable perturbative results, one must
go beyond one-loop, and even beyond two-loop approximations. Therefore, one should not attach a
firm quantitative meaning to the numerical values. Let us compare our results with what was found

elsewhere with different methods. A combined lattice fit resulted in
√〈

A2
µ

〉 ≈ 1.64GeV, [37]. We

cannot really compare this with our result for
√

∆̃, since the lattice value was obtained with the OPE
at a scale µ = 10GeV in a specific renormalization scheme (MOM). However, it is satisfactory that
(3.54) is at least of the same order of magnitude. More interesting is the comparison with what was
found in [42] with the local composite operator formalism for

〈
A2

µ

〉
. In the MS scheme at two-loop

order, it was found that g2N
16π2 ≈ 0.141247 while Evac ≈ − 0.789Λ4

MS
which is in quite good agreement

with our results. An estimate of the tree level gluon mass of ∼ 500MeV was also given in [42] which
compares well with the lattice value of ∼ 600MeV of [47, 48]. With the 2PPI method, one does
not really have the concept of a tree level mass. Instead, one would need the calculation of the highly
non-trivial two-loop 2PPI mass renormalization graphs which is beyond the scope of this article.

In conclusion we note that the perturbative Yang-Mills vacuum is unstable and lowers its value through
a non-perturbative mass dimension two gluon condensate

〈
A2

µ

〉
. We have omitted quark contributions

in our analysis but it is straighforward to extend the 2PPI expansion to QCD with quarks included.
Indeed an idea of the effect they have could be gained by an extension of [42].
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Recent work claimed that the off-diagonal gluons (and ghosts) in pure Yang-Mills theories, with maximal
Abelian gauge fixing (MAG), attain a dynamical mass through an off-diagonal ghost condensate. This
condensation takes place due to a quartic ghost interaction, unavoidably present in MAG for renorma-
lizability purposes. The off-diagonal mass can be seen as evidence for Abelian dominance. We discuss
why ghost condensation of the type discussed in those works cannot be the reason for the off-diagonal
mass and Abelian dominance, since it results in a tachyonic mass. We also point out what the full
mechanism behind the generation of a real mass might look like.

4.1 Introduction.

As everybody knows, quarks are confined: nature as well as lattice simulations of nature are telling us
that. Still, there is no rigorous proof of confinement. One proposal for the explanation of confinement
is the idea of the dual superconductor: magnetic monopoles condense and induce a dual Meissner
effect: color-electric flux between charges is squeezed and a string is created in between. The original
work on this topic can be found in [65, 66, 67]. Abelian projection [68] is a way to reveal the relevant
degrees of freedom (the monopoles). In a lose way of speaking, at points were the projection is ill-
defined, singularities invoke (Abelian) monopoles. Abelian dominance means that low energy QCD is
dominated by Abelian degrees of freedom. Some early work on this is presented in [73]. Numerical
evidence can be found in e.g. [76, 75, 74] and more recently [49].

Can this Abelian dominance be founded on more theoretical grounds? In the light of renormalization à
la Wilson, and assuming that the off-diagonal gluons (ghosts) attain a mass M while the diagonal ones
remain massless, an effective theory in terms of the massless diagonal fields could be achieved at low
energy (¿ M), thereby realizing a kind of Abelian dominance. In the context of low energy theories,
we like to refer to the Appelquist-Carazzone decoupling theorem [166], which states that heavy particle
modes decouple at low energy. Notice that this decoupling does not mean “heavy terms” are simply

75
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removed by hand from the Lagrangian, their influence is still present through renormalization effects.
As an illustration of this: a low energy, Abelian theory for Yang-Mills was derived in [99], but the
corresponding β-function was shown to be the same as the full Yang-Mills one.

The aforementioned pathway has been followed in a series of papers by Kondo et al [99, 98, 80, 167,
168, 96, 165, 97] and more recently the technique of the exact renormalization group has been employed
by Freire [100, 101] to construct effective low energy descriptions of Yang-Mills theory. The results
have been used in order to construct a linearly rising potential between static quarks, a criterion for
confinement. Their efforts were based on the dual superconductor picture, realized with MAG. Also the
monopole condensation was discussed in their framework. An essential ingredient of their work is the
mass scale of the off-diagonal fields. The monopole condensate is proportional to this mass squared
[99]. The lattice reported a value of approximately 1.2 GeV for the off-diagonal gluon mass in MAG
Yang-Mills [49]. Next to these numerical results, analytical information is needed how this mass raises.
A few papers have been written on this issue [77, 78, 79, 80]. All these authors came to the same
conclusion: a dimension two ghost condensation gives an off-diagonal mass M. We already mentioned
(but did not show explicitly) in a previous paper that we found the ghost condensation gives a tachyonic
off-diagonal gluon mass [169]. In this paper, we will perform the calculations explicitly step by step. To
make it self-contained, we will start from the beginning and in order to make comparison as transparent
as possible, we will follow the (notational) conventions of [80]. For the sake of simplicity, we will restrict
ourselves to the SU(2) case. We discuss the (in)completeness of presented work. We end with the
path we intend to follow in the future to investigate dynamical mass generation in MAG.

4.2 Ghost condensation in the maximal Abelian gauge.

Consider the Yang-Mills Lagrangian in four-dimensional Minkowski space time

L = −1
4
FA

µνFAµν + LGF+FP (4.1)

where LGF+FP is the gauge fixing and Faddeev-Popov part.
We decompose the gauge field as

Aµ = AA
µ TA = aµT 3 + Aa

µT a (4.2)

Fµν = FA
µνTA = DµAν −DνAµ = ∂µAν − ∂νAµ − ig [Aµ,Aν ] (4.3)

The TA’s are the Hermitian generators of SU(2) and obey the commutation relations
[
TA, TB

]
=

ifABCTC . T 3 is the diagonal generator. The capital index A runs from 1 to 3. Small indices like a,
b,... run from 1 to 2 and label the off-diagonal components. We will drop the index 3 later on.

As a gauge fixing procedure, we use MAG. Introducing the functional

R[A] = (V T )−1

∫
d4x

(
1
2
Aa

µAµa

)
(4.4)

with V T the space time volume, MAG is defined as that gauge which minimizes R under local gauge
transformations. Since (4.4) is invariant under U(1) transformations w.r.t. the “photon” aµ, MAG is
only a partial gauge fixing. We do not fix the residual U(1) gauge freedom, since it plays no role for
what we are discussing here.

To implement the gauge fixing in the Lagrangian (4.1), we use the so-called modified MAG. This gauge
is slightly different from the ordinary MAG, it possesses for instance some more symmetry (see [165]
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and references therein). Moreover, it generates the four-point ghost interaction, indispensable for the
renormalizibility of MAG, as was proven in [71]. Explicitly, we get

LGF+FP = iδBδB

(
1
2
Aa

µAµa − α

2
iCaC

a
)

(4.5)

where α is a gauge parameter, C and C denote the (off-diagonal) ghosts and anti-ghosts, δB and δB

are the BRST and anti-BRST transformation respectively, defined by1

δBAµ = DµC = ∂µC − ig [Aµ, C]
δBC =

ig

2
[C, C]

δBC = iB
δBB = 0 (4.6)

δBAµ = DµC = ∂µC − ig
[Aµ, C]

δBC =
ig

2
[C, C]

δBC = iB
δBB = 0

B + B = g
[C, C] (4.7)

with the following properties

δ2
B = δ

2

B =
{
δB , δB

}
= 0

δB (XY ) = δB (X)Y ±XδB (Y )
δB (XY ) = δB (X) Y ±XδB (Y ) (4.8)

where the upper sign is taken for bosonic X, and the lower sign for fermionic X.

Performing the BRST and anti-BRST transformations, yields

LGF+FP = BaDab
µ Aµb +

α

2
BaBa + iC

a
Dac

µ DµcbCb − ig2εadεcbC
a
CbAµcAd

µ

+ iC
a
gεabC3Dbc

µ Aµc − iαgεabBaC
b
C3 +

α

4
g2εabεcdC

a
C

b
CcCd (4.9)

where

Dab
µ ≡ Dab

µ [a] = ∂µδab − gεabaµ (4.10)

is the covariant derivative w.r.t. the U(1) symmetry and

ε12 = −ε21 = 1 (4.11)

ε11 = ε22 = 0 (4.12)

When we integrate the multipliers B out, we finally obtain

LGF+FP = − 1
2α

(
Dab

µ Aµb
)2

+iC
a
Dac

µ DµcbCb−ig2εadεcbC
a
CbAµcAd

µ+
α

4
g2εabεcdC

a
C

b
CcCd (4.13)

1C = (Ca, C3) with C3 the diagonal ghost. Analogously for C.
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Notice that the diagonal ghost C3 has dropped out of (4.13).

For the (singular) choice α = 0, the 4-ghost interaction cancels from the Lagrangian. However,
radiative corrections due to the other, non-vanishing quartic interactions, reintroduce this term. We
further assume that α 6= 0. Some more details concerning the properties for α = 0 can be found in
[77].

To discuss the ghost condensation mechanism, we “Gaussianize” the 4-ghost interaction in the La-
grangian by means of the (U(1) invariant) auxiliary field φ

α

4
g2εabεcdC

a
C

b
CcCd → − 1

2αg2
φ2 − iφεabC

a
Cb (4.14)

A useful identity to prove (4.14), reads

εabεcdC
a
C

b
CcCd = 2

(
iεabC

a
Cb

)2

(4.15)

The part of the Lagrangian which concerns us for the moment is

L̂ = iC
a
∂µ∂µCa − 1

2αg2
φ2 − iφεabC

a
Cb (4.16)

Assuming constant φ, we use the Coleman-Weinberg construction [170] of the effective potential V (φ).
This means we are summing all one-loop (off-diagonal) ghost bubbles with any number of φ-insertions.
This yields

(V T )V (φ) =
∫

d4x
φ2

2αg2
+ i ln det

(
∂µ∂µδab − φεab

)
(4.17)

or

V (φ) =
φ2

2αg2
− 1

i

∫
d4k

(2π)4
ln

(
k4 + φ2

)
(4.18)

Employing the Wick rotation2 k0 → ik0, and performing the integration in dimensional regularization
within the MS scheme, we arrive at

V (φ) =
φ2

2αg2 +
φ2

32π2

(
ln

φ2

µ4 − 3
)

(4.19)

This potential possesses a local maximum at φ = 0 (the usual vacuum), but has global minima at

φ = ±v = ±µ2e
1− 8π2

αg2(µ2) (4.20)

We take α > 0 since v diverges for g2 → 0 if α < 0.

Up to now, we find complete agreement with [80]. We proceed by calculating the ghost propagator in
the non-zero vacuum (V (v) < 0). Substituting φ = v in (4.16), it is straightforward to determine the
Feynman propagator

〈
Ca(x)C

b
(y)

〉
=

∫
d4k

(2π)4
−k2δab + vεab

k4 + v2
e−ik(x−y) (4.21)

With the above propagator, we are ready to determine the one-loop off-diagonal gauge boson polar-
ization. Now, there exists a non-trivial contribution coming from the ghost bubble, originating in the

2If one would like to avoid Wick rotations, one could start immediately from the Euclidean version of Yang-Mills.
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interaction term −ig2εadεcbC
a
CbAµcAd

µ, resulting in a mass M for the off-diagonal gluons. Again
Wick rotating k0 → ik0 to get an integral over Euclidean space time, one easily obtains

M2 = g2

∫
d4k

(2π)4
2k2

k4 + v2
(4.22)

There is one remaining step, we still have to calculate the integral of (4.22). Using dimensional
regularization, we find the finite result

M2 =
−g2v

16π
< 0 (4.23)

where we have used that v > 0. Here we find a different result in comparison with the other references
[77, 78, 79, 80]. To be more precise, we find the opposite sign. This sign difference is not meaningless,
since the negative sign we find means that the off-diagonal fields have a tachyonic mass.

Hence, we state that a ghost condensation à la
〈
εabC

a
Cb

〉
is not the mechanism behind the off-diagonal

mass generation in MAG, and consequently does not give evidence for Abelian dominance.

Another important point is what happens with the diagonal gluon. Consider the term iC
a
Dac

µ DµcbCb

of (4.13), it contains a part proportional to iC
a
Caaµaµ. Doing the same as for the off-diagonal gluons,

the diagonal gluon aµ seems to get a (real) mass too, which is of the same order as the off-diagonal one
(up to the sign). However, there are other one-loop contributions coming from the terms proportional

to εab
(
∂µC

a
)

Cbaµ and εabC
a (

∂µCb
)
aµ. These contributions cancel the one coming from the term

proportional to iC
a
Caaµaµ. Consequently, the “photon” aµ remains massless, as could be expected

by the residual U(1) invariance.

Another point of concern is the renormalizibility of the “Gaussianized” Lagrangian. A completely
analogous approach can be done in case of the two-dimensional Gross-Neveu model [21], where the
quartic fermion interaction can also be made Gaussian by the introduction of an auxiliary field σ. This
works well at one-loop order, but from two loops on, ad hoc counterterms have to be added in order to
end up with finite results [22]. A successful formalism to deal with local composite operators in case
of the Gross-Neveu model was developed in [24]. A similar approach should be used to investigate the
ghost condensates.

One could wonder what the mechanism behind the mass generation might be, since the previous
paragraphs showed that we did not find a dynamically generated real mass for the (off-diagonal) particles.
In order to find an answer to this question, we first give a very short overview of recent results in the
Landau gauge, giving us a hint in which direction we should look for the mass generation.

4.3 Gluon condensation via A2 in the Landau gauge and its
nephew A2 in the maximal Abelian gauge.

A well known condensate in QCD (or Yang-Mills) is the dimension four gluon condensate
〈FAµνFµνA〉

.
This is the lowest dimensional gluonic condensate that can exist, since no local, gauge-invariant con-
densates with dimension lower than 4 exist. However, recently interest arised concerning a dimension
2 gluon condensate in Yang-Mills theory in the Landau gauge. One way it came to attention was the
conclusion that there exists a non-negligible discrepancy between the lattice strong coupling constant
αs (determined via the 3-point gluon interaction) and the perturbative one, into a relatively high energy
region where this would not be expected (up to 10 GeV). Also the propagator showed a similar discrep-
ancy. The 1

p4 power correction due to
〈F2

〉
is far to small to explain this. It was shown that a 1

p2 power
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correction could solve the discrepancy. More precisely, the Operator Product Expansion (OPE) used in
combination with the

〈A2
〉

condensate was able to fit both predictions [37, 39]. An important question

that naturally arises, sounds: has
〈A2

〉
any physical meaning, or is it merely a gauge artefact? The

point is that A2 equals (V T )−1 minU

∫
d4xAU

µAµU in the Landau gauge, and this latter operator is,
although non-local, gauge-invariant. Hence, A2 can be given some physical sense in the Landau gauge.
Moreover, [33] discussed the relevance of A2 in connection with topological structure (monopoles) of
compact QED. The physical relevance of the Landau gauge, in the framework of geometrical monopoles,
is explained in [34]. The authors of that paper also stress that the values found with an OPE calcula-
tion, only describe the soft (infrared) content of

〈A2
〉
, while they argue that also hard (short range)

contributions, unaccessible for OPE, may occur. In this context, we cite [42], where a formalism was
constructed for the calculation of the vacuum expectation value of (local) composite operators. Since
this is based on the effective action, it should in principle, give the “full” value of

〈A2
〉
, i.e. soft and

hard part. For example, one could assume an instanton background as a possible source of long range
contributions. In fact, there is some preliminary evidence that instantons can explain the OPE values
[38].The conclusion that one can draw from all this is that the dimension 2 condensate

〈A2
〉

may have
some physical relevance in the Landau gauge.

Let us go back to MAG3 now. In this particular gauge, (V T )−1 minU

∫
d4xAU

µAµU no longer reduces
to a local operator. It would be interesting to repeat e.g. the OPE calculations of [37] for the
coupling constant and propagators in MAG, but which dimension 2 condensate(s) could take over
the role of

〈A2
〉

in the Landau gauge? To solve this, we draw attention to the striking similarity
existing between the Landau gauge and MAG. The former one can be seen as that gauge minimizing

(V T )−1
∫

d4x
(AA

µAµA
)U

, while the latter one minimizes (V T )−1
∫

d4x
(
Aa

µAµa
)U

. This operator
reduces to the local one A2 in MAG and can be seen as the MAG version of A2. Other dimension 2
condensates can exist (the ghost condensates). Notice that, in the case of the MAG, all these ghost
condensates are U(1) invariants, hence the U(1) symmetry will be preserved.

The physics we see behind all these condensates is that they might have a common, deeper reason
for existence. In this context, we quote [28, 29], where it was shown that the zero vacuum is instable
(tachyonic) and a vacuum with lower energy is achieved through gluon pairing, and an accompanying
gluon mass. The vacuum energy itself is a physical object. After choosing a certain gauge, the different
types of dimension 2 condensates are just an expression of the fact that E = 0 is a wrong vacuum
state. In this sense, all these different condensates in different gauges are equivalent in a way, since
they lower the vacuum energy to a stable E < 0 vacuum. In [34], discussion can be found on the
appearance of the soft part of

〈A2
〉

in gauge-variant quantities like in an OPE improvement of the
gluon propagator, while the hard part enters physical quantities. It is imaginable that the mechanism
behind this hard part (see [34] for more details) is the same in different gauges, but reveals its importance
with different condensates, depending on the specific gauge. This might justify its possible appearance
in gauge-invariant quantities.

4.4 Further discussion on the ghost condensation and mass gen-
eration in the modified MAG.

In [171], it was shown that it is possible to fix the residual Abelian gauge freedom of MAG in such

a way that the ghost condensate
〈
εabC

a
Cb

〉
does not give rise to any mass term, at least at the

one-loop level. This Abelian gauge fixing (needed for a complete quantization of the theory) was based
on the requirement that the fully gauge fixed Lagrangian has a SL(2,R) and anti-BRST invariance.

3Here, with MAG we mean the gauge minimizing the functional (4.4), and not the modified MAG.
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A restricted4 version of this SL(2,R) symmetry was originally observed in SU(2) MAG in [77], and
later generalized to SU(N) MAG [164]. In [171], the symmetry was defined on all the fields (diagonal
and off-diagonal). In fact, that SL(2,R) symmetry together with the (anti-) BRST symmetry form a
larger algebra, the Nakanishi-Ojima (NO) algebra. This NO algebra is known to generate a symmetry of
the Landau gauge and a certain class of generalized covariant gauges, more precisely the Curci-Ferrari
gauges, given by the gauge fixing Lagrangian

LGF+FP = iδBδB

(
1
2
AA

µAµA − α

2
iCACA

)
(4.24)

The Landau gauge corresponds to the gauge parameter choice α = 0. For more details, see [86, 158,
159, 160, 161, 162, 163].

Yang-Mills theory with the gauge fixing (4.24) possesses a generalization to a massive SU(N) gauge
model, the so-called Curci-Ferrari model [84, 85]. Although this model is non-unitary, it is known to
be (anti-)BRST invariant and renormalizable, whereby the mass term is of the form

Lmass = M2

(
1
2
AA

µAµA − iαCACA
)

(4.25)

Keeping this in mind and recalling that in [42], a dynamically generated mass was found in case of
the Landau gauge by coupling a source J to the operator A2, it becomes clear that in case of the
Curci-Ferrari gauge, the same technique could be employed by coupling a source J to the composite
operator

Lsource = J

(
1
2
AA

µAµA − iαCACA
)

(4.26)

Returning to the case of MAG and comparing the gauge fixing Lagrangians (4.5) and (4.24), the
equivalent of (4.26) reads

Lsource = J

(
1
2
Aa

µAµa − iαCaC
a
)

(4.27)

This idea to arrive at a dynamically generated mass in case of the Curci-Ferrari and maximal Abelian
gauge was already proposed in [83, 144]. There, it was explicitly shown that the operator coupled to
the source J in the expressions (4.26) or (4.27), is on-shell BRST invariant.

We reserve the actual discussion of the aforementioned framework to get a dynamical mass for future
publications, since it is quite involved and a clean treatment of it needs a combination of the local
composite operator formalism [42] and the algebraic renormalization technique [59, 60].

Before turning to conclusions, we want to draw attention to the following. We decomposed the 4-
ghost interaction with a real auxiliary field φ whereby φ ∼ εabC

a
Cb. Let us make a small comparison

with ordinary superconductivity. Usually, there is talked about BCS pairing, i.e. particle-particle and
hole-hole pairing. The analogy of this in the ghost condensation case would be ghost-ghost pairing
and antighost-antighost pairing. This can be achieved by an alternative decomposition of the 4-ghost

interaction via a pair of auxiliary fields σ and σ such that σ ∼ εabCaCb and σ ∼ εabC
a
C

b
. This

kind of pairing5 was considered in [81]. A less known effect is the particle-hole pairing, the so-called
Overhauser pairing [92]. This corresponds to the kind of condensation we and the papers [77, 78, 79, 80]
considered. From the viewpoint of the SL(2,R) symmetry, the existence of different channels where

4By restricted, we mean that the symmetry only acts non-trivially on the off-diagonal fields.
5Our conclusion about the tachyonic mass is unaltered by this alternative decomposition of the 4-ghost interac-

tion.
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the ghost condensation can take place should not be suprising. The different composite ghost operators
are mutually changed into each other under the action of the symmetry. Here and in the other papers
the choice was made to work with the Overhauser channel, but a complete treatment would need an
analysis of all channels at once, and with the local composite operator technique. This analysis of the
BCS versus Overhauser effect is nicely intertwined with the existence of the NO algebra and its (partial)
breakdown, and it is very much alike for the MAG, Landau [172] and Curci-Ferrari gauge, just as in
case of the mass generation mechanism. As an indication, it has been found recently that, although no

4-ghost interaction is present in the Landau gauge, the condensation à la fABCCACB etc. also occurs
[91].

4.5 Conclusion.

We considered Yang-Mills theory in the maximal Abelian gauge. With this non-linear gauge choice,
a 4-ghost interaction enters the Lagrangian. Such an interaction could allow a non-zero vacuum
expectation value for (off-diagonal) dimension 2 ghost condensates. Consequently, it was expected
that a mass generating mechanism for the off-diagonal gluons and the diagonal gluons due to quartic
interaction terms of the form gluon-gluon-ghost-anti-ghost was found.

We explained why this particular type of ghost condensation is not sufficient to construct a (off-diagonal)
dynamical mass in SU(2) Yang-Mills theory in the maximal Abelian gauge, an indicator for Abelian
dominance. We have restricted ourselves to the SU(2) case, but a similar conclusion will exist for
general SU(N). Explicit calculations showed that we ended up with a tachyonic off-diagonal mass M
(M2 < 0). This result indicate something is missing. A comparison with Yang-Mills theory in the
Landau gauge and the role played by the mass dimension 2 gluon condensate

〈A2
〉
, shed some light

on the route that should be followed.

We revealed certain shortcomings of the present available studies on the ghost condensation (renormal-
izibility, existence of more than one condensation channel).

The actual study of the mass generation and the ghost condensation with its symmetry breaking pattern
will be discussed elsewhere. We will follow the local composite operator formalism of [42], where a
source is coupled to each operator and the effective action can be treated consistently. This effective
potential formalism allows a clean treatment of the role played by the dimension 2 operators. We
remark that with essentially perturbative techniques one can obtain at least qualitatively trustworthy
results6 on the stability of the condensates and their relevance for e.g. mass generation and symmetry
breakdown, without making it directly necessary to go to (or extrapolating to) strong coupling.

We conclude by mentioning that the dimension 2 condensates and the accompanying mass generation
in Yang-Mills are not only of theoretical importance (the role of

〈A2
〉

for OPE corrections [39, 37],
monopoles [33, 34], short range linear correction to the Coulomb-like potential [39], low energy effective
theories [147],...) but also have their importance for automated Feynmandiagram calculations [87, 173,
174] where a gluon mass serves as a infrared regulator. If this mass is generated in massless Yang-Mills,
it does not have to be implemented by hand.

6In case of the Gross-Neveu model, very accurate results were obtained [24]. In case of the


A2
�

condensate in
the Landau gauge, the relevant coupling constant was quite small, making the expansion acceptable [42].
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The existence of a SL(2,R) symmetry is discussed in SU(N) Yang-Mills in the maximal Abelian
gauge. This symmetry, also present in the Landau and Curci-Ferrari gauge, ensures the absence of
tachyons in the maximal Abelian gauge at the one-loop level in the presence of ghost condensates. In
all these gauges, SL(2,R) turns out to be dynamically broken by these ghost condensates.

5.1 Introduction.

It is widely believed that the dual superconductivity mechanism [65, 66, 67, 68] can be at the origin
of color confinement. The key ingredients of this mechanism are the Abelian dominance and the
monopoles condensation. According to the dual superconductivity picture, the low energy behavior of
QCD should be described by an effective Abelian theory in the presence of monopoles. The condensation
of the monopoles gives rise to the formation of Abrikosov-Nielsen-Olesen flux tubes which confine all
chromoelectric charges. This mechanism has received many confirmations from lattice simulations in
Abelian gauges, which are very useful in order to characterize the effective relevant degrees of freedom
at low energies.

Among the Abelian gauges, the so called maximal Abelian gauge (MAG) plays an important role. This
gauge, introduced in [68, 70, 69], has given evidences for the Abelian dominance and for the monopoles
condensation, while providing a renormalizable gauge in the continuum. Here, the Abelian degrees of
freedom are identified with the components of the gauge field belonging to the Cartan subgroup of
the gauge group SU(N). The other components correspond to the

(
N2 −N

)
off-diagonal generators

of SU(N) and, being no longer protected by gauge invariance, are expected to acquire a mass, thus

83
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decoupling at low energies. The understanding of the mechanism for the dynamical mass generation of
the off-diagonal components is fundamental for the Abelian dominance.

A feature to be underlined is that the MAG is a nonlinear gauge. As a consequence, a quartic self-
interaction term in the Faddeev-Popov ghosts is necessarily required for renormalizability [71, 72].
Furthermore, as discussed in [77, 79, 79, 80] and later on in [81], the four ghost interaction gives
rise to an effective potential whose vacuum configuration favors the formation of off-diagonal ghost
condensates 〈cc〉, 〈cc〉 and 〈cc〉 1. However, these ghost condensates were proven [157] to originate an
unwanted effective tachyon mass for the off-diagonal gluons, due to the presence in the MAG of an
off-diagonal interaction term of the type AAcc.

Meanwhile, the ghost condensation has been observed in others gauges, namely in the Curci-Ferrari
gauge [90] and in the Landau gauge [91]. The existence of these condensates turns out to be related
to the dynamical breaking of a SL(2,R) symmetry which is known to be present in both Curci-
Ferrari and Landau gauge since long time [86, 158, 159, 160, 161, 162]. It is worth noticing that in
the Curci-Ferrari gauge an on-shell BRST invariant mass term

(
1
2A2 − ξcc

) ≡ (
1
2AAAA − ξcAcA

)
,

with A = 1, ..., N2 − 1 and ξ being the gauge parameter, can be introduced without spoiling the
renormalizability of the model [84, 85, 163].

Recent investigations [83, 144] suggested that the existence of a nonvanishing condensate, given by(
1
2

〈A2
〉− ξ 〈cc〉) could yield an on-shell BRST invariant dynamical mass for both gluons and ghosts.

We observe that in the limit ξ → 0, this condensate reduces to the pure gauge condensate 1
2

〈A2
〉

whose existence is well established in the Landau gauge [42, 37, 38], providing indeed an effective mass
for the gluons.

The aim of this paper is to show that the SL(2,R) symmetry is also present in the MAG for SU(N)
Yang-Mills, with any value of N . This result generalizes that of [77, 79, 79, 80, 164], where the SL(2,R)
symmetry has been established only for a partially gauge-fixed version of the action. In particular, the
requirement of an exact SL(2,R) invariance for the complete quantized action, including the diagonal
part of the gauge fixing, will have very welcome consequences. In fact, as we shall see, this requirement
introduces new interaction terms in the action, which precisely cancel the term AAcc responsible for the
generation of the tachyon mass. In other words, no tachyons are present in the MAG at one-loop order
if the SL(2,R) symmetry is required from the beginning as an exact invariance of the fully gauge-fixed
action.

This observation allows us to make an interesting trait d’ union between the Landau gauge, the Curci-
Ferrari gauge and the MAG, providing a more consistent and general understanding of the ghost con-
densation and of the mechanism for the dynamical generation of the effective gluon masses. The whole
framework can be summarized as follows. The ghost condensates signal the dynamical breaking of the
SL(2,R) symmetry, present in all these gauges. Also, the condensed vacuum has the interesting prop-
erty of leaving unbroken the Cartan subgroup of the gauge group. As a consequence of the ghost conden-
sation, the off-diagonal ghost propagator is modified in the infrared region [77, 79, 79, 80, 81, 157, 90].
This feature might be relevant for the analysis of the infrared behavior of the gluon propagator, through
the ghost-gluon mixed Schwinger-Dyson equations. Moreover, the ghost condensates contribute to the
dimension four condensate

〈
α
π F 2

〉
through the trace anomaly.

On the other hand, the dynamical mass generation for the gluons is expected to be related to the
on-shell BRST invariant condensate

(
1
2

〈A2
〉− ξ 〈cc〉). It is remarkable that this condensate can be

defined in a (on-shell) BRST invariant way also in the MAG [83, 144, 157], where it can give masses
for all off-diagonal fields, thus playing a pivotal role for the Abelian dominance.

The paper is organized as follows. Section 5.2 is devoted to the analysis of the SL(2,R) symmetry

1The notation for the ghost condensates 〈cc〉, 〈cc〉 and 〈cc〉 stands for


f iabcacb

�
,


f iabcacb

�
and



f iabcacb

�
,

where f iab are the structure constants of the gauge group. The index i runs over the Cartan generators, while the
indices a, b correspond to the off-diagonal generators.
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in the Landau, Curci-Ferrari and MAG gauge. In section 5.3 we prove that the requirement of the
SL(2,R) symmetry for the MAG in SU(N) Yang-Mills yields a renormalizable theory. In section 5.4
we discuss the issue of the ghost condensation. In section 5.5 we present the conclusions.

5.2 Yang-Mills theories and the SL(2,R) symmetry.

LetAµ be the Lie algebra valued connection for the gauge group SU(N), whose generators TA ,
[
TA, TB

]
=

fABCTC , are chosen to be anti-Hermitian and to obey the orthonormality condition Tr
(
TATB

)
=

δAB , with A,B,C = 1, ..,
(
N2 − 1

)
. The covariant derivative is given by

DAB
µ ≡ ∂µδAB − gfABCAC

µ . (5.1)

Let s and s be the nilpotent BRST and anti-BRST transformations respectively, acting on the fields as

sAA
µ = −DAB

µ cB

scA =
g

2
fABCcBcC

scA = bA

sbA = 0 , (5.2)

sAA
µ = −DAB

µ cB

scA = −bA + gfABCcBcC

s cA =
g

2
fABCcBcC

sbA = −gfABCbBcC . (5.3)

Here cA and cA generally denote the Faddeev-Popov ghosts and anti-ghosts, while bA denote the
Lagrange multipliers.

Furthermore, we define the operators δ and δ by

δcA = cA

δbA =
g

2
fABCcBcC

δAA
µ = δcA = 0 , (5.4)

δcA = cA

δbA =
g

2
fABCcBcC

δAA
µ = δcA = 0 . (5.5)

Together with the Faddeev-Popov ghost number operator δFP , δ and δ generate a SL(2,R) algebra.
This algebra is a subalgebra of the algebra generated by δFP , δ, δ and the BRST and anti-BRST
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operators s and s. The algebra

s2 = 0 , s2 = 0 ,

{s, s} = 0 , [δ, δ] = δFP ,

[δ, δFP] = −2δ, [δ, δFP] = 2δ ,

[s, δFP] = −s , [s, δFP] = s ,

[s, δ] = 0 , [s, δ] = 0 ,

[s, δ] = −s , [s, δ] = −s , (5.6)

is known as the Nakanishi-Ojima (NO) algebra [86].

5.2.1 Landau gauge.

In the Landau gauge, we have

S = SY M + SGF+FP = −1
4

∫
d4xFA

µνFAµν + s

∫
d4xcA∂µAAµ . (5.7)

The BRST invariance is immediate, just as the δ invariance since

δSGF+FP = s

∫
d4xcA∂µAAµ =

s2

2

∫
d4xA2 = 0 . (5.8)

It is easy checked that also s and δ leave the action (5.7) invariant. Hence, the NO algebra is a global
symmetry of Yang-Mills theories in the Landau gauge, a fact already longer known [86, 158, 159].

5.2.2 Curci-Ferrari gauge.

Next, we discuss Yang-Mills theories in a class of generalized covariant non-linear gauges proposed in
[160, 161]. The action is given by

S = SY M + SGF+FP

= −1
4

∫
d4xFA

µνFAµν + ss

∫
d4x

(
1
2
AA

µAAµ − ξ

2
cAcA

)

= −1
4

∫
d4xFA

µνFAµν +
∫

d4x

(
bA∂µAAµ +

ξ

2
bAbA + cA∂µDAB

µ cB

− ξ

2
gfABCbAcBcC − ξ

8
g2fABCfCDEcAcBcDcE

)
, (5.9)

where ξ is the gauge parameter. A gauge fixing as in (5.9) is sometimes called the Curci-Ferrari (CF)
gauge, since its gauge fixing part resembles the gauge fixing part of the massive, SU(N) gauge model
introduced in [84, 85].

In addition to the BRST and anti-BRST symmetries, the action (5.9) is also invariant under the global
SL(2,R) symmetry generated by δ, δ [163, 164] and δFP . We conclude that Yang-Mills theories in the
CF gauge have the NO symmetry.
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5.2.3 Maximal Abelian gauge.

We decompose the gauge field into its off-diagonal and diagonal parts, namely

Aµ = AA
µ TA = Aa

µT a + Ai
µT i, (5.10)

where the index i labels the N − 1 generators T i of the Cartan subalgebra. The remaining N(N − 1)
off-diagonal generators T a will be labelled by the index a. Accordingly, the field strength decomposes
as

Fµν = FA
µνTA = F a

µνT a + F i
µνT i , (5.11)

with the off-diagonal and diagonal parts given respectively by

F a
µν = Dab

µ Ab
ν −Dab

ν Ab
µ + g fabcAb

µAc
ν ,

F i
µν = ∂µAi

ν − ∂νAi
µ + gfabiAa

µAb
ν , (5.12)

where the covariant derivative Dab
µ is defined with respect to the diagonal components Ai

µ

Dab
µ ≡ ∂µδab − gfabiAi

µ . (5.13)

For the pure Yang-Mills action one obtains

SYM = −1
4

∫
d4x

(
F a

µνF aµν + F i
µνF iµν

)
. (5.14)

The so called MAG gauge condition amounts to fix the value of the covariant derivative (Dab
µ Abµ)

of the off-diagonal components [68, 70, 69]. However, this condition being nonlinear, a quartic ghost
self-interaction term is required for renormalizability [71, 72]. The corresponding gauge fixing term
turns out to be [165]

SMAG = ss

∫
d4x

(
1
2
Aa

µAaµ − ξ

2
caca

)
, (5.15)

where s denotes the nilpotent BRST operator

sAa
µ = − (

Dab
µ cb + gf abcAb

µcc + gf abiAb
µci

)
, sAi

µ = − (
∂µci + gf iabAa

µcb
)

,

sca = gf abicbci +
g

2
f abccbcc , sci =

g

2
f iabcacb,

sca = ba , sci = bi ,

sba = 0 , sbi = 0 , (5.16)

and s the nilpotent anti-BRST operator, which acts as

sAa
µ = − (

Dab
µ cb + gf abcAb

µcc + gf abiAb
µci

)
, sAi

µ = − (
∂µci + gf iabAa

µcb
)

,

sca = gf abicbci +
g

2
f abccbcc , sci =

g

2
f iabcacb,

sci = −bi + gf ibccbcc , sbi = −gf ibcbbcc ,

sca = −ba + gf abccbcc + gf abicbci + gf abicbci ,

sba = −gf abcbbcc − gf abibbci + gf abicbbi . (5.17)
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Here ca and ci are the off-diagonal and the diagonal components of the Faddeev-Popov ghost field,
ca and ci the off-diagonal and the diagonal anti-ghost fields and ba and bi are the off-diagonal and
diagonal Lagrange multipliers. These transformation are nothing else than the projection on diagonal
and off-diagonal fields of (5.2) and (5.3). Expression (5.15) is easily worked out and yields

SMAG = s

∫
d4x

(
ca

(
Dab

µ Abµ +
ξ

2
ba

)
− ξ

2
gf abicacbci − ξ

4
gf abccacbcc

)

=
∫

d4x

(
ba

(
Dab

µ Abµ +
ξ

2
ba

)
+ caDab

µ Dµbccc + gcafabi
(
Dbc

µ Acµ
)
ci

+ gcaDab
µ

(
f bcdAcµcd

)− g2fabif cdicacdAb
µAcµ − ξgfabibacbci − ξ

2
gfabcbacbcc

− ξ

4
g2fabif cdicacbcccd − ξ

4
g2fabcfadicbcccdci − ξ

8
g2fabcfadecbcccdce

)
. (5.18)

The MAG condition allows for a residual local U(1)N−1 invariance with respect to the diagonal subgroup,
which has to be fixed by means of a suitable further gauge condition on the diagonal components Ai

µ.
We shall choose a diagonal gauge fixing term which is BRST and anti-BRST invariant. The diagonal
gauge fixing is then given by

Sdiag = ss

∫
d4x

(
1
2
Ai

µAiµ

)

= s

∫
d4x

(
ci∂µAiµ − gf iabAi

µAaµcb
)

=
∫

d4x
(
bi∂µAiµ + ci∂2ci + gf iabAa

µ(∂µcicb − ∂µcicb) + g2f iabf icdcacdAb
µAcµ

− gf iabAi
µAaµ(bb − gf ibcccci) + gf iabAiµ(Dac

µ cc)cb + g2fabifacdAi
µAcµcdcb

)
. (5.19)

In addition to the BRST and the anti-BRST symmetry, the gauge-fixed action (SYM + SMAG + Sdiag)
is invariant under a global SL(2,R) symmetry, which is generated by the operators δ, δ and the ghost
number operator δFP. For the δ transformations we have

δca = ca , δci = ci ,

δba = gfabicbci +
g

2
fabccbcc ,

δbi =
g

2
f iabcacb ,

δAa
µ = δAi

µ = δca = δci = 0 . (5.20)

The operator δ acts as

δca = ca , δci = ci ,

δba = gfabicbci +
g

2
fabccbcc ,

δbi =
g

2
f iabcacb ,

δAa
µ = δAi

µ = δca = δci = 0 . (5.21)

The existence of the SL(2,R) symmetry has been pointed out in [77, 78, 79] in the maximal Abelian
gauge for the gauge group SU(2). A generalization of it can be found in [164]. There are, however,
important differences between [77, 78, 79, 164] and the present analysis.
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The first point relies on the choice of the diagonal part of the gauge fixing Sdiag, a necessary step
towards a complete quantization of the model. We remark that with our choice of Sdiag in eq.(5.19),
the whole NO algebra becomes an exact symmetry of the gauge fixed action (SYM + SMAG + Sdiag)
with gauge group SU(N), for any value of N . In particular, as one can see from expression (5.19),
Sdiag contains the interaction term g2f iabf icdcacdAb

µAcµ, which precisely cancels the corresponding
term appearing in eq.(5.18) for SMAG. This is a welcome feature, implying that no tachyons are
generated at one-loop order in the MAG if the SL(2,R), and thus the NO algebra, is required as an
exact invariance for the starting gauge-fixed action. We remark that a similar compensation holds also
for the interaction terms of (5.19) and (5.18) containing two diagonal gluons and a pair of off-diagonal
ghost-antighost, implying that the diagonal gauge fields remain massless.

A second difference concerns the way the fields are transformed. We observe that in the present case,
the field transformations (5.16) − (5.17) and (5.20) − (5.21) are obtained from (5.2) − (5.3) and
(5.4) − (5.5) upon projection of the group index A = 1, ...,

(
N2 − 1

)
over the Cartan subgroup of

SU(N) and over the off-diagonal generators, thus preserving the whole NO structure. As it is apparent
from eqs.(5.20), (5.21), the diagonal fields ci, ci, bi transform nontrivially, a necessary feature for the
NO algebra. These transformations were not taken into account in the original work [77, 78, 79]. Also,
in [164], the NO structure is analysed only on the off-diagonal fields, the diagonal components ci, bi

being set to zero.

In summary, it is possible to choose the diagonal part Sdiag of the gauge fixing so that the whole NO
structure is preserved. It remains now to prove that the choice of the diagonal gauge fixing (5.19) will
lead to a renormalizable model. This will be the task of the next section.

5.3 Stability of the MAG under radiative corrections.

In order to discuss the renormalizability of the action (SYM + SMAG + Sdiag) within the BRST frame-
work, we have to write down the Ward identities corresponding to the symmetries of the classical action.
The expression of the BRST invariance as a functional identity requires the introduction of invariant
external sources

Sext =
∫

d4x
(
ΩaµsAa

µ + ΩiµsAi
µ + Lasca + Lisci

)
, (5.22)

with sΩa
µ = sΩi

µ = sLa = sLi = 0.

The δ transformations of the external fields can be fixed by imposing δSext = 0, which yields δΩa
µ =

δΩi
µ = δLa = δLi = 0. Therefore the classical action

Σ = SYM + SMAG + Sdiag + Sext , (5.23)

is invariant under BRST and δ transformations, obeying the following identities

• Slavnov-Taylor identity:

S(Σ) =
∫

d4x

(
δΣ
δAa

µ

δΣ
δΩaµ

+
δΣ
δAi

µ

δΣ
δΩiµ

+
δΣ
δca

δΣ
δLa

+
δΣ
δci

δΣ
δLi

+ ba δΣ
δca + bi δΣ

δci

)
= 0

(5.24)

• δ symmetry Ward identity:

D(Σ) =
∫

d4x

(
ca δΣ

δca + ci δΣ
δci

+
δΣ
δba

δΣ
δLa

+
δΣ
δbi

δΣ
δLi

)
= 0 (5.25)



90 Chapter 5. On the SL(2,R) symmetry in Yang-Mills Theories...

• Integrated diagonal ghost equation:

GiΣ = ∆i
cl , (5.26)

where

Gi=
∫

d4x

(
δ

δci
+ gf abica δ

δbb

)
(5.27)

and the classical breaking ∆i
cl is given by

∆i
cl =

∫
d4x

(
gf abiΩa

µAbµ − gf abiLacb
)

. (5.28)

• Integrated diagonal antighost equation:
∫

d4x
δΣ
δci

= 0 . (5.29)

Similarly, we could also impose the anti-BRST and δ symmetries in a functional way by introducing an
additional set of external sources. However, the Ward identities (5.24)-(5.29) are sufficient to ensure
the stability of the classical action under quantum corrections. It is not difficult indeed, by using the
algebraic renormalization procedure [59, 60], to prove that the model is renormalizable.

5.4 Ghost condensation and the breakdown of SL(2,R) and NO
symmetry.

In this section, we give a brief discussion of the existence of ghost condensates and of their relationship
with SL(2,R) and hence with NO symmetry.

The condensation of ghosts came to attention originally in the works of [77, 78, 79, 80] in the context of
SU(2) MAG. The decomposition of the 4-ghost interaction allowed to construct an effective potential
with a nontrivial minimum for the off-diagonal condensate

〈
ε3abcacb

〉
. This condensate implies a

dynamical breaking of SL(2,R). Order parameters for this breaking are given by

〈
ε3abcacb

〉
=

1
2

〈
δ
(
ε3abcacb

)〉
=

1
2

〈
δ
(
ε3abcacb

)〉
. (5.30)

As a consequence the generators δ and δ of SL(2,R) are broken [77, 78, 79], while the Faddeev-Popov
ghost number generator δFP =

[
δ, δ

]
remains unbroken. The ghost condensate resulted in a mass for

the off-diagonal gluons, whose origin can be traced back to the presence of the off-diagonal interaction
term ccAµAµ term in expression (5.18). However, as was shown in [157], this mass is a tachyonic
one. Furthermore, the requirement of invariance of Sdiag under anti-BRST and, as a consequence,
under SL(2,R) transformations, also gives rise to quartic terms of the kind ccAµAµ (see (5.19)),
which precisely cancel those of SMAG in (5.18). Thus, if the SL(2,R) symmetry (NO symmetry (5.6))
is required, the ghost condensates do not induce any unphysical mass for the off-diagonal gluons at
one-loop order.

The 4-ghost interaction can be decomposed in a different way, so that the ghost condensation takes
places in the Faddeev-Popov charged channels ε3abcacb and ε3abcacb instead of ε3abcacb. In this case,
the ghost number symmetry is broken [81]. Consequently, the NO algebra is broken again. It is interes-
ting to see that the existence of different ghost channels in which the ghost condensation can take place
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has an analogy in ordinary superconductivity, known as BCS (particle-particle and hole-hole pairing)
versus Overhauser (particle-hole paring) [92, 95]. In the present case the BCS channel corresponds to
the Faddeev-Popov charged condensates

〈
ε3abcacb

〉
and

〈
ε3abcacb

〉
, while the Overhauser channel to〈

ε3abcacb
〉
.

The CF gauge (5.9) contains a 4-ghost interaction too, so it is expected that the ghost condensa-
tion can take place also in the CF gauge. This was confirmed in [90]. Notice that the CF and MAG
gauges look very similar.

More surprising is the fact that also in the Landau gauge, the ghost condensation occurs [91]. Since
there is no 4-ghost interaction to be decomposed, another technique was used to discuss this gauge.
A combination of the algebraic renormalization technique [59, 60] and the local composite operator
technique [42] allowed a clean treatment, with the result that also in case of the Landau gauge the NO
symmetry is broken.

One could wonder what the mechanism behind the dynamical generation of gluon masses could be.
It was proposed in [83] that the generation of a real mass for the gluons in case of the CF gauge is
related to a non-vanishing vacuum expectation value for the two-dimensional local, composite operator(

1
2AA

µAAµ − ξcAcA
)
. It is interesting to notice that this is exactly the kind of mass term that is present

in the massive Lagrangian of Curci and Ferrari [84, 85]. In the case of MAG, the relevant operator is
believed to be

(
1
2Aa

µAaµ − ξcaca
)
, and is expected to provide an effective mass for both off-diagonal

gauge and off-diagonal ghost fields [83, 157].

5.5 Conclusion.

• In this paper the presence of the SL(2,R) symmetry has been analysed in the Landau, Curci-
Ferrari and maximal Abelian gauge for SU(N) Yang-Mills. In all these gauges SL(2,R) can
be established as an exact invariance of the complete gauge fixed action. Together with the
BRST and anti-BRST, the generators of SL(2,R) are part of a larger algebra, known as the
Nakanishi-Ojima algebra [86].

• In particular, we have been able to show that in the case of the maximal Abelian gauge, the
requirement of SL(2,R) for the complete action, including the diagonal gauge fixing term, ensures
that no tachyons will be generated at one-loop order.

• In all these gauges, the SL(2,R) symmetry turns out to be dynamically broken by the existence
of off-diagonal ghost condensates 〈cc〉, 〈cc〉 and 〈cc〉. As a consequence, the NO algebra is also
broken. These condensates modify the infrared behavior of the off-diagonal ghost propagator,
while contributing to the vacuum energy density and hence to the trace anomaly [77, 78, 79, 80,
81].

• Finally, let us spend a few words on future research. As already remarked, the ghost condensation
can be observed in different channels, providing a close analogy with the BCS versus Overhauser
effect of superconductivity. We have also pointed out that the existence of the condensate(

1
2

〈
Aa

µAaµ
〉− ξ 〈caca〉) can be at the origin of the dynamical mass generation in the MAG

for all off-diagonal gluons and ghosts [80, 157], a feature of great relevance for the Abelian
dominance. Both aspects will be analysed by combining the algebraic renormalization [59, 60]
with the local composite operator technique [42], as done in the case of the ghost condensation
in the Landau gauge [91]. The combination of these two procedures results in a very powerful
framework for discussing the ghost condensation in the various channels as well as for studying
the condensate

(
1
2

〈
Aa

µAaµ
〉− ξ 〈caca〉) and its relationship with the dynamical mass generation.
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Also, the detailed analysis of the decoupling at low energies of the diagonal ghosts and of the
validity of the local U(1)N−1 Ward identity in the MAG deserves careful attention.
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The anomalous dimension of the
composite operator A2 in the Landau
gauge
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published in Physics Letters B 555 (2003) 126.

The local composite operator A2 is analysed in pure Yang-Mills theory in the Landau gauge within
the algebraic renormalization. It is proven that the anomalous dimension of A2 is not an independent
parameter, being expressed as a linear combination of the gauge β function and of the anomalous
dimension of the gauge fields.

6.1 Introduction

Nowadays an increasing evidence has been reported on the relevance of the local composite oper-
ator Aa

µAaµ for the nonperturbative regime of Yang-Mills theories quantized in the Landau gauge.
That this operator has a certain special meaning in the Landau gauge can be simply understood by
observing that, due to the transversality condition ∂µAaµ = 0, the integrated mass dimension two op-

erator (V T )−1 ∫
d4xAa

µAµa is gauge invariant, V T being the space-time volume. Lattice simulations
[37, 38, 39, 175] have indeed provided strong indications for the existence of the pure gluon conden-
sate

〈
Aa

µAaµ
〉
, confirming its relevance for the infrared dynamics of Yang-Mills. Also, the monopole

condensation in compact QED turns out to be related to a phase transition for this condensate [33, 34].

Recently, a renormalizable effective potential for
〈
Aa

µAaµ
〉

has been obtained in [42] by using the
local composite operator (LCO) technique [24, 23, 176]. This result shows that the vacuum of pure
Yang-Mills theory favors a nonvanishing value of this condensate, which provides effective masses for
the gluons while contributing to the dimension four condensate

〈
αF 2

〉
through the trace anomaly. It is

worth remarking here that this mass has a pure dynamical origin and manifests itself without breaking
the gauge group. Both features are indeed expected in a confining gauge theory, being in agreement
with the Kugo-Ojima criterion for color confinement [177].

An important ingredient in the analysis of the effective potential for the gluon condensate is the
anomalous dimension γA2 of the operator Aa

µAaµ . Till now, γA2 has been computed up to three
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loops in the MS renormalization scheme [173, 174]. The available expression for γA2 shows rather
interesting properties concerning the operator Aa

µAaµ in the Landau gauge. It turns out indeed that,
besides being multiplicative renormalizable, its anomalous dimension can be expressed as a combination
of the gauge β function and of the anomalous dimension γA of the gauge fields, according to the relation

γA2 = −
(

β(a)
a

+ γA(a)
)

, a =
g2

16π2
, (6.1)

which can be easily checked up to three loops [173, 174]. This feature strongly supports the existence
of some underlying Ward identities which should be at the origin of eq.(6.1), meaning that γA2 is not
an independent parameter of the theory.

The aim of this paper is to provide an affirmative answer concerning the possibility of giving a purely
algebraic proof of the relation (6.1), which extends to all orders of perturbation theory. Our proof will
rely only on the use of the Slavnov-Taylor identity and of an additional Ward identity, known as the
ghost Ward identity, present in the Landau gauge [89]. Furthermore, according to [89], it turns out
that also the anomalous dimension γc of the Faddeev-Popov ghosts can be written as a combination
of β and γA, namely

2γc(a) =
β(a)

a
− γA(a) . (6.2)

Both relations (6.1) and (6.2) can be used as a very useful check for higher order computations in
Yang-Mills theories quantized in gauges which reduce to the Landau gauge when the gauge parameters
are set to zero, as in the case of the nonlinear Curci-Ferrari gauge [173, 174].

The work is organized as follows. In section 6.2 we give a brief account of eqs.(6.1) and (6.2) by making
use of the available three loops expressions. Section 6.3 is devoted to their algebraic proof.

6.2 The anomalous dimension of the operator A2
µ in the Landau

gauge.

In order to give a short account of the relations (6.1) and (6.2), let us recall the three-loop expressions
of the gauge β function and of the gauge and ghost fields anomalous dimensions γA and γc, as given
in [173, 174]. They read

β(a)
a

= −11
3

(Na)− 34
3

(Na)2 − 2857
54

(Na)3 , (6.3)

γA = −13
6

(Na)− 59
8

(Na)2 +
(648ς(3)− 39860)

1152
(Na)3 , (6.4)

and

γc = −3
4

(Na)− 95
48

(Na)2 − (1944ς(3) + 63268)
6912

(Na)3 , (6.5)

where N is the number of colors corresponding to the gauge group SU(N). Making use of the relation

γA2 = −
(

β(a)
a

+ γA(a)
)

, (6.6)

for the anomalous dimension of Aa
µAaµ one gets, up to the third order,
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• first order

γ
(1)
A2 = −

(
β(1)

a
+ γ

(1)
A

)
=

35
6

(Na) . (6.7)

• second order

γ
(2)
A2 = −

(
β(2)

a
+ γ

(2)
A

)
=

449
24

(Na)2 . (6.8)

• third order

γ
(3)
A2 = −

(
β(3)

a
+ γ

(3)
A

)
=

(
75607
864

− 9
16

ς(3)
)

(Na)3 . (6.9)

Expressions (6.7), (6.8), (6.9) are in complete agreement with those given in1 [173, 174]. Concerning
now the ghost anomalous dimension γc in eq.(6.5), it is straightforward to verify in fact that the relation

2γc(a) =
β(a)

a
− γA(a) , (6.10)

holds. This equation expresses the nonrenormalization properties of the ghost fields in the Landau gauge
and, as shown in [89], follows from the ghost Ward identity. Although we are considering only pure
Yang-Mills theory, it is worth mentioning that eqs.(6.6) and (6.10) remain valid also in the presence of
matter fields, as one can verify from [173, 174].

6.3 Algebraic proof.

In this section we provide an algebraic proof of the relation (6.6). We shall make use of a suitable set
of Ward identities which can be derived in the Landau gauge in order to characterize the local operator
A2. Let us begin by reminding the expression of the pure Yang-Mills action in the Landau gauge

S = SYM + SGF+FP (6.11)

= −1
4

∫
d4xF a

µνF aµν +
∫

d4x
(
ba∂µAaµ + ca∂µDab

µ cb
)

,

where

Dab
µ ≡ ∂µδab + gfacbAc

µ . (6.12)

To study the operator Aa
µAaµ, we introduce it in the action by means of a set of external sources. It

turns out that three external sources J, ηµ and τµ are needed, so that

SJ =
∫

d4x

[
J

1
2
Aa

µAaµ +
ξ

2
J2 − ηµAa

µca − τµs(Aa
µca)

]
(6.13)

=
∫

d4x

[
J

1
2
Aa

µAaµ +
ξ

2
J2 − ηµAa

µca + τµ∂µcaca +
g

2
τµfabcAa

µcbcc

]
,

1Notice that the anomalous dimension γO for A2 given in [173, 174] is related to γA2 in eq.(6.6) by γA2 = −4γO.
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where s denotes the BRST operator acting as

sAa
µ = −Dab

µ cb

sca =
g

2
fabccbcc

sca = ba

sba = −Jca

sJ = 0
sηµ = ∂µJ

sτµ = ηµ . (6.14)

It is easy to check that

s (SYM + SGF+FP + SJ) = 0 . (6.15)

According to the LCO procedure [42, 24, 23, 176], the dimensionless parameter ξ is needed to account
for the divergences present in the vacuum Green function

〈
A2(x)A2(y)

〉
, which are proportional to J2.

6.3.1 Ward identities.

In order to translate the BRST invariance (6.15) into the corresponding Slavnov-Taylor identity [59],
we introduce two additional external sources Ωa

µ and La coupled to the nonlinear BRST variation of
Aa

µ and ca

Sext =
∫

d4x
[
−ΩaµDab

µ cb + La g

2
fabccbcc

]
, (6.16)

with

sΩa
µ = sLa = 0 .

The complete action

Σ = SYM + SGF+FP + SJ + Sext . (6.17)

turns out thus to obey the following identities:

• The Slavnov-Taylor identity

S(Σ) = 0 , (6.18)

S(Σ) =
∫

d4x

(
δΣ
δAa

µ

δΣ
δΩaµ

+
δΣ
δLa

δΣ
δca

+ ba δΣ
δca + ∂µJ

δΣ
δηµ

+ ηµ δΣ
δτµ

− Jca δΣ
δba

)
(6.19)

• The Landau gauge condition

δΣ
δba

= ∂µAµa , (6.20)

and the antighost Ward identity

δΣ
δca + ∂µ

δΣ
δΩa

µ

= 0 , (6.21)
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• The ghost Ward identity [89, 59]

GaΣ = ∆a
cl , (6.22)

where

GaΣ =
∫

d4x

(
δΣ
δca

+ gfabccb δΣ
δbc

− τµ
δΣ
δΩa

µ

)
, (6.23)

and

∆a
cl =

∫
d4x

(
gfabcΩb

µAcµ − gfabcLbcc + ηµAa
µ

)
. (6.24)

Notice that expression (6.24), being purely linear in the quantum fields, is a classical breaking. It
is remarkable that the ghost Ward identity can be established also in the presence of the external
sources (J, ηµ, τµ). As we shall see, this identity will play a fundamental role for the algebraic
proof of the relation (6.6).

6.3.2 Algebraic characterization of the general local counterterm.

We are now ready to analyse the structure of the most general local counterterm compatible with the
identities (6.18)− (6.22). Let us begin by displaying the quantum numbers of all fields and sources,
namely In order to characterize the most general invariant counterterm which can be freely added to all

Aa
µ ca ca ba La Ωa

µ J ηµ τµ

Gh. number 0 1 −1 0 −2 −1 0 −1 −2
Dimension 1 0 2 2 4 3 2 3 3

Table 6.1:

orders of perturbation theory, we perturb the classical action Σ by adding an arbitrary integrated local
polynomial Σcount in the fields and external sources of dimension bounded by four and with zero ghost
number, and we require that the perturbed action (Σ+ εΣcount) satisfies the same Ward identities and
constraints as Σ to the first order in the perturbation parameter ε, i.e.

S(Σ + εΣcount) = 0 + O(ε2) ,

δ(Σ + εΣcount)
δba

= ∂µAa
µ + O(ε2) ,

(
δ

δca + ∂µ
δ

δΩa
µ

)
(Σ + εΣcount) = 0 + O(ε2) ,

Ga(Σ + εΣcount) = ∆a
cl + O(ε2) . (6.25)

This amounts to impose the following conditions on Σcount

BΣΣcount = 0 , (6.26)

BΣ =
∫

d4x

(
δΣ
δAa

µ

δ

δΩaµ
+

δΣ
δΩaµ

δ

δAa
µ

+
δΣ
δLa

δ

δca
+

δΣ
δca

δ

δLa

+ba δ

δca + ∂µJ
δ

δηµ
+ ηµ δ

δτµ
− Jca δ

δba

)
,
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and

δΣcount

δba
= 0 , (6.27)

δΣcount

δca + ∂µ
δΣcount

δΩa
µ

= 0 , (6.28)

GaΣcount = 0 . (6.29)

From equations (6.27) and (6.28) it follows that Σcount does not depend on the Lagrange multiplier

field ba and that the antighost ca enters only through the combination Ω̂a
µ =

(
Ωa

µ + ∂µca
)
. As a

consequence, Σcount can be parametrized as follows

Σcount = Scount(A)

+
∫

d4x
(a1

2
fabcLacbcc + a2Ω̂a

µ∂µca + a3f
abcΩ̂a

µAb
µcc +

a4

2
ξJ2

)

+
∫

d4x
(a5

2
JAa

µAaµ + a6η
µAa

µca +
a7

2
τµfabcAa

µcbcc + a8τ
µ∂µcaca

)
,

(6.30)

where ai, i = 1 · · · 8 are free parameters and Scount(A) depends only on the gauge fields Aa
µ. From

the ghost Ward identity condition (6.29) it follows that

a1 = a3 = a6 = a7 = 0 , (6.31)

a8 = −a2 .

The vanishing of the coefficient a1 expresses the absence of the counterterm fabcLacbcc. Also, a3 = 0
states the nonrenormalization of the ghost-antighost-gluon vertex, stemming from the transversality of
the Landau propagator and from the factorization of the ghost momentum. As shown in [89], these
features are related to a set of nonrenormalization theorems of the Landau gauge. Furthermore, the
vanishing of a6 implies the ultraviolet finiteness of the operator Aµc. These finiteness properties extend
to all orders, due to the ghost Ward identity (6.22). It remains now to work out the condition (6.26).
Making use of the well known results on the cohomology of Yang-Mills theory [59, 60], it turns out
that the condition (6.26) implies that the coefficient a5 is related to a2,

a5 = a2 , (6.32)

and that Scount(A) can be written as

Scount(A) = ρSY M (A) + a2

∫
d4xAa

µ

δSY M (A)
δAa

µ

,

SY M (A) = −1
4

∫
d4xF a

µνF aµν , (6.33)

where ρ is a free parameter. In summary, the most general local counterterm compatible with the Ward
identities (6.18)− (6.22) contains three independent parameters ρ, a2, a4, and reads

Σcount = ρSY M (A) + a2

∫
d4xAa

µ

δSY M (A)
δAa

µ

+
∫

d4x
(
a2

(
Ωa

µ + ∂µca
)
∂µca +

a4

2
ξJ2 +

a2

2
JAa

µAaµ − a2τ
µ∂µcaca

)
.

(6.34)
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It is apparent from the above expression that the parameters ρ and a2 are related to the renormalization
of the gauge coupling g and of the gauge fields Aa

µ, while the parameter a4 corresponds to the renor-
malization of ξ. It should be remarked also that the coefficient of the counterterm JAa

µAaµ is given by
a2. This means that the renormalization of the external source J , and thus of the composite operator
Aa

µAaµ, can be expressed as a combination of the renormalization constants of the gauge coupling and
of the gauge fields. As we shall see in the next section, this property will lead to the eq.(6.6).

6.3.3 Stability and renormalization constants.

Having found the most general local counterterm compatible with all Ward identities, it remains to
discuss the stability [59] of the classical starting action, i.e. to check that Σcount can be reabsorbed
in the starting action Σ by means of a multiplicative renormalization of the coupling constant g, the
parameter ξ, the fields {φ = A, c, c, b} and the sources {Φ = J, η, τ, L, Ω}, namely

Σ(g, ξ, φ, Φ) + εΣcount = Σ(g0, ξ0, φ0, Φ0) + O(ε2) , (6.35)

where, adopting the same conventions of [173, 174]

g0 = Zgg , (6.36)

ξ0 = Zξξ ,

φ0 = Z
1/2
φ φ ,

Φ0 = ZΦΦ .

As already mentioned, the parameters ρ and a2 are related to the renormalization of g and Aa
µ, according

to

Zg = 1− ε
ρ

2
, (6.37)

Z
1/2
A = 1 + ε

(
a2 +

ρ

2

)
.

Concerning the other fields, it is almost immediate to verify that they are renormalized as follows

Zb = Z−1
A , (6.38)

and

Zc = Zc = Z−1
g Z

−1/2
A . (6.39)

Similar relations are easily found for the sources. In particular, for the source J and for the parameter
ξ one has

ZJ = ZA2 = ZgZ
−1/2
A , (6.40)

and

Zξ = 1 + ε (a4 + 2a2 + 2ρ) = (1 + εa4)Z−2
g ZA . (6.41)

We see therefore that the relation

γA2 = −
(

β(a)
a

+ γA(a)
)

, (6.42)

follows from eq.(6.40). Concerning now the eq.(6.10) for the ghost anomalous dimension, it is a direct
consequence of eq.(6.39).
Summarizing, we have been able to give a purely algebraic proof of the relationship (6.6). This means
that the anomalous dimension γA2 of the composite operator Aa

µAaµ is not an independent parameter
for Yang-Mills theory in the Landau gauge.
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Chapter 7

The anomalous dimension of the
gluon-ghost mass operator in
Yang-Mills theory

D. Dudal, H. Verschelde (UGent), V. E. R. Lemes, M. S. Sarandy, R. F. Sobreiro, S. P. Sorella (UERJ),
M. Picariello (University of Milan, INFN Milano), J. A. Gracey (Liverpool University),
published in Physic Letters B 569 (2003) 57.

The local composite gluon-ghost operator
(

1
2AaµAa

µ + αcaca
)

is analysed in the framework of the
algebraic renormalization in SU(N) Yang-Mills theories in the Landau, Curci-Ferrari and maximal
Abelian gauges. We show, to all orders of perturbation theory, that this operator is multiplicatively
renormalizable. Furthermore, its anomalous dimension is not an independent parameter of the theory,
being given by a general expression valid in all these gauges. We also verify the relations we obtain
for the operator anomalous dimensions by explicit three-loop calculations in the MS scheme for the
Curci-Ferrari gauge.

7.1 Introduction.

Vacuum condensates are believed to play an important role in the understanding of the nonperturbative
dynamics of Yang-Mills theories. In particular, much effort has been devoted to the study of condensates
of dimension two built up with gluons and ghosts. For instance, the relevance of the pure gluon
condensate

〈
AaµAa

µ

〉
in the Landau gauge has been discussed from lattice simulations [37, 38, 39, 175]

as well as from a phenomenological point of view [33, 34]. That the operator A2
µ has a special

meaning in the Landau gauge follows by observing that, due to the transversality condition ∂µAaµ = 0,
the integrated operator (V T )−1

∫
d4xAa

µAaµ is gauge invariant, with V T denoting the space-time

volume. An effective potential for
〈
AaµAa

µ

〉
has been constructed in [42], showing that the vacuum

of Yang-Mills favors a nonvanishing value for this condensate, which gives rise to a dynamical mass
generation for the gluons.

The operator A2
µ in the Landau gauge can be generalized to other gauges such as the Curci-Ferrari gauge

and maximal Abelian gauge, (MAG). Indeed, as was shown in [83, 144], the mixed gluon-ghost operator1

1In the case of the maximal Abelian gauge, the color index a runs only over the N(N−1) off-diagonal components.

101
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O =
(

1
2AaµAa

µ + αcaca
)

turns out to be BRST invariant on-shell, where α is the gauge parameter.
Also, the Curci-Ferrari gauge has the Landau gauge, α = 0, as a special case. Thus, the gluon-ghost
condensate

(
1
2

〈
AaµAa

µ

〉
+ α 〈caca〉) might be suitable for the description of dynamical mass generation

in these gauges. Recently, the effective potential for this condensate in the Curci-Ferrari gauge has been
constructed in [178] by combining the algebraic renormalization [59] with the local composite operators
technique [42, 176], resulting in a dynamical mass generation. In this formalism, an essential step is the
renormalizability of the local composite operator related to the condensate, which is fundamental to
obtaining its anomalous dimension. It is worth mentioning that the anomalous dimension of the gluon-
ghost operator O =

(
1
2AaµAa

µ + αcaca
)

in the Curci-Ferrari gauge, and thus of the gluon operator

A2
µ in the Landau gauge, has been computed to three-loop in the MS renormalization scheme, [87].

In addition, it has been proven [153] by using BRST Ward identities that the anomalous dimension
γA2

µ
(a) of the operator A2

µ in the Landau gauge is not an independent parameter, being expressed as

a combination of the gauge beta function, β(a), and of the anomalous dimension, γA(a), of the gauge
field, according to the relation

γA2
µ
(a) = −

(
β(a)

a
+ γA(a)

)
, a =

g2

16π2
. (7.1)

The aim of this paper is to extend the analysis of [153] to the Curci-Ferrari and maximal Abelian gauges.
We shall prove that the operator

(
1
2AaµAa

µ + αcaca
)

is multiplicatively renormalizable to all orders of
perturbation theory. Furthermore, as in the case of the Landau gauge, its anomalous dimension γO(a)
is not an independent parameter of the theory, being given in fact by a general relationship valid in the
Landau, Curci-Ferrari and maximal Abelian gauges, which is

γO(a) = − 2
(
γc(a) + γgc2(a)

)
, (7.2)

where γc(a), γgc2(a) are the anomalous dimensions of the Faddeev-Popov ghost ca and of the composite
operator 1

2gfabccbcc corresponding to the BRST variation of ca. In other words sca = 1
2gfabccbcc where

s is the BRST operator.

The paper is organized as follows. In section 7.2, the renormalization of the dimension two operator(
1
2AaµAa

µ + αcaca
)

is considered in detail, by taking the Curci-Ferrari gauge as an example and the
relationship (7.2) is derived. In section 7.3, we verify the relation we obtain between the anomalous
dimensions explicitly at three loops in the Curci-Ferrari gauge in the MS scheme. Section 7.4 is devoted
to the Landau gauge, showing that the expression (7.2) reduces to that of (7.1). In section 7.5 we shall
analyse the maximal Abelian gauge, where the results established in [179] for the case of SU(2) will
be recovered. Finally, in section 7.6 we present our conclusions.

7.2 The gluon-ghost operator in Yang-Mills theories in the Curci-
Ferrari gauge.

7.2.1 The Curci-Ferrari action.

We begin by reviewing the quantization of pure SU(N) Yang-Mills in the Curci-Ferrari gauge. The
pure Yang-Mills action is given by

SYM = − 1
4

∫
d4x F a µνF a

µν , (7.3)
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with F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν . The so called Curci-Ferrari gauge, [162, 160, 161, 84, 85], is

defined by the following gauge fixing term

SGF+FP =
∫

d4x
(
ba∂µAµa +

α

2
baba + ca∂µ (Dµc)a − α

2
gfabcbacbcc − α

8
g2fabccacbf cmncmcn

)
,

(7.4)

with

(Dµc)a = ∂µca + gfabcAb
µcc . (7.5)

In order to analyse the renormalization of the operator
(

1
2AaµAa

µ + αcaca
)
, we have to introduce it

in the action by means of a set of external sources. Following [153], it turns out that three external
sources J , ηµ and τµ are required, so that

SJ =
∫

d4x

(
J

(
1
2
AaµAa

µ + αcaca

)
+

ξ

2
J2 − ηµAa

µca − τµ (∂µca) ca − g

2
τµfabcAa

µcbcc

)

(7.6)

where ξ is a dimensionless parameter, accounting for the divergences present in the vacuum Green

function
〈(

1
2AaµAa

µ + αcaca
)
x

(
1
2AaµAa

µ + αcaca
)
y

〉
, which are proportional to J2 [178]. The action

(SYM + SGF+FP + SJ) is invariant under the BRST transformations, which read

sAa
µ = − (Dµc)a

, sca =
g

2
fabccbcc ,

sca = ba , sba = − Jca ,

sτµ = − ηµ , sηµ = ∂µJ ,

sJ = 0 . (7.7)

Also, due to the introduction of the external sources J , ηµ and τµ it follows that the operator s is not
strictly nilpotent, namely

s2Φ = 0 , (Φ = Aaµ, ca, J, ηµ) ,

s2ca = − Jca ,

s2ba = − J
g

2
fabccbcc ,

s2τµ = − ∂µJ . (7.8)

Therefore, setting

s2 ≡ δ , (7.9)

we have δ (SYM + SGF+FP + SJ) = 0. The operator δ is related to a global SL(2,R) symmetry [163],
which is known to be present in the Landau, Curci-Ferrari and maximal Abelian gauges, [171]. Finally,
in order to express the BRST and δ invariances in a functional way, we introduce the external action

Sext =
∫

d4x
(
Ωaµ sAa

µ + La sca
)

(7.10)

=
∫

d4x
(
− Ωaµ (Dµc)a + La g

2
fabccbcc

)
,
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where Ωaµ and La are external sources invariant under both BRST and δ transformations, coupled to
the nonlinear variations of the fields Aa

µ and ca. It is worth noting that the source La couples to the

composite operator g
2fabccbcc, thus defining its renormalization properties. It is easy to check that the

complete classical action

Σ = SYM + SGF+FP + SJ + Sext (7.11)

is invariant under BRST and δ transformations

sΣ = 0 , δΣ = 0 . (7.12)

When translated into functional form, the BRST and the δ invariances give rise to the following Ward
identities for the complete action Σ, namely

• the Slavnov-Taylor identity

S(Σ) = 0 , (7.13)

• with

S(Σ) =
∫

d4x

(
δΣ

δΩaµ

δΣ
δAa

µ

+
δΣ
δLa

δΣ
δca

+ ba δΣ
δca − Jca δΣ

δba
+ ∂µJ

δΣ
δηµ

− ηµ δΣ
δτµ

)
(7.14)

• The δ Ward identity

W (Σ) = 0 , (7.15)

with

W(Σ) =
∫

d4x

(
−Jca δΣ

δca − J
δΣ
δLa

δΣ
δba

− ∂µJ
δΣ
δτµ

)
. (7.16)

7.2.2 The invariant counterterm and the renormalization constants.

We are now ready to analyse the structure of the most general local counterterm compatible with the
identities (7.13) and (7.15). Let us begin by displaying the quantum numbers of all fields and sources In

Aa
µ ca ca ba La Ωa

µ J ηµ τµ

Ghost number 0 1 −1 0 −2 −1 0 −1 −2
Dimension 1 0 2 2 4 3 2 3 3

Table 7.1:

order to characterize the most general invariant counterterm which can be freely added to all orders of
perturbation theory, we perturb the classical action Σ by adding an arbitrary integrated local polynomial
Σcount in the fields and external sources of dimension bounded by four and with zero ghost number, and
we require that the perturbed action (Σ + εΣcount) satisfies the same Ward identities and constraints
as Σ to first order in the perturbation parameter ε, which are

S(Σ + εΣcount) = 0 + O(ε2) ,

W (
Σ + εΣcount

)
= 0 + O(ε2) , (7.17)
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This amounts to imposing the following conditions on Σcount

BΣΣcount = 0 , (7.18)

with

BΣ =
∫

d4x

(
δΣ
δAa

µ

δ

δΩaµ
+

δΣ
δΩaµ

δ

δAa
µ

+
δΣ
δLa

δ

δca
+

δΣ
δca

δ

δLa
(7.19)

+ ba δ

δca + ∂µJ
δ

δηµ
+ ηµ δ

δτµ
− Jca δ

δba

)
,

and
∫

d4x

(
−Jca δΣcount

δca − J
δΣ
δLa

δΣcount

δba
− J

δΣ
δba

δΣcount

δLa
− ∂µJ

δΣcount

δτµ

)
= 0 . (7.20)

Proceeding as in [153], it turns out that the most general local invariant counterterm compatible with
the Ward identities (7.13) and (7.15) contains six independent parameters denoted by σ, a1, a2, a3,
a4 and a5, and is given by

Σcount =
∫

d4x
(σ

4
F aµνF a

µν + (a3 − a4)(DµFµν)aAa
ν +

a1

2
baba + a2b

a∂µAa
µ

+ (a2 − a3)ca∂2ca + (a4 − a2)gfabcca∂µ
(
cbAc

µ

)

+
(αa4 − a1)

2
gfabcbacbcc + (αa4 − a1

2
)
g2

4
fabccacbf cmncmcn

+ a3Ωaµ∂µca + a4gfabcΩaµAb
µcc − a4

2
Lagfabccbcc

+
(a2 + a3)

2
JAaµAa

µ + a1Jcaca + a5
ξ

2
J2 − a2η

µAa
µca

+ (a2 − a3)τµca∂µca + (a4 − a2)
g

2
τµfabcAa

µcbcc
)

. (7.21)

It therefore remains to discuss the stability of the classical action. In other words to check that Σcount

can be reabsorbed in the classical action Σ by means of a multiplicative renormalization of the coupling
constant g, the parameters α and ξ, the fields {φ = A, c, c, b} and the sources {Φ = J, η, τ, L, Ω},
namely

Σ(g, ξ, α, φ, Φ) + εΣcount = Σ(g0, ξ0, α0, φ0, Φ0) + O(ε2) , (7.22)

with the bare fields and parameters defined as

Aa
0µ = Z

1/2
A Aa

µ , Ωa
0µ = ZΩΩa

µ , τ0µ = Zτ τµ

ca
0 = Z1/2

c ca , La
0 = ZLLa , g0 = Zgg ,

ca
0 = Z

1/2
c ca , J0 = ZJJ , α0 = Zαα ,

ba
0 = Z

1/2
b ba , η0µ = Zηηµ , ξ0 = Zξξ . (7.23)
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The parameters σ, a1, a2, a3, a4 and a5 turn out to be related to the renormalization of the gauge
coupling constant g, of the gauge parameter α, and of La, ca, Aa

µ, and ξ respectively, according to

Zg = 1 + ε
σ

2
,

Zα = 1 + ε
(a1

α
− σ − 2a2 + 2a3 − 2a4

)
,

ZL = 1 + ε
(
−a2 − σ

2
+ a3 − a4

)
,

Z1/2
c = 1 + ε

(−a3 + a2

2

)
,

Z
1/2
A = 1 + ε

(
−σ

2
+ a3 − a4

)
,

Zξ = 1 + ε (a5 − 2σ − 2a2 + 2a3 − 4a4) . (7.24)

Concerning the other fields and the sources Ωa
µ, ηµ, and τµ, it can be verified that they are renormalized

as

Zc = Zc , Z
1/2
b = Z−1

L , ZΩ = ZL Z
−1/2
A Z1/2

c

Zη = Z−1
L Z−1/2

c , Zτ = 1 . (7.25)

Finally, for the source J , one has

ZJ = Z−2
L Z−1

c , (7.26)

from which it follows that

γO(a) = − 2
(
γc(a) + γgc2(a)

)
, (7.27)

where γc(a) and γgc2(a) are the anomalous dimensions of the Faddeev-Popov ghost ca and of the
composite operator g

2fabccbcc, defined as

γc(a) = µ∂µ ln Z1/2
c γgc2(a) = µ∂µ ln ZL γO(a) = µ∂µ ln ZJ

β(a)
a

= µ∂µ ln Z−1
g γα(a) = µ∂µ ln Z−1

α (7.28)

where µ is the renormalization scale.

Therefore, we have provided a purely algebraic proof of the multiplicative renormalizability of the
gluon-ghost operator to all orders of perturbation theory. In particular, we have been able to show, as
explicitly exhibited in (7.27), that the anomalous dimension of

(
1
2AaµAa

µ + αcaca
)

is not an independent
parameter of the theory, being given by a combination of the anomalous dimensions γc(a) and γgc2(a).
It is worth mentioning that it has also been proven, [172], for the Curci-Ferrari gauge that the anomalous
dimension of the ghost operators g

2fabccbcc, g
2fabccbcc and g

2fabccbcc are the same.

Although we did not consider matter fields in the previous analysis, it can be checked that the renor-
malizability of O and the relation (7.27) remain unchanged if matter fields are included.

7.3 Three-loop verification.

In this section, we will explicitly verify the relation (7.27) up to three-order in the Curci-Ferrari gauge in
a particular renormalization scheme, MS. The values for the β-function and the anomalous dimensions
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of the gluon, ghost, the operator O and the gauge parameter α have already been calculated in the
presence of matter fields in [87]. For completeness we note that for an arbitrary colour group these are

β(a) = −
[
11
3

CA − 4
3
TF Nf

]
a2 −

[
34
3

C2
A − 4CF TF Nf − 20

3
CATF Nf

]
a3

+
[
2830C2

ATF Nf − 2857C3
A + 1230CACF TF Nf − 316CAT 2

F N2
f

− 108C2
F TF Nf − 264CF T 2

F N2
f

] a4

54
+ O(a5) , (7.29)

γA(a) = [(3α− 13)CA + 8TF Nf ]
a

6

+
[(

α2 + 11α− 59
)
C2

A + 40CATF Nf + 32CF TF Nf

] a2

8
+

[(
54α3 + 909α2 + (6012 + 864ζ(3))α + 648ζ(3)− 39860

)
C3

A

− (2304α + 20736ζ(3)− 58304) C2
ATF Nf + (27648ζ(3) + 320) CACF TF Nf

− 9728CAT 2
F N2

f − 2304C2
F TF Nf − 5632CF T 2

F N2
f

] a3

1152
+ O(a4) (7.30)

γc(a) = (α− 3)CA
a

4
+

[(
3α2 − 3α− 95

)
C2

A + 40CATF Nf

] a2

48
+

[(
162α3 + 1485α2 + (3672− 2592ζ(3))α− (1944ζ(3) + 63268)

)
C3

A

− (6048α− 62208ζ(3)− 6208) C2
ATF Nf − (82944ζ(3)− 77760)CACF TF Nf

+ 9216CAT 2
F N2

f

] a3

6912
+ O(a4) , (7.31)

γO(a) = − [16TF Nf + (3α− 35)CA]
a

6

− [
280CATF Nf + (3α2 + 33α− 449)C2

A + 192CF TF Nf

] a2

24
− [(

(2592α + 1944)ζ(3) + 162α3 + 2727α2 + 18036α− 302428
)
C3

A

− (62208ζ(3) + 6912α− 356032) C2
ATF Nf + (82944ζ(3) + 79680) CACF TF Nf

− 49408CAT 2
F N2

f − 13824C2
F TF Nf − 33792CF T 2

F N2
f

] a3

3456
+ O(a4) . (7.32)

γα(a) = α

[
a

4
CA + (α + 5) C2

A

a2

16

+ 3C2
A

[(
α2 + 13α + 67α

)
CA − 40TF Nf

] a3

128

]
+ O(a4) (7.33)

where the anomalous dimension of O in our conventions is given by (−4) times the result quoted in [87].
The group Casimirs are tr

(
T aT b

)
= TF δab, T aT a = CF I, facdf bcd = δabCA, Nf is the number of

quark flavours and ζ(n) is the Riemann zeta function. Our definition here of γα(a), which denotes the
running of α, differs from that of [87] due to a different definition of Zα. For computational reasons,
it turns out to be more convenient to consider the renormalization of the ghost operators fabccbcc,
fabccbcc and fabccbcc instead of gfabccbcc, gfabccbcc and gfabccbcc respectively. We note that we
have first verified that to three loops the anomalous dimension of each of the three operators are in
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fact equal, in agreement with [172]. Accordingly, we find

γc2(a) =
3
2
CAa +

[
(18α + 95) C2

A − 40CATF Nf

] a2

24
+

[(
621α2 + (7182 + 2592ζ(3))α + (1944ζ(3) + 63268)

)
C3

A

− (432α + 62208ζ(3) + 6208) C2
ATF Nf + (82944ζ(3)− 77760)CACF TF Nf

− 8960CAT 2
F N2

f

] a3

3456
+ O(a4) . (7.34)

We have deduced this result using the Mincer package, [180], written in Form, [156], where the
Feynman diagrams are generated in Form input format by Qgraf, [181]. For instance, for fabcc̄bcc

there are 529 diagrams to determine at three loops and 376 for the operator fabccbcc where each
is inserted in the appropriate ghost two-point function. The same Form converter functions of [87]
were used here. Since the operator fabcc̄bcc has the same ghost structure as the operator c̄aca, we
were able merely to replace the Feynman rule for the operator insertion of c̄aca in the ghost two-point
function with the new operator and use the same routine which determined γO(a) in [87]. However,
as fabccbcc has a different structure we had to generate a new Qgraf set of diagrams to renormalize
this operator. That the anomalous dimensions of both operators emerged as equivalent at three loops
for all α provides a strong check on our programming as well as justifying the general result of section
7.2. Now, taking into account the extra factor g, the anomalous dimension γgc2(a) is found to be

γgc2(a) = [8TF Nf − 13CA]
a

6
+

[
(6α− 59)C2

A + 40CATF Nf + 32CF TF Nf

] a2

8
+

[(
207α2 + (2394 + 864ζ(3))α + (648ζ(3)− 39860)

)
C3

A

− (144α + 20736ζ(3)− 58304)C2
ATF Nf + (27648ζ(3) + 320) CACF TF Nf

− 9728CAT 2
F N2

f − 2304C2
F TF Nf − 5632CF T 2

F N2
f

] a3

1152
+ O(a4) . (7.35)

It is then easily checked from the expressions (7.32), (7.33) and (7.35) that, up to three-loop order,

γO(a) = − 2
(
γc(a) + γgc2(a)

)
. (7.36)

It is worth mentioning that the renormalizability of the operator O was already discussed in [182] from
the viewpoint of the massive Curci-Ferrari model. Whilst the relation (7.27) was not explicitly given
in [182], it is possible to obtain the relation from that analysis. Although the relation (7.27) has been
established in the case of the Curci-Ferrari gauge, it expresses a general property of the gluon-ghost
operator which remains valid also in the Landau and maximal Abelian gauges, as will be shown in the
following sections.

7.4 The Landau gauge.

The Landau gauge is a particular case of the Curci-Ferrari gauge, corresponding to α = 0. The Landau
gauge is known to possess further additional Ward identities [59, 89], implying that the renormalization
constants ZL and Zc can be expressed in terms of Zg and ZA, according to [153]

ZL = Z
1/2
A , Zc = Z−1

g Z
−1/2
A . (7.37)

Therefore, it follows that (7.26) reduces to

ZJ = ZgZ
−1/2
A (7.38)
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from which the expression (7.1) is recovered, providing a nontrivial check of the validity of the general
relationship (7.2).

As another internal check of our computations, we note that we should also find in the Landau gauge
that γgc2(a) = γA(a), as is obvious from (7.37). It can indeed be checked from (7.30) and (7.35) that

γgc2(a)
∣∣
α=0

= γA(a)|α=0 . (7.39)

7.5 The maximal Abelian gauge.

As is well known, the maximal Abelian gauge is a nonlinear partial gauge fixing allowing for a residual
U(1)N−1 local invariance [71, 72, 179, 183]. In the following, a Landau type gauge fixing will be
assumed for this local residual invariance. The Slavnov-Taylor and the δ Ward identities (7.13) and
(7.15) can be straightforwardly generalized to this case. It is useful to recall that the gauge field is now
decomposed into its off-diagonal and diagonal components

Aa
µT a = Ai

µT i + Aα
µTα , (7.40)

where the index i labels the N − 1 generators T i of the Cartan subalgebra of SU(N). The remaining
N(N−1) off-diagonal generators Tα will be labelled by the index α. Accordingly, for the Faddeev-Popov
ghost ca we have

caT a = ciT i + cαTα , (7.41)

with

scα = gf αβicβci +
g

2
f αβγcβcγ , (7.42)

sci =
g

2
f iαβcαcβ .

Also, the group index of the gluon-ghost operator runs only over the off-diagonal components, namely

OMAG =
(

1
2
AαµAα

µ + αcαcα

)
. (7.43)

Denoting respectively by Z̃ and Z the renormalization factors of the off-diagonal and diagonal compo-
nents of the fields, it follows that, according to the relationship (7.27), the output of the Slavnov-Taylor
and δ Ward identities gives

γOMAG(a) = − 2
(
γ̃cα(a) + γ̃gc2(a)

)
, (7.44)

where γ̃cα(a) and γ̃gc2(a) are the anomalous dimensions of the off-diagonal ghost cα and of the com-
posite operator

(
gf αβicβci + g

2f αβγcβcγ
)

which corresponds to the BRST variation of cα. Moreover,
as shown in [72], the use of the Landau gauge for the local residual U(1)N−1 invariance allows for a
further Ward identity. This identity, called the diagonal ghost Ward identity in [72], implies that the
anomalous dimension γ̃gc2(a) can be expressed as

γ̃gc2(a) =
β(a)

a
− γ̃cα(a) − γci(a) , (7.45)

where γci(a) is the anomalous dimension of the diagonal ghost ci. Therefore, for the expression of
γOMAG(a) we obtain

γOMAG(a) = − 2
(

β(a)
a

− γci(a)
)

, (7.46)
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a result which is in complete agreement with that already found in [179] for the case of SU(2). Finally,
it is worth mentioning that the anomalous dimensions of the diagonal and off-diagonal components of
the fields have been computed at one-loop order in [179, 183], so that (7.27) gives explicit knowledge
of the one-loop anomalous dimension of the gluon-ghost operator in the maximal Abelian gauge.

7.6 Conclusion.

We have shown that the mass dimension two gluon-ghost operator O = 1
2Aa

µAµa +αcaca is multiplica-
tively renormalizable in the Landau, Curci-Ferrari and maximal Abelian gauges. Further, we were able
to establish a general relation between the anomalous dimension of O, the Faddeev-Popov ghost ca

and the dimension two ghost operator gfabccbcc, as expressed by the eq.(7.2). This relation has been
derived within the framework of the algebraic renormalization [59], following from the Slavnov-Taylor
identity (7.13). As such, it extends to all orders of perturbation theory and is renormalization scheme
independent, for any scheme preserving the Slavnov-Taylor identity. It has been explicitly verified up to
three loops in the MS scheme in the Curci-Ferrari gauge.

Furthermore, due to additional Ward identities that exist in the Landau gauge [59] and in the MAG
[72], we were able to rewrite the relation (7.2) for the anomalous dimension for O in terms of the
β-function and the anomalous dimension of the gluon and/or ghost fields. In particular, concerning
the maximal Abelian gauge, it is worth underlining that the multiplicative renormalizability of the
gluon-ghost operator, eq.(7.46), is a necessary ingredient towards the construction of a renormalizable
effective potential for studying the possible condensation of the gluon-ghost operator and the ensuing
dynamical mass generation, as done in the Landau [42] and Curci-Ferrari [178] gauges.

As a final remark, we point out that, from the three-loop expressions given in section 7.3, it is easily
checked that the following relations holds in the Curci-Ferrari gauge:

γO(a) = −
(

β(a)
a

+ γA(a)
)

, (7.47)

γgc2(a) = γA(a) − 2γα(a) . (7.48)

Up to now, we do not know if these relations are valid to all orders. They do not follow from the
Slavnov-Taylor identity (7.13). Nevertheless, although eqs.(7.47), (7.48) have been obtained in a
particular renormalization scheme, i.e. the MS scheme, it could be interesting to search for additional
Ward identities in the Curci-Ferrari gauge which, as in the case of the Landau gauge [153], could allow
for a purely algebraic proof of eqs.(7.47), (7.48). Notice in fact that, when α = 0, eq.(7.47) yields the
anomalous dimension of the composite operator A2

µ in the Landau gauge. Also, eq.(7.48) reduces to
the relation (7.39) of the Landau gauge, since γα(a) ≡ 0 if α = 0.
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The effective potential for an on-shell BRST invariant gluon-ghost condensate of mass dimension 2
in the Curci-Ferrari gauge in SU(N) Yang-Mills is analysed by combining the local composite operator
technique with the algebraic renormalization. We pay attention to the gauge parameter independence of
the vacuum energy obtained in the considered framework and discuss the Landau gauge as an interesting
special case.

8.1 Introduction.

Nowadays an increasing evidence has been reported on the relevance of the local composite operator
A2 in the Landau gauge, both from a phenomenological point of view [33, 34] as from lattice studies
[38, 37, 40]. It is no coincidence that the Landau gauge is used because then A2 equals the non-local

gauge invariant operator (V T )−1 minU

∫
d4x

(
A2

)U
with V T the space time volume. The lattice also

revealed that gluons attain a dynamical mass, see e.g. [47, 48]. Some older work already discussed the
pairing of gluons in connection with a mass generation, as a result of the fact that the perturbative
Yang-Mills (YM) vacuum (trivially zero) is unstable [28, 29, 30]. More recently, the connection between
a condensate

〈
A2

〉
and a gluon mass has been made within the OPE framework [83, 144]. A technique

to effectively calculate
〈
A2

〉
and the gluon mass was presented in [42], also in the Landau gauge. An

alternative method was discussed in [184].

The answer to the question how a mass is generated could be posed in a more general context than the
Landau gauge. The Landau gauge is a limiting case of a class of renormalizable, generalized covariant
gauges introduced in [160, 161]. We are therefore led to search for a local operator which could replace
A2. A proposal has been made in [83], where it was shown that A2 is a special case of a more general
mass dimension 2 operator, namely O = 1

2Aa
µAµa + αcaca, also involving ghosts and which is BRST

invariant on-shell, however not gauge invariant (see also [185]). The proposed condensate is not that

111
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surprising, since it equals the operator coupled to the mass term of a massive, renormalizable SU(N)
model, introduced in [84, 85]. The specific form of the mass term is necessary to maintain the BRST
invariance and renormalizability [84, 85, 182]. Although the Curci-Ferrari model (CF) is BRST invariant,
the associated BRST operator is not nilpotent and the model is not unitary [162, 182]. Since the gauge
fixing terms of the CF model and the YM theories with the gauges discussed in [83, 144, 160, 161] are
the same, it seems natural to search in that direction for a suitable operator that gets a non-vanishing
vacuum expectation value and invokes a dynamical mass.

The aim of this paper is to construct an effective potential for the mass dimension 2 condensate in the
CF gauge. It is organized as follows. In section 8.2 we discuss the formalism to obtain a well-defined
effective potential for the local composite operator O = 1

2Aa
µAµa +αcaca, a non-trivial task due to the

compositeness of this operator [42, 176]. In section 8.3, we denote the Ward identities of the action,
ensuring the renormalizability. A further construction of the effective action is discussed in section
8.4, where we also outline a subtlety on the minimization of the effective potential. In section 8.5,
we consider the gauge parameter independence of the vacuum energy and spend some words on the
BRST charge. Section 8.6 handles the explicit evaluation of the effective potential. We also discuss
the interesting role of the Landau gauge as a limiting case of the CF gauge. We pay attention to the
similarities between CF and the maximal Abelian gauge (MAG). A mass generating mechanism for the
off-diagonal gluons in the MAG very much resembles that of the CF gauge, and could be seen as some
evidence for Abelian dominance. As usual, conclusions are formulated in the last section.

8.2 The LCO formalism.

For a more detailed introduction to the local composite operator (LCO) formalism and to the algebraic
renormalization technique, the reader is referred to [42, 176], respectively [59].

Let us begin by giving the expression for the SU(N) Yang-Mills action in the CF gauge

S = SY M + SGF+FP = −1
4

∫
d4xF a

µνF aµν +
∫

d4x
(
ba∂µAaµ +

α

2
baba + ca∂µDab

µ cb

− α

2
gfabcbacbcc − α

8
g2fabcf cdecacbcdce

)
(8.1)

where

Dab
µ ≡ ∂µδab + gfacbAc

µ (8.2)

is the usual covariant derivative. In order to investigate if

O =
1
2
Aa

µAaµ + αcaca (8.3)

gets a non-vanishing vacuum expectation value, we introduce a suitable set of LCO sources [42, 176].
In this case this task is nontrivial. It turns out that in order to introduce the local operator O in the
starting action in a BRST invariant way, three external sources J, ηµ and τµ are needed, so that

SLCO =
∫

d4x

[
JO +

ξ

2
J2 − ηµAa

µca − τµs(Aa
µca)

]
(8.4)
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where ξ is the LCO parameter and s denotes the BRST operator acting as

sAa
µ = −Dab

µ cb

sca =
g

2
fabccbcc

sca = ba

sba = −Jca

sJ = 0
sηµ = ∂µJ

sτµ = ηµ (8.5)

The parameter ξ has to be introduced since the introduction of the source term JO gives rise to
novel vacuum energy divergences proportional to J2. These new divergences, related to those of the

connected Green’s function 〈O(x)O(y)〉c for x → y, are canceled by a counterterm δξ J2

2 .

After introduction of the sources, we still have a BRST invariant action

s (SY M + SGF+FP + SLCO) = 0 (8.6)

but it should be observed that, due to the presence of the sources (J, ηµ, τµ), the BRST operator is no
more nilpotent, namely

s2Φ = 0, Φ = (A, c, J, ηµ)
s2ca = −Jca

s2b = −J
g

2
fabccbcc

s2τµ = ∂µJ (8.7)

As a consequence, setting

s2 = δJ (8.8)

we have

δJ (SY M + SGF+FP + SLCO) = 0 (8.9)

The operator δJ is related to the SL(2,R) symmetry [160, 161, 171] exhibited by the Curci-Ferrari
action. The generators of this SL(2,R) symmetry are, next to the Faddeev-Popov ghost number δFP ,
given by

δca = ca

δba =
g

2
fabccbcc

δAa
µ = δca = 0 (8.10)

and

δca = ca

δba =
g

2
fabccbcc

δAa
µ = δca = 0 (8.11)
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The action of the δ symmetry can be enlarged to the sources as δJ = 0, δηµ = 0 and δτµ = 0. Also,
expression (8.8) shows that, in the massive case, the δJ -invariance is a consequence of the modified
BRST transformations. The lack of nilpotency of the BRST operator together with (8.8) are well known
features of the CF gauge in the presence of a mass term [163].

Notice that in the present case the operator s2 always contains the source J which will be set to zero
at the end of the computation.

8.3 Ward identities.

Let us now translate the previous invariances into Ward identities. To this purpose, we introduce
external sources Ωa

µ and La coupled to the BRST variation of Aa
µ and ca

Sext =
∫

d4x
[
−ΩaµDab

µ cb + La g

2
fabccbcc

]
(8.12)

with

sΩa
µ = sLa = 0

The complete action

Σ = SY M + SGF+FP + SLCO + Sext (8.13)

turns out to obey the following identities:

• The Slavnov-Taylor identity

S(Σ) = 0 (8.14)

with

S(Σ) =
∫

d4x

(
δΣ
δAa

µ

δΣ
δΩaµ

+
δΣ
δLa

δΣ
δca

+ ba δΣ
δca + ∂µJ

δΣ
δηµ

+ ηµ δΣ
δτµ

− Jca δΣ
δba

)
(8.15)

• The δJ Ward identity

W(Σ) = 0 (8.16)

with

W(Σ) =
∫

d4x

(
Jca δΣ

δca + J
δΣ
δLa

δΣ
δba

− ∂µJ
δΣ
δτµ

)
(8.17)

Proceeding as in [153], these identities imply the renormalizability of the model and, in particular, the
multiplicative renormalizability of the local operator O.

8.4 Renormalizability of O and the effective action.

As established explicitly in [144, 87], the operator O is indeed multiplicative renormalizable in the CF
gauge. Denoting the bare operator by OB , one has

OB = ZOOR (8.18)
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with1 [144, 87]

ZO = 1+
[
35
6
− α

2

]
g2N

16π2

1
ε
+

[(
2765
72

− 11α

3

)
1
ε2

+
(

α2

16
+

11α

16
− 449

48

)
1
ε

] (
g2N

16π2

)2

+. . . (8.19)

For the anomalous dimension γO of O, one has [144, 87]

γO(g2, α) = −µ
∂ ln ZO

∂µ
=

(
35
6
− α

2

)
g2N

16π2
+

(
449
24

− α2

8
− 11α

8

)(
g2N

16π2

)2

+ . . . (8.20)

Notice that γO depends on the gauge parameter α. This is due to the explicit dependence from α of
the operator O. Moreover, in the limit α → 0, expression (8.20) reduces to the anomalous dimension
of the Landau gauge [42]. Let us also give, for further use, the β-function of the gauge parameter α in
the CF gauge [144, 87].

βα(g2, α) =
µ

α

∂α

∂µ
=

(
13
3
− α

2

)
g2N

16π2
− α2 + 17α− 118

16

(
g2N

16π2

)2

+ . . . (8.21)

In order to obtain the effective potential for the operator O, we set to zero the sources Ωa
µ, La, ηµ and

τµ, obtaining for the generating functional the following expression

exp−iW(J) =
∫

[Dφ] exp iS(J) (8.22)

with

S(J) = SY M + SGF+FP +
∫

d4x

[
JO +

ξ

2
J2

]
(8.23)

and φ denoting the relevant fields.

From the bare Lagrangian associated to (8.23), one obtains that the quantity ξ(µ) obeys the following
renormalization group equation (RGE)

µ
dξ

dµ
= 2γO(g2, α)ξ + δ(g2, α) (8.24)

where

δ(g2, α) =
(

ε + 2γO(g2, α)− β(g2)
∂

∂g2
− αβα(g2, α)

∂

∂α

)
δξ (8.25)

Now, following [42], it is possible to set the hitherto free parameter ξ such a function of g2 and α,
so that if g2 runs according to β(g2) and α to βα

(
g2

)
, ξ(g2, α) will run according to its RGE (8.24).

Specifying, ξ(g2, α) is the particular solution of
(

β(g2)
∂

∂g2
+ αβα(g2, α)

∂

∂α

)
ξ(g2, α) = 2γO(g2, α)ξ(g2, α) + δ(g2, α) (8.26)

Furthermore2, ξ(g2, α) is multiplicatively renormalizable (ξ + δξ = Zξξ). It is easy to see that ξ(g2, α)
will be of the form

ξ(g2, α) =
ξ0(α)

g2
+ ξ1(α) + ξ2(α)g2 + . . . (8.27)

1We use dimensional regularization in d = 4− ε dimensions and employ the MS renormalization scheme.
2The integration constant showing up when (8.26) is solved, has been put to zero according to [42].



116 Chapter 8. Gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge

Performing the calculation at one-loop, we find that

δξ = −
(
N2 − 1

)

16π2

(
3− α2

)

ε
(8.28)

Consequently, solving (8.26) for ξ0 as a function of the gauge parameter α, one finds

ξ0(α) =
9
13

N2 − 1
N

s0(α) (8.29)

s0(α) = 1 +
311
117

α + 6α

(
1− 3α

26

)
ln

∣∣∣∣−
26
α

+ 3
∣∣∣∣ + cα(−26 + 3α) (8.30)

with c an integration constant. Notice that s0(0) = 1, so that we recover the result of [42] in the
case of the Landau gauge. In the next section, we will show that the vacuum energy is formally gauge
parameter independent. Henceforth, we can forget about the integration constant and set c = 0.

Taking now the functional derivative of W(J) with respect to J , we obtain

δW(J)
δJ

∣∣∣∣
J=0

= −〈O〉 (8.31)

The presence of the J2 term in W(J) seems to spoil an energy interpretation. However, this can be
dealt with by introducing a Hubbard-Stratonovich field σ so that

JO +
ξ

2
J2 ⇒ − σ2

2ξg2
+

σ

gξ
O +

σ

g
J − 1

2ξ
O2 (8.32)

Therefore

exp−iW(J) =
∫

[Dφ] exp i

(
Sσ +

∫
d4x

σ

g
J

)
(8.33)

where

Sσ = SY M + SGF+FP +
∫

d4x

(
− σ2

2ξg2
+

σ

gξ
O − 1

2ξ
O2

)
(8.34)

J now appears as a linear source. Hence, we have back an energy interpretation and the 1PI machinery
applies.

Differentiating the functional generator with respect to J , one gets the relationship

〈σ〉Sσ
= g 〈O〉 (8.35)

Recapitulating, we have constructed a multiplicatively renormalizable action Sσ incorporating the effects
of a possible non-vanishing vacuum expectation value for O. The corresponding effective action Γ obeys
a linear, homogeneous RGE. Notice that to get actual knowledge of the n-loop effective action, one
needs the values of ξ0, . . . , ξn. This means, recalling (8.26), that we need the (n + 1)-loop values of
the renormalization group functions. In [91], a slightly different Hubbard-Stratonovich transformation
was used, so that

JO +
ξ

2
J2 ⇒ − σ2

2g2
+

σ

g
√

ξ
O +

√
ξσ

g
J − 1

2ξ
O2 (8.36)
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resulting in

exp−iW(J) =
∫

[Dφ] exp i

(
Sσ +

∫
d4x

√
ξσ

g
J

)
(8.37)

where

Sσ = SY M + SGF+FP +
∫

d4x

(
− σ2

2g2
+

σ

g
√

ξ
O − 1

2ξ
O2

)
(8.38)

With this action, it seems that it suffices to know ξ0, . . . , ξn−1 to construct the n-loop effective potential.
However, some attention should be paid here. It is indeed so that with (8.38), we do not need ξn for

Γn−loop, but since the source J is now coupled to the operator
√

ξσ
g , we formally have for the effective

action Γ, being the Legendre transform of W(J)

Γ
(√

ξσ

g

)
= −W(J)−

∫
d4yJ(y)

√
ξσ(y)
g

(8.39)

Hence

δ

δ
(√

ξσ(y)
g

)Γ
(√

ξσ(x)
g

)
= −J(y) (8.40)

Since

Γ =
Γ0

g2
+ Γ1 + . . . (8.41)

√
ξ

g
=

√
ξ0

(
1
g2

+
ξ1

ξ0
+ . . .

)
(8.42)

it becomes clear that, in order to have J = 0 up to the considered order in a g2 expansion (i.e. to end
up in the vacuum state), one must solve (for constant configurations)

d

d
(√

ξσ
g

)V = 0 (8.43)

which will not3 produce the same (correct) σmin as by solving

dV

dσ
= 0 (8.44)

as it was done in [91]. The most efficient way to solve (8.43) is by performing the transformation

σ → σ√
ξ

(8.45)

and this exactly transforms the action (8.38) into the one of (8.34). Notice that the action (8.38) is
not incorrect, one should only be careful how the vacuum configuration is constructed. The conclusion
is that one cannot escape the job of doing (n + 1)-loop calculations for n-loop results.

We draw attention to the fact that the action Sσ is BRST invariant4, while this BRST transformation
is nilpotent for J = 0. This means that the action, evaluated in its minimum, i.e. the vacuum energy,
should be independent of the gauge parameter α order by order. In the next section, we pay some more
attention to this α independence.

3Because ξ itself is a series in g2.
4It is obvious that sσ = gsO.
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8.5 Gauge parameter independence of the vacuum energy.

We begin our argumentation from the generating functional (8.33). It will be useful to consider also

the ’original’ action S̃(J) (i.e. before the Hubbard-Stratonovich transformation) defined in (8.23). To
avoid confusion with (8.33)-(8.34), we added a ∼ to the notation. The relation between W(J) and

S̃(J) is obtained via the insertion of an unity

1 =
1
N

∫
[Dσ] exp

[
i

∫
d4x

(
− 1

2ξ

(
σ

g
−O − ξJ

)2
)]

(8.46)

with N an appropriate normalization factor. Explicitly, we have

exp(−iW(J)) =
∫

[Dφ][Dσ] exp i

[
S̃(J) +

∫
d4x

(
− 1

2ξ

(
σ

g
−O − ξJ

)2
)]

(8.47)

Since evidently

d

dα

1
N

∫
[Dσ] exp

[
i

∫
d4x

(
− 1

2ξ

(
σ

g
−O − ξJ

)2
)]

= 0 (8.48)

we find

−dW(J)
dα

=
〈

s

(
cb

2
− g2

4
fabccacbcc

)〉

J=0

+ terms proportional to J (8.49)

The effective action Γ is related to W(J) through a Legendre transformation

Γ
(

σ

g

)
= −W(J)−

∫
d4yJ(y)

σ(y)
g

(8.50)

The effective potential V (σ) is then defined as

−V (σ)
∫

d4x = Γ
(

σ

g

)
(8.51)

Let σmin be the solution of

dV (σ)
dσ

∣∣∣∣
σ=σmin

= 0 (8.52)

Hence, we have that

σ = σmin ⇒ J = 0 (8.53)

Invoking (8.53), we derive from (8.50)-(8.51)

d

dα
V (σ)

∣∣∣∣
σ=σmin

∫
d4x =

d

dα
W(J)

∣∣∣∣
J=0

(8.54)

Finally, combining (8.49) and (8.54), we conclude that

d

dα
V (σ)

∣∣∣∣
σ=σmin

= 0 (8.55)
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Some extra words concerning (8.53) and its consequences (8.54)-(8.55) are in order. Obviously, this is
based on the relation

δ

δ
(

σ
g

)Γ = −J (8.56)

An explicit evaluation of the effective potential results in a series for V (σ), and consequently in a gap
equation via (8.52). Said otherwise, J = 0 means in practice that J equals zero up to a certain order
in g2 as a consequence of the solved gap equation, which is of the form

V0(σ) + V1(σ)g2 + . . . + Vn−1(σ)
(
g2

)n−1
= 0 (8.57)

Returning to (8.49), the terms proportional to J are themselves some series in g2. This means that the
product of such a term with J is again a series, which has to be cut off at the considered order; thus some
terms are dropped. When (8.56)-(8.57) are used, it turns out that the product of such a term with J is
also zero, but up to terms of higher order. Henceforth, the gauge parameter independence is not exact,
but holds up to terms of higher order. The same holds true for the BRST charge QBRST , which will not
be exactly nilpotent, but again up to higher order terms. As it is well known, QBRST is used to define
physical states as those annihilated by QBRST and which are not exact (i.e. 6= QBRST |something〉).
The nilpotency of QBRST is needed to move freely in the space of gauge parameter choices. With all
this in mind, the α derivative of the action is reduced to an exact BRST variation. This is the usual
argument used to show that physical operators, including the vacuum energy, are independent of the
choice for the gauge parameter α [59]. We underline again that here, all this is not exact, but only
valid up to terms of higher order.

Concluding this section, we have shown that the effective potential, evaluated at its minimum (i.e. the
vacuum energy), is gauge parameter independent at any order in a loop (g2) expansion, at least up to
terms that are of higher order.

8.6 Evaluation of the one-loop effective potential.

In order to evaluate the one-loop effective potential, it is sufficient to consider only the quadratic terms
of Sσ, namely

Squad
σ =

∫
d4x

(
− σ2

2ξg2
+ caΣabcb +

1
2
AaµΩab

µνAbν

)
(8.58)

where

Σab = δab

(
∂2 +

σα

gξ

)
(8.59)

and

Ωab
µν = δab

[(
∂2 +

σ

gξ

)
gµν −

(
1− 1

α

)
∂µ∂ν

]
(8.60)

To calculate V , we use the background formalism with the trivial background Aµ = 0. This means
that we restrict ourselves to the pure short-range contributions to 〈O〉. If one would like to include
long-range effects, one could for example use an instanton background [38].

For the one-loop effective potential we get

V1(σ) =
σ2

2ξ0

(
1− ξ1

ξ0
g2

)
+ i ln det Σab − i

2
ln det Ωab

µν (8.61)
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In d dimensions, it holds that

ln det δab

[
gµν

(
∂2 + m2

)−
(

1− 1
α

)
∂µ∂ν

]

=
(
N2 − 1

) [
(d− 1)tr ln

(
∂2 + m2

)
+ tr ln

(
∂2

α
+ m2

)]
(8.62)

Working up to order ε0 and order g2, we find

i ln detΣab = i
(
N2 − 1

) ∫
ddk

(2π)d
ln

(
−k2 +

σα

gξ

)

= −
(
N2 − 1

)

32π2

(
g2σ2α2

ξ2
0

) (
ln

gσα

ξ0µ
2 −

3
2
− 2

ε

)
(8.63)

− i

2
ln detΩab

µν = − i

2
(
N2 − 1

) ∫
ddk

(2π)d

[
(d− 1) ln

(
−k2 +

σ

gξ

)
+ ln

(
−k2

α
+

σ

gξ

)]

=
3

(
N2 − 1

)

64π2

(
g2σ2

ξ2
0

)(
ln

gσ

ξ0µ
2 −

5
6
− 2

ε

)

+

(
N2 − 1

)

64π2

(
g2α2σ2

ξ2
0

)(
ln

gασ

ξ0µ
2 −

3
2
− 2

ε

)
(8.64)

Subsequently, we obtain for the one-loop effective potential in the MS scheme5

V1(σ) =
σ2

2ξ0

(
1− ξ1

ξ0
g2

)
+

3
(
N2 − 1

)

64π2

(
g2σ2

ξ2
0

)(
ln

gσ

ξ0µ
2 −

5
6

)

−
(
N2 − 1

)

64π2

(
g2σ2α2

ξ2
0

)(
ln

gασ

ξ0µ
2 −

3
2

)
(8.65)

with ξ0 given by (8.29). In principle, as soon one knows the value of ξ1, one can set µ2 = σ√
ξ0

and

use the renormalization group equation for V (σ) to sum leading logarithms and solve the gap equation.
This leads to a value for the vacuum energy E, gluon mass mgluon, and through the trace anomaly, one
also finds an estimation for

〈
αs

π F 2
〉

= − 32
11E. Since the aim of this paper is merely to describe the mass

generation mechanism in the CF gauge, we do not perform the two-loop calculation leading to ξ1 and
corresponding numerical values. Moreover, since the vacuum energy is gauge parameter independent,
we may choose a specific α. Therefore, we restrict ourselves to the case α = 0, for which ξ1 has already
been determined [42].

The Landau gauge is by far the most interesting choice. It is a fixed point of the renormalization group
for the gauge parameter at any order. Due to the transversality condition ∂µAµ = 0, it is a quite
physical gauge. It has some interesting non-renormalization properties [59]. Even more interesting is

the already mentioned fact that O reduces to A2

2 , which has a gauge-invariant meaning in the Landau

gauge, since it equals (V T )−1 minU

∫
d4x

(
A2

)U
, a gauge-invariant (however in general non-local)

operator6. The relevance of the Landau gauge has also been pointed out from a more topological point
of view [34]. In case of compact three-dimensional QED, A2 was shown to be an order parameter for
the monopole condensation [33, 34]. If monopole condensation has something to do with confinement,

5It is easily checked that using the renormalized version of the Hubbard-Stratonovich transformation (8.32), the
counterterm proportional to δξ removes the infinities coming from (8.63) and (8.64).

6Although this correspondence is somewhat troubled by Gribov copies [143].
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there might exist a relation between A2 and confinement in case of QCD too. All these things are less
clear in the case of the O operator in the CF gauge.

Having said all this, it might look like that our efforts are not that important for α 6= 0. This is however
not the case. We have given a consistent framework to calculate the dynamically generated gluon mass
for the CF gauge. Notice that the obtained Lagrangian in the condensed vacuum is however not the
one of the Curci-Ferrari model [84, 85]. The question, also posed in [42], is if the dynamically massive
YM action (8.34) breaks unitarity? From a pragmatic point of view, a possible lack of unitarity in the
gluon sector should not be considered very problematic. After all, since gluons are not observables due
to confinement, massive gluons are a fortiori unphysical. In fact, a connection might exist between
dynamically massive gluons and confinement, as it was explored in [177]. See [147] for an attempt to
construct a string theory incorporating a

〈
A2

〉
condensate.

We notice that the action (8.1) can be rewritten as

S = SY M + ss

∫
d4x

(
1
2
Aa

µAµa − α

2
caca

)
(8.66)

with7

sAa
µ = −Dab

µ cb

sca =
g

2
fabccbcc

sca = −ba + gfabccbcc

sba = −gfabcbbcc (8.67)

Another very interesting renormalizable gauge is the modified maximal Abelian gauge (MAG) [97],
particularly useful in the context of the dual superconductivity mechanism for confinement. This gauge
partially fixes the local SU(N) freedom, i.e. up to the Abelian degrees of freedom. The MAG shares
a close similarity with the CF gauge, since its gauge fixing is given by

S = SY M + ss

∫
d4x

(
1
2
Aa′

µ Aµa′ − α

2
ca′ca′

)
(8.68)

where the accent means that the color index runs strictly over the non-Abelian degrees of freedom. In
particular, in [171] it has been shown that the remaining Abelian degrees of freedom can be fixed so
that the resulting theory displays a global SL(2,R) symmetry, in complete analogy with the CF gauge.
Furthermore, due to the similarity (8.66)-(8.68), it is not difficult to understand that a quite analogous
treatment with a source J coupled to the U(1)N−1 invariant operator

O′ =
1
2
Aa′

µ Aµa′ + αca′ca′ (8.69)

will provide us with a dynamical mass for the off-diagonal gluons and ghosts [83, 171, 157, 179], a
hint for some kind of Abelian dominance [80]. This strategy for the MAG was already put forward in
[83]. Just as the operator O is multiplicatively renormalizable in the CF gauge, the operator O′ will
be multiplicatively renormalizable in the MAG [179]. So far for the similarities between CF and MAG.
Although it would be nice to stretch the similarity further and simply put α = 0 from the beginning,
in which case the MAG reads in differential form Da′b′

µ Aµb′ = 0 with Da′b′
µ the U(1)N−1 Abelian

covariant derivative. As such, we have some kind of U(1)N−1 invariant version of the Landau gauge.
Unfortunately, the limit α → 0 is now far from being trivial [77]. Moreover, α = 0 is not a fixed point

7We disregard SLCO here.
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of the renormalization group [77, 183]. Also, although for α = 0 the tree level action (8.68) does
not contain a 4-ghost interaction, radiative corrections will reintroduce this interaction [97], unlike the
Landau gauge. Making a long story short, we are forced to let the gauge parameter α free and perform
a similar analysis as done in the previous sections. At the end of such a more general analysis, one
could investigate if the limit α → 0 can be taken.

Before we formulate our conclusion, we quote the results obtained for the Landau gauge in [42]

ξ1 =
161
52

N2 − 1
16π2

g2N

16π2

∣∣∣∣
1-loop

=
36
187

mgluon ≈ 485MeV for N = 3
E ≈ −0.001GeV4 for N = 3〈αs

π
F 2

〉
≈ 0.003GeV4 for N = 3 (8.70)

As the relevant expansion parameter, i.e. g2N/16π2, is relatively small and results do not change much
if the second loop correction to V (σ) is included [42], qualitatively acceptable results are achieved. The
value for the one-loop dynamical gluon mass mgluon is also in qualitative agreement with lattice values
[48, 47], reporting something like mgluon ∼ 600 MeV.

8.7 Conclusion

In this paper, we have constructed a renormalizable effective potential for the on-shell BRST invariant
local composite operator of mass dimension 2 in the Curci-Ferrari gauge, namely O = 1

2Aa
µAµa +αcaca.

This gauge reduces to the Landau gauge in the limit α = 0. It is worth underlining that, in the Landau
gauge, the operator O equals the gauge invariant operator A2. Much attention has been paid recently
to the condensate

〈
A2

〉
. The generalization to α 6= 0 has also its importance due to the close analogy

with the maximal Abelian gauge, where the α → 0 limit is not as obvious as in case of the CF gauge.
In particular, we have shown that the vacuum energy obtained in the presented formalism for the CF
gauge is independent from the gauge parameter α. As already underlined the α-independence has to
be understood in a g2 expansion and up to terms of higher order.

We restricted ourselves in this paper to the on-shell BRST invariant condensate resulting in a mass for
the particles. A gluon mass modifies the behaviour of the gluon propagator in the infrared (see e.g.
[48]). A more intensive study would also include the pure ghost condensates, also of mass dimension 2,
discussed in [77, 80, 81, 157, 90, 91, 171, 172]. These are not directly related to the mass generation
for the gluons [157, 171, 172], but are relevant for the SL(2,R) symmetry and can modify the ghost
propagator.
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We analyze the ghost condensates
〈
fabccbcc

〉
,
〈
fabccbcc

〉
and

〈
fabccbcc

〉
in Yang-Mills theory in the

Curci-Ferrari gauge. By combining the local composite operator formalism with the algebraic renormali-
zation technique, we are able to give a simultaneous discussion of

〈
fabccbcc

〉
,
〈
fabccbcc

〉
and

〈
fabccbcc

〉
,

which can be seen as playing the role of the BCS, respectively Overhauser effect in ordinary superconduc-
tivity. The Curci-Ferrari gauge exhibits a global continuous symmetry generated by the Nakanishi-Ojima
(NO) algebra. This algebra includes, next to the (anti-)BRST transformation, a SL(2, R) subalgebra.
We discuss the dynamical symmetry breaking of the NO algebra through these ghost condensates.
Particular attention is paid to the Landau gauge, a special case of the Curci-Ferrari gauge.

9.1 Introduction.

Vacuum condensates play an important role in quantum field theory. They can be used to parametrize
some non-perturbative effects. If one wants to attach a physical meaning to a certain condensate in
case of a gauge theory, it should evidently be gauge invariant. Two well known examples in the context
of QCD are the gluon condensate

〈
F 2

µν

〉
and the quark condensate 〈qq〉.

Recently, there was a growing interest for a mass dimension 2 condensate in (quarkless) QCD in the
Landau gauge, see e.g. [42, 33, 34, 39, 37, 38]. Unfortunately, no local gauge invariant operator with
mass dimension 2 exists. However, a non-local gauge invariant dimension 2 operator can be constructed

by minimizing A2 along each gauge orbit, namely A2
min ≡ (V T )−1 minU

∫
d4x

(
AU

µ

)2
with V T the

123
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space time volume and U a generic SU(N) transformation. This operator is related to the Gribov
region as well as the so-called fundamental modular region (FMR), which is the set of absolute minima

of
∫

d4x
(
AU

µ

)2
[110, 187, 143]. In particular, in the Landau gauge ∂µAµ = 0, it turned out that A2

min

reduces to the local operator A2. This gives a meaning to the condensate
〈
A2

〉
. In [42], an effective

action was constructed in the weak coupling for the
〈
A2

〉
condensate by means of the local composite

operator technique (LCO) and it was shown that
〈
A2

〉 6= 0 is dynamically favoured since it lowers the
vacuum energy. Due to this condensate, the gluons achieved a dynamical mass parameter.

In this article, we will discuss other condensates of mass dimension 2 [188], namely pure ghost con-
densates of the type

〈
fabccbcc

〉
,

〈
fabccbcc

〉
and

〈
fabccbcc

〉
. Historically, these condensates came to

attention in [77, 78, 79, 80] in the context of SU(2) Yang-Mills theory in the maximal Abelian gauge.
This is a partial non-linear gauge fixing which requires the introduction of a four ghost interaction term
for consistency. A decomposition, by means of a Hubbard-Stratonovich auxiliary field, similar to the one
of the 4-fermion interaction of the Gross-Neveu model [21], allowed to construct a one-loop effective
potential, leading to a non-trivial minimum for the ghost condensate corresponding to

〈
fabccbcc

〉
. It

was recognized in [77, 78, 79] that this condensate signals the breakdown of a global SL(2,R) sym-
metry of the SU(2) maximal Abelian gauge model. The ghost condensate was used to find a mass for
the off-diagonal gluons, and thereby a certain evidence for the Abelian dominance was established [80].
It has been shown since then that the ghost condensate gives in fact a tachyonic mass [157].

It is worth mentioning that a simple decomposition of the 4-fermion interaction might cause troubles
with the renormalizability beyond the one-loop order. For instance, in the case of the Gross-Neveu
model, this procedure requires the introduction of ad hoc counterterms to maintain finiteness [24, 22].
A similar problem can be expected with the 4-ghost interaction. The LCO procedure gave an outcome
to this problem [24].

Another issue that deserves clarification is the fact that with a different decomposition, different ghost
condensates appear [81], corresponding to the Faddeev-Popov charged condensates

〈
fabccbcc

〉
and〈

fabccbcc
〉
. The existence of several channels for the ghost condensation has a nice analogy in the

theory of superconductivity, known as the BCS versus Overhauser effect. The BCS channel corresponds
to the charged particle-particle and hole-hole pairing [93, 94], while the Overhauser channel to the
particle-hole pairing [92, 95]. In the present case, the Faddeev-Popov charged condensates

〈
fabccbcc

〉

and
〈
fabccbcc

〉
would correspond to the BCS channel, while

〈
fabccbcc

〉
to the Overhauser channel.

The question is whether one of these effects would be favoured. A simultaneous discussion of both
effects is necessary to find out if one vacuum is more stable than the other.

It is appealing that by now the ghost condensates have been observed also in a class of non-linear
generalized covariant gauges [160, 161], the so-called Curci-Ferrari gauges1, again by the decomposition
of a 4-ghost interaction [90]. The Curci-Ferrari gauge has the Landau gauge as a special case. Although
the Landau gauge lacks a 4-ghost interaction, it has been shown that the ghost condensation also takes
place in this gauge [91]. Evidently, this was not possible by the decomposition of a quartic interaction.
However, the combination of the LCO method [42, 176] with the algebraic renormalization formalism
[59, 60] allowed for a clean treatment of the ghost condensation in the Landau gauge.

It seems thus that the ghost condensation takes place in a variety of gauges: the Landau gauge, the
Curci-Ferrari gauge and the maximal Abelian gauge. It is known that the Landau gauge and Curci-
Ferrari gauge exhibit a global continuous symmetry, generated by the so-called Nakanishi-Ojima algebra
[86, 163, 164, 158, 159, 189]. This algebra contains, next to the BRST and anti-BRST transformations,
a SL(2,R) subalgebra generated by the Faddeev-Popov ghost number and 2 other operators, δ and δ.
Moreover, δ and δ mutually transform the ghost operators fabccbcc, fabccbcc and fabccbcc into each
other. It is then apparent that the ghost condensation can appear in several channels like the BCS

1Referring to the massive Curci-Ferrari model that has the same gauge fixing terms [84, 85].
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and Overhauser channel, and that a non-vanishing vacuum expectation value for the ghost operators
indicates a breakdown of this SL(2,R) symmetry.

Recently, it has been shown that the same2 NO invariance of the Landau and Curci-Ferrari gauge
can be maintained in the maximal Abelian gauge for any value of N [171]. Apparently, an intimate
connection exists between the NO symmetry and the appearance of the ghost condensates, since all
gauges where the ghost condensates has been proven to occur, have the global NO invariance.

The aim of this article is to provide an answer to the aforementioned issues. We will discuss the Curci-
Ferrari gauge. For explicit calculations, we will restrict ourselves to the Landau gauge for SU(2). The
presented general arguments are however neither depending on the choice of the gauge parameter, nor
on the value of N . The paper is organized as follows. In section 9.2, we show that it is possible to
introduce a set of external sources for the ghost operators, according to the LCO method, and this
without spoiling the NO invariance. Employing the algebraic renormalization technique [59, 60], it can
then be checked that the proposed action can be renormalized. In section 9.3, the effective potential
for the ghost condensates is evaluated. By contruction, this effective potential, incorporating the BCS
as well as the Overhauser channel, is finite up to any order and obeys a homogeneous renormalization
group equation. Next, in section 9.4, we pay attention to the dynamical symmetry breaking of the NO
algebra due to the ghost condensates. Because of the SL(2,R) invariance of the presented framework,
it becomes clear that a whole class of equivalent, non-trivial vacua exist. The Overhauser and the
BCS vacuum are important special cases. Notice that a nonvanishing condensate

〈
fabccbcc

〉 6= 0 could
seem to pose a problem for the Faddeev-Popov ghost number symmetry and for the BRST symmetry,
two basic properties of a quantized gauge theory. However, we shall be able to show that one can
define a nilpotent BRST and a Faddeev-Popov symmetry in any possible ghost condensed vacuum.
The existence of the NO symmetry plays a key role in this. Since the ghost condensates carry a color
index, we also spend some words on the global SU(N) color symmetry. Here, we can provide an
argument that, thanks to the existence of the condensate

〈
A2

〉
and of its generalization

〈
1
2A2 + αcc

〉
in the Curci-Ferrari gauge [178], the breaking of the color symmetry, induced by the ghost condensates,
should be located in the unphysical part of the Hilbert space. Furthermore, we argue why no physical
Goldstone particles should appear by means of the quartet mechanism [177]. Section 9.5 handles the
generalization of the results to the case with quarks included. In section 9.6, we give an outline of some
consequences of the gluon and ghost condensates. We end with conclusions in section 9.7. Technical
details are collected in the sections 9.8 and 9.9.

9.2 The set of external sources for both BCS and Overhauser
channel.

9.2.1 Introduction of the LCO sources.

For a thorough introduction to the local composite operator (LCO) formalism and to the algebraic
renormalization technique, the reader is referred to [42, 176], respectively [59].

According to the LCO method, the first step in the analysis of the ghost condensation in both channels
is the introduction of a suitable system of external sources. Generalizing the construction done in
the pure BCS case [91], it turns out that the simultaneous presence of both channels is achieved by

2The SL(2,R) symmetry discussed in [77, 78, 79, 164] is only acting non-trivially on the off-diagonal fields.
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considering the following BRST invariant external action

SLCO = s

∫
d4x

(
Laca + λa

(
ba − gfabccbcc

)
+ ζηaLa − 1

2
ηagfabccbcc +

1
2
ρλaωa − ωaca

)

=
∫

d4x

(
1
2
Lagfabccbcc − 1

2
τagfabccbcc + ηagfabcbbcc + ζτaLa

− ωagfabccbcc + λagfabcbbcc − 1
2
λag2fabccbf cmncmcn +

1
2
ρωaωa

)
(9.1)

The BRST transformation s is defined for the fields Aa
µ, ca, ca, ba as

sAa
µ = −Dab

µ cb

sca =
g

2
fabccbcc

sca = ba

sba = 0 (9.2)

with

Dab
µ = ∂µδab + gfacbAc

µ (9.3)

the adjoint covariant derivative.

The external sources La, τa, λa, ωa, ηa transform as

sηa = τa , sτa = 0 , (9.4)

sλa = ωa , sωa = 0 ,

sLa = 0

From expression (9.1) one sees that the sources La, τa couple to the ghost operators gfabccbcc,

La ηa τa λa ωa

Dimension 2 1 2 1 2
Gh. Number −2 1 2 −1 0

Table 9.1:

gfabccbcc of the BCS channel, while ωa accounts for the Overhauser channel gfabccbcc. As far as the
BRST invariance is the only invariance required for the external action (9.1), the LCO parameters ζ
and ρ are independent. However, it is known that both the Landau and the Curci-Ferrari gauge display
a larger set of symmetries, giving rise to the NO algebra [160, 161, 86, 163, 164, 158, 159, 189, 171].
It is worth remarking that the whole NO algebra can be extended also in the presence of the external
action SLCO, provided that the two parameters ζ and ρ obey the relationship

ρ = 2ζ (9.5)

In other words, the requirement of invariance of SLCO under the whole NO algebra allows for a unique
parameter in expression (9.1). In order to introduce the generators of the NO algebra, let us begin
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with the anti-BRST transformation s

sAa
µ = −Dab

µ cb

sca = −ba + gfabccbcc

sca =
g

2
fabccbcc

sba = −gfabcbbcc (9.6)

Extending s to the external LCO sources as

sηa = −ωa , sτa = 0 (9.7)

sλa = La , sωa = 0
sLa = 0

one easily verifies that

{s, s} = ss + ss = 0 (9.8)

Furthermore, the requirement of invariance of SLCO under s fixes the parameter ρ = 2ζ, namely

sSLCO = 0 ⇒ ρ = 2ζ (9.9)

This is best seen by observing that, when ρ = 2ζ, the whole action SLCO can be written as

SLCO = ss

∫
d4x (λaca + ζλaηa + ηaca) (9.10)

Concerning now the other generators δ and δ of the NO algebra, they can be introduced as follows

δca = ca

δba =
g

2
fabccbcc

δAa
µ = δca = 0

δLa = 2ωa

δωa = −τa

δλa = −ηa

δτa = δηa = 0 (9.11)

and

δca = ca

δba =
g

2
fabccbcc

δAa
µ = δca = 0

δωa = La

δτa = −2ωa

δηa = −λa

δLa = δλa = 0 (9.12)
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It holds that

δSLCO = δSLCO = 0 (9.13)

The operators s, s, δ, δ and the Faddeev-Popov ghost number operator δFP give rise to the NO algebra

s2 = 0 , s2 = 0
{s, s} = 0 , [δ, δ] = δFP ,

[δ, δFP] = −2δ, [δ, δFP] = 2δ

[s, δFP] = −s , [s, δFP] = s ,

[s, δ] = 0 , [s, δ] = 0 ,

[s, δ] = −s , [s, δ] = −s (9.14)

In particular, δFP , δ, δ generate a SL(2,R) subalgebra. We remark that the NO algebra can be
established as an exact invariance of SLCO only when both channels are present. It is easy to verify
indeed that setting to zero the external sources corresponding to one channel will imply the loss of the
NO algebra. This implies that a complete discussion of the ghost condensates needs sources for the
BCS as well as for the Overhauser channel.

Let us also give, for further use, the expressions of the gauge fixed action in the presence of the LCO
external sources for the Curci-Ferrari gauge.

S = SY M + SGF+FP + SLCO

= −1
4

∫
d4xF a

µνF aµν + ss

∫
d4x

(
1
2
Aa

µAaµ + λaca + ζλaηa + ηaca − α

2
caca

)
(9.15)

with

SGF+FP =
∫

d4x
(
ba∂µAaµ +

α

2
baba + ca∂µDab

µ cb − α

2
gfabcbacbcc − α

8
g2fabcf cdecacbcdce

)

(9.16)

The renormalizability of the action (9.15) is discussed in section 9.8.

The Curci-Ferrari gauge has the Landau gauge, α = 0, as interesting special case, see for example
[178]. One sees that the difference between the two actions is due to the term αcaca, which gives rise
to a quartic ghost self interaction absent in the Landau gauge. The whole set of NO invariances can
be translated into functional identities which ensures the renormalizability of the model. In particular,
concerning the counterterm contributions δLLagfabccbcc, δττagfabccbcc and δωωagfabccbcc , it is
shown in the Appendix A (section 9.8) that

δL = δτ = δω ≡ δ2 (9.17)

Consequently, the operators gfabccbcc, gfabccbcc and gfabccbcc turn out to have the same anomalous
dimension for any α. As expected, this result is a consequence of the presence of the NO symmetry.
Moreover, in the Landau gauge, δ2 ≡ 0 due to the nonrenormalization properties of the Landau gauge
[59]. In [153], one can find an explicit proof that δ2 = 0.

9.3 Effective potential for the ghost condensates.

9.3.1 General considerations.

Let us proceed with the construction of the effective potential for the ghost condensates in the Curci-
Ferrari gauge. To decide which channel is favoured, we have to consider the 2 channels at once. We
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shall also treat the two LCO parameters ρ and ζ for the moment as being independent and verify the
relationship (9.1). Setting to zero the external sources η and λ, we start from the action

S = SY M + SGF+FP +
∫

d4x

[
−ωagfabccbcc +

1
2
ρωaωa

+
1
2
Lagfabccbcc − 1

2
τagfabccbcc + ζτaLa

]
(9.18)

Following [42, 176], the divergences proportional to Lτ are cancelled by the counterterm δζτL, and the
divergences proportional to ω2 are cancelled by the counterterm δρ

2 ω2. Considering the bare Lagrangian
associated to (9.18), we have

cb =
√

Zcc cb =
√

Zcc (9.19)

Ab =
√

ZAA (9.20)

gb = µε/2Zgg (9.21)

Lb = µ−ε/2 Z2

ZgZc
L τb = µ−ε/2 Z2

ZgZc
τ ωb = µ−ε/2 Z2

ZgZc
ω (9.22)

where Z2 = 1 + δ2 (see (9.17)).
Furthermore,

ζbτ
a
b La

b = µ−ε (ζ + δζ) τaLa (9.23)

1
2
ρbω

a
b ωa

b =
1
2
µ−ε (ρ + δρ) ωaωa (9.24)

where it is understood that we are working with dimensional regularization in d = 4 − ε dimensions.
The above equations allow to derive the renormalization group equation of ζ and ρ

µ
dζ

dµ
= 2γ(g2)ζ + δζ(g2) (9.25)

µ
dρ

dµ
= 2γ(g2)ρ + δρ(g2) (9.26)

where γ(g2) denotes the anomalous dimension of the ghost operators gfabccbcc, gfabccbcc and gfabccbcc,
given by

γ(g2) = µ
d

dµ
ln

Z2

ZgZc
(9.27)

δζ and δρ are defined as

δζ(g2) =
(

ε− 2γ̂(g2)− β(g2)
∂

∂g2
− αγα(g2)

∂

∂α

)
δζ (9.28)

δρ(g2) =
(

ε− 2γ̂(g2)− β(g2)
∂

∂g2
− αγα(g2)

∂

∂α

)
δρ (9.29)

where β(g2) = µdg2

dµ is the usual running of the coupling constant, in d dimensions given by

β(g2) = −εg2 − 22
3

g2 g2N

16π2
− 68

3
g2

(
g2N

16π2

)2

+ · · · (9.30)
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while γα(g2) = µ
α

dα
dµ denotes the running of the gauge parameter α. We do not write the possible α

dependence of the appearing renormalization group functions; for the explicit calculations in section
9.3.2, we will restrict ourselves to the Landau gauge. Therefore, we also do not write down the explicit
value of γα(g2) since αγα(g2) ≡ 0 for α = 0.

γ̂(g2) denotes the anomalous dimension of the sources ω, τ and L. γ(g2) and γ̂(g2) are related by

γ̂(g2) =
ε

2
− γ(g2) (9.31)

and therefore, the equations (9.28)-(9.29) can be rewritten as

δζ(g2) =
(

2γ(g2)− β(g2)
∂

∂g2
− αγα(g2)

∂

∂α

)
δζ (9.32)

δρ(g2) =
(

2γ(g2)− β(g2)
∂

∂g2
− αγα(g2)

∂

∂α

)
δρ (9.33)

Notice that in the equations (9.25)-(9.26), the parameter ε has immediately been set equal to zero,
this is allowed because all considered quantities are finite for ε → 0.

Since we have introduced 2 novel parameters3, we have a problem of uniqueness. However, this can be
solved by noticing that ζ and ρ can be chosen to be a function of g2, such that if g2 runs according
to (9.30), ζ(g2) and ρ(g2) will run according to (9.25), respectively (9.26). Explicitly, ζ(g2) and ρ(g2)
are the solution of the differential equations

(
β(g2)

d

dg2
+ αγα(g2)

d

dα

)
ζ(g2) = 2γ(g2)ζ(g2) + δζ(g2) (9.34)

(
β(g2)

d

dg2
+ αγα(g2)

d

dα

)
ρ(g2) = 2γ(g2)ρ(g2) + δρ(g2) (9.35)

The integration constants of the solution of (9.34)-(9.35) can be put to zero;this eliminates independent
parameters and assures multiplicative renormalizability

ζ(g2) + δζ(g2, ε) = Zζ(g2, ε)ζ(g2) (9.36)

ρ(g2) + δρ(g2, ε) = Zρ(g2, ε)ρ(g2) (9.37)

Notice that the n-loop knowledge of ζ(g2) and ρ(g2) will need the (n + 1)-loop knowledge of β(g2),
γ(g2), δζ(g2) and δρ(g2) [178]. The generating functional W(ω, τ, L), defined as

eiW(ω,τ,L) =
∫

[DΦ]eiS(ω,τ,L) (9.38)

with S(ω, τ, L) given by (9.18) and Φ denoting the relevant fields, will now obey a homogeneous
renormalization group equation [42, 176].

It is not difficult to see that δζ(g2), δρ(g2) and ζ(g2), ρ(g2) will be of the form

δζ(g2) = δζ,0g
2 + δζ,1g

4 + · · · (9.39)

δρ(g2) = δρ,0g
2 + δρ,1g

4 + · · · (9.40)

ζ(g2) = ζ0 + ζ1g
2 + · · · (9.41)

ρ(g2) = ρ0 + ρ1g
2 + · · · (9.42)

3In fact, only 1 novel parameter is introduced, since ρ = 2ζ.
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Taking the functional derivatives of W(ω, τ, L) with respect to the sources ωa, τa and La, we obtain
a finite vacuum expectation value for the composite operators, namely

δW(ω, τ, L)
δωa

∣∣∣∣
ω=0,τ=0,L=0

= −g
〈
fabccbcc

〉
(9.43)

δW(ω, τ, L)
δτa

∣∣∣∣
ω=0,τ=0,L=0

= −g

2
〈
fabccbcc

〉
(9.44)

δW(ω, τ, L)
δLa

∣∣∣∣
ω=0,τ=0,L=0

=
g

2
〈
fabccbcc

〉
(9.45)

Since the source terms appear quadratically, we seem to have lost an energy interpretation. However,
this can be dealt with by introducing a pair of Hubbard-Stratonovich fields (σa, σa) for the τL term,
and a Hubbard-Stratonovich field φa for the ω2 term. For the functional generator W(ω, τ, L), we then
get

eiW(ω,τ,L) =
∫

[dΦ]eiS(σ,σ,φ)+i
R

d4x
�

φa

g ωa+ σa

g La+ σ
g

a
τa
�

(9.46)

where the action S(σ, σ, φ) is given by

S(σ, σ, φ) = SY M + SGF+FP +
∫

d4x

(
−σaσa

g2ζ
− φaφa

2g2ρ
+

σa

2gζ
gfabccbcc

− σa

2gζ
gfabccbcc − φa

gρ
gfabccbcc − 1

2ρ
g2

(
fabccbcc

)2
+

1
4ζ

g2fabccbccfadecdce

)

(9.47)

Notice also that in expression (9.46), the sources ω , τ , L are now linearly coupled to the fields φ, σ,
σ, allowing thus for the correct energy interpretation of the corresponding effective action. Taking the
functional derivatives gives the relations

〈φa〉 = −g2
〈
fabccbcc

〉
(9.48)

〈σa〉 =
g2

2
〈
fabccbcc

〉
(9.49)

〈σa〉 = −g2

2
〈
fabccbcc

〉
(9.50)

where all vacuum expectation values are now calculated with the action (9.47).

Summarizing, we have constructed a new, multiplicatively renormalizable Yang-Mills action (9.47),
incorporating the possible existence of ghost condensates. As such, if a non-trivial vacuum is favoured,
we can perturb around a more stable vacuum than the trivial one. The action (9.47) is explicitly NO
invariant4. The corresponding effective action V (σ, σ, φ) obeys a homogeneous renormalization group
equation.

To find out whether the groundstate effectively favours non-vanishing ghost condensates, we will calcu-
late the one-loop effective potential. For the sake of simplicity, we will restrict ourselves to the case of
SU(2) Yang-Mills theories in the Landau gauge (α = 0). In this context, we remark that one can prove
that the vacuum energy will be gauge parameter independent, see the previous chapters. This proof
is completely analoguous to the one presented in [178], and is based on the fact that the derivative
with respect to α of the action (9.1) is a BRST exact form plus terms proportional to the sources,
which equal zero in the minima of the effective potential. As such, the usual proof of gauge parameter
independence can be used [59].

4The NO variations of the σa, σa and φa fields can be determined immediately from (9.48)-(9.50).
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9.3.2 Calculation of the one-loop effective potential for N = 2 in the Landau
gauge.

We will determine the effective potential [170] with the background field method [190]. Let us define
the 6× 6 matrix

Mab =

(
−σcεcab

ζ ∂2δab − εabcφc

ρ

−∂2δab − εabcφc

ρ
σcεcab

ζ

)
(9.51)

where εabc are the structure constants of SU(2). Then the effective potential up to one-loop is easily
worked out, yielding5

V1(σ, σ, φ) =
σaσa

g2ζ
+

φaφa

2g2ρ
+

i

2
ln detMab (9.52)

or

V1(σ, σ, φ) =
σaσa

g2ζ
+

φaφa

2g2ρ
−

∫
ddk

(2π)d
ln

(
k6 + k2

(
σaσa

ζ2
+

φaφa

ρ2

)
+

εabcφaσbσc

ρζ2

)
(9.53)

with k Euclidean.

We notice that the mass dimension 6 operator εabcφaσbσc enters the expression for the effective po-
tential. We shall however show that this operator plays no role in the determination of the minimum,
which is a solution of





∂V
∂σa = σa

g2ζ −
∫

ddk
(2π)d

k2 σa

ζ2 + εabcφbσc

ρζ2

k6+k2
�

σaσa

ζ2 + φaφa

ρ2

�
+ εabcφaσbσc

ρζ2

= 0

∂V
∂σa = σa

g2ζ −
∫

ddk
(2π)d

k2 σa

ζ2 + εabcφcσb

ρζ2

k6+k2
�

σaσa

ζ2 + φaφa

ρ2

�
+ εabcφaσbσc

ρζ2

= 0

∂V
∂φa = φa

g2ρ −
∫

ddk
(2π)d

2k2 φa

ρ2 + εabcσbσc

ρζ2

k6+k2
�

σaσa

ζ2 + φaφa

ρ2

�
+ εabcφaσbσc

ρζ2

= 0

(9.54)

Let us assume that (φa
∗, σ

a
∗ , σ

a
∗) is a solution of (9.54). Obviously, φa

∗ = 0, σa
∗ = 0, σa

∗ = 0 is a solution,
corresponding with the trivial vacuum energy E = 0.

Let us now assume that at least one of the field configurations is non-zero. If it occurs that σa
∗ = σa

∗ =
(0, 0, 0), then necessarily φa

∗ 6= (0, 0, 0) and it can be immediately checked that the equations (9.54)
are reduced to

1
g2ζ

− 1
ζ2

∫
ddk

(2π)d

1

k4 +
(

σa∗σa∗
ζ2 + φa∗φa∗

ρ2

) = 0 (9.55)

Next, we consider the case that σa
∗ 6= (0, 0, 0) and/or σa

∗ 6= (0, 0, 0). Without loss of generality, we can
consider σa

∗ 6= (0, 0, 0). Consider then the first equation of (9.54).

σa
∗

g2ζ
−

∫
ddk

(2π)d

k2 σa
∗

ζ2 + εabcφb
∗σc
∗

ρζ2

k6 + k2
(

σa∗σa∗
ζ2 + φa∗φa∗

ρ2

)
+ εabcφa∗σb∗σc∗

ρζ2

= 0 (9.56)

5We do not write the counterterms explicitly.
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By contracting the above equation with σa
∗ , we find

σa
∗σ

a
∗

g2ζ
−

∫
ddk

(2π)d

k2 σa
∗σa
∗

ζ2

k6 + k2
(

σa∗σa∗
ζ2 + φa∗φa∗

ρ2

)
+ εabcφa∗σb∗σc∗

ρζ2

= 0 (9.57)

or, since σa
∗σ

a
∗ 6= 0

1
g2ζ

−
∫

ddk

(2π)d

k2

ζ2

k6 + k2
(

σa∗σa∗
ζ2 + φa∗φa∗

ρ2

)
+ εabcφa∗σb∗σc∗

ρζ2

= 0 (9.58)

Inserting (9.58) into (9.56), one learns that

εabcφb
∗σ

c
∗

ρζ2

∫
ddk

(2π)d

1

k6 + k2
(

σa∗σa∗
ζ2 + φa∗φa∗

ρ2

)
+ εabcφa∗σb∗σc∗

ρζ2

= 0 (9.59)

Notice that the integral in (9.59) is UV finite. If the integral of (9.59) is non-vanishing, we must have
that

εabcφb
∗σ

c
∗ = 0 (9.60)

Evidently, we then also have that

εabcφa
∗σ

b
∗σ

c
∗ = 0 (9.61)

Expression (9.58) can then also be combined with the second and third equation of (9.54) to show that

εabcφb
∗σ

c
∗ = 0 (9.62)

and

εabcσb
∗σ

c
∗ = 0 (9.63)

Henceforth, we conclude that all contributions coming from the dimension 6 operator εabcφbσcσa are
in fact not relevant for the determination of the minimum configuration (φa

∗, σ
a
∗ , σ

a
∗). It is sufficient to

solve the following gap equation to search for the non-trivial minimum

1
g2ζ

− 1
ζ2

∫
ddk

(2π)d

1

k4 +
(

σaσa

ζ2 + φaφa

ρ2

) = 0 (9.64)

In fact, this is the gap equation corresponding to the minimization of the potential (9.53) with
εabcφaσbσc put equal to zero from the beginning, in which case the one-loop potential reduces to

V1(σ, σ, φ)εabcφaσbσc=0 =
σaσa

g2ζ0

(
1− ζ1

ζ0
g2

)
+

φaφa

2ρ0g2

(
1− ρ1

ρ0
g2

)

+
1

32π2

(
σaσa

ζ2
0

+
φaφa

ρ2
0

) 
ln

σaσa

ζ2
0

+ φaφa

ρ2
0

µ4 − 3


 (9.65)

It remains to show that the integral of (9.59) is non-vanishing for a non-trivial vacuum configuration
(Evac 6= 0). We define

a =
σa
∗σ

a
∗

ζ2
+

φa
∗φ

a
∗

ρ2

b =
εabcφa

∗σ
b
∗σ

c
∗

ρζ2
(9.66)
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and consider the integral
∫

d4k

(2π)4
1

k6 + ak2 + b
=

∫
dΩ

(2π)4

∫ ∞

0

k3dk

k6 + ak2 + b
(9.67)

For a = 0 and b = 0, (9.67) is vanishing, but then we also have that Evac = 0.

Via the substitution x = k2, one finds
∫

k3dk

k6 + ak2 + b
=

1
2

∫ ∞

0

xdx

x3 + ax + b
(9.68)

This integral is always positive for a > 0. For b = 0, this is immediately clear. For b 6= 0, we perform
a partial integration to find

1
2

∫ ∞

0

xdx

x3 + ax + b
=

x2

4 (x3 + ax + b)

∣∣∣∣
∞

0

+
1
4

∫ ∞

0

(
3x2 + a

)
x2

(x3 + ax + b)2
dx =

1
4

∫ ∞

0

(
3x2 + a

)
x2

(x3 + ax + b)2
dx

(9.69)

For a > 0, the integral (9.69) is also positive. Consider now the function F (a, b), defined by

F (a, b) =
∫ ∞

0

xdx

x3 + ax + b
(9.70)

We already know that, for a > 0 and fixed b = b∗, F (a, b∗) > 0. Furthermore

∂F (a, b)
∂a

= −
∫ ∞

0

x2dx

(x3 + ax + b)2
< 0 (9.71)

meaning that the function F (a, b∗) decreases for increasing a. Assuming that F (a, b) has a zero at
(a0, b0), then we should have that F (a, b0) becomes more negative as a increases, which contradicts
the fact that F (a, b0) > 0 for a > 0. Therefore, the function F (a, b) cannot become zero and the
integral in (9.59) never vanishes for a non-trivial vacuum configuration.

It remains to calculate ζ0, ζ1, ρ0 and ρ1. One finds (see section 9.9)

δζ = − g2

8π2

1
ε

+
g4

(16π2)2

(
1
2ε

+
6
ε2

)
+ · · · (9.72)

δρ = − g2

4π2

1
ε

+
g4

(16π2)2

(
1
ε

+
12
ε2

)
+ · · · (9.73)

Since in the Landau gauge Z2 = 1 and Zc = Z−1
g Z

−1/2
A (see e.g. [153]), we have

γ(g2) =
1
2
µ

d

dµ
ln ZA ≡ γA(g2) (9.74)

where γA(g2) is the anomalous dimension of the gluon field, given by [88, 87]

γA(g2) = −13
6

g2N

16π2
− 59

8

(
g2N

16π2

)2

+ . . . (9.75)

Henceforth, we find for (9.32)-(9.33)

δζ(g2) = − g2

8π2
+

g4

256π4
+ · · · (9.76)

δρ(g2) = − g2

4π2
+

g4

128π4
+ · · · (9.77)
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Another good internal check of the calculations6 is that the renormalization group functions (9.76)-
(9.77) are indeed finite.

Finally, solving the equations (9.34)-(9.35) leads to

ζ0 = − 3
13

(9.78)

ρ0 = − 6
13

(9.79)

ζ1 = − 95
624π2

(9.80)

ρ1 = − 95
312π2

(9.81)

We indeed find that ρ = 2ζ. We already knew this from the NO invariance, and we find that the
MS scheme preserves this symmetry. It can also be understood from a diagrammatical point of view.
Consider (9.18), first with only the source ω connected, and subsequently with only the sources τ , L
connected. For each diagram giving a divergence proportional to ω2 in the former case, there exists
a similar diagram giving a divergence proportional to τL in the latter case. More precisely, when the
appropriate symmetry factor is taken into account, it will hold that

δρ = 2δζ (9.82)

Combining this with (9.28)-(9.29) and (9.34)-(9.35), precisely gives the relation (9.5).

Notice that, due to the identity (9.5), the effective potential V (σ, σ, φ) of (9.52) can be written in
terms of 2 combinations of the fields σ, σ and φ, namely

χ2 = σaσa +
φaφa

4
χ̂ = εabcφaσbσc (9.83)

As we have shown, χ̂ does not influence the value of the minimum. So, it is sufficient to consider the
potential with χ̂ = 0. (9.65) then becomes

V1(χ)bχ=0 =
χ2

g2ζ0

(
1− ζ1

ζ0
g2

)
+

1
32π2

χ2

ζ2
0

(
ln

χ2

ζ2
0µ4 − 3

)
(9.84)

Recalling (9.11) and (9.48), we find

δφ = −2σ (9.85)

δσ = 0 (9.86)

δσ = φ (9.87)

Consequently

δχ2 = φaσa +
(2φa)(−2σa)

4
= 0

δχ̂ = 0 (9.88)

A similar conclusion exists for δ and δFP . Said otherwise, χ and χ̂ are SL(2,R) invariants. Let us make
a comparison with the effective potential V (ϕ2) of the O(N) vector model with field ϕ = (ϕ1, . . . , ϕN ).

6See also the Appendix B (section 9.9).
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This potential is a function of the O(N) invariant norm ϕ2 = ϕ2
1+· · ·+ϕ2

N . Choosing a certain direction
for ϕ breaks the O(N) invariance. In the present case, choosing a certain direction for χ breaks the
SL(2,R) symmetry. However, the situation with the ghost condensates is a bit more complicated than
a simple breakdown of the SL(2,R).
Before we come to the discussion of the symmetry breaking, let us calculate the minima of (9.84). We

can use the renormalization group equation to kill the logarithms and put µ4 = χ2

ζ2
0
. The equation of

motion, dV
dχ = 0, has, next to the perturbative one χ = 0, which corresponds to a local maximum, a

non-trivial solution, given by

g2N

16π2

∣∣∣∣
N=2

=
9
28
≈ 0.321 (9.89)

where it is understood that g2 ≡ g2(µ =
√

χ/|ζ0|). Using the one-loop expression

g2(µ) =
3

11N

1

ln µ2

Λ2
MS

(9.90)

we obtain

χvac = 0.539Λ2
MS

(9.91)

Evac = −0.017Λ4
MS

(9.92)

From (9.89), it follows that the expansion parameter is relatively small. A qualitatively meaningful
minimum, (9.91), is thus retrieved. The resulting vacuum energy (9.92) is negative, implying that the
ground state favours the formation of the ghost condensates.

9.4 Non-trivial vacuum configurations and dynamical breaking
of the NO symmetry.

In this section, we discuss the consequences for the NO symmetry of a non-trivial vacuum expectation
value of the ghost operators fabccbcc, fabccbcc and/or fabccbcc. The arguments are general and
applicable for all N and for all choices of the Curci-Ferrari gauge parameter α.

9.4.1 BCS, Overhauser or a combination of both?

Since the action (9.47) is NO invariant, each possible vacuum state can be transformed into another
under the action of the NO symmetry. A special choice of a possible vacuum is the pure Overhauser
vacuum, determined by7

{
φa = φvacδ

a3 with φvac = 2χvac

σa = σa = 0 (9.93)

Then two of the SL(2,R) generators (δ and δ) are dynamically broken since

〈δσ〉 = − 〈
δσ

〉
= 〈φ〉 6= 0 (9.94)

7Without loss of generality, we can put φa in the 3-direction.
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The ghost number symmetry δFP is unbroken, just as the BRST symmetry s, since no operator F
exists with 〈sF〉 = 〈φ〉. In fact, setting

φa = φvacδ
a3 + φ̃a with

〈
φ̃a

〉
= 0 (9.95)

sφ̃a = −g2s
(
fabccbcc

)
(9.96)

it is immediately verified that the action

S(σ, σ, φ̃) = SY M + SGF+FP +
∫

d4x

(
−σaσa

g2ζ
− φ2

vac

2g2ρ
− φ̃3φvac

g2ρ
− φ̃aφ̃a

2g2ρ
+

σa

2gζ
gfabccbcc

− σa

2gζ
gfabccbcc − φ̃a

gρ
gfabccbcc − φvac

gρ
gf3bccbcc

− 1
2ρ

g2
(
fabccbcc

)2
+

1
4ζ

g2fabccbccfadecdce

)
(9.97)

obeys

sS(σ, σ, φ̃) = 0 (9.98)

while evidently

s2 = 0 (9.99)

We focus on the ghost number and BRST symmetry because these are the key ingredients for the
definition of a physical subspace, to have a quartet mechanism, etc.; see e.g. [177].

For vacua other than the pure Overhauser case, problems can arise concerning the BRST and/or the
ghost number symmetry. Consider for example the pure BCS vacuum





φa = 0
σa = bχvacδ

a3

σa = bχvacδ
a3

(9.100)

where b and b are a pair of Faddeev-Popov conjugated constants (bb = 1). In this vacuum,
〈
fabccbcc

〉 6=
0, while sca = g

2fabccbcc, so we can expect a problem with the BRST transformation. Things can even
be made worse, since also vacua where σa and σa get a different value (up to the ghost number, which
is 2, respectively −2), are allowed. In this case, the ghost number symmetry δFP is also broken.

It seems that the existence of the ghost condensates, different from the Overhauser channel, could
cause serious problems. A pragmatic solution would be to simply choose the Overhauser vacuum, since
one always has to choose a specific vacuum to work with. However, this is not very satisfactory. The
other vacua are in principle as “good” as the Overhauser one.

Let us try to formulate a solution to the problem of the possible BRST/ghost number symmetry

breakdown. Let |Ω〉 be the Overhauser vacuum, and
∣∣∣Ω̃

〉
any other vacuum. As already said, a certain

NO transformation U exists, so that
∣∣∣Ω̃

〉
= U |Ω〉 (9.101)

Let QBRST , QBRST , QFP , Qδ and Qδ be the charges corresponding to respectively s, s, δFP , δ and

δ. We know that

QBRST |Ω〉 = 0 (9.102)

QFP |Ω〉 = 0 (9.103)
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With the relations (9.101)-(9.103), it is possible to define new charges8

Q̃BRST = UQBRSTU−1 (9.104)

Q̃BRST = UQBRSTU−1 (9.105)

Q̃FP = UQFPU−1 (9.106)

Q̃δ = UQδU−1 (9.107)

Q̃δ = UQδU−1 (9.108)

Since this is merely a redefinition of its generators, the new charges (9.104)-(9.108) are evidently still
obeying the NO algebra (9.14). By construction, we have9

Q̃BRST

∣∣∣Ω̃
〉

= 0 (9.109)

Q̃FP

∣∣∣Ω̃
〉

= 0 (9.110)

As such, we have in any vacuum Ω̃ the concept of a nilpotent operator Q̃BRST . Furthermore, the

physical states
∣∣∣p̃hys

〉
are those wherefore

Q̃BRST

∣∣∣p̃hys
〉

= 0 (9.111)
∣∣∣p̃hys

〉
6= Q̃BRST |. . .〉 (9.112)

Q̃FP

∣∣∣p̃hys
〉

= 0 (9.113)

and are connected to the physical states of the Overhauser case through

∣∣∣p̃hys
〉

= U |phys〉 (9.114)

The conclusion is that in any vacuum, the concept of a Faddeev-Popov symmetry exists, just as a
nilpotent BRST transformation. The mere difference is that the functional form of these operators is
no longer the usual one (9.2). But in principle, the ∼ generators are as good as the original ones to
perform the Kugo-Ojima formalism, since this is based on algebraic properties [177]. The NO can
thus be used to define the physical subspace Hphys of the total Hilbert space H of all possible states.

The action of the NO rotates H, whereby “QBRST physical” states |phys〉 are rotated into “Q̃BRST

physical” states
∣∣∣p̃hys

〉
≡ U |phys〉.

Since we have to choose a certain vacuum, we assume for the rest of the article that we are in the
Overhauser vacuum, the most obvious choice. Notice that this does not imply that we can simply put
the sources La and τa equal to zero from the beginning. This corresponds to the ghost condensation
studied in the context of the maximal Abelian gauge, originated in [77, 78, 79, 80]. Analogously,
setting ωa equal to zero from the beginning, corresponds to the BCS channel as originally studied in
[81, 90, 91].

8As it is well known, the generators of a symmetry form an adjoint representation.
9 eQδ for example will be a broken generator. If not, one has Qδ |Ω〉 = 0, a contradiction.
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9.4.2 Global color symmetry.

A non-vanishing vacuum expectation value for the color charged field φa seems to spoil the global
color symmetry, i.e. the global SU(N) invariance. However, it can be argued that this global color
symmetry breaking is located in the unphysical sector of the Hilbert space. According to [189, 177],
the conserved, global SU(N) current is given by

J a
µ = ∂νF a

µν + {QBRST , Dab
µ cb} (9.115)

while the corresponding color charge reads

Qa =
∫

d3x∂iF
a
0i +

∫
d3x{QBRST , Dab

0 cb} (9.116)

The current (9.115) is the same in comparison with the one given by the usual Yang-Mills Lagrangian
(i.e. without any condensate); this is immediately verified since the action (9.47) does not contain any
new terms with derivatives of the fields.

The first term of (9.116) is either ill-defined due to massless particles in its spectrum, or zero as a
volume integral of a total divergence [20]. Thus, if no massless particles show up (i.e. gluons are
massive), (9.116) reduces to a BRST exact form

Qa =
∫

d3x{QBRST , Dab
0 cb} (9.117)

Henceforth, this color breaking should not be observed in the physical subspace of the Hilbert space,
see e.g. [20] and references therein.

The required absence of massless particles is assured if the gluons are no longer massless. This is
realized by another condensate of mass dimension 2, namely 1

2

〈
A2

〉
in the case of the Landau gauge.

This condensate also lowers the vacuum energy and gives rise to a dynamical gluon mass, as was shown
in [42, 184]. Also lattice simulations support a dynamical gluon mass [48, 47]. The generalization to
the Curci-Ferrari gauge was discussed in [178].

A rather subtle point in the foregoing is that the well-definedness of (9.117) should be assured.

9.4.3 Absence of Goldstone excitations.

The conserved current corresponding to the δ invariance is given by

kµ = caDab
µ cb +

1
2
gfabcAa

µcbcc = s
(
caAa

µ

)
(9.118)

An analogous expression can be derived for the δ current

kµ = s
(
caAa

µ

)
(9.119)

If these continuous δ and δ symmetries are broken, massless Goldstone states should appear, according
to the Goldstone theorem. However, since the currents are (anti-)BRST exact, those Goldstone bosons
will be part of a BRST quartet, and as such decouple from the physical spectrum due to the quartet
mechanism [177]. The argument is analogous to the one given in [77, 78, 79] to explain why there are
no physical Goldstone particles present in the case of SU(2) Yang-Mills in the maximal Abelian gauge,
due to the appearance of the condensate

〈
ε3abcacb

〉
.
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9.5 Inclusion of matter fields.

So far, we have considered pure Yang-Mills theories, i.e. without matter fields. The present analysis
can be nevertheless straightforwardly extended to the case with quarks included. This is accomplished
by adding to the pure Yang-Mills action SY M the quark contribution Sm, given by

Sm =
∫

d4xψ
iI

iγµDIJ
µ ψiJ (9.120)

with

DIJ
µ = ∂µδIJ − igAa

µT aIJ (9.121)

The T aIJ are the generators of the fundamental representation of SU(N), while DIJ
µ is the correspon-

ding covariant derivative. The index i labels the number of flavours (1 6 i 6 Nf ).
The action of the NO transformation on the fermion fields is defined as follows

sψiI = −igcaT aIJψiJ (9.122)

sψ
iI

= −igψ
iJ

T aJIca (9.123)

sψiI = −igcaT aIJψiJ (9.124)

sψ
iI

= −igψ
iJ

T aJIca (9.125)

δψ = δψ = δFP ψ = 0
δψ = δψ = δFP ψ = 0 (9.126)

Then it is easily checked that the algebra structure (9.14) is maintained, while the full action

S = SY M + Sm + SGF+FP + SLCO (9.127)

with SLCO given by (9.1), is NO invariant.

The Ward identities in the Appendix A (section 9.8) can be generalized (see also [91]). As such, the
renormalizability is assured, while the ghost operators still have the same anomalous dimension. Of
course, the relation ρ = 2ζ still holds. Also the discussion in the previous section can be repeated10.

For what concerns the explicit evaluation of the effective potential in the Landau gauge, the absence

of a counterterm for the ghost operators (so Z2 = 1) is still valid, just as the relation Zc = Z−1
g Z

−1/2
A .

Since the quarks are not contributing to W(ω, τ, L) at the one- and two-loop level, no new divergences
appear at the one- and two-loop level, hence δρ0 and δρ1 are unchanged in comparison with the
quarkless case. Since [88, 87]

β(g2) = −εg2 +
(
−22

3
N +

4
3
Nf

)
g2 g2

16π2

+
(
−68

3
N2 +

20
3

NfN + 2Nf
N2 − 1

N

)
g2

(
g2

16π2

)2

+ . . .

γA(g2) =
(
−13

6
N +

2
3
Nf

)
g2

16π2
+

(
−59

8
N2 +

5
2
NfN + Nf

N2 − 1
N

)(
g2

16π2

)2

+ . . .

(9.128)

10A dynamical gluon mass in the presence of massless quarks has been calculated by now in [197]
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we now find (again for N = 2)

ζ0 =
3

2Nf − 13
(9.129)

ρ0 =
6

2Nf − 13
(9.130)

ζ1 =
41Nf − 190

96(13− 2Nf )π2
(9.131)

ρ1 =
41Nf − 190

48(13− 2Nf )π2
(9.132)

while the one-loop effective potential reads

V1(χ) =
χ2

g2ζ0

(
1− ζ1

ζ0
g2

)
+

1
32π2

χ2

ζ2
0

(
ln

χ2

ζ2
0µ4 − 3

)
(9.133)

with χ defined as in (9.83). The minima can be determined in the same fashion as before, this leads to

g2N

16π2

∣∣∣∣
N=2

=
36

112− 29Nf
(9.134)

9.6 Consequences of the ghost condensates.

In this section, we would like to outline some items that deserve further investigation.

• For simplicity, we have restricted ourselves in this article to N = 2. Also, the effective potential
has been determined at the one-loop level, by making use of the MS scheme. Then, as it is
apparent from (9.134), the numbers of flavours must be so that 0 6 Nf 6 3, in order to have
a non-trivial solution. This can be changed if another renormalization scheme is chosen. There
exist several methods to improve perturbation theory and minimize the renormalization scheme
dependence, for example by introducing effective charges [191, 105] or by employing the principle
of minimal sensitivity [104, 106]. Also, higher order computations are in order to improve results.
Evidently, “real life” QCD will need the generalization to N = 3.

• Secondly, we want to comment on the observation that the ghost condensation gives rise to a
tachyonic mass for the gluons in the Curci-Ferrari gauge [82]. Let us consider this in more detail
in the Landau gauge for N = 2. The ghost propagator in the condensed vacuum (9.93) reads11

〈
cacb

〉
p

= −i
p2δab − φ3

ρ0
εab

p4 +
(

φ3

ρ0

)2 a, b = 1, 2

〈
c3c3

〉
p

=
−i

p2
(9.135)

Following [82], one can calculate the gauge boson polarization Πab
µν with this ghost propagator

(see Figure 9.1), and then one finds an induced tachyonic gluon mass. Notice that this mass
is a loop effect. This observation gave rise to the conclusion that gluons acquire a tachyonic
mass due to the ghost condensation. It was already recognized in [157] for the maximal Abelian

11ε12 = −ε21 = 1, zero otherwise.
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Figure 9.1: Diagram relevant for the gauge boson polarization.

gauge that the ghost condensation resulted in a tachyonic mass for the off-diagonal gluons. In our
opinion, this tachyonic mass is more a consequence of an incomplete treatment than a result in se.
The gauge boson polarization was determined with the usual perturbative gluon propagator (i.e.
massless gluons). It was however shown that gluons get a mass trough a non-vanishing vacuum
expectation value for

〈
1
2A2

〉
in the Landau gauge [42] or

〈
1
2A2 + αcc

〉
in the Curci-Ferrari gauge

[178]. The LCO treatment for
〈

1
2A2

〉
gives a Lagrangian similar to (9.47). More precisely, a real

tree level gluon mass mgluon is present. It came out that mgluon ∼ 500MeV [42]. Therefore,
the complete procedure to analyze the nature of the induced gluon mass should be that of taking
into account the simultaneous presence of both ghost and gluon condensates, i.e.

〈
fabccbcc

〉
and

〈
1
2A2

〉
(or

〈
1
2A2 + αcc

〉
in the Curci-Ferrari gauge). The induced final gluon mass receives

contributions from both condensates, as the gluon propagator gets modified by the condensate〈
1
2A2

〉
. The diagram of Figure 9.1 is thus only part of the whole set of diagrams contributing

to the gluon mass. It is worth mentioning that a similar mechanism should take place in the
maximal Abelian gauge [157, 171, 178]. In fact, the mixed gluon-ghost operator

〈
1
2A2 + αcc

〉
can be consistently introduced also in this gauge [83, 144].

Summarizing, a complete discussion of the dynamical generation of a mass parameter for gluons
would require a combination the LCO formalism of this article with that of [42, 178] by introducing
an extra source term 1

2KAa
µAµa for the operator 1

2A2.

• A third point of interest is the modified infrared behaviour of the propagators due to the non-
vanishing condensates. If one considers the Landau gauge, the Kugo-Ojima confinement criterion
[177] is fulfilled if the ghost propagator exhibits an infrared enhancement, i.e. the ghost propagator
should be more singular than 1

p2 [192]. Recently, much effort has been paid to investigate this

criterion (in the Landau gauge) by means of the Schwinger-Dyson equations, see e.g. [124, 193,
126, 125, 145, 194] and references therein. Defining the gluon and ghost form factors from the
Euclidean propagators Dµν(p2) and G(p2) as

Dµν(p2) =
(

δµν − pµpν

p2

)
ZD(p2)

p2

G(p2) =
ZG(p2)

p2
(9.136)

it was shown that in the infrared (in the Schwinger-Dyson framework)

ZD(p2) ∼ (p2)2a

ZG(p2) ∼ (p2)−a (9.137)

with a ≈ 0.595 [193, 126, 125, 145]. As such, the obtained solutions of the Schwinger-Dyson
equations seem to be compatible with the Kugo-Ojima confinement criterion. Furthermore, these
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solutions were also in qualitative agreement with the lattice behaviour (see e.g. [193]). It would
be instructive to investigate to what extent the Schwinger-Dyson solutions are modified if one
would work with the Landau gauge action12

S = SY M + SGF+FP +
∫

d4x

(
− ϕ2

2g2ξ
− σaσa

g2ζ
− φaφa

2g2ρ

+
ϕ

2gξ
Aa

µAµa +
σa

2gζ
gfabccbcc − σa

2gζ
gfabccbcc − φa

gρ
gfabccbcc

− 1
8ξ

(
Aa

µAµa
)2 − 1

2ρ
g2

(
fabccbcc

)2
+

1
4ζ

g2fabccbccfadecdce

)
(9.138)

that already incorporates the non-perturbative effects of the ghost condensates and the gluon
condensates, thus also a gluon mass.

Very recently, some results for general covariant gauges concerning the ghost-antighost condensate
〈caca〉 were presented in [195] within the Schwinger-Dyson approach. In the used approximation
scheme, it turns out that in case of the linear gauges, no ghost-antighost condensate seems
to exist. This can understood, since in the linear gauges there is a symmetry c → c + cte,
which prevents the appearance of the operator caca. It can be combined with the gluon operator
A2 to yield the mixed gluon-ghost dimension two operator 1

2A2 + αcc. To our knowledge,
this operator is on-shell BRST invariant only in the Curci-Ferrari and in the maximal Abelian
gauge13 [83, 144, 185]. In particular, concerning the nonlinear Curci-Ferrari gauge, the condensate〈

1
2A2 + αcc

〉
has been proven to show up in the weak coupling [178]. However, no definitive

conclusion has been reached so far about this condensate within the Schwinger-Dyson framework
[195]. Finally, we notice that the ghost operators fabccbcc, fabccbcc and fabccbcc we discussed
here, were not considered in [195].

• We have discussed the ghost condensation in the Curci-Ferrari gauge. Originally, the ghost
condensates came to attention in the maximal Abelian gauge in [77, 78, 79, 80, 157, 81, 90]. An
approach close to the one presented here should be applied to probe the ghost condensates and
their consequences in the maximal Abelian gauge too. However, the maximal Abelian gauge is a
bit more tricky to handle, see e.g. [178] for some more comments on this.

• So far, the gauges where the ghost condensation takes place, all have the NO symmetry. The
important question rises if the ghost condensation only takes place in gauges possessing the NO
symmetry? In order to do so, one should first investigate if external sources for the ghost operators
can be introduced without spoiling the renormalizability.

9.7 Conclusion.

In this article, we considered Yang-Mills theory in the Curci-Ferrari gauge and as a limiting case, in the
Landau gauge. These gauges possess a global continuous symmetry, generated by the NO algebra. This
algebra is built out of the (anti-)BRST transformation and of the SL(2,R) algebra. By combining the
local composite operator formalism with the algebraic renormalization technique, we have proven that
a ghost condensation à la

〈
fabccbcc

〉
,
〈
fabccbcc

〉
(BCS channel) and

〈
fabccbcc

〉
(Overhauser channel)

occurs. It has been shown that different vacua are possible, with the Overhauser and BCS vacuum as
two special choices. The ghost condensates (partially) break the NO symmetry. We have discussed

12〈ϕ〉 = g
2



Aa

µAµa
�
. See [42, 178] for the meaning and value of ξ.

13In which case the color index is restricted to the off-diagonal fields.
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the BRST and the ghost number symmetry in the condensed vacua. We paid some attention to the
global SU(N) color symmetry and to the absence of Goldstone bosons in the physical spectrum. We
also briefly discussed the generalization to the case when quark fields are included.

9.8 Appendix A.

9.8.1 Ward identities for the NO algebra in the Curci-Ferrari gauge.

The renormalizability of the Curci-Ferrari gauge is well established [161, 87, 144]. In this Appendix we
show that the introduction of a suitable set of external sources allows to write down Ward identities
for all the generators of the NO algebra. In particular, these Ward identities will imply that all ghost
polynomials fabccbcc, fabccbcc, fabccbcc have the same anomalous dimension.

In order to write down the functional identities for the NO algebra, we need to introduce three more
external sources Ωa

µ, Ω
a

µ, ϑa
µ with dimensions (2, 2, 1), coupled to the nonlinear BRST and anti-BRST

variations of the gauge field Aa
µ.

Sext = ss

∫
d4x

(
ϑaµAa

µ +
υ

2
ϑaµϑa

µ

)
(9.139)

Notice that the coefficient υ is allowed by power counting, since the term ϑaµϑa
µ has dimension 2. The

generators of the NO algebra act on Ωa
µ, Ω

a

µ, ϑa
µ as

sϑa
µ = Ω

a

µ (9.140)

sΩ
a

µ = sΩa
µ = 0

sϑa
µ = −Ωa

µ (9.141)

sΩa
µ = sΩ

a

µ = 0

δΩa
µ = −Ω

a

µ (9.142)

δϑa
µ = δΩa

µ = 0

δΩ
a

µ = −Ωa
µ (9.143)

δϑa
µ = δΩa

µ = 0

Therefore, for Sext one gets

Sext =
∫

d4x
(
−ΩµaDab

µ cb − Ω
µa

Dab
µ cb + υΩµaΩ

a

µ − ϑaµDab
µ bb + gfabcϑaµ

(
Dbd

µ cd
)
cc

)
(9.144)

From this expression, it can be seen that the parameter υ is needed to account for the behavior of the
two-point Green function

〈(
Dab

µ cb(x)
) (

Dcd
ν cd(y)

)〉
, which is related to the Kugo-Ojima criterion. In

other words, the coefficient υ is the LCO parameter for this Green function.

We can now translate the whole NO algebra into functional identities, which will be the starting point
for the algebraic characterization of the allowed counterterm. It turns out thus that, in the Curci-Ferrari
gauge, the complete action Σ

Σ = SY M + SGF+FP + SLCO + Sext

= −1
4

∫
d4xF a

µνF aµν + ss

∫
d4x

(
λaca + ζλaηa + ηaca

−α

2
caca + ϑaµAa

µ +
1
2
Aa

µAaµ +
υ

2
ϑaµϑa

µ

)
(9.145)
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is constrained by the following identities:

• the Slavnov-Taylor identity

S(Σ) = 0 (9.146)

S(Σ) =
∫

d4x

((
δΣ

δΩaµ
− υΩ

a

µ

)
δΣ
δAa

µ

+
(

δΣ
δLa

− ζτa

)
δΣ
δca

+ba δΣ
δca + τa δΣ

δηa
+ ωa δΣ

δλa
+ Ω

a

µ

δΣ
δϑa

µ

)
(9.147)

• the anti-Slavnov-Taylor identity

S(Σ) = 0 (9.148)

S(Σ) =
∫

d4x

((
δΣ

δΩ
aµ + υΩa

µ

)
δΣ
δAa

µ

−
(

δΣ
δτa

− ζLa

)
δΣ
δca

−
(

ba +
δΣ
δωa

− 2ζωa

)
δΣ
δca

− δΣ
δηa

δΣ
δba

+ La δΣ
δλa

− ωa δΣ
δηa

− Ωaµ δΣ
δϑaµ

)

(9.149)

• the δ Ward identity

W(Σ) = 0 (9.150)

with

W(Σ) =
∫

d4x

(
ca δΣ

δca +
(

δΣ
δLa

− ζτa

)
δΣ
δba

+ 2ωa δΣ
δLa

− τa δΣ
δωa

− ηa δΣ
δλa

− Ω
a

µ

δΣ
δΩa

µ

)

(9.151)

• the δ Ward identity

W(Σ) = 0 (9.152)

with

W(Σ) =
∫

d4x

(
ca δΣ

δca
−

(
δΣ
δτa

− ζLa

)
δΣ
δba

− 2ωa δΣ
δτa

+ La δΣ
δωa

− λa δΣ
δηa

− Ωa
µ

δΣ
δΩ

a

µ

)

(9.153)
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9.8.2 Algebraic characterization of the invariant counterterm in the Curci-
Ferrari gauge.

The most general local invariant counterterm compatible with both Slavnov-Taylor and anti-Slavnov-
Taylor identities (9.146), (9.148) can be written as

Σc = −σ

4

∫
d4xF a

µνF aµν + BB
∫

d4x
(

a1λ
aca + a2η

aλa + a3η
aca

+
a4

2
caca + a5ϑ

a
µAaµ +

a6

2
AaµAa

µ +
a7

2
ϑa

µϑaµ
)

(9.154)

where σ, a1, a2, a3, a4, a5, a6, a7 are free parameters and B, B denote the linearized nilpotent
operators

B =
∫

d4x

(
δΣ
δAa

µ

δ

δΩaµ
+

(
δΣ

δΩaµ
− γΩ

a

µ

)
δ

δAa
µ

+
(

δΣ
δLa

− ζτa

)
δ

δca

+
δΣ
δca

δ

δLa
+ ba δ

δca + τa δ

δηa
+ ωa δ

δλa
+ Ω

a

µ

δ

δϑa
µ

)
(9.155)

and

B =
∫

d4x

(
δΣ
δAa

µ

δ

δΩ
a

µ

+
(

δΣ
δΩ

aµ + γΩa
µ

)
δ

δAa
µ

−
(

δΣ
δτa

− ζLa

)
δ

δca −
δΣ
δca

δ

δτa

−
(

ba +
δΣ
δωa

− 2ζωa

)
δ

δca
− δΣ

δca

δ

δωa
− δΣ

δηa

δ

δba
− δΣ

δba

δ

δηa

+La δ

δλa
− ωa δ

δηa
− Ωaµ δ

δϑaµ

)
(9.156)

From the δ and δ Ward identities (9.150), (9.152) it follows that

a3 = a1 (9.157)

so that the final expression for (9.154) becomes

Σc = −σ

4

∫
d4xF a

µνF aµν + BB
∫

d4x
(

a1λ
aca + a2η

aλa + a1η
aca

+
a4

2
caca + a5ϑ

a
µAaµ +

a6

2
AaµAa

µ +
a7

2
ϑa

µϑaµ
)

(9.158)

The coefficients σ, a1, a2, a4, a5, a6, a7 are easily seen to correspond to a multiplicative renormalization
of the coupling constant g, of the gauge and LCO parameters α, ζ, γ, of the fields and external sources.
In particular, the coefficients σ and a5 are related to the renormalization of the gauge coupling constant
g and of the gauge field Aa

µ, as it is apparent from

BB
∫

d4xϑa
µAaµ = −NAΣ (9.159)

where NA stands for the invariant counting operator

NA =
∫

d4x

(
Aa

µ

δ

δAa
µ

− Ωa
µ

δ

δΩa
µ

− Ω
a

µ

δ

δΩ
a

µ

− ϑa
µ

δ

δϑa
µ

)
+ γ

∂

∂γ
(9.160)
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The coefficient a4 corresponds to the renormalization of the gauge parameter α, indeed

BB
∫

d4x
1
2
caca = −∂Σ

∂α
(9.161)

The coefficient a2 is associated to the renormalization of the LCO parameter ζ, which follows from

BB
∫

d4xηaλa = −NζΣ (9.162)

with

Nζ = ζ
∂

∂ζ
+

∫
d4x

(
ωa δ

δba
− ηa δ

δca
+ λa δ

δca

)
(9.163)

The coefficient a1 is related to the anomalous dimensions of all ghost operators, namely

BB
∫

d4x (λaca + ηaca) = NLΣ (9.164)

where

NL =
∫

d4x

(
La δ

δLa
+ τa δ

δτa
+ λa δ

δλa
+ ωa δ

δωa
+ ηa δ

δηa

−ba δ

δba
− ca δ

δca − ca δ

δca

)
− 2ζ

∂

∂ζ
(9.165)

The renormalization of the LCO parameter γ is given by the coefficient a7, as can be seen from

BB
∫

d4x

(
1
2
ϑa

µϑaµ

)
=

(
∂

∂γ
−

∫
d4xϑa

µ

δ

δAa
µ

)
Σ (9.166)

Finally, the anomalous dimension of the ghost ca and the antighost ca are obtained from the coefficient
a6

BB
∫

d4x

(
1
2
AaµAa

µ

)
= NcΣ (9.167)

with

Nc =
∫

d4x

(
1
2

ca δ

δca
+

1
2

ca δ

δca + ba δ

δba
− La δ

δLa
− τa δ

δτa
− ωa δ

δωa

−3
2
λa δ

δλa
− 3

2
ηa δ

δηa

)
− 2α

∂

∂α
+ 2ζ

∂

∂ζ
(9.168)

From expressions (9.165) and (9.168) one sees that all sources La, τa, and ωa renormalize in the same
way, which means that all composite ghost polynomials fabccbcc, fabccbcc, fabccbcc have indeed the
same anomalous dimension. This result is a consequence of the relationship (9.157) which, of course,
stems from the existence of the NO algebra.
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Figure 9.2: Vacuum bubbles up to two-loop order, giving divergences proportional to ω2.

9.9 Appendix B.

In order to construct the one-loop effective potential, we need the values of ζ0, ρ0, ζ1 and ρ1. These
can be calculated as soon we know the divergences proportional to ω2 and Lτ when the generating
functional corresponding to the action (9.18) is calculated. In principle, it is sufficient to calculate the
divergences proportional to ω2 since the NO invariance leads to ρ = 2ζ. Therefore, we can restrict
ourselves to the diagrams with only the source ω connected. Let us write

δρ = δρ0g
2 + δρ1g

4 + · · · (9.169)

For N = 2 and α = 0, the ghost propagator reads

〈
cacb

〉
p

= i
−p4δab + p2gεabcωc − g2ωaωb

p2 (p4 + g2ω2)
(9.170)

while the gluon propagator is given by

〈
Aa

µAb
ν

〉
p

=
−iδab

p2

(
gµν − pµpν

p2

)
(9.171)

The ghost-antighost-gluon vertex equals

gεabcpµ (9.172)

The relevant vacuum bubbles14 are shown in Figure 9.2. At one-loop, we find a contribution to
W(ω, τ, L), given by

−i

∫
ddp

(2π)d
ln

(
p4 + g2ω2

)
(9.173)

Performing a Wick rotation15 and employing the MS scheme, this leads to a divergence given by

g2ω2 1
32π2

4
ε

(9.174)

Hence

δρ0 = − 1
4π2

1
ε

(9.175)

14The diagrams containing a counterterm are not shown.
15If one would like to avoid a Wick rotation, one could have started immediately from the Euclidean Yang-Mills

action.
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At two loops, the contribution to W(ω, τ, L) is obtained by computing the second diagram of Figure
9.2, yielding

I =
1
2
ig2εabcεa′b′c′

∫
ddp

(2π)d

ddq

(2π)d

[
pµqν

−iδaa′

(p− q)2

(
gµν − (p− q)µ(p− q)ν

(p− q)2

)

×i
−p4δbc′ + gp2εbc′eωe − g2ωbωc′

p2(p4 + g2ω2)
× i

−q4δb′c + gq2εb′ceωe − g2ωb′ωc

q2(q4 + g2ω2)

]
(9.176)

Working out the color algebra, one finds

I = −g2

2

∫
ddp

(2π)d

ddq

(2π)d

[
pµqν

(p− q)2

(
gµν − (p− q)µ(p− q)ν

(p− q)2

)

× −6p4q4 − 2g2ω2(p4 + q4 − p2q2)
p2q2(p4 + g2ω2)(q4 + g2ω2)

]
(9.177)

This integral I has been calculated in two steps: first all tensor integrals have been reduced to a
combination of scalar master integrals, applying simple algebraic rearrangements of the scalar products
which appear in the numerator of the integrand; all master integrals are vacuum integrals, i.e. with
vanishing external momentum; they have been replaced by their explicit expression in terms of special
functions [196] and expanded in powers of ε. The calculation has been done with the Mathematica
packages DiagExpand and ProcessDiagram. We find

I =
g4ω2

(16π2)2

(
6
ε2

+
17
2ε
− 6

ε
ln

gω

µ2 + finite
)

(9.178)

We also have to take the counterterm information into account16. Since there is no counterterm
∝ ωagfabccbcc in the Landau gauge, the only counterterm that will contribute at the order we are
working, is

δZcc
a∂µ∂µδabcb (9.179)

where [87]

δZc =
3
2

g2N

16π2

1
ε

+ · · · ≡ z1
cg2 + · · · (9.180)

This leads to a contribution

(−2z1
cg2

) (
−i

∫
ddp

(2π)d
ln

(
p4 + g2ω2

))
(9.181)

Or

[−2z1
cg2

] [
−g2ω2

32π2

(
−4

ε
+ 2 ln

gω

µ2 − 3
)]

=
g4ω2

(16π2)2

(
−12

ε2
− 9

ε
+

6
ε

ln
gω

µ2 + finite
)

(9.182)

Hence, the complete two-loop contribution to W(ω, τ, L) yields

(9.178) + (9.182) =
g4ω2

(16π2)2

(
− 6

ε2
− 1

2ε
+ finite

)
(9.183)

A good internal check of the calculations is that the terms proportional to 1
ε ln gω

µ2 are cancelled. Finally,
we find that

δρ1 =
1

(16π2)2

(
1
ε

+
12
ε2

)
(9.184)

16The corresponding diagram looks like the first one of Figure 9.2.
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Chapter 10

Renormalizability of the local
composite operator A2

µ in linear
covariant gauges

D. Dudal,H. Verschelde (UGent), V. E. R. Lemes, M. S. Sarandy, R. F. Sobreiro, S. P. Sorella (UERJ)
and J. A. Gracey (University of Liverpool),
published in Physics Letters B 574 (2003) 325.

The local composite operator A2
µ is analysed within the algebraic renormalization in Yang-Mills theo-

ries in linear covariant gauges. We establish that it is multiplicatively renormalizable to all orders of
perturbation theory. Its anomalous dimension is computed to two-loop order in the MS scheme.

10.1 Introduction.

The possibility that gluons might acquire in a dynamical way a mass is receiving increasing attention,
both from the theoretical point of view as well as from lattice simulations. Effective gluon masses
have been reported in a rather large number of gauges [198]. For instance, the relevance of the
local operator Aa

µAaµ for Yang-Mills theory in the Landau gauge has been emphasized by several
authors [34, 33, 175, 37, 38]. That this operator has a special meaning in the Landau gauge follows
by observing that, due to the transversality condition ∂µAaµ = 0, the integrated mass dimension
two operator

∫
d4xAa

µAaµ is gauge invariant. Remarkably, the operator Aa
µAaµ in the Landau gauge is

multiplicatively renormalizable [42, 87], its anomalous dimension being given [87, 153] by a combination
of the gauge beta function, β(a), and of the anomalous dimension, γA(a), of the gauge field, according
to the relation

γA2(a) = −
(

β(a)
a

+ γA(a)
)

, a =
g2

16π2
. (10.1)

Moreover, lattice simulations [175, 37, 38] have provided strong indications of the existence of the
condensate

〈
Aa

µAaµ
〉
, which can be related to a dynamical gluon mass: a renormalizable effective

potential for this condensate in pure Yang-Mills theory has been constructed and evaluated in analytic
form up to two-loop order in [42], resulting in an effective gluon mass mgluon ≈ 500MeV . The inclusion
of massless quarks has been recently worked out in [197]. Another analytic study of

〈
Aa

µAaµ
〉

can be
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found in [184]. Also, lattice simulations [48] of the gluon propagator in the Landau gauge have reported a
gluon mass mgluon ≈ 600MeV . Concerning other gauges, an effective gluon mass has been reported in
lattice simulations in the Laplacian [47, 43] and maximal Abelian [49, 50] gauges. It is worth underlining
that the local operator Aa

µAaµ of the Landau gauge can be generalized [144] to the maximal Abelian
gauge, which is a renormalizable gauge in the continuum [71, 72, 183]. It turns out in fact that the
integrated mixed gluon-ghost operator1

∫
d4x

(
1
2Aα

µAαµ + ξcαcα
)

is BRST invariant on-shell [144], a
property which ensures the multiplicative renormalizability to all orders of perturbation theory [179, 199]
of the local operator

(
1
2Aα

µAαµ + ξcαcα
)
. The analytic evaluation of the effective potential for the

condensate
〈

1
2Aα

µAαµ + ξcαcα
〉

has not yet been worked out. Nevertheless, we expect a nonvanishing
value for this condensate, which would result in a dynamical gluon mass. This is supported by the fact
that a renormalizable effective potential for the mixed gluon-ghost operator has been obtained [178]
in the nonlinear Curci-Ferrari gauge, yielding a nonvanishing condensate

〈
1
2A2

µ + ξcc
〉
, which provides

a dynamical mass for the gluons. The Curci-Ferrari gauge shares a close similarity with the maximal
Abelian gauge. We expect thus that something similar should happen in this gauge.

A gluon condensate
〈
Aa

µAaµ
〉

has also been introduced in the Coulomb gauge [200] in order to obtain
estimates for the glueball spectrum. Older works [28, 30, 201, 202] already discussed the pairing of
gluons in connection with a mass generation, as a result of the instability of the perturbative Yang-Mills
vacuum. Also, the dynamical mass generation for the gluons is a part of the Kugo-Ojima criterion for
color confinement [177]. See [20] for a review.

In this work we analyse the ultraviolet properties of the local composite operator Aa
µAaµ in the linear

covariant gauges, whose gauge fixing term is

∫
d4x

(
ba∂µAaµ +

α

2
baba + ca∂µDab

µ cb
)

, (10.2)

where ba stands for the Lagrange multiplier and α is the gauge parameter. Our aim is that of establishing
some necessary requirements in order to study the possible condensation of this operator, which would
imply the occurrence of dynamical mass generation in these gauges. Notice that, unlike the case of
the Landau and maximal Abelian gauges, the quantity

∫
d4xA2

µ is now not BRST invariant on-shell.
However, we shall be able to prove that the local operator A2

µ is multiplicatively renormalizable to all
orders of perturbation theory. There is a simple understanding of this property. In linear covariant
gauges, due to the additional shift symmetry of the antighost, i.e. c → c + const., the operator A2

µ

does not mix with the other local dimension two composite ghost operator cc, which cannot show up
due to the above symmetry. We remark that the renormalizability of A2

µ is the first step towards the
construction of a renormalizable effective potential in order to study the possible condensation of this
operator and the ensuing dynamical mass generation.

The work is organized as follows. In section 10.2 we derive the Ward identities for Yang-Mills theory in
linear covariant gauges in the presence of the local operator A2

µ. These identities turn out to ensure the
multiplicative renormalizability of A2

µ. In section 10.3 the explicit two-loop calculation of the anomalous
dimension of A2

µ is presented.

1In the case of the maximal Abelian gauge the group index α labels the off-diagonal generators T α of SU(N),
with α = 1, ..., N(N − 1). The parameter ξ is the gauge fixing parameter of the maximal Abelian gauge.



10.2. Algebraic proof of the renormalizability of the local operator Aa
µAaµ. 153

10.2 Algebraic proof of the renormalizability of the local opera-
tor Aa

µA
aµ.

We begin by recalling the expression of the pure Yang-Mills action in the linear covariant gauges

S = SY M + SGF+FP (10.3)

= −1
4

∫
d4xF a

µνF aµν +
∫

d4x
(
ba∂µAaµ +

α

2
baba + ca∂µDab

µ cb
)

,

where

Dab
µ ≡ ∂µδab − gfabcAc

µ . (10.4)

In order to study the local composite operator Aa
µAaµ, we introduce it in the action by means of a

BRST doublet [59] of external sources (J, λ), namely

SJ = s

∫
d4x

(
1
2
λAa

µAaµ +
ξ

2
λJ

)
=

∫
d4x

(
1
2
JAa

µAaµ + λAaµ∂µca +
ξ

2
J2

)
, (10.5)

where s denotes the BRST nilpotent operator acting as

sAa
µ = −Dab

µ cb ,

sca =
1
2
gfabccbcc ,

sca = ba ,

sba = 0 ,

sλ = J ,

sJ = 0 . (10.6)

According to the local composite operators technique [23, 24, 176], the dimensionless parameter ξ is
needed to account for the divergences present in the vacuum Green function

〈
A2(x)A2(y)

〉
, which

turn out to be proportional to J2. As is apparent from expressions (10.3) and (10.5), the action
(SY M + SGF+FP + SJ) is BRST invariant

s (SY M + SGF+FP + SJ) = 0 . (10.7)

10.2.1 Ward identities.

In order to translate the BRST invariance (10.7) into the corresponding Slavnov-Taylor identity [59],
we introduce two further external sources Ωa

µ, La coupled to the non-linear BRST variations of Aa
µ and

ca

Sext =
∫

d4x

(
−ΩaµDab

µ cb +
1
2
gfabcLacbcc

)
, (10.8)

with

sΩa
µ = sLa = 0 . (10.9)

Therefore, the complete action

Σ = SY M + SGF+FP + SJ + Sext , (10.10)

obeys the following identities
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• The Slavnov-Taylor identity

S(Σ) =
∫

d4x

(
δΣ
δAa

µ

δΣ
δΩaµ

+
δΣ
δca

δΣ
δLa

+ ba δΣ
δca + J

δΣ
δλ

)
= 0 . (10.11)

• The linear gauge-fixing condition

δΣ
δba

= ∂µAaµ + αba . (10.12)

• The antighost equation

δΣ
δca + ∂µ

δΣ
δΩaµ

= 0 . (10.13)

Notice also that the additional shift symmetry in the antighost present in the linear covariant gauges

c → c + const. (10.14)

is automatically encoded in the antighost equation (10.13) . Indeed, integrating expression (10.13) on
space-time yields

∫
d4x

δΣ
δca = 0 , (10.15)

which expresses in a functional form the shift symmetry (10.14). Equations (10.13), (10.15) imply that
the antighost field can enter only through the combination (Ωaµ + ∂µca), forbidding the appearance
of the counterterm caca. As a consequence, the local operator Aa

µAaµ does not mix with caca in linear
α-gauges.

Let us also display, for further use, the quantum numbers of all fields and sources entering the action
Σ

Aµ c c b λ J Ω L
dim . 1 0 2 2 2 2 3 4

ghostnumber 0 1 −1 0 −1 0 −1 −2

Table 10.1:

10.2.2 Algebraic characterization of the general local invariant counterterm.

In order to characterize the most general local invariant counterterm which can be freely added to all
orders of perturbation theory [59], we perturb the classical action Σ by adding an arbitrary integrated
local polynomial Σcount in the fields and external sources of dimension bounded by four and with zero
ghost number, and we require that the perturbed action (Σ+ηΣcount) satisfies the same Ward identities
and constraints as Σ to the first order in the perturbation parameter η , i.e.

S(Σ + ηΣcount) = 0 + O(η2) ,

δ(Σ + ηΣcount)
δba

= ∂µAa
µ + αba + O(η2) ,

(
δ

δca + ∂µ
δ

δΩa
µ

)
(Σ + ηΣcount) = 0 + O(η2) . (10.16)
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This amounts to impose the following conditions on Σcount

BΣΣcount = 0 , (10.17)

and

δΣcount

δba
= 0 , (10.18)

δΣcount

δca + ∂µ
δΣcount

δΩa
µ

= 0 , (10.19)

where BΣ is the nilpotent linearized operator

BΣ =
∫

d4x

(
δΣ
δAa

µ

δ

δΩaµ
+

δΣ
δΩaµ

δ

δAa
µ

+
δΣ
δca

δ

δLa
+

δΣ
δLa

δ

δca
+ ba δ

δca + J
δ

δλ

)
, (10.20)

BΣBΣ = 0 . (10.21)

Taking into account that (J, λ) form a BRST doublet, from the general results on the cohomology of
Yang-Mills theories [60] it turns out that the external sources (J, λ) can contribute only through terms
which can be expressed as pure BΣ-variations. It follows thus that the invariant local counterterm
Σcount can be parametrized as

Σcount = −σ

4

∫
d4xF a

µνF aµν + BΣ∆−1 , (10.22)

where σ is a free parameter and ∆−1 is the most general local polynomial with dimension 4 and ghost
number −1, given by

∆−1 =
∫

d4x
(
a1Ωa

µAaµ + a2L
aca + a3∂µcaAaµ +

a4

2
gfabcc

acbcc

+a5b
aca + a6

λ

2
AaµAa

µ + a7αλcaca + a8
ξ

2
λJ

)
, (10.23)

with a1, ....., a8 arbitrary parameters. From the conditions (10.18), (10.19) it follows that

a3 = a1, a4 = a5 = a7 = 0 , (10.24)

so that ∆−1 reduces to

∆−1 =
∫

d4x

(
a1(Ωa

µ + ∂µca)Aaµ + a2L
aca + a6

λ

2
AaµAa

µ + a8
ξ

2
λJ

)
. (10.25)

Notice that the vanishing of the coefficient a7 implies the absence of the counterterm Jcaca. As already
underlined, this ensures that the operator AaµAa

µ does not mix with the ghost operator caca. Therefore,
for the final form of the invariant counterterm one obtains:

Σcount =
∫

d4x

(
− (σ + 4a1)

4
F a

µνF aµν + a1∂µAa
νF aµν + a2Ωa

µ(Dµc)a + a2∂µca(Dµc)a

+ a1Ωa
µ(∂µc)a − a1c

a∂2ca +
1
2
(2a1 + a6)JAa

νAaν + (a1 + a6 − a2)λ∂µcaAaµ

− a2

2
gfabcL

acbcc +
a8

2
ξJ2

)
. (10.26)
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It remains to discuss the stability of the classical action [59], i.e. to check that Σcount can be reabsorbed
in the classical action Σ by means of a multiplicative renormalization of the coupling constant g, the
parameters α and ξ, the fields {φ = A, c, c, b} and the sources {Φ = J, λ, L, Ω}, namely

Σ(g, ξ, α, φ, Φ) + ηΣcount = Σ(g0, ξ0, α0, φ0, Φ0) + O(η2) , (10.27)

with the bare fields and parameters defined as

Aa
0µ = Z

1/2
A Aa

µ , Ωa
0µ = ZΩΩa

µ , g0 = Zgg ,

ca
0 = Z1/2

c ca , La
0 = ZLLa , α0 = Zαα ,

ca
0 = Z

1/2
c ca , J0 = ZJJ , ξ0 = Zξξ ,

ba
0 = Z

1/2
b ba , λ0 = Zλλ . (10.28)

The parameters σ, a1, a2, a6, a8 turn out to be related to the renormalization of the gauge coupling
constant g, of Aa

µ, ca, J , λ, and ξ , according to

Zg = 1− η
σ

2
,

Z
1/2
A = 1 + η

(σ

2
+ a1

)
,

Z1/2
c = 1− η

(
a1 + a2

2

)
,

ZJ = 1 + η (a6 − σ) ,

Zλ = 1 + η

(
a6 +

a1 − a2 − σ

2

)
,

Zξ = 1 + η (a8 − 2a6 + 2σ) . (10.29)

Concerning the other fields and the sources Ωa
µ, La, it can be verified that they are renormalized as

Zc = Zc , Zb = Z−1
A , ZΩ = Z1/2

c

ZL = Z
1/2
A , Zα = ZA . (10.30)

This completes the proof of the multiplicative renormalizability of the local composite operator A2
µ in

linear covariant gauges. Finally, it is useful to observe that, from eqs.(10.29), one has

Zλ = ZJ Z1/2
c Z

1/2
A , (10.31)

from which it follows that the anomalous dimension of A2
µ turns out to be related to that of the

composite operator Aa
µ∂µca

γA∂c = γA2 + γc + γA , (10.32)

where γc, γA, γA2 , and γA∂c are the anomalous dimensions of the Faddeev-Popov ghost ca, of the
gauge field Aa

µ, of the operator A2
µ, and of the composite operator Aa

µ∂µca, which are defined as

γc = µ∂µ ln Z1/2
c , γA = µ∂µ ln Z

1/2
A , γA2 = µ∂µ ln ZJ , γA∂c = µ∂µ ln Zλ ,

(10.33)
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where µ is the renormalization scale. As expected, property (10.32) relies on the fact that Aa
µ∂µca is

the BRST variation of 1
2A2

µ, i.e.

s
AaµAa

µ

2
= −Aa

µ∂µca . (10.34)

Although we did not consider matter fields in the previous analysis, it can be checked that the renor-
malizability of A2

µ and the relation (10.32) remain unchanged if matter fields are included.

10.3 Calculation of the two-loop anomalous dimension of A2
µ.

We now turn to the computation of the anomalous dimension of A2
µ in an arbitrary linear gauge. The

method exploits the lack of mixing in the linear covariant gauges between A2
µ and the other dimension

two Lorentz scalar zero ghost number operator c̄aca, which we have already noted. For instance, in
the Curci-Ferrari gauge although both operators mix there is a combination, O = 1

2
A2

µ + αc̄aca, which
remains multiplicatively renormalizable. Prior to the proof of [153] that the anomalous dimension of O
was related to the β-function and the gluon anomalous dimension, γO(a) was explicitly computed at
three loops in MS in [87]. That method involved substituting the operator in a ghost two-point function
with a non-zero momentum flowing through the operator itself and one external ghost momentum
nullified. This configuration allowed for the application of the Mincer algorithm, [203], written in the
symbolic manipulation language Form, [156, 204]. A ghost two-point function was chosen to avoid
the appearance of spurious infrared infinities which would arise for this momentum configuration if the
external legs were gluons. To determine γA2(a) in the linear gauges we are forced into the same approach
as [87] due to the infrared issue with gluon external legs. Hence, we have renormalized the momentum
space Green’s function 〈ca(p) 1

2
[A2

µ](−p)c̄b(0)〉 where p is the external momentum. Clearly, this has
no tree term and therefore to deduce γA2(a) at n-loops requires renormalizing the Green’s function at
(n + 1)-loops as the one-loop term corresponds to the tree term of 〈Aa

µ(p) 1
2
[A2

µ](−p)Ab
ν(0)〉. This is

evident, for example, by drawing one- and two-loop diagrams for the various Green’s functions based on
the interactions of the Yang-Mills action, eq.(10.3). Since the Mincer algorithm currently only extracts
the simple poles in ε in dimensional regularization to three loops, where d = 4 − 2ε, this means we have
only computed γA2(a) to two loops. Though this will be sufficient to deduce the effective potential of
A2

µ to one-loop. The Feynman diagrams for our Green’s function are generated with Qgraf, [181],
and converted into Form input notation, [87]. At one-loop there is one diagram which plays the role
of the tree diagram and at two loops there are 15 diagrams. The bulk of the calculation, however, is
in the evaluation of the 314 three-loop graphs. Since there is no operator mixing we can apply the
rescaling technique of [88] for automatic multiloop computations to find the renormalization constant
ZA2 . From this we deduce

γA2(a) = [(35 + 3α)CA − 16TF Nf ]
a

6

+
[(

449 + 33α + 18α2
)
C2

A − 280CATF Nf − 192CF TF Nf

] a2

24
+ O(a3) (10.35)

in the MS scheme where Nf is the number of quarks and the colour group Casimirs are defined by
Tr

(
T aT b

)
= TF δab, T aT a = CF I and facdf bcd = CAδab. In deriving (10.35) from the corresponding

renormalization constant we have verified that the double pole in ε is correctly reproduced for all α.
Moreover, (10.35) reduces to the Landau gauge expression of [174].
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10.4 Conclusion.

We have investigated the renormalizability of the dimension two operator A2
µ in arbitrary covariant

linear gauges in Yang-Mills theories, due to the possibility that it might condense and develop a non-
zero vacuum expectation value. This would generalize to these gauges previous results obtained in the
Landau gauge [34, 33, 175, 37, 38, 42, 197]. One feature of our analysis is that, unlike the Curci-Ferrari
gauges [87, 199], the operator A2

µ does not mix with the other dimension two local composite operator
caca. This is a general feature of the linear covariant α-gauges, present also in the Landau gauge [153],
α = 0, which is a consequence of the additional shift symmetry in the antighost (10.14). Importantly
the operator A2

µ can thus be treated in isolation as it does not require any ghost dependent operator.

Finally, we underline that the multiplicative renormalizability of A2
µ and the explicit knowledge of

its anomalous dimension for all α, eq.(10.35), are central ingredients towards the construction of a
renormalizable effective potential for studying the possible condensation of this operator and the related
dynamical mass generation, as was carried out in the Landau [42, 197] and Curci-Ferrari [178] gauges.
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We construct the multiplicatively renormalizable effective potential for the mass dimension two lo-
cal composite operator Aa

µAµa in linear covariant gauges. We show that the formation of
〈
Aa

µAµa
〉

is
energetically favoured and that the gluons acquire a dynamical mass due to this gluon condensate. We
also discuss the gauge parameter independence of the resultant vacuum energy.

11.1 Introduction.

In a previous paper [205], we took the first step towards constructing a renormalizable effective potential
for the local composite operator (LCO) A2

µ ≡ Aa
µAµa in linear covariant gauges. It was shown within

the algebraic renormalization formalism [59, 60] that A2
µ is multiplicatively renormalizable to all orders

in perturbation theory. At the same time, the anomalous dimension of A2
µ was explicitly computed to

three loops in the MS scheme as a function of the gauge fixing parameter, α, where α = 0 corresponds
to the Landau gauge. The computation exploited the fact that in linear covariant gauges the operator
does not mix, for example, with ghost operators of dimension two with the same quantum numbers.

The operator A2
µ has recently received widespread interest in Yang-Mills theory in the Landau gauge. Its

relevance has been advocated both from a theoretical point of view as well as from lattice simulations
[33, 34, 175, 37, 38]. Analytic results in favour of a non-zero value for the condensate

〈
A2

µ

〉
in

the Landau gauge have been obtained recently, [42, 184]. Further, the inclusion of quarks has been
considered in [197]. Motivated by the result of [87] it has been shown in [153] that A2

µ is multiplicatively
renormalizable to all orders in the Landau gauge, but its anomalous dimension is given by a combination
of the gauge beta function, β(a), and the anomalous dimension, γA(a), of the gluon field, according
to the relation [87, 153]

γA2(a) = −
(

β(a)
a

+ γA(a)
)

, a =
g2

16π2
. (11.1)
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An important consequence of the formation of the
〈
A2

µ

〉
condensate in the Landau gauge is the dy-

namical generation of a gluon mass mgluon ≈ 500MeV [42]. Lattice simulations of the SU(2) gluon
propagator in the Landau gauge report mgluon ≈ 600MeV, [48]. Gluon masses have also been extracted
from lattice methods in the Laplacian [47, 43] and maximal Abelian gauges [49, 50]. Earlier the pairing
of gluons was discussed in connection with mass generation as a result of the instability of the perturba-
tive Yang-Mills vacuum [28, 29, 207, 31, 30, 201]. A dynamical gluon mass might also be important, for
example, in connection with the glueball spectra, [202, 200]. A dimension two gluon condensate

〈
A2

i

〉
was already introduced in [200], where the Coulomb gauge was considered. Furthermore, a dynamical
gluon mass is part of a certain criterion for confinement introduced by Kugo and Ojima, [177]. For a
recent review see [20].

It is no coincidence that the Landau gauge is employed in the search for a gluon condensate of mass di-
mension two. As is well known, there does not exist a local, gauge-invariant operator of mass dimension
two in Yang-Mills theories. However, a non-local gauge invariant dimension two operator can be con-

structed by minimizing A2
µ along each gauge orbit [110, 187, 143], A2

min ≡ (V T )−1 minU

∫
d4x

(
AU

µ

)2

where V T is the space time volume and U is a generic SU(N) transformation. This operator A2
min

is related to the so-called fundamental modular region (FMR), which is the set of absolute minima of

(V T )−1
∫

d4x
(
AU

µ

)2
. In the Landau gauge, ∂µAaµ = 0, so that A2

min and A2
µ coincide within the

FMR. As such, a gauge invariant meaning can indeed be attached to
〈
A2

µ

〉
in the Landau gauge, as it

was also expressed in [42].

Another interesting property of the Landau gauge is that the operator A2
µ is BRST invariant on-shell. If

one considered alternative gauges to the Landau gauge, one could search for a class of gauges in which
the operator A2

µ can be generalized to a mass dimension two operator while maintaining the on-shell
BRST invariance. Doing so, one should consider a class of non-linear covariant gauges, which are
the so-called Curci-Ferrari gauges [84, 85], where A2

µ is generalized to the mixed gluon-ghost operator(
1
2Aa

µAµa + αcaca
)

[83, 144]. The latter operator is indeed BRST invariant on-shell [83, 144], and has
been proven to be multiplicatively renormalizable to all orders [199], and to give rise to a dynamical gluon
mass in the Curci-Ferrari gauge [178]. Moreover, in [206], the physical meaning of

(
1
2Aa

µAµa + αcaca
)

was discussed, based on on-shell BRST invariance.

In the maximal Abelian gauge, which is a renormalizable gauge in the continuum [71, 72], one should
consider the operator

(
1
2Aβ

µAµβ + ξcβcβ
)

where the group index β labels the off-diagonal generators
of SU(N) with β = 1, . . . , N(N − 1) and ξ is the gauge parameter of the maximal Abelian gauge.
This operator also enjoys the property of being both BRST invariant on-shell [83, 144] and multi-
plicatively renormalizable to all orders [199, 179]. Although the effective potential for the condensate〈

1
2Aβ

µAµβ + ξcβcβ
〉

has not yet been obtained, we expect it to have a non-vanishing vacuum expecta-
tion value, which would result in a dynamical mass for the off-diagonal gluons. This is based on the
close similarity between the maximal Abelian gauge and the Curci-Ferrari gauge and hence the results
of [178].

More commonly, the Landau gauge is a special case of the well known linear covariant gauges. Although
the operator A2

µ is not even BRST invariant on-shell in these gauges, it is still renormalizable to any
order in perturbation theory [205]. This is due to the fact that, thanks to the additional shift symmetry,
c → c + const, of the antighost in the linear covariant gauges, the composite operator A2

µ does not
mix into the dimension two ghost operator cc. In this article, we will construct the effective potential
for the dimension two condensate

〈
A2

µ

〉
in linear gauges and show that a non-vanishing value of

〈
A2

µ

〉
is energetically favourable, resulting in dynamical gluon mass generation.

The paper is organized as follows. In section 11.2, we briefly review the local composite operators
formalism and explicitly calculate the one-loop effective potential. In section 11.3, we discuss the gauge
parameter independence of the vacuum energy which requires an extension of the LCO formalism. The
behaviour of the gluon propagator is discussed briefly in section 11.4 whilst we provide concluding
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comments in section 11.5.

11.2 LCO formalism and effective potential for A2
µ.

11.2.1 Construction of a renormalizable effective action for A2
µ.

We begin with the Yang-Mills action in linear covariant gauges

S = SY M + SGF+FP (11.2)

= −1
4

∫
d4xF a

µνF aµν +
∫

d4x
(
ba∂µAaµ +

α

2
baba + ca∂µDab

µ cb
)

,

where

Dab
µ ≡ ∂µδab − gfabcAc

µ , (11.3)

is the covariant derivate in the adjoint representation. In order to study the local composite operator
A2

µ, we introduce it into the action by means of a BRST doublet [59] of external sources (J, λ), namely

SJ = s

∫
d4x

(
1
2
λA2

µ +
ζ

2
λJ

)
=

∫
d4x

(
1
2
JA2

µ + λAa
µ∂µca +

ζ

2
J2

)
, (11.4)

where s denotes the BRST nilpotent operator acting as

sAa
µ = −Dab

µ cb ,

sca =
1
2
gfabccbcc ,

sca = ba ,

sba = 0 ,

sλ = J ,

sJ = 0 . (11.5)

According to the local composite operator technique [42, 23, 24, 176], the dimensionless parameter ζ
is needed to account for the divergences present in the vacuum Green function

〈
A2

µ(x)A2
ν(y)

〉
, which

turn out to be proportional to J2. As is apparent from the expressions (11.2) and (11.4), the action
(SY M + SGF+FP + SJ) is BRST invariant

s (SY M + SGF+FP + SJ) = 0 . (11.6)

As was shown in [205], the action (SY M + SGF+FP + SJ) enjoys the property of being multiplicatively
renormalizable to all orders of perturbation theory.

To obtain the effective potential, we set the source λ to zero and consider the renormalized generating
functional

exp−iW(J) =
∫

[Dϕ] exp iS(J) , (11.7)

with

S(J) = SY M + SGF+FP + SCT +
∫

d4x

(
Z2J

A2
µ

2
+ (ζ + δζ)

J2

2

)
, (11.8)
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where ϕ denotes the relevant fields and SCT is the usual counterterm contribution. Also, δζ is the
counterterm accounting for the divergences proportional to J2. The bare quantities are given by [205]

Aµa
o = Z

1/2
A Aµa , ca

o = Z1/2
c ca , ca

o = Z1/2
c ca , ba

o = Z
−1/2
A ba ,

go = Zgg , αo = ZAα , ζo = Zζζ , Jo = ZJJ , (11.9)

where Zζζ = ζ + δζ and ZJ = Z2
ZA

. The functional W(J) obeys the renormalization group equation
(RGE)

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γA2(g2)

∫
d4xJ

δ

δJ
+ η(g2, ζ)

∂

∂ζ

)
W(J) = 0 , (11.10)

where

β(g2) = µ
∂

∂µ
g2 ,

γα(g2) = µ
∂

∂µ
ln α = µ

∂

∂µ
ln Z−1

A = −2γA(g2) ,

γA2(g2) = µ
∂

∂µ
ln ZJ ,

η(g2, ζ) = µ
∂

∂µ
ζ . (11.11)

From the bare Lagrangian, we infer that

ζoJ
2
o = µ−ε(ζ + δζ)J2 , (11.12)

where we will use dimensional regularization throughout with the convention that d = 4− ε. Hence

µ
∂

∂µ
ζ = η(g2, ζ) = 2γA2(g2)ζ + δ(g2, α) , (11.13)

with

δ(g2, α) =
(

ε + 2γA2(g2, α)− β(g2)
∂

∂g2
− αγα(g2, α)

∂

∂α

)
δζ . (11.14)

Now, we are faced with the problem of the hitherto arbitrary parameter ζ. As explained in [42, 23, 24,
176], setting ζ = 0 would give rise to an inhomogeneous RGE for W(J)

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γA2(g2)

∫
d4xJ

δ

δJ

)
W(J) = δ(g2, α)

∫
d4x

J2

2
, (11.15)

and a non-linear RGE for the effective action Γ for the composite operator A2
µ. This problem can be

overcome by making ζ a function of g2 and α so that, if g2 runs according to β(g2) and α according to
γα(g2), ζ(g2, α) will run according to (11.13). This is accomplished by setting ζ equal to the solution
of the differential equation

(
β(g2)

∂

∂g2
+ αγα(g2, α)

∂

∂α

)
ζ(g2, α) = 2γA2(g2)ζ(g2, α) + δ(g2, α) . (11.16)

Since ζ(g2, α) now automatically runs according to its RGE, W(J) obeys the homogeneous renormali-
zation group equation

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γA2(g2)

∫
d4xJ

δ

δJ

)
W(J) = 0 . (11.17)
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The final step in the formal construction of the effective potential for
〈
A2

µ

〉
is the removal of the J2

terms from the Lagrangian by means of a renormalized Hubbard-Stratonovich transformation. By this
procedure, the energy interpretation of the effective action is made explicit again and the conventional
1PI machinery applies. We insert unity written as

1 =
1
N

∫
[Dσ] exp


i

∫
d4x


− 1

2Zζζ

(
σ

g
− Z2

A2
µ

2
− ZζζJ

)2




 , (11.18)

with N the appropriate normalization factor, in (11.7) to arrive at the Lagrangian

L(Aµ, σ) = −1
4
F 2

µν + LGF+FP + LCT − σ2

2g2Zζζ
+

1
2

Z2

g2Zζζ
gσA2

µ −
1
8

Z2
2

Zζζ

(
A2

µ

)2
, (11.19)

while

exp−iW(J) =
∫

[Dϕ] exp iSσ(J) , (11.20)

Sσ(J) =
∫

d4x

(
L(Aµ, σ) + J

σ

g

)
. (11.21)

Now, the source J appears as a linear source term for σ
g . From (11.7) and (11.20), one has the following

identification

δW(J)
δJ

∣∣∣∣
J=0

= −
〈

A2
µ

2

〉
= −

〈
σ

g

〉
, (11.22)

where we will not write the renormalization factors from now on. This equation states that the gauge
condensate

〈
A2

µ

〉
is related to the expectation value of the field σ, evaluated with the new action,∫

d4xL(Aµ, σ), of (11.19).

Although we have not considered the contribution from (massless) quark fields in the previous analysis,
it can be checked that the results remain unchanged if matter fields are included.

11.2.2 Explicit calculation of the one-loop effective potential.

Firstly, we will determine the renormalization group function δ(g2, α) as defined in (11.14). All the
following results will be within the MS scheme. The value for β(g2) can be found in the literature. In
d dimensions, one has

β(g2) = −εg2 − 2
(
β0g

4 + β1g
6 + O(g8)

)
,

β0 =
1

16π2

(
11
3

CA − 4
3
TF Nf

)
,

β1 =
1

(16π2)2

(
34
3

C2
A − 4CF TF Nf − 20

3
CATF Nf

)
. (11.23)

where the Casimirs of the colour group are defined by Tr(T aT b) = TF δab, T aT a = CF I, facdf bcd = CAδab

and Nf is the number of quark flavours. For γα(g2), we use the relation γα(g2) = −2γA(g2). The
anomalous dimension γA(g2) of the gluon field in linear covariant gauges was calculated at three loops
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in MS in [88]. Adapting that result to our convention, the anomalous dimension of the gauge parameter
is

γα(g2) = a0g
2 + a1g

4 + O(g6) ,

a0 =
1

16π2

(
CA

(
13
3
− α

)
− 8

3
TF Nf

)
,

a1 =
1

(16π2)2

(
C2

A

(
59
4
− 11

4
α− 1

2
α2

)
− 10CANfTF − 8CF NfTF

)
. (11.24)

The anomalous dimension, γA2(g2), of the composite operator A2
µ was calculated in [205] and reads

γA2(g2) = γ0g
2 + γ1g

4 + O(g6) ,

γ0 =
1
6

1
16π2

[(35 + 3α) CA − 16TF Nf ] ,

γ1 =
1
24

1
(16π2)2

[(
449 + 33α + 18α2

)
C2

A − 280CATF Nf − 192CF TF Nf

]
. (11.25)

In order to determine δ(g2, α), we still require the counterterm δζ. In principle, this can be directly
calculated from the divergences inW(J) when the propagator for a gluon with mass J is used. However,
a less cumbersome way to compute δζ was described in [197]. It is based on the fact that the divergences
arise in the O(J2) term and therefore that part of the Green’s function which contains these divergences
is equivalent to the Green’s function with a double insertion of the JA2

µ operator. More specifically,
one has two external J insertions with a non-zero momentum flowing into one insertion where the
only internal couplings are those of the usual QCD action. Moreover, one does not require massive
propagators but instead can use massless fields which simplifies the calculation. Therefore one is reduced
to computing a massless two-point function for which the Mincer algorithm, [203], was designed. We
used the version written in Form, [204, 156], where the Feynman diagrams are generated by Qgraf,
[181], to determine the divergence structure to three loops. Although we only require the result to two
loops the extra loop evaluation in fact acts as a non-trivial check on the two-loop result. This is because
the emergence of the correct double and triple poles in ε at three loops, in a way which is consistent
with the renormalization group, verifies that the single and double poles of the two-loop expression for
δζ are correct. We found

δζ =
2
ε

NA

16π2

(
−3

2
− α2

2

)
+

NAg2

(16π2)2

[
4
ε2

(
CA

(
35
8

+
3
8
α +

3
8
α2 +

3
8
α3

)
− 2TF Nf

)

+
2
ε

(
CA

(
−139

12
− 5

8
α− 1

2
α2 − 1

8
α3

)
+

8
3
TF Nf

)]
+ O(g4) , (11.26)

where NA is the dimension of the adjoint representation of the colour group. Assemblying our results
leads to

δ(g2, α) = δ0 + δ1g
2 + O(g4) ,

δ0 =
NA

16π2

(−3− α2
)

,

δ1 =
1
6

NA

(16π2)2
(
CA

(−278− 15α− 12α2 − 3α3
)

+ 64TF Nf

)
. (11.27)

As a check we see that δ(g2, α) contains no poles for ε → 0. Further, the expressions (11.27) lead
to the same results which were obtained earlier in the case of the Landau gauge (α = 0), as can be
inferred from [42] without quarks and [197] with quarks.
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From the renormalization group functions (11.23), (11.24), (11.25) and (11.27), it is easy to see that
the equation (11.16) can be solved for by expanding ζ(g2, α) in a Laurent series as

ζ(g2, α) =
ζ0(α)

g2
+ ζ1(α) + O(g2) . (11.28)

Substituting this expression in equation (11.16), we obtain

2β0ζ0 + αa0
∂ζ0

∂α
= 2γ0ζ0 + δ0 , (11.29)

2β1ζ0 + αa0
∂ζ1

∂α
+ αa1

∂ζ0

∂α
= 2γ0ζ1 + 2γ1ζ0 + δ1 . (11.30)

Thus (11.29) gives

ζ0(α) =
2αC0 + 3

(
78− 26α2 + 3α3 + 18α ln |α|)CANA + 48

(
α2 − 3

)
NANfTF

2 ((3α− 13)CA + 8NfTF )2
, (11.31)

with C0 a constant of integration. As a consequence of the already rather complicated structure of ζ0,
we will determine ζ1 without quarks present corresponding to Nf = 0 since the expression for ζ1 with
Nf 6= 0 is several pages long. Using Mathematica, we find

ζ1(α) = − 1
1220736π2(13− 3α)4

(
−1220736π2α35/13 |−13 + 3α|4/13

C1

+ 12716C0α
2

(
−442− 132α + 54α2 − 1287

(
1− 3α

13

)4/13

α2F1

[
4
13

,
4
13

;
17
13

;
3α

13

])
CA

+

(
1697175909

(
1− 3α

13

)4/13

α3
3F2

[
4
13

,
4
13

,
4
13

;
17
13

,
17
13

;
3α

13

]

+ 3335904
(

1− 3α

13

)4/13

α4
3F2

[
17
13
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17
13

,
17
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;
30
13

,
30
13

;
3α

13

]

+ 17
(−396870474 + 368850105α− 48761440α2 + 2066214α3 + 1928718α4

− 1004751α5 + 60588α6 − 12894024
(

1− 3α

13

)4/13

α2
2F1

[
− 9

13
,− 9

13
;

4
13

;
3α

13

]

− 833976
(

1− 3α

13

)4/13

α4
2F1

[
4
13

,
17
13

;
30
13

;
3α

13

]
− 8926632α2 ln |α|

+ 2059992α3 ln |α|+ 833976
(

1− 3α

13

)4/13

α4
2F1

[
4
13

,
17
13

;
30
13

;
3α

13

]
ln |α|

− 43758α3 (−1961 + 702 ln |α|))) NA

)
, (11.32)

where C1 is a constant of integration and the (generalized) hypergeometric function is

pFq [a1, · · · , ap; b1, · · · , bq; z] =
+∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
, (11.33)

where

(a)k = a(a + 1) · · · (a + k − 1) , (11.34)
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is the Pochhammer symbol. We note that ζ0(α = 0) = 9NA

13CA
and ζ1(α = 0) = 161

832
NA

π2 , which recovers
the Landau gauge results of [42, 197]. Further, the constants of integration C0 and C1 do no enter the
Landau gauge results.

From expression (11.19), we deduce that the tree level gluon mass is provided by

m2 =
gσ

ζ0
, (11.35)

while the one-loop effective potential becomes

V1(σ) =
σ2

2ζ0

(
1− ζ1

ζ0
g2

)
+

1
2

ln det
[
δab

(
δµν(∂2 + m2)−

(
1− 1

α

)
∂µ∂ν

)]

=
σ2

2ζ0

(
1− ζ1

ζ0
g2

)
+

NA

2
[
(d− 1)tr ln

(
∂2 + m2

)
+ tr ln

(
∂2 + αm2

)]
. (11.36)

In dimensional regularization and using the MS scheme, one finds

V1(σ) =
σ2

2ζ0

(
1− ζ1

ζ0
g2

)
+

3NA

64π2

g2σ2

ζ2
0

(
−5

6
+ ln

gσ

ζ0µ
2

)
+

NA

64π2

α2g2σ2

ζ2
0

(
−3

2
+ ln

αgσ

ζ0µ
2

)
,

(11.37)

where µ is the renormalization scale. It can be easily checked that the infinities in the effective potential
cancel when the counterterms are included.

Next, we look for a non-trivial minimum of the effective potential, which amounts to solving the gap
equation dV

dσ = 0. To avoid possibly large logarithms, we will set µ2 = m2 = gσ
ζ0

in the gap equation,

dV

dσ

∣∣∣∣
µ2= gσ

ζ0

=
σ

ζ0

(
1− ζ1

ζ0
g2

)
+

3NA

32π2

g2σ

ζ2
0

(
−5

6

)
+

3NA

64π2

g2σ

ζ2
0

+
NA

32π2

α2g2σ

ζ2
0

(
−3

2
+ ln α

)
+

NA

64π2

α2g2σ

ζ2
0

= 0, (11.38)

and use the RGE to sum leading logarithms. Defining y ≡ g2N
16π2 , we find as a solution of (11.38)

σ = 0 or y =
CAζ0

16π2ζ1 + NA

2 (1 + α2 − α2 ln |α|) . (11.39)

The first solution corresponds to the trivial vacuum, while the second one leads to

m = ΛMSe
3

22y , (11.40)

where the one-loop formula for the coupling constant

g2(µ) =
1

β0 ln µ2

Λ2
MS

, (11.41)

was used. The vacuum energy is given by

Evac = −1
2

NA

64π2

(
3 + α2

)
m4 . (11.42)
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We now consider the numerical evaluation of our results and restrict ourselves to the colour group

SU(3). For SU(N) one has TF = 1
2 , CF = N2−1

2N , CA = N and NA = N2 − 1. For completeness, we
quote the results for the Landau gauge α = 0.

yLandau =
36
187

≈ 0.193 , (11.43)

mLandau = e
17
24 ΛMS ≈ 2.031ΛMS , (11.44)

ELandau
vac = − 3

16π2
e

17
6 Λ4

MS
≈ −0.323Λ4

MS
. (11.45)

The results for general α are displayed in the Figures 11.1-11.3.
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Figure 11.1: y as a function of α.
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-0.7-0.6 -0.5 -0.4-0.3 -0.2 -0.1 0
a

-1.2

-1

-0.8

-0.6

-0.4

E
v
a
c

-0.2 -0.1 0 0.1 0.2
a

-0.37

-0.36

-0.35

-0.34

-0.33

-0.32

E
v
a
c

0 0.2 0.4 0.6 0.8 1
a

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

E
v
a
c

Figure 11.3: Evac as a function of α (in units ΛMS = 1).

For the moment, we have set C0 = C1 = 0. Evidently, y should certainly be positive and also relatively
small to have a sensible expansion. Hence, we conclude from Figure 11.1 that we should restrict the
range of values for α further. We also see that m becomes rapidly larger and Evac becomes rapidly more
and more negative as α gets more negative. A more urgent problem is the fact that the vacuum energy
Evac depends on the gauge parameter α. Since Evac is a physical quantity, it should be independent on
the gauge parameter α. In the next section, we shall give a detailed account of this gauge parameter
dependence. We shall see that it is related to the impossibility of evaluating the effective potential
to arbitrary high loop orders. Further, we shall provide a simple way to circumvent this problem and
obtain a vacuum energy which is independent of α.
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11.3 Investigation of the gauge parameter dependence.

One possible explanation as to why Evac depends on α could reside in the values of the constants of
integration C0 and C1 we have chosen. With another choice for these constants, it could be that Evac

does not depend in α, or equivalently Evac = ELandau
vac . This can be investigated by considering the

expression (11.42) for Evac(α,C0, C1). In order to have the same Evac for each value of α, we should
solve the following equation

dEvac

dα
= 0 ⇔ 2αm4 + 4(α2 + 3)m3 dm

dα
= 0

⇔ α− 3
11y2

(3 + α2)
(

∂y

∂α
+

∂y

∂ζ0

∂ζ0

∂α
+

∂y

∂ζ1

∂ζ1

∂α

)
= 0 , (11.46)

in terms of C0 and C1. However, the solutions of this equation depend on α, and this is not allowed
since C0 and C1 should be α independent constants. This means that the α-dependence of Evac cannot
be eliminated by a suitable choice of C0 and C1.

11.3.1 BRST symmetry and gauge parameter independence.

Let us now turn to a more general analysis. Consider again the generating functional (11.20). We have
the following identification, ignoring the overall normalization factors

exp−iW(J) =
∫

[Dϕ] exp iSσ(J)

=
1
N

∫
[DϕDσ] exp i


S(J) +

∫
d4x


− 1

2ζ

(
σ

g
− A2

µ

2
− ζJ

)2




 , (11.47)

where S(J) and Sσ(J) are given respectively by (11.8), and (11.21). Since

d

dα

1
N

∫
[Dσ] exp


i

∫
d4x


− 1

2ζ

(
σ

g
− A2

µ

2
− ζJ

)2




 =

d

dα
1 = 0 , (11.48)

we find

−dW(J)
dα

=
〈

s

∫
d4x

(
cb

2

)〉

J=0

+ terms proportional to J , (11.49)

which follows by noticing that

dS(J)
dα

=
∫

d4x

(
baba

2
+

∂ζ

∂α

J2

2

)

= s

∫
d4x

(
cb

2

)
+ terms proportional to J . (11.50)

We see that the first term in the right hand side of (11.50) is an exact BRST variation. As such,
its vacuum expectation value vanishes. This is the usual argument to prove the gauge parameter
independence in the BRST framework [59]. Of course, this is based on the assumption that the BRST
symmetry is not broken. Notice therefore that there does not exist an operator G with A2

µ = sG, so
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that a non-vanishing vacuum expectation value for the condensate
〈
A2

µ

〉
does not break the BRST

invariance. Indeed, from

sσ =
g

2
sA2

µ = −gAa
µ∂µca , (11.51)

one can easily check that

s

∫
d4xL(Aµ, σ) = 0 , (11.52)

so that we have a BRST invariant σ-action.

The rest of the argument is based on the fact that J = 0 when the vacuum is considered, so that we

are left with only the BRST exact term in (11.49). More formally, the effective action Γ(σ) ≡ Γ
(

σ
g

)

is related to W(J) through a Legendre transformation

Γ
(

σ

g

)
= −W(J)−

∫
d4yJ(y)

σ(y)
g

. (11.53)

The effective potential V (σ) is then defined as

−V (σ)
∫

d4x = Γ
(

σ

g

)
. (11.54)

Let σmin be the solution of

dV (σ)
dσ

= 0 . (11.55)

Since

δ

δ
(

σ
g

)Γ = −J , (11.56)

one finds

σ = σmin ⇒ J = 0 , (11.57)

and invoking (11.57), from (11.53) and (11.54) we derive

d

dα
V (σ)

∣∣∣∣
σ=σmin

∫
d4x =

d

dα
W(J)

∣∣∣∣
J=0

. (11.58)

Finally, combining (11.49) and (11.58)

d

dα
V (σ)

∣∣∣∣
σ=σmin

= 0 . (11.59)

From this, we conclude that the vacuum energy Evac should be independent of the gauge parameter α.

Apparently, our explicit result (11.42) for Evac is not in agreement with the above proof that Evac is
the same for each α. If we examine the proof in more detail we notice that a key argument is that J
becomes zero at the end of the calculation. In practice, this is achieved by solving the gap equation.
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Now, in a power series expansion in the coupling constant, the derivative of the effective potential with
respect to σ is something of the form

(
v0 + v1g

2 + 0(g4)
)
σ , (11.60)

where we assume that we work up to order g2 and that we have chosen µ so that the logarithms vanish.
Then, the gap equation corresponding to (11.60) reads

v0 + v1g
2 + O(g4) = 0 . (11.61)

Due to (11.54) and (11.56), one also has

J = g
(
v0 + v1g

2 + O(g4)
)
σ . (11.62)

This means that, if we solve the gap equation (11.61) up to certain order, we have

J = g
(
0 + O(g4)

)
σ . (11.63)

We also have

∂ζ

∂α
=

∂ζ0

∂α

1
g2

+
∂ζ1

∂α
+ O(g4) . (11.64)

So, working to the order we are considering

∂ζ

∂α
J2 =

(
∂ζ0

∂α
v2
0 +

(
∂ζ0

∂α
2v0v1 +

∂ζ1

∂α
v2
0

)
g2 + O(g4)

)
σ2 . (11.65)

From the square of the gap equation (11.61),

v2
0 + 2v1v0g

2 + O(g4) = 0 , (11.66)

it follows that

∂ζ

∂α
J2 =

(
∂ζ1

∂α
v2
0g2 + O(g4)

)
σ2 . (11.67)

We see that, if one consistently works to the order we are considering, terms such as ∂ζ
∂αJ2 do not equal

zero although J = 0 to that order. Terms like those on the right hand side of (11.67) are cancelled by
terms which are formally of higher order. This has its consequences for the terms proportional to J in
(11.49). If one were able to work to infinite order, the problem would not arise. However, we do not
have this ability, and we are faced with a gauge parameter dependence slipping into Evac.

11.3.2 Circumventing the gauge parameter dependence.

We could resolve this issue by saying that the gauge parameter dependence of the vacuum energy should
become less and less severe as we go to higher orders, and that eventually it will drop out if we go to
infinite order. However, this is not very satisfactory, especially since we can surely never calculate the
potential up to infinite order. Also as is clear from the quite complicated expression for ζ1(α), which
will enter the differential equation for ζ2(α), a two-loop evaluation of the effective potential is already
almost out of the question.
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Therefore, we could try to modify the LCO formalism in order to circumvent the gauge parameter
dependence of Evac. Therefore, we consider the following action

S̃(J̃) = SY M + SGF+FP +
∫

d4x

[
J̃F(α)

A2
µ

2
+

ζ

2
F2(α)J̃2

]
, (11.68)

instead of (11.8) where, for the moment, F(α) is an arbitrary function of α of the form

F(α) = 1 + f0(α)g2 + f1(α)g4 + O(g6) , (11.69)

and J̃ is now the source. The generating functional becomes

exp−iW̃(J̃) =
∫

[Dφ] exp iS̃(J̃) . (11.70)

Taking the functional derivative of W̃(J̃) with respect to J̃ , we obtain

δW̃(J̃)

δJ̃

∣∣∣∣∣ eJ=0

= −F(α)

〈
A2

µ

2

〉
. (11.71)

Again, we insert unity via

1 =
1
N

∫
[Dσ̃] exp


i

∫
d4x


− 1

2ζ

(
σ̃

gF(α)
− A2

µ

2
− ζJ̃F(α)

)2




 , (11.72)

to arrive at the following renormalized Lagrangian

L̃(Aµ, σ̃) = −1
4
F 2

µν + LGF+FP − σ̃2

2g2F2(α)Zζζ
+

1
2

Z2

g2F(α)Zζζ
gσ̃A2

µ −
1
8

Z2
2

Zζζ

(
A2

µ

)2
+ J̃

σ̃

g
.

(11.73)

From the generating functional

exp−iW̃(J̃) =
∫

[Dφ] exp i

∫
d4xL̃(Aµ, σ̃) , (11.74)

it follows that

δW̃(J̃)

δJ̃

∣∣∣∣∣ eJ=0

= −
〈

σ̃

g

〉
⇒ 〈σ̃〉 = gF(α)

〈
A2

µ

2

〉
, (11.75)

where the anomalous dimension of σ̃ equals

γeσ(g2) =
µ

σ̃

∂σ̃

∂µ
=

β(g2)
2g2

+ γA2(g2) + µ
∂ lnF(α)

∂µ
. (11.76)

The lowest order gluon mass is now provided by

m2 =
gσ̃

ζ0
, (11.77)
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and the vacuum configurations are now determined by solving

dṼ (σ̃)
dσ̃

= 0 . (11.78)

with Ṽ (σ̃) the effective potential. In the MS scheme, the one-loop effective potential reads

Ṽ1(σ̃) =
σ̃2
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2f0 +

ζ1

ζ0

)
g2 +
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6
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. (11.79)

We included the counterterm contribution here to illustrate explicitly that Ṽ1(σ̃) is finite. With (11.76),
it can also be checked that

µ
d

dµ
Ṽ1(σ̃) = 0 + O(g4) . (11.80)

Now, we can continue with the determination of the one-loop vacuum energy, which will not only
depend on α, C0 and C1, but also on f0(α). We will determine an expression for f0(α) so that
Evac(α, C0, C1, f0(α)) does not depend on α. In the meantime, we could also absorb the constants of
integration C0 and C1 in f0(α) so that Evac does not depend on them either. Based on this, we will

immediately set C0 = C1 = 0. As usual, we put µ2 = geσ
ζ0

in the gap equation, which now reads

dṼ

dσ̃

∣∣∣∣∣
µ2= geσ
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=
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+
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+
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+ ln α

)
+
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64π2

α2g2σ̃

ζ2
0

= 0, (11.81)

to kill the logarithms. One finds, in addition to the trivial solution σ̃ = 0,

y =
CAζ0

16π2 (2f0ζ0 + ζ1) + NA

2 (1 + α2 − α2 ln |α|) , (11.82)

m = ΛMSe
3

22y , (11.83)

Evac = −1
2

NA

64π2

(
3 + α2

)
m4 . (11.84)

In principle, the analytic solution for f0(α) can be obtained by solving the following differential equation

dEvac

dα
= 0 ⇔ 2αm4 + 4(α2 + 3)m3 dm

dα
= 0

⇔ α− 3
11y2

(3 + α2)
(

∂y

∂α
+

∂y

∂ζ0

∂ζ0

∂α
+

∂y

∂ζ1

∂ζ1

∂α
+

∂y

∂f0

∂f0

∂α

)
= 0 . (11.85)

The quantity f0(α) constructed in this fashion will ensure Evac(α) is independent of the gauge parameter
α. However, we still have the freedom of choosing an initial condition. We will determine f0(α) so that
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Evac(α) = Evac(0) ≡ ELandau
vac . This amounts to choosing f0(α = 0) = 0. We can justify this choice

based on our remark in the introduction, which is that A2
µ coincides with the gauge invariant quantity

A2
min in the Landau gauge in the FMR [110, 187, 143].

Unfortunately, the differential equation (11.85) is very hard to solve analytically. We could solve
(11.85) and consequently y, m and Evac numerically. However, there is a more elegant way to obtain
the analytical solution for f0(α). Considering the colour group SU(3) for simplicity, then since we know
that by construction that Evac = ELandau

vac , we are able to write down the analytical solution for m as

m =
(

3e17/6

3 + α2

)1/4

ΛMS , (11.86)

where use was made of (11.45) and (11.84). Putting (11.86) in (11.83), we deduce that

y =
36

66 ln 3
3+α2 + 187

. (11.87)

Combining (11.82) and (11.87) finally gives the analytic expression for f0(α)

f0(α) =
ζ0
12

(
66 ln 3

3+α2 + 187
)
− 4

(
1 + α2 − α2 ln |α|)− 16π2ζ1

32π2ζ0
. (11.88)

We have displayed f0(α), y(α) and m(α) for the range of values − 13
3 < α < 13

3 in Figures 11.4-11.6.
As a check, we have also plotted, in Figure 11.7, Evac(α, f0(α)) as given in (11.84) to verify that
Evac(α, f0(α)) = ELandau

vac . We observe several features. Firstly, although f0(α) has some singularities
in

]− 13
3 , 13

3

[
, the quantities y, m and Evac are completely regular functions of α. Secondly, the expan-

sion parameter y remains relatively small, which makes our numerical predictions at least qualitatively
trustworthy. Thirdly, we also see that the value for the tree level mass does not change spectacularly
in the considered region. In the Feynman gauge α = 1, we have mFeynman = 1.89ΛMS.
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Figure 11.4: f0 as a function of α with − 13
3

< α < 13
3

.

Before ending this section, there are several other points. We have determined F(α) with the renor-
malization scale µ chosen in such a way that the logarithms vanish. Other choices of µ are of course
also valid. We did not explicitly write this µ dependence of F(α) in (11.69).

Also, the procedure we have described here applies of course at higher order. For example, at two-loops,
f1(α) will be required to remove the α dependence. If we were to work to infinite order in g2, we could
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(in units ΛMS = 1).

transform the action S̃(J̃) (11.68) exactly into the action S(J) (11.8) by means of the transformation

J̃ =
J

F(α)
. (11.89)

The corresponding transformation for the σ and σ̃ fields reads

σ̃ = F(α)σ , (11.90)

which will transform the effective potential Ṽ∞(σ̃) exactly into V∞(σ). As such, the constructed
vacuum energy will be the same in both cases and independent of the choice of α.

11.4 Gluon propagator in linear covariant gauges.

In [48], the gluon propagator in the Landau was investigated, and a fit of the lattice results gave
evidence for a gluon mass. In the Landau gauge, the lattice also gives evidence for the existence of
a non-zero

〈
A2

µ

〉
condensate, based on the discrepancy in the 10 GeV region, between the behaviour
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Figure 11.7: Evac as a function of α with − 13
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(in units ΛMS = 1).

of the observed lattice gluon propagator and strong coupling constant and the expected perturbative
behaviour. The results could be matched together using an operator product expansion analysis with
a non-zero

〈
A2

µ

〉
condensate [175, 37, 38]. A combined lattice fit resulted in

〈
A2

µ

〉
OPE

≈ (1.64GeV)2.
This quantity was obtained at a scale of 10 GeV in the MOM renormalization scheme. Later, it was
argued that this

〈
A2

µ

〉
OPE

condensate could be explained with instantons [38].

One will notice that we did not give the estimate for
〈
A2

〉
itself. From the identification (11.22) and

using the relation (11.35) and the explicit result (11.44), one finds

〈
A2

µ

〉
= − 187

52π2
e

17
12 Λ2

MS
≈ − (0.29GeV)2 (11.91)

The extra minus sign arises because we have rotated from Minkowskian to Euclidean space time to
make possible a comparison with the lattice. We used ΛMS = 0.233GeV, which was the value obtained
in [37]. We should be careful not to misinterpret the relatively big difference between

〈
A2

µ

〉
OPE

and
(11.91). Although our result is non-perturbative in nature, it is still obtained in perturbation theory and
as such it only gives information from the high energy region (or short range), while the OPE approach
of Boucaud et al can only describe the low energy (or long range) content of

〈
A2

µ

〉
. It was already

argued in [34] that
〈
A2

µ

〉
can receive long and short range contributions. The minus sign in front of

our result has to do with the regularization and renormalization of the quantity
〈
A2

µ

〉
. We refer to [42]

for more details.

To our knowledge, there has been little attention on the lattice to the gluon propagator in a general
linear covariant gauge. Giusti et al managed to put the linear covariant gauge on the lattice [208, 209,
210, 211]. The tree level gluon propagator of Euclidean Yang-Mills theory with a linear covariant gauge
fixing is given by

Dµν(q) =
1
q2

(
δµν − (1− α)

qµqν

q2

)
. (11.92)

This can be decomposed into the transverse and longitudinal parts as

Dµν(q) =
1
q2

(
δµν − qµqν

q2

)
DT (q) +

qµqν

q2

DL(q)
q2

, (11.93)

where DT (q2) is q2 times the one used in [208, 209, 210, 211]. In general, one determines DL(q) via
the projector

PL
µν(q) = qµqν . (11.94)
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If there is a tree level gluon mass m present, as in (11.73), the Euclidean gluon propagator in linear
covariant gauges reads

Dµν(q) =
1

q2 + m2

(
δµν − (1− α)

qµqν

q2 + αm2

)
, (11.95)

with the value of m given in (11.86). The longitudinal part of this propagator is

DL(q) = PL
µν(q)Dµν(q) =

1
q2 + m2

(
q2 − (1− α)

q4

q2 + αm2

)
. (11.96)

DL(q) is plotted in Figure 11.8, again using ΛMS = 0.233GeV. Of course, we should not attach any
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Figure 11.8: DL(q) as a function of q with 0 < q < 3.5GeV for α = 0 (fat), α = 1 (dashed) and α = 4 (wide
dashed).

firm meaning to this plot, since we are only considering the tree level propagator and do not include any
renormalization effects. If we could calculate the form factors, we would also inevitably encounter the
problem of a diverging perturbation theory in the infrared region. We cannot make any conclusion about
the behaviour of the propagator in the IR from the above. Many other (non-perturbative) effects can
influence the propagators form in the IR. Nevertheless, it might be worth noticing that the longitudinal
part DL(q) is not proportional to the gauge parameter. A similar behaviour was found by Giusti et
al, see e.g. Figure 4 of [210]. This is already different from the perturbative prediction of massless
Yang-Mills theory with a linear covariant gauge fixing [20].

11.5 Conclusion.

We have considered Yang-Mills theories in linear covariant gauges and constructed a renormalizable
effective potential by means of the local composite operator formalism for A2

µ. The formation of the
gluon condensate of mass dimension two is favoured since it lowers the vacuum energy. As a result, the
gluons acquire a dynamical mass m. We discussed the gauge parameter dependence of the resultant
vacuum energy and observed that this is due to the fact that we do not work up to infinite order
precision, but have to truncate the perturbative expansion at a finite order. We explained how this
gauge parameter dependence can be avoided by a modification of our method.

Although there is limited lattice data available for the general linear covariant gauges compared with
the Landau gauge, it would be interesting to calculate the form factor of the longitudinal and transverse
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part of the gluon propagator to make a more detailed comparison possible with the lattice results of
[208, 209, 210, 211]. It would also be useful to have direct evidence from the lattice community
that the

〈
A2

µ

〉
condensate exists and that the gluons become massive, in analogy with the Landau

gauge. A further point worth investigating is the possible existence of ghost condensates in the linear
covariant gauges, as is the case in the Landau gauge [91, 172]. These condensates can modify the
gluon propagator further.
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Chapter 12

An analytic study of the off-diagonal
mass generation for Yang-Mills
theories in the maximal Abelian
gauge

D. Dudal (UGent), J. A. Gracey (Liverpool University), V. E. R. Lemes (UERJ), M. S. Sarandy (Uni-
versity of Toronto), R. F. Sobreiro, S. P. Sorella (UERJ) and H. Verschelde (UGent),
published in Physical Review D 70 (2004) 114038.

We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in
SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as
evidence for the Abelian dominance in that gauge. It originates from the condensation of a mixed
gluon-ghost operator of mass dimension two, which lowers the vacuum energy. We construct an ef-
fective potential for this operator by a combined use of the local composite operators technique with
the algebraic renormalization and we discuss the gauge parameter independence of the results. We
also show that it is possible to connect the vacuum energy, due to the mass dimension two condensate
discussed here, with the non-trivial vacuum energy originating from the condensate

〈
A2

µ

〉
, which has

attracted much attention in the Landau gauge.

12.1 Introduction.

A widely accepted mechanism to explain color confinement in SU(N) Yang-Mills theories is based on
the dual superconductivity picture [65, 66, 68], according to which the low energy regime of QCD
should be described by an effective Abelian theory in the presence of magnetic monopoles. These
monopoles should condense, giving rise to a string formation à la Abrikosov-Nielsen-Olesen. As a
result, chromoelectric charges are confined. This mechanism has received many confirmations from
the lattice community in the so-called Abelian gauges, which are useful in order to isolate the effective
relevant degrees of freedom at low energy.

According to the concept of Abelian dominance, the low energy region of QCD can be expressed solely in
terms of Abelian degrees of freedom [73]. Lattice confirmations of the Abelian dominance can be found

179
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in [74, 75]. A particularly interesting Abelian gauge is the maximal Abelian gauge (MAG), introduced
in [68, 70, 69]. Roughly speaking, the MAG is obtained by minimizing the square of the norm of the
fields corresponding to off-diagonal gluons, i.e. the gluons associated with the N(N − 1) off-diagonal
generators of SU(N). Doing so, there is a residual U(1)N−1 Abelian gauge freedom corresponding to
the Cartan subgroup of SU(N). The renormalizability in the continuum of this gauge was proven in
[71, 72], at the cost of introducing a quartic ghost interaction.

To our knowledge, there is no analytic proof of the Abelian dominance. Nevertheless, an argument that
can be interpreted as evidence of it, is the fact that the off-diagonal gluons would attain a dynamical
mass. At energies below the scale set by this mass, the off-diagonal gluons should decouple, and in
this way one should end up with an Abelian theory at low energies. A lattice study of such an off-
diagonal gluon mass reported a value of approximately 1.2GeV [49]. More recently, the off-diagonal
gluon propagator was investigated numerically in [50], reporting a similar result.

There have been several efforts to give an analytic description of the mechanism responsible for the
dynamical generation of the off-diagonal gluon mass. In [77, 80], a certain ghost condensate was used
to construct an effective, off-diagonal mass. However, in [157] it was shown that the obtained mass
was a tachyonic one, a fact confirmed later in [82]. Another condensation, namely that of the mixed
gluon-ghost operator ( 1

2Aa
µAµa + αcaca) 1, that could be responsible for the off-diagonal mass, was

proposed in [83]. That this operator should condense can be expected on the basis of a close analogy
existing between the MAG and the renormalizable nonlinear Curci-Ferrari gauge [84, 85]. In fact, it
turns out that the mixed gluon-ghost operator can be introduced also in the Curci-Ferrari gauge. A
detailed analysis of its condensation and of the ensuing dynamical mass generation can be found in
[199, 178].

The aim of this paper is to investigate explicitly if the mass dimension two operator ( 1
2Aa

µAµa +αcaca)
condenses, so that a dynamical off-diagonal mass is generated in the MAG. The pathway we intend
to follow is based on previous research in this direction in other gauges. In [42], the local composite
operator (LCO) technique was used to construct a renormalizable effective potential for the operator
AA

µ AµA in the Landau gauge. As a consequence of
〈
AA

µ AµA
〉 6= 0, the gauge bosons acquired a

mass [42]. The fact that gluons in the Landau gauge become massive has received confirmations from
lattice simulations, see for example [48]. Recently, the dynamical mass generation in the Landau gauge
has been investigated within the Schwinger-Dyson formalism in [51, 52]. The condensate

〈
AA

µ AµA
〉

has attracted attention from theoretical [33, 34] as well as from the lattice side [175, 37, 38]. It
was shown by means of the algebraic renormalization technique [59] that the LCO formalism for the
condensate

〈
AA

µ AµA
〉

is renormalizable to all orders of perturbation theory [153]. The same formalism

was successfully employed to study the condensation of ( 1
2AA

µ AµA +αcAcA) in the Curci-Ferrari gauge
[199, 178]. We would like to note that the Landau gauge corresponds to α = 0. Later on, the
condensation of AA

µ AµA was confirmed in the linear covariant gauges [205, 212], which also possess
the Landau gauge as a special case. It was proven formally that the vacuum energy does not depend
on the gauge parameter. However, in practice, a problem occurred due to the mixing of different orders
of perturbation theory, when solving the gap equation for the condensate. Nevertheless, we have been
able to present a way to overcome this problem [212]. As a result, it turns out that the non-trivial
vacuum energy due to the condensate

〈
AA

µ AµA
〉

in the Landau gauge coincides with the non-trivial
vacuum energy due to the appropriate mass dimension two condensate in the linear covariant gauges,〈
AA

µ AµA
〉
, and the Curci-Ferrari gauge,

〈
1
2AA

µ AµA + αcAcA
〉
, since these two classes of gauges both

have the Landau gauge, α = 0, as a limiting case.

We would also like to underline that the concept of a gluon mass has already been widely used in a
more phenomenological context since long ago, see e.g. [53]. More recently, a gluon mass of the order
of a few hundred MeV has been proven to be very useful in describing the radiative decay of heavy

1The index a runs only over the N(N − 1) off-diagonal generators.
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quarkonia systems [54] as well as to derive estimates of the glueball spectrum [56].

To make this paper self-contained, we will explain all necessary steps in the case of the MAG, and
refer to the previous papers for more details where appropriate. In section 12.2, we introduce the MAG
and discuss its renormalizability when the operator (1

2Aa
µAµa + αcaca) is introduced in the theory. We

briefly review how the effective potential is constructed by means of the LCO technique. In section
12.3, we discuss the independence of the vacuum energy from the gauge parameter of the MAG. We
face the problem of the mixing of different orders in perturbation theory, and we provide a solution of
it. In section 12.4, we construct a generalized renormalizable gauge that interpolates between the MAG
and the Landau gauge. Moreover, we will also show that there exists a generalized renormalizable mass
dimension two operator that interpolates between the mass dimension two operators of the MAG and
of the Landau gauge. This can be used to prove that the vacuum energy obtained in the MAG is the
same as that of the Landau gauge. In section 12.5, we present explicit results, obtained in the case of
SU(2) and to the one-loop approximation. We end with conclusions in section 12.6.

12.2 SU(N) Yang-Mills theories in the MAG.

Let Aµ be the Lie algebra valued connection for the gauge group SU(N), whose generators TA,
satisfying

[
TA, TB

]
= fABCTC , are chosen to be anti-Hermitian and to obey the orthonormality

condition Tr
(
TATB

)
= −TF δAB , with A,B, C = 1, . . . ,

(
N2 − 1

)
. In the case of SU(N), one has

TF = 1
2 . We decompose the gauge field into its off-diagonal and diagonal parts, namely

Aµ = AA
µ TA = Aa

µT a + Ai
µT i, (12.1)

where the indices i, j, . . . label the N−1 generators of the Cartan subalgebra. The remaining N(N−1)
off-diagonal generators will be labelled by the indices a, b, . . .. For further use, we recall the Jacobi
identity

fABCfCDE + fADCfCEB + fAECfCBD = 0 , (12.2)

from which it can be deduced that

fabif bjc + fabjf bci = 0 ,

fabcf bdi + fabdf bic + fabif bcd = 0 . (12.3)

The field strength decomposes as

Fµν = FA
µνTA = F a

µνT a + F i
µνT i , (12.4)

with the off-diagonal and diagonal parts given respectively by

F a
µν = Dab

µ Ab
ν −Dab

ν Ab
µ + g fabcAb

µAc
ν , (12.5)

F i
µν = ∂µAi

ν − ∂νAi
µ + gfabiAa

µAb
ν ,

where the covariant derivative Dab
µ is defined with respect to the diagonal components Ai

µ

Dab
µ ≡ ∂µδab − gfabiAi

µ . (12.6)

For the Yang-Mills action one obtains

SYM = −1
4

∫
d4x

(
F a

µνFµνa + F i
µνFµνi

)
. (12.7)
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The so called MAG gauge condition amounts to fixing the value of the covariant derivative, Dab
µ Aµb,

of the off-diagonal components by requiring that the functional

R[A] = (V T )−1

∫
d4x

(
Aa

µAµa
)

, (12.8)

attains a minimum with respect to the local gauge transformations. This corresponds to imposing

Dab
µ Aµb = 0 . (12.9)

However, this condition being non-linear implies a quartic ghost self-interaction term is required for
renormalizability purposes. The corresponding gauge fixing term turns out to be [71, 72]

SMAG = s

∫
d4x

(
ca

(
Dab

µ Abµ +
α

2
ba

)
− α

2
gf abicacbci − α

4
gf abccacbcc

)
, (12.10)

where α is the MAG gauge parameter and s denotes the nilpotent BRST operator, acting as

sAa
µ = − (

Dab
µ cb + gf abcAb

µcc + gf abiAb
µci

)
, sAi

µ = − (
∂µci + gf iabAa

µcb
)

,

sca = gf abicbci +
g

2
f abccbcc, sci =

g

2
f iabcacb,

sca = ba , sci = bi ,

sba = 0 , sbi = 0 . (12.11)

Here ca, ci are the off-diagonal and the diagonal components of the Faddeev-Popov ghost field, while
ca, ba are the off-diagonal antighost and Lagrange multiplier. We also observe that the BRST trans-
formations (12.11) have been obtained by their standard form upon projection on the off-diagonal and
diagonal components of the fields. We remark that the MAG (12.10) can be written in the form

SMAG = ss

∫
d4x

(
1
2
Aa

µAµa − α

2
caca

)
, (12.12)

with s being the nilpotent anti-BRST transformation, acting as

sAa
µ = − (

Dab
µ cb + gf abcAb

µcc + gf abiAb
µci

)
, sAi

µ = − (
∂µci + gf iabAa

µcb
)

,

sca = gfabicbci +
g

2
fabccbcc, sci =

g

2
f iabcacb,

sca = −ba + gfabccbcc + gfabicbci + gfabicbci , sci = −bi + gf ibccbcc ,

sba = −gfabcbbcc − gfabibbci + gfabicbbi sbi = −gf ibcbbcc . (12.13)

It can be checked that s and s anticommute.

Expression (12.10) is easily worked out and yields

SMAG =
∫

d4x
(
ba

(
Dab

µ Aµb +
α

2
ba

)
+ caDab

µ Dµbccc + gcafabi
(
Dbc

µ Aµc
)
ci

+ gcaDab
µ

(
f bcdAµccd

)− αgfabibacbci − g2fabif cdicacdAb
µAµc − α

2
gfabcbacbcc

− α

4
g2fabif cdicacbcccd − α

4
g2fabcfadicbcccdci − α

8
g2fabcfadecbcccdce

)
. (12.14)

We note that α = 0 does in fact correspond to the “real” MAG condition, given by eq.(12.9). However,
one cannot set α = 0 from the beginning since this would lead to a nonrenormalizable gauge. Some
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of the terms proportional to α would reappear due to radiative corrections, even if α = 0. See, for
example, [97]. For our purposes, this means that we have to keep α general throughout and leave to
the end the analysis of the limit α → 0, to recover condition (12.9).

The MAG condition allows for a residual local U(1)N−1 invariance with respect to the diagonal subgroup.
In order to have a complete quantization of the theory, one has to fix this Abelian gauge freedom by
means of a suitable further gauge condition on the diagonal components Ai

µ of the gauge field. A
common choice for the Abelian gauge fixing, also adopted in the lattice papers [49, 50], is the Landau
gauge, given by

Sdiag = s

∫
d4x ci∂µAµi =

∫
d4x

(
bi∂µAµi + ci∂µ

(
∂µci + gf iabAa

µcb
))

, (12.15)

where ci, bi are the diagonal antighost and Lagrange multiplier.

12.2.1 Ward identities for the MAG.

In order to write down a suitable set of Ward identities, we first introduce external fields Ωµi, Ωµa, Li,
La coupled to the BRST nonlinear variations of the fields, namely

Sext =
∫

d4x
(−Ωµa

(
Dab

µ cb + gfabcAb
µcc + gfabiAb

µci
)− Ωµi

(
∂µci + gf iabAa

µcb
)

+ La
(
gfabicbci +

g

2
fabccbcc

)
+ Li g

2
f iabcacb

)
, (12.16)

with

sΩµa = sΩµi = 0 , (12.17)

sLa = sLi = 0 .

Moreover, in order to discuss the renormalizability of the gluon-ghost operator

OMAG =
1
2
Aa

µAµa + αcaca , (12.18)

we introduce it in the starting action by means of a BRST doublet of external sources (J, λ)

sλ = J , sJ = 0 , (12.19)

so that

SLCO = s

∫
d4x

(
λ

(
1
2
Aa

µAµa + αcaca

)
+ ζ

λJ

2

)
(12.20)

=
∫

d4x

(
J

(
1
2
Aa

µAµa + αcaca

)
+ ζ

J2

2
− αλbaca

+ λAµa
(
Dab

µ cb + gfabiAb
µci

)
+ αλca

(
gf abicbci +

g

2
f abccbcc

))
.

ζ is the LCO parameter accounting for the divergences present in the vacuum correlator 〈OMAG(x)OMAG(y)〉,
which are proportional to J2. Therefore, the complete action

Σ = SYM + SMAG + Sdiag + Sext + SLCO , (12.21)
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Aa,i
µ ca,i ca,i ba,i λ J Ωa,i

µ La,i

dimension 1 0 2 2 2 2 3 4
ghost number 0 1 −1 0 −1 0 −1 −2

Table 12.1:

is BRST invariant

sΣ = 0 . (12.22)

As noticed in [83, 144], the gluon-ghost mass operator defined in eq.(12.18) is BRST invariant on-shell.

In the accompanying Table 12.1 , the dimension and ghost number of all the fields and sources are
listed. We are now ready to write down the Ward identities needed to discuss the renormalizability of
the model. It turns out that the complete action Σ is constrained by

• the Slavnov-Taylor identity

S(Σ) = 0 , (12.23)

with

S(Σ) =
∫

d4x

(
δΣ

δΩµa

δΣ
δAa

µ

+
δΣ

δΩµi

δΣ
δAi

µ

+
δΣ
δLa

δΣ
δca

+
δΣ
δLi

δΣ
δci

+ ba δΣ
δca + bi δΣ

δci
+ J

δΣ
δλ

)
.

(12.24)

• the diagonal ghost equation [72]

GiΣ = ∆i
cl , (12.25)

where

Gi =
δ

δci
+ gfabica δΣ

δbb
, (12.26)

and

∆i
cl = −∂2ci + gfabiΩµaAb

µ − ∂µΩµi − gfabiLacb . (12.27)

Notice that expression (12.27), being linear in the quantum fields, is a classical breaking.

• the diagonal gauge fixing and anti-ghost equations

δΣ
δbi

= ∂µAµi , (12.28)

δΣ
δci

+ ∂µ δΣ
δΩµi

= 0 .

• the integrated λ-equation

∫
d4x

(
δΣ
δλ

+ ca δΣ
δba

)
= 0 , (12.29)

expressing in a functional form the on-shell BRST invariance of the gluon-ghost operator OMAG.
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• the diagonal U(1)N−1 Ward identity

WiΣ = −∂2bi , (12.30)

with

Wi = ∂µ
δ

δAi
µ

+gfabi

(
Aa

µ

δ

δAb
µ

+ ca δ

δcb
+ ba δ

δbb
+ ca δ

δcb
+ Ωµa δ

δΩµb
+ La δ

δLb

)
. (12.31)

This identity follows from the diagonal ghost equation (12.25) and the Slavnov-Taylor identity
(12.23).

In order to find the foregoing Ward identities, use has been made of the Jacobi identities (12.3).

12.2.2 Algebraic characterization of the most general local counterterm.

We mention that all the classical Ward identities of the previous section can be extended to all orders
of perturbation theory without encountering anomalies. In principle, this can be proven by means of
the algebraic setup of [59] and of the general results on the BRST cohomology of gauge theories [60].
It can be understood in a simple way by observing that pure Yang-Mills theory in the MAG can be
regularized in a gauge invariant way by employing dimensional regularization.

In order to characterize the most general invariant counterterm which can be freely added to all orders of
perturbation theory, we perturb the classical action Σ by adding an arbitrary integrated local polynomial
Σcount in the fields and external sources of dimension bounded by four and with zero ghost number,
and we require that the perturbed action (Σ + ηΣcount) satisfies the same Ward identities as Σ to the
first order in the perturbation parameter η, i.e.,

S(Σ + ηΣcount) = 0 + O(η2) ,

Gi(Σ + ηΣcount) = ∆i
cl + O(η2) ,

δ(Σ + ηΣcount)
δbi

= ∂µAµi + O(η2) ,
(

δ

δci
+ ∂µ δ

δΩµi

)
(Σ + ηΣcount) = 0 + O(η2) ,

∫
d4x

(
δ

δλ
+ ca δ

δba

)
(Σ + ηΣcount) = 0 + O(η2) ,

Wi(Σ + ηΣcount) = −∂2bi + O(η2) . (12.32)

This amounts to imposing the following conditions on Σcount

BΣΣcount = 0 , (12.33)

where BΣ denotes the nilpotent linearized operator

BΣBΣ = 0 , (12.34)

BΣ =
∫

d4x

(
δΣ

δΩµa

δ

δAa
µ

+
δΣ
δAa

µ

δ

δΩµa
+

δΣ
δΩµi

δ

δAi
µ

+
δΣ
δAi

µ

δ

δΩµi
+

δΣ
δLa

δ

δca

+
δΣ
δca

δ

δLa
+

δΣ
δLi

δ

δci
+

δΣ
δci

δ

δLi
+ ba δ

δca + bi δ

δci
+ J

δ

δλ

)
,

(12.35)
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and

GiΣcount = 0 ,

δΣcount

δbi
= 0 ,

(
δ

δci
+ ∂µ δ

δΩµi

)
Σcount = 0 ,

∫
d4x

(
δ

δλ
+ ca δ

δba

)
Σ + εΣcount = 0 ,

WiΣcount = 0 . (12.36)

From the conditions (12.33) and (12.36), it turns out that the most general invariant counterterm can
be written as

Σcount =
−a0

4

∫
d4x

(
F a

µνFµνa + F i
µνFµνi

)
+ BΣ∆−1 , (12.37)

where ∆−1 is an integrated local polynomial with ghost number −1, given by

∆−1 =
∫

d4x
(
a1L

aca + a3ΩµaAa
µ + a5c

a
(
ba − gfabicbci

)
+ a6c

aDab
µ Aµb − a5

2
gfabccacbcc

+ a1λ

(
1
2
Aa

µAµa + αcaca

)
+

a6

2
λAa

µAµa + 2αa5λcaca +
a13ζ

2
λJ

)
. (12.38)

We see thus that Σcount contains six free independent parameters, namely a0, a1, a3, a5, a6 and a13.
These parameters can be reabsorbed by means of a multiplicative renormalization of the gauge coupling
constant g, of the gauge and LCO parameters α, ζ, and of the fields φ = (Aµa, Aµi, ca, ca, ci, ci, ba,
bi) and sources Φ = (Ωµa, Ωµi, La, Li, λ, J), according to

Σ(g, α, ζ, φ, Φ) + ηΣcount = Σ(g0, α0, ζ0, φ0,Φ0) + O(η2) , (12.39)

with

g0 = Zgg , α0 = Zαα , ζ0 = Zζζ ,

Aµa
0 = Z̃

1/2
A Aµa , Aµi

0 = Z−1
g Aµi , (12.40)

ca
0 = Z̃1/2

c ca , ca
0 = Z̃1/2

c ca , (12.41)

ci
0 = Z1/2

c ci , ci
0 = Z−1/2

c ci , (12.42)

ba
0 = ZgZ

1/2
c Z̃1/2

c ba , bi
0 = Zgb

i , (12.43)

Ωµa
0 = Z̃

−1/2
A Z−1

g Z−1/2
c Ωµa , Ωµi

0 = Z−1/2
c Ωµi , (12.44)

La
0 = Z−1

g Z̃−1/2
c Z−1/2

c La , Li
0 = Z−1

g Z−1
c Li , (12.45)
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and

J0 = Z−2
La Z̃−1

c J = Z2
gZcJ ,

λ0 = Z−1
La Z̃−1/2

c λ = ZgZ
1/2
c λ , (12.46)

with

Zg = 1− η
a0

2
,

Zα = 1 + η

(
2a5

α
+ a0 − 2a6

)
,

Zζ = 1 + η (a13 + 2a0 − 2a1 − 2a6) ,

Z̃
1/2
A = 1 + η

(a0

2
+ a3

)
,

Z̃1/2
c = 1 +

η

2
(a6 − a1) ,

Z1/2
c = 1 +

η

2
(a6 + a1) . (12.47)

In particular, from eq.(12.46), one sees that the renormalization of the source J , and thus of the
composite operator OMAG, can be expressed in terms of the renormalization of gauge coupling constant
and of the diagonal ghost. This property follows from the diagonal ghost equation (12.25) and from
the the integrated λ-equation (12.29). In particular, for the anomalous dimension of the gluon-ghost
operator OMAG, we obtain [199]

γOMAG(g2) = µ
∂

∂µ
log

(
Z2

gZc

)
= −2

(
β(g2)
2g2

− γci(g2)
)

, (12.48)

with

β(g2) = µ
∂g2

∂µ
= −g2µ

∂

∂µ
ln Z2

g ,

γci(g2) = µ
∂

∂µ
ln Z1/2

c . (12.49)

12.2.3 The effective potential.

We present here the main steps in the construction of the effective potential for a local composite
operator. A more detailed account of the LCO formalism can be found in [23, 176].

To obtain the effective potential for the condensate 〈OMAG〉, we set the sources Ωi
µ, Ωa

µ, La, Li and
λ to zero and consider the renormalized generating functional

exp(−iW(J)) =
∫

[Dϕ] exp iS(J) ,

S(J) = SYM + SMAG + Sdiag + Scount

+
∫

d4x

(
ZJJ

(
1
2
Z̃AAa

µAµa + ZαZ̃cαcaca

)
+ (ζ + δζ)

J2

2

)
, (12.50)

where ϕ denotes the relevant fields and Scount is the usual counterterm contribution, i.e. the part
without the composite operator. The quantity δζ is the counterterm accounting for the divergences
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proportional to J2. Using dimensional regularization throughout with the convention that d = 4 − ε,
one has the following identification

ζ0J
2
0 = µ−ε(ζ + δζ)J2 . (12.51)

The functional W(J) obeys the renormalization group equation (RGE)

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γOMAG(g2)

∫
d4xJ

δ

δJ
+ η(g2, ζ)

∂

∂ζ

)
W(J) = 0 , (12.52)

where

γα(g2) = µ
∂

∂µ
ln α = µ

∂

∂µ
ln Z−1

α ,

η(g2, ζ) = µ
∂

∂µ
ζ . (12.53)

From eq.(12.51), one finds

η(g2, ζ) = 2γOMAG(g2)ζ + δ(g2, α) , (12.54)

with

δ(g2, α) =
(

ε + 2γOMAG(g2)− β(g2)
∂

∂g2
− αγα(g2)

∂

∂α

)
δζ . (12.55)

Up to now, the LCO parameter ζ is still an arbitrary coupling. As explained in [23, 176], simply setting
ζ = 0 would give rise to an inhomogeneous RGE for W(J)

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γOMAG(g2)

∫
d4xJ

δ

δJ

)
W(J) = δ(g2, α)

∫
d4x

J2

2
, (12.56)

and a non-linear RGE for the associated effective action Γ for the composite operator OMAG. Fur-
thermore, multiplicative renormalizability is lost and by varying the value of δζ, minima of the effective
action can change into maxima or can get lost. However, ζ can be made such a function of g2 and
α so that, if g2 runs according to β(g2) and α according to γα(g2), ζ(g2, α) will run according to its
RGE (12.54). This is accomplished by setting ζ equal to the solution of the differential equation

(
β(g2)

∂

∂g2
+ αγα(g2, α)

∂

∂α

)
ζ(g2, α) = 2γOMAG(g2)ζ(g2, α) + δ(g2, α) . (12.57)

Doing so, W(J) obeys the homogeneous renormalization group equation

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ αγα(g2)

∂

∂α
− γOMAG(g2)

∫
d4xJ

δ

δJ

)
W(J) = 0 . (12.58)

To lighten the notation, we will drop the renormalization factors from now on. One will notice that
there are terms quadratic in the source J present in W(J), obscuring the usual energy interpretation.
This can be cured by removing the terms proportional to J2 in the action to get a generating functional
that is linear in the source, a goal easily achieved by inserting the following unity,

1 =
1
N

∫
[Dσ] exp

[
i

∫
d4x

(
− 1

2ζ

(
σ

g
−OMAG − ζJ

)2
)]

, (12.59)
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with N the appropriate normalization factor, in eq.(12.50) to arrive at the Lagrangian

L(Aµ, σ) = −1
4
F a

µνFµνa − 1
4
F i

µνFµνi + LMAG + Ldiag − σ2

2g2ζ
+

1
g2ζ

gσOMAG − 1
2ζ

(OMAG)2 ,

(12.60)

while

exp(−iW(J)) =
∫

[Dϕ] exp iSσ(J) , (12.61)

Sσ(J) =
∫

d4x

(
L(Aµ, σ) + J

σ

g

)
. (12.62)

From eqs.(12.50) and (12.61), one has the following simple relation

δW(J)
δJ

∣∣∣∣
J=0

= −〈OMAG〉 = −
〈

σ

g

〉
, (12.63)

meaning that the condensate 〈OMAG〉 is directly related to the expectation value of the field σ, evaluated
with the action Sσ =

∫
d4xL(Aµ, σ). As it is obvious from eq.(12.60), 〈σ〉 6= 0 is sufficient to have a

tree level dynamical mass for the off-diagonal fields. At lowest order (i.e. tree level), one finds

moff−diag.
gluon =

√
gσ

ζ0
,

moff−diag.
ghost =

√
α

gσ

ζ0
. (12.64)

Meanwhile, the diagonal degrees of freedom remain massless. This could have been established already
from the local U(1)N−1 Ward identity (12.30).

12.3 Gauge parameter independence of the vacuum energy.

We begin this section with a few remarks on the determination of ζ(g2, α). From explicit calculations
in perturbation theory, it will become clear 2 that the RGE functions showing up in the differential
equation (12.57) look like

β(g2) = −εg2 − 2
(
β0g

2 + β1g
2 + · · · ) ,

γOMAG(g2) = γ0(α)g2 + γ1(α)g4 + · · · ,

γα(g2) = a0(α)g2 + a1(α)g4 + · · · ,

δ(g2, α) = δ0(α) + δ1(α)g2 + · · · . (12.65)

As such, eq.(12.57) can be solved by expanding ζ(g2, α) in a Laurent series in g2,

ζ(g2, α) =
ζ0(α)

g2
+ ζ1(α) + ζ2(α)g2 + · · · . (12.66)

2See section 12.5.



190 Chapter 12. An analytic study of the off-diagonal mass generation...

More precisely, for the first coefficients ζ0, ζ1 of the expression (12.66), one obtains

2β0ζ0 + αa0
∂ζ0

∂α
= 2γ0ζ0 + δ0 ,

2β1ζ0 + αa0
∂ζ1

∂α
+ αa1

∂ζ0

∂α
= 2γ0ζ1 + 2γ1ζ0 + δ1 .

(12.67)

Notice that, in order to construct the n-loop effective potential, knowledge of the (n + 1)-loop RGE
functions is needed.

The effective potential calculated with the Lagrangian (12.60) will explicitly depend on the gauge
parameter α. The question arises concerning the vacuum energy Evac, (i.e. the effective potential
evaluated at its minimum); will it be independent of the choice of α? Also, as it can be seen from
the equations (12.67), each ζi(α) is determined through a first order differential equation in α. Firstly,
one has to solve for ζ0(α). This will introduce one arbitrary integration constant C0. Using the
obtained value for ζ0(α), one can consequently solve the first order differential equation for ζ1(α). This
will introduce a second integration constant C1, etc. In principle, it is possible that these arbitrary
constants influence the vacuum energy, which would represent an unpleasant feature. Notice that
the differential equations in α for the ζi are due to the running of α in eq.(12.57), encoded in the
renormalization group function γα(g2). Assume that we would have already shown that Evac does not
depend on the choice of α. If we then set α = α∗, with α∗ a fixed point of the RGE for α at the
considered order of perturbation theory, then equation (12.57) determining ζ simplifies to

β(g2)
∂

∂g2
ζ(g2, α∗) = 2γOMAG(g2)ζ(g2, α∗) + δ(g2, α∗) , (12.68)

since

γα(g2)α
∣∣
α=α∗ = 0 . (12.69)

This will lead to simple algebraic equations for the ζi(α∗). Hence, no integration constants will enter
the final result for the vacuum energy for α = α∗, and since Evac does not depend on α, Evac will never
depend on the integration constants, even when calculated for a general α. Hence, we can put them
equal to zero from the beginning for simplicity.

Summarizing, two questions remain. Firstly, we should prove that the value of α will not influence the
obtained value for Evac. Secondly, we should show that there exists a fixed point α∗. We postpone
the discussion concerning the second question to the next section, giving a positive answer to the first
one. In order to do so, let us reconsider the generating functional (12.61). We have the following
identification, ignoring the overall normalization factors

exp(−iW(J)) =
∫

[Dϕ] exp iSσ(J)

=
1
N

∫
[DϕDσ] exp i

[
S(J) +

∫
d4x

(
− 1

2ζ

(
σ

g
−OMAG − ζJ

)2
)]

,(12.70)

where S(J) and Sσ(J) are given respectively by eq.(12.50), and eq.(12.62). Obviously,

d

dα

1
N

∫
[Dσ] exp

[
i

∫
d4x

(
− 1

2ζ

(
σ

g
−OMAG − ζJ

)2
)]

=
d

dα
1 = 0 , (12.71)
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so that

dW(J)
dα

= −
〈

s

∫
d4xs

(
1
2
caca

)〉∣∣∣∣
J=0

+ terms ∝ J , (12.72)

which follows directly from

dS(J)
dα

= ss

∫
d4x

(
1
2
caca

)
+ terms ∝ J . (12.73)

We see that the first term in the right hand side of (12.73) is an exact BRST variation. As such,
its vacuum expectation value vanishes. This is the usual argument to prove the gauge parameter
independence in the BRST framework [59]. Note that no local operator Ô, with sÔ = OMAG, exists.
Furthermore, extending the action of the BRST transformation on the σ-field by

sσ = gsOMAG = −AµaDab
µ cb + αbaca − αgfabicacbci − α

2
gfabccacbcc (12.74)

one can easily check that

s

∫
d4xL(Aµ, σ) = 0 , (12.75)

so that we have a BRST invariant σ-action. Thus, when we consider the vacuum, corresponding to
J = 0, only the BRST exact term in eq.(12.72) survives. The effective action Γ is related to W(J)
through a Legendre transformation

Γ
(

σ

g

)
= −W(J)−

∫
d4yJ(y)

σ(y)
g

. (12.76)

The effective potential V (σ) is then defined as

−V (σ)
∫

d4x = Γ
(

σ

g

)
. (12.77)

Let σmin be the solution of

dV (σ)
dσ

= 0 . (12.78)

From

δ

δ
(

σ
g

)Γ = −J , (12.79)

it follows that

σ = σmin ⇒ J = 0 , (12.80)

and hence, we derive from eqs.(12.76) and (12.77) that

d

dα
V (σ)

∣∣∣∣
σ=σmin

∫
d4x =

d

dα
W(J)

∣∣∣∣
J=0

. (12.81)
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Thus, due to eq.(12.72),

d

dα
V (σ)

∣∣∣∣
σ=σmin

= 0 . (12.82)

We conclude that the vacuum energy Evac should be independent from the gauge parameter α.

A completely analogous derivation was obtained in the case of the linear gauge [212]. Nevertheless, in
spite of the previous argument, explicit results in that case showed that Evac did depend on α. In [212]
it was argued that this apparent disagreement was due to a mixing of different orders of perturbation
theory. Let us explain this with a simple example. Let us first notice that a key argument in the previous
analysis is that the source J = 0 vanishes at the end of the calculations. In practice, J = 0 is achieved
by solving the gap equation (12.78). Moreover, in a power series expansion in the coupling constant,
the derivative of the effective potential with respect to σ will look like

(
v0 + v1g

2 + O(g4)
)
σ , (12.83)

where we assume that we work up to order g2. The corresponding gap equation reads

v0 + v1g
2 + O(g4) = 0 . (12.84)

Due to eqs.(12.77) and (12.79), one also has

J = g
(
v0 + v1g

2 + O(g4)
)
σ . (12.85)

Imposing the gap equation (12.84) leads to

J = g
(
0 + O(g4)

)
σ . (12.86)

However, as it can be immediately checked from expression (12.70), there are several terms proportional
to J in the right-hand side of eq.(12.72). For instance, one of them is given by ∂ζ

∂αJ2. Since

∂ζ

∂α
=

∂ζ0

∂α

1
g2

+
∂ζ1

∂α
+ O(g2) . (12.87)

we find

∂ζ

∂α
J2 =

(
∂ζ0

∂α
v2
0 +

(
∂ζ0

∂α
2v0v1 +

∂ζ1

∂α
v2
0

)
g2 + O(g4)

)
σ2 . (12.88)

Squaring the gap equation (12.84),

v2
0 + 2v1v0g

2 + O(g4) = 0 , (12.89)

leads to

∂ζ

∂α
J2 =

(
∂ζ1

∂α
v2
0g2 + O(g4)

)
σ2 . (12.90)

We see that, if one consistently works to the first order, terms such as ∂ζ
∂αJ2 do not equal zero, although

J = 0 to that order. Terms like those on the right-hand side of eq.(12.90) are cancelled by terms which
are formally of higher order, requiring thus a mixing of different orders of perturbation theory. Of
course, this problem would not have occurred if we were be able to compute the effective potential up
to infinite order, an evidently hopeless task. Nevertheless, in [212] we succeeded in finding a suitable
modification of the LCO formalism in order to circumvent this problem and obtaining a well defined
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gauge independent vacuum energy Evac, without the need of working at infinite order. Instead of the
action (12.50), let us consider the following action

S̃(J̃) = SYM + SMAG + Sdiag +
∫

d4x

[
J̃F(g2, α)OMAG +

ζ

2
F2(g2, α)J̃2

]
, (12.91)

where, for the moment, F(g2, α) is an arbitrary function of α of the form

F(g2, α) = 1 + f0(α)g2 + f1(α)g4 + O(g6) , (12.92)

and J̃ is now the source. The generating functional becomes

exp(−iW̃(J̃)) =
∫

[Dφ] exp iS̃(J̃) . (12.93)

Taking the functional derivative of W̃(J̃) with respect to J̃ , we obtain

δW̃(J̃)

δJ̃

∣∣∣∣∣ eJ=0

= −F(g2, α) 〈OMAG〉 . (12.94)

Once more, we insert unity via

1 =
1
N

∫
[Dσ̃] exp

[
i

∫
d4x

(
− 1

2ζ

(
σ̃

gF(g2, α)
−OMAG − ζJ̃F(g2, α)

)2
)]

, (12.95)

to arrive at the following Lagrangian

L̃(Aµ, σ̃) = −1
4
F a

µνFµνa − 1
4
F i

µνFµνi + LMAG + Ldiag

− σ̃2

2g2F2(g2, α)ζ
+

1
g2F(g2, α)ζ

gσ̃OMAG − 1
2ζ

(OMAG)2 . (12.96)

From the generating functional

exp(−iW̃(J̃)) =
∫

[Dφ] exp iSeσ(J̃) , (12.97)

Seσ(J̃) =
∫

d4x

(
L(Aµ, σ̃) + J̃

σ̃

g

)
. (12.98)

it follows that

δW̃(J̃)

δJ̃

∣∣∣∣∣ eJ=0

= −
〈

σ̃

g

〉
⇒ 〈σ̃〉 = gF(g2, α) 〈OMAG〉 , (12.99)

The renormalizability of the action (12.62) implies that the action (12.98) will be renormalizable too.
Notice indeed that both actions are connected through the transformation

J̃ =
J

F(g2, α)
. (12.100)
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The tree level off-diagonal masses are now provided by

moff−diag.
gluon =

√
gσ̃

ζ0
,

moff−diag.
ghost =

√
α

gσ̃

ζ0
, (12.101)

while the vacuum configuration is determined by solving the gap equation

dṼ (σ̃)
dσ̃

= 0 , (12.102)

with Ṽ (σ̃) the effective potential. Minimizing Ṽ (σ̃) will lead to a vacuum energy Evac(α) which will
depend on α and the hitherto undetermined functions fi(α) 3. We will determine those functions fi(α)
by requiring that Evac(α) is α-independent. More precisely, one has

dEvac

dα
= 0 ⇒ first order differential equations in α for fi(α) . (12.103)

Of course, in order to be able to determine the fi(α), we need an initial value for the vacuum energy
Evac. This corresponds to initial conditions for the fi(α). In the case of the linear gauges, to fix the
initial condition we employed the Landau gauge [212], a choice which would also be possible in case of
the Curci-Ferrari gauges, since the Landau gauge belongs to these classes of gauges. This choice of the
Landau gauge can be motivated by observing that the integrated operator

∫
d4xAA

µ AµA has a gauge

invariant meaning in the Landau gauge, due to the transversality condition ∂µAµA = 0, namely

(V T )−1 min
UεSU(N)

∫
d4x

[(
AA

µ

)U (
AµA

)U
]

=
∫

d4x(AA
µ AµA) in the Landau gauge , (12.104)

with the operator on the left hand side of eq.(12.104) being gauge invariant4. Moreover, the Landau
gauge is also an all-order fixed point of the RGE for the gauge parameter in case of the linear and
Curci-Ferrari gauges. At first glance, it could seem that it is not possible anymore to make use of the
Landau gauge as initial condition in the case of the MAG, since the Landau gauge does not belong to
the class of gauges we are currently considering. Fortunately, we shall be able to prove that we can use
the Landau gauge as initial condition for the MAG too. This will be the content of the next section.

Before turning our attention to this task, it is worth noticing that, if one would work up to infinite
order, the expressions (12.91) and (12.98) can be transformed exactly into those of (12.50), respectively
(12.62) by means of eq.(12.100) and its associated transformation

σ̃ = F(g2, α)σ , (12.105)

so that the effective potentials Ṽ (σ̃) and V (σ) are exactly the same at infinite order, and as such will
give rise to the same, gauge parameter independent, vacuum energy.

12.4 Interpolating between the MAG and the Landau gauge.

In this section we shall introduce a generalized renormalizable gauge which interpolates between the
MAG and the Landau gauge. This will provide a connection between these two gauges, allowing us

3At first order, Evac will depend on f0(α), at second order on f0(α) and f1(α), etc.
4Making abstract of the existence of Gribov copies
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to use the Landau gauge as initial condition. An example of such a generalized gauge, interpolating
between the Landau and the Coulomb gauge was already presented in [213]. Moreover, we must realize
that in the present case, we must also interpolate between the composite operator 1

2AA
µ AµA of the

Landau gauge and the gluon-ghost operator OMAG of the MAG. Although this seems to be a highly
complicated assignment, there is an elegant way to treat it.

Consider again the SU(N) Yang-Mills action with the MAG gauge fixing (12.12). For the residual
Abelian gauge freedom, we impose

S′diag =
∫

d4x
(
bi∂µAµi + ci∂2ci + ci∂µ

(
gf iabAµacb

)
+ κgf iabAa

µ

(
∂µci

)
cb

+ κg2f iabf icdcacdAb
µAµc − κgf iabAi

µAµa(bb − gf jbccccj)

+ κgf iabAµi(Dac
µ cc)cb + κg2fabifacdAi

µAµccdcb
)

, (12.106)

where κ is an additional gauge parameter. The gauge fixing (12.106) can be rewritten as a BRST exact
expression

S′diag =
∫

d4x

[
(1− κ) s

(
ci∂µAµi

)
+ κss

(
1
2
Ai

µAµi

)]
. (12.107)

Next, we will introduce the following generalized mass dimension two operator,

O =
1
2
Aa

µAµa +
κ

2
Ai

µAµi + αcaca , (12.108)

by means of

S′LCO = s

∫
d4x

(
λO + ζ

λJ

2

)

=
∫

d4x

(
JO + ζ

J2

2
− αλbaca + λAµaDab

µ cb + αλca
(
gf abicbci +

g

2
f abccbcc

)

− κλci∂µAµi + κgf iabλAa
µAµicb

)
, (12.109)

with (J, λ) a BRST doublet of external sources,

sλ = J , sJ = 0 . (12.110)

As in the case of the gluon-ghost operator (12.18), the generalized operator of eq.(12.108) turns
out to be BRST invariant on-shell, a property which can again be expressed in a functional way, see
eq.(12.121).

Let us take a closer look at the action

Σ′ = SYM + SMAG + S′diag + S′LCO + Sext . (12.111)

The external source part of the action, Sext, is the same as given in eq.(12.16).

Also, it can be noticed that, for κ → 0, the generalized local composite operator O of eq.(12.108)
reduces to the composite operator OMAG of the MAG, while the diagonal gauge fixing (12.107) reduces
to the Abelian Landau gauge (12.15). Said otherwise, for κ → 0, the action Σ′ of eq.(12.111) reduces
to the one we are actually interested in and which we have discussed in the previous sections.
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Another special case is κ → 1, α → 0. Then the gauge fixing terms of Σ′ are

SMAG + S′diag =
∫

d4xs
(−AA

µ ∂µcA
)

=
∫

d4x
(
cA∂µDAB

µ cB + bA∂µAA
µ

)
, (12.112)

which is nothing else than the Landau gauge. At the same time, we also have

lim
(α,κ)→(0,1)

O =
1
2
AA

µ AµA , (12.113)

which is the pure gluon mass operator of the Landau gauge [42, 153].

From [153], we already know that the Landau gauge with the inclusion of the operator AA
µ AµA is

renormalizable to all orders of perturbation theory. On the other hand, in section 12.2, we have proven
the renormalizability for κ = 0. Before we continue our argument, let us first prove the renormalizability
of Σ′ for general α and κ 6= 0. The complete action Σ′, as given in eq.(12.111), is BRST invariant

sΣ′ = 0 , (12.114)

and obeys the following identities

• The Slavnov-Taylor identity, provided by

S(Σ′) =
∫

d4x

(
δΣ′

δΩµa

δΣ′

δAa
µ

+
δΣ′

δΩµi

δΣ′

δAi
µ

+
δΣ′

δLa

δΣ′

δca
+

δΣ′

δLi

δΣ′

δci

+ ba δΣ′

δca + bi δΣ
′

δci
+ J

δΣ′

δλ

)
= 0 . (12.115)

• The integrated diagonal ghost equation

GiΣ′ = ∆i
cl , (12.116)

where

Gi =
∫

d4x

[
δ

δci
+ gfabica δ

δbb

]
, (12.117)

and

∆i
cl =

∫
d4x

[
gfabiΩµaAb

µ − gfabiLacb + κλ∂µAµi
]

, (12.118)

a classical breaking.

• The diagonal anti-ghost equation

δΣ′

δci
+ ∂µ δΣ′

δΩµi
= 0 , (12.119)

and

δΣ′

δbi
= ∂µAµi . (12.120)
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• The integrated generalized λ-equation
∫

d4x

[
δ

δλ
+ ca δ

δba
+ κci δ

δbi

]
Σ′ = 0 , (12.121)

expressing the on-shell BRST invariance of the operator O of eq.(12.108).

Also in this case, these Ward identities extend to the quantum level. Accordingly, the most general
local counterterm Σ′count must obey the following constraints

BΣ′Σ′count = 0 ,

GiΣ′count = 0 ,

δ

δbi
Σ′count = 0 ,

[
δ

δci
+ ∂µ

δ

δΩi
µ

]
Σ′count = 0 ,

∫
d4x

[
δ

δλ
+ ca δ

δba

]
Σ′count = 0 . (12.122)

where BΣ′ denotes the nilpotent, BΣ′BΣ′ = 0, linearized operator

BΣ′ =
∫

d4x

(
δΣ′

δΩaµ

δ

δAa
µ

+
δΣ′

δAa
µ

δ

δΩaµ
+

δΣ′

δΩµi

δ

δAi
µ

+
δΣ′

δAi
µ

δ

δΩµi
+

δΣ′

δLa

δ

δca

+
δΣ′

δca

δ

δLa
+

δΣ′

δLi

δ

δci
+

δΣ′

δci

δ

δLi
+ ba δ

δca + bi δ

δci
+ J

δ

δλ

)
. (12.123)

From general results on BRST cohomology [60], we know that the most general, local counterterm can
be written as

Σ′count = −a′0
4

∫
d4x

(
F a

µνFµνa + F i
µνFµνi

)
+ BΣ∆−1 , (12.124)

where ∆−1 is an integrated local polynomial of ghost number −1 and dimension 4, given by

∆−1 =
∫

d4x

[
a′1Ω

a
µAµa + a′2Ω

i
µAµi + a′3L

aca + a′4L
ici + a′5 (∂µca) Aµa + a′′5gfabicaAi

µAµb

+ a′6
(
∂µci

)
Aµi + a′7gfaiccacicc +

a′8
2

αgfabicacbci +
a′9
2

αgfabccacbcc + αa′10b
aca

+ a′11b
ici +

a′12
2

λAa
µAµa +

a′13
2

κλAi
µAµi + a′14αλcaca + a′15αλcici +

a′16
2

ζλJ

]
.(12.125)

The constraints (12.122) lead to the relations

a′7 = a′11 = a′15 = 0 ,

a′6 = a′2 ,

a′13 = a′4 − a′2 ,

a′8 = −2a′10 ,

a′14 = 2a′10 + a′3 ,

a′12 = a′3 − a′5 ,

a′′5 = a′5 + κ (a′13 − a′3) ,

a′9 = −a′10 ,

a′2 = a′4 = 0 and thus a′13 = 0 . (12.126)
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Summarizing

∆−1 =
∫

d4x
[
a′1Ω

a
µAµa + a′3L

aca − a′5c
aDab

µ Aµb − κa′3gfabicaAi
µAµb − a′10αgfabicacbci

− a′10
2

αgfabccacbcc + αa′10b
aca + a′3λ

(
1
2
Aa

µAµa + αcaca

)
− a′5

2
λAa

µAµa

+ 2a′10αλcaca +
a′16
2

ζλJ

]
. (12.127)

In comparison with the case of the MAG, we see that Σ′count also contains six free independent
parameters, namely a′0, a′1, a′3, a′5, a′10 and a′13, despite the fact that the action Σ′ contains the extra
gauge parameter κ. These parameters can be reabsorbed by a suitable multiplicative renormalization of
the gauge coupling constant g, of the gauge and LCO parameters α, κ, ζ, and of the fields φ = (Aµa,
Aµi, ca, ca, ci, ci, ba, bi) and sources Φ = (Ωµa, Ωµi, La, Li, λ, J), according to

Σ′(g, α, κ, ζ, φ,Φ) + ηΣ′count = Σ′(g0, α0, κ0, ζ0, φ0, Φ0) + O(η2) , (12.128)

where

g0 = Zgg , α0 = Zαα , ζ0 = Zζζ , κ0 = Z−1
c Z̃

−1/2
A Z−1

g κ ,

Aµa
0 = Z̃

1/2
A Aµa , Aµi

0 = Z−1
g Aµi , (12.129)

ca
0 = Z̃1/2

c ca , ca
0 = Z̃1/2

c ca , (12.130)

ci
0 = Z1/2

c ci , ci
0 = Z−1/2

c ci , (12.131)

ba
0 = ZgZ

1/2
c Z̃1/2

c ba , bi
0 = Zgb

i , (12.132)

Ωµa
0 = Z̃

−1/2
A Z−1

g Z−1/2
c Ωµa , Ωµi

0 = Z−1/2
c Ωiµ , (12.133)

La
0 = Z−1

g Z̃−1/2
c Z−1/2

c La , Li
0 = Z−1

g Z−1
c Li , (12.134)

J0 = Z2
gZcJ , λ0 = ZgZ

1/2
c λ , (12.135)

with

Zg = 1− η
a′0
2

,

Zα = 1 + η (2a′5 + a′0 − a′8) ,

Zζ = 1 + η (a′16 + 2a′0 + 2a′5 − 2a′3) ,

Z̃
1/2
A = 1 + η

(
a′0
2

+ a′1

)
,

Z̃1/2
c = 1− η

2
(a′5 + a′3) ,

Z1/2
c = 1 +

η

2
(a′3 − a′5) . (12.136)
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Interestingly, the additional gauge parameter κ does not renormalize in an independent way. Further-
more, from eq.(12.135), we notice that the relation (12.48) is generalized to the operator O, i.e.

γO(g2) = −2
(

β(g2)
2g2

− γci(g2)
)

. (12.137)

Summarizing, we have constructed a renormalizable gauge that is labelled by a couple of parameters
(α, κ). It allows us to introduce a generalized composite operator O, given by eq.(12.108), which
embodies the local operator AA

µ AµA of the Landau gauge as well as the operator OMAG of the MAG.
To construct the effective potential, one sets all sources equal to zero, except J , and introduces unity
to remove the J2 terms. A completely analogous argument as the one given in section 12.3 allows
to conclude that the minimum value of V (σ), thus Evac, will be independent of α and κ, essentially
because the derivative with respect to α as well as with respect to κ is BRST exact, up to terms in
the source J . This independence of α and κ is again only assured at infinite order in perturbation
theory, so we can generalize the construction, proposed in section 12.3, by making the function F of
eq.(12.92) also dependent on κ. The foregoing analysis is sufficient to make sure that we can use the
Landau gauge result for Evac as the initial condition for the vacuum energy of the MAG. Moreover,
we are now even in the position to answer the question about the existence of a fixed point of the
RGE for the gauge parameter α, which was necessary to certify that no arbitrary constants would enter
the results for Evac. We already mentioned that the Landau gauge, i.e. the case (α, κ) = (0, 1), is a
renormalizable model [153], i.e. the Landau gauge is stable against radiative corrections. This can be
reexpressed by saying that (α, κ) = (0, 1) is a fixed point of the RGE for the gauge parameters, and
this to all orders of perturbation theory.

12.5 Numerical results for SU(2).

After a quite lengthy formal construction of the LCO formalism in the case of the MAG, we are now
ready to present explicit results. In this paper, we will restrict ourselves to the evaluation of the one-loop
effective potential in the case of SU(2). As renormalization scheme, we adopt the modified minimal
substraction scheme (MS). Let us give here, for further use, the values of the one-loop anomalous
dimensions of the relevant fields and couplings in the case of SU(2). In our conventions, one has
[183, 179, 194]

γci(g2) = (−3− α)
g2

16π2
+ O(g4) , (12.138)

γα(g2) =
(
−2α +

8
3
− 6

α

)
g2

16π2
+ O(g4) , (12.139)

while

β(g2) = −εg2 − 2
(

22
3

g4

16π2

)
+ O(g6) , (12.140)

and exploiting the relation (12.48)

γOMAG(g2) =
(

26
3
− 2α

)
g2

16π2
+ O(g4) , (12.141)

a result consistent with that of [179].

The reader will notice that we have given only the one-loop values of the anomalous dimensions,
despite the fact that we have announced that one needs (n + 1)-loop knowledge of the RGE functions
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to determine the n-loop potential. As we shall see soon, the introduction of the function F(g2, α)
and the use of the Landau gauge as initial condition allow us to determine the one-loop results we are
interested in, from the one-loop RGE functions only.

Let us first determine the counterterm δζ. For the generating functional W(J), we find at one-loop 5

W(J) =
∫

ddx

(
− (ζ + δζ)

J2

2

)
+ i ln det

[
δab

(
∂2 + αJ

)]

− i

2
ln det

[
δab

((
∂2 + J

)
gµν −

(
1− 1

α

)
∂µ∂ν

)]
,

(12.142)

and employing

ln det
[
δab

((
∂2 + J

)
gµν −

(
1− 1

α

)
∂µ∂ν

)]
= δaa

[
(d− 1)tr ln

(
∂2 + J

)
+ tr ln

(
∂2 + αJ

)]
,

(12.143)

with

δaa = N(N − 1) = 2 for N = 2 , (12.144)

one can calculate the divergent part of eq.(12.142),

W(J) =
∫

d4x

[
−δζ

J2

2
− 3

16π2
J2 1

ε
− 1

16π2
α2J2 1

ε
+

1
8π2

α2J2 1
ε

]
. (12.145)

Consequently,

δζ =
1

8π2

(
α2 − 3

) 1
ε

+ O(g2) . (12.146)

Next, we can compute the RGE function δ(g2, α) from eq.(12.55), obtaining

δ(g2, α) =
α2 − 3
8π2

+ O(g2) . (12.147)

Having determined this, we are ready to calculate ζ0. The differential equation (12.67) is solved by

ζ0(α) = α +
(
9− 4α + 3α2

)
C0 , (12.148)

with C0 an integration constant. As already explained in the previous sections, we can consistently put
C0 = 0. Here, we have written it explicitly to illustrate that, if α would coincide with the one-loop
fixed point of the RGE for the gauge parameter, the part proportional to C0 in eq.(12.148) would drop.
Indeed, the equations 9 − 4α + 3α2 = 0 and −2α + 8

3 − 6
α = 0, stemming from eq.(12.139), are

the same. Moreover, we also notice that this equation has only complex valued solutions. Therefore,
it is even more important to have made the connection between the MAG and the Landau gauge by
embedding them in a bigger class of gauges, since then we have the fixed point, even at all orders. In
what follows, it is understood that ζ0 = α.

5We will do the transformation of W(J) to W( eJ) only at the end.
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We now have all the ingredients to construct the one-loop effective potential Ṽ1(σ̃),

Ṽ1(σ̃) =
σ̃2

2ζ0

(
1−

(
2f0 +

ζ1

ζ0

)
g2

)
+ i ln det

[
δab

(
∂2 + α

gσ̃

ζ0

)]

− i

2
ln det

[
δab

((
∂2 +

gσ̃

ζ0

)
gµν −

(
1− 1

α

)
∂µ∂ν

)]
,

(12.149)

or, after renormalization

Ṽ1(σ̃) =
σ̃2

2ζ0

(
1−

(
2f0 +

ζ1

ζ0

)
g2

)
+

3
32π2

g2σ̃2

ζ2
0

(
ln

gσ̃

ζ0µ
2 −

5
6

)

− 1
32π2

g2α2σ̃2

ζ2
0

(
ln

gασ̃

ζ0µ
2 −

3
2

)
. (12.150)

We did not explicitly write the divergences and counterterms in eq.(12.151), since by construction we
know that the formalism is renormalizable, so they would have cancelled amongst each other. This can
be checked explicitly by using the unity of (12.59) with counterterms included. It can also be checked

explicitly that Ṽ1(σ̃) obeys the renormalization group

µ
d

dµ
Ṽ1(σ̃) = 0 + terms of higher order , (12.151)

by using the RGE functions (12.138)-(12.141) and the fact that the anomalous dimension of σ̃ is given
by

γeσ(g2) =
β(g2)
2g2

+ γOMAG(g2) + µ
∂ lnF(g2, α)

∂µ
, (12.152)

which is immediately verifiable from eq.(12.99).

We now search for the vacuum configuration by minimizing Ṽ1(σ̃) with respect to σ̃. We will put

µ2 = geσ
ζ0

to exclude possibly large logarithms, and find two solutions of the gap equation

dṼ1

dσ

∣∣∣∣∣
µ2= geσ

ζ0

= 0

⇔ σ̃

ζ0

(
1−

(
2f0 +

ζ1

ζ0

)
g2

)
+

3
16π2

g2σ̃

ζ2
0

(
−5

6

)
+

3
32π2

g2σ̃

ζ2
0

− 1
16π2

g2α2σ̃

ζ2
0

(
ln α− 3

2

)
− 1

32π2

g2α2σ̃

ζ2
0

= 0 ,

(12.153)

namely

σ̃ = 0 , (12.154)

y ≡ g2N

16π2

∣∣∣∣
N=2

=
2ζ0

16π2 (2f0ζ0 + ζ1) + α2 ln α− α2 + 1
. (12.155)
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The quantity y is the relevant expansion parameter, and should be sufficiently small to have a sensible
expansion.The value for 〈σ̃〉 corresponding to eq.(12.155) can be extracted from the one-loop coupling
constant

g2(µ) =
1

β0 ln µ2

Λ2
MS

. (12.156)

The first solution (12.154) corresponds to the usual, perturbative vacuum (Evac = 0), while eq.(12.155)
gives rise to a dynamically favoured vacuum with energy

Evac = − 1
64π2

(
3− α2

) (
moff−diag

gluon

)4

, (12.157)

moff−diag
gluon = e

3
22y ΛMS . (12.158)

Eq.(12.157) is obtained upon substitution of eq.(12.153) into eq.(12.150). From eq.(12.157), we notice
that at the one-loop approximation, α2 6 3 must be fulfilled in order to have Evac 6 0. In principle,
the unknown function f0(α) can be determined by solving the differential equation

dEvac

dα
= 0 ⇔ 2α

(
moff−diag

gluon

)4

+ 4
(
α2 − 3

) (
moff−diag

gluon

)3 dmoff−diag
gluon

dα
= 0

⇔ α +
3− α2

y2

(
∂y

∂α
+

∂y

∂ζ0

∂ζ0

∂α
+

∂y

∂ζ1

∂ζ1

∂α
+

∂y

∂f0

∂f0

∂α

)
= 0 (12.159)

with initial condition Evac(α) = ELandau
vac . However, to solve eq.(12.159) knowledge of ζ1 is needed.

Since we are not interested in f0(α) itself, but rather in the value of the vacuum energy Evac, the

off-diagonal mass moff−diag
gluon and the expansion parameter y, there is a more direct way to proceed,

without having to solve the eq.(12.159). Let us first give the Landau gauge value for Evac in the case
N = 2, which can be easily obtained from [42, 197],

ELandau
vac = − 9

128π2
e

17
6 Λ4

MS
. (12.160)

Since the construction is such that Evac(α) = ELandau
vac , we can equally well solve

− 9
128π2

e
17
6 Λ4

MS
= − 1

64π2

(
3− α2

) (
moff−diag

gluon

)4

, (12.161)

which gives the lowest order mass

moff−diag
gluon =

(
9
2

e
17
6

3− α2

) 1
4

ΛMS , (12.162)

and hence

moff−diag
ghost =

√
α

(
9
2

e
17
6

3− α2

) 1
4

ΛMS , (12.163)

The result (12.162) can be used to determine y. From eq.(12.158) one easily finds

y =
36

187 + 66 ln 9
2(3−α2)

. (12.164)
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Figure 12.1: The off-diagonal gluon (fat line) and ghost mass (thin line) in function of α. Masses are in units
of ΛMS.

We see thus that, for the information we are currently interested in, we do not need explicit knowledge
of ζ1 and f0. We want to remark that, if ζ1 were known, the value for y obtained in eq.(12.164) can
be used to determine f0 from eq.(12.155). This is a nice feature, since the possibly difficult differential
equation (12.159) never needs to be solved in this fashion. In Figure 12.1, we have plotted the
off-diagonal gluon mass (12.162) and ghost mass (12.163) for 0 6 α 6

√
3. We notice that the

masses grow to ∞ for increasing α, while the expansion parameter y drops to zero, as it is clear from
Figure 12.2. The relative smallness of y means that our perturbative analysis should give qualitatively
meaningful results. Before we come to the conclusions, let us consider the limit α → 0, corresponding
to the “real” MAG Dab

µ Aµb = 0. One finds

moff−diag
gluon =

(
3
2
e

17
6

) 1
4

ΛMS ≈ 2.25ΛMS ,

y =
36

187 + 66 ln 3
2

≈ 0.168 . (12.165)

12.6 Discussion and conclusion.

The aim of this paper was to give analytic evidence, as expressed by eq.(12.165), of the dynamical mass
generation for off-diagonal gluons in Yang-Mills theory quantized in the maximal Abelian gauge. This
mass can be seen as support for the Abelian dominance [73, 74, 75] in that gauge. This result is in
qualitative agreement with the lattice version of the MAG, were such a mass was also reported [49, 50].
The off-diagonal lattice gluon propagator could be fitted by 1

p2+m2 , which is in correspondence with
the tree level propagator we find. We have been able to prove the existence of the off-diagonal mass
by investigating the condensation of a mass dimension two operator, namely ( 1

2Aa
µAµa + αcaca). It

was shown how a meaningful, renormalizable effective potential for this local composite operator can
be constructed. By evaluating this potential explicitly at one-loop order in the case of SU(2), the
formation of the condensate is favoured since it lowers the vacuum energy. The latter does not depend
on the choice of the gauge parameter α, at least if one would work to infinite order in perturbation
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Figure 12.2: The expansion parameter y as a function of α.

theory. We have explained in short the problem at finite order and discussed a way to overcome it.
Moreover, we have been able to interpolate between the Landau gauge and the MAG by unifying them
in a larger class of renormalizable gauges. This observation was used to prove that the vacuum energy
of Yang-Mills theory in the MAG due to its mass dimension two condensate should be the same as the
vacuum energy of Yang-Mills theory in the Landau gauge with the much explored condensate

〈
AA

µ AµA
〉
.

It is worth noticing that all the gauges, where a dimension two condensate provides a dynamical gluon
mass parameter, such as the Landau gauge [42], the Curci-Ferrari gauges [178], the linear gauges [212]
and the MAG, can be connected to each other, either directly (e.g. Landau-MAG) or via the Landau
gauge (e.g. MAG and linear gauges). This also implies that, if

〈
AA

µ AµA
〉 6= 0 in the Landau gauge,

the analogous condensates in the other gauges cannot vanish either. Then the question arises if this
correspondence between different gauges could be stretched further to for instance the Coulomb gauge,
where the possibility of a condensate

〈
AA

i AiA
〉

was already advocated some time ago in [200]. However,
it is worth remarking that this might be a more complicated task, since the Coulomb gauge is not a
covariant gauge fixing, and as such its analysis within the algebraic remormalization framework [59] is
not straightforward.

Needless to say, the present work is far from being complete. First of all, an explicit calculation at two-
loop order and for general gauge group SU(N) would be interesting. We also limited our computations
to the tree level order. In principle, one should evaluate the off-diagonal gluon polarization in order to
get further information on the structure of the propagator. A first step in this direction was taken in
the case of the Landau gauge in [214]. It is unknown what will happen at higher orders in the MAG,
but it is likely that the external momentum Q2 will enter through loop corrections and influence the
possible position of a pole in the propagator. The ghost condensation, that was first investigated in
[77, 80] as a possible mechanism behind the off-diagonal mass, and later on was shown to be tachyonic
[157, 82], could enter this polarization too. This would require a more complete treatment of the ghost
condensation in the MAG, along the lines of [172], where these condensates were considered in more
detail in the case of the Curci-Ferrari and Landau gauge. Another issue which deserves attention is
the behaviour of the diagonal gluon. In [50], it was found that the diagonal gluon propagator also

contain a mass parameters, with mdiag
gluon ≈ 1

2moff−diag
gluon , while in [49] the diagonal gluon was reported

to behave like a light or massless particle. For completeness, we remind that these lattice simulations
were both performed in the case of SU(2). We want to remark that a condensation of the composite
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diagonal operator Ai
µAµi cannot occur within our approach, since this is forbidden by the diagonal

local U(1)N−1 Ward identity (12.30). In principle, one could add an extra source term like 1
2ρAi

µAµi,
but it does not seem possible to prove the renormalizability of this operator in the MAG. This might
be consistent with the result of [50], since the diagonal gluon propagator could not be fitted with a
Yukawa propagator 1

p2+m2 , in contrast with the off-diagonal gluon propagator which could be fitted

with 1
p2+m2 . This could mean that the diagonal mass parameter is of a different nature compared to

the off-diagonal one. A possible speculation is that it might have to do with Gribov copies, since a fit
p2

p4+m4 did work for the diagonal propagator [50].

Our analysis of the MAG condensate was also restricted to the purely perturbative level. One could
imagine calculating in a certain non-trivial background. The vacuum energy calculated in one gauge
should still be the same as the one calculated in the other gauge. In this context, and keeping in mind
that monopole condensation is an essential ingredient of the dual superconductor picture, it might
be worth noticing that the role of

〈
AA

µ AµA
〉

as an order parameter for monopole condensation was
investigated in the Landau gauge by the authors of [34], based on a similar observation in compact
QED [33]. We note that an off-diagonal gluon mass can serve as a starting point to derive low energy
(dual) Abelian models for Yang-Mills theories, see for example [99, 102, 101].

Let us conclude with a few considerations on the issues of the degrees of freedom and of the unitarity
when the gluons attain a dynamical mass, as a consequence of a nonvanishing dimension two condensate
〈OMAG〉 =

〈
1
2Aa

µAµa + αcaca
〉
. One possible way to look at the degrees of freedom associated to a

given field is through its propagator. From the pole of the propagator one gets information about the
mass of the field, while from its residue one learns about polarization states. However, the propagation of
the field has to occur in some vacuum. In other words, the kind of vacuum in which the field propagates
has to be supplemented. In our case, this task is achieved by the LCO Lagrangian, eq.(12.60), i.e.

L(Aµ, σ) = −1
4
F a

µνFµνa − 1
4
F i

µνFµνi + LMAG + Ldiag − σ2

2g2ζ
+

1
g2ζ

gσOMAG − 1
2ζ

(OMAG)2 ,

(12.166)

which allows one to take into account the effects related to having a nontrivial vacuum corresponding
to the nonvanishing dimension two condensate 〈OMAG〉, as expressed by the identity

〈σ〉 = g 〈OMAG〉 . (12.167)

That this is the preferred vacuum follows from the observation that the vacuum energy is lowered by
the condensate 〈OMAG〉. Expanding thus around 〈σ〉 6= 0, a dynamical tree level mass moff−diag.

gluon for
the off-diagonal gluons is generated in the gauge fixed Lagrangian (12.166), namely

moff−diag.
gluon =

√
g 〈σ〉
ζ0

. (12.168)

Therefore, in the condensed vacuum, 〈σ〉 6= 0, the Lagrangian (12.166) accounts for off-diagonal
massive gluons. However, we emphasize that this dynamical mass parameter occurs as the result of a
particular condensate. It is not a free parameter of the gauge fixed theory, its value being determined
by a gap equation. Concerning now the unitarity of the resulting theory, it should be remarked that,
due to confinement, gluons and quarks are only to be called physical at a very high energy scale Q2,
where they behave almost freely and asymptotic states can be related to them, thanks to asymptotic
freedom. At very high energies, our dynamically massive action might be unitary: a renormalization
group improvement could induce quantum corrections such that the mass parameter runs to zero for
Q2 →∞. Otherwise said, the corrections induced by this dynamical mass on the scattering amplitudes
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are expected to become less and less important as the energy of the process increases, so that the
amplitudes of the massless case are in fact recovered. Such a scenario would be analogous to the
behaviour of the dynamical mass parameter discussed by Cornwall in [201]. For very high Q2, one does
indeed expect that perturbative Yang-Mills theory with massless gluons, having two physical degrees of
freedom, describes the physical spectrum and that non-perturbative corrections are absent.

To decide if our resulting theory is unitary at smaller Q2, one should know how to take into account
the effects of confinement, which now cannot be neglected. This would amount to knowing how to
construct out of our Lagrangian (12.166) the low energy spectrum of the theory, which is believed to
be given by colorless bound states of gluons and quarks as, for instance, mesons, baryons and glueballs.
This task is far beyond our capabilities. At intermediate Q2, what we can state is that this dynamical
mass parametrizes the behaviour of the Greens function of the gluon. As a result of quantum effects,
i.e. the condensation of the mass dimension two operator, a pole appears in the off-diagonal gluon
propagator at the tree level. Including higher order effects will alter the propagators behaviour as well
as the location of the pole at physical Q2 (i.e. Q2 < 0). In the case of the Landau gauge, higher
order calculations showed that the condensate remains stable, and hence a nonzero mass parameter
will remain, see [42, 197]. This mass parameter will describe the behaviour of the Greens function at
Euclidean Q2. The presence of a mass parameter does however not necessarily entail the presence of a
pole in the propagator at negative Q2, corresponding to a physical particle. Using lattice simulations
of the Euclidean propagator, a mass parameter is found also by fitting at Euclidean Q2 > 0, but no
physical, massive particle is implied. Analogously, one should not conclude from our calculations that
the gluon is a massive, physical particle and that unitarity is violated.
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The infrared behavior of the gluon and ghost propagators is analyzed in Yang-Mills theories in the
presence of the dynamical generation of a mass parameter due to

〈
A2

µ

〉
in the Landau gauge. By

restricting the domain of integration in the path-integral to the Gribov region Ω, the gauge propagator
is found to be suppressed in the infrared, while the ghost propagator is enhanced.

13.1 Introduction.

The possibility that gluons might acquire a mass through a dynamical mechanism is receiving renewed
interest in the last few years. Although a fully gauge invariant framework for the dynamical mass
generation in Yang-Mills theories is not yet available, the number of gauges displaying this interesting
phenomenon is getting considerably large.

A dynamical gluon mass has been introduced in the light-cone gauge [201] in order to obtain estimates
for the spectrum of the glueballs. It has been discussed in the Coulomb gauge in [200], where the
presence of a nonvanishing condensate 〈Aa

i Aa
i 〉 in the operator product expansion for the two-point

gauge correlation function has been pointed out. More recently, the condensate
〈
Aa

µAa
µ

〉
has been

investigated in the Landau gauge in [33, 34, 175, 37, 38], where it has been proven to account for the
discrepancy observed in the two- and three-point correlation functions between the perturbative theory
and the lattice results. A renormalizable effective potential for the condensate

〈
Aa

µAa
µ

〉
in pure Yang-

Mills theory in the Landau gauge has been constructed and evaluated in analytic form up to two-loop
order in [42, 184]. This result shows that the vacuum of Yang-Mills theory favors the formation of a
nonvanishing condensate

〈
Aa

µAa
µ

〉
, which lowers the vacuum energy and provides a dynamical gluon

mass, which turns out to be of the order of ≈ 500MeV . The inclusion of massless quarks has been

207
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worked out in [197]. We remind here that lattice simulations of the gluon propagator in the Landau
gauge have reported a gluon mass m ≈ 600MeV [48]. Concerning other gauges, the occurrence of
the condensate

〈
Aa

µAa
µ

〉
and of the related dynamical gluon mass has been established in the linear

covariant gauges in [205, 212]. These results can be generalized to a class of nonlinear covariant gauges.
Here, the mixed gluon-ghost condensate

〈
1
2Aa

µAa
µ + ξcaca

〉
has to be considered [83, 144] , with ξ the

gauge parameter. A renormalizable effective potential for this condensate has been obtained in the
Curci-Ferrari [178] and maximal Abelian gauges [215], resulting in a dynamical mass generation. In
the latter case, lattice simulations [49, 50] had already given evidences of a nonvanishing mass for the
off-diagonal gluons. Moreover, a gluon mass has been reported in lattice simulations in the Laplacian
gauge [43, 47]. Also, it is part of the so-called Kugo-Ojima criterion for color confinement [177] and,
as discussed in [54], it proves to be useful in order to account for the data obtained on the radiative
decays of heavy quarkonia systems.

In this work we pursue the study of the dynamical mass generation in Euclidean Yang-Mills theory in the
Landau gauge. We attempt at incorporating the nonperturbative effects related to the Gribov horizon
[107], the aim being that of investigating the infrared behavior of the gluon and ghost propagators in
presence of the dynamical mass generation. These propagators have been studied to a great extent
by several groups through lattice simulations [216, 217, 218, 114, 115, 116, 45, 219, 220, 117] in the
Landau gauge, which have confirmed that the gluon propagator is suppressed in the infrared region
while the ghost propagator is enhanced, being in fact more singular than the perturbative behavior
≈ 1/k2. Such behavior of the gluon and ghost propagators was already found by Gribov in [107],
where it arises as a consequence of the restriction of the domain of integration in the path-integral
to the region Ω whose boundary ∂Ω is the first Gribov horizon, where the first vanishing eigenvalue
of the Faddeev-Popov operator, −∂µ

(
∂µδab + gfacbAc

µ

)
, appears. This restriction is necessary due

to the existence of the Gribov copies, which imply that the Landau condition, ∂µAa
µ = 0, does not

uniquely fix the gauge. The infrared suppression of the gluon propagator and the enhancement of
the ghost propagator have also been derived in [127, 128], where the restriction to the region Ω has
been implemented by a Boltzmann factor through the introduction of a horizon function. Recently, the
authors of [20, 121, 124, 122, 123, 125, 221, 113] have analyzed the behavior of the gluon and ghost
propagators in the Landau gauge within the Schwinger-Dyson framework, also obtaining that the gluon
propagator is suppressed while the ghost propagator is enhanced.

Concerning now the gluon and ghost propagators in the presence of a dynamical mass generation, we
shall proceed by following Gribov’s original suggestion, which amounts to implement the restriction to
Ω as a no-pole condition for the two-point ghost function [107]. We shall be able to show that the
gluon and ghost propagators are suppressed and enhanced, respectively, and this in the presence of a
dynamical gluon mass. This behavior is in agreement with that found in [107, 127, 128, 20, 121, 124,
122, 123, 125, 221, 113].

This work is organized as follows. In section 13.2 we briefly review the properties of the Lagrangian
accounting for the dynamical gluon mass generation in the Landau gauge. We remind here that the term
mass should be understood as the massive parameter generated by a nonvanishing

〈
A2

µ

〉
condensate. In

section 13.3 we implement the restriction of the domain of integration in the path-integral to the region
Ω. The ensuing modifications of the gauge propagator due to both the Gribov horizon and dynamical
gluon mass are worked out. Section 13.4 is devoted to the analysis of the infrared behavior of the ghost
propagator. Some further remarks are collected in section 13.5.
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13.2 Dynamical mass generation in the Landau gauge.

The dynamical mass generation due to
〈
A2

µ

〉
in the Landau gauge is described by the following action

[42]

S(A, σ) = SY M + SGF+FP + Sσ , (13.1)

where SY M , SGF+FP are the Yang-Mills and the gauge fixing terms

SY M =
1
4

∫
d4xF a

µνF a
µν , (13.2)

SGF+FP =
∫

d4x
(
ba∂µAa

µ + ca∂µDab
µ cb

)
, (13.3)

with ba being the Lagrange multiplier enforcing the Landau gauge condition, ∂µAa
µ = 0, and ca, ca

denoting the Faddeev-Popov ghosts. The color index a refers to the adjoint representation of the gauge
group SU(N). The term Sσ in eq.(13.1) contains the auxiliary scalar field σ and reads

Sσ =
∫

d4x

(
σ2

2g2ζ
+

1
2

σ

gζ
Aa

µAa
µ +

1
8ζ

(
Aa

µAa
µ

)2
)

. (13.4)

The introduction of the auxiliary field σ allows to study the condensation of the local operator Aa
µAa

µ.
In fact, as shown in [42], the following relation holds

〈σ〉 = −g

2
〈
Aa

µAa
µ

〉
. (13.5)

The dimensionless parameter ζ in expression (13.4) is needed to account for the ultraviolet divergences
present in the vacuum correlation function

〈
A2(x)A2(y)

〉
. For the details of the renormalizability

properties of the local operator Aa
µAa

µ in the Landau gauge we refer to [87, 153]. Expression (13.1) is
left invariant by the following BRST transformations

sAa
µ = −Dab

µ cb = − (
∂µca + gfabcAb

µcc
)

,

sca =
1
2
gfabccbcc ,

sca = ba ,

sba = 0 ,

sσ = gAa
µ∂µca , (13.6)

and

sS(A, σ) = 0 . (13.7)

Notice that, from the relation

Aa
µ∂µca = −1

2
s
(
Aa

µAa
µ

)
, (13.8)

it follows that the BRST operator is nilpotent. The action S(A, σ) is the starting point for constructing
a renormalizable effective potential V (σ) for the auxiliary field σ, obeying the renormalization group
equations. The output of the higher loop computations done in [42, 197] shows that the minimum
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of V (σ) occurs for a nonvanishing vacuum expectation value of the auxiliary field, i.e. 〈σ〉 6= 0. In
particular, from expression (13.1), the first order induced dynamical gluon mass is found to be

m2 =
g 〈σ〉
ζ0

, (13.9)

where ζ0 is the first contribution to the parameter ζ [42], given by

ζ =
ζ0

g2
+ ζ1 + O(g2) ,

ζ0 =
9
13

(
N2 − 1

)

N
. (13.10)

We remind here that, in the Landau gauge, the Faddeev-Popov ghosts ca, ca remain massless, due to
the absence of mixing between the composite operators Aa

µAa
µ and caca. This stems from additional

Ward identities present in the Landau [153] and in the covariant linear gauges [205], which forbid the
appearance of the term caca.

13.3 Infrared behavior of the gluon propagator.

13.3.1 Restriction to the region Ω.

In the previous section we have reviewed the properties of the action S(A, σ) which accounts for the
dynamical mass generation. However, it is worth underlining that the action S(A, σ) leads to a partition
function

Z = N
∫

DADσ δ(∂Aa) det
(−∂µ

(
∂µδab + gfacbAc

µ

))
e−(SY M+Sσ) , (13.11)

which is still plagued by the Gribov copies, which affect the Landau gauge. It might be useful to notice
here that the action (SY M + Sσ) is left invariant by the local gauge transformations

δAa
µ = −Dab

µ ωb , (13.12)

δσ = gAa
µ∂µωa ,

δ (SY M + Sσ) = 0 . (13.13)

As a consequence of the existence of Gribov copies, the domain of integration in the path-integral should
be restricted further. We shall follow here Gribov’s proposal to restrict the domain of integration to
the region Ω [107]. Expression (13.11) is thus replaced by

Z = N
∫

DADσ δ(∂Aa) det
(−∂µ

(
∂µδab + gfacbAc

µ

))
e−(SY M+Sσ) V(Ω) , (13.14)

where V(Ω) implements the restriction to Ω. The factor V(Ω) can be accommodated for by requiring
that the two-point connected ghost function G(k,A) has no poles for a given nonvanishing value of
the momentum k [107]. This condition can be understood by recalling that the region Ω is defined as
the set of all transverse gauge connections

{
Aa

µ

}
, ∂µAa

µ = 0, for which the Faddeev-Popov operator is

positive definite, i.e. −∂µ

(
∂µδab + gfacbAc

µ

)
> 0. This implies that the inverse of the Faddeev-Popov

operator
[−∂µ

(
∂µδab + gfacbAc

µ

)]−1
, and thus G(k, A), can become large only when approaching the

horizon ∂Ω, which corresponds in fact to k = 0 [107]. The quantity G(k, A) can be evaluated order by
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order in perturbation theory. Repeating the same calculation of [107], we find that, up to the second
order

G(k,A) ≈ 1
k2

1
1− ρ(k, A)

, (13.15)

with ρ(k, A) given by

ρ(k, A) =
g2

3
N

N2 − 1
1
V

kµkν

k2

∑
q

1
(k − q)2

(Aa
λ(q)Aa

λ(−q))
(

δµν − qµqν

q2

)
, (13.16)

and V being the space-time volume. According to [107], the no-pole condition for G(k, A) reads

ρ(0, A) < 1 ,

ρ(0, A) =
g2

4
N

N2 − 1
1
V

∑
q

1
q2

(Aa
λ(q)Aa

λ(−q)) . (13.17)

Therefore, for the factor V(Ω) in eq.(13.14) we have

V(Ω) = θ(1− ρ(0, A)) , (13.18)

where θ(x) stands for the step function1.

13.3.2 The gauge propagator.

In order to discuss the gauge propagator, it is sufficient to retain only the quadratic terms in expression
(13.14) which contribute to the two-point correlation function

〈
Aa

µ(k)Ab
ν(−k)

〉
. Expanding around the

nonvanishing vacuum expectation value of the auxiliary field, 〈σ〉 6= 0, and making use of the integral
representation for the step function

θ(1− ρ(0, A)) =
∫ i∞+ε

−i∞+ε

dη

2πiη
eη(1−ρ(0,A)) , (13.19)

we get

Zquadr = N
∫

DA
dη

2πiη
eη(1−ρ(0,A))δ(∂Aa)e−( 1

4

R
d4x((∂µAa

ν−∂µAa
ν)2+ 1

2 m2 R d4x(Aa
µAa

µ))

= N
∫

DA
dη

2πiη
eηe−

1
2

P
q Aa

µ(q)Qab
µνAb

ν(−q) , (13.20)

with

Qab
µν =

((
q2 + m2

)
δµν +

(
1
α
− 1

)
qµqν +

ηNg2

N2 − 1
1

2V

1
q2

δµν

)
δab , (13.21)

where the limit α → 0 has to be taken at the end in order to recover the Landau gauge. Integrating
over the gauge field, one has

Zquadr = N
∫

dη

2πiη
eη

(
detQab

µν

)− 1
2 = N

∫
dη

2πi
ef(η) , (13.22)

1θ(x) = 1 if x > 0, θ(x) = 0 if x < 0.
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where f(η) is given by

f(η) = η − log η − 3
2
(N2 − 1)

∑
q

log
(

q2 + m2 +
ηNg2

N2 − 1
1

2V

1
q2

)
. (13.23)

Following [107], the expression (13.22) can be now evaluated at the saddle point, namely

Zquadr ≈ ef(η0) , (13.24)

where η0 is determined by the minimum condition

1− 1
η0
− 3

4
Ng2

V

∑
q

1(
q4 + m2q2 + η0Ng2

N2−1
1

2V

) = 0 . (13.25)

Taking the thermodynamic limit, V →∞, and setting [107]

γ4 =
η0Ng2

N2 − 1
1

2V
, V →∞ , (13.26)

we get the gap equation

3
4
Ng2

∫
d4q

(2π)4
1

q4 + m2q2 + γ4
= 1 , (13.27)

where the term 1/η0 in (13.25) has been neglected in the thermodynamic limit. The gap equation
(13.27) defines the parameter γ. Notice that the dynamical mass m appears explicitly in eq.(13.27).
Moreover, (13.27) reduces to the original gap equation of [107, 127, 128] for m = 0. To obtain the
gauge propagator, we can now go back to the expression for Zquadr which, after substituting the saddle
point value η = η0, becomes

Zquadr = N
∫

DAe−
1
2

P
q Aa

µ(q)Qab
µνAb

ν(−q) , (13.28)

with

Qab
µν =

((
q2 + m2 +

γ4

q2

)
δµν +

(
1
α
− 1

)
qµqν

)
δab . (13.29)

Computing the inverse of Qab
µν and taking the limit α → 0, we get the gauge propagator in the presence

of the dynamical gluon mass m, i.e.

〈
Aa

µ(q)Ab
ν(−q)

〉
= δab q2

q4 + m2q2 + γ4

(
δµν − qµqν

q2

)
. (13.30)

Notice that, the presence of the mass m in eq.(13.30) enforces the infrared suppression of the gluon
propagator.

13.4 The infrared behavior of the ghost propagator.

Let us discuss now the infrared behavior of the ghost propagator, given by eq.(13.15) upon contraction
of the gauge fields, namely

G ≈ 1
k2

1
1− ρ(k)

, (13.31)
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with

ρ(k) =
g2

3
N

N2 − 1
kµkν

k2

∫
d4q

(2π)4
1

(k − q)2
〈Aa

λ(q)Aa
λ(−q)〉

(
δµν − qµqν

q2

)

= g2N
kµkν

k2

∫
d4q

(2π)4
1

(k − q)2
q2

q4 + m2q2 + γ4

(
δµν − qµqν

q2

)
. (13.32)

From the gap equation (13.27), it follows

Ng2

∫
d4q

(2π)4
1

q4 + m2q2 + γ4

(
δµν − qµqν

q2

)
= δµν , (13.33)

so that

1− ρ(k) = Ng2 kµkν

k2

∫
d4q

(2π)4
k2 − 2qk

(k − q)2
1

q4 + m2q2 + γ4

(
δµν − qµqν

q2

)
. (13.34)

Notice that the integral in the right hand side of eq.(13.34) is convergent and nonsingular at k = 0.
Therefore, for k ≈ 0,

(1− ρ(k))k≈0 ≈
3Ng2J

4
k2 , (13.35)

where J stands for the value of the integral

J =
∫

d4q

(2π)4
1

q2(q4 + m2q2 + γ4)
. (13.36)

Finally, for the ghost propagator we get

Gk≈0 ≈ 4
3Ng2J

1
k4

, (13.37)

exhibiting the characteristic infrared enhancement which, thanks to the gap equation (13.27), turns out
to hold also in the presence of the dynamical mass generation.

13.5 Conclusion.

In this letter we have analyzed the infrared behavior of the gluon and ghost propagators in the presence
of dynamical mass generation in the Landau gauge. The restriction of the domain of integration to
the Gribov region Ω has been implemented by repeating Gribov’s procedure [107], which amounts to
impose a no-pole condition for the two-point ghost function. The output of our analysis is summarized
by equations (13.27), (13.30), (13.37). Expression (13.27) is the gap equation which defines the
parameter γ. Notice now that the dynamical mass m enters explicitly the gap equation for γ. Equation
(13.30) yields the gauge propagator, which exhibits the infrared suppression. Finally, equation (13.37)
establishes the enhancement of the ghost propagator. This behavior of the gluon and ghost propagators
is in agreement with that found in [107, 127, 128, 20, 121, 124, 122, 123, 125, 221, 113]. Also, lattice
simulations [216, 217, 218, 114, 115, 116, 45, 219, 220, 117] have provided confirmations of the infrared
suppression of the gluon propagator and of the ghost enhancement, in the Landau gauge.

Concerning now the Gribov region Ω, it is known that it is not free from Gribov copies [109, 111, 112,
186]. The uniqueness of the gauge condition should be ensured by restricting the domain of integration
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to a smaller region in field space, known as the fundamental modular region. However, this is a difficult
task. Nevertheless, the restriction to the Gribov region Ω captures nontrivial nonperturbative aspects of
the infrared behavior of the theory, as expressed by the suppression and the enhancement of the gluon
and ghost propagators. Recently, it has been argued in [113] that the additional copies present in the
Gribov region Ω might have no influence on the expectation values.

Although being outside of the aim of the present letter, we remark that the gap equation (13.27)
can be also derived by using as starting point the local renormalizable action implementing the Gribov
horizon, proposed in [127, 128] by Zwanziger. It turns out in fact that the local operator Aa

µAa
µ can be

added to the Zwanziger action without spoiling its renormalizability [222]. This will allow to study the
condensation of the operator Aa

µAa
µ when the restriction to the horizon is taken into account. In this

case, the combination of the algebraic BRST technique with the local composite operator formalism,
see e.g. [42, 205, 212], should make possible to include the renormalization effects on the gluon and
ghost propagators.
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Remarks on the Gribov horizon and
dynamical mass generation in
Euclidean Yang-Mills theories

R. F. Sobreiro, S. P. Sorella (UERJ), D. Dudal and H. Verschelde (UGent),
AIP Conference Proceedings 739 (2005) 455.

The effect of the dynamical mass generation due to
〈
A2

µ

〉
on the gluon and ghost propagators in

Euclidean Yang-Mills theory in the Landau gauge is analysed within Zwanziger’s local formulation of
the Gribov horizon.

14.1 The model.

In a series of papers [127, 128], Zwanziger has shown that the restriction of the domain of integration
in the path integral to the Gribov region Ω =

{
Aa

µ | ∂Aa = 0, Mab > 0)
}
, where Mab = −∂µ(∂µδab +

gfacbAc
µ) is the Faddeev-Popov operator, can be implemented by adding to the Yang-Mills action the

nonlocal horizon term

Sh = g2γ4

∫
d4xfabcAb

µ(M−1)adfdecAe
µ . (14.1)

The parameter γ is known as the Gribov parameter [107], and is determined by the horizon condition
[127, 128], δΓ

δγ = 0, Γ being the quantum effective action. The nonlocal term (14.1) can be localized by

introducing a suitable set of additional fields [127, 128]. The resulting action displays two remarkable
properties, namely: locality and multiplicative renormalizability [127, 128, 223]. Moreover, these prop-
erties are preserved when the local composite operator Aa

µAa
µ is introduced in the theory. This enables

us to discuss the condensate 〈Aa
µAa

µ〉 [42, 184] and the related dynamical gluon mass m in the presence
of the Gribov horizon ∂Ω, within a local renormalizable framework. We give here a sketchy account of
this analysis by limiting ourselves to consider the Gribov approximation for the horizon action (14.1),
by setting Mab ≈ δab∂2. A more complete and detailed analysis is in preparation [222]. The BRST
invariant local action implementing the restriction to the region Ω, and allowing for the inclusion of the
operator Aa

µAa
µ, is S = (SY M + Sgf + Sh + Sγ + Smass). The term (SY M + Sgf ) is the Yang-Mills
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action together with the Landau gauge fixing, while Sh is the localized version of the horizon action
(14.1) in the Gribov approximation, containing the additional fields {ϕ̄a

µ, ϕa
µ} and {ω̄a

µ, ωa
µ}. We have

SY M =
1
4

∫
d4xF a

µνF a
µν , Sgf = s

∫
d4x c̄a∂µAa

µ , Sh = −s

∫
d4x ω̄a

µ∂2ϕa
µ ,

Following [127, 128], the term Sγ defines the composite operator Aa
µϕa

µ and its BRST variation,

introduced here through the corresponding sources J, λ̄. Finally, Smass accounts for the mass operator
Aa

µAa
µ and its BRST variation, coupled to the sources τ, η.

Sγ = s

∫
d4x

(
λ̄Aa

µϕa
µ + JAa

µω̄a
µ + ξλ̄J

)
, Smass =

1
2
s

∫
d4x

(
τAa

µAa
µ − ζτη

)
. (14.2)

The parameters ξ and ζ are needed to account for the divergences arising in the vacuum correlation
functions of these composite operators. The nilpotent BRST transformations of the fields and sources
are as follows:

sAa
µ = − (

∂µca + gfabcAb
µcc

)
, sω̄a

µ = ϕ̄a
µ , sλ̄ = J̄ , sτ = η ,

sca =
1
2
gfabccbcc , sϕ̄a

µ = 0 , sJ̄ = 0 , sη = 0 ,

sca = Ba , sϕa
µ = ωa

µ , sλ = 0 ,

sBa = 0 , sωa
µ = 0 , sJ = λ . (14.3)

By making use of the algebraic renormalization [59], the action S = SY M + Sgf + Sh + Sγ + Smass

turns out to be multiplicatively renormalizable. In particular, as discussed in [127, 128], the horizon
condition is obtained by setting the sources (J, J̄ , λ, λ̄) equal to J = J̄ = γ2, λ = λ̄ = 0, and by
requiring that δΓ

δγ = 0.

14.2 Gap equation and propagators.

Proceeding as in [224], it is not difficult to evaluate the effective action Γ(γ) at one-loop level, in the
presence of the dynamical gluon mass m. The horizon condition δΓ

δγ = 0 leads to the following gap
equation

3Ng2

4

∫
d4k

(2π)4
1

k4 + m2k2 + γ4
= 1 , (14.4)

which generalizes that obtained in [107, 127, 128]. Notice now that the dynamical mass m appears
explicitly in eq. (14.4). The gap equation (14.4) can be used to obtain the gluon and ghost propagators
in the tree-level approximation. The gluon propagator is found to be [224]

〈Aa
µ(q)Ab

ν(−q)〉 = δab q2

q4 + m2q2 + γ4

(
δµν − qµqν

q2

)
. (14.5)

For the ghost two point function we have [224]

G(q) = 〈ca(q)c̄a(−q)〉 ∼ 1
q4

. (14.6)

Notice that, according to the [107, 127, 128] the gluon propagator is suppressed in the infrared, while
the ghost propagator is enhanced.
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14.3 Conclusions.

The restriction of the domain of integration to the region Ω has been implemented by considering
Zwanziger’s local action [107, 127, 128] in the Gribov approximation. Expression (14.4) is the gap
equation defining the Gribov parameter γ in the presence of the dynamical gluon mass m. The resulting
gluon propagator is suppressed in the infrared, while the ghost propagator is enhanced. This behavior
of the gluon and ghost propagators is in agreement with that found in [107, 127, 128]. It has also
been found in [20] within the Schwinger-Dyson framework. Evidences for a dynamical gluon mass in
the Landau gauge within the Schwinger-Dyson formalism have been obtained recently in [51]. Finally,
lattice simulations have provided confirmations of the infrared suppression of the gluon propagator and
of the ghost enhancement, see [116] and refs. therein, reporting a gluon mass m of the order of ≈ 600
MeV [48].
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Chapter 15

The Gribov parameter and the
dimension two gluon condensate in
Euclidean Yang-Mills theories in the
Landau gauge

By D. Dudal (UGent), R. F. Sobreiro, S. P. Sorella (UERJ) and H. Verschelde (UGent),
submitted to Physical Review D (2005).

The local composite operator A2
µ is added to the Zwanziger action, which implements the restriction to

the Gribov region Ω in Euclidean Yang-Mills theories in the Landau gauge. We prove that Zwanziger’s
action with the inclusion of the operator A2

µ is renormalizable to all orders of perturbation theory,
obeying the renormalization group equations. This allows to study the dimension two gluon condensate〈
A2

µ

〉
by the local composite operator formalism when the restriction to the Gribov region Ω is taken

into account. The resulting effective action is evaluated at one-loop order in the MS scheme. We obtain
explicit values for the Gribov parameter and for the mass parameter due to

〈
A2

µ

〉
, but the expansion

parameter turns out to be rather large. Furthermore, an optimization of the perturbative expansion
in order to reduce the dependence on the renormalization scheme is performed. The properties of the
vacuum energy, with or without the inclusion of the condensate

〈
A2

µ

〉
, are investigated. In particular,

it is shown that in the original Gribov-Zwanziger formulation, i.e. without the inclusion of the operator
A2

µ, the resulting vacuum energy is always positive at one-loop order, independently from the choice of
the renormalization scheme and scale. Adding the operator A2

µ, opens the possibility to have a negative
vacuum energy, although we are unable to come to a definite conclusion at the order considered.
Concerning the behaviour of the gluon and ghost propagators, we recover the well known consequences
of the restriction to the Gribov region, and this in the presence of

〈
A2

µ

〉
, i.e. an infrared suppression of

the gluon propagator and an enhancement of the ghost propagator. Such a behaviour is in qualitative
agreement with the results obtained from the studies of the Schwinger-Dyson equations and from lattice
simulations.
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15.1 Introduction.

The dimension two condensate
〈
A2

µ

〉
has received a great deal of attention in the last few years, see for

example [34, 33, 42, 144, 83, 37, 175, 184, 153, 197, 225, 214, 252, 226, 227, 228]. This condensate
was already introduced in [229] in order to analyze the gluon propagator within the Operator Product
Expansion (OPE), while in [200] the condensate

〈
A2

i

〉
was considered in the Coulomb gauge. A

renormalizable effective potential for
〈
A2

µ

〉
has been constructed and evaluated in analytic form up to

two-loop order in the Landau gauge within the local composite operator (LCO) formalism in [42, 197].
The output of these investigations is that a non-vanishing condensate is favoured as it lowers the vacuum
energy. The renormalizability of the local composite operator formalism, see [176] for an introduction
to the method, was proven to all orders of perturbation theory, in the case of

〈
A2

µ

〉
, in [153] using the

algebraic renormalization technique [59]. Besides the Landau gauge, the method was extended to other
gauges as, for instance, the Curci-Ferrari gauge [178, 199], the linear covariant gauges [205, 212] and,
more recently, the maximal Abelian gauge [215].

As a consequence of the existence of a non-vanishing condensate
〈
A2

µ

〉
, a dynamical mass parameter

for the gluons can be generated in the gauge fixed Lagrangian, see [42, 197, 212]. We mention that a
gluon mass has been proven to be rather useful in the phenomenological context, see e.g. [53, 54, 56].
Moreover, mass parameters are commonly used in the fitting formulas for the data obtained in lattice
simulations, where the gluon propagator has been studied to a great extent in the Landau gauge
[114, 45, 48, 115, 116, 117].

The lattice results so far obtained have provided firm evidence of the suppression of the gluon propagator
in the infrared region, in the Landau gauge. Next to the gluon propagator, also the ghost propaga-
tor has been investigated numerically on the lattice [116, 117, 118, 119, 120], exhibiting an infrared
enhancement. It is worth remarking that, in agreement with lattice results, this infrared behaviour of
the gluon as well as of the ghost propagator has been obtained in the analysis of the Schwinger-Dyson
equations, see [121, 122, 123, 20, 124, 125, 126], as well as in a study making use of the exact renor-
malizaton group technique [230]. Recently, the possibility of a dynamical gluon mass parameter within
the Schwinger-Dyson framework has been discussed in [51, 52].

The aim of the present work is to investigate further the condensation of the operator A2
µ in the

Landau gauge using the local composite operator formalism. This will be done by taking into account
the nonperturbative effects related to the existence of the Gribov ambiguities [107], which are known
to affect the Landau gauge fixing condition, ∂µAa

µ = 0. As a consequence of the existence of the
Gribov copies, the domain of integration in the path integral has to be restricted in a suitable way.
Gribov’s orginal proposal was to restrict the domain of integration to the region Ω whose boundary
∂Ω is the first Gribov horizon, where the first vanishing eigenvalue of the Faddeev-Popov operator,
−∂µ

(
∂µδab + gfacbAc

µ

)
, appears [107]. Within the region Ω the Faddeev-Popov operator is positive

definite, i.e. −∂µ

(
∂µδab + gfacbAc

µ

)
> 0. One of the main results of Gribov’s work [107] was that the

gluon, respectively ghost propagator, got suppressed, respectively enhanced, in the infrared due to the
restriction to the region Ω.

In two previous papers [224, 231], we have already worked out the consequences of the restriction to
the Gribov region Ω when the dynamical generation of a gluon mass parameter due to

〈
A2

µ

〉
takes

place, also finding an infrared suppression of the gluon and an enhancement of the ghost propagator.
In [224], we closely followed the setup of Gribov’s paper [107]. In this work, we shall rely on the
Zwanziger local formulation of the Gribov horizon. In a series of papers [127, 128], Zwanziger has been
able to implement the restriction to the Gribov region Ω through the introduction of a nonlocal horizon
function appearing in the Boltzmann weight defining the Euclidean Yang-Mills measure. More precisely,
according to [127, 128], the starting Yang-Mills measure in the Landau gauge is given by

dµγ = DAδ(∂µAa
µ) det(M)e−(SY M+γ4H) , (15.1)
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where

Mab = −∂µ

(
∂µδab + gfacbAc

µ

)
, (15.2)

SYM =
1
4

∫
d4xF a

µνF a
µν , (15.3)

and

H =
∫

d4xh(x) = g2

∫
d4xfabcAb

µ

(M−1
)ad

fdecAe
µ , (15.4)

is the so-called horizon function, which implements the restriction to the Gribov region. Notice that H
is nonlocal. The parameter γ, known as the Gribov parameter, has the dimension of a mass and is not
free, being determined by the horizon condition

〈h(x)〉 = 4
(
N2 − 1

)
, (15.5)

where the expectation value 〈h(x)〉 has to be evaluated with the measure dµγ . To the first order, the
horizon condition (15.5) reads, in d dimensions,

1 =
N (d− 1)

4
g2

∫
ddk

(2π)d

1
k4 + 2Ng2γ4

. (15.6)

This equation coincides with the original gap equation derived by Gribov for the parameter γ [107].

Albeit nonlocal, the horizon function H can be localized through the introduction of a suitable set of
additional fields. As shown in [127, 128, 223], the resulting local action turns out to be renormalizable
to all orders of perturbation theory. Remarkably, we shall be able to prove that this feature is preserved
when the local operator A2

µ is introduced in the Zwanziger action. Moreover, the resulting theory turns
out to obey a homogeneous renormalization group equation. These important properties will allow
us to study the condensation of the operator A2

µ within a local renormalizable framework when the
restriction to the Gribov region Ω is implemented.

The paper is organized as follows. In section 15.2, we give a short account of how the nonlocal
horizon functional H can be localized by means of the introduction of additional fields. In sections
15.3 and 15.4, we prove the renormalizability, to all orders of perturbation theory, of Zwanziger’s action
in the presence of the operator A2

µ, introduced through the local composite operator formalism. As
the model has a rich symmetry structure, translated into several Ward identities, it turns out that
only three independent renormalization factors are necessary. The resulting quantum effective action
obeys a homogeneous renormalization group equation, as explicitly verified at one-loop order. From
this effective action, two coupled gap equations, associated to the condensate

〈
A2

µ

〉
and to the Gribov

parameter γ, are derived. Section 15.5 is devoted to the study of these gap equations at one-loop order
in the MS renormalization scheme. It is worth mentioning that, under certain conditions, we found that
it is possible that the condensate

〈
A2

µ

〉
is positive when the horizon condition is imposed. We prove

that in the MS scheme, and at one-loop order, the solution of the gap equations is necessarily one with〈
A2

µ

〉
> 0. We recall that without the restriction to the Gribov region Ω, the value found for

〈
A2

µ

〉
using the local composite operator formalism is negative, see [42, 197, 212]. Although the expansion
parameter proves to be rather large, an attempt to obtain explicit values for the Gribov and gluon
mass parameter is still presented. Also, we shall prove that in the original Gribov-Zwanziger model, the
vacuum energy is always positive at one-loop order, irrespective of the choice of renormalization scheme
and scale. We outline the importance of the sign of the vacuum energy, as it is related to the gauge
invariant gluon condensate

〈
F 2

µν

〉
, via the trace anomaly. In section 15.6 we work out an optimized

expansion in order to reduce the dependence on the choice of renormalization scheme to a single
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parameter b0, related to the coupling constant renormalization. This is achieved by exchanging the
mass parameters by their renormalization scale and scheme invariant counterparts and by re-expanding
the series in the one-loop coupling constant. We find that there is a region of b0 for which the vacuum
energy is negative. However, the dependence on b0 in this region happens to be very large, implying
that the results obtained at one-loop order can be taken only as a preliminary indication, as higher
order contributions would be required. In section 15.7 we outline some consequences stemming from
the presence of the Gribov and gluon mass parameters on the gluon and ghost propagators. We point
out a particular renormalization property of the Zwanziger action in order to ensure the enhancement
of the ghost propagator. Conclusions are written down in section 15.8, while some technical details are
found in the Appendix.

15.2 Local action from the restriction to the Gribov region.

As explained in [127, 128], the nonlocal functional H can be localized by means of the introduction of
a suitable set of additional ghost fields. More precisely, for the localized version of the measure dµγ we
get,

dµγ = DADbDcDcDϕDϕDωDωe−S , (15.7)

where S is given by1

S = S0 − γ2g

∫
d4x

(
fabcAa

µϕbc
µ + fabcAa

µϕbc
µ

)
, (15.8)

while

S0 = SYM +
∫

d4x
(
ba∂µAa

µ + ca∂µ (Dµc)a)

+
∫

d4x
(
ϕac

µ ∂ν

(
∂νϕac

µ + gfabmAb
νϕmc

µ

)− ωac
µ ∂ν

(
∂νωac

µ + gfabmAb
νωmc

µ

)

−g
(
∂νωac

µ

)
fabm (Dνc)b

ϕmc
µ

)
. (15.9)

The fields
(
ϕac

µ , ϕac
µ

)
are a pair of complex conjugate bosonic fields. Each field has 4

(
N2 − 1

)2
compo-

nents. Similarly, the fields
(
ωac

µ , ωac
µ

)
are anticommuting. The local action (15.8) is renormalizable by

power counting. More precisely, it has been shown in [127, 128, 223] that the Green functions obtained
with the action S0 with the insertion of the local composite operators fabcAa

µϕbc
µ and fabcAa

µϕbc
µ are

renormalizable, the action S0 being indeed renormalizable by a multiplicative renormalization of the
coupling constant g and of the fields [127, 128, 223]. We remark that the action S0 displays a global
U(f) symmetry, f = 4

(
N2 − 1

)
, with respect to the composite index i = (µ, c) = 1, ..., f , of the

additional fields
(
ϕac

µ , ϕac
µ , ωac

µ , ωac
µ

)
. Setting

(
ϕac

µ , ϕac
µ , ωac

µ , ωac
µ

)
= (ϕa

i , ϕa
i , ωa

i , ωa
i ) , (15.10)

we get

S0 = SYM +
∫

d4x
(
ba∂µAa

µ + ca∂µ (Dµc)a)

+
∫

d4x
(
ϕa

i ∂ν (Dνϕi)
a − ωa

i ∂ν (Dνωi)
a −g (∂νωa

i ) fabm (Dνc)b
ϕm

i

))
. (15.11)

1Our conventions are different from those originally used by Zwanziger. These can be obtained from ours by
setting ϕ → −ϕ and ω → −ω.
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For the U(f) invariance we have

UijS0 = 0 ,

Uij =
∫

d4x

(
ϕa

i

δ

δϕa
j

− ϕa
j

δ

δϕa
i

+ ωa
i

δ

δωa
j

− ωa
j

δ

δωa
i

)
. (15.12)

The presence of the global U(f) invariance means that one can make use of the composite index
i = (µ, c). By means of the diagonal operator Qf = Uii, the i-valued fields turn out to possess an
additional quantum number. As shown in [127, 128, 223], the action S0 is left invariant by the following
nilpotent BRST transformations,

sAa
µ = − (Dµc)a

,

sca =
1
2
gfabccbcc ,

sca = ba , sba = 0 ,

sϕa
i = ωa

i , sωa
i = 0 ,

sωa
i = ϕa

i , sϕa
i = 0 , (15.13)

with

sS0 = 0 . (15.14)

For further use, the quantum numbers of all fields entering the action S0 are displayed in the Table
15.2 . It is worth noticing that, when fabcAa

µϕbc
µ and fabcAa

µϕbc
µ are treated as composite operators,

they are introduced in the starting action S0 coupled to local external sources Mai
µ , V ai

µ , namely

−
∫

d4x
(
Mai

µ (Dµϕi)
a + V ai

µ (Dµϕi)
a)

. (15.15)

The horizon condition (15.5) is thus obtained from the quantum action by requiring that, at the end
of the computation, the sources Mai

µ , V ai
µ attain the physical values, obtained by setting

Mab
µν = V ab

µν = γ2δabδµν . (15.16)

Indeed, expression (15.15) reduces precisely to that of eq.(15.8) when the sources Mai
µ , V ai

µ attain their
physical value.

15.3 Renormalizability of the Zwanziger action in the presence
of the composite operator Aa

µA
a
µ.

The purpose of this section is to show that the renormalizability of the local action S0 is preserved
when, besides the operators fabcAa

µϕbc
µ and fabcAa

µϕbc
µ , also the local composite operator Aa

µAa
µ is

Aa
µ ca ca ba ϕa

i ϕa
i ωa

i ωa
i

dimension 1 0 2 2 1 1 1 1
ghostnumber 0 1 −1 0 0 0 1 −1
Qf -charge 0 0 0 0 1 −1 1 −1

Table 15.1: Quantum numbers of the fields.
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Uai
µ Mai

µ Nai
µ V ai

µ η τ Ka
µ La

dimension 2 2 2 2 2 2 3 4
ghostnumber −1 0 1 0 −1 0 −1 −2
Qf -charge −1 −1 1 1 0 0 0 0

Table 15.2: Quantum numbers of the sources.

introduced. This is a remarkable feature of the Zwanziger action, allowing us to discuss the condensation
of the operator Aa

µAa
µ when the restriction to the Gribov region Ω is implemented. To discuss the

renormalizability of the model in the presence of A2
µ, we start from the following complete action

Σ = S0 + Ss + Sext , (15.17)

where Ss is the term containing all needed local composite operators with their respective local sources,
and is given by

Ss = s

∫
d4x

(
−Uai

µ (Dµϕi)
a − V ai

µ (Dµωi)
a − Uai

µ V ai
µ +

1
2
ηAa

µAa
µ −

1
2
ζτη

)
, (15.18)

where the BRST operator acts as

sUai
µ = Mai

µ , sMai
µ = 0 ,

sV ai
µ = Nai

µ , sNai
µ = 0 , (15.19)

and

sη = τ , sτ = 0 . (15.20)

Therefore, for Ss one gets

Ss =
∫

d4x
(
−Mai

µ (Dµϕi)
a − gUai

µ fabc (Dµc)b
ϕc

i + Uai
µ (Dµωi)

b

− Nai
µ (Dµωi)

a − V ai
µ (Dµϕi)

a + gV ai
µ fabc (Dµc)b

ωc
i

− Mai
µ V ai

µ + Uai
µ Nai

µ +
1
2
τAa

µAa
µ + ηAa

µ∂µca − 1
2
ζτ2

)
. (15.21)

As already noticed, the sources Mai
µ , V ai

µ are needed to introduce the composite operators (Dµϕi)
a

and (Dµϕi)
a. The sources Uai

µ , Nai
µ define the BRST variations of these operators, given by (Dµωi)

b

and (Dµωi)
a. The physical value of these sources is given by

Mab
µν = V ab

µν = γ2δabδµν ,

Uab
µν = Nab

µν = 0 . (15.22)

The local composite operator Aa
µAa

µ and its BRST variation, Aa
µ∂µca, are then introduced by means

of the local sources τ , η. We also notice that the complete action Σ contains terms quadratic in the
external sources, namely

(
Mai

µ V ai
µ − Uai

µ Nai
µ

)
and ζτ2. These terms, allowed by power counting, are

in fact needed for the multiplicative renormalizability of the model. As shown in [42], the dimensionless
LCO parameter ζ of the quadratic term in the source τ is needed to account for the divergences present
in the correlation function

〈
A2

µ(x)A2
ν(y)

〉
for x → y. It should be remarked that, unlike for the term

quadratic in the external source τ , we have not introduced a new free parameter for the quadratic term
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(
Mai

µ V ai
µ − Uai

µ Nai
µ

)
in expression (15.21). As we shall see, this term goes through the renormalization

without the need of introducing a new parameter for its renormalizability. This is a remarkable feature
of the Zwanziger action which plays an important role when the ghost propagator in the presence of
the Gribov horizon will be discussed, see section 15.8.

Finally, the term Sext is the source term needed to define the nonlinear BRST transformations of the
gauge and ghost fields, i.e.

Sext =
∫

d4x

(
−Ka

µ (Dµc)a +
1
2
gLafabccbcc

)
. (15.23)

15.3.1 Ward identities.

In order to begin with the algebraic characterization of the most general counterterm needed for the
renormalizability of the complete action Σ, let us first give the set of Ward identities which are fulfilled
by Σ. These are

• the Slavnov-Taylor identity

S(Σ) = 0 , (15.24)

with

S(Σ) =
∫

d4x

(
δΣ

δKa
µ

δΣ
δAa

µ

+
δΣ
δLa

δΣ
δca

+ ba δΣ
δca + ϕa

i

δΣ
δωa

i

+ ωa
i

δΣ
δϕa

i

+ Mai
µ

δΣ
δUai

µ

+ Nai
µ

δΣ
δV ai

µ

+ τ
δΣ
δη

)
, (15.25)

• the Landau gauge condition and the antighost equation

δΣ
δba

= ∂µAa
µ , (15.26)

δΣ
δca + ∂µ

δΣ
δKa

µ

= 0 , (15.27)

• the ghost Ward identity

GaΣ = ∆a
cl , (15.28)

with

Ga =
∫

d4x

(
δ

δca
+ gfabc

(
cb δ

δbc
+ ϕb

i

δ

δωc
i

+ ωb
i

δ

δϕc
i

+ V bi
µ

δ

δN ci
µ

+ U bi
µ

δ

δM ci
µ

))
,

(15.29)

and

∆a
cl = g

∫
d4xfabc

(
Kb

µAc
µ − Lbcc

)
. (15.30)

Notice that the term ∆a
cl, being linear in the quantum fields Aa

µ, ca, is a classical breaking.
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• the linearly broken local constraints

δΣ
δϕai

+ ∂µ
δΣ

δMai
µ

= gfabcAb
µV ci

µ , (15.31)

δΣ
δωai

+ ∂µ
δΣ

δNai
µ

− gfabcωbi δΣ
δbc

= gfabcAb
µU ci

µ , (15.32)

δΣ
δωai

+ ∂µ
δΣ

δUai
µ

− gfabcV bi
µ

δΣ
δKc

µ

= −gfabcAb
µN ci

µ , (15.33)

δΣ
δϕai

+ ∂µ
δΣ

δV ai
µ

− gfabcϕbi δΣ
δbc

− gfabcωbi δΣ
δcc − gfabcU bi

µ

δΣ
δKc

µ

= gfabcAb
µM ci

µ , (15.34)

• the integrated Ward identity

∫
d4x

(
ca δΣ

δωai
+ ωai δΣ

δca + Uai
µ

δΣ
δKa

µ

)
= 0 , (15.35)

• the exact Rij symmetry

RijΣ = 0 , (15.36)

with

Rij =
∫

d4x

(
ϕa

i

δ

δωa
j

− ωa
j

δ

δϕa
i

+ V ai
µ

δ

δNai
µ

− Uai
µ

δ

δMai
µ

)
. (15.37)

15.3.2 Algebraic characterization of the counterterm.

Having established all the Ward identities fulfilled by the complete action Σ, we can now turn to the
characterization of the most general allowed counterterm Σc. Following the algebraic renormalization
procedure [59], Σc is an integrated local polynomial in the fields and sources with dimension bounded
by four, with vanishing ghost number and Qf -charge, obeying the following constraints

δΣc

δϕai
+ ∂µ

δΣc

δV ai
µ

− gfabcωbi δΣ
c

δcc − gfabcU bi
µ

δΣc

δKc
µ

= 0 ,

δΣc

δωai
+ ∂µ

δΣc

δUai
µ

− gfabcV bi
µ

δΣc

δKc
µ

= 0 ,

δΣc

δωai
+ ∂µ

δΣc

δNai
µ

= 0 ,

δΣ
δϕai

+ ∂µ
δΣ

δMai
µ

= 0 ,

δΣ
δca + ∂µ

δΣ
δKa

µ

= 0 ,

δΣc

δba
= 0 , (15.38)

GaΣc = 0 , (15.39)
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∫
d4x

(
ca δΣc

δωai
+ ωai δΣ

c

δca + Uai
µ

δΣc

δKa
µ

)
= 0 , (15.40)

RijΣc = 0 , (15.41)

and

BΣΣc = 0 , (15.42)

where BΣ is the nilpotent linearized Slavnov-Taylor operator

BΣ =
∫

d4x

(
δΣ

δKa
µ

δ

δAa
µ

+
δΣ
δAa

µ

δ

δKa
µ

+
δΣ
δLa

δ

δca
+

δΣ
δca

δ

δLa
+ ba δ

δca

+ ϕa
i

δ

δωa
i

+ ωa
i

δ

δϕa
i

+ Mai
µ

δ

δUai
µ

+ Nai
µ

δ

δV ai
µ

+ τ
δ

δη

)
, (15.43)

BΣBΣ = 0 . (15.44)

As it was shown in [127, 128, 223], the constraints (15.38) imply that Σc does not depend on the
Lagrange multiplier ba, and that the antighost ca and the i-valued fields ϕa

i , ωa
i , ϕa

i , ωa
i can enter only

through the combinations

K̃a
µ = Ka

µ + ∂µca − gfabcŨ bi
µ ϕci − gfabcV bi

µ ωci ,

Ũai
µ = Uai

µ + ∂µωai ,

Ṽ ai
µ = V ai

µ + ∂µϕai ,

Ñai
µ = Nai

µ + ∂µωai ,

M̃ai
µ = V ai

µ + ∂µϕai . (15.45)

Therefore, Σc can be parametrized as follows

Σc = Sc(A) +
∫

d4x
(
a1gfabcLacbcc + a2K̃

a
µ∂µca + a3gfabcK̃a

µAb
µcc + a4f

abcṼ ai
µ Ũ bi

µ cc

+ a5Ṽ
ai
µ M̃ai

µ + a6Ũ
ai
µ Ñai

µ +
a7

2
τAa

µAa
µ +

a8

2
ζτ2 + a9ηAa

µ∂µca + a10ηca∂Aa
)

, (15.46)

where Sc(A) depends only on the gauge field Aa
µ, and with a1, ..., a10 arbitrary parameters. Notice,

however, that there is no mixing in expression (15.46) between M̃ai
µ , Ñai

µ , Ṽ ai
µ , Ũai

µ and the sources
τ , η. This is due to the dimensionality and to the Qf -charge. It is precisely the absence of this mixing
that will ensure the renormalizability of the Zwanziger action in the presence of the composite operator
Aa

µAa
µ. From the ghost equation (15.39) it follows

a1 = a3 = a10 = 0 ,

a4 = −g(a6 + a5) . (15.47)

From the equations (15.40) and (15.41) we obtain

a6 = −a2 . (15.48)

Finally, from eq.(15.42) it turns out that

a5 = a2 ,

a9 = a7 − a2 , (15.49)
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and

Sc(A) = a0SY M + a2

∫
d4xAa

µ

δSY M

δAa
µ

. (15.50)

In summary, the most general local invariant counterterm compatible with all Ward identities contains
four arbitrary parameters, a0, a2, a7, a8, and reads

Σc = a0SY M + a2

∫
d4x

(
Aa

µ

δSY M

δAa
µ

+ K̃a
µ∂µca + Ṽ ai

µ M̃ai
µ − Ũai

µ Ñai
µ

)

+
∫

d4x
(a7

2
τAa

µAa
µ +

a8

2
ζτ2 + (a7 − a2) ηAa

µ∂µca
)

. (15.51)

15.4 Stability and renormalization constants.

Having determined the most general local invariant counterterm Σc compatible with all Ward identities,
it remains to check that the starting action Σ is stable, i.e. that Σc can be reabsorbed through the
renormalization of the parameters, fields and sources of Σ. According to expression (15.51), Σc contains
four arbitrary parameters a0, a2, a7, a8, which correspond in fact to a multiplicative renormalization
of the gauge coupling constant g, the parameters ζ, and of the fields φ = (Aa

µ, ca, ca, ba, ϕa
i , ωa

i , ϕa
i ,

ωa
i ) and sources Φ = (Kaµ, La, Mai

µ , Nai
µ , V ai

µ , Uai
µ , τ , η), according to

Σ(g, ζ, φ, Φ) + ηΣc = Σ(go, ζo, φo, Φo) + O(η2) , (15.52)

with

go = Zgg , ζo = Zζζ , (15.53)

and

φo = Z
1/2
φ φ ,

Φo = ZΦΦ . (15.54)

The coefficients a0, a2 are easily seen to be related to the renormalization of the gauge coupling
constant g and of the gauge field Aa

µ,

Zg =
(
1 + η

a0

2

)
,

Z
1/2
A =

(
1 + η

(
a2 − a0

2

))
. (15.55)

From expression (15.51) it follows that the Faddeev-Popov ghosts (ca, ca) and the i-valued fields
(ϕa

i , ωa
i , ϕa

i , ωa
i ) have a common renormalization constant, given by

Zc = Zc = Zϕ = Zϕ = Zω = Zω = (1− ηa2) = Z−1
g Z

−1/2
A . (15.56)

Eq.(15.56) expresses a well-known renormalization property of the Faddeev-Popov ghosts (ca, ca) in the
Landau gauge, stemming from the transversality of the gauge propagator and from the factorization
of the ghost momentum in the ghost-antighost-gluon vertex. We see therefore that, in the present
case, this property holds for the i-valued fields (ϕa

i , ωa
i , ϕa

i , ωa
i ) as well. Similarly to the ghost and



15.4. Stability and renormalization constants. 229

the i-valued fields, the renormalization of the sources
(
Mai

µ , Nai
µ , V ai

µ , Uai
µ

)
is also determined by the

renormalization constants Zg and Z
1/2
A , being given by

ZM = ZN = ZV = ZU = Z−1/2
g Z

−1/4
A . (15.57)

It is worth noticing here that equation (15.57) ensures that the counterterm a2

(
V ai

µ Mai
µ − Uai

µ Nai
µ

)

can be automatically reabsorbed by the term
(−Mai

µ V ai
µ + Uai

µ Nai
µ

)
in the expression (15.21) without

the need of introducing new free parameters. Indeed,

−MoVo = −MV Z2
M = −MV Z−1

g Z
−1/2
A = −MV + εa2MV . (15.58)

Concerning now the parameters a7, a8, they are easily seen to correspond to a multiplicative renorma-
lization of the local source τ and of the parameter ζ, according to

τo = Zτ τ , Zτ = 1 + η(a7 − 2a2 + a0) ,

ζo = Zζζ , Zζ = 1 + η(−a8 − 2a7 + 4a2 − 2a0) . (15.59)

Moreover, we would like to underline that there exists even an extra relation, namely

Zτ = ZgZ
−1/2
A . (15.60)

It can be proven by introducing the operator A2
µ through a more sophisticated set of local sources, like

it was done in [153]. We will not repeat that analysis here, we only mention that a key ingredient in the
proof of relation (15.60) was the presence of the ghost Ward identity, and since the Zwanziger action
possesses that identity, eq.(15.28), one can proceed along the lines of [153]. Thus, there are in fact
only three independent renormalization factors present.

In summary, the Zwanziger action in the presence of the local operator Aa
µAa

µ is multiplicative renorma-
lizable. In turn, this ensures that the quantum effective action obeys the homogeneous renormalization
group equations (RGE). This is an important feature of the model, which will be useful when we shall
try to obtain estimates for both the Gribov and mass parameter.

The effective action is defined upon setting the sources Uab
µν , Nab

µν , Ka
µ, La and η equal to zero and

implementing the condition (15.16). Doing so, we get

S = S0 + Sγ +
∫

d4x

(
τ

2
Aa

µAa
µ −

ζ

2
τ2

)
,

Sγ =
∫

d4x
[−γ2gfabcAa

µϕbc
µ − γ2gfabcAa

µϕbc
µ − 4

(
N2 − 1

)
γ4

]
. (15.61)

The term −4
(
N2 − 1

)
γ4 originates from the quadratic term in the external sources, namely(−Mai

µ V ai
µ + Uai

µ Nai
µ

)
, in expression (15.21), evaluated at the physical values given by eq.(15.16).

Following [42, 197, 176, 212], we introduce a Hubbard-Stratonovich field σ by means of the following
unity

1 =
∫

[dσ]e−
1
2ζ

R
d4x[σ

g + 1
2 Aa

µAa
µ−ζτ]2 , (15.62)

to remove the term proportional to τ2. The source τ is henceforth linearly coupled to the field σ, as
can be directly seen from the action, which now reads

S = S0 + Sγ + Sσ +
∫

d4x

(
−τ

σ

g

)
,

Sσ =
σ2

2g2ζ
+

1
2

gσ

g2ζ
Aa

µAa
µ +

1
8ζ

(
Aa

µAa
µ

)2
. (15.63)
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The following identification is easily derived [42, 197, 176, 212]

〈
Aa

µAa
µ

〉
= −1

g
〈σ〉 , (15.64)

from which it follows that a nonvanishing vacuum expectation value of the field σ will result in a
nonvanishing condensate

〈
Aa

µAa
µ

〉
.

The quantum action Γ is obtained through the definition

e−Γ =
∫

[dΦ] e−S0−Sγ−Sσ , (15.65)

where Φ is a shorthanded notation for all the relevant fields.

The value for 〈σ〉 is found through the minimization condition

∂Γ
∂σ

= 0 . (15.66)

The horizon is implemented by the condition [127, 128].

∂Γ
∂γ2

= 0 . (15.67)

Let us show this here. The following equivalence is readily found

∂Γ
∂γ2

= 0 ⇔ 〈
gfabcAa

µϕbc
µ

〉
+

〈
gfabcAa

µϕbc
µ

〉
= −8

(
N2 − 1

)
γ2 , (15.68)

From expressions (15.1) and (15.8), it follows that

−2γ2 〈h〉 =
〈
gfabcAa

µϕbc
µ

〉
+

〈
gfabcAa

µϕbc
µ

〉
. (15.69)

The combination of eq.(15.68) with eq.(15.69) gives rise to the horizon condition eq.(15.5). In order
to conclude this, it is tacitly assumed that γ 6= 0. We notice that the condition (15.67) does possess
the solution γ = 0. This is an artefact of the reformulation of the horizon condition in terms of the
equation (15.67), and must be excluded as it does not lead to the horizon condition (15.5). We shall,
however, continue to keep this solution of the gap equation (15.67), as γ ≡ 0 corresponds to the case
where the restriction to the Gribov region Ω would not be implemented. In this case, we must only
solve the gap equation stemming from eq.(15.66) with γ ≡ 0.

The original Gribov-Zwanziger model, i.e. without the inclusion of the operator A2
µ, is obtained by only

retaining the condition (15.67) with σ ≡ 0.

Up to now, the LCO parameter ζ is still a free parameter of the theory. We do not intend here to give
a complete overview of the LCO formalism, we suffice by saying that ζ is fixed by the demand that the
action Γ should obey the homogeneous renormalization group equation

(
µ

∂

∂µ
+ β(g2)

∂

∂g2
+ γγ2(g2)γ2 ∂

∂γ2
+ γσ(g2)σ

∂

∂σ

)
Γ = 0 , (15.70)

with

µ
∂g2

∂µ
= β(g2) ,

µ
∂γ2

∂µ
= γγ2(g2)γ2 ,

µ
∂σ

∂µ
= γσ(g2)σ . (15.71)
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This can be accomodated for by making ζ a function of the running coupling constant g2, in which
case it is found that

ζ(g2) =
ζ0

g2
+ ζ1 + ζ2g

2 + · · · . (15.72)

We refer to the available literature [42, 197, 176, 178, 212, 215] for a detailed account of the LCO
formalism.

15.4.1 Renormalization group invariance of the one-loop effective action in
the MS scheme without the inclusion of A2

µ.

Before proceeding with the detailed analysis of the horizon condition in the presence of the local operator
Aa

µAa
µ, let us first derive the horizon condition and check the explicit renormalization group invariance

of the quantum action Γ by switching off the source τ coupled to the operator Aa
µAa

µ. This amounts
to consider the original Gribov-Zwanziger model. We consider thus the action

S = S0 + Sγ . (15.73)

The one-loop effective action Γ(1) is easily obtained from the quadratic part of eq.(15.73)

e−Γ(1)
γ =

∫
[DΦ] e−Squad , (15.74)

with Squad given by

Squad =
∫

d4x

[
1
4

(
∂µAa

ν − ∂νAa
µ

)2 +
1
2α

(
∂µAa

µ

)2 + ϕab
µ ∂2ϕab

µ

− γ2g
(
fabcAa

µϕbc
µ + fabcAa

µϕbc
µ

)− 4(N2 − 1)γ4

]
, (15.75)

where the limit α → 0 is understood in order to recover the Landau gauge. After a straightforward
computation, one gets

Γ(1) = −4(N2 − 1)γ4 +
(N2 − 1)

2
(d− 1)

∫
ddp

(2π)d
ln

(
p4 + 2Ng2γ4

)
. (15.76)

Dimensional regularization, with d = 4−ε, will be employed throughout this work. Taking the derivative
of Γ(1), one reobtains the original gap equation for the Gribov parameter γ, namely

∂Γ(1)

∂γ
= 0 ⇒ 1 =

N (d− 1)
4

g2

∫
ddp

(2π)d

1
(p4 + 2Ng2γ4)

. (15.77)

More precisely, recalling that

∫
ddp

(2π)d
ln

(
p4 + ρ2

)
= − ρ2

32π2

(
ln

ρ2

µ4 − 3
)

+
1
ε

4ρ2

32π2
, (15.78)

the one-loop effective action Γ(1) reads

Γ(1) = −4(N2 − 1)γ4 − 3(N2 − 1)
64π2

(
2Ng2γ4

) (
ln

2Ng2γ4

µ4 − 5
3

)
, (15.79)
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where the MS renormalization scheme has been used.

In order to check the renormalization group invariance of Γ(1), we need to know the anomalous dimension
of the Gribov parameter γ. This is easily obtained from eq.(15.57), yielding

γγ2(g2) = −1
2

(
β(g2)
2g2

− γA(g2)
)

, (15.80)

where γA(g2) stands for the anomalous dimension of the gauge field Aa
µ. Thus, at one-loop order,

µ
dΓ(1)

dµ
=

(
4(N2 − 1)

(
β(1)(g2)

2g2
− γ

(1)
A (g2)

)
+

3(N2 − 1)
16π2

2Ng2

)
γ4 . (15.81)

Furthermore, from (see e.g. [87])

β(1)(g2) = −22
3

g4N

16π2
,

γ
(1)
A (g2) = −13

6
g2N

16π2
, (15.82)

it follows

µ
dΓ(1)

dµ
= 0 , (15.83)

which establishes the RGE invariance of the effective action at the order considered.

We are now ready to face the more complex case in which the local composite operator Aa
µAa

µ is present.
This will be the topic of the next section.

15.5 One-loop effective action in the MS scheme with the in-
clusion of A2

µ.

15.5.1 Calculation of the one-loop effective potential.

Let us turn to the explicit one-loop evaluation of the effective action Γ in the presence of A2
µ. At

one-loop, it turns out that2

Γ = −4
(
N2 − 1

)
γ4 +

σ2

2g2ζ
+

N2 − 1
2

ln det
[
p2δµν +

2Ng2γ4

p2
δµν − pµpν

(
1− 1

α

)
+

gσ

g2ζ
δµν

]
,

(15.84)

or

Γ = −4
(
N2 − 1

)
γ4 +

σ2

2g2ζ
+

N2 − 1
2

(d− 1)
∫

ddp

(2π)d
ln

[
p4 + 2Ng2γ4 +

gσ

g2ζ
p2

]
. (15.85)

Before calculating the integral, we quote the two gap equations

∂Γ
∂σ

= 0 ⇔ σ

ζ0

(
1− ζ1

ζ0
g2

)
+

(
N2 − 1

)

2
g(d− 1)

ζ0

∫
ddp

(2π)d

p2

p4 + gσ
ζ0

p2 + 2Ng2γ4
= 0 ,

∂Γ
∂γ

= 0 ⇔ γ3 = γ3 d− 1
4

g2N

∫
ddp

(2π)d

1
p4 + gσ

ζ0
p2 + 2Ng2γ4

. (15.86)

2We shall drop from now on the superscript (1) indicating that we are working at one-loop order.
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The second gap equation of (15.86), being the horizon condition, gives rise to the one obtained in the
previous paper [224], while the first one describes the condensation of A2

µ when the restriction to the
Gribov region Ω is implemented. We notice that that the explicit value of the Gribov parameter γ is
influenced by the presence of

〈
A2

µ

〉
.

It remains to calculate

I =
∫

ddp

(2π)d
ln

[
p4 + bp2 + c

]
, (15.87)

with

b =
gσ

ζ0
, c = 2Ng2γ4 , (15.88)

Since

p4 + bp2 + c =
(
p2 + ω1

) (
p2 + ω2

)
, (15.89)

with

ω1 =
b +

√
b2 − 4c

2
, ω2 =

b−√b2 − 4c

2
, (15.90)

one has

I =
∫

ddp

(2π)d
ln

(
p2 + ω1

)
+

∫
ddp

(2π)d
ln

(
p2 + ω2

)
. (15.91)

To make sense, the expression (15.87) should be real to ensure that the one-loop effective action is
real-valued. Therefore, we must demand that c > 0. If b > 0, I is certainly real. However, when
b2 − 4c 6 0, then also b < 0 is allowed. We should thus have a positive Gribov parameter γ4, while
the condensate

〈
A2

µ

〉
can be negative or positive, depending on the case.

Using

∫
ddp

(2π)d
ln

(
p2 + m2

)
=
−m4

32π2

(
2
ε
− ln

m2

µ2 +
3
2

)
, (15.92)

it holds

I = − ω2
1

32π2

(
2
ε
− ln

ω1

µ2 +
3
2

)
− ω2

2

32π2

(
2
ε
− ln

ω2

µ2 +
3
2

)
. (15.93)

Finally, in the MS scheme, we obtain

Γ = −4
(
N2 − 1

)
γ4 +

σ2

2ζ0

(
1− ζ1

ζ0
g2

)
+

3
(
N2 − 1

)

2
×




(
gσ
ζ0

+
√

g2σ2

ζ2
0
− 8g2Nγ4

)2

128π2


ln

gσ
ζ0

+
√

g2σ2

ζ2
0
− 8g2Nγ4

2µ2 − 5
6




+

(
gσ
ζ0
−

√
g2σ2

ζ2
0
− 8g2Nγ4

)2

128π2


ln

gσ
ζ0
−

√
g2σ2

ζ2
0
− 8g2Nγ4

2µ2 − 5
6





 . (15.94)
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To lighten the notation a bit, let us introduce the new variables3

λ4 = 8g2Nγ4 , (15.95)

m2 =
gσ

ζ0
. (15.96)

in which case the action (15.94) can be rewritten as

Γ = −
(
N2 − 1

)
λ4

2g2N
+

ζ0m
4

2g2

(
1− ζ1

ζ0
g2

)

+
3

(
N2 − 1

)

256π2

[(
m2 +

√
m4 − λ4

)2
(

ln
m2 +

√
m4 − λ4

2µ2 − 5
6

)

+
(
m2 −

√
m4 − λ4

)2
(

ln
m2 −√m4 − λ4

2µ2 − 5
6

)]
. (15.97)

We notice that the foregoing expression is also valid, i.e. real-valued, in the case in which m4 < λ4, as
`+(m, λ) and `−(m, λ), defined by,

`+(m,λ) =
(
m2 +

√
m4 − λ4

)2
(

ln
m2 +

√
m4 − λ4

2µ2 − 5
6

)

`−(m,λ) =
(
m2 −

√
m4 − λ4

)2
(

ln
m2 −√m4 − λ4

2µ2 − 5
6

)
(15.98)

are complex conjugate4.

The horizon condition, eq.(15.67), can be translated to

∂Γ
∂λ

= 0 , (15.99)

and the gap equation (15.66) to

∂Γ
∂m2

= 0 . (15.100)

As a check of this one-loop calculation, the expression (15.97) with m2 ≡ 0 reduces to the result
obtained earlier in eq.(15.79), i.e. the original Gribov-Zwanziger model without the inclusion of A2

µ. If
λ ≡ 0, i.e. the case where the condensation of A2

µ is investigated without implementing the restriction
to the Gribov region Ω, eq.(15.97) coincides with the result of [42, 197, 212]. From [153], one knows
that

µ
∂

〈
A2

µ

〉

∂µ
= γA2

µ
(g2)

〈
A2

µ

〉
= −

(
β(g2)
2g2

+ γA(g2)
) 〈

A2
µ

〉
, (15.101)

or, using the relation (15.64) and the definition (15.96),

µ
∂m2

∂µ
= γm2(g2)m2 =

(
β(g2)
2g2

− γA(g2)
)

m2 , (15.102)

3In comparison with the previous article [224], we have the correspondence λ4 = 4γ4 with the Gribov parameter
γ4 as defined there. It is actually this γ4 which will enter the modified propagators, see [224] and further in this
paper.

4Using ln(z) = ln |z|+ i arg(z) with −π < arg(z) 6 π.
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while from eq.(15.80), it can be inferred that

µ
∂λ

∂µ
= γλ(g2)λ =

1
4

(
β(g2)
2g2

+ γA(g2)
)

λ . (15.103)

We notice the remarkable fact that the anomalous dimensions of the Gribov parameter and of the
operator A2

µ are proportional to each other, to all orders of perturbation theory.

It can now be checked that Γ is renormalization group invariant, namely

µ
d

dµ
Γ = 0 . (15.104)

Finally, taking the derivatives of the action given in eq.(15.97) gives rise to

1
λ3

∂Γ
∂λ

= −2
(
N2 − 1

)

g2N
+

3
(
N2 − 1

)

256π2

[
−4

(
m2 +

√
m4 − λ4

)
√

m4 − λ4
ln

m2 +
√

m4 − λ4

2µ2

+ 4

(
m2 −√m4 − λ4

)
√

m4 − λ4
ln

m2 −√m4 − λ4

2µ2 +
8
3

]
, (15.105)

and

∂Γ
∂m2

=

ζ0m
2

g2

(
1− ζ1

ζ0
g2

)
+

3
(
N2 − 1

)

256π2

[
2

(
m2 +

√
m4 − λ4

) (
1 +

m2

√
m4 − λ4

)
ln

m2 +
√

m4 − λ4

2µ2

+ 2
(
m2 −

√
m4 − λ4

) (
1− m2

√
m4 − λ4

)
ln

m2 −√m4 − λ4

2µ2 − 8
3
m2

]
.

(15.106)

15.5.2 Solving the gap equations.

We have now all the ingredients at hand to search for estimates of the mass parameter m2 and Gribov
parameter λ as solutions of the gap equations (15.105) and (15.106). To avoid misinterpretations due
to the suggestive use of the notation m2, we remark that, due to the presence of λ, the mass parameter
does not even appear as a pole in the tree level gluon propagator, see eq.(15.206).

Let us first consider the pure Gribov-Zwanziger case, i.e. we put m2 ≡ 0 in the expression (15.97).
The relevant gap equation (horizon condition) reads

∂Γ
∂λ

= λ3

(
−2

(
N2 − 1

)

g2N
− 3

(
N2 − 1

)

64π2

(
ln

λ4

4µ4 −
5
3

)
− 3

(
N2 − 1

)

64π2

)
= 0 . (15.107)

We remind here that the solution λ = 0 must be rejected. The natural choice for the renormalization

scale is to set µ2 = λ4

4 to kill the logarithms, and we find

g2N

16π2

∣∣∣∣
µ2= λ4

4

= 4 . (15.108)
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In principle, from

g2(µ2) =
1

β0 ln µ2

Λ2
MS

, with β0 =
11
3

N

16π2
, (15.109)

eq.(15.108) could be used to determine an estimate for the Gribov parameter, however it might be clear
that this is meaningless since the corresponding expansion parameter (15.108) is far too big.

It is interesting to notice that, in a general massless renormalization scheme, the one-loop action with
m2 ≡ 0 would read

Γ = −
(
N2 − 1

)

2g2N
λ4 − 3λ4

(
N2 − 1

)

264π2

(
ln

λ4

4µ4 + a

)
, (15.110)

with a an arbitrary constant. The corresponding gap equation equals

∂Γ
∂λ

= λ3

(
−2

(
N2 − 1

)

g2N
− 3

(
N2 − 1

)

64π2

(
ln

λ4

4µ4 + a

)
− 3

(
N2 − 1

)

64π2

)
= 0 . (15.111)

Denoting by λ∗ a solution of eq.(15.111), for the vacuum energy corresponding to (15.110) one finds

Evac = Γ(λ∗) =
3(N2 − 1)

64π2

λ4
∗
4

. (15.112)

This expression is valid for all µ and for all a. The vacuum energy is thus always nonnegative at one-loop
order in the original Gribov-Zwanziger model.

The gap equation (15.106) with λ ≡ 0 obviously has the solution already obtained in [42, 197, 212]
where the restriction to the Gribov region Ω was not taken into account. We recall the values

g2N

16π2
=

36
187

≈ 0.193 , (15.113)

m2 = e
17
12 Λ2

MS
≈ (2.031ΛMS)2 , (15.114)

Evac = − 3
16π2

e
17
6 Λ4

MS
≈ −0.323Λ4

MS
, (15.115)

which were obtained upon setting µ2 = m2 to kill the logarithms.

We shall now show that, in the MS scheme, the gap equations (15.105)-(15.106) have no solution with
m2 > 0 when the restriction to the horizon is implemented (i.e. when λ 6= 0). To this purpose, we
introduce for m2 > 0 the variable

t =
λ4

m4
. (15.116)

Evidently, we should only consider t > 0.

Dividing the gap equations (15.105)-(15.106) by m2, they can be rewritten as5

16π2

g2N
=

3
8

(
−2 ln

m2

2µ2 +
2
3

+
1√

1− t
ln

t(
1 +

√
1− t

)2 − ln t

)
, (15.117)

and

−24
13

(
16π2

g2N

)
+

322
39

= 4 ln
m2

2µ2 −
4
3
− 2− t√

1− t
ln

t(
1 +

√
1− t

)2 + 2 ln t , (15.118)

5We have already factored out m2 or λ3 since these are non-zero in the present case.
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where use has been made of the explicit values of ζ0 and ζ1, which can be found in [42, 197, 212]

ζ0 =
9
13

N2 − 1
N

, ζ1 =
161
52

N2 − 1
16π2

, (15.119)

The eqns.(15.118)-(15.119) can be combined to eliminate ln m2

2µ2 , yielding the following condition

68
39

(
16π2

g2N

)
+

161
39

=
t√

1− t
ln

t(
1 +

√
1− t

)2 ≡ F (t) . (15.120)

It can be checked that F (t) is real-valued and negative for t > 0, thus the r.h.s. of eq.(15.120) is always
negative. Since the l.h.s. of eq.(15.120) is necessarily positive for a meaningful result (i.e. g2 > 0),
there is no solution with m2 > 0. As already mentioned, there are a priori also possible solutions with
m2 < 0.

To investigate the existence of a solution with m2 < 0, it might be instructive to look again at the
gap equations (15.105) and (15.106) from another perspective. We recall that, if the horizon is not
implemented, i.e. λ ≡ 0, the gap equation (15.106) has two solutions, a perturbative one corresponding
to m2 = 0 (no condensation) and a non-perturbative one corresponding to the m2 given in eq.(15.114).

If we momentarily consider λ as a free, adjustable parameter of the theory, eq.(15.106) dictates how m2

becomes a function of the parameter λ. From the result at λ = 0, we could expect that two branches
of solutions would evolve, one starting from the perturbative and one from the non-perturbative value
of m2 at λ = 0. When λ ≡ 0, the choice for the scale µ is quite obvious from the requirement that

all the logarithms ln m2

µ2 are vanishing. However, when λ 6= 0, we notice that there are two kinds of

logarithms present, being ln m2+
√

m4−λ4

2µ2 and ln m2−√m4−λ4

2µ2 . We opt to set

µ2 =

∣∣m2 +
√

m4 − λ4
∣∣

2
. (15.121)

This reduces to µ2 = m2 if λ = 0, while it allows for6 m2 < 0. This is possible if m4 6 λ4. This is
possible if m4 6 λ4, as it was mentioned below eq.(15.91). In this case, the size of both logarithms,

ln m2+
√

m4−λ4

2µ2 and ln m2−√m4−λ4

2µ2 , is determined by their arguments, which are complex conjugate.

Let us specify to the case N = 3. In Figure 15.1, we have plotted the behaviour of m2(λ4). We see
that next to the “non-perturbative” branch of solutions, starting from m2 6= 0, also a “perturbative”
branch of solutions with m2 < 0 is emerging from m2 = 0, in correspondence with our expectation.

However, λ4 is not a free parameter of the theory. We should require that λ4 is such that the doublet
(λ4,m2(λ4)) is a solution of the gap equation (15.105), i.e. the horizon condition. In Figure 15.2, we
have plotted the value of the horizon condition equation, as a function of λ4. It is clear that no solution
with m2 > 0 exists as the horizon condition never becomes zero. Of course, this is in correspondence
with the foregoing general proof that there is never such a solution, independently of the choice of µ.
However, we see that there is a single solution with m2 < 0.

The corresponding values for the expansion parameter, for the Gribov and mass parameter, as well

6Evidently, µ2 should be real and positive, hence the modulus in eq.(15.121).



238 Chapter 15. The Gribov parameter and the dimension two gluon condensate...

50 100 150 200 250
lambda^4

-10

-5

5

m^2

Figure 15.1: m2 as a function of λ4, in units ΛMS = 1.

as for the vacuum energy are found to be

g2N

16π2
≈ 1.18 , (15.122)

λ4 ≈ 6.351Λ4
MS

, (15.123)

m2 ≈ −0.950Λ2
MS

, (15.124)

Evac ≈ 0.043Λ4
MS

, (15.125)

15.5.3 Intermediate comments.

Although the MS expansion parameter (15.122) is too large to speak about reliable results, we nev-
ertheless would like to raise some questions. Apparently, the solution of the coupled gap equations is
laying on the “perturbative” branch, being the one with m2 6 0. This gives rise to a positive value for
the mass dimension two gluon condensate

〈
A2

µ

〉
. When the restriction on the domain of integration in

the path integral is not implemented, as in the previous papers [42, 197, 212],
〈
A2

µ

〉
was necessarily

negative, the reason being that the action should be real-valued, as it was explained below eq.(15.91).
Let us also mention here that in [37, 175, 225], a positive estimate for

〈
A2

µ

〉
was obtained when using

the OPE in combination with
〈
A2

µ

〉
. These works were based on the observation that there was existing

a certain discrepancy at relatively large momentum between the expected perturbative behaviour and
the obtained lattice behaviour of the effective strong coupling constant and gluon propagator. This
discrepancy could be solved in both cases using 1

q2 power corrections, due to a positive
〈
A2

µ

〉
OPE

gluon

condensate. We do not know if there is a direct connection between the condensate
〈
A2

µ

〉
we determine,

and
〈
A2

µ

〉
OPE

, as the latter is expected to contain only infrared contributions, according to an OPE
treatment.

An unfortunate finding is that the vacuum energy is positive, eq.(15.125). Let us explain the importance
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Figure 15.2: The horizon condition (15.105) as a function of λ4, in units ΛMS = 1. The top curve corresponds
to the solutions of (15.106) with m2 < 0 and the lower curve to the solutions with m2 > 0.

of this. Through the trace anomaly

θµµ =
β(g2)
2g2

F 2
µν , (15.126)

the vacuum energy can be traced back to the value of the gluon condensate
〈
F 2

µν

〉
. In particular, for

N = 3, from this anomaly one deduces

〈
g2

4π2
F 2

µν

〉
= −32

11
Evac , (15.127)

where the one-loop β-function has been used. Hence, a positive vacuum energy implies a negative value

for the condensate
〈

g2

4π2 F 2
µν

〉
. This is in contradiction with what is found. In QCD, with quarks present,

one can extract phenomenological values for
〈

g2

4π2 F 2
µν

〉
via the sum rules [13], obtaining positive values

for this condensate. It was discussed in [129] how to obtain an estimate for it by means of lattice
calculations. In the case of N = 3 Yang-Mills theory without quarks, it was found that

〈
g2

4π2
F 2

µν

〉
= 0.14± 0.02GeV4 . (15.128)

Let us mention here that the Yang-Mills β-function is negative up to the (known) four-loop order

[232, 233, 234]. Hence, Evac and
〈

g2

4π2 F 2
µν

〉
will continue to have opposite sign at higher order. From

this viewpoint, it seems to us that it would be an asset that the vacuum energy obtained from any kind
of calculation is at least negative.

In summary, we are left with the following questions:

i. What is the sign and value of m2 and thus of
〈
A2

µ

〉
?
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ii. What is the sign and value of Evac and the corresponding value for
〈

g2

4π2 F 2
µν

〉
?

iii. Are these values better or not when the operator A2
µ is added to the original Gribov-Zwanziger

model?

We have already discussed that the vacuum energy obtained in a one-loop approximation is always
positive when the condensation of the operator A2

µ is left out of the discussion, using whatever renor-
malization scheme. To answer the above questions, one could investigate what happens at two-loop
order. However, due to the already quite complicated structure of the one-loop effective action and to
the fact that the calculations at higher loop order will not get any easier, this task is beyond the scope
of the present article. Here, we shall mainly focus on the effects of a change of the renormalization
scheme at the one-loop order. It could happen that, in a scheme different from the MS one, the vacuum
energy is negative and/or that the coupling constant is small enough to speak about trustworthy results,
at least qualitatively.

15.6 Changing and reducing the dependence on the renormali-
zation scheme.

15.6.1 Preliminaries.

Before coming to the actual computations, let us first discuss some results which will turn out to be
useful.

Consider again the action S of eq.(15.61). Due to the rich symmetry structure of the model, encoded
in the Ward identities (15.24)-(15.37), and due to the extra relation (15.60), only three renormalization
factors remain to be fixed, namely Zg, ZA and Zζ . Apparently, this means that we would need three
renormalization conditions in order to fix a particular renormalization scheme. However, taking a look
at the bare action associated with expression eq.(15.61), we would find the following relations

ζo = Zζζ ,

ζoτ
2
o = µ−εZζζτ2 ,

τo = Zτ τ , (15.129)

from which it follows that

Zζζ = µεζoZ
2
τ . (15.130)

Since the bare quantity ζo is renormalization scheme and scale independent and since ζ always appears
in the combination Zζζ in the action, it follows that only Zg and ZA are relevant for the effective
action, because Zτ can be expressed in terms of these two factors. Consequently, we would only need
two renormalization conditions to fix the scheme. Obviously, we can equally well choose to make use
of, for example, Zg and Zτ as the two independent renormalization factors, corresponding to coupling
constant and mass renormalization.

We will change from the MS to another massless renormalization scheme by means of the following
transformations7

g2 = g2
(
1 + b0g

2 + b1g
4 + · · · ) ,

λ = λ
(
1 + c0g

2 + c1g
4 + · · · ) ,

m2 = m2
(
1 + d0g

2 + d1g
4 + · · · ) , (15.131)

7Barred quantities refer to the MS scheme.
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where the parameters bi, ci and di label the new scheme. However, we should keep in mind that the
renormalization of the Gribov parameter λ is not independent of that of g2 and m2. Eliminating γA(g2)
between eqns.(15.102) and (15.103), yields

γλ(g2) =
1
4

(
β(g2)

g2
− γm2(g2)

)
. (15.132)

This relation, valid to all orders of perturbation theory, implies the existence of relationships between
the coefficients bi, ci and di. For further use, we shall explicitly construct the relation between b0, c0

and d0. Let us adopt as parametrization of β(g2), γm2(g2) and γλ(g2)

β(g2) = −2
(
β0g

4 + β1g
6 + · · · ) ,

γm2(g2) = γ0g
2 + γ1g

4 + · · · ,

γλ(g2) = λ0g
2 + λ1g

4 + · · · , (15.133)

and an analogous one in the case of the MS scheme. Then, one computes

µ
∂λ

∂µ
= µ

∂

∂µ

[
λ

(
1 + c0g

2 + · · · )]

= · · ·
= λ

(
λ0g

2 + (λ1 + c0λ0 − 2β0c0) g4 + · · · ) , (15.134)

which can be expressed in terms of γi and βi by exploiting the relation (15.132). We find

µ
∂λ

∂µ
= λ

[−2β0 − γ0

4
g2 +

(−2β1 − γ1

4
+ c0

−2β0 − γ0

4
− 2β0c0

)
g4 + · · ·

]
. (15.135)

We can also calculate µ dλ
dµ by first exploiting the relation (15.132), obtaining

µ
∂λ

∂µ
=

1
4

[
(−2β0 − γ0)g2 + (−2β1 − γ1)g

4 + · · · ] [
λ

(
1 + c0g

2 + · · · )]

= · · ·
=

1
4

[
(−2β0 − γ0)g2 + (c0(−2β0 − γ0)− 2β1 − γ1 − 2β0(−d0 + b0)) g4 + · · · ] .(15.136)

In the previous expression, we had to express γ1 in terms of γ1; a task accomplished by using the
relation

γ1 = γ1 − 2β0d0 − γ0b0 , (15.137)

which can be obtained along the same lines of the previous calculations. It should also be noted that γ0,
β0 and β1 are renormalization scheme independent quantities. Thus, the identification of eqns.(15.135)
and (15.136) gives the desired relation, given by

c0 =
1
4
(b0 − d0) . (15.138)

We now perform the transformations (15.131) on the action (15.97), which was calculated in the MS
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scheme, to obtain it in a general scheme.

Γ = −
(
N2 − 1

)
λ4

2g2N

(
1 + 4c0g

2 − b0g
2
)

+
ζ0m

4

2g2

(
1− ζ1

ζ0
g2 + 2d0g

2 − b0g
2

)

+
3

(
N2 − 1

)

256π2

[(
m2 +

√
m4 − λ4

)2
(

ln
m2 +

√
m4 − λ4

2µ2 − 5
6

)

+
(
m2 −

√
m4 − λ4

)2
(

ln
m2 −√m4 − λ4

2µ2 − 5
6

)]
, (15.139)

while the gap equations now read

∂Γ
∂λ

= −2
(
N2 − 1

)

g2N
λ3

(
1 + 4c0g

2 − b0g
2
)

+
3

(
N2 − 1
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256π2

[
8
3
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(
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√
m4 − λ4

)
√

m4 − λ4
ln

m2 +
√

m4 − λ4

2µ2 + 4

(
m2 −√m4 − λ4

)
√

m4 − λ4
ln

m2 −√m4 − λ4

2µ2

]
,

∂Γ
∂m2

=
ζ0m

2

g2

(
1− ζ1

ζ0
g2 + 2d0g

2 − b0g
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+
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256π2
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√
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√
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√
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ln

m2 −√m4 − λ4

2µ2 − 8
3
m2

]
.

(15.140)

We mention that, in the case in which m2 > 0, similar algebraic manipulations as those leading to the
condition (15.120), give a more general equation

68
39

(
16π2

g2N

)
+

161
39

+
16π2

N

(
32
3

c0 − 68
39

b0 − 24
13

d0

)
=

t√
1− t

ln
t(

1 +
√

1− t
)2 , (15.141)

or, using the relation (15.138),

68
39

(
16π2

g2N

)
+

161
39

+
16π2

N

(
12
13

b0 − 176
39

d0

)
=

t√
1− t

ln
t(

1 +
√

1− t
)2 . (15.142)

From this expression, it is apparent that a sensible solution with m2 > 0 might exist, depending on
the values of the renormalization parameters d0 (∼ mass renormalization) and b0 (∼ coupling constant
renormalization).

Frequently used are the so-called physical renormalization schemes whereby, loosely speaking, one
demands that the quantum corrected quantities reduce to the tree level values at a certain scale µ.
However, it turns out that such an approach is not particularly useful to implement in the current
case due to the presence of the several scales. Therefore, the question arises how one can make a
somewhat motivated choice for the arbitrary parameters, labeling a certain renormalization scheme.
In the next section we shall discuss a way to reduce the freedom in the choice of the renormalization
parameters. The method relies on the possibility of performing an optimization of the renormalizaton
scheme dependence, as illustrated in [106, 148].
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15.6.2 Optimization of the renormalization scheme.

Consider a quantity % that runs according to

µ
d%

dµ
= γ%(g2)% , (15.143)

where

γ%(g2) = γ%,0g
2 + γ%,1g

4 + · · · . (15.144)

To %, we can associate a quantity %̂ that does not depend on the choice of the renormalization scheme
and which is scale independent. It is defined as

%̂ = F%(g2)% , (15.145)

whereby

µ
d

dµ
F%(g2) = −γ%(g2)F%(g2) . (15.146)

It is apparent that %̂ will not depend on the scale µ. It can also be checked [106, 148] that %̂ is left
unmodified by a change of the renormalization scheme, implemented through transformations analogous
to those of eqns.(15.131). The equation (15.146) can be solved in a series expansion in g2 by noticing
that

µ
d

dµ
F%(g2) ≡ β(g2)

d

dg2
F%(g2) . (15.147)

Then, the above differential equation can be solved in a series expansion in g2, more precisely by

F%(g2) = (g2)
γ%,0
2β0

(
1 +

1
2

(
γ%,1

β0
− β1γ%,0

β2
0

)
g2 + · · ·

)
. (15.148)

Consider once more the MS action Γ given in eq.(15.97). We shall now replace the MS variables m2 and

λ by their renormalization scheme and scale independent counterparts m̂2 and λ̂, which are obtained
as before. By inverting eq.(15.148), one has

m2 = (g2)−
γ0
2β0

(
1− 1

2

(
γ1

β0
− β1γ0

β2
0

)
g2 + · · ·

)
m̂2 , (15.149)

λ = (g2)−
λ0
2β0

(
1− 1

2

(
λ1

β0
− β1λ0

β2
0

)
g2 + · · ·

)
λ̂ . (15.150)

Moreover, introducing the notations

a = − γ0

2β0
, b = −λ0

β0
, (15.151)

A = −
(

γ1

β0
− β1γ0

β2
0

)
, B = −2

(
λ1

β0
− β1λ0

β2
0

)
, (15.152)
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the one-loop action is rewritten as
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+
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(15.153)

The action (15.153) is still written in terms of the MS coupling g2. Performing the first transformation
of (15.131), Γ can be reexpressed as

Γ = −
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 .

(15.154)

So far, we have constructed an action which is written in terms of renormalization scale and scheme
independent variables λ̂ and m̂2 and the coupling constant g2(µ). This is a certain improvement, since
we are not faced anymore with a choice of the parameters di, related to the renormalization of the
Gribov and mass parameter. The remaining freedom in the choice of the renormalization scheme resides
in the coupling constant, labeled by the parameters b0, b1, . . ., and in the scale µ. Of course, the higher
order coefficients bi, i = 1, . . . do not show up here, since we have restricted ourselves to the one-loop
level. Nevertheless, we will perform one more step, since the dependence on the coupling constant
renormalization can be reduced to solely b0, by expanding the perturbative series in inverse powers of

x ≡ β0 ln
µ2

Λ2
, (15.155)

rather than in terms of g2. For another illustration of this, see e.g. [106, 148]. The coupling constant
g2 can be replaced by x since g2 is explicitly determined by

g2 =
1
x

(
1− β1

β0

ln x
β0

x
+ · · ·

)
. (15.156)

In [141], the relation between the scale parameter Λ, corresponding to a certain coupling constant
renormalization, and that of the MS scheme, ΛMS, was found to be

Λ = e−
b0
2β0 ΛMS . (15.157)
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One finally gets
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(15.158)

Notice that this alternative expansion is correct up to order
(

1
x

)0
.

The gap equations we intend to solve are now obtained from

1

λ̂3

∂Γ

∂λ̂
= 0 , (15.159)

1
m̂2

∂Γ
∂m̂2

= 0 . (15.160)

In principle, we can solve these two equations for two quantities m̂∗ and λ̂∗, which will be functions of
the two remaining parameters µ and b0. However, by construction, we know that m̂ as well as λ̂ should
be independent of the renormalization scale and scheme order by order. This gives us an interesting
way to fix these parameters by demanding that the solutions m̂∗(µ, b0) and λ̂∗(µ, b0) depend minimally
on b0 and µ. Since this would give a quite complicated set of equations to solve, we can make life
somewhat easier by reasonably choosing the scale8 µ in the gap equations (15.159)-(15.160). In analogy
to the choice for µ2 done in the previous equation (15.121), we shall now set

µ2 =

∣∣∣∣∣
m̂2x−a +

√
m̂4x−2a − λ̂4x−2b

2

∣∣∣∣∣ , (15.161)

In order to proceed, we still have two quantities at our disposal to fix the remaining parameter b0.
In fact, we can also take the vacuum energy Evac in consideration since, being a physical quantity, it
should depend minimally on the renormalization scheme and scale. Therefore, we could determine the
value for b0 by demanding that

Υ(b0) ≡
∣∣∣∣∣
∂λ̂4

∗
∂b0

∣∣∣∣∣ +
∣∣∣∣
∂m̂4

∗
∂b0

∣∣∣∣ +
∣∣∣∣
∂Evac

∂b0

∣∣∣∣ , (15.162)

is minimal w.r.t. the parameter b0. This seems to be a reasonable candidate. When its dependence on
b0 is small, then the dependence of m̂, λ̂ and Evac on b0 is necessarily small too. The ideal situation
would be that Υ is zero for a certain b0. If no such an ideal b0 would exist, we weaken the condition
by requiring that Υ is as small as possible. The condition (15.162) to fix b0 can be considered as some
kind of principle of minimal sensitivity à la Stevenson [104]. An alternative that is sometimes used is a
fastest apparent convergence criterion, where it is demanded that the quantum corrections are as small

8This can be motivated thanks to the scale independence of the b-quantities.
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as possible compared to the tree level value. For example, if we denote by Γ[0] the action to order(
1
x

)−1
and by Γ[1] to order

(
1
x

)0
, we could demand that

∣∣∣∣
Γ[1] − Γ[0]

Γ[0]

∣∣∣∣ (15.163)

is as small as possible when the parameters fulfill the gap equation describing the vacuum of the theory.

Before continuing with explicit calculations, let us just remark here that the other logarithm, namely

ln bm2x−a−
√
bm4x−2a−bλ4x−2b

2µ2 , could become large for a small argument, thus when λ̂4x−2b would be

small compared to m̂4x−2a. However, it is harmless since it appears in the form of u ln u, while we
know that u ln u|u≈0 ≈ 0.

15.6.3 Numerical results.

Let us first give some numerical factors we need. From e.g. [87], we infer that

β1 =
34
3

(
N

16π2

)2

, γ0 = −3
2

N

16π2
, γ1 = −95

24

(
N

16π2

)2

, (15.164)

and hence, from the relation (15.132),

λ0 = −35
24

N

16π2
, λ1 = −449

96

(
N

16π2

)2

. (15.165)

This means that, for any N , the quantities a and b in eq.(15.151) are found to be

a =
9
44

, b =
35
88

. (15.166)

It is instructive to consider once more the original Gribov-Zwanziger model by setting m̂ ≡ 0 and by
solving the gap equation (15.159). If λ̂∗ is a solution of this equation, then it is not difficult to show
that the corresponding vacuum energy is given by

Evac =
3(N2 − 1)

64π2

λ̂4
∗
4

, (15.167)

for any choice of µ2. Thus, also with the improved perturbative expansion, the vacuum energy of the
original Gribov-Zwanziger is always nonnegative at the lowest order.

Let us return to the model we were investigating. We solved the gap equations stemming from (15.159)-
(15.160) numerically.

Let us first search for a possible solution of the gap equation in the region of space determined by
m̂4x−2a > λ̂4x−2b. Taking a look at the action (15.158), it might be clear that the gap equations
derived from it will be coupled and hence quite complicated to solve numerically. From the calculational
point of view, it is useful to introduce new variables, defined by

ω1 =
m̂2x−a +

√
m̂4x−2a − λ̂4x−2b

2
, (15.168)

ω2 =
m̂2x−a −

√
m̂4x−2a − λ̂4x−2b

2
, (15.169)
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with the inverse transformation

m̂2x−a = ω1 + ω2 ,

λ̂4x−2b = 4ω1ω2 . (15.170)

This defines a mapping from the space m̂4x−2a > λ̂4x−2b > 0 to ω1 > ω2 > 0. One checks that the
gap equations (15.159)-(15.160) are equivalent to

(
ω1

ω1 − ω2

∂

∂ω1
− ω2

ω1 − ω2

∂

∂ω2

)
Γ(ω1, ω2) = 0 , (15.171)

(
1

ω1 − ω2

∂

∂ω1
− 1

ω1 − ω2

∂

∂ω2

)
Γ(ω1, ω2) = 0 . (15.172)

We notice that the case in which ω1 and ω2 would become equal, i.e. m̂4x−2a = λ̂4x−2b, should be
treated with some extra care. Let us therefore first assume that ω1 > ω2. Then the two equations
(15.171)-(15.172) can be recombined to

∂

∂ω1
Γ = 0 , (15.173)

∂

∂ω2
Γ = 0 . (15.174)

The action Γ(ω1, ω2) is explicitly given by
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. (15.175)

where

f1 = x + B + (1− 2b)
(

β1

β0
ln

x

β0
− b0

)
, (15.176)

f2 = x + A− ζ1

ζ0
+ (1− 2a)

(
β1

β0
ln

x

β0
− b0

)
. (15.177)

It is not difficult to work out the gap equations (15.173)-15.174, being given by

−2
N2 − 1

N
f1ω2 + ζ0f2(ω1 + ω2) +

3(N2 − 1)ω1

32π2

(
−1

3
+ ln
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)
= 0 , (15.178)

−2
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f1ω1 + ζ0f2(ω1 + ω2) +

3(N2 − 1)ω2

32π2

(
−1

3
+ ln

ω2

µ2

)
= 0 . (15.179)

From the explicit expression of the gap equations and of the action itself in terms of ω1 and ω2, the
advantages of using these variables should be obvious, since we can decouple the two gap equations.
Explicitly, since µ2 = ω1, one finds from eq.(15.178),

ω2 =
N2−1
32π2 − ζ0f2

−2N2−1
N f1 + ζ0f2

ω1 , (15.180)
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which can be substituted in the second gap equation (15.179), yielding an equation for ω1 which
does not contain ω2 anymore. The nominator of eq.(15.180) is different from zero, since filling in the
numbers gives

−2
N2 − 1

N
f1 + ζ0f2 =

N2 − 1
4576

(
−975

π2
− 5984

N
x

)
6= 0 . (15.181)

where we kept in mind that for a meaningful result, x ∼ 1
g2 , should be positive.

A numerical investigation of the gap equation (15.179) using eq.(15.180) revealed that there are no

zeros. We conclude that there are no solutions with m̂4x−2a > λ̂4x−2b.

Next, let us find out if a possible solution with m̂4x−2a = λ̂4x−2b or ω1 = ω2 might exist. We explicitly
evaluate the gap equations (15.171)-(15.172), where now µ2 = ω1,

ζ0f2(ω1 + ω2)− N2 − 1
32π2

(ω1 + ω2)− 3(N2 − 1)
32π2

ω2
2

ω1 − ω2
ln

ω2

ω1
= 0 , (15.182)

2
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N
f1 − N2 − 1

32π2
− 3(N2 − 1)

32π2

ω2

ω1 − ω2
ln

ω2

ω1
= 0 . (15.183)

From the foregoing expressions, we infer that the limit ω1 → ω2 exists, giving rise to

2ζ0f2 − 2(N2 − 1)
32π2

+
3(N2 − 1)

32π2
= 0 , (15.184)

2
N2 − 1

N
f1 − N2 − 1

32π2
+

3(N2 − 1)
32π2

= 0 . (15.185)

This means that we have two equations to solve for the single quantity ω1, which is present in f1 and
f2 through the quantity x. It would be an extreme coincidence if these two different equations, which
can be rewritten as

18
13
f2 = − N

32π2
, (15.186)

f1 = − N

32π2
. (15.187)

possess a common solution. That this is not the case can be inferred from the numerical solutions of
both equations (15.186) and (15.187), shown in Figure 15.3.

As a final step, we should investigate if there is a solution in the region m̂4x−2a < λ̂4x−2b. We can
still define the coordinates ω1 and ω2 by

ω1 =
m̂2x−a + i

√
−m̂4x−2a + λ̂4x−2b

2
, (15.188)

ω2 =
m̂2x−a − i

√
−m̂4x−2a + λ̂4x−2b

2
. (15.189)

In this case, ω1 and ω2 are complex conjugate. Henceforth, it would be more appropriate to use the
modulus R and the argument φ, φ ∈]− π, π], defined by

Reiφ = ω1 , (15.190)

Re−iφ = ω2 , (15.191)
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Figure 15.3: The solution ω1 = ω2 as a function of b0 of eq.(15.186), top curve, and eq.(15.187), bottom
curve, in units ΛMS = 1. Clearly, these two curves do no coincide.

If the argument φ is so that |φ| > π
2 , then m̂2x−a < 0. As a consequence, the estimate for

〈
A2

µ

〉
will

be positive.

Most of the foregoing analysis can be repeated. The action (15.175) is rewritten in terms of R and φ
by

Γ = −2

(
N2 − 1

)

N
f1R

2 + 2ζ0f2R
2 cos2 φ

+
3R2

(
N2 − 1

)

32π2

[
cos(2φ)

(
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5
6

)
− φ sin(2φ)

]
. (15.192)

The gap equations (15.178)-(15.179) reduce to

−2
N2 − 1

N
f1Re−iφ + ζ0f2R(eiφ + e−iφ) +

3(N2 − 1)Reiφ

32π2

(
−1

3
+ iφ

)
= 0 , (15.193)

and its complex conjugate. With the parametrization (15.190), we have µ2 = R.

We must solve the following two real equations9 for φ and R.

−2
N2 − 1

N
f1 cosφ + 2ζ0f2 cosφ +

3(N2 − 1)
32π2

(
−cosφ

3
− φ sin φ

)
= 0 , (15.194)

2
N2 − 1

N
f1 sin φ +

3(N2 − 1)
32π2

(
− sin φ

3
+ φ cos φ

)
= 0 . (15.195)

We can divide these equations10 by cos φ to obtain

−2
N2 − 1

N
f1 + 2ζ0f2 +

3(N2 − 1)
32π2

(
−1

3
− φ tan φ

)
= 0 , (15.196)

2
N2 − 1

N
f1 tanφ +

3(N2 − 1)
32π2

(
− tan φ

3
+ φ

)
= 0 . (15.197)

9The R-dependence is hidden in f1 and f2
10We may assume cos φ 6= 0, otherwise eqns.(15.194)-(15.195) would give φ = 0, which is inconsistent with

cos φ = 0.
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These equations can also be decoupled. The most efficient way to proceed is to eliminate R between
these two equations to obtain an equation for φ, as the range in we must search for a solution is limited
for this angle. The equation for φ finally becomes

−90985N − 107712π2b0 + 12N
(
484φ cot φ + 1734 ln

(
−117(50+11φ csc φ sec φ)

8228

)
− 1573φ tan φ

)

107712π2
= 0

(15.198)

while the value of R is obtained from

x ≡ β0 ln
R

Λ2
MS

+ b0 = −1950 + 429φ csc φ sec φ

11968π2
N . (15.199)

We shall concentrate on the case N = 3. Depending on the value of the parameter b0, there is
more than one solution possible. This is explained in the Appendix. There is a single solution φ if
b0 > −0.33564... or b0 < −0.41595.... If −0.41595... < b0 < −0.33564..., there are three solutions,
while for b0 = −0.41595... and b0 = −0.33564... there are two solutions. To determine the solution φ
which characterizes the vacuum, we should take that one which gives us the absolute minimum of the
energy functional Γ. In Figure 15.4, we have displayed the solution for φ and R, and in Figure 15.5
the vacuum energy Evac and the corresponding expansion parameter, which is now given by y ≡ N

16π2x .
For completeness, we have also shown the values which do correspond to higher values of Γ, these are
indicated with the thinner lines.
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Figure 15.4: The angle φ and scale R as a function of b0, in units ΛMS = 1.

In Figure 15.6, we collected the solutions of the scale invariant quantities m̂2 and λ̂4 as a function of
b0.

15.6.4 Interpretation of the results.

After the rather technical issue of solving the gap equations, we now come to a discussion of the
results. Let us first have a look at the plot of vacuum energy, on the l.h.s. of Figure 15.5. We notice
that for b0 < −0.33564...., the vacuum energy becomes negative. However, we cannot attach any
definitive meaning to this result. In fact, as it can be seen from the Figures 15.6 and 15.7, the values
of the vacuum energy and the supposedly minimally b0-dependent quantities m̂2 and λ̂4 are extremely
b0-dependent. Very small variations in b0 induce large fluctuations on e.g. the energy. This is indicative
of the fact that the equations we have solved are not yet stable against b0-variations in the range of
the values obtained for b0. The behaviour is better for, let us say b0 > −0.2. However, in this case, we
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Figure 15.5: The vacuum energy Evac and the expansion parameter y as a function of b0, in units ΛMS = 1.
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Figure 15.6: The quantities bm2 and bλ4 as a function of b0, in units ΛMS = 1.

find again that the vacuum energy is positive. We have shown the quantity Υ(b0) in Figure 15.7, but
there is no value for b0 where this quantity becomes minimal. In fact, as for the vacuum energy Evac,
also m̂2 and λ̂4 fall of to zero for growing b0. A similar conclusion can be drawn when one would like
to fix b0 by a fastest apparent convergence, there does not seem to exist a favoured b0 .

As an example, we set b0 = 0, i.e. we choose to use the MS coupling constant. Then we find, with the
optimized expansion,

y ≈ 0.796 , (15.200)

λ̂4x−2b ≈ 7.939Λ4
MS

, (15.201)

m̂2x−a ≈ −0.814Λ2
MS

, (15.202)

Evac ≈ 0.063Λ4
MS

, (15.203)

which are in fair agreement with the naive MS results (15.122)-(15.125). We notice that the expansion
parameter y is already smaller than 1, but still relatively large, while the vacuum energy is indeed
positive.

We see therefore that, in order to be able to give a reasonable answer to the questions concerning
the sign of m2 and Evac and to get more trustworthy numerical values, the two-loop evaluation of the
effective action Γ, at least in the MS scheme, would be very useful. Although being beyond of the aim
of the present work, it might be worth noticing that the same decomposition as in eq.(15.90) can be
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Figure 15.7: The quantity Υ(b0) as a function of b0, in units ΛMS = 1.

used to write the gluon propagator, ripped of its tensorial structure, as

p2

p4 + p2m2 + λ4

4

=
ω1

ω1 − ω2

1
p2 + ω1

− ω2

ω1 − ω2

1
p2 + ω2

(15.204)

Using this decomposition, the calculation of the vacuum diagrams could be performed with standard
massive propagators. The effective action Γ will remain symmetric under the exchange of ω1 and ω2

and equations like (15.171)-(15.174) shall remain valid. Also, one does not need to evaluate any new
anomalous dimension, since these are already known, either from previous calculations [42, 197, 212],
or from exploiting relations like eq.(15.132).

Before turning to the final conclusions, we shall give in the following section a brief account of the
consequences stemming from the presence of the Gribov parameter, to emphasize the important role
of this parameter.

15.7 Consequences of a non-vanishing Gribov parameter.

15.7.1 The gluon propagator.

If there is no generation of a mass parameter due to
〈
A2

µ

〉
, we can consider just the action (15.8).

Then the tree level gluon propagator turns out to be

〈
Aa

µAb
ν

〉
p

= δab p2

p4 + λ4

4

(
δµν − pµpν

p2

)
. (15.205)

This result, first pointed out in [107], was obtained by retaining only the first term of the nonlocal
horizon function (15.4), corresponding to the approximation −∂D ≈ −∂2. The gluon propagator,
eq.(15.205), is suppressed in the infrared region due to the presence of the Gribov parameter λ. In
particular, the presence of this parameters implies that

〈
Aa

µAb
ν

〉
p

vanishes at zero momentum, p = 0.

When the possibility of the existence of a dynamical mass parameter in the gluon propagator is included,
by investigating the condensation of A2

µ, the tree level gluon propagator reads

〈
Aa

µAb
ν

〉
p
≡ δabD(p2)

p2

(
δµν − pµpν

p2

)
= δab p2

p4 + m2p2 + λ4

4

(
δµν − pµpν

p2

)
. (15.206)
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This type of propagator is sometimes called the Stingl propagator, from the author who used it as an
anzatz for solving the Schwinger-Dyson equations, see [235] for more details.

However, it should be realized that eq.(15.206) describes only the tree level gluon propagator. In
particular, to produce a plot of the form factor D(p2) as a function of the momentum p, which would
allow to make a comparison with the results obtained in lattice simulations, see e.g. [45] for N = 3 and
[48, 116] for N = 2, one should go beyond the zeroth order approximation, for example by including
higher order polarization effects and/or trying to perform a renormalization group improvement. In
general, these corrections will also be dependent on the external momentum p.

15.7.2 The ghost propagator.

Even more prominent is the influence of the Gribov parameter on the infrared behaviour of the ghost
propagator, which can be calculated at one-loop order using the modified gluon propagator (15.205) or
(15.206) with their respective gap equations (15.6) and (15.86). In both cases, the infrared behaviour
of the ghost propagator [107, 224, 231, 127, 128] is shown to be

δab

N2 − 1
〈
cacb

〉
p≈0

≡ 1
p2
G(p2)

∣∣∣∣
p≈0

≈ 4
3Ng2J p4

, (15.207)

where J stands for the real, finite integral given by

J =
∫

d4k

(2π)4
1

k2
(
k4 + m2k2 + λ4

4

) . (15.208)

The original Gribov-Zwanziger model corresponds to m2 ≡ 0. Thus, the ghost propagator is strongly
enhanced in the infrared region compared to the perturbative behaviour, if the restriction to the first
Gribov region is taken into account. It is important to notice that this behaviour of the ghost propagator
is preserved in the present treatment, due to the peculiar form of the gap equation (15.86) implementing
the horizon condition. In particular, from the expression for the effective action in eq.(15.85), one sees

that, while the term quadratic in the field σ, i.e. σ2

2g2ζ , contains the LCO parameter ζ, the first term

which depends on the Gribov parameter, i.e. −4(N2 − 1)γ4, does not contain any such new LCO
parameter. This important feature follows from the fact that no new parameter has to be introduced
in order to renormalize the term

(
Mai

µ V ai
µ − Uai

µ Nai
µ

)
, as remarked in eq.(15.58). While the parameter

ζ is required to take into account the ultraviolet divergences of the vacuum correlator 〈A2
µ(x)A2

ν(y)〉,
which are proportional to τ2, no such a parameter is needed for

(
Mai

µ V ai
µ − Uai

µ Nai
µ

)
which, upon

setting the external sources to their physical values, gives rise to term −4(N2 − 1)γ4 in the expression
(15.85). Said otherwise, this term is not affected by the presence of a new parameter which would be
required if eq.(15.58) would not hold. As a consequence, the factor “1” appearing in the left hand side
of the gap equation (15.86) is, so to speak, left unchanged by the quantum corrections. It is precisely
that property which ensures, through a delicate cancelation mechanism, see [107, 224, 127, 128], the
infrared enhancement of the ghost propagator.

Analogously to the case of the gluon propagator, a more detailed study of higher order corrections
would be needed in order to obtain a plot of the ghost form factor G(p2).

15.7.3 The strong coupling constant.

Usually, a nonperturbative definition of the renormalized strong coupling constant αR can be written
down from the knowledge of the gluon and ghost propagators as, see e.g. [121, 116]

αR(p2) = αR(µ)D(p2, µ)G2(p2, µ) , (15.209)
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where D and G stand for the gluon and ghost form factors as defined before. This definition represents
a kind of nonperturbative extension of the perturbative results (15.56). According to Schwinger-Dyson
studies [122, 123, 20, 124, 125, 126], those form factors satisfy a power law behaviour in the infrared

lim
p→0

D(p2) ∝ (
p2

)θ
,

lim
p→0

G(p2) ∝ (
p2

)ω
, (15.210)

where the infrared exponents θ and ω obey the sum rule

θ + 2ω = 0 . (15.211)

Such a sum rule suggests the development of an infrared fixed point for the renormalized coupling
constant, (15.209), as also pointed out by lattice simulations for SU(2) as well as for SU(3) [116, 117,
118],

lim
p→0

α(p2) = αc . (15.212)

The existence of a fixed point in this reasoning is dependent on the sum rule rather than on the precise
value of the exponents. We refer to the already quoted literature for more details on the value of these
exponents. We end by noticing that the form factors of the gluon and ghost propagator in our zeroth
order approximation give rise to the sum rule (15.211), since we have θ = 2 and ω = −1. Moreover,
without Gribov parameter, the sum rule (15.211) is lost, and thus there is no indication for an infrared
fixed point.

15.7.4 Positivity violation.

The behaviour of the gluon propagator is sometimes used as an indication of confinement of gluons by
means of the so called positivity violation, see e.g. [236, 237] and references therein.

Briefly, when the Euclidean gluon propagator D(p) ≡ D(p2)
p2 is written through a spectral representation

as

D(p) =
∫ +∞

0

dM2 ρ(M2)
p2 + M2

, (15.213)

the spectral density ρ(M2) should be positive in order to have a Källen-Lehmann representation, making
possible the interpretation of the fields in term of stable particles. We refer to [236, 237] for more details.
One can define the temporal correlator [237]

C(t) =
∫ +∞

0

dMρ(M2)e−Mt , (15.214)

which is certainly positive for positive ρ(M2). The inverse is not necessarily true. C(t) can be also
positive for a ρ(M2) attaining negative values. However, if C(t) becomes negative for certain t, then
a fortiori ρ(M2) cannot be always positive. Using a contour integration argument, it is not difficult to
show that C(t) can be rewritten as

C(t) =
1
2π

∫ +∞

−∞
e−iptD(p)dp . (15.215)
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Let us consider the function C(t) using the tree level propagator (15.206), thus using

D(p) =
p2

p4 + p2m2 + λ4

4

. (15.216)

We can consider several cases11:

• if λ = 0 (thus m2 > 0), one shall find that

C(t) =
e−mt

2m
. (15.217)

This function is always positive.

• if m2 = 0,

C(t) =
e−

Lt
2

2L

(
cos

Lt

2
− sin

Lt

2

)
, (15.218)

and clearly, this function will attain negative values for certain t.

• in any other case, the correlator C(t) is found to be

C(t) =
1
2

[ √
ω1

ω1 − ω2
e−
√

ω1t +
√

ω2

ω2 − ω1
e−
√

ω2t

]
(15.219)

where the decomposition (15.204) has been employed once more. It is understood that
√

ω1

(
√

ω2) is the root having a positive real part.

If we assume that m̂4 > λ4, then ω1 > ω2 and C(t) becomes negative for t > 1
2

ln
ω1
ω2

ω1−ω2
. In the

case that m̂4 = λ4, or ω1 = ω2, one finds that C(t) = e−
√

ω1t

4
√

ω1
(1−√ω1t), which can also become

negative. If m̂4 < λ4, we can reintroduce the complex polar coordinates R and φ for the complex
conjugate quantities ω1 and ω2. If cos φ

2 > 0, eq.(15.219) can be rewritten as

C(t) =
1

2
√

R sin φ
e−
√

R cos(φ
2 )t sin

(
φ

2
−
√

R sin
(

φ

2

)
t

)
(15.220)

By choosing an appropriate value of t > 0, also this expression can be made negative. An
analogous expression and conclusion can be derived in case that cos φ

2 < 0

We conclude that, when the restriction to the Gribov region Ω is implemented, the function C(t) exhibits
a violation of positivity when the tree level propagator is used, with our without the inclusion of

〈
A2

µ

〉
.

The goal of this section was merely to provide some interesting consequences when the restriction to the
first Gribov region Ω is implemented. Higher loop effects, which shall be momentum dependent, would
also influence the behaviour of the gluon and ghost propagator. Hence, to give a sensible interpretation
of the behaviour of e.g. the form factors and of the strong coupling constant αR, a more detailed
analysis than a tree level one is necessary.

11Each of the following expressions for C(t) is obtainable via contour integration.
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15.8 Conclusion.

In this work we have considered SU(N) Euclidean Yang-Mills theories in the Landau gauge, ∂µAµ = 0.
We have studied the condensation of the dimension two composite operator A2

µ when the restriction
to the Gribov region Ω is taken into account. Such a restriction is needed due to the presence of the
Gribov copies [107], which are known to affect the Landau gauge.

In a previous work [224], the consequences of the restriction to the region Ω in the presence of a
dynamical mass parameter due to the gluon condensate

〈
Aa

µAa
µ

〉
were studied by following Gribov’s

seminal work [107]. Here, we have relied on Zwanziger’s action [127, 128], which allows to implement
the restriction to the Gribov region Ω within a local and renormalizable framework. We have been able to
show that Zwanziger’s action remains renormalizable to all orders of perturbation theory in the presence
of the operator A2

µ, introduced through the local composite operator technique [42, 197, 176, 212].
The effective action, constructed via the local composite operator formalism [42] obeys a homogeneous
renormalization group. The explicit form of the one-loop effective action has been worked out. We
have seen that, considering the original Gribov-Zwanziger model, i.e. without including the operator
A2

µ, the vacuum energy is always positive at one-loop order, independently from the choice of the
renormalization scheme. A positive vacuum energy would give rise to a negative value for the gauge
invariant gluon condensate

〈
F 2

µν

〉
, through the trace anomaly. Furthermore, by adding the operator

A2
µ, we have proven that there is no solution of the two coupled gap equations at the one-loop order

in the MS scheme with
〈
A2

µ

〉
< 0. Nevertheless, when

〈
A2

µ

〉
> 0, a solution of the gap equations

was found, although the corresponding expansion parameter was too large and the vacuum energy still
positive.

In order to find out what happens in other schemes, we performed a detailed study, at lowest order,
of the influence of the renormalization scheme. We have been able to reduce the freedom of the
choice of the renormalization scheme to two parameters, namely the renormalization scale µ and a
parameter b0, associated to the coupling constant renormalization. We reexpressed the effective action
in terms of the mass parameter m̂ and Gribov parameter λ̂, which are renormalization scheme and
scale independent order by order. The resulting gap equations for these parameters have been solved
numerically. Although a solution with negative vacuum energy was found, we have been unable to
attach any definitive meaning to it. This is due to the fact that the results obtained turn out to be
strongly dependent from the parameter b0. This brought us to the conclusion that we should extend
our calculations to a higher order to obtain more sensible numerical estimates.

The mass parameters m̂ and λ̂ are of a nonperturbative nature and appear in the gluon and ghost
propagator. Even if we lack reliable estimates for these parameters, some interesting features can
already be observed. For a nonzero mass and Gribov parameter, there is a qualitative agreement
with the behaviour found in lattice simulations and Schwinger-Dyson studies: a suppressed gluon and
enhanced ghost propagator in the infrared, while further consequences of the Gribov parameter are e.g.
the possible existence of an infrared fixed point for the strong coupling constant and the violation of
positivity related to the gluon propagator.

Let us conclude by remarking that the Gribov region is not free from Gribov copies [110, 109, 111, 112],
i.e. Gribov copies still exist inside Ω. To avoid the presence of these additional copies, a further restric-
tion to a smaller region Λ, known as the fundamental modular region, should be implemented. This
is, however, a very difficult task. Nevertheless, recently, it has been argued in [113] that the additional
copies existing inside Ω have no influence on the expectation values, so that averages calculated over
Λ or Ω are expected to give the same value.
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Appendix.

In this Appendix, we shall outline some details on solving the gap equation (15.198). In Figure
15.8, we have plotted the expression (15.198) for several values of the parameter b0, namely b0 =
0.25, 0,−0.25,−0.3,−0.33564...,−0.41594...,−0.5. As we have already noticed, the number of so-

1.8 2.2 2.4 2.6 2.8 3
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0.5

0.75

gap eq. for phi

Figure 15.8: The gap equation (15.198) with N = 3 plotted in function of φ for the values b0 =
0.25, 0,−0.25,−0.3,−0.33564...,−0.41594...,−0.5 (from bottom to top).

lutions depends on the value of b0. It is possible to obtain those values of b0 where the number of
solutions change. If we consider the plots in Figure 15.8, it is apparent that for each b0, the corres-
ponding curve possesses two extremal values. The number of solution exactly changes at those values
of b0 where the curve becomes tangent to the φ-axis. An explicit evaluation learns that his occurs at
b0 = −0.41595..., where φ = 2.26407... and at b0 = −0.33564... where φ = 2.62545. It is important
to know these numbers to a high enough accuracy, to instruct Mathematica in which φ-interval it can
search for a solution. If the initial values are not chosen in an appropriate way, the iterations will jump
between the different branches of solutions and there will be no convergence to any of them.
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Chapter 16

Renormalization properties of the
mass operator Aa

µAa
µ in

three-dimensional Yang-Mills theories
in the Landau gauge

D. Dudal (UGent), J. A. Gracey (Liverpool University), V. E. R. Lemes (UERJ), R. F. Sobreiro,
S. P. Sorella (UERJ) and H. Verschelde (UGent),
published in Annals of Physics 317 (2005) 203.

Massive renormalizable Yang-Mills theories in three dimensions are analysed within the algebraic re-
normalization in the Landau gauge. In analogy with the four-dimensional case, the renormalization
of the mass operator Aa

µAa
µ turns out to be expressed in terms of the fields and coupling constant

renormalization factors. We verify the relation we obtain for the operator anomalous dimension by ex-
plicit calculations in the large Nf expansion. The generalization to other gauges such as the nonlinear
Curci-Ferrari gauge is briefly outlined.

16.1 Introduction.

Recently, much work has been devoted to the study of the operator Aa
µAa

µ in four-dimensional Yang-
Mills theories in the Landau gauge, where a renormalizable effective potential for this operator can be
consistently constructed [42, 197]. This has produced analytic evidence of a nonvanishing condensate〈
Aa

µAa
µ

〉
, resulting in a dynamical mass generation for the gluons [42, 197]. A gluon mass in the Landau

gauge has been reported in lattice simulations [48] as well as in a recent investigation of the Schwinger-
Dyson equations [51]. Besides being multiplicatively renormalizable to all orders of perturbation theory
in the Landau gauge, the operator Aa

µAa
µ displays remarkable properties. In fact, it has been proven

[153] by using BRST Ward identities that the anomalous dimension γA2(a) of the operator Aa
µAa

µ in
the Landau gauge is not an independent parameter, being expressed as a combination of the gauge beta
function, β(a), and of the anomalous dimension, γA(a), of the gauge field, according to the relation

γA2(a) = −
(

β(a)
a

+ γA(a)
)

, a =
g2

16π2
, (16.1)
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which can be explicitly verified by means of the three-loop computations available in [87]. The operator
Aa

µAa
µ turns out to be multiplicatively renormalizable also in the linear covariant gauges [205]. Its

condensation and the ensuing dynamical gluon mass generation in this gauge have been discussed in
[212].

Moreover, the operator Aa
µAa

µ in the Landau gauge can be generalized to other gauges such as the
Curci-Ferrari and maximal Abelian gauges. Indeed, as was shown in [83, 144], the mixed gluon-ghost
operator1

(
1
2Aa

µAa
µ + αcaca

)
turns out to be BRST invariant on-shell, where α is the gauge parameter.

In both gauges, the operator
(

1
2Aa

µAa
µ + αcaca

)
turns out to be multiplicatively renormalizable to all

orders of perturbation theory and, as in the case of the Landau gauge, its anomalous dimension is
not an independent parameter of the theory [199]. A detailed study of the analytic evaluation of the
effective potential for the condensate

〈
1
2Aa

µAa
µ + αcaca

〉
in these gauges can be found in [178, 215].

In particular, it is worth emphasizing that in the case of the maximal Abelian gauge, the off-diagonal
gluons become massive due to the gauge condensate

〈
1
2Aa

µAa
µ + αcaca

〉
, a fact that can be interpreted

as evidence for the Abelian dominance hypothesis underlying the dual superconductivity mechanism for
color confinement.

The aim of this work is to analyse the renormalization properties of the operator Aa
µAa

µ in three-
dimensional Yang-Mills theories in the Landau gauge. This investigation might be useful in order to study
by analytical methods the formation of the condensate

〈
Aa

µAa
µ

〉
in three dimensions, whose relevance

for the Yang-Mills theories at high temperatures has been pointed out long ago [130]. Furthermore, the
possibility of a dynamical gluon mass generation related to the operator Aa

µAa
µ could provide a suitable

infrared cutoff which would prevent three-dimensional Yang-Mills theory from the well known infrared
instabilities [132], due to its superrenormalizability.

The organization of the paper is as follows. In section 16.2 we discuss the renormalizability of the three-
dimensional Yang-Mills theory in the Landau gauge, when the operator Aa

µAa
µ is added to the starting

action in the form of a mass term, m2
∫

d3xAa
µAa

µ. We shall be able to prove that the renormalization
factor Zm2 of the mass parameter m2 can be expressed in terms of the renormalization factors ZA and
Zg of the gluon field and of the gauge coupling constant, according to

Zm2 = ZgZ
−1/2
A . (16.2)

This relation represents the analogue in three dimensions of the eq.(16.1). In section 16.3 we give an
explicit verification of the relation (16.2) by using the large Nf expansion method. In section 16.4 we
present the generalization to the nonlinear Curci-Ferrari gauge.

16.2 Renormalizability of massive three-dimensional Yang-Mills
theory in the Landau gauge.

16.2.1 Ward identities.

In order to analyze the renormalizability of three-dimensional Yang-Mills theory, in the presence of the
mass term 1

2m2
∫

d3xAa
µAa

µ, we start from the following gauge fixed action

S =
∫

d3x

(
− 1

4
F a

µνF a
µν +

1
2
m2Aa

µAa
µ + ba∂µAa

µ + ca∂µ (Dµc)a

)
, (16.3)

with

(Dµc)a = ∂µca + gfabcAb
µcc , (16.4)

1In the case of the maximal Abelian gauge, the color index a runs only over the N(N−1) off-diagonal components.
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where ba is the Lagrange multiplier enforcing the Landau gauge condition, ∂µAa
µ = 0, and ca, ca

are the Faddeev-Popov ghosts. Concerning the mass term in expression (16.3), two remarks are in
order. The first one is that, although in three dimensions the gauge field might become massive due
to the introduction of the Chern-Simons topological action [238], one should note that the mass term
considered here is of a different nature. In fact, unlike the Chern-Simons term, the mass term m2Aa

µAa
µ

does not break parity. As a consequence, the starting action 16.3 is parity preserving. Therefore, the
parity breaking Chern-Simons term cannot show up due to radiative corrections. The second remark
is related to the superrenormalizabilty of three-dimensional Yang-Mills theories, as expressed by the
dimensionality of the gauge coupling g. As shown in [132], a standard perturbation theory would be
affected by infrared singularities in the massless case. However, the presence of the mass term prevents
the theory from this infrared instability, allowing one to define an infrared safe perturbative expansion.

Following [163], the action (16.3) is left invariant by a set of modified BRST transformations, given by

sAa
µ = − (Dµc)a

, sca =
g

2
fabccbcc ,

sca = ba , sba = −m2ca , (16.5)

and

sS = 0 . (16.6)

Notice that, due to the introduction of the mass term m, the operator s is not strictly nilpotent, i.e.

s2Φ = 0 , (Φ = Aaµ, ca) ,

s2ca = − m2ca ,

s2ba = −m2 g

2
fabccbcc . (16.7)

Therefore, setting

s2 ≡ −m2 δ , (16.8)

we have

δS = 0 . (16.9)

The operator δ is related to a global SL(2,R) symmetry [163], which is known to be present in the
Landau, Curci-Ferrari and maximal Abelian gauges [171]. Finally, in order to express the BRST and δ
invariances in a functional way, we introduce the external action [59]

Sext =
∫

d3x
(
Ωa

µ sAa
µ + La sca

)
(16.10)

=
∫

d3x
(
− Ωa

µ (Dµc)a + La g

2
fabccbcc

)
,

where Ωa
µ and La are external sources invariant under both BRST and δ transformations, coupled to

the nonlinear variations of the fields Aa
µ and ca. It is easy to check that the complete classical action,

Σ = S + Sext , (16.11)

is invariant under BRST and δ transformations

sΣ = 0 , δΣ = 0 . (16.12)

When translated into functional form, the BRST and the δ invariances give rise to the following Ward
identities for the complete action Σ, namely



262 Chapter 16. Renormalization properties of the mass operator Aa
µAa

µ in three-dimensional...

• the Slavnov-Taylor identity

S(Σ) = 0 , (16.13)

with

S(Σ) =
∫

d3x

(
δΣ
δΩa

µ

δΣ
δAa

µ

+
δΣ
δLa

δΣ
δca

+ ba δΣ
δca −m2ca δΣ

δba

)
, (16.14)

• the δ Ward identity

W (Σ) = 0 , (16.15)

with

W(Σ) =
∫

d3x

(
ca δΣ

δca +
δΣ
δLa

δΣ
δba

)
. (16.16)

In addition, the following Ward identities holds in the Landau gauge [59], i.e.

• the gauge fixing condition and the antighost equation

δΣ
δba

= ∂µAa
µ ,

δΣ
δca + ∂µ

δΣ
δΩa

µ

= 0 , (16.17)

• the integrated ghost equation [89, 59]

GaΣ = ∆a
cl , (16.18)

with

Ga =
∫

d3x

(
δ

δca
+ gfabccb δ

δbc

)
, (16.19)

and

∆a
cl = g

∫
d3xfabc

(
Ab

µΩc
µ − Lbcc

)
. (16.20)

Notice that the breaking term ∆a
cl in the right-hand side of eq.(16.18), being linear in the quantum

fields, is a classical breaking, not affected by quantum corrections [89, 59].

16.2.2 Algebraic characterization of the invariant counterterm.

Having established all Ward identities obeyed by the classical action Σ, we can now proceed with
the characterization of the most general local counterterm compatible with the identities (16.13),
(16.15), (16.17) and (16.18). Let us begin by displaying the quantum numbers of all fields, sources
and parameters

Aa
µ ca ca ba La Ωa

µ g s m

Ghost number 0 1 −1 0 −2 −1 0 1 0
Dimension 1/2 0 1 3/2 5/2 2 1/2 1/2 1

(16.21)
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In order to characterize the most general invariant counterterm which can be freely added to all orders
of perturbation theory, we perturb the classical action Σ by adding an arbitrary integrated, parity
preserving, local polynomial Σcount in the fields and external sources of dimension bounded by three
and with zero ghost number, and we require that the perturbed action (Σ+ηΣcount) satisfies the same
Ward identities and constraints as Σ to first order in the perturbation parameter η, which are

S(Σ + ηΣcount) = 0 + O(η2) ,

W (
Σ + ηΣcount

)
= 0 + O(η2) ,

δ (Σ + ηΣcount)
δba

= ∂µAa
µ + O(η2) ,

(
δ

δca + ∂µ
δ

δΩa
µ

) (
Σ + ηΣcount

)
= 0 + O(η2) ,

Ga
(
Σ + ηΣcount

)
= ∆a

cl + O(η2) . (16.22)

This amounts to imposing the following conditions on Σcount

BΣΣcount = 0 , (16.23)

with

BΣ =
∫

d3x

(
δΣ
δAa

µ

δ

δΩaµ
+

δΣ
δΩaµ

δ

δAa
µ

+
δΣ
δLa

δ

δca
+

δΣ
δca

δ

δLa

+ ba δ

δca −m2ca δ

δba

)
, (16.24)

WΣΣcount =
∫

d3x

(
ca δΣcount

δca +
δΣ
δLa

δΣcount

δba
+

δΣ
δba

δΣcount

δLa

)
= 0 , (16.25)

δΣcount

δba
= 0 ,

δΣcount

δca + ∂µ
δΣcount

δΩa
µ

= 0 , (16.26)

and

GaΣcount = 0 . (16.27)

Following the algebraic renormalization procedure [59], it turns out that the most general local, parity
preserving, invariant counterterm Σcount compatible with all constraints (16.23), (16.25), (16.26) and
(16.27), contains only two independent free parameters σ and a1, and is given by

Σcount =
∫

d3x

(
− (σ + 4a1)

4
F a

µνF a
µν + a1F

a
µν∂µAa

ν +
a1

2
m2Aa

µAa
µ + a1

(
Ωa

µ + ∂µca
)
∂µca

)
.

(16.28)

16.2.3 Stability and renormalization of the mass parameter.

It remains now to discuss the stability of the classical action [59], i.e. to check that Σcount can be
reabsorbed in the classical action Σ by means of a multiplicative renormalization of the coupling constant
g, the mass parameter m2, the fields {φ = A, c, c, b} and the sources L, Ω, namely

Σ(g, m2, φ, L, Ω) + ηΣcount = Σ(g0,m
2
0, φ0, L0, Ω0) + O(η2) , (16.29)
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with the bare fields and parameters defined as

Aa
0µ = Z

1/2
A Aa

µ , Ωa
0µ = ZΩΩa

µ ,

ca
0 = Z1/2

c ca , La
0 = ZLLa ,

g0 = Zgg , m2
0 = Zm2m2 ,

ca
0 = Z

1/2
c ca , ba

0 = Z
1/2
b ba . (16.30)

The parameters σ and a1, are easily seen to be related to the renormalization of the gauge coupling
constant g and of the gauge field Aa

µ, according to

Zg = 1− η
σ

2
,

Z
1/2
A = 1 + η

(σ

2
+ a1

)
. (16.31)

Concerning the other fields and the sources Ωa
µ, La, it can be verified that they are renormalized as

Zc = Zc = Z−1
g Z

−1/2
A , (16.32)

Zb = Z−1
A , ZΩ = Z1/2

c , ZL = Z
1/2
A . (16.33)

Finally, for the mass parameter m2,

Zm2 = Zg Z
−1/2
A , (16.34)

which, due to eq.(16.32), can be rewritten as

Zm2 = Z−1
c Z−1

A . (16.35)

Equation (16.32) expresses the well known nonrenormalization property of the ghost-antighost-gluon
vertex in the Landau gauge. As shown in [89], this is a direct consequence of the ghost Ward identity
(16.18). Also, as anticipated, equation (16.34) shows that the renormalization of the mass parameter
m2 can be expressed in terms of the gauge field and coupling constant renormalization factors. It is
worth mentioning here that eqs.(16.32), (16.34) are in complete agreement with the results obtained
in the case of the four-dimensional Yang-Mills theory in the Landau gauge [153].

Although we did not consider matter fields in the previous analysis, it can be easily checked that the
renormalizability of the mass operator Aa

µAa
µ and the relations (16.34), (16.35) remain unchanged if

massless spinor fields are included, namely

Smatter =
∫

d3x
(
iψ̄i∂/ψi + gAa

µψ̄iγµT aψi
)

, (16.36)

with i = 1, . . . , Nf . In fact, as was pointed out in [132], the addition of massless fermions does not
break the parity invariance of the starting action (16.3). Of course, the inclusion of the matter action
(16.36) requires the introduction of a suitable renormalization factor Zψ for the spinor fields.

16.2.4 Absence of one-loop ultraviolet divergences.

In the previous section we have proven that the massive three-dimensional Yang-Mills action (16.3) is
multiplicatively renormalizable to all orders of perturbation theory, displaying interesting renormalization
features, as expressed by equations (16.32) and (16.34). Only two renormalization constants, Zg and
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ZA, are needed at the quantum level. These factors should be computed order by order by means of a
suitable regularization, which in the present case could be provided by dimensional regularization. Due
to the absence of parity breaking terms, this would give an invariant regularization scheme. Furthermore,
we recall that Yang-Mills theory in three dimensions is a superrenormalizable theory, a property which
reduces the number of divergent integrals. It is thus worth looking at the Feynman diagrams of the
theory. Let us begin with the one-loop ghost-antighost self-energy. It can be checked that, due to
the transversality of the gluon propagator in the Landau gauge, the Feynman integral for the ghost
self-energy

g2

∫
d3k

(2π)3
pµ(p− k)ν

(p− k)2

(
δµν − kµkν

k2

)
1

k2 + m2
, (16.37)

where pµ stands for the external momentum, is free from ultraviolet divergences. As a consequence we
have that, at one-loop order in MS,

Zc = Zc = 1, at one-loop order. (16.38)

Analogously, by simple inspection, it turns out that the one-loop correction to the ghost-antighost-gluon
vertex is also finite. The same feature holds for the one-loop Feynman diagrams contributing to the
four gluon vertex, from which it follows that in MS

Z2
gZ2

A = 1, at one-loop order. (16.39)

Moreover, from equation (16.32), we have

ZA = 1, at one-loop order, (16.40)

so that

Zg = 1, at one-loop order (16.41)

in MS. We see therefore that, at one-loop order, the theory is completely free from ultraviolet diver-
gences, a feature which also holds in the presence of massless fermions. At higher orders, ultraviolet
divergences could show up.

To provide a non-trivial check of the validity of the relation (16.1) from another point of view, we shall
make use of the large Nf expansion, given the existence of a fixed point in the β-function. Within this
large Nf expansion technique, it is commonly known that this fixed point can be obtained by analytic
continuation of the one existing in d = 4 − 2ε dimensions. This will be considered in the following
section.

16.3 Large Nf verification.

Having established the renormalizability of the mass operator in the Landau gauge, we verify the result
in QCD using the large Nf critical point method developed in [240, 241] for the non-linear σ model
and extended to QED and QCD in [242, 243, 244, 245]. Briefly, this method allows one to compute
the critical exponents associated with the renormalization of the fields, coupling constants or composite
operators at the d-dimensional fixed point of the QCD β-function. The critical exponents encode
all orders information on the respective anomalous dimensions, β-function and operator anomalous
dimensions and are more fundamental than their associated renormalization group functions in that
they are renormalization group invariant. Knowing the explicit location of the d-dimensional fixed point
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allows one to convert the information encoded in the exponents to the explicit coefficients in the four-
dimensional perturbative expansion of the renormalization group functions. Since we are interested in
the renormalization of 1

2Aa
µAa

µ in the Landau gauge and its connection with the gluon and ghost wave
function renormalization we will show that, in agreement with eqs.(16.34), (16.35), the critical exponent
associated with the Landau gauge renormalization of Aa

µAa
µ at leading order in large Nf is simply the

sum of the gluon and ghost wave function critical exponents. The latter have already been determined
in [244]. Moreover, since the computation is in d-dimensions, 2 < d < 4, the three-dimensional result
of the previous sections will emerge naturally.

To fix notation for this section, we recall that the d-dimensional MS QCD β-function, [246], is

β(a) = (d− 4)a +
[
2
3
TF Nf − 11

6
CA

]
a2 +

[
1
2
CF TF Nf +

5
6
CATF Nf − 17

12
C2

A

]
a3

−
[
11
72

CF T 2
F N2

f +
79
432

CAT 2
F N2

f +
1
16

C2
F TF Nf +

2857
1728

C3
A

− 205
288

CF CATF Nf − 1415
864

C2
ATF Nf

]
a4 + O(a5) , (16.42)

where the group Casimirs are defined by T aT a = CF I, facdf bcd = CAδab and Tr
(
T aT b

)
= TF δab.

The leading O(a) term corresponds to the dimension of the coupling in d-dimensions and is necessary
to deduce the location of the non-trivial d-dimensional fixed point ac. Expanding in powers of 1/Nf it
is given by

ac =
3ε

TF Nf
+

1
4T 2

F N2
f

[
33CAε− (27CF + 45CA) ε2

+
(

99
4

CF +
237
8

CA

)
ε3 + O(ε4)

]
+ O

(
1

N3
f

)
, (16.43)

where d = 4− 2ε. QCD is in the same universality class as the non-Abelian Thirring model (NATM),
[247], which has the Lagrangian

LNATM = iψ̄i∂/ψi +
λ2

2
(
ψ̄iγµT aψi

)2
, (16.44)

or rewriting it in terms of an auxiliary vector field, Ãa
µ,

LNATM = iψ̄i∂/ψi + Ãa
µψ̄iγµT aψi − (Ãa

µ)2

2λ2
, (16.45)

where the coupling constant λ is dimensionless in two dimensions. By analogy the NATM plays the
same role as the O(N) nonlinear σ model in the d-dimensional critical point equivalence with the
four-dimensional O(N) φ4 theory at the d-dimensional Wilson-Fisher fixed point. One feature of the
universality criterion at criticality is that the interactions of the fields play the major role. Hence,
comparing the QCD and NATM Lagrangians where for this section we take

LQCD = iψ̄i∂/ψi + Ãa
µψ̄iγµT aψi − (F a

µν)2

4g2
, (16.46)

the quark-gluon 3-point interaction of both models is dominant in the large Nf critical point method.
In QCD the field strength of the Lagrangian is infrared irrelevant and drops out of the large Nf analysis.
However, in practice the triple and quartic gluon interactions emerge in diagrams with closed quark
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loops with respectively three and four external Ãa
µ fields, [247, 245]. It is worth noting that in this

section alone we have redefined the gluon field and incorporated a power of the QCD coupling constant
into its definition, Ãa

µ = gAa
µ which is the origin of the power of g2 factor with the field strength term.

This rescaling is necessary for the application of the critical point large Nf programme which requires
a unit coupling constant for the quark gluon interaction and therefore defines the canonical scaling
dimensions in such a way as to make the calculational tool of uniqueness applicable which was used
extensively in the original large Nf critical point method of [240, 241]. As we are interested in the

Figure 16.1: O(1/Nf ) diagrams contributing to ηA2 .

critical exponents and therefore the anomalous dimensions of the composite operator 1
2Aa

µAa
µ in the

large Nf expansion, we follow the method of [245]. There the critical exponent ω associated with the

QCD β-function was computed at O(1/Nf ) in d-dimensions by inserting the composite operator
(
F a

µν

)2

into a gluon 2-point function and applying the method of [248] to determine the critical dimension of
its associated coupling. For the anomalous dimension of 1

2Aa
µAa

µ we follow the same approach and note
that the appropriate O(1/Nf ) large Nf diagrams are given in Figure 16.1 where a gluon line counts
one power of 1/Nf which is why there are two and three-loop Feynman diagrams at this order. The
latter three-loop graph in fact contains the relevant contribution from the triple gluon vertex which is
absent in the NATM Lagrangian. Unlike perturbation theory the propagators of Figure 16.1 are not
the usual ones. Their asymptotic scaling forms are deduced from dimensional analysis and consistency
with Lorentz symmetry. In the Landau gauge we have, [243, 244],

ψ(k) ∼ Ak/

(k2)µ−α
, Aµν(k) ∼ B

(k2)µ−β

[
ηµν − kµkν

k2

]
, c(k) ∼ C

(k2)µ−γ
, (16.47)

in momentum space at leading order as k2 → ∞ as one approaches the d-dimensional fixed point.
We have given the ghost propagator asymptotic scaling form for completeness and to define its scaling
dimension even though it is not needed at O(1/Nf ) for the explicit computation of the critical exponent
of 1

2Aa
µAa

µ. The powers of the propagators are defined as

α = µ + 1
2
η , β = 1 − η − χ , γ = µ− 1 + 1

2
ηc , (16.48)

where A, B and C are the momentum independent amplitudes though only the combinations z = A2B
and y = C2B appear in calculations, [244]. We use µ = d/2 for shorthand, η is the critical exponent
of the quark field, χ is the critical exponent of the quark-gluon vertex anomalous dimension and ηc

is the ghost critical exponent. We note that the explicit O(1/Nf ) values of the critical exponents in
d-dimensions in the Landau gauge are, [244],

η1 =
(2µ− 1)(µ− 2)Γ(2µ)CF

4Γ2(µ)Γ(µ + 1)Γ(2− µ)TF
≡ ηo

1

CF

TF
,

χ1 = −
[
CF +

CA

2(µ− 2)

]
ηo
1

TF
, ηc 1 = − CAηo

1

2(µ− 2)TF
, (16.49)

where we will use the notation η =
∑∞

i=1 ηi/N
i

f . The expression for the ghost anomalous dimension
follows from the usual Slavnov-Taylor identity as expressed in exponent language,

ηc = η + χ − χc , (16.50)
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where χc is the anomalous dimension of the ghost-gluon vertex and was shown in [244] to vanish in
the Landau gauge at O(1/Nf ).
The explicit computation of the exponent associated with the renormalization of 1

2Aa
µAa

µ, which we will
call ηA2 , is deduced by inserting (16.47) into the diagrams of Figure 16.1 and applying the procedure
of [248] to determine the scaling dimension of the operator insertion, ηO. The value of ηA2 is deduced
from the relation

ηA2 = η + χ + ηO , (16.51)

where the first two terms correspond to the anomalous part of the gluon critical dimension or wave
function renormalization. For completeness we note that the corresponding critical exponent in the
Thirring model, ωNATM, is deduced by dimensionally analysing the final term of (16.45) giving

ωNATM = µ − 1 + η + χ + ηO . (16.52)

In practice a regularization has to be introduced for the Feynman integrals which is obtained by shifting
the exponent of the vertex renormalization, χ, to the new value of χ+∆. Here ∆ plays a role akin to ε
in dimensional regularization. Though it should be stressed that we are working in fixed dimensions, d,
and not dimensionally regularizing here. The actual contribution to ηO is determined from the residue
of the simple pole in ∆ from the sum of all the diagrams of Figure 16.1. In [245] the two and three-
loop diagrams were computed using various techniques such as integration by parts and uniqueness,
[241], after the regularized Feynman integrals were broken up into a set of basic integrals which were
straightforward to determine and a set which required a substantial amount of effort particularly in the
case of the three-loop diagram. We have used the same integrals here but supplemented with an extra
set since the operator insertion of 1

2Aa
µAa

µ alters the power of the internal gluon line containing the
operator insertion. An example of one of the tedious graphs in this respect is that illustrated in Figure

1

1

µ - 3 + ∆ 2µ - 4 + ∆

1

1

1

1

0

z

y

xu

Figure 16.2: Basic three-loop Feynman diagram.

16.2 where we have indicated the power of the propagator beside the line. We have used coordinate
space representation where one integrates over the location of the internal vertices, u, y and z, but with
x corresponding to the external coordinate or momentum of the diagram. To determine the residue
with respect to the ∆-pole we convert the integral to momentum representation, [241], which produces
the first diagram of Figure 16.3. There we have nullified the regularization since the associated factor
from the transformation is

a6(1)a(µ− 3)a(2µ− 4)
a(−1 + 2∆)

, (16.53)
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which, due to the denominator factor, is clearly divergent as ∆ → 0 since a(α) = Γ(µ − α)/Γ(α).
To proceed we use the language of [241] and apply a conformal transformation to the first diagram
of Figure 16.3 based on the left external point. Then integrating the unique triangle and subsequent
unique vertex before undoing the original conformal transformation finally produces the second diagram
of Figure 16.3. The factor associated with these manipulations from the first diagram of Figure 16.3
is a4(µ − 1)/a(2µ − 4). To deduce the value of the final diagram which is ∆-finite we integrate by
parts on the top right internal vertex based on the line with exponent 1. This produces four two-loop
diagrams. However, these intermediate diagrams are in fact divergent though their sum is finite. To
ensure the correct finite part emerges, one introduces a temporary intermediate regularization prior to
integrating by parts by shifting the exponent of the line labeled 3 − µ to an exponent of 3 − µ + δ.
In fact two of the resulting diagrams then cancel exactly, leaving two integrals which are related to
the function ChT(α, β) defined in [241] and evaluated exactly in [180, 241]. Explicitly one has the
difference of ChT(−1 − δ, 3 − µ) and ChT(µ − 3 − δ, 3 − µ) and expanding in powers of δ a finite
expression emerges. Accumulating all the contributions the final contribution of the integral of Figure
16.2 to the critical exponent computation is

(2µ− 3)(µ− 1)2(2µ2 − 7µ + 4)
4Γ(µ + 1)∆

. (16.54)

Having completed the computation of all the intermediate basic integrals we note that the transverse

µ - 1

µ - 1

µ - 1

4-µ

3

µ - 1

µ - 1

µ - 1

µ - 1

µ - 1

µ - 1

3 - µ

1

1

2µ - 3

Figure 16.3: Intermediate three-loop Feynman diagrams.

contribution of each of the four diagrams of Figure 16.1 to ηO are respectively,

− (2µ− 1)(2µ− 3)CF ηo
1

2(µ− 2)TF
,

(2µ− 1)(2µ− 3)[CF − 1
2
CA]ηo

1

2(µ− 2)TF
,
(µ− 1)2CAηo

1

(µ− 2)TF
. (16.55)

Hence,

ηA2 = − CAηo
1

4(µ− 2)TF Nf
+ O

(
1

N2
f

)
, (16.56)

in d-dimensions. Clearly this is equivalent to the sum of anomalous dimension parts of the Landau
gauge gluon and ghost critical exponents at O(1/Nf ). More explicitly, from (16.48) and (16.49),

ηA2 1 = η1 + χ1 − 1
2
ηc 1 , (16.57)

which due to our choice of conventions and notation was the way this identity was originally uncovered in
[87] prior to the all orders proof of [153] and its subsequent expression in the form of (16.1). Therefore,
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(16.57) is an explicit d-dimensional verification of the all orders result of the previous section. Moreover,
it nicely recovers the d-dimensional case of [87, 153, 234].

As three-dimensional QCD is of interest in other problems, we note that the explicit three-dimensional
value of ωNATM is

ωNATM
∣∣∣
d=3

=
1
2
− 4CA

3π2TF Nf
+ O

(
1

N2
f

)
. (16.58)

In two dimensions, interestingly the critical exponent does not run to its mean field value and one has

ωNATM
∣∣∣
d=2

= − CA

16TF Nf
+ O

(
1

N2
f

)
. (16.59)

16.4 Generalization to other gauges: the example of the Curci-
Ferrari gauge.

The mass operator Aa
µAa

µ in the Landau gauge can be generalized to other gauges, such as the
Curci-Ferrari and the maximal Abelian gauge. In this case the mixed gluon-ghost mass operator(

1
2Aa

µAa
µ + αcaca

)
has to be considered, where α stands for the gauge parameter. Let us consider

here the case of the Curci-Ferrari nonlinear gauge. For the gauge fixed action we have

SCF =
∫

d3x

(
− 1

4
F a

µνF a
µν + ba∂µAa

µ +
α

2
baba + ca∂µ (Dµc)a − α

2
gfabcbacbcc

− α

8
g2fabcf cdecacbcdce + m2

(
1
2
Aa

µAa
µ + αcaca

))
. (16.60)

Notice that in this case also the Faddeev-Popov ghosts ca, ca are massive. Moreover, the Curci-Ferrari
gauge reduces to the Landau gauge in the limit α → 0. The action (16.60) is invariant under the BRST
and δ transformations of eqs.(16.5), (16.8). Introducing the external action

Sext =
∫

d3x
(
− Ωa

µ (Dµc)a + La g

2
fabccbcc

)
,

it follows that the complete classical action

ΣCF = SCF + Sext , (16.61)

turns out to be constrained by the Slavnov-Taylor identity

S(Σ) =
∫

d3x

(
δΣ
δΩa

µ

δΣ
δAa

µ

+
δΣ
δLa

δΣ
δca

+ ba δΣ
δca −m2ca δΣ

δba

)
= 0 , (16.62)

and by the δ Ward identity

W(Σ) =
∫

d3x

(
ca δΣ

δca +
δΣ
δLa

δΣ
δba

)
= 0 . (16.63)

Due to the presence of the quartic ghost-antighost term g2fabcfcdecacbcdce and of gfabcbacbcc the
additional Ward identities (16.17) and (16.18) of the Landau gauge do not hold in the present case.
Nevertheless, identities (16.62) and (16.63) ensure the multiplicative renormalizability of the model.
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Proceeding as in the previous section, it turns out that the most general invariant counterterm contains
five free independent parameters, σ, a1, a2, a3, a5 and is given by

Σcount
CF =

∫
d3x

(
− (σ + 4a1)

4
F a

µνF a
µν + a1F

a
µν∂µAa

ν + (a1 − a2)ba∂µAa
µ

+ a1(∂µc̄a + Ωa
µ)∂µca + (a1 − a2)c̄a∂µ(Dµc)a + a5(∂µc̄a + Ωa

µ)(Dµc)a

− a3
α

2
baba +

(a3 + a5)
2

αgfabcbac̄bcc +
(a3 + 2a5)

8
αg2fabcf cdec̄ac̄bcdce

− a5

2
gfabcLacbcc + m2

(
(a1 − a2

2
+

a5

2
)Aa

µAa
µ − αa3c̄

aca
))

. (16.64)

The parameters σ, a1, a2, a3, a5 are easily seen to correspond to a multiplicative renormalization of
the fields, sources and parameters, according to

Zg = 1− η
σ

2
,

Z
1/2
A = 1 + η

(σ

2
+ a1

)
,

Z1/2
c = Z

1/2
c = 1− η

(
(a2 + a5)

2

)
,

ZL = 1 + η
(σ

2
+ a2

)
,

Zα = 1 + η (−a3 + 2a2 + σ) , (16.65)

and

ZΩ = ZA
−1/2Z

1/2

c ZL ,

Z
1/2
b = Z−1

L ,

Zm2 = Z−2
L Z−1

c . (16.66)

In particular, from eqs.(16.66) it follows that the renormalization factor Zm2 is not independent, being
expressed in terms of the ghost renormalization factor Zc and of the renormalization factor ZL of the
source La coupled to the composite ghost operator 1

2gfabccbcc. Again, these results are in complete
agreement with those obtained in the four-dimensional case [199].

16.5 Conclusion.

In this paper we have analysed the renormalization properties of the mass operator Aa
µAa

µ in three-
dimensional Yang-Mills theories in the Landau gauge. In analogy with the four-dimensional case, the
renormalization factor Zm2 is not an independent parameter of the theory, as expressed by the relations
(16.34) and (16.35), which have been explicitly verified in the large Nf expansion method. These
results will be used in order to investigate by analytical methods the possible formation of the gauge
condensate

〈
Aa

µAa
µ

〉
. This would provide a dynamical generation of a parity preserving mass for the

gluons in three dimensions, a topic which has been extensively investigated in recent years. For instance,
see [133, 134, 135, 136].

Finally, we underline that the Curci-Ferrari gauge allows one to study the generalized mixed gluon-ghost
condensate

〈
1
2Aa

µAa
µ + αcaca

〉
. In particular, as discussed in the four-dimensional case, the presence

of the gauge parameter α could be useful to investigate the gauge independence of the vacuum energy,
due to the formation of the aforementioned condensates.
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Chapter 17

Conclusion

In this final part, we present some general conclusive remarks.

Most of the attention was focused on the dynamical formation of a gluon condensate of mass dimension
two. This was achieved using the local composite operator formalism, which allows to construct a
sensible effective potential for local composite operators using perturbative calculations, and as such
one may obtain some nonperturbative information in the form of a condensate, whose formation is
favoured since it lowers the vacuum energy.

We have generalized this research, which was initiated originally in the Landau gauge [42], to a wide
variety of covariant gauges: the linear covariant, the Curci-Ferrari and the maximal Abelian gauges.
The latter gauge fixing is relevant for the dual superconductivity picture of the QCD vacuum at lower
energies, important as a possible scenario of confinement.

Our work can be seen as giving evidence that condensates of mass dimension two are relevant for
gauge theories, since a similar phenomenon occurs in every gauge we have investigated. However, our
understanding of these condensates is far from complete.

• Although the operator A2
µ can be given a gauge invariant meaning in the Landau gauge, such an

interpretation for the generalized composite operators is lost in the other gauges. We cannot say
anything about a gauge invariant interpretation of our results.

There has even appeared a proof that
〈
A2

µ

〉
should be gauge invariant, but it remains unclear to

us if this proof is correct [249].

If Zwanziger is correct about the equivalence of expectation values evaluated in the Fundamental
Modular Region Λ or Gribov region Ω [113], 〈. . .〉Λ = 〈. . .〉Ω, then in principle the quantity〈
A2

µ

〉
Ω
, discussed in Chapter 15, is a true gauge invariant quantity, being equal to

〈
A2

µ

〉
min

.

However, this statement is a little academic, as the question remains how the quantity
〈
A2

µ

〉
min

can be calculated in gauges other than the Landau gauge.

• The fact that in several classes of gauges, there can even be found a priori an operator that is
renormalizable to all orders of perturbation theory, sometimes even with extra properties like for
the anomalous dimension in the Landau gauge or MAG, is quite remarkable.

There are a few other gauges available, although these might be less accessible due to spe-
cific problems like noncovariantness, the appearance of nonlocal counterterms, only numerically
implementable ,...1.

1We mention that the condensate


A2

i

�
, i = 1, . . . , 3, has been discussed in connection with glueballs in the

Coulomb gauge in [200].
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• Some papers have challenged the relevance of dimension two operators, as they are not gauge
invariant and do not correspond to physical observables [250, 251]. Also the renormalizability
of the operators was challenged, as this was proven each time in a specific gauge for a specific
operator. For example, A2

µ is not renormalizable for general gauge parameter in the MAG.

Our viewpoint is always that our investigations start from the classical Yang-Mills action. At the
quantum level, a suitable gauge condition has to imposed in order to make a proper quantization
of the theory possible. It seems natural to us that the gauge fixing influences the behaviour of
the theory at the quantum level. Evidently, gauge invariance should be recovered at the end,
especially when one is considering physical quantities like the particle spectrum of the theory.
Considering gauge variant quantities like the gluon propagator, it is perfectly allowed that gauge
variant condensates would influence a propagator [229]. Depending on the gauge, a specific
(renormalizable) operator might condense or not.

One of the main consequences of
〈
A2

µ

〉
is the presence of a mass parameter in the gluon

propagator. The appearance of mass parameters in the gluon propagator has received confir-
mations from various other studies: lattice simulations [43, 44, 45, 46, 47, 48, 49, 50], so-
lutions of the Schwinger-Dyson equations [51, 52], more phenomenologically oriented studies
[53, 54, 55, 56, 57], ... . Also other consequences from our research are in qualitative agreement
with other studies, we mention the presence of an off-diagonal and the absence of a diagonal
gluon mass in the maximal Abelian gauge [49, 50] or the consequences of the restriction to the
Gribov region such as a more singular ghost propagator [116, 117, 118, 119, 120].

As already mentioned in the introduction, it is possible that these mass dimension two condensates
contain a gauge invariant piece [34], however this is mainly speculation, and we do not want to
add anything to this. Nevertheless, we have motivated that at least the nontrivial vacuum energy,
due to the respective condensates in each gauge, should be formally the same in our framework.

In our opinion, gauge invariance may not be simply used as some kind of dogma to “forbid”
research in certain directions as it involves gauge variant quantities. We already mentioned the
example of the gauge variant propagator which can receive, in principle, gauge variant contribu-
tions. We do agree that gauge invariance is a key feature, but if one sticks too firmly to gauge
invariance, perhaps not much can be done beyond perturbation theory at the analytical level. It
would be already a certain achievement if one would be able to gain some more knowledge about
for example the gluon propagator and/or ghost propagator beyond the pure perturbative results,
let us only think about the Kugo-Ojima confinement criterium.

A perfect example to illustrate that demanding strict gauge invariance can work counterproductive,
is the Gribov problem. It would be a formidable task to find a solution to the problem of gauge
copies in a gauge invariant fashion. Due to the special properties of the Landau gauge, something
can be said or even done about the problem, so why not profit from it and get some information
on nonperturbative dynamics in gauge theories, albeit only in the Landau gauge, which gives one
the possibility to say something more than in other gauges.

• Our work was restricted to the perturbative analysis of nonperturbative effects. Probably, other
major sources of nonperturbative effects, like topological ones in QCD, shall have their influence
on e.g. the condensate

〈
A2

µ

〉
.

• Most of the times, we restricted the analysis to a one-loop approximation. We remind here that
a one-loop knowledge of the effective potential via the LCO formalism makes necessary two-loop
calculations. Also the presence of a gauge parameter complicates the analysis. Although it would
be desirable to have for example a complete two-loop knowledge of the effective potential for a
general choice of the gauge parameter in the case of the linear covariant gauges, the calculations
can become extremely complicated. We refer for example to the expression (11.32) for ζ1(α) ,
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which shall enter the differential equation of ζ2(α). The case with quarks included is even more
complicated.

• Concerning the generation of a gluon mass parameter, it must be noticed that this certainly does
not mean that we would have solved the problem of the mass gap in QCD. Therefore, we would
have to prove that the physical excitations2, constructable from the QCD-action, are massive.
Said otherwise, this would ask for the proof of confinement, a task clearly beyond our capabilities.

Related to this is the question of unitarity. Massive Yang-Mills models are not unitary [84, 162,
182]. First of all, we are not considering (bare) massive, but dynamically massive Yang-Mills
theory. But perhaps more important is the remark that unitarity should be proven at the level of
physical excitations, and we nor anybody else do know how to construct these out of the action at
the present time, even if one starts from the original massless action. We are investigating Yang-
Mills theory written in terms of the elementary, yet unphysical quark and gluon field excitations.
This is complementary with the fact that the presence of a pole in the gluon propagator, using the
LCO formalism [214, 252], does not necessarily entail the presence of a physical massive particle
(gluon) [253].

At very high energies, asymptotic states can be attached to the quark and gluon field, as the
interaction is very weak due to the asymptotic freedom. At these energies, perturbation theory
should do the job, and nonperturbative corrections coming from condensates or whatsoever are
absent. Then, the spectrum of Yang-Mills theories contains the two transversal polarizations of
the gauge bosons and unitarity is present, see e.g. [177]. This can be proven starting from the
BRST symmetry. In the nonperturbative (low energy) region of QCD, it is not clear if there even
exists a BRST symmetry.

• As we have focused most attention to the condensation of A2
µ in QCD in the Landau gauge, one

might wonder what happens in quantumelectrodynamics (QED), the very successful quantum
theory of the electromagnetic interaction. One could imagine that

〈
A2

µ

〉
might arise in QED,

giving the photon a mass. As it is well known, the photon is an observable particle, but massless.

To start with, QED is not asymptotically free, so in order for perturbation theory to be useful for
the LCO construction of the effective potential, the quantity

〈
A2

µ

〉
, if arising, should be relatively

small3.

Without providing any details, it can be shown within the algebraic renormalization formalism and
using the Landau gauge, that the operator A2

µ is renormalizable to all orders of perturbation theory.
For explicit results, we can make use of the numbers in [197]. Although that particular work was
written for QCD, all the Casimir operators of the symmetry group were written explicitly, and
the QED-results can be obtained from it upon setting these Casimir operators to the appropriate
value, see also the end of [87]. In practice, the LCO one-loop effective potential for QED reads
(in the MS scheme)

V (σ′) = −9
2

1
8Nf

σ′2 +
e2

π2
σ′2

(
3
64

ln
eσ′

µ2 −
13
128

+
207
32

1
16Nf

− 117
32

1
8Nf

)
, (17.1)

where 〈σ′〉 ∝ 〈
A2

µ

〉
. As it was noticed in [197], the tree level potential is unbounded from below.

In [197], it was therefore remarked that the potential does not make sense for QED. Nevertheless,
we can use the quantum corrected potential, whose behaviour is changed due to the presence of

2The physical spectrum is built out of baryons, mesons, glueballs,... and not out of (massive/massless) gluons or
quarks.

3We remember that the size of the condensate reflects on the size of the coupling constant.
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the logarithm. However, if we derive the gap equation ,dV
dσ = 0, and put µ2 = eσ′ to kill the

possibly large logarithm, we find as non-trivial solution

e2
∗

16π2
=

−18
27 + 40Nf

< 0 , (17.2)

where it is understood that e∗ ≡ e(eσ′). Thus, there is no non-trivial solution at one-loop in the
MS scheme. Unfortunately, it is difficult to state that we will also find only the trivial solution
σ′ = 0 when higher orders are taken into account. But, as a certain check, we can also perform
the analysis at two-loop order in the MS scheme, since the necessary numbers can be also found in

[197]. In this case, we establish that
e2
∗

16π2 > 0 is possible, although only for Nf > 3. This implies
that the photon remains massless, if one would consider QED with only the electron present.
One can argue that there are three species of fermions, namely the leptons electron, muon and
tau, but as the mass of the τ -particle is about 2 GeV, the approximation to treat it as a massless
fermion is not really permitted.

Next to a condensation of a mass dimension two operator involving the gauge bosons, we also inves-
tigated further the condensation of mass dimension two ghost operators, related to the breakdown of
a continuous SL(2,R) symmetry, present in some gauges. These condensates, if existing, shall also
influence the propagators.

Is this a closed work? Clearly it is not. Several items can be explored further. We list only a few.

It would be nice to receive confirmations from other sources (lattice) if a mass dimension two condensate
exists in other gauges. In the Landau gauge, 1

Q2 power corrections related to
〈
A2

µ

〉
were found when

the coupling constant g2 was considered, obtained from various interaction vertices, see e.g. [37, 38,
39, 257]. One might think of searching for 1

Q2 corrections to g2 in other gauges that can be put on a
lattice, e.g. the MAG.

Likewise it would be nice to receive some alternative evidence that something like a ghost condensation
does occur in the Landau gauge. What is the influence of the ghost condensation on the gluon
condensation and vice versa? What is the combined effect of the ghost and gluon condensates on the
propagators? At a preliminary stage, we have found that the ghost condensate in the Overhauser vacuum
induces a mass splitting between the diagonal and off-diagonal gluon mass, whereby the diagonal mass
is smaller than the off-diagonal mass [254]. Perhaps this might serve as an indication for some kind of
Abelian dominance in the Landau gauge [255, 256].

What happens when the implementation to the Gribov region is implemented at two-loop order? Is it
possible to find a reliable result with negative vacuum energy? What is the possible role of the gluon
condensate

〈
A2

µ

〉
in this? If it would turn out that the vacuum energy remains positive at higher loop

order, then this would be an indication that an order by order implementation of the horizon condition
is far from being “sufficient” for a decent infrared description of QCD.

Can we extend the LCO formalism to three dimensions? As the massive gauge theory turned out to be
finite at one-loop order, it would be also interesting to find out what happens at higher loop order in
this superrenormalizable theory.

Does an extension of A2
µ exists in supersymmetric Yang-Mills theories using a generalized version of

the Landau gauge [258]? An advantage of considering supersymmetric Yang-Mills theories is that exact
results are at disposal due to holomorphy [259], and these can serve to test nonperturbative mechanisms.

. . .
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Appendix A

Nederlandse samenvatting

In this Appendix, the reader shall encounter a Dutch summary of the thesis.

A.1 Situering van het werk.

Klassiek wordt de grondtoestand van een model bepaald door na te gaan of er een globaal minimum
van de potentiaal bestaat. Het concept van een klassieke potentiaal kan uitgebreid worden tot de
zogenaamde kwantum effectieve potentiaal indien het model gekwantiseerd wordt. Deze effectieve
potentiaal omvat de kwantumcorrecties op de klassieke potentiaal. Deze correcties worden doorgaans
via een perturbatieve ontwikkeling in een koppelingsconstante g2 bekomen, i.e. een Taylorreeks in g2.
Uiteraard zijn perturbatieve berekeningen enkel zinvol voor een voldoende kleine g2. Elke term in de
reeks wordt berekend door middel van de evaluatie van Feynmandiagrammen. Een gekend probleem bij
perturbatieve berekeningen in kwantumveldentheorie is het optreden van ultraviolet divergenties. Deze
zijn het gevolg van het feit dat de analytische uitdrukkingen, corresponderend met Feynmandiagrammen,
integralen zijn over alle mogelijke momenta. De bijdragen van oneindig grote momenta zorgen voor
divergenties door het slechte gedrag op oneindig van de integranda. Om zinvol om te gaan met deze
divergenties moet men renormalizeren, i.e. men voert tegentermen in die de optredende oneindigheden
orde per orde elimineren. Men noemt een model renormalizeerbaar indien de tegentermen door een
(oneindige) herdefinitie van de al aanwezige velden, bronnen, massa’s, koppelingen in het oorspronkelijk
model kunnen geabsorbeerd worden.

Ons onderzoek heeft zich de afgelopen drie jaar vooral gericht op methoden om de vacuüm verwachtings-
waarden van lokaal samengestelde operatoren (LCO) te berekenen. Een vacuüm verwachtingswaarde
〈O〉 van een bepaalde operator O wordt ook wel een condensaat genoemd. Dergelijke condensaten
karakteriseren in zekere zin het vacuüm van de theorie die onderzocht wordt.

De beschouwde operatoren zijn lokaal, omdat werken met niet-lokale operatoren verre van triviaal is,
en meestal moeten samengestelde operatoren gebruikt worden omdat de elementaire basisvelden zelf
niet kunnen condenseren, b.v. omdat dit de Lorentzsymmetrie zou breken.

Een methode om een condensaat te berekenen bestaat uit het construeren van de effectieve potentiaal
voor de operator die onderstelt wordt te condenseren. Indien een lagere waarde van de potentiaal,
hetgeen niets anders dan de vacuümenergie voorstelt, kan bekomen worden bij een niet-verdwijnende
vacuüm verwachtingswaarde, dan correspondeert dit met een meer stabiele toestand van de theorie en
treedt bijgevolg condensatie op.

Onze aandacht ging voornamelijk uit naar kwantum chromodynamica (QCD), de ijktheorie die de sterke
(kleur) interactie beschrijft. Eén van de meest in het oog springende eigenschappen van QCD is de
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asymptotische vrijheid. Summier wil dit zeggen dat de sterkte van de interactie daalt voor stijgende
energie. De sterkte van de interactie zit vervat in de koppelingsconstante g2 van de theorie. Omgekeerd
wordt g2 groter bij lager wordende energie. Met andere woorden, perturbatietheorie kan enkel bij zeer
hoge energieën een accurate beschrijving van QCD geven. Bij lagere energie zullen niet-perturbatieve
effecten een rol beginnen spelen.

Het meest prominente voorbeeld van een niet-perturbatief QCD fenomeen is confinement: de elemen-
taire deeltjes horende bij de basisvelden uit de QCD-actie, namelijk de “gekleurde” gluonen en quarks,
worden niet afzonderlijk waargenomen, maar komen steeds gebonden (confined) voor in de vorm van
kleurloze toestanden als baryonen, mesonen, glueballs, ... . Confinement in QCD vormt één van de
grote onopgeloste problemen van de theoretische fysica.

Klassiek komt er geen massaschaal voor in de QCD-actie. Evenwel is voor het expliciet uitvoeren van de
renormalizatie van een veldentheorie de introductie van een massaschaal µ nodig. Deze kruipt onder an-
dere in de koppelingsconstante g2, die alzo een functie g2(µ) wordt. Meerbepaald is g2 ∼ ln−1

(
µ2/Λ2

MS

)
met ΛMS een vaste massaschaal, onafhankelijk van de keuze van de arbitraire renormalizatieschaal µ.
Na renormalizatie treedt er dus wel een massaschaal op, echter alleen indirect via g2. Probeert men
dus rechtstreeks een condensaat in perturbatietheorie te berekenen, dan zal door de afwezigheid van
een expliciete massaschaal dit noodzakelijk nul opleveren. Men zou zich echter kunnen voorstellen dat,
door één of ander mechanisme, dergelijk condensaat proportioneel wordt met de schaal ΛMS. Dit moet

dan via een niet-perturbatief mechanisme gebeuren, vermits ΛMS ∝ e
− 1

g2 en deze laatste uitdrukking
heeft zelf geen Taylorontwikkeling.

Het is instructief om eens intüıtief te illustreren hoe het mogelijk is dat men iets ∝ ΛMS kan vinden
gebruik makende van de effectieve potentiaal V (σ), met σ het veld dat ondersteld wordt te condenseren.
De minima worden bepaald door de vergelijking dV

dσ = 0 op te lossen, en dat zal aanleiding geven tot
een voorwaarde op g2, die in functie zal staan van σ. Dit laatste is gebaseerd op de renormalizatiegroep.
Door de relatie g2 ∼ ln−1

(
σ/Λ2

MS

)
te inverteren komt men dan tot σ ∝ Λ2

MS
. Dit is een voorbeeld

van “dimensionele transmutatie” vermits een dimensieloze koppeling (g2) wordt ingewisseld voor een
massavolle schaal (ΛMS).

Om tenminste van kwalitatief aanvaardbare resultaten te kunnen spreken, moet de ontwikkelingspara-
meter g(σ) voldoende klein zijn, en dit vertaalt zich via de asymptotische vrijheid in een voldoende
groot condensaat.

Laten we nog even terugkomen op het feit dat we samengestelde operatoren zullen beschouwen. Over
het algemeen brengen deze operatoren problemen met zich mee op het kwantumniveau. Er moet be-
wezen worden dat de operator zelf renormalizeerbaar is, waarna er nog moet aangetoond worden dat een
renormalizeerbare effectieve potentiaal kan berekend worden, die dan nog moet voldoen aan de nodige
vereisten. Dit zijn hoogst niet-triviale eigenschappen. Een methode om een zinvolle effectieve potentiaal
te berekenen, werd ontwikkeld door Verschelde in [23] en met succes getest op het twee-dimensionele
massaloze Gross-Neveu model [21]. Dit is een interessant model vermits het ook asymptotisch vrij is en
het geweten is dat er door niet-perturbatieve kwantumeffecten een massa gegenereerd wordt, die dan
ook nog exact gekend is [25], dus men kan nagaan hoe adequaat de ontwikkelde technieken zijn.

Vermits het zogenaamde LCO formalisme een belangrijke rol speelt binnen dit werk voor het construeren
van een zinvolle potentiaal, geven we er hier een beknopte uitleg over. De details staan elders in de thesis
uitvoerig vermeld. Beschouw een vier-dimensionele veldentheorie en onderstel dat we gëınteresseerd zijn
om de eventuele condensatie van een LCO O van massadimensie twee na te gaan. Een operator kan
aan de actie gekoppeld worden via een bron J , i.e. men voegt een term JO toe aan de actie. Dit geeft
aanleiding tot een functionaal W (J), waarbij de Legendre getransformeerde van W (J) niets anders is
dan de effectieve potentiaal V (σ), waarbij het hulpveld σ de samengestelde operator O voorstelt. Er
treden echter nieuwe oneindigheden ∝ J2 op door divergenties in de correlator 〈O(x)O(y)〉 voor x ≈ y.
Deze oneindigheden stemmen overeen met deze in de vacuümenergie. Dit maakt een tegenterm ∝ J2
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nodig in de Lagrangiaan om de bewuste divergentie te elimineren, maar dit maakt op zijn beurt dan
ook een term ζJ2 nodig om de tegenterm in te kunnen opslorpen. De waarde van deze LCO parameter
ζ kan vastgelegd worden door op een intelligente wijze de renormalizatiegroep te gebruiken [23].

Het LCO formalisme laat toe om via perturbatieve berekening ook enige informatie te bekomen over
niet-perturbatieve zaken. Uiteraard is het ijdele hoop te denken dat het hiermee mogelijk is alle niet-
perturbatieve effecten van QCD te kunnen beschrijven. Er kunnen andere, misschien voornamere,
oorzaken van niet-perturbatieve effecten in QCD gevonden worden, zoals b.v. instantonen1, meronen,
magnetische monopolen, dyonen, vortices, ... .

Hoe interessant het Gross-Neveu model ook is als testmodel, het is altijd de bedoeling om ook iets
meer te weten te komen over fysisch meer relevante theorieën zoals QCD. Als we de quarks buiten
beschouwing laten, dan heeft het condensaat met laagste dimensie dat ijkinvariant is, dimensie vier,
met name de veldsterkte

〈
F 2

µν

〉
. Door het werk van Zakharov et al werd echter de aandacht gevestigd

op het mogelijk bestaan van een condensaat van massadimensie twee in ijktheorieën voorzien van de
Landau ijk, ∂µAµ = 0, namelijk het kwadraat van de vectorpotentiaal, A2

µ [33, 34]. Terzelfdertijd kwam
er ook evidentie vanuit de hoek van de roostersimulaties voor het mogelijk bestaan van dit condensaat
in de Landau ijk [37, 39, 257]. Eveneens via numerieke simulaties werd aangevoerd dat instantonen een
bijdrage leveren aan dit condensaat [38].

De inspanningen omtrent het bestaan van een condensaat van massadimensie twee waren gericht op de
Landau ijk, vermits er een ijkinvariante mening aan de lokale operator A2

µ kan gegeven worden in deze
ijk.

Een eerste expliciete berekening van een waarde voor
〈
A2

µ

〉
werd voorgesteld in [42] via de LCO

methode, waarbij inderdaad een niet-nul waarde werd gevonden. Een gevolg van dit condensaat is het
optreden van een nulde orde2 dynamische gluonmassa van enkele honderden MeV. Het optreden van
massavolle parameters in de gluonpropagator werd ook al duidelijk door roostersimulaties [43, 44, 45,
46, 47, 48, 49, 50] en door andere niet-perturbatieve methoden zoals de Schwinger-Dyson vergelijkingen
[51, 52]. Ook fenomenologisch bleek uit bepaalde werken al dat een dynamische massaparameter betere
resultaten oplevert voor de beschrijving van bepaalde processen [53, 54].

A.2 Overzicht van het gedane onderzoek.

A.2.1 De 2PPI ontwikkeling.

Een alternatieve methode die toelaat om enige informatie te bekomen over de vacuüm verwachtings-
waarde van lokale, samengestelde operatoren werd ontwikkeld in [61, 62, 63, 64] voor het λϕ4 model.
De expansie omvat alle Feynmandiagrammen die samenhangend blijven wanneer er twee lijnen, die
samenkomen op hetzelfde punt, doorgesneden worden. Diagrammen die uiteenvallen bij dergelijke snij-
operatie worden “2-point-particle-reducible” (2PPR) genoemd. Alleen de “2-point-particle-irreducible”
(2PPI) diagrammen blijven over in de som die de vacuümenergie E opbouwt, vandaar de naam 2PPI
expansie. In Hoofdstuk 2 hebben we een andere afleiding van de 2PPI expansie gegeven gebruik
makende van het Gross-Neveu model. De essentie van de 2PPI expansie bestaat uit het verwijderen
van alle 2PPR diagrammen door ze te vervangen door een effectieve massaparameter m. De zelf-
consistentie van de expansie wordt gewaarborgd door een gapvergelijking waaraan m moet voldoen,
namelijk dE

dm = 0. We hebben ook aandacht besteed aan de renormalizatie van de 2PPI expansie. De
gapvergelijking werd expliciet bepaald tot op twee lussen, evenals de diagrammen die nodig zijn voor het
bepalen van de pool van de propagator, waaruit dan een waarde voor de niet-perturbatieve massa van

1Dit zijn oplossingen van de klassieke bewegingsvergelijkingen met niet-triviaal windingsgetal, m.a.w. deze
beschrijven topologisch niet-triviale eigenschappen van QCD.

2Hiermee bedoelen we op het niveau van de Lagrangiaan zelf.
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het Gross-Neveu fermion volgt. De uiteindelijke numerieke resultaten voor de massa en vacuümenergie
waren in vrij goede overeenkomst met de exact gekende waarden.

Nadat de 2PPI expansie getest werd op het Gross-Neveu model, pasten we ze vervolgens aan voor
Yang-Mills ijktheorieën in de Landau ijk. Dit is beschreven in Hoofdstuk 3. De 2PPI massa parameter
is in dit geval evenredig met

〈
A2

µ

〉
. Alzo waren we in staat om een bijkomende aanwijzing voor

het bestaan van dit massadimensie twee condensaat te geven in de Landau ijk. De resultaten waren
compatibel met wat eerder was gevonden met de LCO methode in [42]: een lagere vacuümenergie en
een dynamische gluon massaparameter van een paar honderd MeV.

A.2.2 De duale supergeleider en de maximaal Abelse ijk.

Zoals reeds aangehaald werd, is er nog geen oplossing voor het probleem van confinement. Een fysisch
model dat voor confinement zou kunnen zorgen, is de duale supergeleider [65, 66, 67, 68]. Hierbij zou
het lage energie regime van QCD beschreven worden door middel van een effectieve Abelse theorie in de
aanwezigheid van (kleur)magnetische monopolen. Deze monopolen worden ondersteld te condenseren
om op deze manier een duaal Meissnereffect te verkrijgen: een fluxbuis (string) wordt gevormd tussen de
kleurelektrische ladingen. Deze string zorgt voor een lineair stijgende potentiaal tussen de kleurladingen,
die aldus “confined” zijn omdat het dan intüıtief duidelijk is dat het enorm veel energie kost om ze zo
ver van elkaar te verwijderen dat ze als afzonderlijke deeltjes kunnen beschouwd worden.

Abelse ijken [68] zijn een bijzonder hulpvol concept om magnetische monopolen te introduceren in
QCD. Kort gezegd wordt via een Abelse ijk het niet-Abelse stuk van de ijkgroep al vastgelegd door een
geschikte ijkkeuze, waarbij de Abelse subgroep van de totale groep overblijft als residuele ijkgroep. In
sommige punten van de ruimtetijd kan een Abelse ijk slecht gedefinieerd zijn. Dergelijke singulariteiten
kunnen gëıdentificeerd worden met Abelse monopolen.

Een gekend voorbeeld van een Abelse ijk is de maximaal Abelse ijk (MAG) [68, 69, 70]. Deze ijkconditie
legt op dat de norm van de niet-diagonale gluonvelden3 zo klein mogelijk is, vandaar de benaming
maximaal Abels. De renormalizeerbaarheid van de MAG werd bewezen in [71, 72], waarvoor er echter
wel een kwartische spookinteractie in de actie moest ingevoerd worden. De residuele Abelse ijkvrijheid
wordt meestal vastgelegd door een Landau ijk [49, 50].

Volgens het principe van Abelse dominantie, is het mogelijk het lage energie regime van QCD te
beschrijven louter in termen van Abelse vrijheidsgraden [73]. Hiervoor bestaan er aanwijzingen bekomen
via numerieke roostersimulaties [74, 75, 76]. Voor zover wij weten is er geen rechtstreeks bewijs
voor de Abelse dominantie. Een aanwijzing zou kunnen zijn dat de niet-diagonale gluonen dynamisch
massief zouden worden. Bij energieën lager dan deze massaschaal zouden de niet-diagonale gluonen
ontkoppelen van de theorie4, en aldus zou men uitkomen bij een theorie met alleen lichte (massaloze),
Abelse vrijheidsgraden.

Roostersimulaties van de MAG geven inderdaad aan dat een niet-diagonale gluonmassa van ongeveer
1.2 GeV optreedt, terwijl de Abelse gluonen zeer licht dan wel massaloos gedrag vertonen [49, 50].

A.2.3 Spookcondensaten en SL(2,R) symmetrie.

Rest nog een mechanisme te vinden dat eventueel verantwoordelijk zou kunnen zijn voor de niet-
diagonale massageneratie. In [77, 78, 79, 80] werd een spookcondensaat,

〈
fabccacb

〉
, beschreven

dat aan de basis zou liggen van de gezochte massa. In Hoofdstuk 3 hebben we echter aangetoond
dat de alzo bekomen massa tachyonisch is (negatief massakwadraat). We stelden ook vragen bij de

3Hiermee wordt bedoeld de gluonvelden horende bij de niet-diagonale generatoren van de ijkgroep SU(N).
4Men kan zich wel indenken dat zware vrijheidsgraden niet veel “dynamica” vertonen bij lage energie.
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renormalizeerbaarheid van de potentiaal die geconstrueerd werd om het spookcondensaat te vinden.
We stelden de LCO methode voor als een geschikt alternatief om toch deze spookcondensatie te
onderzoeken.

In [81] werd nog een andere klasse van spookcondensaten beschreven, namelijk
〈
fabccacb

〉
en

〈
fabccacb

〉
.

Dit kon verwacht worden, vermits de spookcondensaten een ordeparameter vormen voor een continue
SL(2,R) symmetrie van de MAG actie. De SL(2,R) transformaties roteren de verschillende massadi-
mensie twee spookoperatoren in elkaar. Het verdient dan ook onderzocht te worden of een bepaald
spookcondensaat een stabielere grondtoestand oplevert dan de andere configuraties.

Een operator, die wel aanleiding kon geven tot een niet-diagonale massa werd voorgesteld door Kondo
in [83], namelijk O = 1

2Aa
µAµa + αcaca. De keuze voor deze operator kon verwacht worden vermits er

een analogie bestaat tussen de MAG en een andere klasse van renormalizeerbare ijken, namelijk de niet-
lineaire Curci-Ferrari ijken [84, 85], die overeenstemmen met de massaloze limiet van een renormalizeer-
baar massief QCD model. De massaterm van het Curci-Ferrari model is juist m2

(
1
2Aa

µAµa + αcaca
)
.

Vermelden we nog dat de Landau ijk een speciaal geval is van de Curci-Ferrari ijken.

In Hoofdstuk 5 hebben we de SL(2,R) symmetrie verder bestudeerd. We bekwamen het al gekende
resultaat dat de Landau ijk en de Curci-Ferrari ijk deze invariantie vertonen, maar daarnaast toonden
we ook aan dat het mogelijk is de volledige symmetrie op een renormalizeerdbare wijze op te leggen
indien de MAG wordt opgelegd, aangevuld met een geschikte diagonale ijk voor de residuele Abelse
ijkvrijheid5.

De algebra opgebouwd door de (anti-)BRST en SL(2,R) transformaties is gekend als de Nakanishi-
Ojima (NO) algebra [86]. De spookcondensaten signaleren een gedeeltelijke breking van deze NO
symmetrie.

A.2.4 De anomale dimensie van de samengestelde operator A2
µ in de Landau

ijk.

Hoewel de lokaal samengestelde operator A2
µ al bestudeerd werd in de Landau ijk, gebruik makende

van de LCO methode, was het enkel door expliciete, gecompliceerde meerdere-lus Feynmandiagram
berekeningen dat de renormalizeerbaarheid werd aangetoond, en dit is dan maar tot op de beschouwde
drie-lus orde.

In Hoofdstuk 6 hebben we gebruik makende van het algebräısche renormalizatie formalisme kunnen
aantonen dat de LCO methode in het geval van de Landau ijk renormalizeerbaar is tot op elke orde, en
dit zonder al te gecompliceerde berekeningen.

De algebräısche renormalizatie, zie [59] voor een introductie, is een krachtig formalisme dat, simplis-
tisch voorgesteld, condities oplegt aan de meest algemene kwantumcorrecties die kunnen optreden.
Deze condities volgen uit de invarianties van de actie waarmee men start en worden uigedrukt door
zogenaamde Wardidentiteiten, waaraan de volledige kwantumactie moet voldoen. Over het algemeen
kan de vorm van de meest algemene kwantumcorrectie bepaald worden. In het geval van Yang-Mills
ijktheorieën gebeurt dit met behulp van de cohomologie geassocieerd aan de Slavnov-Taylor identiteit,
die kan gezien worden als een functionele vertaling van de ijkinvariantie eens een ijk opgelegd is.

Verder gaven we ook een expliciet bewijs van het vermoeden dat de anomale dimensie van de operator
A2

µ een lineaire combinatie is van meer elementiare renormalizatiegroepsfuncties. Gracey formuleerde
in [87], op basis van de berekende waarden, de hypothese dat de renormalizatiegroepvergelijking van
A2

µ niet onafhankelijk is van deze van het gluonveld Aµ en de β-functie, wier waarden al sinds langer
gekend zijn tot op drie lussen [88]. Ons bewijs steunde op een restrictieve Ward identiteit, de ghost
Ward identity, aanwezig in de Landau ijk [89].

5Indien de diagonale Landau ijk wordt opgelegd, gaat het “diagonale” gedeelte van de SL(2,R) symmetrie al
verloren bij het begin.
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A.2.5 De anomale dimensie van de gluon-spook massa operator in Yang-Mills
theorie en het gluon-spookcondensaat van massadimensie twee in de
Curci-Ferrari ijk.

In Hoofdstuk 7 hebben we een eerste stap gezet om de LCO methode uit te breiden van de Landau
ijk naar andere ijken. Een logische vraag is of er een renormalizeerbare massadimensie twee operator
bestaat in andere ijken. We haalden al het voorbeeld aan van de Curci-Ferrari ijk en de bijhorende
operator. We hebben aangetoond dat dit inderdaad een renormalizeerbaar model oplevert tot op alle
ordes. We gaven ook een korte discussie omtrent de veralgemening van deze operator in geval van de
MAG, aangevuld met de Abelse Landau ijk.

We vonden ook relaties tussen de verschillende anomale dimensies voor de Curci-Ferrari ijk en de MAG.
In geval van de Curci-Ferrari ijk is de relatie echter niet zo bruikbaar aangezien ze de anomale dimensie
van een andere samengestelde operator, gfabccacb, bevat. We hebben de gevonden resultaten via
expliciete berekeningen gecontroleerd tot op drie lussen. Voor de MAG is de bekomen relatie van meer
praktisch nut vermits ze de anomale dimensie van de operator uitdrukt in termen van deze van het
diagonaal spook en de β-functie. De details van de MAG staan verderop in Hoofdstuk 12, waar deze
ijk uitvoerig werd bestudeerd.

Het is interessant op te merken dat de operator O niet langer kan gëıdentificeerd worden met een
ijkinvariante grootheid zoals het geval was voor de Landau ijk. Hoewel we dus in staat zijn om op
een renormalizeerbare wijze de operator A2

µ uit te breiden, verliezen we de link met een ijkinvariante
operator. Desalniettemin is de renormalizeerbaarheid op zich van dergelijke niet-triviale operator al vrij
verrassend.

Verder vermelden we nog dat de operator O in de Curci-Ferrari ijk en de MAG toch nog een bepaalde
eigenschap deelt met de operator A2

µ in de Landau ijk, namelijk de on-shell BRST invariantie6. Deze
on-shell invariantie kan vertaald worden in een Ward identiteit, zie Hoofdstuk 12. We herinneren er
hier aan dat een voldoende aantal Ward identiteiten belangrijk kan zijn om de renormalizeerbaarheid te
kunnen bewijzen tot op alle ordes.

Hoofdstuk 8 is gewijd aan de uitbreiding van het LCO formalisme zelf naar de Curci-Ferrari ijk om
daadwerkelijk de mogelijke condensatie van de operator O en de bijhorende dynamische massageneratie
te onderzoeken. We dreven de berekeningen niet tot het expliciet kennen van de effectieve potentiaal,
vermits de Curci-Ferrari ijk eerder diende als voorbereiding op de meer interessante maar ook meer
gecompliceerde MAG. De condensatie van de relevante operator in de MAG zou een massa geven aan
de niet-diagonale gluonen en kan dus dienen als een indicatie voor Abelse dominantie.

In elk geval leerde de Curci-Ferrari ijk ons al enkele zaken die het vermelden waard zijn. In de Landau
ijk is er duidelijkerwijze geen ijkparameter. Daar de beschouwde operator in geval van de Curci-
Ferrari ijk niet ijkinvariant is, zou men zich de vraag kunnen stellen wat het effect is op fysische,
dus ijkinvariante grootheden. Voor wat betreft ons onderzoek, is de fysische grootheid waarmee we
onmiddellijk geconfronteerd worden de vacuümenergie E als het minimum van de effectieve potentiaal.
We hebben een argument gegeven dat E formeel niet varieert als de ijkparameter α wordt gevarieerd
over de Curci-Ferrari ijken.

We herhalen hier dat de LCO methode de introductie van een nieuwe parameter ζ vereist, waar-
van de waarde wordt vastgelegd door een differentiaalvergelijking in g2 die volgt uit de renormaliza-
tiegroepvergelijking. In geval van de Landau ijk kan die differentiaalvergelijking opgelost worden met
een reeks in g2, gebruik makende van de Frobeniusmethode, en men bekomt een unieke ζ die multipli-
catieve renormalizatie toelaat. Echter, indien er een ijkparameter α aanwezig is, worden de coëfficiënten
van de g2-machten in de reeksontwikkeling voor ζ differentiaalvergelijkingen in α. Hierdoor duiken er
arbitraire integratieconstanten op in de uiteindelijke uitdrukking voor ζ en dus ook in de effectieve

6On-shell wil zeggen dat de bewegingsvergelijkingen van het hulpveld b mogen gebruikt worden.
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potentiaal. In Hoofdstuk 8 hebben we deze integratieconstanten gewoon nul gesteld op grond van
de ijkparameteronafhankelijkheid van de vacuümenergie. Een beter uitgewerkt argument waarom deze
constanten nul mogen gesteld worden, werd gevonden in Hoofdstuk 12.

A.2.6 Meer over de spookcondensatie.

In Hoofdstuk 8 hebben we verder aandacht besteed aan de spookcondensatie. De aanwezigheid van
een vierpuntsinteractie tussen de spoken in de MAG diende als een hint dat een spookcondensatie kan
optreden7, met als gevolg dat een continue SL(2,R) symmetrie wordt gebroken. Vermits dergelijke
vierpuntsinteractie en de SL(2,R) symmetrie ook aanwezig zijn in de Curci-Ferrari ijk, kon een spook-
condensatie ook in dit geval verwacht worden [90].

Door de afwezigheid van dergelijke interactie in de Landau ijk, was er absoluut geen reden om ook in
een spookcondensatie in deze ijk te geloven, ondanks de SL(2,R) symmetrie. Verrassend genoeg was
het via de LCO methode toch mogelijk een spookcondensatie in de Landau ijk te bestuderen [91].

Dit werd verder onderzocht in Hoofdstuk 8. Onze studie werd uitgevoerd met de LCO methode, die zelfs
toelaat om simultaan alle kanalen te beschouwen in dewelke de condensatie kan plaatsgrijpen. Deze
kanalen zijn uiteraard verbonden door de SL(2,R) rotaties. Het condensaat

〈
fabccacb

〉
correspondeert

met het Overhauser kanaal, terwijl
〈
fabccacb

〉
en

〈
fabccacb

〉
met het BCS kanaal overeenkomen. Wij

hebben deze namen gekozen naar analogie met het Overhauser en BCS effect uit de theorie van de
gewone supergeleiding [92, 93, 94, 95].

We kwamen tot de conclusie dat de gelijktijdige invoering van de spookoperatoren twee LCO parameters
vereiste, die evenwel evenredig moeten zijn door de symmetrie-eigenschappen van het model. We gaven
daarnaast ook een diagrammatische uitleg waarom deze twee parameters evenredig zijn.

We schreven de één-lus effectieve potentiaal neer, die uitgedrukt kon worden in functie van twee
SL(2,R) invarianten. Daar de expliciete berekening van de potentiaal niet eenvoudig zou zijn, slaagden
we erin de inspanning enigszins te verlichten door aan te tonen dat één van die twee invarianten
noodzakelijkerwijze nul is voor de vacuümconfiguratie, tenminste op het één-lus niveau. Uiteindelijk
vonden we een lagere vacuümenergie door het spookcondensaat.

Een vacuüm kiezen volgens een bepaalde SL(2,R)-richting impliceert de breking van deze symmetrie.
Elke richting is echter equivalent daar ze dezelfde energie opleveren, alzo wordt er geen onderscheid
gemaakt tussen b.v. het Overhauser of BCS kanaal.

Vermits de BRST- en spookladingssymmetrie een belangrijke rol spelen in perturbatieve veldentheorie
voor QCD [177], hebben we nog enige aandacht aan vacua andere dan het Overhauser besteed. Om
het probleem te situeren merken we op dat in het BCS vacuüm 〈QBRST(. . .)〉 ∝ 〈

fabccacb
〉 6= 0, dus

de BRST-symmetrie is gebroken, net als de spookladingssymmetrie vermits de operator fabccacb ook
een spooklading draagt. We motiveerden dat er in dergelijke vacua toch een concept van spook- en
nilpotente BRST-lading bestaat, zijnde de “geroteerde” versie van de originele spook- en BRST-lading.

Vervolgens beperkten we ons tot het Overhauser vacuum. Daar de gebroken SL(2,R) symmetrie
continu was, voorspelt de stelling van Goldstone de aanwezigheid van massaloze bosonen. We argu-
menteerden echter dat deze tot een onfysische sector van de theorie behoren. We maakten hiervoor
gebruik van een argument van Kugo en Ojima [177].

Een gevolg van de spookcondensatie is dat het gedrag van de spoken in functie van de kleur veranderd is,
vermits de globale SU(N) kleursymmetrie inderdaad gebroken is door een kleurgeladen condensaat als〈
fabccacb

〉
. Wanneer we de uitdrukking voor de globale kleurlading Qc voor de ongebroken symmetrie

echter in beschouwing nemen, dan reduceert deze zich tot een BRST exacte uitdrukking onder bepaalde

7De ontbinding van een vierpuntsinteractie via een hulpveld is een gekende truc om een potentiaal voor dit
hulpveld, dat proportioneel is met de “wortel” van de interactie, te vinden.
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voorwaarden8, i.e. tot iets van de vorm QBRST(. . .). Hierdoor levert de actie van Qc op fysische
toestanden nul op9, ook in de vacua met spookcondensatie, zelfs al genereert Qc geen globale symmetrie
van de actie meer.

A.2.7 Massadimensie twee gluoncondensaat in de lineaire, covariante ijken.

We hebben tot nu al de condensatie van A2
µ bestudeerd in de Landau ijk en de veralgemening ervan

in de Curci-Ferrari ijken, waarnaast we ook al de renormalizeerbaarheid in de MAG hebben nagegaan.
Telkenmale bleek de relevante operator on-shell BRST invariant te zijn. Men zou dus kunnen denken
dat deze invariantie een conditio sine qua non is.

Er bestaat echter nog een klasse van covariante ijken, die misschien wel het best gekend is, namelijk
de lineaire, covariante ijken met als typevoorbeelden de Landau en Feynman ijk. Wij stelden de massa
dimensie twee operator A2

µ voor als een kandidaat uitbreiding binnen deze klasse van ijken. We ver-
melden dat A2

µ in dit geval zelfs niet on-shell BRST invariant is. Desniettegenstaande waren we toch in
staat de renormalizeerbaarheid te bewijzen tot op alle ordes, we berekenden de anomale dimensie tot op
twee lussen en de één-lus effectieve potentiaal, en we vonden ook hier een niet-verdwijnend condensaat〈
A2

µ

〉
.

Hoewel we erin slaagden ons bewijs van de onafhankelijkheid van de ijkparameter voor wat betreft de
vacuümenergie E te herhalen voor deze ijken, waren de expliciete resultaten voor E voor verschillende
keuzen van de ijkparameter niet in overeenstemming. Voor zover wij weten, is deze inconsistentie
tussen theorie en praktijk een gevolg van een opmenging van verschillende ordes van perturbatietheorie
wanneer er slechts tot op een eindige orde nauwkeurig wordt gewerkt, en zou dit probleem zich niet
voordoen op oneindige orde. We stelden een middel voor om het probleem te reduceren op eindige
orde, en hebben dit toegepast op de berekening van de vacuümenergie en nulde orde massa.

De details staan uitgewerkt in de Hoofdstukken 10 en 11.

A.2.8 Niet-diagonale massageneratie in de maximaal Abelse ijk.

Met de kennis die we tot hier al opgedaan hebben door het onderzoek van eenvoudiger ijken, zijn we
voldoende gewapend om uiteindelijk ook de MAG, aangevuld met de Abelse Landau ijk, te analyseren.
De resultaten hiervan staan vermeld in Hoofdstuk 12.

We verifieerden de renormalizeerbaarheid, we bepaalden de één-lus effectieve potentiaal en vonden een
niet-triviale nulde orde massa voor de niet-diagonale gluonen, terwijl de diagonale gluonen massaloos
bleven. Deze bevindingen zijn in kwalitatieve overeenkomst met de roostersimulaties van de MAG
[49, 50].

Een bijkomend probleem waarmee we geconfronteerd werden is het volgende: elke eerder onderzochte
ijk bezat de Landau ijk als limietgeval. Hierdoor waren we steeds in staat om een verband te leggen
tussen de lagere vacuümenergie door de respectievelijke massadimensie twee condensaten in elk van deze
ijken. De MAG heeft echter duidelijk de Landau ijk niet als speciaal geval, en aldus was het onduidelijk
of er ook een verband bestond tussen het massadimensie twee condensaat in deze ijk en

〈
A2

µ

〉
in de

Landau ijk. We losten dit vraagstuk op door een ijk te construeren die niet alleen interpoleerde tussen
de Landau ijk en de MAG, maar ook toeliet om een interpolerende massadimensie twee operator in te
voeren, en dit alles op een renormalizeerbare wijze. Er werd een extra ijkparameter ingevoerd, maar we
toonden aan dat deze niet onafhankelijk renormalizeert. We legden dus een verband tussen de MAG en
de Landau ijk, en bijgevolg ook met de lineaire, covariante en de Curci-Ferrari ijken.

8Voorwaarden die trouwens dezelfde zijn ingeval er geen sprake is van spookcondensaten.
9Fysische toestanden |fys〉 worden gegeven door de BRST-gesloten toestanden, i.e. QBRST |fys〉 = 0, die niet

BRST-exact zijn, i.e. |fys〉 6= QBRST |. . .〉.
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A.2.9 Keuze van het renormalizatieschema.

We herhalen dat renormalizatie erin bestaat om via tegentermen oneindigheden, die optreden bij het
uitrekenen van Feynmandiagrammen, te elimineren. Logischerwijs is dit gedefinieerd op eindige tegen-
termen na: men kan een oneindigheid “∞1” steeds wegwerken door een tegenterm “−∞1 + c ” met c
een willekeurige constante. De waarde van deze constanten wordt vastgelegd door een keuze van een
renormalizatieschema.

Meestal wordt gebruik gemaakt van het MS schema10, vermits dit een zeer efficiënt schema is voor wat
betreft de berekeningen.

Over het algemeen hebben we gevonden dat de bekomen expansieparameter voor de perturbatiereeks
van de effectieve potentiaal voldoende klein is om te kunnen spreken van kwalitatief aanvaardbare
resultaten. Hiermee bedoelen we dat we geen compleet verschillende waarden verwachten te vinden op
hogere orde of in een andere renormalizatieschema voor b.v. de nulde orde massaparameter.

Wanneer het Gross-Neveu model bestudeerd wordt, dan kan een aanpak via de LCO of 2PPI methode
alle niet-perturbatieve effecten, die bijdragen tot de fermionmassa, omvatten, daar de niet-perturbatieve
sector van dit model veel minder rijk is dan deze van QCD. In het Gross-Neveu geval kan het dan
interessant zijn om de afhankelijkheid van het renormalizatieschema zo klein mogelijk te maken, om zo
tot betere numerieke resultaten te komen. Essentieel zijn de technieken die daarvoor ter beschikking
zijn gebaseerd op een vervanging van de relevante grootheden door hun renormalizatieschema- en
schaalonafhankelijke tegenhangers, zie b.v. [104, 105, 24, 106]

In het geval van ijktheorieën is dergelijke optimalizatie soms eerder tijdrovend en minder nuttig, vermits
er vele andere bronnen van niet-perturbatieve effecten zijn. Ons werk is eerder bedoeld om een idee
te krijgen over de grootte-orde van b.v. de nulde orde massa ten gevolge van een massadimensie twee
condensaat gebruik makende van perturbatieve berekeningen. We vonden zo, in alle beschouwde ijken,
een waarde voor de massa van enkele honderden MeV in het MS schema, met een expansieparameter
die niet al te groot was. Als de MS koppeling te groot zou uitvallen, dan kan het wel de moeite zijn
om een analyse te maken van wat er gebeurt in andere schema’s.

A.2.10 Het Gribov probleem: ijkkopieën.

Wanneer een ijktheorie gekwantiseerd wordt door middel van het padintegraal formalisme, moet een
ijk gekozen worden om te verzekeren dat slechts één representant van elke ijkequivalentieklasse zou
bijdragen tot de padintegraal. Voor de ijken die we tot nu beschouwd hebben, werd er altijd van uit
gegaan dat de gekozen ijkvoorwaarde een unieke representant selecteert.

Gribov toonde aan dat de Landau ijk de ijkvrijheid niet volledig vastlegde [107]: er bestaan meerdere
ijkequivalente configuraties die allen voldoen aan ∂µAµ = 0. Het Gribov probleem is niet beperkt tot de
Landau ijk, maar een generiek probleem van niet-Abelse ijktheorieën [108]. Het bestaan van ijkkopieën
impliceert dat het integratiedomein van de padintegraal verder ingeperkt moet worden. De vraag is
uiteraard of dit kan vertaald worden in een bruikbaar formalisme. Het bleek dat dit mogelijk is in de
Landau ijk, en in zekere mate in de niet-covariante Coulomb ijk [107], maar buiten deze ijken is er niet
veel bekend over hoe het Gribov probleem kan vermeden worden.

Gribov toonde aan dat het bestaan van ijkkopieën op het infinitesimale niveau equivalent is met het
bestaan van nulmodes van de Faddeev-Popov operator, −∂µ

(
∂µδab + gfacbAc

µ

)
. Hierdoor geleid stelde

hij voor om de padintegratie te beperken tot het zogenaamde Gribovgebied, waar de eigenwaarden van
de Faddeev-Popov operator11 positief zijn. Op de rand van dit gebied, ook wel de (eerste) Gribov
horizon genoemd, duikt de eerste verdwijnende eigenwaarde op.

10MS=modified minimal substraction.
11Deze operator is Hermitisch in de Landau ijk, en bezit aldus reële eigenwaarden.
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Uiteraard moet er bewezen worden dat elke ijkconfiguratie een representant bezit binnen het Gribovge-
bied. Dit werd door Gribov bewezen voor configuraties die “dicht” tegen de buitenkant van het Gri-
bovgebied liggen [107], en later werd een bewijs voor willekeurige configuratie gegeven in [109]. Verder
is het ook niet zeker dat het Gribovgebied zelf geen ijkkopieën bevat. Er werd inderdaad aangetoond
dat er kopieën bestaan binnen dat gebied. Het kleinere gebied dat wel vrij is van kopieën wordt de
“fundamental modular region” (FMR) genoemd. Er werd geargumenteerd dat verwachtingswaarden
berekend binnen de FMR samenvallen met deze berekend binnen het Gribovgebied [113].

Terugkerend op het probleem van de restrictie van de padintegraal, vermelden we dat Gribov een laagste
orde approximatie uitvoerde in [107], maar alle essentiële kenmerken van de restrictie kwamen al naar
voor: er moet een dimensievolle parameter in de theorie ingevoerd worden, waarvan de waarde door een
gapvergelijking bepaald wordt. Het voornaamste gevolg is een infrarood onderdrukking, respectievelijk
versterking, van de gluon-, respectievelijk spookpropagator. Dergelijk gedrag is in overeenstemming
met de resultaten bekomen door roostersimulaties [114, 45, 48, 115, 116, 117, 118, 119, 120] of met
oplossingen van de Schwinger-Dyson vergelijkingen [121, 122, 123, 20, 124, 125, 126]. We kunnen ook
nog aanhalen dat Kugo en Ojima een criterium voor confinement opstelden in [177]. Een voldoende
voorwaarde in de Landau ijk voor dit criterium is een spookpropagator die sterker dan kwadratisch
singulier is. Dit ondersteunt het geloof dat het Gribovprobleem, en meerbepaald een oplossing ervoor,
belangrijk kan zijn voor wat betreft de infrarood dynamica van ijktheorieën.

De mogelijkheid om een betere padintegraal te construeren in de Landau ijk door het werk van Gribov,
gaf de motivatie voor een ander deel van ons onderzoek: de vraag rees wat de invloed kon zijn op de
condensatie van A2

µ.

In Hoofdstuk 13 hebben we van dichtbij Gribov’s work gevolgd indien het mogelijk bestaan van een
condensaat

〈
A2

µ

〉
in rekening wordt gebracht. We kwamen tot een gelijkaardige conclusie als voorheen:

een infrarood onderdrukking/versterking van de gluon-/spookpropagator.

Zwanziger stelde in [127, 128] een lokale Lagrangiaan op die toelaat om de restrictie tot het Gribovgebied
orde per orde te implementeren en dit op een renormalizeerbare wijze. Zo was men ook zeker dat
de restrictie tot het Gribovgebied de renormalizeerbaarheid niet in het gedrang brengt. De restrictie
wordt expliciet gëımplementeerd door de horizon voorwaarde. Deze voorwaarde is niets anders dan de
gapvergelijking voor de massavolle Gribov parameter, en kan afgeleid worden uit de effectieve actie
berekend met de Zwanziger actie.

Hoofdstuk 13 behandelt kort de algebräısche setup om de renormalizeerbaarheid tot op alle ordes te
bewijzen van de gelokaliseerde versie van Gribov’s originele approximatie van de restrictie.

In Hoofdstuk 14 hebben we de renormalizeerbaarheid tot op alle ordes bewezen wanneer de Zwanziger
Lagrangiaan aangevuld wordt met de operator A2

µ volgens de LCO methode. Een interessante eigen-
schap van deze actie is dat er geen nieuwe renormalizatiefactoren nodig zijn. Dit is een gevolg van
de rijke symmetrie-inhoud van deze actie, met of zonder A2

µ erbij. In het bijzonder bleek wat men de
LCO parameter voor de Gribov parameter zou kunnen noemen, exact “1” te zijn. Dit is een belangrijke
eigenschap om de infrarood versterking van de spookpropagator te kunnen aantonen. We gaven ook
enkele mogelijke implicaties van de aanwezigheid van de Gribov parameter.

Uitgaande van de effectieve actie, bekwamen we dan twee gapvergelijkingen, één voor de Gribovpa-
rameter en één voor de massaparameter geassocieerd aan

〈
A2

µ

〉
. Dit liet dan toe om de effecten na

te gaan van een condensatie van A2
µ op de Gribovparameter en omgekeerd. We bekwamen expliciete

waarden in het MS schema voor beide massavolle grootheden, maar de expansieparameter bleek te
groot te zijn. Daardoor voerden we een optimalizatie uit van de perturbatiereeks om de afhankelijkheid
van het renormalizatieschema te minimalizeren. We onderzochten tevens de eigenschappen van de
vacuümenergie, met of zonder aansluiting van A2

µ. We toonden ondermeer aan dat in het originele
Gribov-Zwanziger model, dus zonder aansluiting van A2

µ, de vacuümenergie noodzakelijk positief is in
de één-lusbenadering, voor eender welke keuze van renormalizatieschema of -schaal. Verder toonden
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we aan dat voor de oplossing in het geval A2
µ wel aangesloten wordt, in het MS schema en in de één-lus

benadering, zeker geldt dat
〈
A2

µ

〉
> 0. Wanneer de horizon voorwaarde niet wordt opgelegd, is de

schatting voor
〈
A2

µ

〉
bekomen via de LCO methode negatief, zie [42] of Hoofdstuk 11.

De bevinding dat de vacuümenergie positief zou zijn is eerder ongewenst. Door de dilatatie-anomalie12

staat de vacuümenergie rechtstreeks in verband met de waarde van het ijkinvariante gluoncondensaat〈
F 2

µν

〉
, dat een voorname rol speelt in de QCD-fenomenologie [13, 14]. In het bijzonder impliceert

een positieve vacuümenergie een negatieve waarde voor
〈

g2

4π2 F 2
µν

〉
. Dit is in tegenspraak met wat

gevonden wordt. De fenomenologische waarden voor dit condensaat voor “real life” QCD (met quarks
erbij) zijn positief [13, 14], terwijl ook voor QCD zonder quarks de schattingen, ditmaal bekomen via
roostersimulaties [129], positief blijken te zijn. Het lijkt dus aangeraden om toch tenminste een negatieve
vacuümenergie te vinden. De aansluiting van de operator A2

µ maakt het mogelijk om een negatieve
vacuümenergie te vinden, evenwel waren we niet in staat om hierover tot een sluitende conclusie te
komen in de beschouwde één-lus benadering, vermits de afhankelijkheid van het renormalizatieschema
pathologisch sterk was.

A.2.11 Drie-dimensionele ijktheorieën.

In Hoofdstuk 16 namen we drie-dimensionele ijktheorieën onder de loep. Deze zijn fysisch relevant als de
hoge temperatuurs-limiet van van hun vier-dimensionele tegenhanger [130]. Tevens zijn ze interessant
voor roostersimulaties door de kleinere rekentijd [131, 115]. In eerste instantie ging onze interesse uit
naar de vraag of er ook in drie-dimensionele Yang-Mills theorieën een condensatie van A2

µ mogelijk zou
zijn, met de bijhorende dynamische generatie van een massaparameter.

De situatie is echter iets ingewikkelder dan een eenvoudige aanpassing van het reeds bestaande vier-
dimensionele onderzoek. In drie dimensies zijn Yang-Mills theorieën superrenormalizeerbaar daar de
koppelingsconstante g2 zelf dimensievol is. Superrenormalizeerbare modellen zijn méér dan renormal-
izeerbaar in de zin dat er maar enkele “basis” ultraviolet divergente diagrammen zijn. Daarentegen
treden er ernstige infrarood problemen op in het massaloze geval [132]. Dit kan eenvoudig begrepen
worden aan de hand van volgende denkwijze: onderstel dat een werkzame doorsnede wordt berekend
met een zekere externe schaal Q. Vermits g2 zelf massadimensie 1 draagt, moet de perturbatieve

ontwikkeling a fortiori gebeuren in g2

Q . Het moge duidelijk zijn dat dit problemen oplevert wanneer de
infrarood limit Q ≈ 0 wordt beschouwd. Als er echter een massa zou gegenereerd worden, dan zou de
infrarood sector gevrijwaard kunnen worden van problemen, vandaar de interesse in het vinden van een
dynamische massa, zie b.v. [133, 134, 135, 136].

We hebben al een eerste stap gezet in de richting van het uitbreiden van de LCO methode naar drie
dimensies door aan te tonen dat, wanneer de Landau ijk wordt gekozen, de insertie van de operator
A2

µ via een massaterm 1
2m2A2

µ een renormalizeerbaar model oplevert, terwijl we, enigszins verrassend,
ook vonden dat de relatie voor de anomale dimensie van de operator A2

µ in vier dimensies bewaard
blijft in drie dimensies. Deze relatie werd ook numeriek nagegaan gebruik makende van de “large Nf”
methode, waarbij Nf het aantal quarks voorstelt. We gaven ook een korte analyse van de Curci-Ferrari
gauge. Laat ons eindigen met de opmerking dat de drie-dimensionele theorie eindig bleek te zijn in
eerste orde. We hebben nog geen informatie over wat er gebeurt in hogere orde, of over een mogelijke
veralgemening van de LCO methode zelf om de condensatie van A2

µ te onderzoeken.

12De dilatatie-anomalie, ook wel gekend als de “trace anomaly”, vindt zijn ontstaan in het feit dat er op het
klassieke niveau geen, maar na renormalizatie wel een massaschaal in de QCD-actie voorkomt. De dilatatie-
invariantie is dus spontaan gebroken. We merken op dat het Gribov-Zwanziger formalisme sowieso een massavolle
Gribovparameter γ introduceert in de QCD-actie, maar de trace anomalie blijft geldig, zoals rigoreus werd bewezen
in [128].
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A.3 Besluit.

Tot slot geven we nog enkele algemene beschouwingen tot besluit van het voorgestelde werk.

De aandacht was vooral gericht op de dynamische generatie van een massa dimensie twee gluon con-
densaat. Dit werd mogelijk gemaakt door het LCO formalisme, dat toelaat om een zinvolle effectieve
potentiaal voor lokaal samengestelde operatoren te berekenen via perturbatieheorie. Men kan alzo enige
niet-perturbatieve informatie bekomen in de vorm van een condensaat, wier formatie optreedt omdat
het de vacuümenergie verlaagt.

We hebben dit onderzoek, dat begon in de Landau ijk [42], uitgebreid naar verschillende andere klassen
van ijken: de lineair covariante, de Curci-Ferrari en de maximaal Abelse ijken. Deze laatste ijk is
belangrijk voor het duale supergeleider model van het QCD vacuum bij lagere energie, als een mogelijke
verklaring van confinement.

Dit werk kan gezien worden als een indicatie dat massa dimensie twee condensaten relevantie hebben
voor ijktheorieën, vermits een gelijkaardig fenomeen optreedt in een groot aantal ijken. Desalniettemin
is ons begrip van deze condensaten verre van compleet.

• Hoewel de operator A2
µ een ijkinvariante mening kan gegeven worden in de Landau ijk, is zo een

interpretatie niet langer mogelijk in de andere ijken. We kunnen niets zeggen over een ijkinvariante
betekenis van onze resultaten.

Er is wel een bewijs verschenen dat
〈
A2

µ

〉
ijkinvariant zou zijn, het ligt echter buiten onze mo-

gelijkheden om de juistheid van dit bewijs in te schatten [249].

Indien Zwanziger juist is omtrent de gelijkheid van verwachtingswaarden berekend binnen de
FMR of het Gribov gebied [113], dan is de grootheid

〈
A2

µ

〉
zoals berekend in Hoofdstuk 15 een

ijkinvariante grootheid. Dit is echter een vrij academisch gegeven, vermits het onduidelijk blijft
hoe deze grootheid te berekenen in een andere ijk dan de Landau ijk.

• In onze opinie is het al vrij opmerkelijk dat er een operator van massa dimensie twee kan gevonden
worden die renormalizeerbaar is tot op elke orde van perturbatietheorie in de verschillende onder-
zochte ijken, soms zelfs met extra eigenschappen zoals voor de anomale dimensie in de Landau
ijk of MAG.

Er bestaan nog andere ijken, maar deze vertonen een gans gamma van andere problemen zoals het
niet covariant zijn, problemen met niet-lokale tegentermen, alleen numeriek te implementeren,...
Deze zijn dan waarschijnlijk een stuk moeilijker, zoniet onmogelijk om te onderzoeken voor wat
betreft een massa dimensie twee condensaat op de manier zoals wij het gedaan hebben. We
vermelden wel nog dat het condensaat

〈
A2

i

〉
, i = 1, . . . , 3, werd ingevoerd voor een constructie

van glueballs in de Coulomb ijk [200].

• Enkele werken hebben het bestaan van massa dimensie twee condensaten in vraag gesteld, op
basis van het niet ijkinvariant zijn van de operator. Dergelijke operatoren kunnen niet correspon-
deren met fysisch waarneembare grootheden en zijn aldus irrelevant [250, 251]. Evenzo werd de
renormalizeerbaarheid in vraag gesteld, vermits deze steeds voor een specifieke operator in een
specifieke ijk werd bewezen. De operator A2

µ is bijvoorbeeld niet renormalizeerbaar in de MAG
voor willekeurige ijkparameter.

Ons standpunt is steeds dat het onderzoek start bij de klassieke Yang-Mills actie. Bij kwantisatie
moet een ijk opgelegd worden. Het lijkt ons logisch dat de keuze van de ijk het gedrag zal
bëınvloeden van de theorie op het kwantumniveau. Het is denkbaar dat in een bepaalde ijk
een bepaalde operator renormalizeerbaar is en kan condenseren. Uiteraard zou op het einde de
ijkinvariantie van de theorie terug naar voren moeten komen, in het bijzonder wanneer men fysische
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grootheden gaat beschouwen zoals het deeltjesspectrum. Maar wanneer men gëınteresseerd is in
het gedrag van een ijkvariante grootheid zoals de gluonpropagator, dan sluit niets de aanwezigheid
van ijkvariante condensaten uit [229].

Eén van de voornaamste gevolgen van het gluoncondensaat is inderdaad het optreden van een
expliciete massaparameter in de gluonpropagator. Het optreden van (een) massaparameter(s)
in de gluonpropagator werd ook gevonden via roostersimulaties [43, 44, 45, 46, 47, 48, 49, 50],
oplossingen van de Schwinger-Dyson vergelijkingen [51, 52], eerder fenomenologische studies
[53, 54, 55, 56, 57], ... Ook andere gevolgen van ons onderzoek zijn in kwalitatieve overeenkomst
met het resultaat van andere studies, we vermelden b.v. de generatie van een niet-diagonale
en afwezigheid van een diagonale gluonmassa in de MAG [49, 50] of de consequenties van de
restrictie tot het Gribovgebied [116, 117, 118, 119, 120].

• Het is mogelijk dat de massa dimensie twee condensaten een ijkinvariant stuk bevatten, zie de
speculatie hieromtrent voor

〈
A2

µ

〉
in de Landau ijk [34]. Dit blijft evenwel speculatie, en we

zullen er dan verder ook niet veel woorden meer aan vuil maken. We vermelden enkel nog dat we
gemotiveerd hebben dat tenminste de lagere vacuümenergie door de respectievelijke condensaten
in verschillende ijken formeel dezelfde zou moeten zijn in ons formalisme.

In onze opinie betekent ijkinvariantie niet dat deze zomaar ingeroepen kan worden om onderzoek
in een bepaalde richting uit te sluiten omdat het ijkvariante grootheden beschouwt. We haalden
al aan dat het perfect toegelaten is dat ijkvariante grootheden optreden in bijvoorbeeld de glu-
onpropagator. Uiteraard zijn we akkoord dat ijkinvariantie een sleutelbegrip is, maar als men
ijkinvariantie in een te strikte zin wil opleggen, dan kan er misschien niet veel buiten perturba-
tietheorie gedaan worden op een min of meer analytische wijze. Het is al leuk indien men iets
meer kan zeggen over bijvoorbeeld de gluon- of spookpropagator voorbij het louter perturbatieve,
denken we bijvoorbeeld maar aan het Kugo-Ojima confinement criterium.

Een goed voorbeeld om de illustreren dat strikte ijkinvariantie opleggen misschien eerder con-
traproductief werkt, is het Gribovprobleem. Het zou een ongelooflijke uitdaging zijn een oplossing
voor dit probleem te vinden dat ijkinvariant is. Door de speciale eigenschappen van de Landau
ijk kan er iets gedaan worden, dus waarom er dan geen gebruik van maken? Het is een uitgelezen
kans om dan tenminste toch in deze ijk iets meer te kunnen zeggen over de infrarood dynamica
van QCD.

• Ons werk is beperkt gebleven tot een perturbatieve analyse van niet-perturbatieve effecten.
Hoogstwaarschijnlijk zijn er andere (meer) belangrijke oorzaken van niet-perturbatieve effecten,
bijvoorbeeld komende van de topologische inhoud van QCD.

• Meestal hebben we ons beperkt tot een één-lus benadering. We merken hier nog op dat een
nadeel van LCO formalisme is dat men de (n + 1)-lus waarden van o.a. de anomale dimensies
moet kennen voor de n-lus effectieve potentiaal. Daarnaast compliceert ook de aanwezigheid van
een ijkparameter de berekeningen. Hoewel het eigenlijk aangeraden is om expliciet de twee-lus
benadering van de effectieve potentiaal te kennen voor een algemene keuze van lineare covariante
ijk, worden de berekeningen zeer ingewikkeld. We verwijzen bijvoorbeeld naar de uitdrukking
(11.32) voor ζ1(α), zelf optredend in de differentiaalvergelijking voor ζ2(α). Wanneer er dan ook
nog quarks beschouwd worden, worden de zaken verder gecompliceerd.

• Betreffende de dynamische generatie van een gluon massaparameter zouden we willen opmerken
dat dit geenszins impliceert dat we het probleem van de “mass gap” in QCD hebben opgelost.
Daarvoor zouden we moeten aantonen dat het fysisch spectrum, te construeren uit de QCD-
actie, enkel massieve deeltjes bevat. Dit zou het dan ook aantonen van confinement nodig
maken, duidelijkerwijze gaat dit ons petje te boven.
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Bovengaande kwestie staat in verband met de unitariteit. Massieve Yang-Mills modellen zijn
niet unitair [84, 162, 182]. We merken echter op dat wij niet een (naakte) massieve, maar
een dynamisch massieve Yang-Mills theorie opstellen. Maar uiteindelijk moet unitariteit bewezen
worden op het niveau van de fysische excitaties, waarvan vooralsnog niemand weet hoe deze te
construeren, zelfs al gaat het uit van de gebruikelijke massaloze actie. Wij beschouwen de QCD-
actie steeds geschreven in termen van de elementaire, maar onfysische quarks en gluonen. Dit
is complementair met het feit dat een pool in de gluonpropagator, hetgeen inderdaad optreedt
binnen het LCO formalisme [214, 252], niet noodzakelijk een fysisch massief deeltje (gluon)
impliceert [253].

Bij zeer hoge energieën kunnen quarks en gluonen als vrije deeltjes beschouwd worden door
de asymptotische vrijheid. Bij deze energieën is perturbatietheorie echter geldig, en zijn niet-
perturbatieve effecten afwezig. In dit geval bestaat het Yang-Mills spectrum uit de twee transver-
sale gluonpolarizaties, en er is unitariteit, zie b.v. [177].

Naast de condensatie van massa dimensie twee gluon operatoren, hebben we ook verdere aandacht
besteed aan de condensatie van massa dimensie twee spook operatoren, die een ordeparameter zijn van
een continue SL(2,R) symmetrie die aanwezig is in sommige van de ijken die we onderzocht hebben.
Als deze condensaten optreden, zullen ze ook een verdere invloed uitoefenen op de propagatoren.

Is dit een werk een afgerond geheel? Nodeloos te zeggen dat het dit niet is. Verscheidene zaken
kunnen verder onderzocht worden. We noemen er een paar.

Het zou fijn zijn om aanwijzingen te krijgen vanuit andere hoek (roostersimulaties) dat een massa
dimensie twee condensaat bestaat in andere ijken. In de Landau ijk werden de 1

Q2 correcties gerelateerd

aan
〈
A2

µ

〉
gevonden wanneer de koppelingsconstante g2 werd beschouwd, berekend via verschillende

interactievertices [37, 38, 39, 257]. Men zou er kunnen aan denken om 1
Q2 correcties te zoeken voor

wat betreft de koppelingsconstante in andere ijken die op een rooster kunnen gesimuleerd worden, b.v.
de MAG.

Het zou verder ook fijn zijn om andere indicaties te verkrijgen dat er zoiets als een spookcondensaat
bestaat in de Landau ijk. Wat zou de invloed van een spook- op het gluoncondensaat en omgekeerd
zijn? Wat is het effect op de propagatoren? Lopend onderzoek lijkt uit te wijzen dat het Overhauser
spookcondensaat zorgt voor een verschil tussen de diagonale en niet-diagonale masssa, waarbij de
diagonale kleiner uitvalt dan de niet-diagonale [254]. Misschien kan dit gezien worden als indicatie voor
een soort van Abelse dominantie in de Landau ijk [255, 256].

Wat gebeurt er indien de Gribov restrictie gëımplementeerd wordt op hogere orde? Is het mogelijk
een zinvolle, negatieve waarde te vinden voor de vacuümenergie? Wat is de mogelijke rol van het
condensaat

〈
A2

µ

〉
? Als men zou vinden dat de vacuümenergie positief blijft op hogere orde, dan zou

dat een indicatie kunnen zijn dat een orde-per-orde implementatie van de horizon conditie verre van
“voldoende” is om een behoorlijke infrarood beschrijving van QCD te geven.

Kunnen we het LCO formalisme uitbreiden naar drie dimensies? Daar de massieve ijktheorie eindig
bleek te zijn in de één-lus benadering, zou het interessant zijn na te gaan wat er gebeurt in hogere orde
in deze superrenormalizeerbare theorie.

Bestaat er een uitbreiding van A2
µ voor supersymmetrische Yang-Mills ijktheorieën, gebruik makende

van een veralgemeende Landau ijk [258]? Een voordeel van het beschouwen van supersymmetrische
ijktheorieën is dat er exacte resultaten kunnen afgeleid worden, gebruik makende van holomorfie [259],
en zo kunnen niet-perturbatieve mechanismen getoetst worden.

. . .
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